ctree.c 112 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include "ctree.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "print-tree.h"
  24. #include "locking.h"
  25. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  26. *root, struct btrfs_path *path, int level);
  27. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  28. *root, struct btrfs_key *ins_key,
  29. struct btrfs_path *path, int data_size, int extend);
  30. static int push_node_left(struct btrfs_trans_handle *trans,
  31. struct btrfs_root *root, struct extent_buffer *dst,
  32. struct extent_buffer *src, int empty);
  33. static int balance_node_right(struct btrfs_trans_handle *trans,
  34. struct btrfs_root *root,
  35. struct extent_buffer *dst_buf,
  36. struct extent_buffer *src_buf);
  37. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  38. struct btrfs_path *path, int level, int slot);
  39. struct btrfs_path *btrfs_alloc_path(void)
  40. {
  41. struct btrfs_path *path;
  42. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  43. return path;
  44. }
  45. /*
  46. * set all locked nodes in the path to blocking locks. This should
  47. * be done before scheduling
  48. */
  49. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  50. {
  51. int i;
  52. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  53. if (p->nodes[i] && p->locks[i])
  54. btrfs_set_lock_blocking(p->nodes[i]);
  55. }
  56. }
  57. /*
  58. * reset all the locked nodes in the patch to spinning locks.
  59. *
  60. * held is used to keep lockdep happy, when lockdep is enabled
  61. * we set held to a blocking lock before we go around and
  62. * retake all the spinlocks in the path. You can safely use NULL
  63. * for held
  64. */
  65. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  66. struct extent_buffer *held)
  67. {
  68. int i;
  69. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  70. /* lockdep really cares that we take all of these spinlocks
  71. * in the right order. If any of the locks in the path are not
  72. * currently blocking, it is going to complain. So, make really
  73. * really sure by forcing the path to blocking before we clear
  74. * the path blocking.
  75. */
  76. if (held)
  77. btrfs_set_lock_blocking(held);
  78. btrfs_set_path_blocking(p);
  79. #endif
  80. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  81. if (p->nodes[i] && p->locks[i])
  82. btrfs_clear_lock_blocking(p->nodes[i]);
  83. }
  84. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  85. if (held)
  86. btrfs_clear_lock_blocking(held);
  87. #endif
  88. }
  89. /* this also releases the path */
  90. void btrfs_free_path(struct btrfs_path *p)
  91. {
  92. if (!p)
  93. return;
  94. btrfs_release_path(p);
  95. kmem_cache_free(btrfs_path_cachep, p);
  96. }
  97. /*
  98. * path release drops references on the extent buffers in the path
  99. * and it drops any locks held by this path
  100. *
  101. * It is safe to call this on paths that no locks or extent buffers held.
  102. */
  103. noinline void btrfs_release_path(struct btrfs_path *p)
  104. {
  105. int i;
  106. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  107. p->slots[i] = 0;
  108. if (!p->nodes[i])
  109. continue;
  110. if (p->locks[i]) {
  111. btrfs_tree_unlock(p->nodes[i]);
  112. p->locks[i] = 0;
  113. }
  114. free_extent_buffer(p->nodes[i]);
  115. p->nodes[i] = NULL;
  116. }
  117. }
  118. /*
  119. * safely gets a reference on the root node of a tree. A lock
  120. * is not taken, so a concurrent writer may put a different node
  121. * at the root of the tree. See btrfs_lock_root_node for the
  122. * looping required.
  123. *
  124. * The extent buffer returned by this has a reference taken, so
  125. * it won't disappear. It may stop being the root of the tree
  126. * at any time because there are no locks held.
  127. */
  128. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  129. {
  130. struct extent_buffer *eb;
  131. rcu_read_lock();
  132. eb = rcu_dereference(root->node);
  133. extent_buffer_get(eb);
  134. rcu_read_unlock();
  135. return eb;
  136. }
  137. /* loop around taking references on and locking the root node of the
  138. * tree until you end up with a lock on the root. A locked buffer
  139. * is returned, with a reference held.
  140. */
  141. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  142. {
  143. struct extent_buffer *eb;
  144. while (1) {
  145. eb = btrfs_root_node(root);
  146. btrfs_tree_lock(eb);
  147. if (eb == root->node)
  148. break;
  149. btrfs_tree_unlock(eb);
  150. free_extent_buffer(eb);
  151. }
  152. return eb;
  153. }
  154. /* cowonly root (everything not a reference counted cow subvolume), just get
  155. * put onto a simple dirty list. transaction.c walks this to make sure they
  156. * get properly updated on disk.
  157. */
  158. static void add_root_to_dirty_list(struct btrfs_root *root)
  159. {
  160. if (root->track_dirty && list_empty(&root->dirty_list)) {
  161. list_add(&root->dirty_list,
  162. &root->fs_info->dirty_cowonly_roots);
  163. }
  164. }
  165. /*
  166. * used by snapshot creation to make a copy of a root for a tree with
  167. * a given objectid. The buffer with the new root node is returned in
  168. * cow_ret, and this func returns zero on success or a negative error code.
  169. */
  170. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  171. struct btrfs_root *root,
  172. struct extent_buffer *buf,
  173. struct extent_buffer **cow_ret, u64 new_root_objectid)
  174. {
  175. struct extent_buffer *cow;
  176. int ret = 0;
  177. int level;
  178. struct btrfs_disk_key disk_key;
  179. WARN_ON(root->ref_cows && trans->transid !=
  180. root->fs_info->running_transaction->transid);
  181. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  182. level = btrfs_header_level(buf);
  183. if (level == 0)
  184. btrfs_item_key(buf, &disk_key, 0);
  185. else
  186. btrfs_node_key(buf, &disk_key, 0);
  187. cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
  188. new_root_objectid, &disk_key, level,
  189. buf->start, 0);
  190. if (IS_ERR(cow))
  191. return PTR_ERR(cow);
  192. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  193. btrfs_set_header_bytenr(cow, cow->start);
  194. btrfs_set_header_generation(cow, trans->transid);
  195. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  196. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  197. BTRFS_HEADER_FLAG_RELOC);
  198. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  199. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  200. else
  201. btrfs_set_header_owner(cow, new_root_objectid);
  202. write_extent_buffer(cow, root->fs_info->fsid,
  203. (unsigned long)btrfs_header_fsid(cow),
  204. BTRFS_FSID_SIZE);
  205. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  206. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  207. ret = btrfs_inc_ref(trans, root, cow, 1);
  208. else
  209. ret = btrfs_inc_ref(trans, root, cow, 0);
  210. if (ret)
  211. return ret;
  212. btrfs_mark_buffer_dirty(cow);
  213. *cow_ret = cow;
  214. return 0;
  215. }
  216. /*
  217. * check if the tree block can be shared by multiple trees
  218. */
  219. int btrfs_block_can_be_shared(struct btrfs_root *root,
  220. struct extent_buffer *buf)
  221. {
  222. /*
  223. * Tree blocks not in refernece counted trees and tree roots
  224. * are never shared. If a block was allocated after the last
  225. * snapshot and the block was not allocated by tree relocation,
  226. * we know the block is not shared.
  227. */
  228. if (root->ref_cows &&
  229. buf != root->node && buf != root->commit_root &&
  230. (btrfs_header_generation(buf) <=
  231. btrfs_root_last_snapshot(&root->root_item) ||
  232. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  233. return 1;
  234. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  235. if (root->ref_cows &&
  236. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  237. return 1;
  238. #endif
  239. return 0;
  240. }
  241. static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
  242. struct btrfs_root *root,
  243. struct extent_buffer *buf,
  244. struct extent_buffer *cow,
  245. int *last_ref)
  246. {
  247. u64 refs;
  248. u64 owner;
  249. u64 flags;
  250. u64 new_flags = 0;
  251. int ret;
  252. /*
  253. * Backrefs update rules:
  254. *
  255. * Always use full backrefs for extent pointers in tree block
  256. * allocated by tree relocation.
  257. *
  258. * If a shared tree block is no longer referenced by its owner
  259. * tree (btrfs_header_owner(buf) == root->root_key.objectid),
  260. * use full backrefs for extent pointers in tree block.
  261. *
  262. * If a tree block is been relocating
  263. * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
  264. * use full backrefs for extent pointers in tree block.
  265. * The reason for this is some operations (such as drop tree)
  266. * are only allowed for blocks use full backrefs.
  267. */
  268. if (btrfs_block_can_be_shared(root, buf)) {
  269. ret = btrfs_lookup_extent_info(trans, root, buf->start,
  270. buf->len, &refs, &flags);
  271. BUG_ON(ret);
  272. BUG_ON(refs == 0);
  273. } else {
  274. refs = 1;
  275. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  276. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  277. flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  278. else
  279. flags = 0;
  280. }
  281. owner = btrfs_header_owner(buf);
  282. BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
  283. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  284. if (refs > 1) {
  285. if ((owner == root->root_key.objectid ||
  286. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
  287. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
  288. ret = btrfs_inc_ref(trans, root, buf, 1);
  289. BUG_ON(ret);
  290. if (root->root_key.objectid ==
  291. BTRFS_TREE_RELOC_OBJECTID) {
  292. ret = btrfs_dec_ref(trans, root, buf, 0);
  293. BUG_ON(ret);
  294. ret = btrfs_inc_ref(trans, root, cow, 1);
  295. BUG_ON(ret);
  296. }
  297. new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  298. } else {
  299. if (root->root_key.objectid ==
  300. BTRFS_TREE_RELOC_OBJECTID)
  301. ret = btrfs_inc_ref(trans, root, cow, 1);
  302. else
  303. ret = btrfs_inc_ref(trans, root, cow, 0);
  304. BUG_ON(ret);
  305. }
  306. if (new_flags != 0) {
  307. ret = btrfs_set_disk_extent_flags(trans, root,
  308. buf->start,
  309. buf->len,
  310. new_flags, 0);
  311. BUG_ON(ret);
  312. }
  313. } else {
  314. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  315. if (root->root_key.objectid ==
  316. BTRFS_TREE_RELOC_OBJECTID)
  317. ret = btrfs_inc_ref(trans, root, cow, 1);
  318. else
  319. ret = btrfs_inc_ref(trans, root, cow, 0);
  320. BUG_ON(ret);
  321. ret = btrfs_dec_ref(trans, root, buf, 1);
  322. BUG_ON(ret);
  323. }
  324. clean_tree_block(trans, root, buf);
  325. *last_ref = 1;
  326. }
  327. return 0;
  328. }
  329. /*
  330. * does the dirty work in cow of a single block. The parent block (if
  331. * supplied) is updated to point to the new cow copy. The new buffer is marked
  332. * dirty and returned locked. If you modify the block it needs to be marked
  333. * dirty again.
  334. *
  335. * search_start -- an allocation hint for the new block
  336. *
  337. * empty_size -- a hint that you plan on doing more cow. This is the size in
  338. * bytes the allocator should try to find free next to the block it returns.
  339. * This is just a hint and may be ignored by the allocator.
  340. */
  341. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  342. struct btrfs_root *root,
  343. struct extent_buffer *buf,
  344. struct extent_buffer *parent, int parent_slot,
  345. struct extent_buffer **cow_ret,
  346. u64 search_start, u64 empty_size)
  347. {
  348. struct btrfs_disk_key disk_key;
  349. struct extent_buffer *cow;
  350. int level;
  351. int last_ref = 0;
  352. int unlock_orig = 0;
  353. u64 parent_start;
  354. if (*cow_ret == buf)
  355. unlock_orig = 1;
  356. btrfs_assert_tree_locked(buf);
  357. WARN_ON(root->ref_cows && trans->transid !=
  358. root->fs_info->running_transaction->transid);
  359. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  360. level = btrfs_header_level(buf);
  361. if (level == 0)
  362. btrfs_item_key(buf, &disk_key, 0);
  363. else
  364. btrfs_node_key(buf, &disk_key, 0);
  365. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  366. if (parent)
  367. parent_start = parent->start;
  368. else
  369. parent_start = 0;
  370. } else
  371. parent_start = 0;
  372. cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
  373. root->root_key.objectid, &disk_key,
  374. level, search_start, empty_size);
  375. if (IS_ERR(cow))
  376. return PTR_ERR(cow);
  377. /* cow is set to blocking by btrfs_init_new_buffer */
  378. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  379. btrfs_set_header_bytenr(cow, cow->start);
  380. btrfs_set_header_generation(cow, trans->transid);
  381. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  382. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  383. BTRFS_HEADER_FLAG_RELOC);
  384. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  385. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  386. else
  387. btrfs_set_header_owner(cow, root->root_key.objectid);
  388. write_extent_buffer(cow, root->fs_info->fsid,
  389. (unsigned long)btrfs_header_fsid(cow),
  390. BTRFS_FSID_SIZE);
  391. update_ref_for_cow(trans, root, buf, cow, &last_ref);
  392. if (root->ref_cows)
  393. btrfs_reloc_cow_block(trans, root, buf, cow);
  394. if (buf == root->node) {
  395. WARN_ON(parent && parent != buf);
  396. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  397. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  398. parent_start = buf->start;
  399. else
  400. parent_start = 0;
  401. extent_buffer_get(cow);
  402. rcu_assign_pointer(root->node, cow);
  403. btrfs_free_tree_block(trans, root, buf, parent_start,
  404. last_ref);
  405. free_extent_buffer(buf);
  406. add_root_to_dirty_list(root);
  407. } else {
  408. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  409. parent_start = parent->start;
  410. else
  411. parent_start = 0;
  412. WARN_ON(trans->transid != btrfs_header_generation(parent));
  413. btrfs_set_node_blockptr(parent, parent_slot,
  414. cow->start);
  415. btrfs_set_node_ptr_generation(parent, parent_slot,
  416. trans->transid);
  417. btrfs_mark_buffer_dirty(parent);
  418. btrfs_free_tree_block(trans, root, buf, parent_start,
  419. last_ref);
  420. }
  421. if (unlock_orig)
  422. btrfs_tree_unlock(buf);
  423. free_extent_buffer(buf);
  424. btrfs_mark_buffer_dirty(cow);
  425. *cow_ret = cow;
  426. return 0;
  427. }
  428. static inline int should_cow_block(struct btrfs_trans_handle *trans,
  429. struct btrfs_root *root,
  430. struct extent_buffer *buf)
  431. {
  432. if (btrfs_header_generation(buf) == trans->transid &&
  433. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
  434. !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
  435. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  436. return 0;
  437. return 1;
  438. }
  439. /*
  440. * cows a single block, see __btrfs_cow_block for the real work.
