bcm43xx_main.c 119 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425
  1. /*
  2. Broadcom BCM43xx wireless driver
  3. Copyright (c) 2005 Martin Langer <martin-langer@gmx.de>,
  4. Stefano Brivio <st3@riseup.net>
  5. Michael Buesch <mbuesch@freenet.de>
  6. Danny van Dyk <kugelfang@gentoo.org>
  7. Andreas Jaggi <andreas.jaggi@waterwave.ch>
  8. Some parts of the code in this file are derived from the ipw2200
  9. driver Copyright(c) 2003 - 2004 Intel Corporation.
  10. This program is free software; you can redistribute it and/or modify
  11. it under the terms of the GNU General Public License as published by
  12. the Free Software Foundation; either version 2 of the License, or
  13. (at your option) any later version.
  14. This program is distributed in the hope that it will be useful,
  15. but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. GNU General Public License for more details.
  18. You should have received a copy of the GNU General Public License
  19. along with this program; see the file COPYING. If not, write to
  20. the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
  21. Boston, MA 02110-1301, USA.
  22. */
  23. #include <linux/delay.h>
  24. #include <linux/init.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/if_arp.h>
  27. #include <linux/etherdevice.h>
  28. #include <linux/version.h>
  29. #include <linux/firmware.h>
  30. #include <linux/wireless.h>
  31. #include <linux/workqueue.h>
  32. #include <linux/skbuff.h>
  33. #include <net/iw_handler.h>
  34. #include "bcm43xx.h"
  35. #include "bcm43xx_main.h"
  36. #include "bcm43xx_debugfs.h"
  37. #include "bcm43xx_radio.h"
  38. #include "bcm43xx_phy.h"
  39. #include "bcm43xx_dma.h"
  40. #include "bcm43xx_pio.h"
  41. #include "bcm43xx_power.h"
  42. #include "bcm43xx_wx.h"
  43. #include "bcm43xx_ethtool.h"
  44. MODULE_DESCRIPTION("Broadcom BCM43xx wireless driver");
  45. MODULE_AUTHOR("Martin Langer");
  46. MODULE_AUTHOR("Stefano Brivio");
  47. MODULE_AUTHOR("Michael Buesch");
  48. MODULE_LICENSE("GPL");
  49. #ifdef CONFIG_BCM947XX
  50. extern char *nvram_get(char *name);
  51. #endif
  52. #if defined(CONFIG_BCM43XX_DMA) && defined(CONFIG_BCM43XX_PIO)
  53. static int modparam_pio;
  54. module_param_named(pio, modparam_pio, int, 0444);
  55. MODULE_PARM_DESC(pio, "enable(1) / disable(0) PIO mode");
  56. #elif defined(CONFIG_BCM43XX_DMA)
  57. # define modparam_pio 0
  58. #elif defined(CONFIG_BCM43XX_PIO)
  59. # define modparam_pio 1
  60. #endif
  61. static int modparam_bad_frames_preempt;
  62. module_param_named(bad_frames_preempt, modparam_bad_frames_preempt, int, 0444);
  63. MODULE_PARM_DESC(bad_frames_preempt, "enable(1) / disable(0) Bad Frames Preemption");
  64. static int modparam_short_retry = BCM43xx_DEFAULT_SHORT_RETRY_LIMIT;
  65. module_param_named(short_retry, modparam_short_retry, int, 0444);
  66. MODULE_PARM_DESC(short_retry, "Short-Retry-Limit (0 - 15)");
  67. static int modparam_long_retry = BCM43xx_DEFAULT_LONG_RETRY_LIMIT;
  68. module_param_named(long_retry, modparam_long_retry, int, 0444);
  69. MODULE_PARM_DESC(long_retry, "Long-Retry-Limit (0 - 15)");
  70. static int modparam_locale = -1;
  71. module_param_named(locale, modparam_locale, int, 0444);
  72. MODULE_PARM_DESC(country, "Select LocaleCode 0-11 (For travelers)");
  73. static int modparam_noleds;
  74. module_param_named(noleds, modparam_noleds, int, 0444);
  75. MODULE_PARM_DESC(noleds, "Turn off all LED activity");
  76. #ifdef CONFIG_BCM43XX_DEBUG
  77. static char modparam_fwpostfix[64];
  78. module_param_string(fwpostfix, modparam_fwpostfix, 64, 0444);
  79. MODULE_PARM_DESC(fwpostfix, "Postfix for .fw files. Useful for debugging.");
  80. #else
  81. # define modparam_fwpostfix ""
  82. #endif /* CONFIG_BCM43XX_DEBUG*/
  83. /* If you want to debug with just a single device, enable this,
  84. * where the string is the pci device ID (as given by the kernel's
  85. * pci_name function) of the device to be used.
  86. */
  87. //#define DEBUG_SINGLE_DEVICE_ONLY "0001:11:00.0"
  88. /* If you want to enable printing of each MMIO access, enable this. */
  89. //#define DEBUG_ENABLE_MMIO_PRINT
  90. /* If you want to enable printing of MMIO access within
  91. * ucode/pcm upload, initvals write, enable this.
  92. */
  93. //#define DEBUG_ENABLE_UCODE_MMIO_PRINT
  94. /* If you want to enable printing of PCI Config Space access, enable this */
  95. //#define DEBUG_ENABLE_PCILOG
  96. /* Detailed list maintained at:
  97. * http://openfacts.berlios.de/index-en.phtml?title=Bcm43xxDevices
  98. */
  99. static struct pci_device_id bcm43xx_pci_tbl[] = {
  100. /* Broadcom 4303 802.11b */
  101. { PCI_VENDOR_ID_BROADCOM, 0x4301, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  102. /* Broadcom 4307 802.11b */
  103. { PCI_VENDOR_ID_BROADCOM, 0x4307, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  104. /* Broadcom 4318 802.11b/g */
  105. { PCI_VENDOR_ID_BROADCOM, 0x4318, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  106. /* Broadcom 4306 802.11b/g */
  107. { PCI_VENDOR_ID_BROADCOM, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  108. /* Broadcom 4306 802.11a */
  109. // { PCI_VENDOR_ID_BROADCOM, 0x4321, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  110. /* Broadcom 4309 802.11a/b/g */
  111. { PCI_VENDOR_ID_BROADCOM, 0x4324, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  112. /* Broadcom 43XG 802.11b/g */
  113. { PCI_VENDOR_ID_BROADCOM, 0x4325, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  114. #ifdef CONFIG_BCM947XX
  115. /* SB bus on BCM947xx */
  116. { PCI_VENDOR_ID_BROADCOM, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
  117. #endif
  118. { 0 },
  119. };
  120. MODULE_DEVICE_TABLE(pci, bcm43xx_pci_tbl);
  121. static void bcm43xx_ram_write(struct bcm43xx_private *bcm, u16 offset, u32 val)
  122. {
  123. u32 status;
  124. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  125. if (!(status & BCM43xx_SBF_XFER_REG_BYTESWAP))
  126. val = swab32(val);
  127. bcm43xx_write32(bcm, BCM43xx_MMIO_RAM_CONTROL, offset);
  128. bcm43xx_write32(bcm, BCM43xx_MMIO_RAM_DATA, val);
  129. }
  130. static inline
  131. void bcm43xx_shm_control_word(struct bcm43xx_private *bcm,
  132. u16 routing, u16 offset)
  133. {
  134. u32 control;
  135. /* "offset" is the WORD offset. */
  136. control = routing;
  137. control <<= 16;
  138. control |= offset;
  139. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_CONTROL, control);
  140. }
  141. u32 bcm43xx_shm_read32(struct bcm43xx_private *bcm,
  142. u16 routing, u16 offset)
  143. {
  144. u32 ret;
  145. if (routing == BCM43xx_SHM_SHARED) {
  146. if (offset & 0x0003) {
  147. /* Unaligned access */
  148. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  149. ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED);
  150. ret <<= 16;
  151. bcm43xx_shm_control_word(bcm, routing, (offset >> 2) + 1);
  152. ret |= bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA);
  153. return ret;
  154. }
  155. offset >>= 2;
  156. }
  157. bcm43xx_shm_control_word(bcm, routing, offset);
  158. ret = bcm43xx_read32(bcm, BCM43xx_MMIO_SHM_DATA);
  159. return ret;
  160. }
  161. u16 bcm43xx_shm_read16(struct bcm43xx_private *bcm,
  162. u16 routing, u16 offset)
  163. {
  164. u16 ret;
  165. if (routing == BCM43xx_SHM_SHARED) {
  166. if (offset & 0x0003) {
  167. /* Unaligned access */
  168. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  169. ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED);
  170. return ret;
  171. }
  172. offset >>= 2;
  173. }
  174. bcm43xx_shm_control_word(bcm, routing, offset);
  175. ret = bcm43xx_read16(bcm, BCM43xx_MMIO_SHM_DATA);
  176. return ret;
  177. }
  178. void bcm43xx_shm_write32(struct bcm43xx_private *bcm,
  179. u16 routing, u16 offset,
  180. u32 value)
  181. {
  182. if (routing == BCM43xx_SHM_SHARED) {
  183. if (offset & 0x0003) {
  184. /* Unaligned access */
  185. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  186. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED,
  187. (value >> 16) & 0xffff);
  188. bcm43xx_shm_control_word(bcm, routing, (offset >> 2) + 1);
  189. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA,
  190. value & 0xffff);
  191. return;
  192. }
  193. offset >>= 2;
  194. }
  195. bcm43xx_shm_control_word(bcm, routing, offset);
  196. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA, value);
  197. }
  198. void bcm43xx_shm_write16(struct bcm43xx_private *bcm,
  199. u16 routing, u16 offset,
  200. u16 value)
  201. {
  202. if (routing == BCM43xx_SHM_SHARED) {
  203. if (offset & 0x0003) {
  204. /* Unaligned access */
  205. bcm43xx_shm_control_word(bcm, routing, offset >> 2);
  206. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA_UNALIGNED,
  207. value);
  208. return;
  209. }
  210. offset >>= 2;
  211. }
  212. bcm43xx_shm_control_word(bcm, routing, offset);
  213. bcm43xx_write16(bcm, BCM43xx_MMIO_SHM_DATA, value);
  214. }
  215. void bcm43xx_tsf_read(struct bcm43xx_private *bcm, u64 *tsf)
  216. {
  217. /* We need to be careful. As we read the TSF from multiple
  218. * registers, we should take care of register overflows.
  219. * In theory, the whole tsf read process should be atomic.
  220. * We try to be atomic here, by restaring the read process,
  221. * if any of the high registers changed (overflew).
  222. */
  223. if (bcm->current_core->rev >= 3) {
  224. u32 low, high, high2;
  225. do {
  226. high = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH);
  227. low = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW);
  228. high2 = bcm43xx_read32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH);
  229. } while (unlikely(high != high2));
  230. *tsf = high;
  231. *tsf <<= 32;
  232. *tsf |= low;
  233. } else {
  234. u64 tmp;
  235. u16 v0, v1, v2, v3;
  236. u16 test1, test2, test3;
  237. do {
  238. v3 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_3);
  239. v2 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_2);
  240. v1 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_1);
  241. v0 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_0);
  242. test3 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_3);
  243. test2 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_2);
  244. test1 = bcm43xx_read16(bcm, BCM43xx_MMIO_TSF_1);
  245. } while (v3 != test3 || v2 != test2 || v1 != test1);
  246. *tsf = v3;
  247. *tsf <<= 48;
  248. tmp = v2;
  249. tmp <<= 32;
  250. *tsf |= tmp;
  251. tmp = v1;
  252. tmp <<= 16;
  253. *tsf |= tmp;
  254. *tsf |= v0;
  255. }
  256. }
  257. void bcm43xx_tsf_write(struct bcm43xx_private *bcm, u64 tsf)
  258. {
  259. u32 status;
  260. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  261. status |= BCM43xx_SBF_TIME_UPDATE;
  262. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
  263. /* Be careful with the in-progress timer.
  264. * First zero out the low register, so we have a full
  265. * register-overflow duration to complete the operation.
  266. */
  267. if (bcm->current_core->rev >= 3) {
  268. u32 lo = (tsf & 0x00000000FFFFFFFFULL);
  269. u32 hi = (tsf & 0xFFFFFFFF00000000ULL) >> 32;
  270. barrier();
  271. bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW, 0);
  272. bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_HIGH, hi);
  273. bcm43xx_write32(bcm, BCM43xx_MMIO_REV3PLUS_TSF_LOW, lo);
  274. } else {
  275. u16 v0 = (tsf & 0x000000000000FFFFULL);
  276. u16 v1 = (tsf & 0x00000000FFFF0000ULL) >> 16;
  277. u16 v2 = (tsf & 0x0000FFFF00000000ULL) >> 32;
  278. u16 v3 = (tsf & 0xFFFF000000000000ULL) >> 48;
  279. barrier();
  280. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_0, 0);
  281. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_3, v3);
  282. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_2, v2);
  283. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_1, v1);
  284. bcm43xx_write16(bcm, BCM43xx_MMIO_TSF_0, v0);
  285. }
  286. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  287. status &= ~BCM43xx_SBF_TIME_UPDATE;
  288. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
  289. }
  290. static u8 bcm43xx_plcp_get_bitrate(struct bcm43xx_plcp_hdr4 *plcp,
  291. const int ofdm_modulation)
  292. {
  293. u8 rate;
  294. if (ofdm_modulation) {
  295. switch (plcp->raw[0] & 0xF) {
  296. case 0xB:
  297. rate = IEEE80211_OFDM_RATE_6MB;
  298. break;
  299. case 0xF:
  300. rate = IEEE80211_OFDM_RATE_9MB;
  301. break;
  302. case 0xA:
  303. rate = IEEE80211_OFDM_RATE_12MB;
  304. break;
  305. case 0xE:
  306. rate = IEEE80211_OFDM_RATE_18MB;
  307. break;
  308. case 0x9:
  309. rate = IEEE80211_OFDM_RATE_24MB;
  310. break;
  311. case 0xD:
  312. rate = IEEE80211_OFDM_RATE_36MB;
  313. break;
  314. case 0x8:
  315. rate = IEEE80211_OFDM_RATE_48MB;
  316. break;
  317. case 0xC:
  318. rate = IEEE80211_OFDM_RATE_54MB;
  319. break;
  320. default:
  321. rate = 0;
  322. assert(0);
  323. }
  324. } else {
  325. switch (plcp->raw[0]) {
  326. case 0x0A:
  327. rate = IEEE80211_CCK_RATE_1MB;
  328. break;
  329. case 0x14:
  330. rate = IEEE80211_CCK_RATE_2MB;
  331. break;
  332. case 0x37:
  333. rate = IEEE80211_CCK_RATE_5MB;
  334. break;
  335. case 0x6E:
  336. rate = IEEE80211_CCK_RATE_11MB;
  337. break;
  338. default:
  339. rate = 0;
  340. assert(0);
  341. }
  342. }
  343. return rate;
  344. }
  345. static u8 bcm43xx_plcp_get_ratecode_cck(const u8 bitrate)
  346. {
  347. switch (bitrate) {
  348. case IEEE80211_CCK_RATE_1MB:
  349. return 0x0A;
  350. case IEEE80211_CCK_RATE_2MB:
  351. return 0x14;
  352. case IEEE80211_CCK_RATE_5MB:
  353. return 0x37;
  354. case IEEE80211_CCK_RATE_11MB:
  355. return 0x6E;
  356. }
  357. assert(0);
  358. return 0;
  359. }
  360. static u8 bcm43xx_plcp_get_ratecode_ofdm(const u8 bitrate)
  361. {
  362. switch (bitrate) {
  363. case IEEE80211_OFDM_RATE_6MB:
  364. return 0xB;
  365. case IEEE80211_OFDM_RATE_9MB:
  366. return 0xF;
  367. case IEEE80211_OFDM_RATE_12MB:
  368. return 0xA;
  369. case IEEE80211_OFDM_RATE_18MB:
  370. return 0xE;
  371. case IEEE80211_OFDM_RATE_24MB:
  372. return 0x9;
  373. case IEEE80211_OFDM_RATE_36MB:
  374. return 0xD;
  375. case IEEE80211_OFDM_RATE_48MB:
  376. return 0x8;
  377. case IEEE80211_OFDM_RATE_54MB:
  378. return 0xC;
  379. }
  380. assert(0);
  381. return 0;
  382. }
  383. static void bcm43xx_generate_plcp_hdr(struct bcm43xx_plcp_hdr4 *plcp,
  384. u16 octets, const u8 bitrate,
  385. const int ofdm_modulation)
  386. {
  387. __le32 *data = &(plcp->data);
  388. __u8 *raw = plcp->raw;
  389. /* Account for hardware-appended FCS. */
  390. octets += IEEE80211_FCS_LEN;
  391. if (ofdm_modulation) {
  392. *data = bcm43xx_plcp_get_ratecode_ofdm(bitrate);
  393. assert(!(octets & 0xF000));
  394. *data |= (octets << 5);
  395. *data = cpu_to_le32(*data);
  396. } else {
  397. u32 plen;
  398. plen = octets * 16 / bitrate;
  399. if ((octets * 16 % bitrate) > 0) {
  400. plen++;
  401. if ((bitrate == IEEE80211_CCK_RATE_11MB)
  402. && ((octets * 8 % 11) < 4)) {
  403. raw[1] = 0x84;
  404. } else
  405. raw[1] = 0x04;
  406. } else
  407. raw[1] = 0x04;
  408. *data |= cpu_to_le32(plen << 16);
  409. raw[0] = bcm43xx_plcp_get_ratecode_cck(bitrate);
  410. }
  411. //bcm43xx_printk_bitdump(raw, 4, 0, "PLCP");
  412. }
  413. void bcm43xx_generate_txhdr(struct bcm43xx_private *bcm,
  414. struct bcm43xx_txhdr *txhdr,
  415. const unsigned char *fragment_data,
  416. unsigned int fragment_len,
  417. const int is_first_fragment,
  418. const u16 cookie)
  419. {
  420. const struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
  421. const struct ieee80211_hdr_1addr *wireless_header = (const struct ieee80211_hdr_1addr *)fragment_data;
  422. const struct ieee80211_security *secinfo = &bcm->ieee->sec;
  423. u8 bitrate;
  424. int ofdm_modulation;
  425. u8 fallback_bitrate;
  426. int fallback_ofdm_modulation;
  427. u16 tmp;
  428. u16 encrypt_frame;
  429. /* Now construct the TX header. */
  430. memset(txhdr, 0, sizeof(*txhdr));
  431. //TODO: Some RTS/CTS stuff has to be done.
  432. //TODO: Encryption stuff.
  433. //TODO: others?
  434. bitrate = bcm->softmac->txrates.default_rate;
  435. ofdm_modulation = !(ieee80211_is_cck_rate(bitrate));
  436. fallback_bitrate = bcm->softmac->txrates.default_fallback;
  437. fallback_ofdm_modulation = !(ieee80211_is_cck_rate(fallback_bitrate));
  438. /* Set Frame Control from 80211 header. */
  439. txhdr->frame_control = wireless_header->frame_ctl;
  440. /* Copy address1 from 80211 header. */
  441. memcpy(txhdr->mac1, wireless_header->addr1, 6);
  442. /* Set the fallback duration ID. */
  443. //FIXME: We use the original durid for now.
  444. txhdr->fallback_dur_id = wireless_header->duration_id;
  445. /* Set the cookie (used as driver internal ID for the frame) */
  446. txhdr->cookie = cpu_to_le16(cookie);
  447. encrypt_frame = le16_to_cpup(&wireless_header->frame_ctl) & IEEE80211_FCTL_PROTECTED;
  448. if (encrypt_frame && !bcm->ieee->host_encrypt) {
  449. const struct ieee80211_hdr_3addr *hdr = (struct ieee80211_hdr_3addr *)wireless_header;
  450. if (fragment_len <= sizeof(struct ieee80211_hdr_3addr)+4) {
  451. dprintkl(KERN_ERR PFX "invalid packet with PROTECTED"
  452. "flag set discarded");
  453. return;
  454. }
  455. memcpy(txhdr->wep_iv, hdr->payload, 4);
  456. /* Hardware appends ICV. */
  457. fragment_len += 4;
  458. }
  459. /* Generate the PLCP header and the fallback PLCP header. */
  460. bcm43xx_generate_plcp_hdr((struct bcm43xx_plcp_hdr4 *)(&txhdr->plcp),
  461. fragment_len,
  462. bitrate, ofdm_modulation);
  463. bcm43xx_generate_plcp_hdr(&txhdr->fallback_plcp, fragment_len,
  464. fallback_bitrate, fallback_ofdm_modulation);
  465. /* Set the CONTROL field */
  466. tmp = 0;
  467. if (ofdm_modulation)
  468. tmp |= BCM43xx_TXHDRCTL_OFDM;
  469. if (bcm->short_preamble) //FIXME: could be the other way around, please test
  470. tmp |= BCM43xx_TXHDRCTL_SHORT_PREAMBLE;
  471. tmp |= (phy->antenna_diversity << BCM43xx_TXHDRCTL_ANTENNADIV_SHIFT)
  472. & BCM43xx_TXHDRCTL_ANTENNADIV_MASK;
  473. txhdr->control = cpu_to_le16(tmp);
  474. /* Set the FLAGS field */
  475. tmp = 0;
  476. if (!is_multicast_ether_addr(wireless_header->addr1) &&
  477. !is_broadcast_ether_addr(wireless_header->addr1))
  478. tmp |= BCM43xx_TXHDRFLAG_EXPECTACK;
  479. if (1 /* FIXME: PS poll?? */)
  480. tmp |= 0x10; // FIXME: unknown meaning.