  441. * This version of it has extra checks so that a block isn't cow'd more than
  442. * once per transaction, as long as it hasn't been written yet
  443. */
  444. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  445. struct btrfs_root *root, struct extent_buffer *buf,
  446. struct extent_buffer *parent, int parent_slot,
  447. struct extent_buffer **cow_ret)
  448. {
  449. u64 search_start;
  450. int ret;
  451. if (trans->transaction != root->fs_info->running_transaction) {
  452. printk(KERN_CRIT "trans %llu running %llu\n",
  453. (unsigned long long)trans->transid,
  454. (unsigned long long)
  455. root->fs_info->running_transaction->transid);
  456. WARN_ON(1);
  457. }
  458. if (trans->transid != root->fs_info->generation) {
  459. printk(KERN_CRIT "trans %llu running %llu\n",
  460. (unsigned long long)trans->transid,
  461. (unsigned long long)root->fs_info->generation);
  462. WARN_ON(1);
  463. }
  464. if (!should_cow_block(trans, root, buf)) {
  465. *cow_ret = buf;
  466. return 0;
  467. }
  468. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  469. if (parent)
  470. btrfs_set_lock_blocking(parent);
  471. btrfs_set_lock_blocking(buf);
  472. ret = __btrfs_cow_block(trans, root, buf, parent,
  473. parent_slot, cow_ret, search_start, 0);
  474. trace_btrfs_cow_block(root, buf, *cow_ret);
  475. return ret;
  476. }
  477. /*
  478. * helper function for defrag to decide if two blocks pointed to by a
  479. * node are actually close by
  480. */
  481. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  482. {
  483. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  484. return 1;
  485. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  486. return 1;
  487. return 0;
  488. }
  489. /*
  490. * compare two keys in a memcmp fashion
  491. */
  492. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  493. {
  494. struct btrfs_key k1;
  495. btrfs_disk_key_to_cpu(&k1, disk);
  496. return btrfs_comp_cpu_keys(&k1, k2);
  497. }
  498. /*
  499. * same as comp_keys only with two btrfs_key's
  500. */
  501. int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  502. {
  503. if (k1->objectid > k2->objectid)
  504. return 1;
  505. if (k1->objectid < k2->objectid)
  506. return -1;
  507. if (k1->type > k2->type)
  508. return 1;
  509. if (k1->type < k2->type)
  510. return -1;
  511. if (k1->offset > k2->offset)
  512. return 1;
  513. if (k1->offset < k2->offset)
  514. return -1;
  515. return 0;
  516. }
  517. /*
  518. * this is used by the defrag code to go through all the
  519. * leaves pointed to by a node and reallocate them so that
  520. * disk order is close to key order
  521. */
  522. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  523. struct btrfs_root *root, struct extent_buffer *parent,
  524. int start_slot, int cache_only, u64 *last_ret,
  525. struct btrfs_key *progress)
  526. {
  527. struct extent_buffer *cur;
  528. u64 blocknr;
  529. u64 gen;
  530. u64 search_start = *last_ret;
  531. u64 last_block = 0;
  532. u64 other;
  533. u32 parent_nritems;
  534. int end_slot;
  535. int i;
  536. int err = 0;
  537. int parent_level;
  538. int uptodate;
  539. u32 blocksize;
  540. int progress_passed = 0;
  541. struct btrfs_disk_key disk_key;
  542. parent_level = btrfs_header_level(parent);
  543. if (cache_only && parent_level != 1)
  544. return 0;
  545. if (trans->transaction != root->fs_info->running_transaction)
  546. WARN_ON(1);
  547. if (trans->transid != root->fs_info->generation)
  548. WARN_ON(1);
  549. parent_nritems = btrfs_header_nritems(parent);
  550. blocksize = btrfs_level_size(root, parent_level - 1);
  551. end_slot = parent_nritems;
  552. if (parent_nritems == 1)
  553. return 0;
  554. btrfs_set_lock_blocking(parent);
  555. for (i = start_slot; i < end_slot; i++) {
  556. int close = 1;
  557. if (!parent->map_token) {
  558. map_extent_buffer(parent,
  559. btrfs_node_key_ptr_offset(i),
  560. sizeof(struct btrfs_key_ptr),
  561. &parent->map_token, &parent->kaddr,
  562. &parent->map_start, &parent->map_len,
  563. KM_USER1);
  564. }
  565. btrfs_node_key(parent, &disk_key, i);
  566. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  567. continue;
  568. progress_passed = 1;
  569. blocknr = btrfs_node_blockptr(parent, i);
  570. gen = btrfs_node_ptr_generation(parent, i);
  571. if (last_block == 0)
  572. last_block = blocknr;
  573. if (i > 0) {
  574. other = btrfs_node_blockptr(parent, i - 1);
  575. close = close_blocks(blocknr, other, blocksize);
  576. }
  577. if (!close && i < end_slot - 2) {
  578. other = btrfs_node_blockptr(parent, i + 1);
  579. close = close_blocks(blocknr, other, blocksize);
  580. }
  581. if (close) {
  582. last_block = blocknr;
  583. continue;
  584. }
  585. if (parent->map_token) {
  586. unmap_extent_buffer(parent, parent->map_token,
  587. KM_USER1);
  588. parent->map_token = NULL;
  589. }
  590. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  591. if (cur)
  592. uptodate = btrfs_buffer_uptodate(cur, gen);
  593. else
  594. uptodate = 0;
  595. if (!cur || !uptodate) {
  596. if (cache_only) {
  597. free_extent_buffer(cur);
  598. continue;
  599. }
  600. if (!cur) {
  601. cur = read_tree_block(root, blocknr,
  602. blocksize, gen);
  603. if (!cur)
  604. return -EIO;
  605. } else if (!uptodate) {
  606. btrfs_read_buffer(cur, gen);
  607. }
  608. }
  609. if (search_start == 0)
  610. search_start = last_block;
  611. btrfs_tree_lock(cur);
  612. btrfs_set_lock_blocking(cur);
  613. err = __btrfs_cow_block(trans, root, cur, parent, i,
  614. &cur, search_start,
  615. min(16 * blocksize,
  616. (end_slot - i) * blocksize));
  617. if (err) {
  618. btrfs_tree_unlock(cur);
  619. free_extent_buffer(cur);
  620. break;
  621. }
  622. search_start = cur->start;
  623. last_block = cur->start;
  624. *last_ret = search_start;
  625. btrfs_tree_unlock(cur);
  626. free_extent_buffer(cur);
  627. }
  628. if (parent->map_token) {
  629. unmap_extent_buffer(parent, parent->map_token,
  630. KM_USER1);
  631. parent->map_token = NULL;
  632. }
  633. return err;
  634. }
  635. /*
  636. * The leaf data grows from end-to-front in the node.
  637. * this returns the address of the start of the last item,
  638. * which is the stop of the leaf data stack
  639. */
  640. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  641. struct extent_buffer *leaf)
  642. {
  643. u32 nr = btrfs_header_nritems(leaf);
  644. if (nr == 0)
  645. return BTRFS_LEAF_DATA_SIZE(root);
  646. return btrfs_item_offset_nr(leaf, nr - 1);
  647. }
  648. /*
  649. * search for key in the extent_buffer. The items start at offset p,
  650. * and they are item_size apart. There are 'max' items in p.
  651. *
  652. * the slot in the array is returned via slot, and it points to
  653. * the place where you would insert key if it is not found in
  654. * the array.
  655. *
  656. * slot may point to max if the key is bigger than all of the keys
  657. */
  658. static noinline int generic_bin_search(struct extent_buffer *eb,
  659. unsigned long p,
  660. int item_size, struct btrfs_key *key,
  661. int max, int *slot)
  662. {
  663. int low = 0;
  664. int high = max;
  665. int mid;
  666. int ret;
  667. struct btrfs_disk_key *tmp = NULL;
  668. struct btrfs_disk_key unaligned;
  669. unsigned long offset;
  670. char *map_token = NULL;
  671. char *kaddr = NULL;
  672. unsigned long map_start = 0;
  673. unsigned long map_len = 0;
  674. int err;
  675. while (low < high) {
  676. mid = (low + high) / 2;
  677. offset = p + mid * item_size;
  678. if (!map_token || offset < map_start ||
  679. (offset + sizeof(struct btrfs_disk_key)) >
  680. map_start + map_len) {
  681. if (map_token) {
  682. unmap_extent_buffer(eb, map_token, KM_USER0);
  683. map_token = NULL;
  684. }
  685. err = map_private_extent_buffer(eb, offset,
  686. sizeof(struct btrfs_disk_key),
  687. &map_token, &kaddr,
  688. &map_start, &map_len, KM_USER0);
  689. if (!err) {
  690. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  691. map_start);
  692. } else {
  693. read_extent_buffer(eb, &unaligned,
  694. offset, sizeof(unaligned));
  695. tmp = &unaligned;
  696. }
  697. } else {
  698. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  699. map_start);
  700. }
  701. ret = comp_keys(tmp, key);
  702. if (ret < 0)
  703. low = mid + 1;
  704. else if (ret > 0)
  705. high = mid;
  706. else {
  707. *slot = mid;
  708. if (map_token)
  709. unmap_extent_buffer(eb, map_token, KM_USER0);
  710. return 0;
  711. }
  712. }
  713. *slot = low;
  714. if (map_token)
  715. unmap_extent_buffer(eb, map_token, KM_USER0);
  716. return 1;
  717. }
  718. /*
  719. * simple bin_search frontend that does the right thing for
  720. * leaves vs nodes
  721. */
  722. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  723. int level, int *slot)
  724. {
  725. if (level == 0) {
  726. return generic_bin_search(eb,
  727. offsetof(struct btrfs_leaf, items),
  728. sizeof(struct btrfs_item),
  729. key, btrfs_header_nritems(eb),
  730. slot);
  731. } else {
  732. return generic_bin_search(eb,
  733. offsetof(struct btrfs_node, ptrs),
  734. sizeof(struct btrfs_key_ptr),
  735. key, btrfs_header_nritems(eb),
  736. slot);
  737. }
  738. return -1;
  739. }
  740. int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  741. int level, int *slot)
  742. {
  743. return bin_search(eb, key, level, slot);
  744. }
  745. static void root_add_used(struct btrfs_root *root, u32 size)
  746. {
  747. spin_lock(&root->accounting_lock);
  748. btrfs_set_root_used(&root->root_item,
  749. btrfs_root_used(&root->root_item) + size);
  750. spin_unlock(&root->accounting_lock);
  751. }
  752. static void root_sub_used(struct btrfs_root *root, u32 size)
  753. {
  754. spin_lock(&root->accounting_lock);
  755. btrfs_set_root_used(&root->root_item,
  756. btrfs_root_used(&root->root_item) - size);
  757. spin_unlock(&root->accounting_lock);
  758. }
  759. /* given a node and slot number, this reads the blocks it points to. The
  760. * extent buffer is returned with a reference taken (but unlocked).
  761. * NULL is returned on error.
  762. */
  763. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  764. struct extent_buffer *parent, int slot)
  765. {
  766. int level = btrfs_header_level(parent);
  767. if (slot < 0)
  768. return NULL;
  769. if (slot >= btrfs_header_nritems(parent))
  770. return NULL;
  771. BUG_ON(level == 0);
  772. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  773. btrfs_level_size(root, level - 1),
  774. btrfs_node_ptr_generation(parent, slot));
  775. }
  776. /*
  777. * node level balancing, used to make sure nodes are in proper order for
  778. * item deletion. We balance from the top down, so we have to make sure
  779. * that a deletion won't leave an node completely empty later on.
  780. */
  781. static noinline int balance_level(struct btrfs_trans_handle *trans,
  782. struct btrfs_root *root,
  783. struct btrfs_path *path, int level)
  784. {
  785. struct extent_buffer *right = NULL;
  786. struct extent_buffer *mid;
  787. struct extent_buffer *left = NULL;
  788. struct extent_buffer *parent = NULL;
  789. int ret = 0;
  790. int wret;
  791. int pslot;
  792. int orig_slot = path->slots[level];
  793. u64 orig_ptr;
  794. if (level == 0)
  795. return 0;
  796. mid = path->nodes[level];
  797. WARN_ON(!path->locks[level]);
  798. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  799. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  800. if (level < BTRFS_MAX_LEVEL - 1)
  801. parent = path->nodes[level + 1];
  802. pslot = path->slots[level + 1];
  803. /*
  804. * deal with the case where there is only one pointer in the root
  805. * by promoting the node below to a root
  806. */
  807. if (!parent) {
  808. struct extent_buffer *child;
  809. if (btrfs_header_nritems(mid) != 1)
  810. return 0;
  811. /* promote the child to a root */
  812. child = read_node_slot(root, mid, 0);
  813. BUG_ON(!child);
  814. btrfs_tree_lock(child);
  815. btrfs_set_lock_blocking(child);
  816. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  817. if (ret) {
  818. btrfs_tree_unlock(child);
  819. free_extent_buffer(child);
  820. goto enospc;
  821. }
  822. rcu_assign_pointer(root->node, child);
  823. add_root_to_dirty_list(root);
  824. btrfs_tree_unlock(child);
  825. path->locks[level] = 0;
  826. path->nodes[level] = NULL;
  827. clean_tree_block(trans, root, mid);
  828. btrfs_tree_unlock(mid);
  829. /* once for the path */
  830. free_extent_buffer(mid);
  831. root_sub_used(root, mid->len);
  832. btrfs_free_tree_block(trans, root, mid, 0, 1);
  833. /* once for the root ptr */
  834. free_extent_buffer(mid);
  835. return 0;
  836. }
  837. if (btrfs_header_nritems(mid) >
  838. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  839. return 0;
  840. btrfs_header_nritems(mid);
  841. left = read_node_slot(root, parent, pslot - 1);
  842. if (left) {
  843. btrfs_tree_lock(left);
  844. btrfs_set_lock_blocking(left);
  845. wret = btrfs_cow_block(trans, root, left,
  846. parent, pslot - 1, &left);
  847. if (wret) {
  848. ret = wret;
  849. goto enospc;
  850. }
  851. }
  852. right = read_node_slot(root, parent, pslot + 1);
  853. if (right) {
  854. btrfs_tree_lock(right);
  855. btrfs_set_lock_blocking(right);
  856. wret = btrfs_cow_block(trans, root, right,
  857. parent, pslot + 1, &right);
  858. if (wret) {
  859. ret = wret;
  860. goto enospc;
  861. }
  862. }
  863. /* first, try to make some room in the middle buffer */
  864. if (left) {
  865. orig_slot += btrfs_header_nritems(left);
  866. wret = push_node_left(trans, root, left, mid, 1);
  867. if (wret < 0)
  868. ret = wret;
  869. btrfs_header_nritems(mid);
  870. }
  871. /*
  872. * then try to empty the right most buffer into the middle
  873. */
  874. if (right) {
  875. wret = push_node_left(trans, root, mid, right, 1);
  876. if (wret < 0 && wret != -ENOSPC)
  877. ret = wret;
  878. if (btrfs_header_nritems(right) == 0) {
  879. clean_tree_block(trans, root, right);
  880. btrfs_tree_unlock(right);
  881. wret = del_ptr(trans, root, path, level + 1, pslot +
  882. 1);
  883. if (wret)
  884. ret = wret;
  885. root_sub_used(root, right->len);
  886. btrfs_free_tree_block(trans, root, right, 0, 1);
  887. free_extent_buffer(right);
  888. right = NULL;
  889. } else {
  890. struct btrfs_disk_key right_key;
  891. btrfs_node_key(right, &right_key, 0);
  892. btrfs_set_node_key(parent, &right_key, pslot + 1);
  893. btrfs_mark_buffer_dirty(parent);
  894. }
  895. }
  896. if (btrfs_header_nritems(mid) == 1) {
  897. /*
  898. * we're not allowed to leave a node with one item in the
  899. * tree during a delete. A deletion from lower in the tree
  900. * could try to delete the only pointer in this node.
  901. * So, pull some keys from the left.
  902. * There has to be a left pointer at this point because
  903. * otherwise we would have pulled some pointers from the
  904. * right
  905. */
  906. BUG_ON(!left);
  907. wret = balance_node_right(trans, root, mid, left);
  908. if (wret < 0) {
  909. ret = wret;
  910. goto enospc;
  911. }
  912. if (wret == 1) {
  913. wret = push_node_left(trans, root, left, mid, 1);
  914. if (wret < 0)
  915. ret = wret;
  916. }
  917. BUG_ON(wret == 1);
  918. }
  919. if (btrfs_header_nritems(mid) == 0) {
  920. clean_tree_block(trans, root, mid);
  921. btrfs_tree_unlock(mid);
  922. wret = del_ptr(trans, root, path, level + 1, pslot);
  923. if (wret)
  924. ret = wret;
  925. root_sub_used(root, mid->len);
  926. btrfs_free_tree_block(trans, root, mid, 0, 1);
  927. free_extent_buffer(mid);
  928. mid = NULL;
  929. } else {
  930. /* update the parent key to reflect our changes */
  931. struct btrfs_disk_key mid_key;
  932. btrfs_node_key(mid, &mid_key, 0);
  933. btrfs_set_node_key(parent, &mid_key, pslot);
  934. btrfs_mark_buffer_dirty(parent);
  935. }
  936. /* update the path */
  937. if (left) {
  938. if (btrfs_header_nritems(left) > orig_slot) {
  939. extent_buffer_get(left);
  940. /* left was locked after cow */
  941. path->nodes[level] = left;
  942. path->slots[level + 1] -= 1;
  943. path->slots[level] = orig_slot;
  944. if (mid) {
  945. btrfs_tree_unlock(mid);
  946. free_extent_buffer(mid);
  947. }
  948. } else {
  949. orig_slot -= btrfs_header_nritems(left);
  950. path->slots[level] = orig_slot;
  951. }
  952. }
  953. /* double check we haven't messed things up */
  954. if (orig_ptr !=
  955. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  956. BUG();
  957. enospc:
  958. if (right) {
  959. btrfs_tree_unlock(right);
  960. free_extent_buffer(right);
  961. }
  962. if (left) {
  963. if (path->nodes[level] != left)
  964. btrfs_tree_unlock(left);
  965. free_extent_buffer(left);
  966. }
  967. return ret;
  968. }
  969. /* Node balancing for insertion. Here we only split or push nodes around
  970. * when they are completely full. This is also done top down, so we
  971. * have to be pessimistic.
  972. */
  973. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  974. struct btrfs_root *root,
  975. struct btrfs_path *path, int level)
  976. {
  977. struct extent_buffer *right = NULL;
  978. struct extent_buffer *mid;
  979. struct extent_buffer *left = NULL;
  980. struct extent_buffer *parent = NULL;
  981. int ret = 0;
  982. int wret;
  983. int pslot;
  984. int orig_slot = path->slots[level];
  985. if (level == 0)
  986. return 1;
  987. mid = path->nodes[level];
  988. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  989. if (level < BTRFS_MAX_LEVEL - 1)
  990. parent = path->nodes[level + 1];
  991. pslot = path->slots[level + 1];
  992. if (!parent)
  993. return 1;
  994. left = read_node_slot(root, parent, pslot - 1);
  995. /* first, try to make some room in the middle buffer */
  996. if (left) {
  997. u32 left_nr;
  998. btrfs_tree_lock(left);
  999. btrfs_set_lock_blocking(left);
  1000. left_nr = btrfs_header_nritems(left);
  1001. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1002. wret = 1;
  1003. } else {
  1004. ret = btrfs_cow_block(trans, root, left, parent,
  1005. pslot - 1, &left);
  1006. if (ret)
  1007. wret = 1;
  1008. else {
  1009. wret = push_node_left(trans, root,
  1010. left, mid, 0);
  1011. }
  1012. }
  1013. if (wret < 0)
  1014. ret = wret;
  1015. if (wret == 0) {
  1016. struct btrfs_disk_key disk_key;
  1017. orig_slot += left_nr;
  1018. btrfs_node_key(mid, &disk_key, 0);
  1019. btrfs_set_node_key(parent, &disk_key, pslot);
  1020. btrfs_mark_buffer_dirty(parent);
  1021. if (btrfs_header_nritems(left) > orig_slot) {
  1022. path->nodes[level] = left;
  1023. path->slots[level + 1] -= 1;
  1024. path->slots[level] = orig_slot;
  1025. btrfs_tree_unlock(mid);
  1026. free_extent_buffer(mid);
  1027. } else {
  1028. orig_slot -=
  1029. btrfs_header_nritems(left);
  1030. path->slots[level] = orig_slot;
  1031. btrfs_tree_unlock(left);
  1032. free_extent_buffer(left);
  1033. }
  1034. return 0;
  1035. }
  1036. btrfs_tree_unlock(left);
  1037. free_extent_buffer(left);
  1038. }
  1039. right = read_node_slot(root, parent, pslot + 1);
  1040. /*
  1041. * then try to empty the right most buffer into the middle
  1042. */
  1043. if (right) {
  1044. u32 right_nr;
  1045. btrfs_tree_lock(right);
  1046. btrfs_set_lock_blocking(right);
  1047. right_nr = btrfs_header_nritems(right);
  1048. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1049. wret = 1;
  1050. } else {
  1051. ret = btrfs_cow_block(trans, root, right,
  1052. parent, pslot + 1,
  1053. &right);
  1054. if (ret)
  1055. wret = 1;
  1056. else {
  1057. wret = balance_node_right(trans, root,
  1058. right, mid);
  1059. }
  1060. }
  1061. if (wret < 0)
  1062. ret = wret;
  1063. if (wret == 0) {
  1064. struct btrfs_disk_key disk_key;
  1065. btrfs_node_key(right, &disk_key, 0);
  1066. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1067. btrfs_mark_buffer_dirty(parent);
  1068. if (btrfs_header_nritems(mid) <= orig_slot) {
  1069. path->nodes[level] = right;
  1070. path->slots[level + 1] += 1;
  1071. path->slots[level] = orig_slot -
  1072. btrfs_header_nritems(mid);
  1073. btrfs_tree_unlock(mid);
  1074. free_extent_buffer(mid);
  1075. } else {
  1076. btrfs_tree_unlock(right);
  1077. free_extent_buffer(right);
  1078. }
  1079. return 0;
  1080. }
  1081. btrfs_tree_unlock(right);
  1082. free_extent_buffer(right);
  1083. }
  1084. return 1;
  1085. }
  1086. /*
  1087. * readahead one full node of leaves, finding things that are close
  1088. * to the block in 'slot', and triggering ra on them.
  1089. */
  1090. static void reada_for_search(struct btrfs_root *root,
  1091. struct btrfs_path *path,
  1092. int level, int slot, u64 objectid)
  1093. {
  1094. struct extent_buffer *node;
  1095. struct btrfs_disk_key disk_key;
  1096. u32 nritems;
  1097. u64 search;
  1098. u64 target;
  1099. u64 nread = 0;
  1100. u64 gen;
  1101. int direction = path->reada;
  1102. struct extent_buffer *eb;
  1103. u32 nr;
  1104. u32 blocksize;
  1105. u32 nscan = 0;
  1106. bool map = true;
  1107. if (level != 1)
  1108. return;
  1109. if (!path->nodes[level])
  1110. return;
  1111. node = path->nodes[level];
  1112. search = btrfs_node_blockptr(node, slot);
  1113. blocksize = btrfs_level_size(root, level - 1);
  1114. eb = btrfs_find_tree_block(root, search, blocksize);
  1115. if (eb) {
  1116. free_extent_buffer(eb);
  1117. return;
  1118. }
  1119. target = search;
  1120. nritems = btrfs_header_nritems(node);
  1121. nr = slot;
  1122. if (node->map_token || path->skip_locking)
  1123. map = false;
  1124. while (1) {
  1125. if (map && !node->map_token) {
  1126. unsigned long offset = btrfs_node_key_ptr_offset(nr);
  1127. map_private_extent_buffer(node, offset,
  1128. sizeof(struct btrfs_key_ptr),
  1129. &node->map_token,
  1130. &node->kaddr,
  1131. &node->map_start,
  1132. &node->map_len, KM_USER1);
  1133. }
  1134. if (direction < 0) {
  1135. if (nr == 0)
  1136. break;
  1137. nr--;
  1138. } else if (direction > 0) {
  1139. nr++;
  1140. if (nr >= nritems)
  1141. break;
  1142. }
  1143. if (path->reada < 0 && objectid) {
  1144. btrfs_node_key(node, &disk_key, nr);
  1145. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1146. break;
  1147. }
  1148. search = btrfs_node_blockptr(node, nr);
  1149. if ((search <= target && target - search <= 65536) ||
  1150. (search > target && search - target <= 65536)) {
  1151. gen = btrfs_node_ptr_generation(node, nr);
  1152. if (map && node->map_token) {
  1153. unmap_extent_buffer(node, node->map_token,
  1154. KM_USER1);
  1155. node->map_token = NULL;
  1156. }
  1157. readahead_tree_block(root, search, blocksize, gen);
  1158. nread += blocksize;
  1159. }
  1160. nscan++;
  1161. if ((nread > 65536 || nscan > 32))
  1162. break;
  1163. }
  1164. if (map && node->map_token) {
  1165. unmap_extent_buffer(node, node->map_token, KM_USER1);
  1166. node->map_token = NULL;
  1167. }
  1168. }
  1169. /*
  1170. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1171. * cache
  1172. */
  1173. static noinline int reada_for_balance(struct btrfs_root *root,
  1174. struct btrfs_path *path, int level)
  1175. {
  1176. int slot;
  1177. int nritems;
  1178. struct extent_buffer *parent;
  1179. struct extent_buffer *eb;
  1180. u64 gen;
  1181. u64 block1 = 0;
  1182. u64 block2 = 0;
  1183. int ret = 0;
  1184. int blocksize;
  1185. parent = path->nodes[level + 1];
  1186. if (!parent)
  1187. return 0;
  1188. nritems = btrfs_header_nritems(parent);
  1189. slot = path->slots[level + 1];
  1190. blocksize = btrfs_level_size(root, level);
  1191. if (slot > 0) {
  1192. block1 = btrfs_node_blockptr(parent, slot - 1);
  1193. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1194. eb = btrfs_find_tree_block(root, block1, blocksize);
  1195. if (eb && btrfs_buffer_uptodate(eb, gen))
  1196. block1 = 0;
  1197. free_extent_buffer(eb);
  1198. }
  1199. if (slot + 1 < nritems) {
  1200. block2 = btrfs_node_blockptr(parent, slot + 1);
  1201. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1202. eb = btrfs_find_tree_block(root, block2, blocksize);
  1203. if (eb && btrfs_buffer_uptodate(eb, gen))
  1204. block2 = 0;
  1205. free_extent_buffer(eb);
  1206. }
  1207. if (block1 || block2) {
  1208. ret = -EAGAIN;
  1209. /* release the whole path */
  1210. btrfs_release_path(path);
  1211. /* read the blocks */
  1212. if (block1)
  1213. readahead_tree_block(root, block1, blocksize, 0);
  1214. if (block2)
  1215. readahead_tree_block(root, block2, blocksize, 0);
  1216. if (block1) {
  1217. eb = read_tree_block(root, block1, blocksize, 0);
  1218. free_extent_buffer(eb);
  1219. }
  1220. if (block2) {
  1221. eb = read_tree_block(root, block2, blocksize, 0);
  1222. free_extent_buffer(eb);
  1223. }
  1224. }
  1225. return ret;
  1226. }
  1227. /*
  1228. * when we walk down the tree, it is usually safe to unlock the higher layers
  1229. * in the tree. The exceptions are when our path goes through slot 0, because
  1230. * operations on the tree might require changing key pointers higher up in the
  1231. * tree.
  1232. *
  1233. * callers might also have set path->keep_locks, which tells this code to keep
  1234. * the lock if the path points to the last slot in the block. This is part of
  1235. * walking through the tree, and selecting the next slot in the higher block.
  1236. *
  1237. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1238. * if lowest_unlock is 1, level 0 won't be unlocked
  1239. */
  1240. static noinline void unlock_up(struct btrfs_path *path, int level,
  1241. int lowest_unlock)
  1242. {
  1243. int i;
  1244. int skip_level = level;
  1245. int no_skips = 0;
  1246. struct extent_buffer *t;
  1247. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1248. if (!path->nodes[i])
  1249. break;
  1250. if (!path->locks[i])
  1251. break;
  1252. if (!no_skips && path->slots[i] == 0) {
  1253. skip_level = i + 1;
  1254. continue;
  1255. }
  1256. if (!no_skips && path->keep_locks) {
  1257. u32 nritems;
  1258. t = path->nodes[i];
  1259. nritems = btrfs_header_nritems(t);
  1260. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1261. skip_level = i + 1;
  1262. continue;
  1263. }
  1264. }
  1265. if (skip_level < i && i >= lowest_unlock)
  1266. no_skips = 1;
  1267. t = path->nodes[i];
  1268. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1269. btrfs_tree_unlock(t);
  1270. path->locks[i] = 0;
  1271. }
  1272. }
  1273. }
  1274. /*
  1275. * This releases any locks held in the path starting at level and
  1276. * going all the way up to the root.
  1277. *
  1278. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1279. * corner cases, such as COW of the block at slot zero in the node. This
  1280. * ignores those rules, and it should only be called when there are no
  1281. * more updates to be done higher up in the tree.
  1282. */
  1283. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1284. {
  1285. int i;
  1286. if (path->keep_locks)
  1287. return;
  1288. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1289. if (!path->nodes[i])
  1290. continue;
  1291. if (!path->locks[i])
  1292. continue;
  1293. btrfs_tree_unlock(path->nodes[i]);
  1294. path->locks[i] = 0;
  1295. }
  1296. }
  1297. /*
  1298. * helper function for btrfs_search_slot. The goal is to find a block
  1299. * in cache without setting the path to blocking. If we find the block
  1300. * we return zero and the path is unchanged.
  1301. *
  1302. * If we can't find the block, we set the path blocking and do some
  1303. * reada. -EAGAIN is returned and the search must be repeated.
  1304. */
  1305. static int
  1306. read_block_for_search(struct btrfs_trans_handle *trans,
  1307. struct btrfs_root *root, struct btrfs_path *p,
  1308. struct extent_buffer **eb_ret, int level, int slot,
  1309. struct btrfs_key *key)
  1310. {
  1311. u64 blocknr;
  1312. u64 gen;
  1313. u32 blocksize;
  1314. struct extent_buffer *b = *eb_ret;
  1315. struct extent_buffer *tmp;
  1316. int ret;
  1317. blocknr = btrfs_node_blockptr(b, slot);
  1318. gen = btrfs_node_ptr_generation(b, slot);
  1319. blocksize = btrfs_level_size(root, level - 1);
  1320. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1321. if (tmp) {
  1322. if (btrfs_buffer_uptodate(tmp, 0)) {
  1323. if (btrfs_buffer_uptodate(tmp, gen)) {
  1324. /*
  1325. * we found an up to date block without
  1326. * sleeping, return
  1327. * right away
  1328. */
  1329. *eb_ret = tmp;
  1330. return 0;
  1331. }
  1332. /* the pages were up to date, but we failed
  1333. * the generation number check. Do a full
  1334. * read for the generation number that is correct.
  1335. * We must do this without dropping locks so
  1336. * we can trust our generation number
  1337. */
  1338. free_extent_buffer(tmp);
  1339. tmp = read_tree_block(root, blocknr, blocksize, gen);
  1340. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1341. *eb_ret = tmp;
  1342. return 0;
  1343. }
  1344. free_extent_buffer(tmp);
  1345. btrfs_release_path(p);
  1346. return -EIO;
  1347. }
  1348. }
  1349. /*
  1350. * reduce lock contention at high levels
  1351. * of the btree by dropping locks before
  1352. * we read. Don't release the lock on the current
  1353. * level because we need to walk this node to figure
  1354. * out which blocks to read.
  1355. */
  1356. btrfs_unlock_up_safe(p, level + 1);
  1357. btrfs_set_path_blocking(p);
  1358. free_extent_buffer(tmp);
  1359. if (p->reada)
  1360. reada_for_search(root, p, level, slot, key->objectid);
  1361. btrfs_release_path(p);
  1362. ret = -EAGAIN;
  1363. tmp = read_tree_block(root, blocknr, blocksize, 0);
  1364. if (tmp) {
  1365. /*
  1366. * If the read above didn't mark this buffer up to date,
  1367. * it will never end up being up to date. Set ret to EIO now
  1368. * and give up so that our caller doesn't loop forever
  1369. * on our EAGAINs.
  1370. */
  1371. if (!btrfs_buffer_uptodate(tmp, 0))
  1372. ret = -EIO;
  1373. free_extent_buffer(tmp);
  1374. }
  1375. return ret;
  1376. }
  1377. /*
  1378. * helper function for btrfs_search_slot. This does all of the checks
  1379. * for node-level blocks and does any balancing required based on
  1380. * the ins_len.
  1381. *
  1382. * If no extra work was required, zero is returned. If we had to
  1383. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  1384. * start over
  1385. */
  1386. static int
  1387. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  1388. struct btrfs_root *root, struct btrfs_path *p,
  1389. struct extent_buffer *b, int level, int ins_len)
  1390. {
  1391. int ret;
  1392. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  1393. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1394. int sret;
  1395. sret = reada_for_balance(root, p, level);
  1396. if (sret)
  1397. goto again;
  1398. btrfs_set_path_blocking(p);
  1399. sret = split_node(trans, root, p, level);
  1400. btrfs_clear_path_blocking(p, NULL);
  1401. BUG_ON(sret > 0);
  1402. if (sret) {
  1403. ret = sret;
  1404. goto done;
  1405. }
  1406. b = p->nodes[level];
  1407. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  1408. BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
  1409. int sret;
  1410. sret = reada_for_balance(root, p, level);
  1411. if (sret)
  1412. goto again;
  1413. btrfs_set_path_blocking(p);
  1414. sret = balance_level(trans, root, p, level);
  1415. btrfs_clear_path_blocking(p, NULL);
  1416. if (sret) {
  1417. ret = sret;
  1418. goto done;
  1419. }
  1420. b = p->nodes[level];
  1421. if (!b) {
  1422. btrfs_release_path(p);
  1423. goto again;
  1424. }
  1425. BUG_ON(btrfs_header_nritems(b) == 1);
  1426. }
  1427. return 0;
  1428. again:
  1429. ret = -EAGAIN;
  1430. done:
  1431. return ret;
  1432. }
  1433. /*
  1434. * look for key in the tree. path is filled in with nodes along the way
  1435. * if key is found, we return zero and you can find the item in the leaf
  1436. * level of the path (level 0)
  1437. *
  1438. * If the key isn't found, the path points to the slot where it should
  1439. * be inserted, and 1 is returned. If there are other errors during the
  1440. * search a negative error number is returned.
  1441. *
  1442. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1443. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1444. * possible)
  1445. */
  1446. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1447. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1448. ins_len, int cow)
  1449. {
  1450. struct extent_buffer *b;
  1451. int slot;
  1452. int ret;
  1453. int err;
  1454. int level;
  1455. int lowest_unlock = 1;
  1456. u8 lowest_level = 0;
  1457. lowest_level = p->lowest_level;
  1458. WARN_ON(lowest_level && ins_len > 0);
  1459. WARN_ON(p->nodes[0] != NULL);
  1460. if (ins_len < 0)
  1461. lowest_unlock = 2;
  1462. again:
  1463. if (p->search_commit_root) {
  1464. b = root->commit_root;
  1465. extent_buffer_get(b);
  1466. if (!p->skip_locking)
  1467. btrfs_tree_lock(b);
  1468. } else {
  1469. if (p->skip_locking)
  1470. b = btrfs_root_node(root);
  1471. else
  1472. b = btrfs_lock_root_node(root);
  1473. }
  1474. while (b) {
  1475. level = btrfs_header_level(b);
  1476. /*
  1477. * setup the path here so we can release it under lock
  1478. * contention with the cow code
  1479. */
  1480. p->nodes[level] = b;
  1481. if (!p->skip_locking)
  1482. p->locks[level] = 1;
  1483. if (cow) {
  1484. /*
  1485. * if we don't really need to cow this block
  1486. * then we don't want to set the path blocking,
  1487. * so we test it here
  1488. */
  1489. if (!should_cow_block(trans, root, b))
  1490. goto cow_done;
  1491. btrfs_set_path_blocking(p);
  1492. err = btrfs_cow_block(trans, root, b,
  1493. p->nodes[level + 1],
  1494. p->slots[level + 1], &b);
  1495. if (err) {
  1496. ret = err;
  1497. goto done;
  1498. }
  1499. }
  1500. cow_done:
  1501. BUG_ON(!cow && ins_len);
  1502. p->nodes[level] = b;
  1503. if (!p->skip_locking)
  1504. p->locks[level] = 1;
  1505. btrfs_clear_path_blocking(p, NULL);
  1506. /*
  1507. * we have a lock on b and as long as we aren't changing
  1508. * the tree, there is no way to for the items in b to change.