  481. if (fallback_ofdm_modulation)
  482. tmp |= BCM43xx_TXHDRFLAG_FALLBACKOFDM;
  483. if (is_first_fragment)
  484. tmp |= BCM43xx_TXHDRFLAG_FIRSTFRAGMENT;
  485. txhdr->flags = cpu_to_le16(tmp);
  486. /* Set WSEC/RATE field */
  487. if (encrypt_frame && !bcm->ieee->host_encrypt) {
  488. tmp = (bcm->key[secinfo->active_key].algorithm << BCM43xx_TXHDR_WSEC_ALGO_SHIFT)
  489. & BCM43xx_TXHDR_WSEC_ALGO_MASK;
  490. tmp |= (secinfo->active_key << BCM43xx_TXHDR_WSEC_KEYINDEX_SHIFT)
  491. & BCM43xx_TXHDR_WSEC_KEYINDEX_MASK;
  492. txhdr->wsec_rate = cpu_to_le16(tmp);
  493. }
  494. //bcm43xx_printk_bitdump((const unsigned char *)txhdr, sizeof(*txhdr), 1, "TX header");
  495. }
  496. static
  497. void bcm43xx_macfilter_set(struct bcm43xx_private *bcm,
  498. u16 offset,
  499. const u8 *mac)
  500. {
  501. u16 data;
  502. offset |= 0x0020;
  503. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_CONTROL, offset);
  504. data = mac[0];
  505. data |= mac[1] << 8;
  506. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
  507. data = mac[2];
  508. data |= mac[3] << 8;
  509. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
  510. data = mac[4];
  511. data |= mac[5] << 8;
  512. bcm43xx_write16(bcm, BCM43xx_MMIO_MACFILTER_DATA, data);
  513. }
  514. static void bcm43xx_macfilter_clear(struct bcm43xx_private *bcm,
  515. u16 offset)
  516. {
  517. const u8 zero_addr[ETH_ALEN] = { 0 };
  518. bcm43xx_macfilter_set(bcm, offset, zero_addr);
  519. }
  520. static void bcm43xx_write_mac_bssid_templates(struct bcm43xx_private *bcm)
  521. {
  522. const u8 *mac = (const u8 *)(bcm->net_dev->dev_addr);
  523. const u8 *bssid = (const u8 *)(bcm->ieee->bssid);
  524. u8 mac_bssid[ETH_ALEN * 2];
  525. int i;
  526. memcpy(mac_bssid, mac, ETH_ALEN);
  527. memcpy(mac_bssid + ETH_ALEN, bssid, ETH_ALEN);
  528. /* Write our MAC address and BSSID to template ram */
  529. for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
  530. bcm43xx_ram_write(bcm, 0x20 + i, *((u32 *)(mac_bssid + i)));
  531. for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
  532. bcm43xx_ram_write(bcm, 0x78 + i, *((u32 *)(mac_bssid + i)));
  533. for (i = 0; i < ARRAY_SIZE(mac_bssid); i += sizeof(u32))
  534. bcm43xx_ram_write(bcm, 0x478 + i, *((u32 *)(mac_bssid + i)));
  535. }
  536. static void bcm43xx_set_slot_time(struct bcm43xx_private *bcm, u16 slot_time)
  537. {
  538. /* slot_time is in usec. */
  539. if (bcm->current_core->phy->type != BCM43xx_PHYTYPE_G)
  540. return;
  541. bcm43xx_write16(bcm, 0x684, 510 + slot_time);
  542. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0010, slot_time);
  543. }
  544. static void bcm43xx_short_slot_timing_enable(struct bcm43xx_private *bcm)
  545. {
  546. bcm43xx_set_slot_time(bcm, 9);
  547. }
  548. static void bcm43xx_short_slot_timing_disable(struct bcm43xx_private *bcm)
  549. {
  550. bcm43xx_set_slot_time(bcm, 20);
  551. }
  552. //FIXME: rename this func?
  553. static void bcm43xx_disassociate(struct bcm43xx_private *bcm)
  554. {
  555. bcm43xx_mac_suspend(bcm);
  556. bcm43xx_macfilter_clear(bcm, BCM43xx_MACFILTER_ASSOC);
  557. bcm43xx_ram_write(bcm, 0x0026, 0x0000);
  558. bcm43xx_ram_write(bcm, 0x0028, 0x0000);
  559. bcm43xx_ram_write(bcm, 0x007E, 0x0000);
  560. bcm43xx_ram_write(bcm, 0x0080, 0x0000);
  561. bcm43xx_ram_write(bcm, 0x047E, 0x0000);
  562. bcm43xx_ram_write(bcm, 0x0480, 0x0000);
  563. if (bcm->current_core->rev < 3) {
  564. bcm43xx_write16(bcm, 0x0610, 0x8000);
  565. bcm43xx_write16(bcm, 0x060E, 0x0000);
  566. } else
  567. bcm43xx_write32(bcm, 0x0188, 0x80000000);
  568. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0004, 0x000003ff);
  569. if (bcm->current_core->phy->type == BCM43xx_PHYTYPE_G &&
  570. ieee80211_is_ofdm_rate(bcm->softmac->txrates.default_rate))
  571. bcm43xx_short_slot_timing_enable(bcm);
  572. bcm43xx_mac_enable(bcm);
  573. }
  574. //FIXME: rename this func?
  575. static void bcm43xx_associate(struct bcm43xx_private *bcm,
  576. const u8 *mac)
  577. {
  578. memcpy(bcm->ieee->bssid, mac, ETH_ALEN);
  579. bcm43xx_mac_suspend(bcm);
  580. bcm43xx_macfilter_set(bcm, BCM43xx_MACFILTER_ASSOC, mac);
  581. bcm43xx_write_mac_bssid_templates(bcm);
  582. bcm43xx_mac_enable(bcm);
  583. }
  584. /* Enable a Generic IRQ. "mask" is the mask of which IRQs to enable.
  585. * Returns the _previously_ enabled IRQ mask.
  586. */
  587. static inline u32 bcm43xx_interrupt_enable(struct bcm43xx_private *bcm, u32 mask)
  588. {
  589. u32 old_mask;
  590. old_mask = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
  591. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK, old_mask | mask);
  592. return old_mask;
  593. }
  594. /* Disable a Generic IRQ. "mask" is the mask of which IRQs to disable.
  595. * Returns the _previously_ enabled IRQ mask.
  596. */
  597. static inline u32 bcm43xx_interrupt_disable(struct bcm43xx_private *bcm, u32 mask)
  598. {
  599. u32 old_mask;
  600. old_mask = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
  601. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK, old_mask & ~mask);
  602. return old_mask;
  603. }
  604. /* Make sure we don't receive more data from the device. */
  605. static int bcm43xx_disable_interrupts_sync(struct bcm43xx_private *bcm, u32 *oldstate)
  606. {
  607. u32 old;
  608. unsigned long flags;
  609. spin_lock_irqsave(&bcm->lock, flags);
  610. if (bcm43xx_is_initializing(bcm) || bcm->shutting_down) {
  611. spin_unlock_irqrestore(&bcm->lock, flags);
  612. return -EBUSY;
  613. }
  614. old = bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  615. tasklet_disable(&bcm->isr_tasklet);
  616. spin_unlock_irqrestore(&bcm->lock, flags);
  617. if (oldstate)
  618. *oldstate = old;
  619. return 0;
  620. }
  621. static int bcm43xx_read_radioinfo(struct bcm43xx_private *bcm)
  622. {
  623. struct bcm43xx_radioinfo *radio = bcm->current_core->radio;
  624. struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
  625. u32 radio_id;
  626. u16 manufact;
  627. u16 version;
  628. u8 revision;
  629. s8 i;
  630. if (bcm->chip_id == 0x4317) {
  631. if (bcm->chip_rev == 0x00)
  632. radio_id = 0x3205017F;
  633. else if (bcm->chip_rev == 0x01)
  634. radio_id = 0x4205017F;
  635. else
  636. radio_id = 0x5205017F;
  637. } else {
  638. bcm43xx_write16(bcm, BCM43xx_MMIO_RADIO_CONTROL, BCM43xx_RADIOCTL_ID);
  639. radio_id = bcm43xx_read16(bcm, BCM43xx_MMIO_RADIO_DATA_HIGH);
  640. radio_id <<= 16;
  641. bcm43xx_write16(bcm, BCM43xx_MMIO_RADIO_CONTROL, BCM43xx_RADIOCTL_ID);
  642. radio_id |= bcm43xx_read16(bcm, BCM43xx_MMIO_RADIO_DATA_LOW);
  643. }
  644. manufact = (radio_id & 0x00000FFF);
  645. version = (radio_id & 0x0FFFF000) >> 12;
  646. revision = (radio_id & 0xF0000000) >> 28;
  647. dprintk(KERN_INFO PFX "Detected Radio: ID: %x (Manuf: %x Ver: %x Rev: %x)\n",
  648. radio_id, manufact, version, revision);
  649. switch (phy->type) {
  650. case BCM43xx_PHYTYPE_A:
  651. if ((version != 0x2060) || (revision != 1) || (manufact != 0x17f))
  652. goto err_unsupported_radio;
  653. break;
  654. case BCM43xx_PHYTYPE_B:
  655. if ((version & 0xFFF0) != 0x2050)
  656. goto err_unsupported_radio;
  657. break;
  658. case BCM43xx_PHYTYPE_G:
  659. if (version != 0x2050)
  660. goto err_unsupported_radio;
  661. break;
  662. }
  663. radio->manufact = manufact;
  664. radio->version = version;
  665. radio->revision = revision;
  666. /* Set default attenuation values. */
  667. radio->txpower[0] = 2;
  668. radio->txpower[1] = 2;
  669. if (revision == 1)
  670. radio->txpower[2] = 3;
  671. else
  672. radio->txpower[2] = 0;
  673. if (bcm->current_core->phy->type == BCM43xx_PHYTYPE_A)
  674. radio->txpower_desired = bcm->sprom.maxpower_aphy;
  675. else
  676. bcm->current_core->radio->txpower_desired = bcm->sprom.maxpower_bgphy;
  677. /* Initialize the in-memory nrssi Lookup Table. */
  678. for (i = 0; i < 64; i++)
  679. radio->nrssi_lt[i] = i;
  680. return 0;
  681. err_unsupported_radio:
  682. printk(KERN_ERR PFX "Unsupported Radio connected to the PHY!\n");
  683. return -ENODEV;
  684. }
  685. static const char * bcm43xx_locale_iso(u8 locale)
  686. {
  687. /* ISO 3166-1 country codes.
  688. * Note that there aren't ISO 3166-1 codes for
  689. * all or locales. (Not all locales are countries)
  690. */
  691. switch (locale) {
  692. case BCM43xx_LOCALE_WORLD:
  693. case BCM43xx_LOCALE_ALL:
  694. return "XX";
  695. case BCM43xx_LOCALE_THAILAND:
  696. return "TH";
  697. case BCM43xx_LOCALE_ISRAEL:
  698. return "IL";
  699. case BCM43xx_LOCALE_JORDAN:
  700. return "JO";
  701. case BCM43xx_LOCALE_CHINA:
  702. return "CN";
  703. case BCM43xx_LOCALE_JAPAN:
  704. case BCM43xx_LOCALE_JAPAN_HIGH:
  705. return "JP";
  706. case BCM43xx_LOCALE_USA_CANADA_ANZ:
  707. case BCM43xx_LOCALE_USA_LOW:
  708. return "US";
  709. case BCM43xx_LOCALE_EUROPE:
  710. return "EU";
  711. case BCM43xx_LOCALE_NONE:
  712. return " ";
  713. }
  714. assert(0);
  715. return " ";
  716. }
  717. static const char * bcm43xx_locale_string(u8 locale)
  718. {
  719. switch (locale) {
  720. case BCM43xx_LOCALE_WORLD:
  721. return "World";
  722. case BCM43xx_LOCALE_THAILAND:
  723. return "Thailand";
  724. case BCM43xx_LOCALE_ISRAEL:
  725. return "Israel";
  726. case BCM43xx_LOCALE_JORDAN:
  727. return "Jordan";
  728. case BCM43xx_LOCALE_CHINA:
  729. return "China";
  730. case BCM43xx_LOCALE_JAPAN:
  731. return "Japan";
  732. case BCM43xx_LOCALE_USA_CANADA_ANZ:
  733. return "USA/Canada/ANZ";
  734. case BCM43xx_LOCALE_EUROPE:
  735. return "Europe";
  736. case BCM43xx_LOCALE_USA_LOW:
  737. return "USAlow";
  738. case BCM43xx_LOCALE_JAPAN_HIGH:
  739. return "JapanHigh";
  740. case BCM43xx_LOCALE_ALL:
  741. return "All";
  742. case BCM43xx_LOCALE_NONE:
  743. return "None";
  744. }
  745. assert(0);
  746. return "";
  747. }
  748. static inline u8 bcm43xx_crc8(u8 crc, u8 data)
  749. {
  750. static const u8 t[] = {
  751. 0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B,
  752. 0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21,
  753. 0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF,
  754. 0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5,
  755. 0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14,
  756. 0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E,
  757. 0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80,
  758. 0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA,
  759. 0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95,
  760. 0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF,
  761. 0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01,
  762. 0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B,
  763. 0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA,
  764. 0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0,
  765. 0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E,
  766. 0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34,
  767. 0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0,
  768. 0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A,
  769. 0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54,
  770. 0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E,
  771. 0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF,
  772. 0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5,
  773. 0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B,
  774. 0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61,
  775. 0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E,
  776. 0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74,
  777. 0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA,
  778. 0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0,
  779. 0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41,
  780. 0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B,
  781. 0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5,
  782. 0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F,
  783. };
  784. return t[crc ^ data];
  785. }
  786. static u8 bcm43xx_sprom_crc(const u16 *sprom)
  787. {
  788. int word;
  789. u8 crc = 0xFF;
  790. for (word = 0; word < BCM43xx_SPROM_SIZE - 1; word++) {
  791. crc = bcm43xx_crc8(crc, sprom[word] & 0x00FF);
  792. crc = bcm43xx_crc8(crc, (sprom[word] & 0xFF00) >> 8);
  793. }
  794. crc = bcm43xx_crc8(crc, sprom[BCM43xx_SPROM_VERSION] & 0x00FF);
  795. crc ^= 0xFF;
  796. return crc;
  797. }
  798. int bcm43xx_sprom_read(struct bcm43xx_private *bcm, u16 *sprom)
  799. {
  800. int i;
  801. u8 crc, expected_crc;
  802. for (i = 0; i < BCM43xx_SPROM_SIZE; i++)
  803. sprom[i] = bcm43xx_read16(bcm, BCM43xx_SPROM_BASE + (i * 2));
  804. /* CRC-8 check. */
  805. crc = bcm43xx_sprom_crc(sprom);
  806. expected_crc = (sprom[BCM43xx_SPROM_VERSION] & 0xFF00) >> 8;
  807. if (crc != expected_crc) {
  808. printk(KERN_WARNING PFX "WARNING: Invalid SPROM checksum "
  809. "(0x%02X, expected: 0x%02X)\n",
  810. crc, expected_crc);
  811. return -EINVAL;
  812. }
  813. return 0;
  814. }
  815. int bcm43xx_sprom_write(struct bcm43xx_private *bcm, const u16 *sprom)
  816. {
  817. int i, err;
  818. u8 crc, expected_crc;
  819. u32 spromctl;
  820. /* CRC-8 validation of the input data. */
  821. crc = bcm43xx_sprom_crc(sprom);
  822. expected_crc = (sprom[BCM43xx_SPROM_VERSION] & 0xFF00) >> 8;
  823. if (crc != expected_crc) {
  824. printk(KERN_ERR PFX "SPROM input data: Invalid CRC\n");
  825. return -EINVAL;
  826. }
  827. printk(KERN_INFO PFX "Writing SPROM. Do NOT turn off the power! Please stand by...\n");
  828. err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_SPROMCTL, &spromctl);
  829. if (err)
  830. goto err_ctlreg;
  831. spromctl |= 0x10; /* SPROM WRITE enable. */
  832. bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_SPROMCTL, spromctl);
  833. if (err)
  834. goto err_ctlreg;
  835. /* We must burn lots of CPU cycles here, but that does not
  836. * really matter as one does not write the SPROM every other minute...
  837. */
  838. printk(KERN_INFO PFX "[ 0%%");
  839. mdelay(500);
  840. for (i = 0; i < BCM43xx_SPROM_SIZE; i++) {
  841. if (i == 16)
  842. printk("25%%");
  843. else if (i == 32)
  844. printk("50%%");
  845. else if (i == 48)
  846. printk("75%%");
  847. else if (i % 2)
  848. printk(".");
  849. bcm43xx_write16(bcm, BCM43xx_SPROM_BASE + (i * 2), sprom[i]);
  850. mdelay(20);
  851. }
  852. spromctl &= ~0x10; /* SPROM WRITE enable. */
  853. bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_SPROMCTL, spromctl);
  854. if (err)
  855. goto err_ctlreg;
  856. mdelay(500);
  857. printk("100%% ]\n");
  858. printk(KERN_INFO PFX "SPROM written.\n");
  859. bcm43xx_controller_restart(bcm, "SPROM update");
  860. return 0;
  861. err_ctlreg:
  862. printk(KERN_ERR PFX "Could not access SPROM control register.\n");
  863. return -ENODEV;
  864. }
  865. static int bcm43xx_sprom_extract(struct bcm43xx_private *bcm)
  866. {
  867. u16 value;
  868. u16 *sprom;
  869. #ifdef CONFIG_BCM947XX
  870. char *c;
  871. #endif
  872. sprom = kzalloc(BCM43xx_SPROM_SIZE * sizeof(u16),
  873. GFP_KERNEL);
  874. if (!sprom) {
  875. printk(KERN_ERR PFX "sprom_extract OOM\n");
  876. return -ENOMEM;
  877. }
  878. #ifdef CONFIG_BCM947XX
  879. sprom[BCM43xx_SPROM_BOARDFLAGS2] = atoi(nvram_get("boardflags2"));
  880. sprom[BCM43xx_SPROM_BOARDFLAGS] = atoi(nvram_get("boardflags"));
  881. if ((c = nvram_get("il0macaddr")) != NULL)
  882. e_aton(c, (char *) &(sprom[BCM43xx_SPROM_IL0MACADDR]));
  883. if ((c = nvram_get("et1macaddr")) != NULL)
  884. e_aton(c, (char *) &(sprom[BCM43xx_SPROM_ET1MACADDR]));
  885. sprom[BCM43xx_SPROM_PA0B0] = atoi(nvram_get("pa0b0"));
  886. sprom[BCM43xx_SPROM_PA0B1] = atoi(nvram_get("pa0b1"));
  887. sprom[BCM43xx_SPROM_PA0B2] = atoi(nvram_get("pa0b2"));
  888. sprom[BCM43xx_SPROM_PA1B0] = atoi(nvram_get("pa1b0"));
  889. sprom[BCM43xx_SPROM_PA1B1] = atoi(nvram_get("pa1b1"));
  890. sprom[BCM43xx_SPROM_PA1B2] = atoi(nvram_get("pa1b2"));
  891. sprom[BCM43xx_SPROM_BOARDREV] = atoi(nvram_get("boardrev"));
  892. #else
  893. bcm43xx_sprom_read(bcm, sprom);
  894. #endif
  895. /* boardflags2 */
  896. value = sprom[BCM43xx_SPROM_BOARDFLAGS2];
  897. bcm->sprom.boardflags2 = value;
  898. /* il0macaddr */
  899. value = sprom[BCM43xx_SPROM_IL0MACADDR + 0];
  900. *(((u16 *)bcm->sprom.il0macaddr) + 0) = cpu_to_be16(value);
  901. value = sprom[BCM43xx_SPROM_IL0MACADDR + 1];
  902. *(((u16 *)bcm->sprom.il0macaddr) + 1) = cpu_to_be16(value);
  903. value = sprom[BCM43xx_SPROM_IL0MACADDR + 2];
  904. *(((u16 *)bcm->sprom.il0macaddr) + 2) = cpu_to_be16(value);
  905. /* et0macaddr */
  906. value = sprom[BCM43xx_SPROM_ET0MACADDR + 0];
  907. *(((u16 *)bcm->sprom.et0macaddr) + 0) = cpu_to_be16(value);
  908. value = sprom[BCM43xx_SPROM_ET0MACADDR + 1];
  909. *(((u16 *)bcm->sprom.et0macaddr) + 1) = cpu_to_be16(value);
  910. value = sprom[BCM43xx_SPROM_ET0MACADDR + 2];
  911. *(((u16 *)bcm->sprom.et0macaddr) + 2) = cpu_to_be16(value);
  912. /* et1macaddr */
  913. value = sprom[BCM43xx_SPROM_ET1MACADDR + 0];
  914. *(((u16 *)bcm->sprom.et1macaddr) + 0) = cpu_to_be16(value);
  915. value = sprom[BCM43xx_SPROM_ET1MACADDR + 1];
  916. *(((u16 *)bcm->sprom.et1macaddr) + 1) = cpu_to_be16(value);
  917. value = sprom[BCM43xx_SPROM_ET1MACADDR + 2];
  918. *(((u16 *)bcm->sprom.et1macaddr) + 2) = cpu_to_be16(value);
  919. /* ethernet phy settings */
  920. value = sprom[BCM43xx_SPROM_ETHPHY];
  921. bcm->sprom.et0phyaddr = (value & 0x001F);
  922. bcm->sprom.et1phyaddr = (value & 0x03E0) >> 5;
  923. bcm->sprom.et0mdcport = (value & (1 << 14)) >> 14;
  924. bcm->sprom.et1mdcport = (value & (1 << 15)) >> 15;
  925. /* boardrev, antennas, locale */
  926. value = sprom[BCM43xx_SPROM_BOARDREV];
  927. bcm->sprom.boardrev = (value & 0x00FF);
  928. bcm->sprom.locale = (value & 0x0F00) >> 8;
  929. bcm->sprom.antennas_aphy = (value & 0x3000) >> 12;
  930. bcm->sprom.antennas_bgphy = (value & 0xC000) >> 14;
  931. if (modparam_locale != -1) {
  932. if (modparam_locale >= 0 && modparam_locale <= 11) {
  933. bcm->sprom.locale = modparam_locale;
  934. printk(KERN_WARNING PFX "Operating with modified "
  935. "LocaleCode %u (%s)\n",
  936. bcm->sprom.locale,
  937. bcm43xx_locale_string(bcm->sprom.locale));
  938. } else {
  939. printk(KERN_WARNING PFX "Module parameter \"locale\" "
  940. "invalid value. (0 - 11)\n");
  941. }
  942. }
  943. /* pa0b* */
  944. value = sprom[BCM43xx_SPROM_PA0B0];
  945. bcm->sprom.pa0b0 = value;
  946. value = sprom[BCM43xx_SPROM_PA0B1];
  947. bcm->sprom.pa0b1 = value;
  948. value = sprom[BCM43xx_SPROM_PA0B2];
  949. bcm->sprom.pa0b2 = value;
  950. /* wl0gpio* */
  951. value = sprom[BCM43xx_SPROM_WL0GPIO0];
  952. if (value == 0x0000)
  953. value = 0xFFFF;
  954. bcm->sprom.wl0gpio0 = value & 0x00FF;
  955. bcm->sprom.wl0gpio1 = (value & 0xFF00) >> 8;
  956. value = sprom[BCM43xx_SPROM_WL0GPIO2];
  957. if (value == 0x0000)
  958. value = 0xFFFF;
  959. bcm->sprom.wl0gpio2 = value & 0x00FF;
  960. bcm->sprom.wl0gpio3 = (value & 0xFF00) >> 8;
  961. /* maxpower */
  962. value = sprom[BCM43xx_SPROM_MAXPWR];
  963. bcm->sprom.maxpower_aphy = (value & 0xFF00) >> 8;
  964. bcm->sprom.maxpower_bgphy = value & 0x00FF;
  965. /* pa1b* */
  966. value = sprom[BCM43xx_SPROM_PA1B0];
  967. bcm->sprom.pa1b0 = value;
  968. value = sprom[BCM43xx_SPROM_PA1B1];
  969. bcm->sprom.pa1b1 = value;
  970. value = sprom[BCM43xx_SPROM_PA1B2];
  971. bcm->sprom.pa1b2 = value;
  972. /* idle tssi target */
  973. value = sprom[BCM43xx_SPROM_IDL_TSSI_TGT];
  974. bcm->sprom.idle_tssi_tgt_aphy = value & 0x00FF;
  975. bcm->sprom.idle_tssi_tgt_bgphy = (value & 0xFF00) >> 8;
  976. /* boardflags */
  977. value = sprom[BCM43xx_SPROM_BOARDFLAGS];
  978. if (value == 0xFFFF)
  979. value = 0x0000;
  980. bcm->sprom.boardflags = value;
  981. /* antenna gain */
  982. value = sprom[BCM43xx_SPROM_ANTENNA_GAIN];
  983. if (value == 0x0000 || value == 0xFFFF)
  984. value = 0x0202;
  985. /* convert values to Q5.2 */
  986. bcm->sprom.antennagain_aphy = ((value & 0xFF00) >> 8) * 4;
  987. bcm->sprom.antennagain_bgphy = (value & 0x00FF) * 4;
  988. kfree(sprom);
  989. return 0;
  990. }
  991. static void bcm43xx_geo_init(struct bcm43xx_private *bcm)
  992. {
  993. struct ieee80211_geo geo;
  994. struct ieee80211_channel *chan;
  995. int have_a = 0, have_bg = 0;
  996. int i, num80211;
  997. u8 channel;
  998. struct bcm43xx_phyinfo *phy;
  999. const char *iso_country;
  1000. memset(&geo, 0, sizeof(geo));
  1001. num80211 = bcm43xx_num_80211_cores(bcm);