  1509. * It is safe to drop the lock on our parent before we
  1510. * go through the expensive btree search on b.
  1511. *
  1512. * If cow is true, then we might be changing slot zero,
  1513. * which may require changing the parent. So, we can't
  1514. * drop the lock until after we know which slot we're
  1515. * operating on.
  1516. */
  1517. if (!cow)
  1518. btrfs_unlock_up_safe(p, level + 1);
  1519. ret = bin_search(b, key, level, &slot);
  1520. if (level != 0) {
  1521. int dec = 0;
  1522. if (ret && slot > 0) {
  1523. dec = 1;
  1524. slot -= 1;
  1525. }
  1526. p->slots[level] = slot;
  1527. err = setup_nodes_for_search(trans, root, p, b, level,
  1528. ins_len);
  1529. if (err == -EAGAIN)
  1530. goto again;
  1531. if (err) {
  1532. ret = err;
  1533. goto done;
  1534. }
  1535. b = p->nodes[level];
  1536. slot = p->slots[level];
  1537. unlock_up(p, level, lowest_unlock);
  1538. if (level == lowest_level) {
  1539. if (dec)
  1540. p->slots[level]++;
  1541. goto done;
  1542. }
  1543. err = read_block_for_search(trans, root, p,
  1544. &b, level, slot, key);
  1545. if (err == -EAGAIN)
  1546. goto again;
  1547. if (err) {
  1548. ret = err;
  1549. goto done;
  1550. }
  1551. if (!p->skip_locking) {
  1552. btrfs_clear_path_blocking(p, NULL);
  1553. err = btrfs_try_spin_lock(b);
  1554. if (!err) {
  1555. btrfs_set_path_blocking(p);
  1556. btrfs_tree_lock(b);
  1557. btrfs_clear_path_blocking(p, b);
  1558. }
  1559. }
  1560. } else {
  1561. p->slots[level] = slot;
  1562. if (ins_len > 0 &&
  1563. btrfs_leaf_free_space(root, b) < ins_len) {
  1564. btrfs_set_path_blocking(p);
  1565. err = split_leaf(trans, root, key,
  1566. p, ins_len, ret == 0);
  1567. btrfs_clear_path_blocking(p, NULL);
  1568. BUG_ON(err > 0);
  1569. if (err) {
  1570. ret = err;
  1571. goto done;
  1572. }
  1573. }
  1574. if (!p->search_for_split)
  1575. unlock_up(p, level, lowest_unlock);
  1576. goto done;
  1577. }
  1578. }
  1579. ret = 1;
  1580. done:
  1581. /*
  1582. * we don't really know what they plan on doing with the path
  1583. * from here on, so for now just mark it as blocking
  1584. */
  1585. if (!p->leave_spinning)
  1586. btrfs_set_path_blocking(p);
  1587. if (ret < 0)
  1588. btrfs_release_path(p);
  1589. return ret;
  1590. }
  1591. /*
  1592. * adjust the pointers going up the tree, starting at level
  1593. * making sure the right key of each node is points to 'key'.
  1594. * This is used after shifting pointers to the left, so it stops
  1595. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1596. * higher levels
  1597. *
  1598. * If this fails to write a tree block, it returns -1, but continues
  1599. * fixing up the blocks in ram so the tree is consistent.
  1600. */
  1601. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1602. struct btrfs_root *root, struct btrfs_path *path,
  1603. struct btrfs_disk_key *key, int level)
  1604. {
  1605. int i;
  1606. int ret = 0;
  1607. struct extent_buffer *t;
  1608. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1609. int tslot = path->slots[i];
  1610. if (!path->nodes[i])
  1611. break;
  1612. t = path->nodes[i];
  1613. btrfs_set_node_key(t, key, tslot);
  1614. btrfs_mark_buffer_dirty(path->nodes[i]);
  1615. if (tslot != 0)
  1616. break;
  1617. }
  1618. return ret;
  1619. }
  1620. /*
  1621. * update item key.
  1622. *
  1623. * This function isn't completely safe. It's the caller's responsibility
  1624. * that the new key won't break the order
  1625. */
  1626. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1627. struct btrfs_root *root, struct btrfs_path *path,
  1628. struct btrfs_key *new_key)
  1629. {
  1630. struct btrfs_disk_key disk_key;
  1631. struct extent_buffer *eb;
  1632. int slot;
  1633. eb = path->nodes[0];
  1634. slot = path->slots[0];
  1635. if (slot > 0) {
  1636. btrfs_item_key(eb, &disk_key, slot - 1);
  1637. if (comp_keys(&disk_key, new_key) >= 0)
  1638. return -1;
  1639. }
  1640. if (slot < btrfs_header_nritems(eb) - 1) {
  1641. btrfs_item_key(eb, &disk_key, slot + 1);
  1642. if (comp_keys(&disk_key, new_key) <= 0)
  1643. return -1;
  1644. }
  1645. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1646. btrfs_set_item_key(eb, &disk_key, slot);
  1647. btrfs_mark_buffer_dirty(eb);
  1648. if (slot == 0)
  1649. fixup_low_keys(trans, root, path, &disk_key, 1);
  1650. return 0;
  1651. }
  1652. /*
  1653. * try to push data from one node into the next node left in the
  1654. * tree.
  1655. *
  1656. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1657. * error, and > 0 if there was no room in the left hand block.
  1658. */
  1659. static int push_node_left(struct btrfs_trans_handle *trans,
  1660. struct btrfs_root *root, struct extent_buffer *dst,
  1661. struct extent_buffer *src, int empty)
  1662. {
  1663. int push_items = 0;
  1664. int src_nritems;
  1665. int dst_nritems;
  1666. int ret = 0;
  1667. src_nritems = btrfs_header_nritems(src);
  1668. dst_nritems = btrfs_header_nritems(dst);
  1669. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1670. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1671. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1672. if (!empty && src_nritems <= 8)
  1673. return 1;
  1674. if (push_items <= 0)
  1675. return 1;
  1676. if (empty) {
  1677. push_items = min(src_nritems, push_items);
  1678. if (push_items < src_nritems) {
  1679. /* leave at least 8 pointers in the node if
  1680. * we aren't going to empty it
  1681. */
  1682. if (src_nritems - push_items < 8) {
  1683. if (push_items <= 8)
  1684. return 1;
  1685. push_items -= 8;
  1686. }
  1687. }
  1688. } else
  1689. push_items = min(src_nritems - 8, push_items);
  1690. copy_extent_buffer(dst, src,
  1691. btrfs_node_key_ptr_offset(dst_nritems),
  1692. btrfs_node_key_ptr_offset(0),
  1693. push_items * sizeof(struct btrfs_key_ptr));
  1694. if (push_items < src_nritems) {
  1695. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1696. btrfs_node_key_ptr_offset(push_items),
  1697. (src_nritems - push_items) *
  1698. sizeof(struct btrfs_key_ptr));
  1699. }
  1700. btrfs_set_header_nritems(src, src_nritems - push_items);
  1701. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1702. btrfs_mark_buffer_dirty(src);
  1703. btrfs_mark_buffer_dirty(dst);
  1704. return ret;
  1705. }
  1706. /*
  1707. * try to push data from one node into the next node right in the
  1708. * tree.
  1709. *
  1710. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1711. * error, and > 0 if there was no room in the right hand block.
  1712. *
  1713. * this will only push up to 1/2 the contents of the left node over
  1714. */
  1715. static int balance_node_right(struct btrfs_trans_handle *trans,
  1716. struct btrfs_root *root,
  1717. struct extent_buffer *dst,
  1718. struct extent_buffer *src)
  1719. {
  1720. int push_items = 0;
  1721. int max_push;
  1722. int src_nritems;
  1723. int dst_nritems;
  1724. int ret = 0;
  1725. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1726. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1727. src_nritems = btrfs_header_nritems(src);
  1728. dst_nritems = btrfs_header_nritems(dst);
  1729. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1730. if (push_items <= 0)
  1731. return 1;
  1732. if (src_nritems < 4)
  1733. return 1;
  1734. max_push = src_nritems / 2 + 1;
  1735. /* don't try to empty the node */
  1736. if (max_push >= src_nritems)
  1737. return 1;
  1738. if (max_push < push_items)
  1739. push_items = max_push;
  1740. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1741. btrfs_node_key_ptr_offset(0),
  1742. (dst_nritems) *
  1743. sizeof(struct btrfs_key_ptr));
  1744. copy_extent_buffer(dst, src,
  1745. btrfs_node_key_ptr_offset(0),
  1746. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1747. push_items * sizeof(struct btrfs_key_ptr));
  1748. btrfs_set_header_nritems(src, src_nritems - push_items);
  1749. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1750. btrfs_mark_buffer_dirty(src);
  1751. btrfs_mark_buffer_dirty(dst);
  1752. return ret;
  1753. }
  1754. /*
  1755. * helper function to insert a new root level in the tree.
  1756. * A new node is allocated, and a single item is inserted to
  1757. * point to the existing root
  1758. *
  1759. * returns zero on success or < 0 on failure.
  1760. */
  1761. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1762. struct btrfs_root *root,
  1763. struct btrfs_path *path, int level)
  1764. {
  1765. u64 lower_gen;
  1766. struct extent_buffer *lower;
  1767. struct extent_buffer *c;
  1768. struct extent_buffer *old;
  1769. struct btrfs_disk_key lower_key;
  1770. BUG_ON(path->nodes[level]);
  1771. BUG_ON(path->nodes[level-1] != root->node);
  1772. lower = path->nodes[level-1];
  1773. if (level == 1)
  1774. btrfs_item_key(lower, &lower_key, 0);
  1775. else
  1776. btrfs_node_key(lower, &lower_key, 0);
  1777. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1778. root->root_key.objectid, &lower_key,
  1779. level, root->node->start, 0);
  1780. if (IS_ERR(c))
  1781. return PTR_ERR(c);
  1782. root_add_used(root, root->nodesize);
  1783. memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
  1784. btrfs_set_header_nritems(c, 1);
  1785. btrfs_set_header_level(c, level);
  1786. btrfs_set_header_bytenr(c, c->start);
  1787. btrfs_set_header_generation(c, trans->transid);
  1788. btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
  1789. btrfs_set_header_owner(c, root->root_key.objectid);
  1790. write_extent_buffer(c, root->fs_info->fsid,
  1791. (unsigned long)btrfs_header_fsid(c),
  1792. BTRFS_FSID_SIZE);
  1793. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1794. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1795. BTRFS_UUID_SIZE);
  1796. btrfs_set_node_key(c, &lower_key, 0);
  1797. btrfs_set_node_blockptr(c, 0, lower->start);
  1798. lower_gen = btrfs_header_generation(lower);
  1799. WARN_ON(lower_gen != trans->transid);
  1800. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1801. btrfs_mark_buffer_dirty(c);
  1802. old = root->node;
  1803. rcu_assign_pointer(root->node, c);
  1804. /* the super has an extra ref to root->node */
  1805. free_extent_buffer(old);
  1806. add_root_to_dirty_list(root);
  1807. extent_buffer_get(c);
  1808. path->nodes[level] = c;
  1809. path->locks[level] = 1;
  1810. path->slots[level] = 0;
  1811. return 0;
  1812. }
  1813. /*
  1814. * worker function to insert a single pointer in a node.
  1815. * the node should have enough room for the pointer already
  1816. *
  1817. * slot and level indicate where you want the key to go, and
  1818. * blocknr is the block the key points to.
  1819. *
  1820. * returns zero on success and < 0 on any error
  1821. */
  1822. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1823. *root, struct btrfs_path *path, struct btrfs_disk_key
  1824. *key, u64 bytenr, int slot, int level)
  1825. {
  1826. struct extent_buffer *lower;
  1827. int nritems;
  1828. BUG_ON(!path->nodes[level]);
  1829. btrfs_assert_tree_locked(path->nodes[level]);
  1830. lower = path->nodes[level];
  1831. nritems = btrfs_header_nritems(lower);
  1832. BUG_ON(slot > nritems);
  1833. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1834. BUG();
  1835. if (slot != nritems) {
  1836. memmove_extent_buffer(lower,
  1837. btrfs_node_key_ptr_offset(slot + 1),
  1838. btrfs_node_key_ptr_offset(slot),
  1839. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1840. }
  1841. btrfs_set_node_key(lower, key, slot);
  1842. btrfs_set_node_blockptr(lower, slot, bytenr);
  1843. WARN_ON(trans->transid == 0);
  1844. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1845. btrfs_set_header_nritems(lower, nritems + 1);
  1846. btrfs_mark_buffer_dirty(lower);
  1847. return 0;
  1848. }
  1849. /*
  1850. * split the node at the specified level in path in two.
  1851. * The path is corrected to point to the appropriate node after the split
  1852. *
  1853. * Before splitting this tries to make some room in the node by pushing
  1854. * left and right, if either one works, it returns right away.