  1002. for (i = 0; i < num80211; i++) {
  1003. phy = bcm->phy + i;
  1004. switch (phy->type) {
  1005. case BCM43xx_PHYTYPE_B:
  1006. case BCM43xx_PHYTYPE_G:
  1007. have_bg = 1;
  1008. break;
  1009. case BCM43xx_PHYTYPE_A:
  1010. have_a = 1;
  1011. break;
  1012. default:
  1013. assert(0);
  1014. }
  1015. }
  1016. iso_country = bcm43xx_locale_iso(bcm->sprom.locale);
  1017. if (have_a) {
  1018. for (i = 0, channel = 0; channel < 201; channel++) {
  1019. chan = &geo.a[i++];
  1020. chan->freq = bcm43xx_channel_to_freq(bcm, channel);
  1021. chan->channel = channel;
  1022. }
  1023. geo.a_channels = i;
  1024. }
  1025. if (have_bg) {
  1026. for (i = 0, channel = 1; channel < 15; channel++) {
  1027. chan = &geo.bg[i++];
  1028. chan->freq = bcm43xx_channel_to_freq(bcm, channel);
  1029. chan->channel = channel;
  1030. }
  1031. geo.bg_channels = i;
  1032. }
  1033. memcpy(geo.name, iso_country, 2);
  1034. if (0 /*TODO: Outdoor use only */)
  1035. geo.name[2] = 'O';
  1036. else if (0 /*TODO: Indoor use only */)
  1037. geo.name[2] = 'I';
  1038. else
  1039. geo.name[2] = ' ';
  1040. geo.name[3] = '\0';
  1041. ieee80211_set_geo(bcm->ieee, &geo);
  1042. }
  1043. /* DummyTransmission function, as documented on
  1044. * http://bcm-specs.sipsolutions.net/DummyTransmission
  1045. */
  1046. void bcm43xx_dummy_transmission(struct bcm43xx_private *bcm)
  1047. {
  1048. struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
  1049. unsigned int i, max_loop;
  1050. u16 value = 0;
  1051. u32 buffer[5] = {
  1052. 0x00000000,
  1053. 0x0000D400,
  1054. 0x00000000,
  1055. 0x00000001,
  1056. 0x00000000,
  1057. };
  1058. switch (phy->type) {
  1059. case BCM43xx_PHYTYPE_A:
  1060. max_loop = 0x1E;
  1061. buffer[0] = 0xCC010200;
  1062. break;
  1063. case BCM43xx_PHYTYPE_B:
  1064. case BCM43xx_PHYTYPE_G:
  1065. max_loop = 0xFA;
  1066. buffer[0] = 0x6E840B00;
  1067. break;
  1068. default:
  1069. assert(0);
  1070. return;
  1071. }
  1072. for (i = 0; i < 5; i++)
  1073. bcm43xx_ram_write(bcm, i * 4, buffer[i]);
  1074. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* dummy read */
  1075. bcm43xx_write16(bcm, 0x0568, 0x0000);
  1076. bcm43xx_write16(bcm, 0x07C0, 0x0000);
  1077. bcm43xx_write16(bcm, 0x050C, ((phy->type == BCM43xx_PHYTYPE_A) ? 1 : 0));
  1078. bcm43xx_write16(bcm, 0x0508, 0x0000);
  1079. bcm43xx_write16(bcm, 0x050A, 0x0000);
  1080. bcm43xx_write16(bcm, 0x054C, 0x0000);
  1081. bcm43xx_write16(bcm, 0x056A, 0x0014);
  1082. bcm43xx_write16(bcm, 0x0568, 0x0826);
  1083. bcm43xx_write16(bcm, 0x0500, 0x0000);
  1084. bcm43xx_write16(bcm, 0x0502, 0x0030);
  1085. for (i = 0x00; i < max_loop; i++) {
  1086. value = bcm43xx_read16(bcm, 0x050E);
  1087. if ((value & 0x0080) != 0)
  1088. break;
  1089. udelay(10);
  1090. }
  1091. for (i = 0x00; i < 0x0A; i++) {
  1092. value = bcm43xx_read16(bcm, 0x050E);
  1093. if ((value & 0x0400) != 0)
  1094. break;
  1095. udelay(10);
  1096. }
  1097. for (i = 0x00; i < 0x0A; i++) {
  1098. value = bcm43xx_read16(bcm, 0x0690);
  1099. if ((value & 0x0100) == 0)
  1100. break;
  1101. udelay(10);
  1102. }
  1103. }
  1104. static void key_write(struct bcm43xx_private *bcm,
  1105. u8 index, u8 algorithm, const u16 *key)
  1106. {
  1107. unsigned int i, basic_wep = 0;
  1108. u32 offset;
  1109. u16 value;
  1110. /* Write associated key information */
  1111. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x100 + (index * 2),
  1112. ((index << 4) | (algorithm & 0x0F)));
  1113. /* The first 4 WEP keys need extra love */
  1114. if (((algorithm == BCM43xx_SEC_ALGO_WEP) ||
  1115. (algorithm == BCM43xx_SEC_ALGO_WEP104)) && (index < 4))
  1116. basic_wep = 1;
  1117. /* Write key payload, 8 little endian words */
  1118. offset = bcm->security_offset + (index * BCM43xx_SEC_KEYSIZE);
  1119. for (i = 0; i < (BCM43xx_SEC_KEYSIZE / sizeof(u16)); i++) {
  1120. value = cpu_to_le16(key[i]);
  1121. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  1122. offset + (i * 2), value);
  1123. if (!basic_wep)
  1124. continue;
  1125. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  1126. offset + (i * 2) + 4 * BCM43xx_SEC_KEYSIZE,
  1127. value);
  1128. }
  1129. }
  1130. static void keymac_write(struct bcm43xx_private *bcm,
  1131. u8 index, const u32 *addr)
  1132. {
  1133. /* for keys 0-3 there is no associated mac address */
  1134. if (index < 4)
  1135. return;
  1136. index -= 4;
  1137. if (bcm->current_core->rev >= 5) {
  1138. bcm43xx_shm_write32(bcm,
  1139. BCM43xx_SHM_HWMAC,
  1140. index * 2,
  1141. cpu_to_be32(*addr));
  1142. bcm43xx_shm_write16(bcm,
  1143. BCM43xx_SHM_HWMAC,
  1144. (index * 2) + 1,
  1145. cpu_to_be16(*((u16 *)(addr + 1))));
  1146. } else {
  1147. if (index < 8) {
  1148. TODO(); /* Put them in the macaddress filter */
  1149. } else {
  1150. TODO();
  1151. /* Put them BCM43xx_SHM_SHARED, stating index 0x0120.
  1152. Keep in mind to update the count of keymacs in 0x003E as well! */
  1153. }
  1154. }
  1155. }
  1156. static int bcm43xx_key_write(struct bcm43xx_private *bcm,
  1157. u8 index, u8 algorithm,
  1158. const u8 *_key, int key_len,
  1159. const u8 *mac_addr)
  1160. {
  1161. u8 key[BCM43xx_SEC_KEYSIZE] = { 0 };
  1162. if (index >= ARRAY_SIZE(bcm->key))
  1163. return -EINVAL;
  1164. if (key_len > ARRAY_SIZE(key))
  1165. return -EINVAL;
  1166. if (algorithm < 1 || algorithm > 5)
  1167. return -EINVAL;
  1168. memcpy(key, _key, key_len);
  1169. key_write(bcm, index, algorithm, (const u16 *)key);
  1170. keymac_write(bcm, index, (const u32 *)mac_addr);
  1171. bcm->key[index].algorithm = algorithm;
  1172. return 0;
  1173. }
  1174. static void bcm43xx_clear_keys(struct bcm43xx_private *bcm)
  1175. {
  1176. static const u32 zero_mac[2] = { 0 };
  1177. unsigned int i,j, nr_keys = 54;
  1178. u16 offset;
  1179. if (bcm->current_core->rev < 5)
  1180. nr_keys = 16;
  1181. assert(nr_keys <= ARRAY_SIZE(bcm->key));
  1182. for (i = 0; i < nr_keys; i++) {
  1183. bcm->key[i].enabled = 0;
  1184. /* returns for i < 4 immediately */
  1185. keymac_write(bcm, i, zero_mac);
  1186. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  1187. 0x100 + (i * 2), 0x0000);
  1188. for (j = 0; j < 8; j++) {
  1189. offset = bcm->security_offset + (j * 4) + (i * BCM43xx_SEC_KEYSIZE);
  1190. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED,
  1191. offset, 0x0000);
  1192. }
  1193. }
  1194. dprintk(KERN_INFO PFX "Keys cleared\n");
  1195. }
  1196. /* Lowlevel core-switch function. This is only to be used in
  1197. * bcm43xx_switch_core() and bcm43xx_probe_cores()
  1198. */
  1199. static int _switch_core(struct bcm43xx_private *bcm, int core)
  1200. {
  1201. int err;
  1202. int attempts = 0;
  1203. u32 current_core;
  1204. assert(core >= 0);
  1205. while (1) {
  1206. err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_ACTIVE_CORE,
  1207. (core * 0x1000) + 0x18000000);
  1208. if (unlikely(err))
  1209. goto error;
  1210. err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_ACTIVE_CORE,
  1211. &current_core);
  1212. if (unlikely(err))
  1213. goto error;
  1214. current_core = (current_core - 0x18000000) / 0x1000;
  1215. if (current_core == core)
  1216. break;
  1217. if (unlikely(attempts++ > BCM43xx_SWITCH_CORE_MAX_RETRIES))
  1218. goto error;
  1219. udelay(10);
  1220. }
  1221. #ifdef CONFIG_BCM947XX
  1222. if (bcm->pci_dev->bus->number == 0)
  1223. bcm->current_core_offset = 0x1000 * core;
  1224. else
  1225. bcm->current_core_offset = 0;
  1226. #endif
  1227. return 0;
  1228. error:
  1229. printk(KERN_ERR PFX "Failed to switch to core %d\n", core);
  1230. return -ENODEV;
  1231. }
  1232. int bcm43xx_switch_core(struct bcm43xx_private *bcm, struct bcm43xx_coreinfo *new_core)
  1233. {
  1234. int err;
  1235. if (unlikely(!new_core))
  1236. return 0;
  1237. if (!(new_core->flags & BCM43xx_COREFLAG_AVAILABLE))
  1238. return -ENODEV;
  1239. if (bcm->current_core == new_core)
  1240. return 0;
  1241. err = _switch_core(bcm, new_core->index);
  1242. if (likely(!err))
  1243. bcm->current_core = new_core;
  1244. return err;
  1245. }
  1246. static int bcm43xx_core_enabled(struct bcm43xx_private *bcm)
  1247. {
  1248. u32 value;
  1249. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1250. value &= BCM43xx_SBTMSTATELOW_CLOCK | BCM43xx_SBTMSTATELOW_RESET
  1251. | BCM43xx_SBTMSTATELOW_REJECT;
  1252. return (value == BCM43xx_SBTMSTATELOW_CLOCK);
  1253. }
  1254. /* disable current core */
  1255. static int bcm43xx_core_disable(struct bcm43xx_private *bcm, u32 core_flags)
  1256. {
  1257. u32 sbtmstatelow;
  1258. u32 sbtmstatehigh;
  1259. int i;
  1260. /* fetch sbtmstatelow from core information registers */
  1261. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1262. /* core is already in reset */
  1263. if (sbtmstatelow & BCM43xx_SBTMSTATELOW_RESET)
  1264. goto out;
  1265. if (sbtmstatelow & BCM43xx_SBTMSTATELOW_CLOCK) {
  1266. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
  1267. BCM43xx_SBTMSTATELOW_REJECT;
  1268. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1269. for (i = 0; i < 1000; i++) {
  1270. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1271. if (sbtmstatelow & BCM43xx_SBTMSTATELOW_REJECT) {
  1272. i = -1;
  1273. break;
  1274. }
  1275. udelay(10);
  1276. }
  1277. if (i != -1) {
  1278. printk(KERN_ERR PFX "Error: core_disable() REJECT timeout!\n");
  1279. return -EBUSY;
  1280. }
  1281. for (i = 0; i < 1000; i++) {
  1282. sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
  1283. if (!(sbtmstatehigh & BCM43xx_SBTMSTATEHIGH_BUSY)) {
  1284. i = -1;
  1285. break;
  1286. }
  1287. udelay(10);
  1288. }
  1289. if (i != -1) {
  1290. printk(KERN_ERR PFX "Error: core_disable() BUSY timeout!\n");
  1291. return -EBUSY;
  1292. }
  1293. sbtmstatelow = BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
  1294. BCM43xx_SBTMSTATELOW_REJECT |
  1295. BCM43xx_SBTMSTATELOW_RESET |
  1296. BCM43xx_SBTMSTATELOW_CLOCK |
  1297. core_flags;
  1298. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1299. udelay(10);
  1300. }
  1301. sbtmstatelow = BCM43xx_SBTMSTATELOW_RESET |
  1302. BCM43xx_SBTMSTATELOW_REJECT |
  1303. core_flags;
  1304. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1305. out:
  1306. bcm->current_core->flags &= ~ BCM43xx_COREFLAG_ENABLED;
  1307. return 0;
  1308. }
  1309. /* enable (reset) current core */
  1310. static int bcm43xx_core_enable(struct bcm43xx_private *bcm, u32 core_flags)
  1311. {
  1312. u32 sbtmstatelow;
  1313. u32 sbtmstatehigh;
  1314. u32 sbimstate;
  1315. int err;
  1316. err = bcm43xx_core_disable(bcm, core_flags);
  1317. if (err)
  1318. goto out;
  1319. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
  1320. BCM43xx_SBTMSTATELOW_RESET |
  1321. BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
  1322. core_flags;
  1323. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1324. udelay(1);
  1325. sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
  1326. if (sbtmstatehigh & BCM43xx_SBTMSTATEHIGH_SERROR) {
  1327. sbtmstatehigh = 0x00000000;
  1328. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATEHIGH, sbtmstatehigh);
  1329. }
  1330. sbimstate = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMSTATE);
  1331. if (sbimstate & (BCM43xx_SBIMSTATE_IB_ERROR | BCM43xx_SBIMSTATE_TIMEOUT)) {
  1332. sbimstate &= ~(BCM43xx_SBIMSTATE_IB_ERROR | BCM43xx_SBIMSTATE_TIMEOUT);
  1333. bcm43xx_write32(bcm, BCM43xx_CIR_SBIMSTATE, sbimstate);
  1334. }
  1335. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK |
  1336. BCM43xx_SBTMSTATELOW_FORCE_GATE_CLOCK |
  1337. core_flags;
  1338. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1339. udelay(1);
  1340. sbtmstatelow = BCM43xx_SBTMSTATELOW_CLOCK | core_flags;
  1341. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1342. udelay(1);
  1343. bcm->current_core->flags |= BCM43xx_COREFLAG_ENABLED;
  1344. assert(err == 0);
  1345. out:
  1346. return err;
  1347. }
  1348. /* http://bcm-specs.sipsolutions.net/80211CoreReset */
  1349. void bcm43xx_wireless_core_reset(struct bcm43xx_private *bcm, int connect_phy)
  1350. {
  1351. u32 flags = 0x00040000;
  1352. if ((bcm43xx_core_enabled(bcm)) &&
  1353. !bcm43xx_using_pio(bcm)) {
  1354. //FIXME: Do we _really_ want #ifndef CONFIG_BCM947XX here?
  1355. #ifndef CONFIG_BCM947XX
  1356. /* reset all used DMA controllers. */
  1357. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA1_BASE);
  1358. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA2_BASE);
  1359. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA3_BASE);
  1360. bcm43xx_dmacontroller_tx_reset(bcm, BCM43xx_MMIO_DMA4_BASE);
  1361. bcm43xx_dmacontroller_rx_reset(bcm, BCM43xx_MMIO_DMA1_BASE);
  1362. if (bcm->current_core->rev < 5)
  1363. bcm43xx_dmacontroller_rx_reset(bcm, BCM43xx_MMIO_DMA4_BASE);
  1364. #endif
  1365. }
  1366. if (bcm->shutting_down) {
  1367. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1368. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1369. & ~(BCM43xx_SBF_MAC_ENABLED | 0x00000002));
  1370. } else {
  1371. if (connect_phy)
  1372. flags |= 0x20000000;
  1373. bcm43xx_phy_connect(bcm, connect_phy);
  1374. bcm43xx_core_enable(bcm, flags);
  1375. bcm43xx_write16(bcm, 0x03E6, 0x0000);
  1376. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  1377. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  1378. | BCM43xx_SBF_400);
  1379. }
  1380. }
  1381. static void bcm43xx_wireless_core_disable(struct bcm43xx_private *bcm)
  1382. {
  1383. bcm43xx_radio_turn_off(bcm);
  1384. bcm43xx_write16(bcm, 0x03E6, 0x00F4);
  1385. bcm43xx_core_disable(bcm, 0);
  1386. }
  1387. /* Mark the current 80211 core inactive.
  1388. * "active_80211_core" is the other 80211 core, which is used.
  1389. */
  1390. static int bcm43xx_wireless_core_mark_inactive(struct bcm43xx_private *bcm,
  1391. struct bcm43xx_coreinfo *active_80211_core)
  1392. {
  1393. u32 sbtmstatelow;
  1394. struct bcm43xx_coreinfo *old_core;
  1395. int err = 0;
  1396. bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  1397. bcm43xx_radio_turn_off(bcm);
  1398. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1399. sbtmstatelow &= ~0x200a0000;
  1400. sbtmstatelow |= 0xa0000;
  1401. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1402. udelay(1);
  1403. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1404. sbtmstatelow &= ~0xa0000;
  1405. sbtmstatelow |= 0x80000;
  1406. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1407. udelay(1);
  1408. if (bcm->current_core->phy->type == BCM43xx_PHYTYPE_G) {
  1409. old_core = bcm->current_core;
  1410. err = bcm43xx_switch_core(bcm, active_80211_core);
  1411. if (err)
  1412. goto out;
  1413. sbtmstatelow = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  1414. sbtmstatelow &= ~0x20000000;
  1415. sbtmstatelow |= 0x20000000;
  1416. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, sbtmstatelow);
  1417. err = bcm43xx_switch_core(bcm, old_core);
  1418. }
  1419. out:
  1420. return err;
  1421. }
  1422. static void handle_irq_transmit_status(struct bcm43xx_private *bcm)
  1423. {
  1424. u32 v0, v1;
  1425. u16 tmp;
  1426. struct bcm43xx_xmitstatus stat;
  1427. assert(bcm->current_core->id == BCM43xx_COREID_80211);
  1428. assert(bcm->current_core->rev >= 5);
  1429. while (1) {
  1430. v0 = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_0);
  1431. if (!v0)
  1432. break;
  1433. v1 = bcm43xx_read32(bcm, BCM43xx_MMIO_XMITSTAT_1);
  1434. stat.cookie = (v0 >> 16) & 0x0000FFFF;
  1435. tmp = (u16)((v0 & 0xFFF0) | ((v0 & 0xF) >> 1));
  1436. stat.flags = tmp & 0xFF;
  1437. stat.cnt1 = (tmp & 0x0F00) >> 8;
  1438. stat.cnt2 = (tmp & 0xF000) >> 12;
  1439. stat.seq = (u16)(v1 & 0xFFFF);
  1440. stat.unknown = (u16)((v1 >> 16) & 0xFF);
  1441. bcm43xx_debugfs_log_txstat(bcm, &stat);
  1442. if (stat.flags & BCM43xx_TXSTAT_FLAG_IGNORE)
  1443. continue;
  1444. if (!(stat.flags & BCM43xx_TXSTAT_FLAG_ACK)) {
  1445. //TODO: packet was not acked (was lost)
  1446. }
  1447. //TODO: There are more (unknown) flags to test. see bcm43xx_main.h
  1448. if (bcm43xx_using_pio(bcm))
  1449. bcm43xx_pio_handle_xmitstatus(bcm, &stat);
  1450. else
  1451. bcm43xx_dma_handle_xmitstatus(bcm, &stat);
  1452. }
  1453. }
  1454. static void bcm43xx_generate_noise_sample(struct bcm43xx_private *bcm)
  1455. {
  1456. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x408, 0x7F7F);
  1457. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x40A, 0x7F7F);
  1458. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD,
  1459. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD) | (1 << 4));
  1460. assert(bcm->noisecalc.core_at_start == bcm->current_core);
  1461. assert(bcm->noisecalc.channel_at_start == bcm->current_core->radio->channel);
  1462. }
  1463. static void bcm43xx_calculate_link_quality(struct bcm43xx_private *bcm)
  1464. {
  1465. /* Top half of Link Quality calculation. */
  1466. if (bcm->noisecalc.calculation_running)
  1467. return;
  1468. bcm->noisecalc.core_at_start = bcm->current_core;
  1469. bcm->noisecalc.channel_at_start = bcm->current_core->radio->channel;
  1470. bcm->noisecalc.calculation_running = 1;
  1471. bcm->noisecalc.nr_samples = 0;
  1472. bcm43xx_generate_noise_sample(bcm);
  1473. }
  1474. static void handle_irq_noise(struct bcm43xx_private *bcm)
  1475. {
  1476. struct bcm43xx_radioinfo *radio = bcm->current_core->radio;
  1477. u16 tmp;
  1478. u8 noise[4];
  1479. u8 i, j;
  1480. s32 average;
  1481. /* Bottom half of Link Quality calculation. */
  1482. assert(bcm->noisecalc.calculation_running);
  1483. if (bcm->noisecalc.core_at_start != bcm->current_core ||
  1484. bcm->noisecalc.channel_at_start != radio->channel)
  1485. goto drop_calculation;
  1486. tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x408);
  1487. noise[0] = (tmp & 0x00FF);
  1488. noise[1] = (tmp & 0xFF00) >> 8;
  1489. tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x40A);
  1490. noise[2] = (tmp & 0x00FF);
  1491. noise[3] = (tmp & 0xFF00) >> 8;
  1492. if (noise[0] == 0x7F || noise[1] == 0x7F ||
  1493. noise[2] == 0x7F || noise[3] == 0x7F)
  1494. goto generate_new;
  1495. /* Get the noise samples. */
  1496. assert(bcm->noisecalc.nr_samples <= 8);
  1497. i = bcm->noisecalc.nr_samples;
  1498. noise[0] = limit_value(noise[0], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1499. noise[1] = limit_value(noise[1], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1500. noise[2] = limit_value(noise[2], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1501. noise[3] = limit_value(noise[3], 0, ARRAY_SIZE(radio->nrssi_lt) - 1);
  1502. bcm->noisecalc.samples[i][0] = radio->nrssi_lt[noise[0]];
  1503. bcm->noisecalc.samples[i][1] = radio->nrssi_lt[noise[1]];
  1504. bcm->noisecalc.samples[i][2] = radio->nrssi_lt[noise[2]];
  1505. bcm->noisecalc.samples[i][3] = radio->nrssi_lt[noise[3]];
  1506. bcm->noisecalc.nr_samples++;
  1507. if (bcm->noisecalc.nr_samples == 8) {
  1508. /* Calculate the Link Quality by the noise samples. */
  1509. average = 0;
  1510. for (i = 0; i < 8; i++) {
  1511. for (j = 0; j < 4; j++)
  1512. average += bcm->noisecalc.samples[i][j];
  1513. }
  1514. average /= (8 * 4);
  1515. average *= 125;
  1516. average += 64;
  1517. average /= 128;
  1518. tmp = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, 0x40C);
  1519. tmp = (tmp / 128) & 0x1F;
  1520. if (tmp >= 8)
  1521. average += 2;
  1522. else
  1523. average -= 25;
  1524. if (tmp == 8)
  1525. average -= 72;
  1526. else
  1527. average -= 48;
  1528. if (average > -65)
  1529. bcm->stats.link_quality = 0;
  1530. else if (average > -75)
  1531. bcm->stats.link_quality = 1;
  1532. else if (average > -85)
  1533. bcm->stats.link_quality = 2;
  1534. else
  1535. bcm->stats.link_quality = 3;
  1536. // dprintk(KERN_INFO PFX "Link Quality: %u (avg was %d)\n", bcm->stats.link_quality, average);
  1537. drop_calculation:
  1538. bcm->noisecalc.calculation_running = 0;
  1539. return;
  1540. }
  1541. generate_new:
  1542. bcm43xx_generate_noise_sample(bcm);
  1543. }
  1544. static void handle_irq_ps(struct bcm43xx_private *bcm)
  1545. {
  1546. if (bcm->ieee->iw_mode == IW_MODE_MASTER) {
  1547. ///TODO: PS TBTT
  1548. } else {
  1549. if (1/*FIXME: the last PSpoll frame was sent successfully */)
  1550. bcm43xx_power_saving_ctl_bits(bcm, -1, -1);
  1551. }
  1552. if (bcm->ieee->iw_mode == IW_MODE_ADHOC)
  1553. bcm->reg124_set_0x4 = 1;
  1554. //FIXME else set to false?