  1855. *
  1856. * returns 0 on success and < 0 on failure
  1857. */
  1858. static noinline int split_node(struct btrfs_trans_handle *trans,
  1859. struct btrfs_root *root,
  1860. struct btrfs_path *path, int level)
  1861. {
  1862. struct extent_buffer *c;
  1863. struct extent_buffer *split;
  1864. struct btrfs_disk_key disk_key;
  1865. int mid;
  1866. int ret;
  1867. int wret;
  1868. u32 c_nritems;
  1869. c = path->nodes[level];
  1870. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1871. if (c == root->node) {
  1872. /* trying to split the root, lets make a new one */
  1873. ret = insert_new_root(trans, root, path, level + 1);
  1874. if (ret)
  1875. return ret;
  1876. } else {
  1877. ret = push_nodes_for_insert(trans, root, path, level);
  1878. c = path->nodes[level];
  1879. if (!ret && btrfs_header_nritems(c) <
  1880. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1881. return 0;
  1882. if (ret < 0)
  1883. return ret;
  1884. }
  1885. c_nritems = btrfs_header_nritems(c);
  1886. mid = (c_nritems + 1) / 2;
  1887. btrfs_node_key(c, &disk_key, mid);
  1888. split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1889. root->root_key.objectid,
  1890. &disk_key, level, c->start, 0);
  1891. if (IS_ERR(split))
  1892. return PTR_ERR(split);
  1893. root_add_used(root, root->nodesize);
  1894. memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
  1895. btrfs_set_header_level(split, btrfs_header_level(c));
  1896. btrfs_set_header_bytenr(split, split->start);
  1897. btrfs_set_header_generation(split, trans->transid);
  1898. btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
  1899. btrfs_set_header_owner(split, root->root_key.objectid);
  1900. write_extent_buffer(split, root->fs_info->fsid,
  1901. (unsigned long)btrfs_header_fsid(split),
  1902. BTRFS_FSID_SIZE);
  1903. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1904. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1905. BTRFS_UUID_SIZE);
  1906. copy_extent_buffer(split, c,
  1907. btrfs_node_key_ptr_offset(0),
  1908. btrfs_node_key_ptr_offset(mid),
  1909. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1910. btrfs_set_header_nritems(split, c_nritems - mid);
  1911. btrfs_set_header_nritems(c, mid);
  1912. ret = 0;
  1913. btrfs_mark_buffer_dirty(c);
  1914. btrfs_mark_buffer_dirty(split);
  1915. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1916. path->slots[level + 1] + 1,
  1917. level + 1);
  1918. if (wret)
  1919. ret = wret;
  1920. if (path->slots[level] >= mid) {
  1921. path->slots[level] -= mid;
  1922. btrfs_tree_unlock(c);
  1923. free_extent_buffer(c);
  1924. path->nodes[level] = split;
  1925. path->slots[level + 1] += 1;
  1926. } else {
  1927. btrfs_tree_unlock(split);
  1928. free_extent_buffer(split);
  1929. }
  1930. return ret;
  1931. }
  1932. /*
  1933. * how many bytes are required to store the items in a leaf. start
  1934. * and nr indicate which items in the leaf to check. This totals up the
  1935. * space used both by the item structs and the item data
  1936. */
  1937. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  1938. {
  1939. int data_len;
  1940. int nritems = btrfs_header_nritems(l);
  1941. int end = min(nritems, start + nr) - 1;
  1942. if (!nr)
  1943. return 0;
  1944. data_len = btrfs_item_end_nr(l, start);
  1945. data_len = data_len - btrfs_item_offset_nr(l, end);
  1946. data_len += sizeof(struct btrfs_item) * nr;
  1947. WARN_ON(data_len < 0);
  1948. return data_len;
  1949. }
  1950. /*
  1951. * The space between the end of the leaf items and
  1952. * the start of the leaf data. IOW, how much room
  1953. * the leaf has left for both items and data
  1954. */
  1955. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  1956. struct extent_buffer *leaf)
  1957. {
  1958. int nritems = btrfs_header_nritems(leaf);
  1959. int ret;
  1960. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  1961. if (ret < 0) {
  1962. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  1963. "used %d nritems %d\n",
  1964. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  1965. leaf_space_used(leaf, 0, nritems), nritems);
  1966. }
  1967. return ret;
  1968. }
  1969. /*
  1970. * min slot controls the lowest index we're willing to push to the
  1971. * right. We'll push up to and including min_slot, but no lower
  1972. */
  1973. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  1974. struct btrfs_root *root,
  1975. struct btrfs_path *path,
  1976. int data_size, int empty,
  1977. struct extent_buffer *right,
  1978. int free_space, u32 left_nritems,
  1979. u32 min_slot)
  1980. {
  1981. struct extent_buffer *left = path->nodes[0];
  1982. struct extent_buffer *upper = path->nodes[1];
  1983. struct btrfs_disk_key disk_key;
  1984. int slot;
  1985. u32 i;
  1986. int push_space = 0;
  1987. int push_items = 0;
  1988. struct btrfs_item *item;
  1989. u32 nr;
  1990. u32 right_nritems;
  1991. u32 data_end;
  1992. u32 this_item_size;
  1993. if (empty)
  1994. nr = 0;
  1995. else
  1996. nr = max_t(u32, 1, min_slot);
  1997. if (path->slots[0] >= left_nritems)
  1998. push_space += data_size;
  1999. slot = path->slots[1];
  2000. i = left_nritems - 1;
  2001. while (i >= nr) {
  2002. item = btrfs_item_nr(left, i);
  2003. if (!empty && push_items > 0) {
  2004. if (path->slots[0] > i)
  2005. break;
  2006. if (path->slots[0] == i) {
  2007. int space = btrfs_leaf_free_space(root, left);
  2008. if (space + push_space * 2 > free_space)
  2009. break;
  2010. }
  2011. }
  2012. if (path->slots[0] == i)
  2013. push_space += data_size;
  2014. if (!left->map_token) {
  2015. map_extent_buffer(left, (unsigned long)item,
  2016. sizeof(struct btrfs_item),
  2017. &left->map_token, &left->kaddr,
  2018. &left->map_start, &left->map_len,
  2019. KM_USER1);
  2020. }
  2021. this_item_size = btrfs_item_size(left, item);
  2022. if (this_item_size + sizeof(*item) + push_space > free_space)
  2023. break;
  2024. push_items++;
  2025. push_space += this_item_size + sizeof(*item);
  2026. if (i == 0)
  2027. break;
  2028. i--;
  2029. }
  2030. if (left->map_token) {
  2031. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2032. left->map_token = NULL;
  2033. }
  2034. if (push_items == 0)
  2035. goto out_unlock;
  2036. if (!empty && push_items == left_nritems)
  2037. WARN_ON(1);
  2038. /* push left to right */
  2039. right_nritems = btrfs_header_nritems(right);
  2040. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2041. push_space -= leaf_data_end(root, left);
  2042. /* make room in the right data area */
  2043. data_end = leaf_data_end(root, right);
  2044. memmove_extent_buffer(right,
  2045. btrfs_leaf_data(right) + data_end - push_space,
  2046. btrfs_leaf_data(right) + data_end,
  2047. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2048. /* copy from the left data area */
  2049. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2050. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2051. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2052. push_space);
  2053. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2054. btrfs_item_nr_offset(0),
  2055. right_nritems * sizeof(struct btrfs_item));
  2056. /* copy the items from left to right */
  2057. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2058. btrfs_item_nr_offset(left_nritems - push_items),
  2059. push_items * sizeof(struct btrfs_item));
  2060. /* update the item pointers */
  2061. right_nritems += push_items;
  2062. btrfs_set_header_nritems(right, right_nritems);
  2063. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2064. for (i = 0; i < right_nritems; i++) {
  2065. item = btrfs_item_nr(right, i);
  2066. if (!right->map_token) {
  2067. map_extent_buffer(right, (unsigned long)item,
  2068. sizeof(struct btrfs_item),
  2069. &right->map_token, &right->kaddr,
  2070. &right->map_start, &right->map_len,
  2071. KM_USER1);
  2072. }
  2073. push_space -= btrfs_item_size(right, item);
  2074. btrfs_set_item_offset(right, item, push_space);
  2075. }
  2076. if (right->map_token) {
  2077. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2078. right->map_token = NULL;
  2079. }
  2080. left_nritems -= push_items;
  2081. btrfs_set_header_nritems(left, left_nritems);
  2082. if (left_nritems)
  2083. btrfs_mark_buffer_dirty(left);
  2084. else
  2085. clean_tree_block(trans, root, left);
  2086. btrfs_mark_buffer_dirty(right);
  2087. btrfs_item_key(right, &disk_key, 0);
  2088. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2089. btrfs_mark_buffer_dirty(upper);
  2090. /* then fixup the leaf pointer in the path */
  2091. if (path->slots[0] >= left_nritems) {
  2092. path->slots[0] -= left_nritems;
  2093. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2094. clean_tree_block(trans, root, path->nodes[0]);
  2095. btrfs_tree_unlock(path->nodes[0]);
  2096. free_extent_buffer(path->nodes[0]);
  2097. path->nodes[0] = right;
  2098. path->slots[1] += 1;
  2099. } else {
  2100. btrfs_tree_unlock(right);
  2101. free_extent_buffer(right);
  2102. }
  2103. return 0;
  2104. out_unlock:
  2105. btrfs_tree_unlock(right);
  2106. free_extent_buffer(right);
  2107. return 1;
  2108. }
  2109. /*
  2110. * push some data in the path leaf to the right, trying to free up at
  2111. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2112. *
  2113. * returns 1 if the push failed because the other node didn't have enough
  2114. * room, 0 if everything worked out and < 0 if there were major errors.
  2115. *
  2116. * this will push starting from min_slot to the end of the leaf. It won't
  2117. * push any slot lower than min_slot
  2118. */
  2119. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2120. *root, struct btrfs_path *path,
  2121. int min_data_size, int data_size,
  2122. int empty, u32 min_slot)
  2123. {
  2124. struct extent_buffer *left = path->nodes[0];
  2125. struct extent_buffer *right;
  2126. struct extent_buffer *upper;
  2127. int slot;
  2128. int free_space;
  2129. u32 left_nritems;
  2130. int ret;
  2131. if (!path->nodes[1])
  2132. return 1;
  2133. slot = path->slots[1];
  2134. upper = path->nodes[1];
  2135. if (slot >= btrfs_header_nritems(upper) - 1)
  2136. return 1;
  2137. btrfs_assert_tree_locked(path->nodes[1]);
  2138. right = read_node_slot(root, upper, slot + 1);
  2139. if (right == NULL)
  2140. return 1;
  2141. btrfs_tree_lock(right);
  2142. btrfs_set_lock_blocking(right);
  2143. free_space = btrfs_leaf_free_space(root, right);
  2144. if (free_space < data_size)
  2145. goto out_unlock;
  2146. /* cow and double check */
  2147. ret = btrfs_cow_block(trans, root, right, upper,
  2148. slot + 1, &right);
  2149. if (ret)
  2150. goto out_unlock;
  2151. free_space = btrfs_leaf_free_space(root, right);
  2152. if (free_space < data_size)
  2153. goto out_unlock;
  2154. left_nritems = btrfs_header_nritems(left);
  2155. if (left_nritems == 0)
  2156. goto out_unlock;
  2157. return __push_leaf_right(trans, root, path, min_data_size, empty,
  2158. right, free_space, left_nritems, min_slot);
  2159. out_unlock:
  2160. btrfs_tree_unlock(right);
  2161. free_extent_buffer(right);
  2162. return 1;
  2163. }
  2164. /*
  2165. * push some data in the path leaf to the left, trying to free up at
  2166. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2167. *
  2168. * max_slot can put a limit on how far into the leaf we'll push items. The
  2169. * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
  2170. * items
  2171. */
  2172. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  2173. struct btrfs_root *root,
  2174. struct btrfs_path *path, int data_size,
  2175. int empty, struct extent_buffer *left,
  2176. int free_space, u32 right_nritems,
  2177. u32 max_slot)
  2178. {
  2179. struct btrfs_disk_key disk_key;
  2180. struct extent_buffer *right = path->nodes[0];
  2181. int i;
  2182. int push_space = 0;
  2183. int push_items = 0;
  2184. struct btrfs_item *item;
  2185. u32 old_left_nritems;
  2186. u32 nr;
  2187. int ret = 0;
  2188. int wret;
  2189. u32 this_item_size;
  2190. u32 old_left_item_size;
  2191. if (empty)
  2192. nr = min(right_nritems, max_slot);
  2193. else
  2194. nr = min(right_nritems - 1, max_slot);
  2195. for (i = 0; i < nr; i++) {
  2196. item = btrfs_item_nr(right, i);
  2197. if (!right->map_token) {
  2198. map_extent_buffer(right, (unsigned long)item,
  2199. sizeof(struct btrfs_item),
  2200. &right->map_token, &right->kaddr,
  2201. &right->map_start, &right->map_len,
  2202. KM_USER1);
  2203. }
  2204. if (!empty && push_items > 0) {
  2205. if (path->slots[0] < i)
  2206. break;
  2207. if (path->slots[0] == i) {
  2208. int space = btrfs_leaf_free_space(root, right);
  2209. if (space + push_space * 2 > free_space)
  2210. break;
  2211. }
  2212. }
  2213. if (path->slots[0] == i)
  2214. push_space += data_size;
  2215. this_item_size = btrfs_item_size(right, item);
  2216. if (this_item_size + sizeof(*item) + push_space > free_space)
  2217. break;
  2218. push_items++;
  2219. push_space += this_item_size + sizeof(*item);
  2220. }
  2221. if (right->map_token) {
  2222. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2223. right->map_token = NULL;
  2224. }
  2225. if (push_items == 0) {
  2226. ret = 1;
  2227. goto out;
  2228. }
  2229. if (!empty && push_items == btrfs_header_nritems(right))
  2230. WARN_ON(1);
  2231. /* push data from right to left */
  2232. copy_extent_buffer(left, right,
  2233. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2234. btrfs_item_nr_offset(0),
  2235. push_items * sizeof(struct btrfs_item));
  2236. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2237. btrfs_item_offset_nr(right, push_items - 1);
  2238. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2239. leaf_data_end(root, left) - push_space,
  2240. btrfs_leaf_data(right) +
  2241. btrfs_item_offset_nr(right, push_items - 1),
  2242. push_space);
  2243. old_left_nritems = btrfs_header_nritems(left);
  2244. BUG_ON(old_left_nritems <= 0);
  2245. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2246. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2247. u32 ioff;
  2248. item = btrfs_item_nr(left, i);
  2249. if (!left->map_token) {
  2250. map_extent_buffer(left, (unsigned long)item,
  2251. sizeof(struct btrfs_item),
  2252. &left->map_token, &left->kaddr,
  2253. &left->map_start, &left->map_len,
  2254. KM_USER1);
  2255. }
  2256. ioff = btrfs_item_offset(left, item);
  2257. btrfs_set_item_offset(left, item,
  2258. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2259. }
  2260. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2261. if (left->map_token) {
  2262. unmap_extent_buffer(left, left->map_token, KM_USER1);
  2263. left->map_token = NULL;
  2264. }
  2265. /* fixup right node */
  2266. if (push_items > right_nritems) {
  2267. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2268. right_nritems);
  2269. WARN_ON(1);
  2270. }
  2271. if (push_items < right_nritems) {
  2272. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2273. leaf_data_end(root, right);
  2274. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2275. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2276. btrfs_leaf_data(right) +
  2277. leaf_data_end(root, right), push_space);
  2278. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2279. btrfs_item_nr_offset(push_items),
  2280. (btrfs_header_nritems(right) - push_items) *
  2281. sizeof(struct btrfs_item));
  2282. }
  2283. right_nritems -= push_items;
  2284. btrfs_set_header_nritems(right, right_nritems);
  2285. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2286. for (i = 0; i < right_nritems; i++) {
  2287. item = btrfs_item_nr(right, i);
  2288. if (!right->map_token) {
  2289. map_extent_buffer(right, (unsigned long)item,
  2290. sizeof(struct btrfs_item),
  2291. &right->map_token, &right->kaddr,
  2292. &right->map_start, &right->map_len,
  2293. KM_USER1);
  2294. }
  2295. push_space = push_space - btrfs_item_size(right, item);
  2296. btrfs_set_item_offset(right, item, push_space);
  2297. }
  2298. if (right->map_token) {
  2299. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2300. right->map_token = NULL;
  2301. }
  2302. btrfs_mark_buffer_dirty(left);
  2303. if (right_nritems)
  2304. btrfs_mark_buffer_dirty(right);
  2305. else
  2306. clean_tree_block(trans, root, right);
  2307. btrfs_item_key(right, &disk_key, 0);
  2308. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2309. if (wret)
  2310. ret = wret;
  2311. /* then fixup the leaf pointer in the path */
  2312. if (path->slots[0] < push_items) {
  2313. path->slots[0] += old_left_nritems;
  2314. btrfs_tree_unlock(path->nodes[0]);
  2315. free_extent_buffer(path->nodes[0]);
  2316. path->nodes[0] = left;
  2317. path->slots[1] -= 1;
  2318. } else {
  2319. btrfs_tree_unlock(left);
  2320. free_extent_buffer(left);
  2321. path->slots[0] -= push_items;
  2322. }
  2323. BUG_ON(path->slots[0] < 0);
  2324. return ret;
  2325. out:
  2326. btrfs_tree_unlock(left);
  2327. free_extent_buffer(left);
  2328. return ret;
  2329. }
  2330. /*
  2331. * push some data in the path leaf to the left, trying to free up at
  2332. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2333. *
  2334. * max_slot can put a limit on how far into the leaf we'll push items. The
  2335. * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
  2336. * items
  2337. */
  2338. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2339. *root, struct btrfs_path *path, int min_data_size,
  2340. int data_size, int empty, u32 max_slot)
  2341. {
  2342. struct extent_buffer *right = path->nodes[0];
  2343. struct extent_buffer *left;
  2344. int slot;
  2345. int free_space;
  2346. u32 right_nritems;
  2347. int ret = 0;
  2348. slot = path->slots[1];
  2349. if (slot == 0)
  2350. return 1;
  2351. if (!path->nodes[1])
  2352. return 1;
  2353. right_nritems = btrfs_header_nritems(right);
  2354. if (right_nritems == 0)
  2355. return 1;
  2356. btrfs_assert_tree_locked(path->nodes[1]);
  2357. left = read_node_slot(root, path->nodes[1], slot - 1);
  2358. if (left == NULL)
  2359. return 1;
  2360. btrfs_tree_lock(left);
  2361. btrfs_set_lock_blocking(left);
  2362. free_space = btrfs_leaf_free_space(root, left);
  2363. if (free_space < data_size) {
  2364. ret = 1;
  2365. goto out;
  2366. }
  2367. /* cow and double check */
  2368. ret = btrfs_cow_block(trans, root, left,
  2369. path->nodes[1], slot - 1, &left);
  2370. if (ret) {
  2371. /* we hit -ENOSPC, but it isn't fatal here */
  2372. ret = 1;
  2373. goto out;
  2374. }
  2375. free_space = btrfs_leaf_free_space(root, left);
  2376. if (free_space < data_size) {
  2377. ret = 1;
  2378. goto out;
  2379. }
  2380. return __push_leaf_left(trans, root, path, min_data_size,
  2381. empty, left, free_space, right_nritems,
  2382. max_slot);
  2383. out:
  2384. btrfs_tree_unlock(left);
  2385. free_extent_buffer(left);
  2386. return ret;
  2387. }
  2388. /*
  2389. * split the path's leaf in two, making sure there is at least data_size
  2390. * available for the resulting leaf level of the path.
  2391. *
  2392. * returns 0 if all went well and < 0 on failure.
  2393. */
  2394. static noinline int copy_for_split(struct btrfs_trans_handle *trans,
  2395. struct btrfs_root *root,
  2396. struct btrfs_path *path,
  2397. struct extent_buffer *l,
  2398. struct extent_buffer *right,
  2399. int slot, int mid, int nritems)
  2400. {
  2401. int data_copy_size;
  2402. int rt_data_off;
  2403. int i;
  2404. int ret = 0;
  2405. int wret;
  2406. struct btrfs_disk_key disk_key;
  2407. nritems = nritems - mid;
  2408. btrfs_set_header_nritems(right, nritems);
  2409. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2410. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2411. btrfs_item_nr_offset(mid),
  2412. nritems * sizeof(struct btrfs_item));
  2413. copy_extent_buffer(right, l,
  2414. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2415. data_copy_size, btrfs_leaf_data(l) +
  2416. leaf_data_end(root, l), data_copy_size);
  2417. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2418. btrfs_item_end_nr(l, mid);
  2419. for (i = 0; i < nritems; i++) {
  2420. struct btrfs_item *item = btrfs_item_nr(right, i);
  2421. u32 ioff;
  2422. if (!right->map_token) {
  2423. map_extent_buffer(right, (unsigned long)item,
  2424. sizeof(struct btrfs_item),
  2425. &right->map_token, &right->kaddr,
  2426. &right->map_start, &right->map_len,
  2427. KM_USER1);
  2428. }
  2429. ioff = btrfs_item_offset(right, item);
  2430. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2431. }
  2432. if (right->map_token) {
  2433. unmap_extent_buffer(right, right->map_token, KM_USER1);
  2434. right->map_token = NULL;
  2435. }
  2436. btrfs_set_header_nritems(l, mid);
  2437. ret = 0;
  2438. btrfs_item_key(right, &disk_key, 0);
  2439. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2440. path->slots[1] + 1, 1);
  2441. if (wret)
  2442. ret = wret;
  2443. btrfs_mark_buffer_dirty(right);
  2444. btrfs_mark_buffer_dirty(l);
  2445. BUG_ON(path->slots[0] != slot);
  2446. if (mid <= slot) {
  2447. btrfs_tree_unlock(path->nodes[0]);
  2448. free_extent_buffer(path->nodes[0]);
  2449. path->nodes[0] = right;
  2450. path->slots[0] -= mid;
  2451. path->slots[1] += 1;
  2452. } else {
  2453. btrfs_tree_unlock(right);
  2454. free_extent_buffer(right);
  2455. }
  2456. BUG_ON(path->slots[0] < 0);
  2457. return ret;
  2458. }
  2459. /*
  2460. * double splits happen when we need to insert a big item in the middle
  2461. * of a leaf. A double split can leave us with 3 mostly empty leaves:
  2462. * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
  2463. * A B C
  2464. *
  2465. * We avoid this by trying to push the items on either side of our target
  2466. * into the adjacent leaves. If all goes well we can avoid the double split
  2467. * completely.