  1555. }
  1556. static void handle_irq_reg124(struct bcm43xx_private *bcm)
  1557. {
  1558. if (!bcm->reg124_set_0x4)
  1559. return;
  1560. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD,
  1561. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD)
  1562. | 0x4);
  1563. //FIXME: reset reg124_set_0x4 to false?
  1564. }
  1565. static void handle_irq_pmq(struct bcm43xx_private *bcm)
  1566. {
  1567. u32 tmp;
  1568. //TODO: AP mode.
  1569. while (1) {
  1570. tmp = bcm43xx_read32(bcm, BCM43xx_MMIO_PS_STATUS);
  1571. if (!(tmp & 0x00000008))
  1572. break;
  1573. }
  1574. /* 16bit write is odd, but correct. */
  1575. bcm43xx_write16(bcm, BCM43xx_MMIO_PS_STATUS, 0x0002);
  1576. }
  1577. static void bcm43xx_generate_beacon_template(struct bcm43xx_private *bcm,
  1578. u16 ram_offset, u16 shm_size_offset)
  1579. {
  1580. u32 value;
  1581. u16 size = 0;
  1582. /* Timestamp. */
  1583. //FIXME: assumption: The chip sets the timestamp
  1584. value = 0;
  1585. bcm43xx_ram_write(bcm, ram_offset++, value);
  1586. bcm43xx_ram_write(bcm, ram_offset++, value);
  1587. size += 8;
  1588. /* Beacon Interval / Capability Information */
  1589. value = 0x0000;//FIXME: Which interval?
  1590. value |= (1 << 0) << 16; /* ESS */
  1591. value |= (1 << 2) << 16; /* CF Pollable */ //FIXME?
  1592. value |= (1 << 3) << 16; /* CF Poll Request */ //FIXME?
  1593. if (!bcm->ieee->open_wep)
  1594. value |= (1 << 4) << 16; /* Privacy */
  1595. bcm43xx_ram_write(bcm, ram_offset++, value);
  1596. size += 4;
  1597. /* SSID */
  1598. //TODO
  1599. /* FH Parameter Set */
  1600. //TODO
  1601. /* DS Parameter Set */
  1602. //TODO
  1603. /* CF Parameter Set */
  1604. //TODO
  1605. /* TIM */
  1606. //TODO
  1607. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, shm_size_offset, size);
  1608. }
  1609. static void handle_irq_beacon(struct bcm43xx_private *bcm)
  1610. {
  1611. u32 status;
  1612. bcm->irq_savedstate &= ~BCM43xx_IRQ_BEACON;
  1613. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD);
  1614. if ((status & 0x1) && (status & 0x2)) {
  1615. /* ACK beacon IRQ. */
  1616. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON,
  1617. BCM43xx_IRQ_BEACON);
  1618. bcm->irq_savedstate |= BCM43xx_IRQ_BEACON;
  1619. return;
  1620. }
  1621. if (!(status & 0x1)) {
  1622. bcm43xx_generate_beacon_template(bcm, 0x68, 0x18);
  1623. status |= 0x1;
  1624. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD, status);
  1625. }
  1626. if (!(status & 0x2)) {
  1627. bcm43xx_generate_beacon_template(bcm, 0x468, 0x1A);
  1628. status |= 0x2;
  1629. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS2_BITFIELD, status);
  1630. }
  1631. }
  1632. /* Debug helper for irq bottom-half to print all reason registers. */
  1633. #define bcmirq_print_reasons(description) \
  1634. do { \
  1635. dprintkl(KERN_ERR PFX description "\n" \
  1636. KERN_ERR PFX " Generic Reason: 0x%08x\n" \
  1637. KERN_ERR PFX " DMA reasons: 0x%08x, 0x%08x, 0x%08x, 0x%08x\n" \
  1638. KERN_ERR PFX " DMA TX status: 0x%08x, 0x%08x, 0x%08x, 0x%08x\n", \
  1639. reason, \
  1640. dma_reason[0], dma_reason[1], \
  1641. dma_reason[2], dma_reason[3], \
  1642. bcm43xx_read32(bcm, BCM43xx_MMIO_DMA1_BASE + BCM43xx_DMA_TX_STATUS), \
  1643. bcm43xx_read32(bcm, BCM43xx_MMIO_DMA2_BASE + BCM43xx_DMA_TX_STATUS), \
  1644. bcm43xx_read32(bcm, BCM43xx_MMIO_DMA3_BASE + BCM43xx_DMA_TX_STATUS), \
  1645. bcm43xx_read32(bcm, BCM43xx_MMIO_DMA4_BASE + BCM43xx_DMA_TX_STATUS)); \
  1646. } while (0)
  1647. /* Interrupt handler bottom-half */
  1648. static void bcm43xx_interrupt_tasklet(struct bcm43xx_private *bcm)
  1649. {
  1650. u32 reason;
  1651. u32 dma_reason[4];
  1652. int activity = 0;
  1653. unsigned long flags;
  1654. #ifdef CONFIG_BCM43XX_DEBUG
  1655. u32 _handled = 0x00000000;
  1656. # define bcmirq_handled(irq) do { _handled |= (irq); } while (0)
  1657. #else
  1658. # define bcmirq_handled(irq) do { /* nothing */ } while (0)
  1659. #endif /* CONFIG_BCM43XX_DEBUG*/
  1660. spin_lock_irqsave(&bcm->lock, flags);
  1661. reason = bcm->irq_reason;
  1662. dma_reason[0] = bcm->dma_reason[0];
  1663. dma_reason[1] = bcm->dma_reason[1];
  1664. dma_reason[2] = bcm->dma_reason[2];
  1665. dma_reason[3] = bcm->dma_reason[3];
  1666. if (unlikely(reason & BCM43xx_IRQ_XMIT_ERROR)) {
  1667. /* TX error. We get this when Template Ram is written in wrong endianess
  1668. * in dummy_tx(). We also get this if something is wrong with the TX header
  1669. * on DMA or PIO queues.
  1670. * Maybe we get this in other error conditions, too.
  1671. */
  1672. bcmirq_print_reasons("XMIT ERROR");
  1673. bcmirq_handled(BCM43xx_IRQ_XMIT_ERROR);
  1674. }
  1675. if (reason & BCM43xx_IRQ_PS) {
  1676. handle_irq_ps(bcm);
  1677. bcmirq_handled(BCM43xx_IRQ_PS);
  1678. }
  1679. if (reason & BCM43xx_IRQ_REG124) {
  1680. handle_irq_reg124(bcm);
  1681. bcmirq_handled(BCM43xx_IRQ_REG124);
  1682. }
  1683. if (reason & BCM43xx_IRQ_BEACON) {
  1684. if (bcm->ieee->iw_mode == IW_MODE_MASTER)
  1685. handle_irq_beacon(bcm);
  1686. bcmirq_handled(BCM43xx_IRQ_BEACON);
  1687. }
  1688. if (reason & BCM43xx_IRQ_PMQ) {
  1689. handle_irq_pmq(bcm);
  1690. bcmirq_handled(BCM43xx_IRQ_PMQ);
  1691. }
  1692. if (reason & BCM43xx_IRQ_SCAN) {
  1693. /*TODO*/
  1694. //bcmirq_handled(BCM43xx_IRQ_SCAN);
  1695. }
  1696. if (reason & BCM43xx_IRQ_NOISE) {
  1697. handle_irq_noise(bcm);
  1698. bcmirq_handled(BCM43xx_IRQ_NOISE);
  1699. }
  1700. /* Check the DMA reason registers for received data. */
  1701. assert(!(dma_reason[1] & BCM43xx_DMAIRQ_RX_DONE));
  1702. assert(!(dma_reason[2] & BCM43xx_DMAIRQ_RX_DONE));
  1703. if (dma_reason[0] & BCM43xx_DMAIRQ_RX_DONE) {
  1704. if (bcm43xx_using_pio(bcm))
  1705. bcm43xx_pio_rx(bcm->current_core->pio->queue0);
  1706. else
  1707. bcm43xx_dma_rx(bcm->current_core->dma->rx_ring0);
  1708. /* We intentionally don't set "activity" to 1, here. */
  1709. }
  1710. if (dma_reason[3] & BCM43xx_DMAIRQ_RX_DONE) {
  1711. if (likely(bcm->current_core->rev < 5)) {
  1712. if (bcm43xx_using_pio(bcm))
  1713. bcm43xx_pio_rx(bcm->current_core->pio->queue3);
  1714. else
  1715. bcm43xx_dma_rx(bcm->current_core->dma->rx_ring1);
  1716. activity = 1;
  1717. } else
  1718. assert(0);
  1719. }
  1720. bcmirq_handled(BCM43xx_IRQ_RX);
  1721. if (reason & BCM43xx_IRQ_XMIT_STATUS) {
  1722. if (bcm->current_core->rev >= 5) {
  1723. handle_irq_transmit_status(bcm);
  1724. activity = 1;
  1725. }
  1726. //TODO: In AP mode, this also causes sending of powersave responses.
  1727. bcmirq_handled(BCM43xx_IRQ_XMIT_STATUS);
  1728. }
  1729. /* We get spurious IRQs, althought they are masked.
  1730. * Assume they are void and ignore them.
  1731. */
  1732. bcmirq_handled(~(bcm->irq_savedstate));
  1733. /* IRQ_PIO_WORKAROUND is handled in the top-half. */
  1734. bcmirq_handled(BCM43xx_IRQ_PIO_WORKAROUND);
  1735. #ifdef CONFIG_BCM43XX_DEBUG
  1736. if (unlikely(reason & ~_handled)) {
  1737. printkl(KERN_WARNING PFX
  1738. "Unhandled IRQ! Reason: 0x%08x, Unhandled: 0x%08x, "
  1739. "DMA: 0x%08x, 0x%08x, 0x%08x, 0x%08x\n",
  1740. reason, (reason & ~_handled),
  1741. dma_reason[0], dma_reason[1],
  1742. dma_reason[2], dma_reason[3]);
  1743. }
  1744. #endif
  1745. #undef bcmirq_handled
  1746. if (!modparam_noleds)
  1747. bcm43xx_leds_update(bcm, activity);
  1748. bcm43xx_interrupt_enable(bcm, bcm->irq_savedstate);
  1749. spin_unlock_irqrestore(&bcm->lock, flags);
  1750. }
  1751. #undef bcmirq_print_reasons
  1752. static void bcm43xx_interrupt_ack(struct bcm43xx_private *bcm,
  1753. u32 reason, u32 mask)
  1754. {
  1755. bcm->dma_reason[0] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA1_REASON)
  1756. & 0x0001dc00;
  1757. bcm->dma_reason[1] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA2_REASON)
  1758. & 0x0000dc00;
  1759. bcm->dma_reason[2] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA3_REASON)
  1760. & 0x0000dc00;
  1761. bcm->dma_reason[3] = bcm43xx_read32(bcm, BCM43xx_MMIO_DMA4_REASON)
  1762. & 0x0001dc00;
  1763. if (bcm43xx_using_pio(bcm) &&
  1764. (bcm->current_core->rev < 3) &&
  1765. (!(reason & BCM43xx_IRQ_PIO_WORKAROUND))) {
  1766. /* Apply a PIO specific workaround to the dma_reasons */
  1767. #define apply_pio_workaround(BASE, QNUM) \
  1768. do { \
  1769. if (bcm43xx_read16(bcm, BASE + BCM43xx_PIO_RXCTL) & BCM43xx_PIO_RXCTL_DATAAVAILABLE) \
  1770. bcm->dma_reason[QNUM] |= 0x00010000; \
  1771. else \
  1772. bcm->dma_reason[QNUM] &= ~0x00010000; \
  1773. } while (0)
  1774. apply_pio_workaround(BCM43xx_MMIO_PIO1_BASE, 0);
  1775. apply_pio_workaround(BCM43xx_MMIO_PIO2_BASE, 1);
  1776. apply_pio_workaround(BCM43xx_MMIO_PIO3_BASE, 2);
  1777. apply_pio_workaround(BCM43xx_MMIO_PIO4_BASE, 3);
  1778. #undef apply_pio_workaround
  1779. }
  1780. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON,
  1781. reason & mask);
  1782. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA1_REASON,
  1783. bcm->dma_reason[0]);
  1784. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA2_REASON,
  1785. bcm->dma_reason[1]);
  1786. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA3_REASON,
  1787. bcm->dma_reason[2]);
  1788. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA4_REASON,
  1789. bcm->dma_reason[3]);
  1790. }
  1791. /* Interrupt handler top-half */
  1792. static irqreturn_t bcm43xx_interrupt_handler(int irq, void *dev_id, struct pt_regs *regs)
  1793. {
  1794. struct bcm43xx_private *bcm = dev_id;
  1795. u32 reason, mask;
  1796. if (!bcm)
  1797. return IRQ_NONE;
  1798. spin_lock(&bcm->lock);
  1799. reason = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  1800. if (reason == 0xffffffff) {
  1801. /* irq not for us (shared irq) */
  1802. spin_unlock(&bcm->lock);
  1803. return IRQ_NONE;
  1804. }
  1805. mask = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_MASK);
  1806. if (!(reason & mask)) {
  1807. spin_unlock(&bcm->lock);
  1808. return IRQ_HANDLED;
  1809. }
  1810. bcm43xx_interrupt_ack(bcm, reason, mask);
  1811. /* disable all IRQs. They are enabled again in the bottom half. */
  1812. bcm->irq_savedstate = bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  1813. /* save the reason code and call our bottom half. */
  1814. bcm->irq_reason = reason;
  1815. tasklet_schedule(&bcm->isr_tasklet);
  1816. spin_unlock(&bcm->lock);
  1817. return IRQ_HANDLED;
  1818. }
  1819. static void bcm43xx_release_firmware(struct bcm43xx_private *bcm, int force)
  1820. {
  1821. if (bcm->firmware_norelease && !force)
  1822. return; /* Suspending or controller reset. */
  1823. release_firmware(bcm->ucode);
  1824. bcm->ucode = NULL;
  1825. release_firmware(bcm->pcm);
  1826. bcm->pcm = NULL;
  1827. release_firmware(bcm->initvals0);
  1828. bcm->initvals0 = NULL;
  1829. release_firmware(bcm->initvals1);
  1830. bcm->initvals1 = NULL;
  1831. }
  1832. static int bcm43xx_request_firmware(struct bcm43xx_private *bcm)
  1833. {
  1834. struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
  1835. u8 rev = bcm->current_core->rev;
  1836. int err = 0;
  1837. int nr;
  1838. char buf[22 + sizeof(modparam_fwpostfix) - 1] = { 0 };
  1839. if (!bcm->ucode) {
  1840. snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_microcode%d%s.fw",
  1841. (rev >= 5 ? 5 : rev),
  1842. modparam_fwpostfix);
  1843. err = request_firmware(&bcm->ucode, buf, &bcm->pci_dev->dev);
  1844. if (err) {
  1845. printk(KERN_ERR PFX
  1846. "Error: Microcode \"%s\" not available or load failed.\n",
  1847. buf);
  1848. goto error;
  1849. }
  1850. }
  1851. if (!bcm->pcm) {
  1852. snprintf(buf, ARRAY_SIZE(buf),
  1853. "bcm43xx_pcm%d%s.fw",
  1854. (rev < 5 ? 4 : 5),
  1855. modparam_fwpostfix);
  1856. err = request_firmware(&bcm->pcm, buf, &bcm->pci_dev->dev);
  1857. if (err) {
  1858. printk(KERN_ERR PFX
  1859. "Error: PCM \"%s\" not available or load failed.\n",
  1860. buf);
  1861. goto error;
  1862. }
  1863. }
  1864. if (!bcm->initvals0) {
  1865. if (rev == 2 || rev == 4) {
  1866. switch (phy->type) {
  1867. case BCM43xx_PHYTYPE_A:
  1868. nr = 3;
  1869. break;
  1870. case BCM43xx_PHYTYPE_B:
  1871. case BCM43xx_PHYTYPE_G:
  1872. nr = 1;
  1873. break;
  1874. default:
  1875. goto err_noinitval;
  1876. }
  1877. } else if (rev >= 5) {
  1878. switch (phy->type) {
  1879. case BCM43xx_PHYTYPE_A:
  1880. nr = 7;
  1881. break;
  1882. case BCM43xx_PHYTYPE_B:
  1883. case BCM43xx_PHYTYPE_G:
  1884. nr = 5;
  1885. break;
  1886. default:
  1887. goto err_noinitval;
  1888. }
  1889. } else
  1890. goto err_noinitval;
  1891. snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_initval%02d%s.fw",
  1892. nr, modparam_fwpostfix);
  1893. err = request_firmware(&bcm->initvals0, buf, &bcm->pci_dev->dev);
  1894. if (err) {
  1895. printk(KERN_ERR PFX
  1896. "Error: InitVals \"%s\" not available or load failed.\n",
  1897. buf);
  1898. goto error;
  1899. }
  1900. if (bcm->initvals0->size % sizeof(struct bcm43xx_initval)) {
  1901. printk(KERN_ERR PFX "InitVals fileformat error.\n");
  1902. goto error;
  1903. }
  1904. }
  1905. if (!bcm->initvals1) {
  1906. if (rev >= 5) {
  1907. u32 sbtmstatehigh;
  1908. switch (phy->type) {
  1909. case BCM43xx_PHYTYPE_A:
  1910. sbtmstatehigh = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATEHIGH);
  1911. if (sbtmstatehigh & 0x00010000)
  1912. nr = 9;
  1913. else
  1914. nr = 10;
  1915. break;
  1916. case BCM43xx_PHYTYPE_B:
  1917. case BCM43xx_PHYTYPE_G:
  1918. nr = 6;
  1919. break;
  1920. default:
  1921. goto err_noinitval;
  1922. }
  1923. snprintf(buf, ARRAY_SIZE(buf), "bcm43xx_initval%02d%s.fw",
  1924. nr, modparam_fwpostfix);
  1925. err = request_firmware(&bcm->initvals1, buf, &bcm->pci_dev->dev);
  1926. if (err) {
  1927. printk(KERN_ERR PFX
  1928. "Error: InitVals \"%s\" not available or load failed.\n",
  1929. buf);
  1930. goto error;
  1931. }
  1932. if (bcm->initvals1->size % sizeof(struct bcm43xx_initval)) {
  1933. printk(KERN_ERR PFX "InitVals fileformat error.\n");
  1934. goto error;
  1935. }
  1936. }
  1937. }
  1938. out:
  1939. return err;
  1940. error:
  1941. bcm43xx_release_firmware(bcm, 1);
  1942. goto out;
  1943. err_noinitval:
  1944. printk(KERN_ERR PFX "Error: No InitVals available!\n");
  1945. err = -ENOENT;
  1946. goto error;
  1947. }
  1948. static void bcm43xx_upload_microcode(struct bcm43xx_private *bcm)
  1949. {
  1950. const u32 *data;
  1951. unsigned int i, len;
  1952. #ifdef DEBUG_ENABLE_UCODE_MMIO_PRINT
  1953. bcm43xx_mmioprint_enable(bcm);
  1954. #else
  1955. bcm43xx_mmioprint_disable(bcm);
  1956. #endif
  1957. /* Upload Microcode. */
  1958. data = (u32 *)(bcm->ucode->data);
  1959. len = bcm->ucode->size / sizeof(u32);
  1960. bcm43xx_shm_control_word(bcm, BCM43xx_SHM_UCODE, 0x0000);
  1961. for (i = 0; i < len; i++) {
  1962. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA,
  1963. be32_to_cpu(data[i]));
  1964. udelay(10);
  1965. }
  1966. /* Upload PCM data. */
  1967. data = (u32 *)(bcm->pcm->data);
  1968. len = bcm->pcm->size / sizeof(u32);
  1969. bcm43xx_shm_control_word(bcm, BCM43xx_SHM_PCM, 0x01ea);
  1970. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA, 0x00004000);
  1971. bcm43xx_shm_control_word(bcm, BCM43xx_SHM_PCM, 0x01eb);
  1972. for (i = 0; i < len; i++) {
  1973. bcm43xx_write32(bcm, BCM43xx_MMIO_SHM_DATA,
  1974. be32_to_cpu(data[i]));
  1975. udelay(10);
  1976. }
  1977. #ifdef DEBUG_ENABLE_UCODE_MMIO_PRINT
  1978. bcm43xx_mmioprint_disable(bcm);
  1979. #else
  1980. bcm43xx_mmioprint_enable(bcm);
  1981. #endif
  1982. }
  1983. static int bcm43xx_write_initvals(struct bcm43xx_private *bcm,
  1984. const struct bcm43xx_initval *data,
  1985. const unsigned int len)
  1986. {
  1987. u16 offset, size;
  1988. u32 value;
  1989. unsigned int i;
  1990. for (i = 0; i < len; i++) {
  1991. offset = be16_to_cpu(data[i].offset);
  1992. size = be16_to_cpu(data[i].size);
  1993. value = be32_to_cpu(data[i].value);
  1994. if (unlikely(offset >= 0x1000))
  1995. goto err_format;
  1996. if (size == 2) {
  1997. if (unlikely(value & 0xFFFF0000))
  1998. goto err_format;
  1999. bcm43xx_write16(bcm, offset, (u16)value);
  2000. } else if (size == 4) {
  2001. bcm43xx_write32(bcm, offset, value);
  2002. } else
  2003. goto err_format;
  2004. }
  2005. return 0;
  2006. err_format:
  2007. printk(KERN_ERR PFX "InitVals (bcm43xx_initvalXX.fw) file-format error. "
  2008. "Please fix your bcm43xx firmware files.\n");
  2009. return -EPROTO;
  2010. }
  2011. static int bcm43xx_upload_initvals(struct bcm43xx_private *bcm)
  2012. {
  2013. int err;
  2014. #ifdef DEBUG_ENABLE_UCODE_MMIO_PRINT
  2015. bcm43xx_mmioprint_enable(bcm);
  2016. #else
  2017. bcm43xx_mmioprint_disable(bcm);
  2018. #endif
  2019. err = bcm43xx_write_initvals(bcm, (struct bcm43xx_initval *)bcm->initvals0->data,
  2020. bcm->initvals0->size / sizeof(struct bcm43xx_initval));
  2021. if (err)
  2022. goto out;
  2023. if (bcm->initvals1) {
  2024. err = bcm43xx_write_initvals(bcm, (struct bcm43xx_initval *)bcm->initvals1->data,
  2025. bcm->initvals1->size / sizeof(struct bcm43xx_initval));
  2026. if (err)
  2027. goto out;
  2028. }
  2029. out:
  2030. #ifdef DEBUG_ENABLE_UCODE_MMIO_PRINT
  2031. bcm43xx_mmioprint_disable(bcm);
  2032. #else
  2033. bcm43xx_mmioprint_enable(bcm);
  2034. #endif
  2035. return err;
  2036. }
  2037. static int bcm43xx_initialize_irq(struct bcm43xx_private *bcm)
  2038. {
  2039. int res;
  2040. unsigned int i;
  2041. u32 data;
  2042. bcm->irq = bcm->pci_dev->irq;
  2043. #ifdef CONFIG_BCM947XX
  2044. if (bcm->pci_dev->bus->number == 0) {
  2045. struct pci_dev *d = NULL;
  2046. /* FIXME: we will probably need more device IDs here... */
  2047. d = pci_find_device(PCI_VENDOR_ID_BROADCOM, 0x4324, NULL);
  2048. if (d != NULL) {
  2049. bcm->irq = d->irq;
  2050. }
  2051. }
  2052. #endif
  2053. res = request_irq(bcm->irq, bcm43xx_interrupt_handler,
  2054. SA_SHIRQ, KBUILD_MODNAME, bcm);
  2055. if (res) {
  2056. printk(KERN_ERR PFX "Cannot register IRQ%d\n", bcm->irq);
  2057. return -ENODEV;
  2058. }
  2059. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, 0xffffffff);
  2060. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, 0x00020402);
  2061. i = 0;
  2062. while (1) {
  2063. data = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  2064. if (data == BCM43xx_IRQ_READY)
  2065. break;
  2066. i++;
  2067. if (i >= BCM43xx_IRQWAIT_MAX_RETRIES) {
  2068. printk(KERN_ERR PFX "Card IRQ register not responding. "
  2069. "Giving up.\n");
  2070. free_irq(bcm->irq, bcm);
  2071. return -ENODEV;
  2072. }
  2073. udelay(10);
  2074. }
  2075. // dummy read
  2076. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  2077. return 0;
  2078. }
  2079. /* Switch to the core used to write the GPIO register.
  2080. * This is either the ChipCommon, or the PCI core.
  2081. */
  2082. static int switch_to_gpio_core(struct bcm43xx_private *bcm)
  2083. {
  2084. int err;
  2085. /* Where to find the GPIO register depends on the chipset.
  2086. * If it has a ChipCommon, its register at offset 0x6c is the GPIO
  2087. * control register. Otherwise the register at offset 0x6c in the
  2088. * PCI core is the GPIO control register.
  2089. */
  2090. err = bcm43xx_switch_core(bcm, &bcm->core_chipcommon);
  2091. if (err == -ENODEV) {
  2092. err = bcm43xx_switch_core(bcm, &bcm->core_pci);
  2093. if (unlikely(err == -ENODEV)) {
  2094. printk(KERN_ERR PFX "gpio error: "
  2095. "Neither ChipCommon nor PCI core available!\n");
  2096. return -ENODEV;
  2097. } else if (unlikely(err != 0))
  2098. return -ENODEV;
  2099. } else if (unlikely(err != 0))
  2100. return -ENODEV;
  2101. return 0;
  2102. }
  2103. /* Initialize the GPIOs
  2104. * http://bcm-specs.sipsolutions.net/GPIO
  2105. */
  2106. static int bcm43xx_gpio_init(struct bcm43xx_private *bcm)
  2107. {
  2108. struct bcm43xx_coreinfo *old_core;
  2109. int err;
  2110. u32 mask, value;
  2111. value = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2112. value &= ~0xc000;
  2113. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value);
  2114. mask = 0x0000001F;
  2115. value = 0x0000000F;
  2116. bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_CONTROL,
  2117. bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_CONTROL) & 0xFFF0);
  2118. bcm43xx_write16(bcm, BCM43xx_MMIO_GPIO_MASK,
  2119. bcm43xx_read16(bcm, BCM43xx_MMIO_GPIO_MASK) | 0x000F);
  2120. old_core = bcm->current_core;
  2121. err = switch_to_gpio_core(bcm);
  2122. if (err)
  2123. return err;
  2124. if (bcm->current_core->rev >= 2){
  2125. mask |= 0x10;
  2126. value |= 0x10;
  2127. }
  2128. if (bcm->chip_id == 0x4301) {
  2129. mask |= 0x60;
  2130. value |= 0x60;
  2131. }
  2132. if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL) {
  2133. mask |= 0x200;
  2134. value |= 0x200;
  2135. }
  2136. bcm43xx_write32(bcm, BCM43xx_GPIO_CONTROL,
  2137. (bcm43xx_read32(bcm, BCM43xx_GPIO_CONTROL) & mask) | value);
  2138. err = bcm43xx_switch_core(bcm, old_core);
  2139. assert(err == 0);
  2140. return 0;
  2141. }
  2142. /* Turn off all GPIO stuff. Call this on module unload, for example. */
  2143. static int bcm43xx_gpio_cleanup(struct bcm43xx_private *bcm)
  2144. {
  2145. struct bcm43xx_coreinfo *old_core;
  2146. int err;
  2147. old_core = bcm->current_core;
  2148. err = switch_to_gpio_core(bcm);
  2149. if (err)
  2150. return err;
  2151. bcm43xx_write32(bcm, BCM43xx_GPIO_CONTROL, 0x00000000);
  2152. err = bcm43xx_switch_core(bcm, old_core);
  2153. assert(err == 0);
  2154. return 0;
  2155. }
  2156. /* http://bcm-specs.sipsolutions.net/EnableMac */
  2157. void bcm43xx_mac_enable(struct bcm43xx_private *bcm)
  2158. {
  2159. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  2160. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  2161. | BCM43xx_SBF_MAC_ENABLED);
  2162. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, BCM43xx_IRQ_READY);
  2163. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD); /* dummy read */
  2164. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
  2165. bcm43xx_power_saving_ctl_bits(bcm, -1, -1);
  2166. }
  2167. /* http://bcm-specs.sipsolutions.net/SuspendMAC */
  2168. void bcm43xx_mac_suspend(struct bcm43xx_private *bcm)
  2169. {
  2170. int i;
  2171. u32 tmp;
  2172. bcm43xx_power_saving_ctl_bits(bcm, -1, 1);
  2173. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  2174. bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD)
  2175. & ~BCM43xx_SBF_MAC_ENABLED);
  2176. bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON); /* dummy read */
  2177. for (i = 100000; i; i--) {
  2178. tmp = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  2179. if (tmp & BCM43xx_IRQ_READY)
  2180. return;
  2181. udelay(10);
  2182. }
  2183. printkl(KERN_ERR PFX "MAC suspend failed\n");
  2184. }
  2185. void bcm43xx_set_iwmode(struct bcm43xx_private *bcm,
  2186. int iw_mode)
  2187. {
  2188. unsigned long flags;
  2189. u32 status;
  2190. spin_lock_irqsave(&bcm->ieee->lock, flags);
  2191. bcm->ieee->iw_mode = iw_mode;
  2192. spin_unlock_irqrestore(&bcm->ieee->lock, flags);
  2193. if (iw_mode == IW_MODE_MONITOR)
  2194. bcm->net_dev->type = ARPHRD_IEEE80211;
  2195. else
  2196. bcm->net_dev->type = ARPHRD_ETHER;
  2197. if (!bcm->initialized)
  2198. return;
  2199. bcm43xx_mac_suspend(bcm);
  2200. status = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2201. /* Reset status to infrastructured mode */
  2202. status &= ~(BCM43xx_SBF_MODE_AP | BCM43xx_SBF_MODE_MONITOR);
  2203. /*FIXME: We actually set promiscuous mode as well, until we don't
  2204. * get the HW mac filter working */
  2205. status |= BCM43xx_SBF_MODE_NOTADHOC | BCM43xx_SBF_MODE_PROMISC;
  2206. switch (iw_mode) {
  2207. case IW_MODE_MONITOR:
  2208. status |= (BCM43xx_SBF_MODE_PROMISC |
  2209. BCM43xx_SBF_MODE_MONITOR);
  2210. break;
  2211. case IW_MODE_ADHOC:
  2212. status &= ~BCM43xx_SBF_MODE_NOTADHOC;
  2213. break;
  2214. case IW_MODE_MASTER:
  2215. case IW_MODE_SECOND:
  2216. case IW_MODE_REPEAT:
  2217. /* TODO: No AP/Repeater mode for now :-/ */
  2218. TODO();
  2219. break;
  2220. case IW_MODE_INFRA:
  2221. /* nothing to be done here... */
  2222. break;
  2223. default:
  2224. printk(KERN_ERR PFX "Unknown iwmode %d\n", iw_mode);
  2225. }
  2226. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, status);
  2227. bcm43xx_mac_enable(bcm);
  2228. }
  2229. /* This is the opposite of bcm43xx_chip_init() */
  2230. static void bcm43xx_chip_cleanup(struct bcm43xx_private *bcm)
  2231. {
  2232. bcm43xx_radio_turn_off(bcm);
  2233. if (!modparam_noleds)
  2234. bcm43xx_leds_exit(bcm);
  2235. bcm43xx_gpio_cleanup(bcm);
  2236. free_irq(bcm->irq, bcm);
  2237. bcm43xx_release_firmware(bcm, 0);
  2238. }
  2239. /* Initialize the chip
  2240. * http://bcm-specs.sipsolutions.net/ChipInit
  2241. */
  2242. static int bcm43xx_chip_init(struct bcm43xx_private *bcm)
  2243. {
  2244. int err;
  2245. int iw_mode = bcm->ieee->iw_mode;
  2246. int tmp;
  2247. u32 value32;
  2248. u16 value16;
  2249. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD,
  2250. BCM43xx_SBF_CORE_READY
  2251. | BCM43xx_SBF_400);
  2252. err = bcm43xx_request_firmware(bcm);
  2253. if (err)
  2254. goto out;
  2255. bcm43xx_upload_microcode(bcm);
  2256. err = bcm43xx_initialize_irq(bcm);
  2257. if (err)
  2258. goto err_release_fw;
  2259. err = bcm43xx_gpio_init(bcm);
  2260. if (err)
  2261. goto err_free_irq;
  2262. err = bcm43xx_upload_initvals(bcm);
  2263. if (err)
  2264. goto err_gpio_cleanup;
  2265. bcm43xx_radio_turn_on(bcm);
  2266. if (modparam_noleds)
  2267. bcm43xx_leds_turn_off(bcm);
  2268. else
  2269. bcm43xx_leds_update(bcm, 0);
  2270. bcm43xx_write16(bcm, 0x03E6, 0x0000);
  2271. err = bcm43xx_phy_init(bcm);
  2272. if (err)
  2273. goto err_radio_off;
  2274. /* Select initial Interference Mitigation. */
  2275. tmp = bcm->current_core->radio->interfmode;
  2276. bcm->current_core->radio->interfmode = BCM43xx_RADIO_INTERFMODE_NONE;
  2277. bcm43xx_radio_set_interference_mitigation(bcm, tmp);
  2278. bcm43xx_phy_set_antenna_diversity(bcm);
  2279. bcm43xx_radio_set_txantenna(bcm, BCM43xx_RADIO_TXANTENNA_DEFAULT);
  2280. if (bcm->current_core->phy->type == BCM43xx_PHYTYPE_B) {
  2281. value16 = bcm43xx_read16(bcm, 0x005E);
  2282. value16 |= 0x0004;
  2283. bcm43xx_write16(bcm, 0x005E, value16);
  2284. }
  2285. bcm43xx_write32(bcm, 0x0100, 0x01000000);
  2286. if (bcm->current_core->rev < 5)
  2287. bcm43xx_write32(bcm, 0x010C, 0x01000000);
  2288. value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2289. value32 &= ~ BCM43xx_SBF_MODE_NOTADHOC;
  2290. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
  2291. value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2292. value32 |= BCM43xx_SBF_MODE_NOTADHOC;
  2293. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
  2294. /*FIXME: For now, use promiscuous mode at all times; otherwise we don't
  2295. get broadcast or multicast packets */
  2296. value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2297. value32 |= BCM43xx_SBF_MODE_PROMISC;
  2298. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
  2299. if (iw_mode == IW_MODE_MONITOR) {
  2300. value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2301. value32 |= BCM43xx_SBF_MODE_PROMISC;
  2302. value32 |= BCM43xx_SBF_MODE_MONITOR;
  2303. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
  2304. }
  2305. value32 = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2306. value32 |= 0x100000; //FIXME: What's this? Is this correct?
  2307. bcm43xx_write32(bcm, BCM43xx_MMIO_STATUS_BITFIELD, value32);
  2308. if (bcm43xx_using_pio(bcm)) {
  2309. bcm43xx_write32(bcm, 0x0210, 0x00000100);
  2310. bcm43xx_write32(bcm, 0x0230, 0x00000100);
  2311. bcm43xx_write32(bcm, 0x0250, 0x00000100);
  2312. bcm43xx_write32(bcm, 0x0270, 0x00000100);
  2313. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0034, 0x0000);
  2314. }
  2315. /* Probe Response Timeout value */
  2316. /* FIXME: Default to 0, has to be set by ioctl probably... :-/ */
  2317. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0074, 0x0000);
  2318. if (iw_mode != IW_MODE_ADHOC && iw_mode != IW_MODE_MASTER) {
  2319. if ((bcm->chip_id == 0x4306) && (bcm->chip_rev == 3))
  2320. bcm43xx_write16(bcm, 0x0612, 0x0064);
  2321. else
  2322. bcm43xx_write16(bcm, 0x0612, 0x0032);
  2323. } else
  2324. bcm43xx_write16(bcm, 0x0612, 0x0002);
  2325. if (bcm->current_core->rev < 3) {
  2326. bcm43xx_write16(bcm, 0x060E, 0x0000);
  2327. bcm43xx_write16(bcm, 0x0610, 0x8000);
  2328. bcm43xx_write16(bcm, 0x0604, 0x0000);
  2329. bcm43xx_write16(bcm, 0x0606, 0x0200);
  2330. } else {
  2331. bcm43xx_write32(bcm, 0x0188, 0x80000000);
  2332. bcm43xx_write32(bcm, 0x018C, 0x02000000);
  2333. }
  2334. bcm43xx_write32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON, 0x00004000);
  2335. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA1_IRQ_MASK, 0x0001DC00);
  2336. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA2_IRQ_MASK, 0x0000DC00);
  2337. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA3_IRQ_MASK, 0x0000DC00);
  2338. bcm43xx_write32(bcm, BCM43xx_MMIO_DMA4_IRQ_MASK, 0x0001DC00);
  2339. value32 = bcm43xx_read32(bcm, BCM43xx_CIR_SBTMSTATELOW);
  2340. value32 |= 0x00100000;
  2341. bcm43xx_write32(bcm, BCM43xx_CIR_SBTMSTATELOW, value32);
  2342. bcm43xx_write16(bcm, BCM43xx_MMIO_POWERUP_DELAY, bcm43xx_pctl_powerup_delay(bcm));
  2343. assert(err == 0);
  2344. dprintk(KERN_INFO PFX "Chip initialized\n");
  2345. out:
  2346. return err;
  2347. err_radio_off:
  2348. bcm43xx_radio_turn_off(bcm);
  2349. err_gpio_cleanup:
  2350. bcm43xx_gpio_cleanup(bcm);
  2351. err_free_irq:
  2352. free_irq(bcm->irq, bcm);
  2353. err_release_fw:
  2354. bcm43xx_release_firmware(bcm, 1);
  2355. goto out;
  2356. }
  2357. /* Validate chip access
  2358. * http://bcm-specs.sipsolutions.net/ValidateChipAccess */
  2359. static int bcm43xx_validate_chip(struct bcm43xx_private *bcm)
  2360. {
  2361. u32 value;
  2362. u32 shm_backup;
  2363. shm_backup = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000);
  2364. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, 0xAA5555AA);
  2365. if (bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000) != 0xAA5555AA)
  2366. goto error;
  2367. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, 0x55AAAA55);
  2368. if (bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, 0x0000) != 0x55AAAA55)
  2369. goto error;
  2370. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED, 0x0000, shm_backup);
  2371. value = bcm43xx_read32(bcm, BCM43xx_MMIO_STATUS_BITFIELD);
  2372. if ((value | 0x80000000) != 0x80000400)
  2373. goto error;
  2374. value = bcm43xx_read32(bcm, BCM43xx_MMIO_GEN_IRQ_REASON);
  2375. if (value != 0x00000000)
  2376. goto error;
  2377. return 0;
  2378. error:
  2379. printk(KERN_ERR PFX "Failed to validate the chipaccess\n");
  2380. return -ENODEV;
  2381. }
  2382. static int bcm43xx_probe_cores(struct bcm43xx_private *bcm)
  2383. {
  2384. int err, i;
  2385. int current_core;
  2386. u32 core_vendor, core_id, core_rev;
  2387. u32 sb_id_hi, chip_id_32 = 0;
  2388. u16 pci_device, chip_id_16;
  2389. u8 core_count;
  2390. memset(&bcm->core_chipcommon, 0, sizeof(struct bcm43xx_coreinfo));
  2391. memset(&bcm->core_pci, 0, sizeof(struct bcm43xx_coreinfo));
  2392. memset(&bcm->core_v90, 0, sizeof(struct bcm43xx_coreinfo));
  2393. memset(&bcm->core_pcmcia, 0, sizeof(struct bcm43xx_coreinfo));
  2394. memset(&bcm->core_80211, 0, sizeof(struct bcm43xx_coreinfo)
  2395. * BCM43xx_MAX_80211_CORES);
  2396. memset(&bcm->phy, 0, sizeof(struct bcm43xx_phyinfo)
  2397. * BCM43xx_MAX_80211_CORES);
  2398. memset(&bcm->radio, 0, sizeof(struct bcm43xx_radioinfo)
  2399. * BCM43xx_MAX_80211_CORES);
  2400. /* map core 0 */
  2401. err = _switch_core(bcm, 0);
  2402. if (err)
  2403. goto out;
  2404. /* fetch sb_id_hi from core information registers */
  2405. sb_id_hi = bcm43xx_read32(bcm, BCM43xx_CIR_SB_ID_HI);
  2406. core_id = (sb_id_hi & 0xFFF0) >> 4;
  2407. core_rev = (sb_id_hi & 0xF);
  2408. core_vendor = (sb_id_hi & 0xFFFF0000) >> 16;
  2409. /* if present, chipcommon is always core 0; read the chipid from it */
  2410. if (core_id == BCM43xx_COREID_CHIPCOMMON) {
  2411. chip_id_32 = bcm43xx_read32(bcm, 0);
  2412. chip_id_16 = chip_id_32 & 0xFFFF;
  2413. bcm->core_chipcommon.flags |= BCM43xx_COREFLAG_AVAILABLE;
  2414. bcm->core_chipcommon.id = core_id;
  2415. bcm->core_chipcommon.rev = core_rev;
  2416. bcm->core_chipcommon.index = 0;
  2417. /* While we are at it, also read the capabilities. */
  2418. bcm->chipcommon_capabilities = bcm43xx_read32(bcm, BCM43xx_CHIPCOMMON_CAPABILITIES);
  2419. } else {
  2420. /* without a chipCommon, use a hard coded table. */
  2421. pci_device = bcm->pci_dev->device;
  2422. if (pci_device == 0x4301)
  2423. chip_id_16 = 0x4301;
  2424. else if ((pci_device >= 0x4305) && (pci_device <= 0x4307))
  2425. chip_id_16 = 0x4307;
  2426. else if ((pci_device >= 0x4402) && (pci_device <= 0x4403))
  2427. chip_id_16 = 0x4402;
  2428. else if ((pci_device >= 0x4610) && (pci_device <= 0x4615))
  2429. chip_id_16 = 0x4610;
  2430. else if ((pci_device >= 0x4710) && (pci_device <= 0x4715))
  2431. chip_id_16 = 0x4710;
  2432. #ifdef CONFIG_BCM947XX
  2433. else if ((pci_device >= 0x4320) && (pci_device <= 0x4325))
  2434. chip_id_16 = 0x4309;
  2435. #endif
  2436. else {
  2437. printk(KERN_ERR PFX "Could not determine Chip ID\n");
  2438. return -ENODEV;
  2439. }
  2440. }
  2441. /* ChipCommon with Core Rev >=4 encodes number of cores,
  2442. * otherwise consult hardcoded table */
  2443. if ((core_id == BCM43xx_COREID_CHIPCOMMON) && (core_rev >= 4)) {
  2444. core_count = (chip_id_32 & 0x0F000000) >> 24;
  2445. } else {
  2446. switch (chip_id_16) {
  2447. case 0x4610:
  2448. case 0x4704:
  2449. case 0x4710:
  2450. core_count = 9;
  2451. break;
  2452. case 0x4310:
  2453. core_count = 8;
  2454. break;
  2455. case 0x5365:
  2456. core_count = 7;
  2457. break;
  2458. case 0x4306:
  2459. core_count = 6;
  2460. break;
  2461. case 0x4301:
  2462. case 0x4307:
  2463. core_count = 5;
  2464. break;
  2465. case 0x4402:
  2466. core_count = 3;
  2467. break;
  2468. default:
  2469. /* SOL if we get here */
  2470. assert(0);
  2471. core_count = 1;
  2472. }
  2473. }
  2474. bcm->chip_id = chip_id_16;
  2475. bcm->chip_rev = (chip_id_32 & 0x000f0000) >> 16;
  2476. dprintk(KERN_INFO PFX "Chip ID 0x%x, rev 0x%x\n",
  2477. bcm->chip_id, bcm->chip_rev);
  2478. dprintk(KERN_INFO PFX "Number of cores: %d\n", core_count);
  2479. if (bcm->core_chipcommon.flags & BCM43xx_COREFLAG_AVAILABLE) {
  2480. dprintk(KERN_INFO PFX "Core 0: ID 0x%x, rev 0x%x, vendor 0x%x, %s\n",
  2481. core_id, core_rev, core_vendor,
  2482. bcm43xx_core_enabled(bcm) ? "enabled" : "disabled");
  2483. }
  2484. if (bcm->core_chipcommon.flags & BCM43xx_COREFLAG_AVAILABLE)
  2485. current_core = 1;
  2486. else
  2487. current_core = 0;
  2488. for ( ; current_core < core_count; current_core++) {
  2489. struct bcm43xx_coreinfo *core;
  2490. err = _switch_core(bcm, current_core);
  2491. if (err)
  2492. goto out;
  2493. /* Gather information */
  2494. /* fetch sb_id_hi from core information registers */
  2495. sb_id_hi = bcm43xx_read32(bcm, BCM43xx_CIR_SB_ID_HI);
  2496. /* extract core_id, core_rev, core_vendor */
  2497. core_id = (sb_id_hi & 0xFFF0) >> 4;
  2498. core_rev = (sb_id_hi & 0xF);
  2499. core_vendor = (sb_id_hi & 0xFFFF0000) >> 16;
  2500. dprintk(KERN_INFO PFX "Core %d: ID 0x%x, rev 0x%x, vendor 0x%x, %s\n",
  2501. current_core, core_id, core_rev, core_vendor,
  2502. bcm43xx_core_enabled(bcm) ? "enabled" : "disabled" );
  2503. core = NULL;
  2504. switch (core_id) {
  2505. case BCM43xx_COREID_PCI:
  2506. core = &bcm->core_pci;
  2507. if (core->flags & BCM43xx_COREFLAG_AVAILABLE) {
  2508. printk(KERN_WARNING PFX "Multiple PCI cores found.\n");
  2509. continue;
  2510. }
  2511. break;
  2512. case BCM43xx_COREID_V90:
  2513. core = &bcm->core_v90;
  2514. if (core->flags & BCM43xx_COREFLAG_AVAILABLE) {
  2515. printk(KERN_WARNING PFX "Multiple V90 cores found.\n");
  2516. continue;
  2517. }
  2518. break;
  2519. case BCM43xx_COREID_PCMCIA:
  2520. core = &bcm->core_pcmcia;
  2521. if (core->flags & BCM43xx_COREFLAG_AVAILABLE) {
  2522. printk(KERN_WARNING PFX "Multiple PCMCIA cores found.\n");
  2523. continue;
  2524. }
  2525. break;
  2526. case BCM43xx_COREID_ETHERNET:
  2527. core = &bcm->core_ethernet;
  2528. if (core->flags & BCM43xx_COREFLAG_AVAILABLE) {
  2529. printk(KERN_WARNING PFX "Multiple Ethernet cores found.\n");
  2530. continue;
  2531. }
  2532. break;
  2533. case BCM43xx_COREID_80211:
  2534. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  2535. core = &(bcm->core_80211[i]);
  2536. if (!(core->flags & BCM43xx_COREFLAG_AVAILABLE))
  2537. break;
  2538. core = NULL;
  2539. }
  2540. if (!core) {
  2541. printk(KERN_WARNING PFX "More than %d cores of type 802.11 found.\n",
  2542. BCM43xx_MAX_80211_CORES);
  2543. continue;
  2544. }
  2545. if (i != 0) {
  2546. /* More than one 80211 core is only supported
  2547. * by special chips.