  2468. */
  2469. static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
  2470. struct btrfs_root *root,
  2471. struct btrfs_path *path,
  2472. int data_size)
  2473. {
  2474. int ret;
  2475. int progress = 0;
  2476. int slot;
  2477. u32 nritems;
  2478. slot = path->slots[0];
  2479. /*
  2480. * try to push all the items after our slot into the
  2481. * right leaf
  2482. */
  2483. ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
  2484. if (ret < 0)
  2485. return ret;
  2486. if (ret == 0)
  2487. progress++;
  2488. nritems = btrfs_header_nritems(path->nodes[0]);
  2489. /*
  2490. * our goal is to get our slot at the start or end of a leaf. If
  2491. * we've done so we're done
  2492. */
  2493. if (path->slots[0] == 0 || path->slots[0] == nritems)
  2494. return 0;
  2495. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2496. return 0;
  2497. /* try to push all the items before our slot into the next leaf */
  2498. slot = path->slots[0];
  2499. ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
  2500. if (ret < 0)
  2501. return ret;
  2502. if (ret == 0)
  2503. progress++;
  2504. if (progress)
  2505. return 0;
  2506. return 1;
  2507. }
  2508. /*
  2509. * split the path's leaf in two, making sure there is at least data_size
  2510. * available for the resulting leaf level of the path.
  2511. *
  2512. * returns 0 if all went well and < 0 on failure.
  2513. */
  2514. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2515. struct btrfs_root *root,
  2516. struct btrfs_key *ins_key,
  2517. struct btrfs_path *path, int data_size,
  2518. int extend)
  2519. {
  2520. struct btrfs_disk_key disk_key;
  2521. struct extent_buffer *l;
  2522. u32 nritems;
  2523. int mid;
  2524. int slot;
  2525. struct extent_buffer *right;
  2526. int ret = 0;
  2527. int wret;
  2528. int split;
  2529. int num_doubles = 0;
  2530. int tried_avoid_double = 0;
  2531. l = path->nodes[0];
  2532. slot = path->slots[0];
  2533. if (extend && data_size + btrfs_item_size_nr(l, slot) +
  2534. sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
  2535. return -EOVERFLOW;
  2536. /* first try to make some room by pushing left and right */
  2537. if (data_size) {
  2538. wret = push_leaf_right(trans, root, path, data_size,
  2539. data_size, 0, 0);
  2540. if (wret < 0)
  2541. return wret;
  2542. if (wret) {
  2543. wret = push_leaf_left(trans, root, path, data_size,
  2544. data_size, 0, (u32)-1);
  2545. if (wret < 0)
  2546. return wret;
  2547. }
  2548. l = path->nodes[0];
  2549. /* did the pushes work? */
  2550. if (btrfs_leaf_free_space(root, l) >= data_size)
  2551. return 0;
  2552. }
  2553. if (!path->nodes[1]) {
  2554. ret = insert_new_root(trans, root, path, 1);
  2555. if (ret)
  2556. return ret;
  2557. }
  2558. again:
  2559. split = 1;
  2560. l = path->nodes[0];
  2561. slot = path->slots[0];
  2562. nritems = btrfs_header_nritems(l);
  2563. mid = (nritems + 1) / 2;
  2564. if (mid <= slot) {
  2565. if (nritems == 1 ||
  2566. leaf_space_used(l, mid, nritems - mid) + data_size >
  2567. BTRFS_LEAF_DATA_SIZE(root)) {
  2568. if (slot >= nritems) {
  2569. split = 0;
  2570. } else {
  2571. mid = slot;
  2572. if (mid != nritems &&
  2573. leaf_space_used(l, mid, nritems - mid) +
  2574. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2575. if (data_size && !tried_avoid_double)
  2576. goto push_for_double;
  2577. split = 2;
  2578. }
  2579. }
  2580. }
  2581. } else {
  2582. if (leaf_space_used(l, 0, mid) + data_size >
  2583. BTRFS_LEAF_DATA_SIZE(root)) {
  2584. if (!extend && data_size && slot == 0) {
  2585. split = 0;
  2586. } else if ((extend || !data_size) && slot == 0) {
  2587. mid = 1;
  2588. } else {
  2589. mid = slot;
  2590. if (mid != nritems &&
  2591. leaf_space_used(l, mid, nritems - mid) +
  2592. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2593. if (data_size && !tried_avoid_double)
  2594. goto push_for_double;
  2595. split = 2 ;
  2596. }
  2597. }
  2598. }
  2599. }
  2600. if (split == 0)
  2601. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2602. else
  2603. btrfs_item_key(l, &disk_key, mid);
  2604. right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  2605. root->root_key.objectid,
  2606. &disk_key, 0, l->start, 0);
  2607. if (IS_ERR(right))
  2608. return PTR_ERR(right);
  2609. root_add_used(root, root->leafsize);
  2610. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2611. btrfs_set_header_bytenr(right, right->start);
  2612. btrfs_set_header_generation(right, trans->transid);
  2613. btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
  2614. btrfs_set_header_owner(right, root->root_key.objectid);
  2615. btrfs_set_header_level(right, 0);
  2616. write_extent_buffer(right, root->fs_info->fsid,
  2617. (unsigned long)btrfs_header_fsid(right),
  2618. BTRFS_FSID_SIZE);
  2619. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2620. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2621. BTRFS_UUID_SIZE);
  2622. if (split == 0) {
  2623. if (mid <= slot) {
  2624. btrfs_set_header_nritems(right, 0);
  2625. wret = insert_ptr(trans, root, path,
  2626. &disk_key, right->start,
  2627. path->slots[1] + 1, 1);
  2628. if (wret)
  2629. ret = wret;
  2630. btrfs_tree_unlock(path->nodes[0]);
  2631. free_extent_buffer(path->nodes[0]);
  2632. path->nodes[0] = right;
  2633. path->slots[0] = 0;
  2634. path->slots[1] += 1;
  2635. } else {
  2636. btrfs_set_header_nritems(right, 0);
  2637. wret = insert_ptr(trans, root, path,
  2638. &disk_key,
  2639. right->start,
  2640. path->slots[1], 1);
  2641. if (wret)
  2642. ret = wret;
  2643. btrfs_tree_unlock(path->nodes[0]);
  2644. free_extent_buffer(path->nodes[0]);
  2645. path->nodes[0] = right;
  2646. path->slots[0] = 0;
  2647. if (path->slots[1] == 0) {
  2648. wret = fixup_low_keys(trans, root,
  2649. path, &disk_key, 1);
  2650. if (wret)
  2651. ret = wret;
  2652. }
  2653. }
  2654. btrfs_mark_buffer_dirty(right);
  2655. return ret;
  2656. }
  2657. ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  2658. BUG_ON(ret);
  2659. if (split == 2) {
  2660. BUG_ON(num_doubles != 0);
  2661. num_doubles++;
  2662. goto again;
  2663. }
  2664. return ret;
  2665. push_for_double:
  2666. push_for_double_split(trans, root, path, data_size);
  2667. tried_avoid_double = 1;
  2668. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2669. return 0;
  2670. goto again;
  2671. }
  2672. static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
  2673. struct btrfs_root *root,
  2674. struct btrfs_path *path, int ins_len)
  2675. {
  2676. struct btrfs_key key;
  2677. struct extent_buffer *leaf;
  2678. struct btrfs_file_extent_item *fi;
  2679. u64 extent_len = 0;
  2680. u32 item_size;
  2681. int ret;
  2682. leaf = path->nodes[0];
  2683. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2684. BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
  2685. key.type != BTRFS_EXTENT_CSUM_KEY);
  2686. if (btrfs_leaf_free_space(root, leaf) >= ins_len)
  2687. return 0;
  2688. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2689. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2690. fi = btrfs_item_ptr(leaf, path->slots[0],
  2691. struct btrfs_file_extent_item);
  2692. extent_len = btrfs_file_extent_num_bytes(leaf, fi);
  2693. }
  2694. btrfs_release_path(path);
  2695. path->keep_locks = 1;
  2696. path->search_for_split = 1;
  2697. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2698. path->search_for_split = 0;
  2699. if (ret < 0)
  2700. goto err;
  2701. ret = -EAGAIN;
  2702. leaf = path->nodes[0];
  2703. /* if our item isn't there or got smaller, return now */
  2704. if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
  2705. goto err;
  2706. /* the leaf has changed, it now has room. return now */
  2707. if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
  2708. goto err;
  2709. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2710. fi = btrfs_item_ptr(leaf, path->slots[0],
  2711. struct btrfs_file_extent_item);
  2712. if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
  2713. goto err;
  2714. }
  2715. btrfs_set_path_blocking(path);
  2716. ret = split_leaf(trans, root, &key, path, ins_len, 1);
  2717. if (ret)
  2718. goto err;
  2719. path->keep_locks = 0;
  2720. btrfs_unlock_up_safe(path, 1);
  2721. return 0;
  2722. err:
  2723. path->keep_locks = 0;
  2724. return ret;
  2725. }
  2726. static noinline int split_item(struct btrfs_trans_handle *trans,
  2727. struct btrfs_root *root,
  2728. struct btrfs_path *path,
  2729. struct btrfs_key *new_key,
  2730. unsigned long split_offset)
  2731. {
  2732. struct extent_buffer *leaf;
  2733. struct btrfs_item *item;
  2734. struct btrfs_item *new_item;
  2735. int slot;
  2736. char *buf;
  2737. u32 nritems;
  2738. u32 item_size;
  2739. u32 orig_offset;
  2740. struct btrfs_disk_key disk_key;
  2741. leaf = path->nodes[0];
  2742. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2743. btrfs_set_path_blocking(path);
  2744. item = btrfs_item_nr(leaf, path->slots[0]);
  2745. orig_offset = btrfs_item_offset(leaf, item);
  2746. item_size = btrfs_item_size(leaf, item);
  2747. buf = kmalloc(item_size, GFP_NOFS);
  2748. if (!buf)
  2749. return -ENOMEM;
  2750. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2751. path->slots[0]), item_size);
  2752. slot = path->slots[0] + 1;
  2753. nritems = btrfs_header_nritems(leaf);
  2754. if (slot != nritems) {
  2755. /* shift the items */
  2756. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2757. btrfs_item_nr_offset(slot),
  2758. (nritems - slot) * sizeof(struct btrfs_item));
  2759. }
  2760. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2761. btrfs_set_item_key(leaf, &disk_key, slot);
  2762. new_item = btrfs_item_nr(leaf, slot);
  2763. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2764. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2765. btrfs_set_item_offset(leaf, item,
  2766. orig_offset + item_size - split_offset);
  2767. btrfs_set_item_size(leaf, item, split_offset);
  2768. btrfs_set_header_nritems(leaf, nritems + 1);
  2769. /* write the data for the start of the original item */
  2770. write_extent_buffer(leaf, buf,
  2771. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2772. split_offset);
  2773. /* write the data for the new item */
  2774. write_extent_buffer(leaf, buf + split_offset,
  2775. btrfs_item_ptr_offset(leaf, slot),
  2776. item_size - split_offset);
  2777. btrfs_mark_buffer_dirty(leaf);
  2778. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  2779. kfree(buf);
  2780. return 0;
  2781. }
  2782. /*
  2783. * This function splits a single item into two items,
  2784. * giving 'new_key' to the new item and splitting the
  2785. * old one at split_offset (from the start of the item).
  2786. *
  2787. * The path may be released by this operation. After
  2788. * the split, the path is pointing to the old item. The
  2789. * new item is going to be in the same node as the old one.
  2790. *
  2791. * Note, the item being split must be smaller enough to live alone on
  2792. * a tree block with room for one extra struct btrfs_item
  2793. *
  2794. * This allows us to split the item in place, keeping a lock on the
  2795. * leaf the entire time.
  2796. */
  2797. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2798. struct btrfs_root *root,
  2799. struct btrfs_path *path,
  2800. struct btrfs_key *new_key,
  2801. unsigned long split_offset)
  2802. {
  2803. int ret;
  2804. ret = setup_leaf_for_split(trans, root, path,
  2805. sizeof(struct btrfs_item));
  2806. if (ret)
  2807. return ret;
  2808. ret = split_item(trans, root, path, new_key, split_offset);
  2809. return ret;
  2810. }
  2811. /*
  2812. * This function duplicate a item, giving 'new_key' to the new item.
  2813. * It guarantees both items live in the same tree leaf and the new item
  2814. * is contiguous with the original item.
  2815. *
  2816. * This allows us to split file extent in place, keeping a lock on the
  2817. * leaf the entire time.
  2818. */
  2819. int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
  2820. struct btrfs_root *root,
  2821. struct btrfs_path *path,
  2822. struct btrfs_key *new_key)
  2823. {
  2824. struct extent_buffer *leaf;
  2825. int ret;
  2826. u32 item_size;
  2827. leaf = path->nodes[0];
  2828. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2829. ret = setup_leaf_for_split(trans, root, path,
  2830. item_size + sizeof(struct btrfs_item));
  2831. if (ret)
  2832. return ret;
  2833. path->slots[0]++;
  2834. ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
  2835. item_size, item_size +
  2836. sizeof(struct btrfs_item), 1);
  2837. BUG_ON(ret);
  2838. leaf = path->nodes[0];
  2839. memcpy_extent_buffer(leaf,
  2840. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2841. btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
  2842. item_size);
  2843. return 0;
  2844. }
  2845. /*
  2846. * make the item pointed to by the path smaller. new_size indicates
  2847. * how small to make it, and from_end tells us if we just chop bytes
  2848. * off the end of the item or if we shift the item to chop bytes off
  2849. * the front.
  2850. */
  2851. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2852. struct btrfs_root *root,
  2853. struct btrfs_path *path,
  2854. u32 new_size, int from_end)
  2855. {
  2856. int slot;
  2857. struct extent_buffer *leaf;
  2858. struct btrfs_item *item;
  2859. u32 nritems;
  2860. unsigned int data_end;
  2861. unsigned int old_data_start;
  2862. unsigned int old_size;
  2863. unsigned int size_diff;
  2864. int i;
  2865. leaf = path->nodes[0];
  2866. slot = path->slots[0];
  2867. old_size = btrfs_item_size_nr(leaf, slot);
  2868. if (old_size == new_size)
  2869. return 0;
  2870. nritems = btrfs_header_nritems(leaf);
  2871. data_end = leaf_data_end(root, leaf);
  2872. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2873. size_diff = old_size - new_size;
  2874. BUG_ON(slot < 0);
  2875. BUG_ON(slot >= nritems);
  2876. /*
  2877. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2878. */
  2879. /* first correct the data pointers */
  2880. for (i = slot; i < nritems; i++) {
  2881. u32 ioff;
  2882. item = btrfs_item_nr(leaf, i);
  2883. if (!leaf->map_token) {
  2884. map_extent_buffer(leaf, (unsigned long)item,
  2885. sizeof(struct btrfs_item),
  2886. &leaf->map_token, &leaf->kaddr,
  2887. &leaf->map_start, &leaf->map_len,
  2888. KM_USER1);
  2889. }
  2890. ioff = btrfs_item_offset(leaf, item);
  2891. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2892. }
  2893. if (leaf->map_token) {
  2894. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2895. leaf->map_token = NULL;
  2896. }
  2897. /* shift the data */
  2898. if (from_end) {
  2899. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2900. data_end + size_diff, btrfs_leaf_data(leaf) +
  2901. data_end, old_data_start + new_size - data_end);
  2902. } else {
  2903. struct btrfs_disk_key disk_key;
  2904. u64 offset;
  2905. btrfs_item_key(leaf, &disk_key, slot);
  2906. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2907. unsigned long ptr;
  2908. struct btrfs_file_extent_item *fi;
  2909. fi = btrfs_item_ptr(leaf, slot,
  2910. struct btrfs_file_extent_item);
  2911. fi = (struct btrfs_file_extent_item *)(
  2912. (unsigned long)fi - size_diff);
  2913. if (btrfs_file_extent_type(leaf, fi) ==
  2914. BTRFS_FILE_EXTENT_INLINE) {
  2915. ptr = btrfs_item_ptr_offset(leaf, slot);
  2916. memmove_extent_buffer(leaf, ptr,
  2917. (unsigned long)fi,
  2918. offsetof(struct btrfs_file_extent_item,
  2919. disk_bytenr));
  2920. }
  2921. }
  2922. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2923. data_end + size_diff, btrfs_leaf_data(leaf) +
  2924. data_end, old_data_start - data_end);
  2925. offset = btrfs_disk_key_offset(&disk_key);
  2926. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2927. btrfs_set_item_key(leaf, &disk_key, slot);
  2928. if (slot == 0)
  2929. fixup_low_keys(trans, root, path, &disk_key, 1);
  2930. }
  2931. item = btrfs_item_nr(leaf, slot);
  2932. btrfs_set_item_size(leaf, item, new_size);
  2933. btrfs_mark_buffer_dirty(leaf);
  2934. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2935. btrfs_print_leaf(root, leaf);
  2936. BUG();
  2937. }
  2938. return 0;
  2939. }
  2940. /*
  2941. * make the item pointed to by the path bigger, data_size is the new size.