  2548. * There are chips with two 80211 cores, but with
  2549. * dangling pins on the second core. Be careful
  2550. * and ignore these cores here.
  2551. */
  2552. if (bcm->pci_dev->device != 0x4324) {
  2553. dprintk(KERN_INFO PFX "Ignoring additional 802.11 core.\n");
  2554. continue;
  2555. }
  2556. }
  2557. switch (core_rev) {
  2558. case 2:
  2559. case 4:
  2560. case 5:
  2561. case 6:
  2562. case 7:
  2563. case 9:
  2564. break;
  2565. default:
  2566. printk(KERN_ERR PFX "Error: Unsupported 80211 core revision %u\n",
  2567. core_rev);
  2568. err = -ENODEV;
  2569. goto out;
  2570. }
  2571. core->phy = &bcm->phy[i];
  2572. core->phy->antenna_diversity = 0xffff;
  2573. core->phy->savedpctlreg = 0xFFFF;
  2574. core->phy->minlowsig[0] = 0xFFFF;
  2575. core->phy->minlowsig[1] = 0xFFFF;
  2576. core->phy->minlowsigpos[0] = 0;
  2577. core->phy->minlowsigpos[1] = 0;
  2578. spin_lock_init(&core->phy->lock);
  2579. core->radio = &bcm->radio[i];
  2580. core->radio->interfmode = BCM43xx_RADIO_INTERFMODE_NONE;
  2581. core->radio->channel = 0xFF;
  2582. core->radio->initial_channel = 0xFF;
  2583. core->radio->lofcal = 0xFFFF;
  2584. core->radio->initval = 0xFFFF;
  2585. core->radio->nrssi[0] = -1000;
  2586. core->radio->nrssi[1] = -1000;
  2587. core->dma = &bcm->dma[i];
  2588. core->pio = &bcm->pio[i];
  2589. break;
  2590. case BCM43xx_COREID_CHIPCOMMON:
  2591. printk(KERN_WARNING PFX "Multiple CHIPCOMMON cores found.\n");
  2592. break;
  2593. default:
  2594. printk(KERN_WARNING PFX "Unknown core found (ID 0x%x)\n", core_id);
  2595. }
  2596. if (core) {
  2597. core->flags |= BCM43xx_COREFLAG_AVAILABLE;
  2598. core->id = core_id;
  2599. core->rev = core_rev;
  2600. core->index = current_core;
  2601. }
  2602. }
  2603. if (!(bcm->core_80211[0].flags & BCM43xx_COREFLAG_AVAILABLE)) {
  2604. printk(KERN_ERR PFX "Error: No 80211 core found!\n");
  2605. err = -ENODEV;
  2606. goto out;
  2607. }
  2608. err = bcm43xx_switch_core(bcm, &bcm->core_80211[0]);
  2609. assert(err == 0);
  2610. out:
  2611. return err;
  2612. }
  2613. static void bcm43xx_gen_bssid(struct bcm43xx_private *bcm)
  2614. {
  2615. const u8 *mac = (const u8*)(bcm->net_dev->dev_addr);
  2616. u8 *bssid = bcm->ieee->bssid;
  2617. switch (bcm->ieee->iw_mode) {
  2618. case IW_MODE_ADHOC:
  2619. random_ether_addr(bssid);
  2620. break;
  2621. case IW_MODE_MASTER:
  2622. case IW_MODE_INFRA:
  2623. case IW_MODE_REPEAT:
  2624. case IW_MODE_SECOND:
  2625. case IW_MODE_MONITOR:
  2626. memcpy(bssid, mac, ETH_ALEN);
  2627. break;
  2628. default:
  2629. assert(0);
  2630. }
  2631. }
  2632. static void bcm43xx_rate_memory_write(struct bcm43xx_private *bcm,
  2633. u16 rate,
  2634. int is_ofdm)
  2635. {
  2636. u16 offset;
  2637. if (is_ofdm) {
  2638. offset = 0x480;
  2639. offset += (bcm43xx_plcp_get_ratecode_ofdm(rate) & 0x000F) * 2;
  2640. }
  2641. else {
  2642. offset = 0x4C0;
  2643. offset += (bcm43xx_plcp_get_ratecode_cck(rate) & 0x000F) * 2;
  2644. }
  2645. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, offset + 0x20,
  2646. bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED, offset));
  2647. }
  2648. static void bcm43xx_rate_memory_init(struct bcm43xx_private *bcm)
  2649. {
  2650. switch (bcm->current_core->phy->type) {
  2651. case BCM43xx_PHYTYPE_A:
  2652. case BCM43xx_PHYTYPE_G:
  2653. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_6MB, 1);
  2654. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_12MB, 1);
  2655. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_18MB, 1);
  2656. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_24MB, 1);
  2657. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_36MB, 1);
  2658. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_48MB, 1);
  2659. bcm43xx_rate_memory_write(bcm, IEEE80211_OFDM_RATE_54MB, 1);
  2660. case BCM43xx_PHYTYPE_B:
  2661. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_1MB, 0);
  2662. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_2MB, 0);
  2663. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_5MB, 0);
  2664. bcm43xx_rate_memory_write(bcm, IEEE80211_CCK_RATE_11MB, 0);
  2665. break;
  2666. default:
  2667. assert(0);
  2668. }
  2669. }
  2670. static void bcm43xx_wireless_core_cleanup(struct bcm43xx_private *bcm)
  2671. {
  2672. bcm43xx_chip_cleanup(bcm);
  2673. bcm43xx_pio_free(bcm);
  2674. bcm43xx_dma_free(bcm);
  2675. bcm->current_core->flags &= ~ BCM43xx_COREFLAG_INITIALIZED;
  2676. }
  2677. /* http://bcm-specs.sipsolutions.net/80211Init */
  2678. static int bcm43xx_wireless_core_init(struct bcm43xx_private *bcm)
  2679. {
  2680. u32 ucodeflags;
  2681. int err;
  2682. u32 sbimconfiglow;
  2683. u8 limit;
  2684. if (bcm->chip_rev < 5) {
  2685. sbimconfiglow = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMCONFIGLOW);
  2686. sbimconfiglow &= ~ BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_MASK;
  2687. sbimconfiglow &= ~ BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_MASK;
  2688. if (bcm->bustype == BCM43xx_BUSTYPE_PCI)
  2689. sbimconfiglow |= 0x32;
  2690. else if (bcm->bustype == BCM43xx_BUSTYPE_SB)
  2691. sbimconfiglow |= 0x53;
  2692. else
  2693. assert(0);
  2694. bcm43xx_write32(bcm, BCM43xx_CIR_SBIMCONFIGLOW, sbimconfiglow);
  2695. }
  2696. bcm43xx_phy_calibrate(bcm);
  2697. err = bcm43xx_chip_init(bcm);
  2698. if (err)
  2699. goto out;
  2700. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0016, bcm->current_core->rev);
  2701. ucodeflags = bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED, BCM43xx_UCODEFLAGS_OFFSET);
  2702. if (0 /*FIXME: which condition has to be used here? */)
  2703. ucodeflags |= 0x00000010;
  2704. /* HW decryption needs to be set now */
  2705. ucodeflags |= 0x40000000;
  2706. if (bcm->current_core->phy->type == BCM43xx_PHYTYPE_G) {
  2707. ucodeflags |= BCM43xx_UCODEFLAG_UNKBGPHY;
  2708. if (bcm->current_core->phy->rev == 1)
  2709. ucodeflags |= BCM43xx_UCODEFLAG_UNKGPHY;
  2710. if (bcm->sprom.boardflags & BCM43xx_BFL_PACTRL)
  2711. ucodeflags |= BCM43xx_UCODEFLAG_UNKPACTRL;
  2712. } else if (bcm->current_core->phy->type == BCM43xx_PHYTYPE_B) {
  2713. ucodeflags |= BCM43xx_UCODEFLAG_UNKBGPHY;
  2714. if ((bcm->current_core->phy->rev >= 2) &&
  2715. (bcm->current_core->radio->version == 0x2050))
  2716. ucodeflags &= ~BCM43xx_UCODEFLAG_UNKGPHY;
  2717. }
  2718. if (ucodeflags != bcm43xx_shm_read32(bcm, BCM43xx_SHM_SHARED,
  2719. BCM43xx_UCODEFLAGS_OFFSET)) {
  2720. bcm43xx_shm_write32(bcm, BCM43xx_SHM_SHARED,
  2721. BCM43xx_UCODEFLAGS_OFFSET, ucodeflags);
  2722. }
  2723. /* Short/Long Retry Limit.
  2724. * The retry-limit is a 4-bit counter. Enforce this to avoid overflowing
  2725. * the chip-internal counter.
  2726. */
  2727. limit = limit_value(modparam_short_retry, 0, 0xF);
  2728. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0006, limit);
  2729. limit = limit_value(modparam_long_retry, 0, 0xF);
  2730. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0007, limit);
  2731. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0044, 3);
  2732. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0046, 2);
  2733. bcm43xx_rate_memory_init(bcm);
  2734. /* Minimum Contention Window */
  2735. if (bcm->current_core->phy->type == BCM43xx_PHYTYPE_B)
  2736. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0003, 0x0000001f);
  2737. else
  2738. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0003, 0x0000000f);
  2739. /* Maximum Contention Window */
  2740. bcm43xx_shm_write32(bcm, BCM43xx_SHM_WIRELESS, 0x0004, 0x000003ff);
  2741. bcm43xx_gen_bssid(bcm);
  2742. bcm43xx_write_mac_bssid_templates(bcm);
  2743. if (bcm->current_core->rev >= 5)
  2744. bcm43xx_write16(bcm, 0x043C, 0x000C);
  2745. if (bcm43xx_using_pio(bcm))
  2746. err = bcm43xx_pio_init(bcm);
  2747. else
  2748. err = bcm43xx_dma_init(bcm);
  2749. if (err)
  2750. goto err_chip_cleanup;
  2751. bcm43xx_write16(bcm, 0x0612, 0x0050);
  2752. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0416, 0x0050);
  2753. bcm43xx_shm_write16(bcm, BCM43xx_SHM_SHARED, 0x0414, 0x01F4);
  2754. bcm43xx_mac_enable(bcm);
  2755. bcm43xx_interrupt_enable(bcm, bcm->irq_savedstate);
  2756. bcm->current_core->flags |= BCM43xx_COREFLAG_INITIALIZED;
  2757. out:
  2758. return err;
  2759. err_chip_cleanup:
  2760. bcm43xx_chip_cleanup(bcm);
  2761. goto out;
  2762. }
  2763. static int bcm43xx_chipset_attach(struct bcm43xx_private *bcm)
  2764. {
  2765. int err;
  2766. u16 pci_status;
  2767. err = bcm43xx_pctl_set_crystal(bcm, 1);
  2768. if (err)
  2769. goto out;
  2770. bcm43xx_pci_read_config16(bcm, PCI_STATUS, &pci_status);
  2771. bcm43xx_pci_write_config16(bcm, PCI_STATUS, pci_status & ~PCI_STATUS_SIG_TARGET_ABORT);
  2772. out:
  2773. return err;
  2774. }
  2775. static void bcm43xx_chipset_detach(struct bcm43xx_private *bcm)
  2776. {
  2777. bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_SLOW);
  2778. bcm43xx_pctl_set_crystal(bcm, 0);
  2779. }
  2780. static void bcm43xx_pcicore_broadcast_value(struct bcm43xx_private *bcm,
  2781. u32 address,
  2782. u32 data)
  2783. {
  2784. bcm43xx_write32(bcm, BCM43xx_PCICORE_BCAST_ADDR, address);
  2785. bcm43xx_write32(bcm, BCM43xx_PCICORE_BCAST_DATA, data);
  2786. }
  2787. static int bcm43xx_pcicore_commit_settings(struct bcm43xx_private *bcm)
  2788. {
  2789. int err;
  2790. struct bcm43xx_coreinfo *old_core;
  2791. old_core = bcm->current_core;
  2792. err = bcm43xx_switch_core(bcm, &bcm->core_pci);
  2793. if (err)
  2794. goto out;
  2795. bcm43xx_pcicore_broadcast_value(bcm, 0xfd8, 0x00000000);
  2796. bcm43xx_switch_core(bcm, old_core);
  2797. assert(err == 0);
  2798. out:
  2799. return err;
  2800. }
  2801. /* Make an I/O Core usable. "core_mask" is the bitmask of the cores to enable.
  2802. * To enable core 0, pass a core_mask of 1<<0
  2803. */
  2804. static int bcm43xx_setup_backplane_pci_connection(struct bcm43xx_private *bcm,
  2805. u32 core_mask)
  2806. {
  2807. u32 backplane_flag_nr;
  2808. u32 value;
  2809. struct bcm43xx_coreinfo *old_core;
  2810. int err = 0;
  2811. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBTPSFLAG);
  2812. backplane_flag_nr = value & BCM43xx_BACKPLANE_FLAG_NR_MASK;
  2813. old_core = bcm->current_core;
  2814. err = bcm43xx_switch_core(bcm, &bcm->core_pci);
  2815. if (err)
  2816. goto out;
  2817. if (bcm->core_pci.rev < 6) {
  2818. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBINTVEC);
  2819. value |= (1 << backplane_flag_nr);
  2820. bcm43xx_write32(bcm, BCM43xx_CIR_SBINTVEC, value);
  2821. } else {
  2822. err = bcm43xx_pci_read_config32(bcm, BCM43xx_PCICFG_ICR, &value);
  2823. if (err) {
  2824. printk(KERN_ERR PFX "Error: ICR setup failure!\n");
  2825. goto out_switch_back;
  2826. }
  2827. value |= core_mask << 8;
  2828. err = bcm43xx_pci_write_config32(bcm, BCM43xx_PCICFG_ICR, value);
  2829. if (err) {
  2830. printk(KERN_ERR PFX "Error: ICR setup failure!\n");
  2831. goto out_switch_back;
  2832. }
  2833. }
  2834. value = bcm43xx_read32(bcm, BCM43xx_PCICORE_SBTOPCI2);
  2835. value |= BCM43xx_SBTOPCI2_PREFETCH | BCM43xx_SBTOPCI2_BURST;
  2836. bcm43xx_write32(bcm, BCM43xx_PCICORE_SBTOPCI2, value);
  2837. if (bcm->core_pci.rev < 5) {
  2838. value = bcm43xx_read32(bcm, BCM43xx_CIR_SBIMCONFIGLOW);
  2839. value |= (2 << BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_SHIFT)
  2840. & BCM43xx_SBIMCONFIGLOW_SERVICE_TOUT_MASK;
  2841. value |= (3 << BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_SHIFT)
  2842. & BCM43xx_SBIMCONFIGLOW_REQUEST_TOUT_MASK;
  2843. bcm43xx_write32(bcm, BCM43xx_CIR_SBIMCONFIGLOW, value);
  2844. err = bcm43xx_pcicore_commit_settings(bcm);
  2845. assert(err == 0);
  2846. }
  2847. out_switch_back:
  2848. err = bcm43xx_switch_core(bcm, old_core);
  2849. out:
  2850. return err;
  2851. }
  2852. static void bcm43xx_softmac_init(struct bcm43xx_private *bcm)
  2853. {
  2854. ieee80211softmac_start(bcm->net_dev);
  2855. }
  2856. static void bcm43xx_periodic_every120sec(struct bcm43xx_private *bcm)
  2857. {
  2858. struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
  2859. if (phy->type != BCM43xx_PHYTYPE_G || phy->rev < 2)
  2860. return;
  2861. bcm43xx_mac_suspend(bcm);
  2862. bcm43xx_phy_lo_g_measure(bcm);
  2863. bcm43xx_mac_enable(bcm);
  2864. }
  2865. static void bcm43xx_periodic_every60sec(struct bcm43xx_private *bcm)
  2866. {
  2867. bcm43xx_phy_lo_mark_all_unused(bcm);
  2868. if (bcm->sprom.boardflags & BCM43xx_BFL_RSSI) {
  2869. bcm43xx_mac_suspend(bcm);
  2870. bcm43xx_calc_nrssi_slope(bcm);
  2871. bcm43xx_mac_enable(bcm);
  2872. }
  2873. }
  2874. static void bcm43xx_periodic_every30sec(struct bcm43xx_private *bcm)
  2875. {
  2876. /* Update device statistics. */
  2877. bcm43xx_calculate_link_quality(bcm);
  2878. }
  2879. static void bcm43xx_periodic_every15sec(struct bcm43xx_private *bcm)
  2880. {
  2881. struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
  2882. struct bcm43xx_radioinfo *radio = bcm->current_core->radio;
  2883. if (phy->type == BCM43xx_PHYTYPE_G) {
  2884. //TODO: update_aci_moving_average
  2885. if (radio->aci_enable && radio->aci_wlan_automatic) {
  2886. bcm43xx_mac_suspend(bcm);
  2887. if (!radio->aci_enable && 1 /*TODO: not scanning? */) {
  2888. if (0 /*TODO: bunch of conditions*/) {
  2889. bcm43xx_radio_set_interference_mitigation(bcm,
  2890. BCM43xx_RADIO_INTERFMODE_MANUALWLAN);
  2891. }
  2892. } else if (1/*TODO*/) {
  2893. /*
  2894. if ((aci_average > 1000) && !(bcm43xx_radio_aci_scan(bcm))) {
  2895. bcm43xx_radio_set_interference_mitigation(bcm,
  2896. BCM43xx_RADIO_INTERFMODE_NONE);
  2897. }
  2898. */
  2899. }
  2900. bcm43xx_mac_enable(bcm);
  2901. } else if (radio->interfmode == BCM43xx_RADIO_INTERFMODE_NONWLAN &&
  2902. phy->rev == 1) {
  2903. //TODO: implement rev1 workaround
  2904. }
  2905. }
  2906. bcm43xx_phy_xmitpower(bcm); //FIXME: unless scanning?
  2907. //TODO for APHY (temperature?)
  2908. }
  2909. static void bcm43xx_periodic_task_handler(unsigned long d)
  2910. {
  2911. struct bcm43xx_private *bcm = (struct bcm43xx_private *)d;
  2912. unsigned long flags;
  2913. unsigned int state;
  2914. spin_lock_irqsave(&bcm->lock, flags);
  2915. assert(bcm->initialized);
  2916. state = bcm->periodic_state;
  2917. if (state % 8 == 0)
  2918. bcm43xx_periodic_every120sec(bcm);
  2919. if (state % 4 == 0)
  2920. bcm43xx_periodic_every60sec(bcm);
  2921. if (state % 2 == 0)
  2922. bcm43xx_periodic_every30sec(bcm);
  2923. bcm43xx_periodic_every15sec(bcm);
  2924. bcm->periodic_state = state + 1;
  2925. mod_timer(&bcm->periodic_tasks, jiffies + (HZ * 15));
  2926. spin_unlock_irqrestore(&bcm->lock, flags);
  2927. }
  2928. static void bcm43xx_periodic_tasks_delete(struct bcm43xx_private *bcm)
  2929. {
  2930. del_timer_sync(&bcm->periodic_tasks);
  2931. }
  2932. static void bcm43xx_periodic_tasks_setup(struct bcm43xx_private *bcm)
  2933. {
  2934. struct timer_list *timer = &(bcm->periodic_tasks);
  2935. setup_timer(timer,
  2936. bcm43xx_periodic_task_handler,
  2937. (unsigned long)bcm);
  2938. timer->expires = jiffies;
  2939. add_timer(timer);
  2940. }
  2941. static void bcm43xx_security_init(struct bcm43xx_private *bcm)
  2942. {
  2943. bcm->security_offset = bcm43xx_shm_read16(bcm, BCM43xx_SHM_SHARED,
  2944. 0x0056) * 2;
  2945. bcm43xx_clear_keys(bcm);
  2946. }
  2947. /* This is the opposite of bcm43xx_init_board() */
  2948. static void bcm43xx_free_board(struct bcm43xx_private *bcm)
  2949. {
  2950. int i, err;
  2951. unsigned long flags;
  2952. bcm43xx_periodic_tasks_delete(bcm);
  2953. spin_lock_irqsave(&bcm->lock, flags);
  2954. bcm->initialized = 0;
  2955. bcm->shutting_down = 1;
  2956. spin_unlock_irqrestore(&bcm->lock, flags);
  2957. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  2958. if (!(bcm->core_80211[i].flags & BCM43xx_COREFLAG_AVAILABLE))
  2959. continue;
  2960. if (!(bcm->core_80211[i].flags & BCM43xx_COREFLAG_INITIALIZED))
  2961. continue;
  2962. err = bcm43xx_switch_core(bcm, &bcm->core_80211[i]);
  2963. assert(err == 0);
  2964. bcm43xx_wireless_core_cleanup(bcm);
  2965. }
  2966. bcm43xx_pctl_set_crystal(bcm, 0);
  2967. spin_lock_irqsave(&bcm->lock, flags);
  2968. bcm->shutting_down = 0;
  2969. spin_unlock_irqrestore(&bcm->lock, flags);
  2970. }
  2971. static int bcm43xx_init_board(struct bcm43xx_private *bcm)
  2972. {
  2973. int i, err;
  2974. int num_80211_cores;
  2975. int connect_phy;
  2976. unsigned long flags;
  2977. might_sleep();
  2978. spin_lock_irqsave(&bcm->lock, flags);
  2979. bcm->initialized = 0;
  2980. bcm->shutting_down = 0;
  2981. spin_unlock_irqrestore(&bcm->lock, flags);
  2982. err = bcm43xx_pctl_set_crystal(bcm, 1);
  2983. if (err)
  2984. goto out;
  2985. err = bcm43xx_pctl_init(bcm);
  2986. if (err)
  2987. goto err_crystal_off;
  2988. err = bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_FAST);
  2989. if (err)
  2990. goto err_crystal_off;
  2991. tasklet_enable(&bcm->isr_tasklet);
  2992. num_80211_cores = bcm43xx_num_80211_cores(bcm);
  2993. for (i = 0; i < num_80211_cores; i++) {
  2994. err = bcm43xx_switch_core(bcm, &bcm->core_80211[i]);
  2995. assert(err != -ENODEV);
  2996. if (err)
  2997. goto err_80211_unwind;
  2998. /* Enable the selected wireless core.
  2999. * Connect PHY only on the first core.
  3000. */
  3001. if (!bcm43xx_core_enabled(bcm)) {
  3002. if (num_80211_cores == 1) {
  3003. connect_phy = bcm->current_core->phy->connected;
  3004. } else {
  3005. if (i == 0)
  3006. connect_phy = 1;
  3007. else
  3008. connect_phy = 0;
  3009. }
  3010. bcm43xx_wireless_core_reset(bcm, connect_phy);
  3011. }
  3012. if (i != 0)
  3013. bcm43xx_wireless_core_mark_inactive(bcm, &bcm->core_80211[0]);
  3014. err = bcm43xx_wireless_core_init(bcm);
  3015. if (err)
  3016. goto err_80211_unwind;
  3017. if (i != 0) {
  3018. bcm43xx_mac_suspend(bcm);
  3019. bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  3020. bcm43xx_radio_turn_off(bcm);
  3021. }
  3022. }
  3023. bcm->active_80211_core = &bcm->core_80211[0];
  3024. if (num_80211_cores >= 2) {
  3025. bcm43xx_switch_core(bcm, &bcm->core_80211[0]);
  3026. bcm43xx_mac_enable(bcm);
  3027. }
  3028. bcm43xx_macfilter_clear(bcm, BCM43xx_MACFILTER_ASSOC);
  3029. bcm43xx_macfilter_set(bcm, BCM43xx_MACFILTER_SELF, (u8 *)(bcm->net_dev->dev_addr));
  3030. dprintk(KERN_INFO PFX "80211 cores initialized\n");
  3031. bcm43xx_security_init(bcm);
  3032. bcm43xx_softmac_init(bcm);
  3033. bcm43xx_pctl_set_clock(bcm, BCM43xx_PCTL_CLK_DYNAMIC);
  3034. spin_lock_irqsave(&bcm->lock, flags);
  3035. bcm->initialized = 1;
  3036. spin_unlock_irqrestore(&bcm->lock, flags);
  3037. if (bcm->current_core->radio->initial_channel != 0xFF) {
  3038. bcm43xx_mac_suspend(bcm);
  3039. bcm43xx_radio_selectchannel(bcm, bcm->current_core->radio->initial_channel, 0);
  3040. bcm43xx_mac_enable(bcm);
  3041. }
  3042. bcm43xx_periodic_tasks_setup(bcm);
  3043. assert(err == 0);
  3044. out:
  3045. return err;
  3046. err_80211_unwind:
  3047. tasklet_disable(&bcm->isr_tasklet);
  3048. /* unwind all 80211 initialization */
  3049. for (i = 0; i < num_80211_cores; i++) {
  3050. if (!(bcm->core_80211[i].flags & BCM43xx_COREFLAG_INITIALIZED))
  3051. continue;
  3052. bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  3053. bcm43xx_wireless_core_cleanup(bcm);
  3054. }
  3055. err_crystal_off:
  3056. bcm43xx_pctl_set_crystal(bcm, 0);
  3057. goto out;
  3058. }
  3059. static void bcm43xx_detach_board(struct bcm43xx_private *bcm)
  3060. {
  3061. struct pci_dev *pci_dev = bcm->pci_dev;
  3062. int i;
  3063. bcm43xx_chipset_detach(bcm);
  3064. /* Do _not_ access the chip, after it is detached. */
  3065. iounmap(bcm->mmio_addr);
  3066. pci_release_regions(pci_dev);
  3067. pci_disable_device(pci_dev);
  3068. /* Free allocated structures/fields */
  3069. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  3070. kfree(bcm->phy[i]._lo_pairs);
  3071. if (bcm->phy[i].dyn_tssi_tbl)
  3072. kfree(bcm->phy[i].tssi2dbm);
  3073. }
  3074. }
  3075. static int bcm43xx_read_phyinfo(struct bcm43xx_private *bcm)
  3076. {
  3077. struct bcm43xx_phyinfo *phy = bcm->current_core->phy;
  3078. u16 value;
  3079. u8 phy_version;
  3080. u8 phy_type;
  3081. u8 phy_rev;
  3082. int phy_rev_ok = 1;
  3083. void *p;
  3084. value = bcm43xx_read16(bcm, BCM43xx_MMIO_PHY_VER);
  3085. phy_version = (value & 0xF000) >> 12;
  3086. phy_type = (value & 0x0F00) >> 8;
  3087. phy_rev = (value & 0x000F);
  3088. dprintk(KERN_INFO PFX "Detected PHY: Version: %x, Type %x, Revision %x\n",
  3089. phy_version, phy_type, phy_rev);
  3090. switch (phy_type) {
  3091. case BCM43xx_PHYTYPE_A:
  3092. if (phy_rev >= 4)
  3093. phy_rev_ok = 0;
  3094. /*FIXME: We need to switch the ieee->modulation, etc.. flags,
  3095. * if we switch 80211 cores after init is done.
  3096. * As we do not implement on the fly switching between
  3097. * wireless cores, I will leave this as a future task.
  3098. */
  3099. bcm->ieee->modulation = IEEE80211_OFDM_MODULATION;
  3100. bcm->ieee->mode = IEEE_A;
  3101. bcm->ieee->freq_band = IEEE80211_52GHZ_BAND |
  3102. IEEE80211_24GHZ_BAND;
  3103. break;
  3104. case BCM43xx_PHYTYPE_B:
  3105. if (phy_rev != 2 && phy_rev != 4 && phy_rev != 6 && phy_rev != 7)
  3106. phy_rev_ok = 0;
  3107. bcm->ieee->modulation = IEEE80211_CCK_MODULATION;
  3108. bcm->ieee->mode = IEEE_B;
  3109. bcm->ieee->freq_band = IEEE80211_24GHZ_BAND;
  3110. break;
  3111. case BCM43xx_PHYTYPE_G:
  3112. if (phy_rev > 7)
  3113. phy_rev_ok = 0;
  3114. bcm->ieee->modulation = IEEE80211_OFDM_MODULATION |
  3115. IEEE80211_CCK_MODULATION;
  3116. bcm->ieee->mode = IEEE_G;
  3117. bcm->ieee->freq_band = IEEE80211_24GHZ_BAND;
  3118. break;
  3119. default:
  3120. printk(KERN_ERR PFX "Error: Unknown PHY Type %x\n",
  3121. phy_type);
  3122. return -ENODEV;
  3123. };
  3124. if (!phy_rev_ok) {
  3125. printk(KERN_WARNING PFX "Invalid PHY Revision %x\n",
  3126. phy_rev);
  3127. }
  3128. phy->version = phy_version;
  3129. phy->type = phy_type;
  3130. phy->rev = phy_rev;
  3131. if ((phy_type == BCM43xx_PHYTYPE_B) || (phy_type == BCM43xx_PHYTYPE_G)) {
  3132. p = kzalloc(sizeof(struct bcm43xx_lopair) * BCM43xx_LO_COUNT,
  3133. GFP_KERNEL);
  3134. if (!p)
  3135. return -ENOMEM;
  3136. phy->_lo_pairs = p;
  3137. }
  3138. return 0;
  3139. }
  3140. static int bcm43xx_attach_board(struct bcm43xx_private *bcm)
  3141. {
  3142. struct pci_dev *pci_dev = bcm->pci_dev;
  3143. struct net_device *net_dev = bcm->net_dev;
  3144. int err;
  3145. int i;
  3146. void __iomem *ioaddr;
  3147. unsigned long mmio_start, mmio_end, mmio_flags, mmio_len;
  3148. int num_80211_cores;
  3149. u32 coremask;
  3150. err = pci_enable_device(pci_dev);
  3151. if (err) {
  3152. printk(KERN_ERR PFX "unable to wake up pci device (%i)\n", err);
  3153. err = -ENODEV;
  3154. goto out;
  3155. }
  3156. mmio_start = pci_resource_start(pci_dev, 0);
  3157. mmio_end = pci_resource_end(pci_dev, 0);
  3158. mmio_flags = pci_resource_flags(pci_dev, 0);
  3159. mmio_len = pci_resource_len(pci_dev, 0);
  3160. /* make sure PCI base addr is MMIO */
  3161. if (!(mmio_flags & IORESOURCE_MEM)) {
  3162. printk(KERN_ERR PFX
  3163. "%s, region #0 not an MMIO resource, aborting\n",
  3164. pci_name(pci_dev));
  3165. err = -ENODEV;
  3166. goto err_pci_disable;
  3167. }
  3168. //FIXME: Why is this check disabled for BCM947XX? What is the IO_SIZE there?
  3169. #ifndef CONFIG_BCM947XX
  3170. if (mmio_len != BCM43xx_IO_SIZE) {
  3171. printk(KERN_ERR PFX
  3172. "%s: invalid PCI mem region size(s), aborting\n",
  3173. pci_name(pci_dev));
  3174. err = -ENODEV;
  3175. goto err_pci_disable;
  3176. }
  3177. #endif
  3178. err = pci_request_regions(pci_dev, KBUILD_MODNAME);
  3179. if (err) {
  3180. printk(KERN_ERR PFX
  3181. "could not access PCI resources (%i)\n", err);
  3182. goto err_pci_disable;
  3183. }
  3184. /* enable PCI bus-mastering */
  3185. pci_set_master(pci_dev);
  3186. /* ioremap MMIO region */
  3187. ioaddr = ioremap(mmio_start, mmio_len);
  3188. if (!ioaddr) {
  3189. printk(KERN_ERR PFX "%s: cannot remap MMIO, aborting\n",
  3190. pci_name(pci_dev));
  3191. err = -EIO;
  3192. goto err_pci_release;
  3193. }
  3194. net_dev->base_addr = (unsigned long)ioaddr;
  3195. bcm->mmio_addr = ioaddr;
  3196. bcm->mmio_len = mmio_len;
  3197. bcm43xx_pci_read_config16(bcm, PCI_SUBSYSTEM_VENDOR_ID,
  3198. &bcm->board_vendor);
  3199. bcm43xx_pci_read_config16(bcm, PCI_SUBSYSTEM_ID,
  3200. &bcm->board_type);
  3201. bcm43xx_pci_read_config16(bcm, PCI_REVISION_ID,
  3202. &bcm->board_revision);
  3203. err = bcm43xx_chipset_attach(bcm);
  3204. if (err)
  3205. goto err_iounmap;
  3206. err = bcm43xx_pctl_init(bcm);
  3207. if (err)
  3208. goto err_chipset_detach;
  3209. err = bcm43xx_probe_cores(bcm);
  3210. if (err)
  3211. goto err_chipset_detach;
  3212. num_80211_cores = bcm43xx_num_80211_cores(bcm);
  3213. /* Attach all IO cores to the backplane. */
  3214. coremask = 0;
  3215. for (i = 0; i < num_80211_cores; i++)
  3216. coremask |= (1 << bcm->core_80211[i].index);
  3217. //FIXME: Also attach some non80211 cores?
  3218. err = bcm43xx_setup_backplane_pci_connection(bcm, coremask);
  3219. if (err) {
  3220. printk(KERN_ERR PFX "Backplane->PCI connection failed!\n");
  3221. goto err_chipset_detach;
  3222. }
  3223. err = bcm43xx_sprom_extract(bcm);
  3224. if (err)
  3225. goto err_chipset_detach;
  3226. err = bcm43xx_leds_init(bcm);
  3227. if (err)
  3228. goto err_chipset_detach;
  3229. for (i = 0; i < num_80211_cores; i++) {
  3230. err = bcm43xx_switch_core(bcm, &bcm->core_80211[i]);
  3231. assert(err != -ENODEV);
  3232. if (err)
  3233. goto err_80211_unwind;
  3234. /* Enable the selected wireless core.
  3235. * Connect PHY only on the first core.
  3236. */
  3237. bcm43xx_wireless_core_reset(bcm, (i == 0));
  3238. err = bcm43xx_read_phyinfo(bcm);
  3239. if (err && (i == 0))
  3240. goto err_80211_unwind;
  3241. err = bcm43xx_read_radioinfo(bcm);
  3242. if (err && (i == 0))
  3243. goto err_80211_unwind;
  3244. err = bcm43xx_validate_chip(bcm);
  3245. if (err && (i == 0))
  3246. goto err_80211_unwind;
  3247. bcm43xx_radio_turn_off(bcm);
  3248. err = bcm43xx_phy_init_tssi2dbm_table(bcm);
  3249. if (err)
  3250. goto err_80211_unwind;
  3251. bcm43xx_wireless_core_disable(bcm);
  3252. }
  3253. bcm43xx_pctl_set_crystal(bcm, 0);
  3254. /* Set the MAC address in the networking subsystem */
  3255. if (bcm->current_core->phy->type == BCM43xx_PHYTYPE_A)
  3256. memcpy(bcm->net_dev->dev_addr, bcm->sprom.et1macaddr, 6);
  3257. else
  3258. memcpy(bcm->net_dev->dev_addr, bcm->sprom.il0macaddr, 6);
  3259. bcm43xx_geo_init(bcm);
  3260. snprintf(bcm->nick, IW_ESSID_MAX_SIZE,
  3261. "Broadcom %04X", bcm->chip_id);
  3262. assert(err == 0);
  3263. out:
  3264. return err;
  3265. err_80211_unwind:
  3266. for (i = 0; i < BCM43xx_MAX_80211_CORES; i++) {
  3267. kfree(bcm->phy[i]._lo_pairs);
  3268. if (bcm->phy[i].dyn_tssi_tbl)
  3269. kfree(bcm->phy[i].tssi2dbm);
  3270. }
  3271. err_chipset_detach:
  3272. bcm43xx_chipset_detach(bcm);
  3273. err_iounmap:
  3274. iounmap(bcm->mmio_addr);
  3275. err_pci_release:
  3276. pci_release_regions(pci_dev);
  3277. err_pci_disable:
  3278. pci_disable_device(pci_dev);
  3279. goto out;
  3280. }
  3281. static s8 bcm43xx_rssi_postprocess(struct bcm43xx_private *bcm,
  3282. u8 in_rssi, int ofdm,
  3283. int adjust_2053, int adjust_2050)
  3284. {
  3285. s32 tmp;
  3286. switch (bcm->current_core->radio->version) {
  3287. case 0x2050:
  3288. if (ofdm) {
  3289. tmp = in_rssi;
  3290. if (tmp > 127)
  3291. tmp -= 256;
  3292. tmp *= 73;
  3293. tmp /= 64;
  3294. if (adjust_2050)
  3295. tmp += 25;
  3296. else
  3297. tmp -= 3;
  3298. } else {
  3299. if (bcm->sprom.boardflags & BCM43xx_BFL_RSSI) {
  3300. if (in_rssi > 63)
  3301. in_rssi = 63;
  3302. tmp = bcm->current_core->radio->nrssi_lt[in_rssi];
  3303. tmp = 31 - tmp;
  3304. tmp *= -131;
  3305. tmp /= 128;
  3306. tmp -= 57;
  3307. } else {
  3308. tmp = in_rssi;
  3309. tmp = 31 - tmp;
  3310. tmp *= -149;
  3311. tmp /= 128;
  3312. tmp -= 68;
  3313. }
  3314. if (bcm->current_core->phy->type == BCM43xx_PHYTYPE_G &&
  3315. adjust_2050)
  3316. tmp += 25;
  3317. }
  3318. break;
  3319. case 0x2060:
  3320. if (in_rssi > 127)
  3321. tmp = in_rssi - 256;
  3322. else
  3323. tmp = in_rssi;
  3324. break;
  3325. default:
  3326. tmp = in_rssi;
  3327. tmp -= 11;
  3328. tmp *= 103;
  3329. tmp /= 64;
  3330. if (adjust_2053)
  3331. tmp -= 109;
  3332. else
  3333. tmp -= 83;
  3334. }
  3335. return (s8)tmp;
  3336. }
  3337. static s8 bcm43xx_rssinoise_postprocess(struct bcm43xx_private *bcm,
  3338. u8 in_rssi)
  3339. {
  3340. s8 ret;
  3341. if (bcm->current_core->phy->type == BCM43xx_PHYTYPE_A) {
  3342. //TODO: Incomplete specs.
  3343. ret = 0;
  3344. } else
  3345. ret = bcm43xx_rssi_postprocess(bcm, in_rssi, 0, 1, 1);
  3346. return ret;
  3347. }
  3348. static inline
  3349. int bcm43xx_rx_packet(struct bcm43xx_private *bcm,
  3350. struct sk_buff *skb,
  3351. struct ieee80211_rx_stats *stats)
  3352. {
  3353. int err;
  3354. err = ieee80211_rx(bcm->ieee, skb, stats);
  3355. if (unlikely(err == 0))
  3356. return -EINVAL;
  3357. return 0;
  3358. }
  3359. int bcm43xx_rx(struct bcm43xx_private *bcm,
  3360. struct sk_buff *skb,
  3361. struct bcm43xx_rxhdr *rxhdr)
  3362. {
  3363. struct bcm43xx_plcp_hdr4 *plcp;
  3364. struct ieee80211_rx_stats stats;
  3365. struct ieee80211_hdr_4addr *wlhdr;
  3366. u16 frame_ctl;
  3367. int is_packet_for_us = 0;
  3368. int err = -EINVAL;
  3369. const u16 rxflags1 = le16_to_cpu(rxhdr->flags1);
  3370. const u16 rxflags2 = le16_to_cpu(rxhdr->flags2);
  3371. const u16 rxflags3 = le16_to_cpu(rxhdr->flags3);
  3372. const int is_ofdm = !!(rxflags1 & BCM43xx_RXHDR_FLAGS1_OFDM);
  3373. if (rxflags2 & BCM43xx_RXHDR_FLAGS2_TYPE2FRAME) {
  3374. plcp = (struct bcm43xx_plcp_hdr4 *)(skb->data + 2);
  3375. /* Skip two unknown bytes and the PLCP header. */
  3376. skb_pull(skb, 2 + sizeof(struct bcm43xx_plcp_hdr6));
  3377. } else {
  3378. plcp = (struct bcm43xx_plcp_hdr4 *)(skb->data);
  3379. /* Skip the PLCP header. */
  3380. skb_pull(skb, sizeof(struct bcm43xx_plcp_hdr6));
  3381. }
  3382. /* The SKB contains the PAYLOAD (wireless header + data)
  3383. * at this point. The FCS at the end is stripped.