  2942. */
  2943. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2944. struct btrfs_root *root, struct btrfs_path *path,
  2945. u32 data_size)
  2946. {
  2947. int slot;
  2948. struct extent_buffer *leaf;
  2949. struct btrfs_item *item;
  2950. u32 nritems;
  2951. unsigned int data_end;
  2952. unsigned int old_data;
  2953. unsigned int old_size;
  2954. int i;
  2955. leaf = path->nodes[0];
  2956. nritems = btrfs_header_nritems(leaf);
  2957. data_end = leaf_data_end(root, leaf);
  2958. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2959. btrfs_print_leaf(root, leaf);
  2960. BUG();
  2961. }
  2962. slot = path->slots[0];
  2963. old_data = btrfs_item_end_nr(leaf, slot);
  2964. BUG_ON(slot < 0);
  2965. if (slot >= nritems) {
  2966. btrfs_print_leaf(root, leaf);
  2967. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2968. slot, nritems);
  2969. BUG_ON(1);
  2970. }
  2971. /*
  2972. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2973. */
  2974. /* first correct the data pointers */
  2975. for (i = slot; i < nritems; i++) {
  2976. u32 ioff;
  2977. item = btrfs_item_nr(leaf, i);
  2978. if (!leaf->map_token) {
  2979. map_extent_buffer(leaf, (unsigned long)item,
  2980. sizeof(struct btrfs_item),
  2981. &leaf->map_token, &leaf->kaddr,
  2982. &leaf->map_start, &leaf->map_len,
  2983. KM_USER1);
  2984. }
  2985. ioff = btrfs_item_offset(leaf, item);
  2986. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2987. }
  2988. if (leaf->map_token) {
  2989. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2990. leaf->map_token = NULL;
  2991. }
  2992. /* shift the data */
  2993. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2994. data_end - data_size, btrfs_leaf_data(leaf) +
  2995. data_end, old_data - data_end);
  2996. data_end = old_data;
  2997. old_size = btrfs_item_size_nr(leaf, slot);
  2998. item = btrfs_item_nr(leaf, slot);
  2999. btrfs_set_item_size(leaf, item, old_size + data_size);
  3000. btrfs_mark_buffer_dirty(leaf);
  3001. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3002. btrfs_print_leaf(root, leaf);
  3003. BUG();
  3004. }
  3005. return 0;
  3006. }
  3007. /*
  3008. * Given a key and some data, insert items into the tree.
  3009. * This does all the path init required, making room in the tree if needed.
  3010. * Returns the number of keys that were inserted.
  3011. */
  3012. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  3013. struct btrfs_root *root,
  3014. struct btrfs_path *path,
  3015. struct btrfs_key *cpu_key, u32 *data_size,
  3016. int nr)
  3017. {
  3018. struct extent_buffer *leaf;
  3019. struct btrfs_item *item;
  3020. int ret = 0;
  3021. int slot;
  3022. int i;
  3023. u32 nritems;
  3024. u32 total_data = 0;
  3025. u32 total_size = 0;
  3026. unsigned int data_end;
  3027. struct btrfs_disk_key disk_key;
  3028. struct btrfs_key found_key;
  3029. for (i = 0; i < nr; i++) {
  3030. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  3031. BTRFS_LEAF_DATA_SIZE(root)) {
  3032. break;
  3033. nr = i;
  3034. }
  3035. total_data += data_size[i];
  3036. total_size += data_size[i] + sizeof(struct btrfs_item);
  3037. }
  3038. BUG_ON(nr == 0);
  3039. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3040. if (ret == 0)
  3041. return -EEXIST;
  3042. if (ret < 0)
  3043. goto out;
  3044. leaf = path->nodes[0];
  3045. nritems = btrfs_header_nritems(leaf);
  3046. data_end = leaf_data_end(root, leaf);
  3047. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3048. for (i = nr; i >= 0; i--) {
  3049. total_data -= data_size[i];
  3050. total_size -= data_size[i] + sizeof(struct btrfs_item);
  3051. if (total_size < btrfs_leaf_free_space(root, leaf))
  3052. break;
  3053. }
  3054. nr = i;
  3055. }
  3056. slot = path->slots[0];
  3057. BUG_ON(slot < 0);
  3058. if (slot != nritems) {
  3059. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3060. item = btrfs_item_nr(leaf, slot);
  3061. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  3062. /* figure out how many keys we can insert in here */
  3063. total_data = data_size[0];
  3064. for (i = 1; i < nr; i++) {
  3065. if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  3066. break;
  3067. total_data += data_size[i];
  3068. }
  3069. nr = i;
  3070. if (old_data < data_end) {
  3071. btrfs_print_leaf(root, leaf);
  3072. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3073. slot, old_data, data_end);
  3074. BUG_ON(1);
  3075. }
  3076. /*
  3077. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3078. */
  3079. /* first correct the data pointers */
  3080. WARN_ON(leaf->map_token);
  3081. for (i = slot; i < nritems; i++) {
  3082. u32 ioff;
  3083. item = btrfs_item_nr(leaf, i);
  3084. if (!leaf->map_token) {
  3085. map_extent_buffer(leaf, (unsigned long)item,
  3086. sizeof(struct btrfs_item),
  3087. &leaf->map_token, &leaf->kaddr,
  3088. &leaf->map_start, &leaf->map_len,
  3089. KM_USER1);
  3090. }
  3091. ioff = btrfs_item_offset(leaf, item);
  3092. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3093. }
  3094. if (leaf->map_token) {
  3095. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3096. leaf->map_token = NULL;
  3097. }
  3098. /* shift the items */
  3099. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3100. btrfs_item_nr_offset(slot),
  3101. (nritems - slot) * sizeof(struct btrfs_item));
  3102. /* shift the data */
  3103. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3104. data_end - total_data, btrfs_leaf_data(leaf) +
  3105. data_end, old_data - data_end);
  3106. data_end = old_data;
  3107. } else {
  3108. /*
  3109. * this sucks but it has to be done, if we are inserting at
  3110. * the end of the leaf only insert 1 of the items, since we
  3111. * have no way of knowing whats on the next leaf and we'd have
  3112. * to drop our current locks to figure it out
  3113. */
  3114. nr = 1;
  3115. }
  3116. /* setup the item for the new data */
  3117. for (i = 0; i < nr; i++) {
  3118. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3119. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3120. item = btrfs_item_nr(leaf, slot + i);
  3121. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3122. data_end -= data_size[i];
  3123. btrfs_set_item_size(leaf, item, data_size[i]);
  3124. }
  3125. btrfs_set_header_nritems(leaf, nritems + nr);
  3126. btrfs_mark_buffer_dirty(leaf);
  3127. ret = 0;
  3128. if (slot == 0) {
  3129. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3130. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3131. }
  3132. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3133. btrfs_print_leaf(root, leaf);
  3134. BUG();
  3135. }
  3136. out:
  3137. if (!ret)
  3138. ret = nr;
  3139. return ret;
  3140. }
  3141. /*
  3142. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3143. * to save stack depth by doing the bulk of the work in a function
  3144. * that doesn't call btrfs_search_slot
  3145. */
  3146. int setup_items_for_insert(struct btrfs_trans_handle *trans,
  3147. struct btrfs_root *root, struct btrfs_path *path,
  3148. struct btrfs_key *cpu_key, u32 *data_size,
  3149. u32 total_data, u32 total_size, int nr)
  3150. {
  3151. struct btrfs_item *item;
  3152. int i;
  3153. u32 nritems;
  3154. unsigned int data_end;
  3155. struct btrfs_disk_key disk_key;
  3156. int ret;
  3157. struct extent_buffer *leaf;
  3158. int slot;
  3159. leaf = path->nodes[0];
  3160. slot = path->slots[0];
  3161. nritems = btrfs_header_nritems(leaf);
  3162. data_end = leaf_data_end(root, leaf);
  3163. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3164. btrfs_print_leaf(root, leaf);
  3165. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3166. total_size, btrfs_leaf_free_space(root, leaf));
  3167. BUG();
  3168. }
  3169. if (slot != nritems) {
  3170. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3171. if (old_data < data_end) {
  3172. btrfs_print_leaf(root, leaf);
  3173. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3174. slot, old_data, data_end);
  3175. BUG_ON(1);
  3176. }
  3177. /*
  3178. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3179. */
  3180. /* first correct the data pointers */
  3181. WARN_ON(leaf->map_token);
  3182. for (i = slot; i < nritems; i++) {
  3183. u32 ioff;
  3184. item = btrfs_item_nr(leaf, i);
  3185. if (!leaf->map_token) {
  3186. map_extent_buffer(leaf, (unsigned long)item,
  3187. sizeof(struct btrfs_item),
  3188. &leaf->map_token, &leaf->kaddr,
  3189. &leaf->map_start, &leaf->map_len,
  3190. KM_USER1);
  3191. }
  3192. ioff = btrfs_item_offset(leaf, item);
  3193. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3194. }
  3195. if (leaf->map_token) {
  3196. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3197. leaf->map_token = NULL;
  3198. }
  3199. /* shift the items */
  3200. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3201. btrfs_item_nr_offset(slot),
  3202. (nritems - slot) * sizeof(struct btrfs_item));
  3203. /* shift the data */
  3204. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3205. data_end - total_data, btrfs_leaf_data(leaf) +
  3206. data_end, old_data - data_end);
  3207. data_end = old_data;
  3208. }
  3209. /* setup the item for the new data */
  3210. for (i = 0; i < nr; i++) {
  3211. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3212. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3213. item = btrfs_item_nr(leaf, slot + i);
  3214. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3215. data_end -= data_size[i];
  3216. btrfs_set_item_size(leaf, item, data_size[i]);
  3217. }
  3218. btrfs_set_header_nritems(leaf, nritems + nr);
  3219. ret = 0;
  3220. if (slot == 0) {
  3221. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3222. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3223. }
  3224. btrfs_unlock_up_safe(path, 1);
  3225. btrfs_mark_buffer_dirty(leaf);
  3226. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3227. btrfs_print_leaf(root, leaf);
  3228. BUG();
  3229. }
  3230. return ret;
  3231. }
  3232. /*
  3233. * Given a key and some data, insert items into the tree.
  3234. * This does all the path init required, making room in the tree if needed.
  3235. */
  3236. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3237. struct btrfs_root *root,
  3238. struct btrfs_path *path,
  3239. struct btrfs_key *cpu_key, u32 *data_size,
  3240. int nr)
  3241. {
  3242. int ret = 0;
  3243. int slot;
  3244. int i;
  3245. u32 total_size = 0;
  3246. u32 total_data = 0;
  3247. for (i = 0; i < nr; i++)
  3248. total_data += data_size[i];
  3249. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3250. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3251. if (ret == 0)
  3252. return -EEXIST;
  3253. if (ret < 0)
  3254. goto out;
  3255. slot = path->slots[0];
  3256. BUG_ON(slot < 0);
  3257. ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
  3258. total_data, total_size, nr);
  3259. out:
  3260. return ret;
  3261. }
  3262. /*
  3263. * Given a key and some data, insert an item into the tree.
  3264. * This does all the path init required, making room in the tree if needed.
  3265. */
  3266. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3267. *root, struct btrfs_key *cpu_key, void *data, u32
  3268. data_size)
  3269. {
  3270. int ret = 0;
  3271. struct btrfs_path *path;
  3272. struct extent_buffer *leaf;
  3273. unsigned long ptr;
  3274. path = btrfs_alloc_path();
  3275. if (!path)
  3276. return -ENOMEM;
  3277. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3278. if (!ret) {
  3279. leaf = path->nodes[0];
  3280. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3281. write_extent_buffer(leaf, data, ptr, data_size);
  3282. btrfs_mark_buffer_dirty(leaf);
  3283. }
  3284. btrfs_free_path(path);
  3285. return ret;
  3286. }
  3287. /*
  3288. * delete the pointer from a given node.
  3289. *
  3290. * the tree should have been previously balanced so the deletion does not
  3291. * empty a node.
  3292. */
  3293. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3294. struct btrfs_path *path, int level, int slot)
  3295. {
  3296. struct extent_buffer *parent = path->nodes[level];
  3297. u32 nritems;
  3298. int ret = 0;
  3299. int wret;
  3300. nritems = btrfs_header_nritems(parent);
  3301. if (slot != nritems - 1) {
  3302. memmove_extent_buffer(parent,
  3303. btrfs_node_key_ptr_offset(slot),
  3304. btrfs_node_key_ptr_offset(slot + 1),
  3305. sizeof(struct btrfs_key_ptr) *
  3306. (nritems - slot - 1));
  3307. }
  3308. nritems--;
  3309. btrfs_set_header_nritems(parent, nritems);
  3310. if (nritems == 0 && parent == root->node) {
  3311. BUG_ON(btrfs_header_level(root->node) != 1);
  3312. /* just turn the root into a leaf and break */
  3313. btrfs_set_header_level(root->node, 0);
  3314. } else if (slot == 0) {
  3315. struct btrfs_disk_key disk_key;
  3316. btrfs_node_key(parent, &disk_key, 0);
  3317. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3318. if (wret)
  3319. ret = wret;
  3320. }
  3321. btrfs_mark_buffer_dirty(parent);
  3322. return ret;
  3323. }
  3324. /*
  3325. * a helper function to delete the leaf pointed to by path->slots[1] and
  3326. * path->nodes[1].
  3327. *
  3328. * This deletes the pointer in path->nodes[1] and frees the leaf
  3329. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3330. *
  3331. * The path must have already been setup for deleting the leaf, including
  3332. * all the proper balancing. path->nodes[1] must be locked.
  3333. */
  3334. static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3335. struct btrfs_root *root,
  3336. struct btrfs_path *path,
  3337. struct extent_buffer *leaf)
  3338. {
  3339. int ret;
  3340. WARN_ON(btrfs_header_generation(leaf) != trans->transid);
  3341. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3342. if (ret)
  3343. return ret;
  3344. /*
  3345. * btrfs_free_extent is expensive, we want to make sure we
  3346. * aren't holding any locks when we call it
  3347. */
  3348. btrfs_unlock_up_safe(path, 0);
  3349. root_sub_used(root, leaf->len);
  3350. btrfs_free_tree_block(trans, root, leaf, 0, 1);
  3351. return 0;
  3352. }
  3353. /*
  3354. * delete the item at the leaf level in path. If that empties
  3355. * the leaf, remove it from the tree
  3356. */
  3357. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3358. struct btrfs_path *path, int slot, int nr)
  3359. {
  3360. struct extent_buffer *leaf;
  3361. struct btrfs_item *item;
  3362. int last_off;
  3363. int dsize = 0;
  3364. int ret = 0;
  3365. int wret;
  3366. int i;
  3367. u32 nritems;
  3368. leaf = path->nodes[0];
  3369. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3370. for (i = 0; i < nr; i++)
  3371. dsize += btrfs_item_size_nr(leaf, slot + i);
  3372. nritems = btrfs_header_nritems(leaf);
  3373. if (slot + nr != nritems) {
  3374. int data_end = leaf_data_end(root, leaf);
  3375. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3376. data_end + dsize,
  3377. btrfs_leaf_data(leaf) + data_end,
  3378. last_off - data_end);
  3379. for (i = slot + nr; i < nritems; i++) {
  3380. u32 ioff;
  3381. item = btrfs_item_nr(leaf, i);
  3382. if (!leaf->map_token) {
  3383. map_extent_buffer(leaf, (unsigned long)item,
  3384. sizeof(struct btrfs_item),
  3385. &leaf->map_token, &leaf->kaddr,
  3386. &leaf->map_start, &leaf->map_len,
  3387. KM_USER1);
  3388. }
  3389. ioff = btrfs_item_offset(leaf, item);
  3390. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3391. }
  3392. if (leaf->map_token) {
  3393. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  3394. leaf->map_token = NULL;
  3395. }
  3396. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3397. btrfs_item_nr_offset(slot + nr),
  3398. sizeof(struct btrfs_item) *
  3399. (nritems - slot - nr));
  3400. }
  3401. btrfs_set_header_nritems(leaf, nritems - nr);
  3402. nritems -= nr;
  3403. /* delete the leaf if we've emptied it */
  3404. if (nritems == 0) {
  3405. if (leaf == root->node) {
  3406. btrfs_set_header_level(leaf, 0);
  3407. } else {
  3408. btrfs_set_path_blocking(path);
  3409. clean_tree_block(trans, root, leaf);
  3410. ret = btrfs_del_leaf(trans, root, path, leaf);
  3411. BUG_ON(ret);
  3412. }
  3413. } else {
  3414. int used = leaf_space_used(leaf, 0, nritems);
  3415. if (slot == 0) {
  3416. struct btrfs_disk_key disk_key;
  3417. btrfs_item_key(leaf, &disk_key, 0);
  3418. wret = fixup_low_keys(trans, root, path,
  3419. &disk_key, 1);
  3420. if (wret)
  3421. ret = wret;
  3422. }
  3423. /* delete the leaf if it is mostly empty */
  3424. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  3425. /* push_leaf_left fixes the path.
  3426. * make sure the path still points to our leaf
  3427. * for possible call to del_ptr below
  3428. */
  3429. slot = path->slots[1];
  3430. extent_buffer_get(leaf);
  3431. btrfs_set_path_blocking(path);
  3432. wret = push_leaf_left(trans, root, path, 1, 1,
  3433. 1, (u32)-1);
  3434. if (wret < 0 && wret != -ENOSPC)
  3435. ret = wret;
  3436. if (path->nodes[0] == leaf &&
  3437. btrfs_header_nritems(leaf)) {
  3438. wret = push_leaf_right(trans, root, path, 1,
  3439. 1, 1, 0);
  3440. if (wret < 0 && wret != -ENOSPC)
  3441. ret = wret;
  3442. }
  3443. if (btrfs_header_nritems(leaf) == 0) {
  3444. path->slots[1] = slot;
  3445. ret = btrfs_del_leaf(trans, root, path, leaf);
  3446. BUG_ON(ret);
  3447. free_extent_buffer(leaf);
  3448. } else {
  3449. /* if we're still in the path, make sure
  3450. * we're dirty. Otherwise, one of the
  3451. * push_leaf functions must have already
  3452. * dirtied this buffer
  3453. */
  3454. if (path->nodes[0] == leaf)
  3455. btrfs_mark_buffer_dirty(leaf);
  3456. free_extent_buffer(leaf);
  3457. }
  3458. } else {
  3459. btrfs_mark_buffer_dirty(leaf);
  3460. }
  3461. }
  3462. return ret;
  3463. }
  3464. /*
  3465. * search the tree again to find a leaf with lesser keys
  3466. * returns 0 if it found something or 1 if there are no lesser leaves.
  3467. * returns < 0 on io errors.
  3468. *
  3469. * This may release the path, and so you may lose any locks held at the
  3470. * time you call it.
  3471. */
  3472. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3473. {
  3474. struct btrfs_key key;
  3475. struct btrfs_disk_key found_key;
  3476. int ret;
  3477. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3478. if (key.offset > 0)
  3479. key.offset--;
  3480. else if (key.type > 0)
  3481. key.type--;
  3482. else if (key.objectid > 0)
  3483. key.objectid--;
  3484. else
  3485. return 1;
  3486. btrfs_release_path(path);
  3487. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3488. if (ret < 0)
  3489. return ret;
  3490. btrfs_item_key(path->nodes[0], &found_key, 0);
  3491. ret = comp_keys(&found_key, &key);
  3492. if (ret < 0)
  3493. return 0;
  3494. return 1;
  3495. }
  3496. /*
  3497. * A helper function to walk down the tree starting at min_key, and looking
  3498. * for nodes or leaves that are either in cache or have a minimum
  3499. * transaction id. This is used by the btree defrag code, and tree logging
  3500. *
  3501. * This does not cow, but it does stuff the starting key it finds back
  3502. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3503. * key and get a writable path.
  3504. *
  3505. * This does lock as it descends, and path->keep_locks should be set
  3506. * to 1 by the caller.
  3507. *
  3508. * This honors path->lowest_level to prevent descent past a given level
  3509. * of the tree.
  3510. *
  3511. * min_trans indicates the oldest transaction that you are interested
  3512. * in walking through. Any nodes or leaves older than min_trans are
  3513. * skipped over (without reading them).
  3514. *
  3515. * returns zero if something useful was found, < 0 on error and 1 if there
  3516. * was nothing in the tree that matched the search criteria.
  3517. */
  3518. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3519. struct btrfs_key *max_key,
  3520. struct btrfs_path *path, int cache_only,
  3521. u64 min_trans)
  3522. {
  3523. struct extent_buffer *cur;
  3524. struct btrfs_key found_key;
  3525. int slot;
  3526. int sret;
  3527. u32 nritems;
  3528. int level;
  3529. int ret = 1;
  3530. WARN_ON(!path->keep_locks);
  3531. again:
  3532. cur = btrfs_lock_root_node(root);
  3533. level = btrfs_header_level(cur);
  3534. WARN_ON(path->nodes[level]);
  3535. path->nodes[level] = cur;
  3536. path->locks[level] = 1;
  3537. if (btrfs_header_generation(cur) < min_trans) {
  3538. ret = 1;
  3539. goto out;
  3540. }
  3541. while (1) {
  3542. nritems = btrfs_header_nritems(cur);
  3543. level = btrfs_header_level(cur);
  3544. sret = bin_search(cur, min_key, level, &slot);
  3545. /* at the lowest level, we're done, setup the path and exit */
  3546. if (level == path->lowest_level) {
  3547. if (slot >= nritems)
  3548. goto find_next_key;
  3549. ret = 0;
  3550. path->slots[level] = slot;
  3551. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3552. goto out;
  3553. }
  3554. if (sret && slot > 0)
  3555. slot--;
  3556. /*
  3557. * check this node pointer against the cache_only and
  3558. * min_trans parameters. If it isn't in cache or is too
  3559. * old, skip to the next one.
  3560. */
  3561. while (slot < nritems) {
  3562. u64 blockptr;
  3563. u64 gen;
  3564. struct extent_buffer *tmp;
  3565. struct btrfs_disk_key disk_key;
  3566. blockptr = btrfs_node_blockptr(cur, slot);
  3567. gen = btrfs_node_ptr_generation(cur, slot);
  3568. if (gen < min_trans) {
  3569. slot++;
  3570. continue;
  3571. }
  3572. if (!cache_only)
  3573. break;
  3574. if (max_key) {
  3575. btrfs_node_key(cur, &disk_key, slot);
  3576. if (comp_keys(&disk_key, max_key) >= 0) {
  3577. ret = 1;
  3578. goto out;
  3579. }
  3580. }
  3581. tmp = btrfs_find_tree_block(root, blockptr,
  3582. btrfs_level_size(root, level - 1));
  3583. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3584. free_extent_buffer(tmp);
  3585. break;
  3586. }
  3587. if (tmp)
  3588. free_extent_buffer(tmp);
  3589. slot++;
  3590. }
  3591. find_next_key:
  3592. /*
  3593. * we didn't find a candidate key in this node, walk forward
  3594. * and find another one
  3595. */
  3596. if (slot >= nritems) {
  3597. path->slots[level] = slot;
  3598. btrfs_set_path_blocking(path);
  3599. sret = btrfs_find_next_key(root, path, min_key, level,
  3600. cache_only, min_trans);
  3601. if (sret == 0) {
  3602. btrfs_release_path(path);
  3603. goto again;
  3604. } else {
  3605. goto out;
  3606. }
  3607. }
  3608. /* save our key for returning back */
  3609. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3610. path->slots[level] = slot;
  3611. if (level == path->lowest_level) {
  3612. ret = 0;
  3613. unlock_up(path, level, 1);
  3614. goto out;
  3615. }
  3616. btrfs_set_path_blocking(path);
  3617. cur = read_node_slot(root, cur, slot);
  3618. BUG_ON(!cur);
  3619. btrfs_tree_lock(cur);
  3620. path->locks[level - 1] = 1;
  3621. path->nodes[level - 1] = cur;
  3622. unlock_up(path, level, 1);
  3623. btrfs_clear_path_blocking(path, NULL);
  3624. }
  3625. out:
  3626. if (ret == 0)
  3627. memcpy(min_key, &found_key, sizeof(found_key));
  3628. btrfs_set_path_blocking(path);
  3629. return ret;
  3630. }
  3631. /*
  3632. * this is similar to btrfs_next_leaf, but does not try to preserve
  3633. * and fixup the path. It looks for and returns the next key in the
  3634. * tree based on the current path and the cache_only and min_trans
  3635. * parameters.
  3636. *
  3637. * 0 is returned if another key is found, < 0 if there are any errors
  3638. * and 1 is returned if there are no higher keys in the tree
  3639. *
  3640. * path->keep_locks should be set to 1 on the search made before
  3641. * calling this function.
  3642. */
  3643. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3644. struct btrfs_key *key, int level,
  3645. int cache_only, u64 min_trans)
  3646. {
  3647. int slot;
  3648. struct extent_buffer *c;
  3649. WARN_ON(!path->keep_locks);
  3650. while (level < BTRFS_MAX_LEVEL) {
  3651. if (!path->nodes[level])
  3652. return 1;
  3653. slot = path->slots[level] + 1;
  3654. c = path->nodes[level];
  3655. next:
  3656. if (slot >= btrfs_header_nritems(c)) {
  3657. int ret;
  3658. int orig_lowest;
  3659. struct btrfs_key cur_key;
  3660. if (level + 1 >= BTRFS_MAX_LEVEL ||
  3661. !path->nodes[level + 1])
  3662. return 1;
  3663. if (path->locks[level + 1]) {
  3664. level++;
  3665. continue;
  3666. }
  3667. slot = btrfs_header_nritems(c) - 1;
  3668. if (level == 0)
  3669. btrfs_item_key_to_cpu(c, &cur_key, slot);
  3670. else
  3671. btrfs_node_key_to_cpu(c, &cur_key, slot);
  3672. orig_lowest = path->lowest_level;
  3673. btrfs_release_path(path);
  3674. path->lowest_level = level;
  3675. ret = btrfs_search_slot(NULL, root, &cur_key, path,
  3676. 0, 0);
  3677. path->lowest_level = orig_lowest;
  3678. if (ret < 0)
  3679. return ret;
  3680. c = path->nodes[level];
  3681. slot = path->slots[level];
  3682. if (ret == 0)
  3683. slot++;
  3684. goto next;
  3685. }
  3686. if (level == 0)
  3687. btrfs_item_key_to_cpu(c, key, slot);
  3688. else {
  3689. u64 blockptr = btrfs_node_blockptr(c, slot);
  3690. u64 gen = btrfs_node_ptr_generation(c, slot);
  3691. if (cache_only) {
  3692. struct extent_buffer *cur;
  3693. cur = btrfs_find_tree_block(root, blockptr,
  3694. btrfs_level_size(root, level - 1));
  3695. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3696. slot++;
  3697. if (cur)
  3698. free_extent_buffer(cur);
  3699. goto next;
  3700. }
  3701. free_extent_buffer(cur);
  3702. }
  3703. if (gen < min_trans) {
  3704. slot++;
  3705. goto next;
  3706. }
  3707. btrfs_node_key_to_cpu(c, key, slot);
  3708. }
  3709. return 0;
  3710. }
  3711. return 1;
  3712. }
  3713. /*
  3714. * search the tree again to find a leaf with greater keys
  3715. * returns 0 if it found something or 1 if there are no greater leaves.
  3716. * returns < 0 on io errors.
  3717. */
  3718. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3719. {
  3720. int slot;
  3721. int level;
  3722. struct extent_buffer *c;
  3723. struct extent_buffer *next;
  3724. struct btrfs_key key;
  3725. u32 nritems;
  3726. int ret;
  3727. int old_spinning = path->leave_spinning;
  3728. int force_blocking = 0;
  3729. nritems = btrfs_header_nritems(path->nodes[0]);
  3730. if (nritems == 0)
  3731. return 1;
  3732. /*
  3733. * we take the blocks in an order that upsets lockdep. Using
  3734. * blocking mode is the only way around it.
  3735. */
  3736. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  3737. force_blocking = 1;
  3738. #endif
  3739. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3740. again:
  3741. level = 1;
  3742. next = NULL;
  3743. btrfs_release_path(path);
  3744. path->keep_locks = 1;
  3745. if (!force_blocking)
  3746. path->leave_spinning = 1;
  3747. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3748. path->keep_locks = 0;
  3749. if (ret < 0)
  3750. return ret;
  3751. nritems = btrfs_header_nritems(path->nodes[0]);
  3752. /*
  3753. * by releasing the path above we dropped all our locks. A balance
  3754. * could have added more items next to the key that used to be
  3755. * at the very end of the block. So, check again here and
  3756. * advance the path if there are now more items available.
  3757. */
  3758. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3759. if (ret == 0)
  3760. path->slots[0]++;
  3761. ret = 0;
  3762. goto done;
  3763. }
  3764. while (level < BTRFS_MAX_LEVEL) {
  3765. if (!path->nodes[level]) {
  3766. ret = 1;
  3767. goto done;
  3768. }
  3769. slot = path->slots[level] + 1;
  3770. c = path->nodes[level];
  3771. if (slot >= btrfs_header_nritems(c)) {
  3772. level++;
  3773. if (level == BTRFS_MAX_LEVEL) {
  3774. ret = 1;
  3775. goto done;
  3776. }
  3777. continue;
  3778. }
  3779. if (next) {
  3780. btrfs_tree_unlock(next);
  3781. free_extent_buffer(next);
  3782. }
  3783. next = c;
  3784. ret = read_block_for_search(NULL, root, path, &next, level,
  3785. slot, &key);
  3786. if (ret == -EAGAIN)
  3787. goto again;
  3788. if (ret < 0) {
  3789. btrfs_release_path(path);
  3790. goto done;
  3791. }
  3792. if (!path->skip_locking) {
  3793. ret = btrfs_try_spin_lock(next);
  3794. if (!ret) {
  3795. btrfs_set_path_blocking(path);
  3796. btrfs_tree_lock(next);
  3797. if (!force_blocking)
  3798. btrfs_clear_path_blocking(path, next);
  3799. }
  3800. if (force_blocking)
  3801. btrfs_set_lock_blocking(next);
  3802. }
  3803. break;
  3804. }
  3805. path->slots[level] = slot;
  3806. while (1) {
  3807. level--;
  3808. c = path->nodes[level];
  3809. if (path->locks[level])
  3810. btrfs_tree_unlock(c);
  3811. free_extent_buffer(c);
  3812. path->nodes[level] = next;
  3813. path->slots[level] = 0;
  3814. if (!path->skip_locking)
  3815. path->locks[level] = 1;
  3816. if (!level)
  3817. break;
  3818. ret = read_block_for_search(NULL, root, path, &next, level,
  3819. 0, &key);
  3820. if (ret == -EAGAIN)
  3821. goto again;
  3822. if (ret < 0) {
  3823. btrfs_release_path(path);
  3824. goto done;
  3825. }
  3826. if (!path->skip_locking) {
  3827. btrfs_assert_tree_locked(path->nodes[level]);
  3828. ret = btrfs_try_spin_lock(next);
  3829. if (!ret) {
  3830. btrfs_set_path_blocking(path);
  3831. btrfs_tree_lock(next);
  3832. if (!force_blocking)
  3833. btrfs_clear_path_blocking(path, next);
  3834. }
  3835. if (force_blocking)
  3836. btrfs_set_lock_blocking(next);
  3837. }
  3838. }
  3839. ret = 0;
  3840. done:
  3841. unlock_up(path, 0, 1);
  3842. path->leave_spinning = old_spinning;
  3843. if (!old_spinning)
  3844. btrfs_set_path_blocking(path);
  3845. return ret;
  3846. }
  3847. /*
  3848. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3849. * searching until it gets past min_objectid or finds an item of 'type'
  3850. *
  3851. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3852. */
  3853. int btrfs_previous_item(struct btrfs_root *root,
  3854. struct btrfs_path *path, u64 min_objectid,
  3855. int type)
  3856. {
  3857. struct btrfs_key found_key;
  3858. struct extent_buffer *leaf;
  3859. u32 nritems;
  3860. int ret;
  3861. while (1) {
  3862. if (path->slots[0] == 0) {
  3863. btrfs_set_path_blocking(path);
  3864. ret = btrfs_prev_leaf(root, path);
  3865. if (ret != 0)
  3866. return ret;
  3867. } else {
  3868. path->slots[0]--;
  3869. }
  3870. leaf = path->nodes[0];
  3871. nritems = btrfs_header_nritems(leaf);
  3872. if (nritems == 0)
  3873. return 1;
  3874. if (path->slots[0] == nritems)
  3875. path->slots[0]--;
  3876. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3877. if (found_key.objectid < min_objectid)
  3878. break;
  3879. if (found_key.type == type)
  3880. return 0;
  3881. if (found_key.objectid == min_objectid &&
  3882. found_key.type < type)
  3883. break;
  3884. }
  3885. return 1;
  3886. }