  3384. */
  3385. memset(&stats, 0, sizeof(stats));
  3386. stats.mac_time = le16_to_cpu(rxhdr->mactime);
  3387. stats.rssi = bcm43xx_rssi_postprocess(bcm, rxhdr->rssi, is_ofdm,
  3388. !!(rxflags1 & BCM43xx_RXHDR_FLAGS1_2053RSSIADJ),
  3389. !!(rxflags3 & BCM43xx_RXHDR_FLAGS3_2050RSSIADJ));
  3390. stats.signal = rxhdr->signal_quality; //FIXME
  3391. //TODO stats.noise =
  3392. stats.rate = bcm43xx_plcp_get_bitrate(plcp, is_ofdm);
  3393. //printk("RX ofdm %d, rate == %u\n", is_ofdm, stats.rate);
  3394. stats.received_channel = bcm->current_core->radio->channel;
  3395. //TODO stats.control =
  3396. stats.mask = IEEE80211_STATMASK_SIGNAL |
  3397. //TODO IEEE80211_STATMASK_NOISE |
  3398. IEEE80211_STATMASK_RATE |
  3399. IEEE80211_STATMASK_RSSI;
  3400. if (bcm->current_core->phy->type == BCM43xx_PHYTYPE_A)
  3401. stats.freq = IEEE80211_52GHZ_BAND;
  3402. else
  3403. stats.freq = IEEE80211_24GHZ_BAND;
  3404. stats.len = skb->len;
  3405. bcm->stats.last_rx = jiffies;
  3406. if (bcm->ieee->iw_mode == IW_MODE_MONITOR)
  3407. return bcm43xx_rx_packet(bcm, skb, &stats);
  3408. wlhdr = (struct ieee80211_hdr_4addr *)(skb->data);
  3409. switch (bcm->ieee->iw_mode) {
  3410. case IW_MODE_ADHOC:
  3411. if (memcmp(wlhdr->addr1, bcm->net_dev->dev_addr, ETH_ALEN) == 0 ||
  3412. memcmp(wlhdr->addr3, bcm->ieee->bssid, ETH_ALEN) == 0 ||
  3413. is_broadcast_ether_addr(wlhdr->addr1) ||
  3414. is_multicast_ether_addr(wlhdr->addr1) ||
  3415. bcm->net_dev->flags & IFF_PROMISC)
  3416. is_packet_for_us = 1;
  3417. break;
  3418. case IW_MODE_INFRA:
  3419. default:
  3420. /* When receiving multicast or broadcast packets, filter out
  3421. the packets we send ourself; we shouldn't see those */
  3422. if (memcmp(wlhdr->addr3, bcm->ieee->bssid, ETH_ALEN) == 0 ||
  3423. memcmp(wlhdr->addr1, bcm->net_dev->dev_addr, ETH_ALEN) == 0 ||
  3424. (memcmp(wlhdr->addr3, bcm->net_dev->dev_addr, ETH_ALEN) &&
  3425. (is_broadcast_ether_addr(wlhdr->addr1) ||
  3426. is_multicast_ether_addr(wlhdr->addr1) ||
  3427. bcm->net_dev->flags & IFF_PROMISC)))
  3428. is_packet_for_us = 1;
  3429. break;
  3430. }
  3431. frame_ctl = le16_to_cpu(wlhdr->frame_ctl);
  3432. if ((frame_ctl & IEEE80211_FCTL_PROTECTED) && !bcm->ieee->host_decrypt) {
  3433. frame_ctl &= ~IEEE80211_FCTL_PROTECTED;
  3434. wlhdr->frame_ctl = cpu_to_le16(frame_ctl);
  3435. /* trim IV and ICV */
  3436. /* FIXME: this must be done only for WEP encrypted packets */
  3437. if (skb->len < 32) {
  3438. dprintkl(KERN_ERR PFX "RX packet dropped (PROTECTED flag "
  3439. "set and length < 32)\n");
  3440. return -EINVAL;
  3441. } else {
  3442. memmove(skb->data + 4, skb->data, 24);
  3443. skb_pull(skb, 4);
  3444. skb_trim(skb, skb->len - 4);
  3445. stats.len -= 8;
  3446. }
  3447. wlhdr = (struct ieee80211_hdr_4addr *)(skb->data);
  3448. }
  3449. switch (WLAN_FC_GET_TYPE(frame_ctl)) {
  3450. case IEEE80211_FTYPE_MGMT:
  3451. ieee80211_rx_mgt(bcm->ieee, wlhdr, &stats);
  3452. break;
  3453. case IEEE80211_FTYPE_DATA:
  3454. if (is_packet_for_us)
  3455. err = bcm43xx_rx_packet(bcm, skb, &stats);
  3456. break;
  3457. case IEEE80211_FTYPE_CTL:
  3458. break;
  3459. default:
  3460. assert(0);
  3461. return -EINVAL;
  3462. }
  3463. return err;
  3464. }
  3465. /* Do the Hardware IO operations to send the txb */
  3466. static inline int bcm43xx_tx(struct bcm43xx_private *bcm,
  3467. struct ieee80211_txb *txb)
  3468. {
  3469. int err = -ENODEV;
  3470. if (bcm43xx_using_pio(bcm))
  3471. err = bcm43xx_pio_tx(bcm, txb);
  3472. else
  3473. err = bcm43xx_dma_tx(bcm, txb);
  3474. return err;
  3475. }
  3476. static void bcm43xx_ieee80211_set_chan(struct net_device *net_dev,
  3477. u8 channel)
  3478. {
  3479. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3480. unsigned long flags;
  3481. spin_lock_irqsave(&bcm->lock, flags);
  3482. bcm43xx_mac_suspend(bcm);
  3483. bcm43xx_radio_selectchannel(bcm, channel, 0);
  3484. bcm43xx_mac_enable(bcm);
  3485. spin_unlock_irqrestore(&bcm->lock, flags);
  3486. }
  3487. /* set_security() callback in struct ieee80211_device */
  3488. static void bcm43xx_ieee80211_set_security(struct net_device *net_dev,
  3489. struct ieee80211_security *sec)
  3490. {
  3491. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3492. struct ieee80211_security *secinfo = &bcm->ieee->sec;
  3493. unsigned long flags;
  3494. int keyidx;
  3495. dprintk(KERN_INFO PFX "set security called\n");
  3496. spin_lock_irqsave(&bcm->lock, flags);
  3497. for (keyidx = 0; keyidx<WEP_KEYS; keyidx++)
  3498. if (sec->flags & (1<<keyidx)) {
  3499. secinfo->encode_alg[keyidx] = sec->encode_alg[keyidx];
  3500. secinfo->key_sizes[keyidx] = sec->key_sizes[keyidx];
  3501. memcpy(secinfo->keys[keyidx], sec->keys[keyidx], SCM_KEY_LEN);
  3502. }
  3503. if (sec->flags & SEC_ACTIVE_KEY) {
  3504. secinfo->active_key = sec->active_key;
  3505. dprintk(KERN_INFO PFX " .active_key = %d\n", sec->active_key);
  3506. }
  3507. if (sec->flags & SEC_UNICAST_GROUP) {
  3508. secinfo->unicast_uses_group = sec->unicast_uses_group;
  3509. dprintk(KERN_INFO PFX " .unicast_uses_group = %d\n", sec->unicast_uses_group);
  3510. }
  3511. if (sec->flags & SEC_LEVEL) {
  3512. secinfo->level = sec->level;
  3513. dprintk(KERN_INFO PFX " .level = %d\n", sec->level);
  3514. }
  3515. if (sec->flags & SEC_ENABLED) {
  3516. secinfo->enabled = sec->enabled;
  3517. dprintk(KERN_INFO PFX " .enabled = %d\n", sec->enabled);
  3518. }
  3519. if (sec->flags & SEC_ENCRYPT) {
  3520. secinfo->encrypt = sec->encrypt;
  3521. dprintk(KERN_INFO PFX " .encrypt = %d\n", sec->encrypt);
  3522. }
  3523. if (bcm->initialized && !bcm->ieee->host_encrypt) {
  3524. if (secinfo->enabled) {
  3525. /* upload WEP keys to hardware */
  3526. char null_address[6] = { 0 };
  3527. u8 algorithm = 0;
  3528. for (keyidx = 0; keyidx<WEP_KEYS; keyidx++) {
  3529. if (!(sec->flags & (1<<keyidx)))
  3530. continue;
  3531. switch (sec->encode_alg[keyidx]) {
  3532. case SEC_ALG_NONE: algorithm = BCM43xx_SEC_ALGO_NONE; break;
  3533. case SEC_ALG_WEP:
  3534. algorithm = BCM43xx_SEC_ALGO_WEP;
  3535. if (secinfo->key_sizes[keyidx] == 13)
  3536. algorithm = BCM43xx_SEC_ALGO_WEP104;
  3537. break;
  3538. case SEC_ALG_TKIP:
  3539. FIXME();
  3540. algorithm = BCM43xx_SEC_ALGO_TKIP;
  3541. break;
  3542. case SEC_ALG_CCMP:
  3543. FIXME();
  3544. algorithm = BCM43xx_SEC_ALGO_AES;
  3545. break;
  3546. default:
  3547. assert(0);
  3548. break;
  3549. }
  3550. bcm43xx_key_write(bcm, keyidx, algorithm, sec->keys[keyidx], secinfo->key_sizes[keyidx], &null_address[0]);
  3551. bcm->key[keyidx].enabled = 1;
  3552. bcm->key[keyidx].algorithm = algorithm;
  3553. }
  3554. } else
  3555. bcm43xx_clear_keys(bcm);
  3556. }
  3557. spin_unlock_irqrestore(&bcm->lock, flags);
  3558. }
  3559. /* hard_start_xmit() callback in struct ieee80211_device */
  3560. static int bcm43xx_ieee80211_hard_start_xmit(struct ieee80211_txb *txb,
  3561. struct net_device *net_dev,
  3562. int pri)
  3563. {
  3564. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3565. int err = -ENODEV;
  3566. unsigned long flags;
  3567. spin_lock_irqsave(&bcm->lock, flags);
  3568. if (likely(bcm->initialized))
  3569. err = bcm43xx_tx(bcm, txb);
  3570. spin_unlock_irqrestore(&bcm->lock, flags);
  3571. return err;
  3572. }
  3573. static struct net_device_stats * bcm43xx_net_get_stats(struct net_device *net_dev)
  3574. {
  3575. return &(bcm43xx_priv(net_dev)->ieee->stats);
  3576. }
  3577. static void bcm43xx_net_tx_timeout(struct net_device *net_dev)
  3578. {
  3579. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3580. bcm43xx_controller_restart(bcm, "TX timeout");
  3581. }
  3582. #ifdef CONFIG_NET_POLL_CONTROLLER
  3583. static void bcm43xx_net_poll_controller(struct net_device *net_dev)
  3584. {
  3585. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3586. unsigned long flags;
  3587. local_irq_save(flags);
  3588. bcm43xx_interrupt_handler(bcm->irq, bcm, NULL);
  3589. local_irq_restore(flags);
  3590. }
  3591. #endif /* CONFIG_NET_POLL_CONTROLLER */
  3592. static int bcm43xx_net_open(struct net_device *net_dev)
  3593. {
  3594. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3595. return bcm43xx_init_board(bcm);
  3596. }
  3597. static int bcm43xx_net_stop(struct net_device *net_dev)
  3598. {
  3599. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3600. ieee80211softmac_stop(net_dev);
  3601. bcm43xx_disable_interrupts_sync(bcm, NULL);
  3602. bcm43xx_free_board(bcm);
  3603. return 0;
  3604. }
  3605. static int bcm43xx_init_private(struct bcm43xx_private *bcm,
  3606. struct net_device *net_dev,
  3607. struct pci_dev *pci_dev)
  3608. {
  3609. bcm->ieee = netdev_priv(net_dev);
  3610. bcm->softmac = ieee80211_priv(net_dev);
  3611. bcm->softmac->set_channel = bcm43xx_ieee80211_set_chan;
  3612. #ifdef DEBUG_ENABLE_MMIO_PRINT
  3613. bcm43xx_mmioprint_initial(bcm, 1);
  3614. #else
  3615. bcm43xx_mmioprint_initial(bcm, 0);
  3616. #endif
  3617. #ifdef DEBUG_ENABLE_PCILOG
  3618. bcm43xx_pciprint_initial(bcm, 1);
  3619. #else
  3620. bcm43xx_pciprint_initial(bcm, 0);
  3621. #endif
  3622. bcm->irq_savedstate = BCM43xx_IRQ_INITIAL;
  3623. bcm->pci_dev = pci_dev;
  3624. bcm->net_dev = net_dev;
  3625. if (modparam_bad_frames_preempt)
  3626. bcm->bad_frames_preempt = 1;
  3627. spin_lock_init(&bcm->lock);
  3628. tasklet_init(&bcm->isr_tasklet,
  3629. (void (*)(unsigned long))bcm43xx_interrupt_tasklet,
  3630. (unsigned long)bcm);
  3631. tasklet_disable_nosync(&bcm->isr_tasklet);
  3632. if (modparam_pio) {
  3633. bcm->__using_pio = 1;
  3634. } else {
  3635. if (pci_set_dma_mask(pci_dev, DMA_30BIT_MASK)) {
  3636. #ifdef CONFIG_BCM43XX_PIO
  3637. printk(KERN_WARNING PFX "DMA not supported. Falling back to PIO.\n");
  3638. bcm->__using_pio = 1;
  3639. #else
  3640. printk(KERN_ERR PFX "FATAL: DMA not supported and PIO not configured. "
  3641. "Recompile the driver with PIO support, please.\n");
  3642. return -ENODEV;
  3643. #endif /* CONFIG_BCM43XX_PIO */
  3644. }
  3645. }
  3646. bcm->rts_threshold = BCM43xx_DEFAULT_RTS_THRESHOLD;
  3647. /* default to sw encryption for now */
  3648. bcm->ieee->host_build_iv = 0;
  3649. bcm->ieee->host_encrypt = 1;
  3650. bcm->ieee->host_decrypt = 1;
  3651. bcm->ieee->iw_mode = BCM43xx_INITIAL_IWMODE;
  3652. bcm->ieee->tx_headroom = sizeof(struct bcm43xx_txhdr);
  3653. bcm->ieee->set_security = bcm43xx_ieee80211_set_security;
  3654. bcm->ieee->hard_start_xmit = bcm43xx_ieee80211_hard_start_xmit;
  3655. return 0;
  3656. }
  3657. static int __devinit bcm43xx_init_one(struct pci_dev *pdev,
  3658. const struct pci_device_id *ent)
  3659. {
  3660. struct net_device *net_dev;
  3661. struct bcm43xx_private *bcm;
  3662. int err;
  3663. #ifdef CONFIG_BCM947XX
  3664. if ((pdev->bus->number == 0) && (pdev->device != 0x0800))
  3665. return -ENODEV;
  3666. #endif
  3667. #ifdef DEBUG_SINGLE_DEVICE_ONLY
  3668. if (strcmp(pci_name(pdev), DEBUG_SINGLE_DEVICE_ONLY))
  3669. return -ENODEV;
  3670. #endif
  3671. net_dev = alloc_ieee80211softmac(sizeof(*bcm));
  3672. if (!net_dev) {
  3673. printk(KERN_ERR PFX
  3674. "could not allocate ieee80211 device %s\n",
  3675. pci_name(pdev));
  3676. err = -ENOMEM;
  3677. goto out;
  3678. }
  3679. /* initialize the net_device struct */
  3680. SET_MODULE_OWNER(net_dev);
  3681. SET_NETDEV_DEV(net_dev, &pdev->dev);
  3682. net_dev->open = bcm43xx_net_open;
  3683. net_dev->stop = bcm43xx_net_stop;
  3684. net_dev->get_stats = bcm43xx_net_get_stats;
  3685. net_dev->tx_timeout = bcm43xx_net_tx_timeout;
  3686. #ifdef CONFIG_NET_POLL_CONTROLLER
  3687. net_dev->poll_controller = bcm43xx_net_poll_controller;
  3688. #endif
  3689. net_dev->wireless_handlers = &bcm43xx_wx_handlers_def;
  3690. net_dev->irq = pdev->irq;
  3691. SET_ETHTOOL_OPS(net_dev, &bcm43xx_ethtool_ops);
  3692. /* initialize the bcm43xx_private struct */
  3693. bcm = bcm43xx_priv(net_dev);
  3694. memset(bcm, 0, sizeof(*bcm));
  3695. err = bcm43xx_init_private(bcm, net_dev, pdev);
  3696. if (err)
  3697. goto err_free_netdev;
  3698. pci_set_drvdata(pdev, net_dev);
  3699. err = bcm43xx_attach_board(bcm);
  3700. if (err)
  3701. goto err_free_netdev;
  3702. err = register_netdev(net_dev);
  3703. if (err) {
  3704. printk(KERN_ERR PFX "Cannot register net device, "
  3705. "aborting.\n");
  3706. err = -ENOMEM;
  3707. goto err_detach_board;
  3708. }
  3709. bcm43xx_debugfs_add_device(bcm);
  3710. assert(err == 0);
  3711. out:
  3712. return err;
  3713. err_detach_board:
  3714. bcm43xx_detach_board(bcm);
  3715. err_free_netdev:
  3716. free_ieee80211softmac(net_dev);
  3717. goto out;
  3718. }
  3719. static void __devexit bcm43xx_remove_one(struct pci_dev *pdev)
  3720. {
  3721. struct net_device *net_dev = pci_get_drvdata(pdev);
  3722. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3723. bcm43xx_debugfs_remove_device(bcm);
  3724. unregister_netdev(net_dev);
  3725. bcm43xx_detach_board(bcm);
  3726. assert(bcm->ucode == NULL);
  3727. free_ieee80211softmac(net_dev);
  3728. }
  3729. /* Hard-reset the chip. Do not call this directly.
  3730. * Use bcm43xx_controller_restart()
  3731. */
  3732. static void bcm43xx_chip_reset(void *_bcm)
  3733. {
  3734. struct bcm43xx_private *bcm = _bcm;
  3735. struct net_device *net_dev = bcm->net_dev;
  3736. struct pci_dev *pci_dev = bcm->pci_dev;
  3737. int err;
  3738. int was_initialized = bcm->initialized;
  3739. netif_stop_queue(bcm->net_dev);
  3740. tasklet_disable(&bcm->isr_tasklet);
  3741. bcm->firmware_norelease = 1;
  3742. if (was_initialized)
  3743. bcm43xx_free_board(bcm);
  3744. bcm->firmware_norelease = 0;
  3745. bcm43xx_detach_board(bcm);
  3746. err = bcm43xx_init_private(bcm, net_dev, pci_dev);
  3747. if (err)
  3748. goto failure;
  3749. err = bcm43xx_attach_board(bcm);
  3750. if (err)
  3751. goto failure;
  3752. if (was_initialized) {
  3753. err = bcm43xx_init_board(bcm);
  3754. if (err)
  3755. goto failure;
  3756. }
  3757. netif_wake_queue(bcm->net_dev);
  3758. printk(KERN_INFO PFX "Controller restarted\n");
  3759. return;
  3760. failure:
  3761. printk(KERN_ERR PFX "Controller restart failed\n");
  3762. }
  3763. /* Hard-reset the chip.
  3764. * This can be called from interrupt or process context.
  3765. * Make sure to _not_ re-enable device interrupts after this has been called.
  3766. */
  3767. void bcm43xx_controller_restart(struct bcm43xx_private *bcm, const char *reason)
  3768. {
  3769. bcm43xx_interrupt_disable(bcm, BCM43xx_IRQ_ALL);
  3770. printk(KERN_ERR PFX "Controller RESET (%s) ...\n", reason);
  3771. INIT_WORK(&bcm->restart_work, bcm43xx_chip_reset, bcm);
  3772. schedule_work(&bcm->restart_work);
  3773. }
  3774. #ifdef CONFIG_PM
  3775. static int bcm43xx_suspend(struct pci_dev *pdev, pm_message_t state)
  3776. {
  3777. struct net_device *net_dev = pci_get_drvdata(pdev);
  3778. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3779. unsigned long flags;
  3780. int try_to_shutdown = 0, err;
  3781. dprintk(KERN_INFO PFX "Suspending...\n");
  3782. spin_lock_irqsave(&bcm->lock, flags);
  3783. bcm->was_initialized = bcm->initialized;
  3784. if (bcm->initialized)
  3785. try_to_shutdown = 1;
  3786. spin_unlock_irqrestore(&bcm->lock, flags);
  3787. netif_device_detach(net_dev);
  3788. if (try_to_shutdown) {
  3789. ieee80211softmac_stop(net_dev);
  3790. err = bcm43xx_disable_interrupts_sync(bcm, &bcm->irq_savedstate);
  3791. if (unlikely(err)) {
  3792. dprintk(KERN_ERR PFX "Suspend failed.\n");
  3793. return -EAGAIN;
  3794. }
  3795. bcm->firmware_norelease = 1;
  3796. bcm43xx_free_board(bcm);
  3797. bcm->firmware_norelease = 0;
  3798. }
  3799. bcm43xx_chipset_detach(bcm);
  3800. pci_save_state(pdev);
  3801. pci_disable_device(pdev);
  3802. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3803. dprintk(KERN_INFO PFX "Device suspended.\n");
  3804. return 0;
  3805. }
  3806. static int bcm43xx_resume(struct pci_dev *pdev)
  3807. {
  3808. struct net_device *net_dev = pci_get_drvdata(pdev);
  3809. struct bcm43xx_private *bcm = bcm43xx_priv(net_dev);
  3810. int err = 0;
  3811. dprintk(KERN_INFO PFX "Resuming...\n");
  3812. pci_set_power_state(pdev, 0);
  3813. pci_enable_device(pdev);
  3814. pci_restore_state(pdev);
  3815. bcm43xx_chipset_attach(bcm);
  3816. if (bcm->was_initialized) {
  3817. bcm->irq_savedstate = BCM43xx_IRQ_INITIAL;
  3818. err = bcm43xx_init_board(bcm);
  3819. }
  3820. if (err) {
  3821. printk(KERN_ERR PFX "Resume failed!\n");
  3822. return err;
  3823. }
  3824. netif_device_attach(net_dev);
  3825. /*FIXME: This should be handled by softmac instead. */
  3826. schedule_work(&bcm->softmac->associnfo.work);
  3827. dprintk(KERN_INFO PFX "Device resumed.\n");
  3828. return 0;
  3829. }
  3830. #endif /* CONFIG_PM */
  3831. static struct pci_driver bcm43xx_pci_driver = {
  3832. .name = KBUILD_MODNAME,
  3833. .id_table = bcm43xx_pci_tbl,
  3834. .probe = bcm43xx_init_one,
  3835. .remove = __devexit_p(bcm43xx_remove_one),
  3836. #ifdef CONFIG_PM
  3837. .suspend = bcm43xx_suspend,
  3838. .resume = bcm43xx_resume,
  3839. #endif /* CONFIG_PM */
  3840. };
  3841. static int __init bcm43xx_init(void)
  3842. {
  3843. printk(KERN_INFO KBUILD_MODNAME " driver\n");
  3844. bcm43xx_debugfs_init();
  3845. return pci_register_driver(&bcm43xx_pci_driver);
  3846. }
  3847. static void __exit bcm43xx_exit(void)
  3848. {
  3849. pci_unregister_driver(&bcm43xx_pci_driver);
  3850. bcm43xx_debugfs_exit();
  3851. }
  3852. module_init(bcm43xx_init)
  3853. module_exit(bcm43xx_exit)
  3854. /* vim: set ts=8 sw=8 sts=8: */