ide-io.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693
  1. /*
  2. * IDE I/O functions
  3. *
  4. * Basic PIO and command management functionality.
  5. *
  6. * This code was split off from ide.c. See ide.c for history and original
  7. * copyrights.
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License as published by the
  11. * Free Software Foundation; either version 2, or (at your option) any
  12. * later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * General Public License for more details.
  18. *
  19. * For the avoidance of doubt the "preferred form" of this code is one which
  20. * is in an open non patent encumbered format. Where cryptographic key signing
  21. * forms part of the process of creating an executable the information
  22. * including keys needed to generate an equivalently functional executable
  23. * are deemed to be part of the source code.
  24. */
  25. #include <linux/config.h>
  26. #include <linux/module.h>
  27. #include <linux/types.h>
  28. #include <linux/string.h>
  29. #include <linux/kernel.h>
  30. #include <linux/timer.h>
  31. #include <linux/mm.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/major.h>
  34. #include <linux/errno.h>
  35. #include <linux/genhd.h>
  36. #include <linux/blkpg.h>
  37. #include <linux/slab.h>
  38. #include <linux/init.h>
  39. #include <linux/pci.h>
  40. #include <linux/delay.h>
  41. #include <linux/ide.h>
  42. #include <linux/completion.h>
  43. #include <linux/reboot.h>
  44. #include <linux/cdrom.h>
  45. #include <linux/seq_file.h>
  46. #include <linux/device.h>
  47. #include <linux/kmod.h>
  48. #include <linux/scatterlist.h>
  49. #include <asm/byteorder.h>
  50. #include <asm/irq.h>
  51. #include <asm/uaccess.h>
  52. #include <asm/io.h>
  53. #include <asm/bitops.h>
  54. static int __ide_end_request(ide_drive_t *drive, struct request *rq,
  55. int uptodate, int nr_sectors)
  56. {
  57. int ret = 1;
  58. BUG_ON(!(rq->flags & REQ_STARTED));
  59. /*
  60. * if failfast is set on a request, override number of sectors and
  61. * complete the whole request right now
  62. */
  63. if (blk_noretry_request(rq) && end_io_error(uptodate))
  64. nr_sectors = rq->hard_nr_sectors;
  65. if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
  66. rq->errors = -EIO;
  67. /*
  68. * decide whether to reenable DMA -- 3 is a random magic for now,
  69. * if we DMA timeout more than 3 times, just stay in PIO
  70. */
  71. if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
  72. drive->state = 0;
  73. HWGROUP(drive)->hwif->ide_dma_on(drive);
  74. }
  75. if (!end_that_request_first(rq, uptodate, nr_sectors)) {
  76. add_disk_randomness(rq->rq_disk);
  77. blkdev_dequeue_request(rq);
  78. HWGROUP(drive)->rq = NULL;
  79. end_that_request_last(rq, uptodate);
  80. ret = 0;
  81. }
  82. return ret;
  83. }
  84. /**
  85. * ide_end_request - complete an IDE I/O
  86. * @drive: IDE device for the I/O
  87. * @uptodate:
  88. * @nr_sectors: number of sectors completed
  89. *
  90. * This is our end_request wrapper function. We complete the I/O
  91. * update random number input and dequeue the request, which if
  92. * it was tagged may be out of order.
  93. */
  94. int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
  95. {
  96. struct request *rq;
  97. unsigned long flags;
  98. int ret = 1;
  99. /*
  100. * room for locking improvements here, the calls below don't
  101. * need the queue lock held at all
  102. */
  103. spin_lock_irqsave(&ide_lock, flags);
  104. rq = HWGROUP(drive)->rq;
  105. if (!nr_sectors)
  106. nr_sectors = rq->hard_cur_sectors;
  107. ret = __ide_end_request(drive, rq, uptodate, nr_sectors);
  108. spin_unlock_irqrestore(&ide_lock, flags);
  109. return ret;
  110. }
  111. EXPORT_SYMBOL(ide_end_request);
  112. /*
  113. * Power Management state machine. This one is rather trivial for now,
  114. * we should probably add more, like switching back to PIO on suspend
  115. * to help some BIOSes, re-do the door locking on resume, etc...
  116. */
  117. enum {
  118. ide_pm_flush_cache = ide_pm_state_start_suspend,
  119. idedisk_pm_standby,
  120. idedisk_pm_idle = ide_pm_state_start_resume,
  121. ide_pm_restore_dma,
  122. };
  123. static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
  124. {
  125. struct request_pm_state *pm = rq->end_io_data;
  126. if (drive->media != ide_disk)
  127. return;
  128. switch (pm->pm_step) {
  129. case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
  130. if (pm->pm_state == PM_EVENT_FREEZE)
  131. pm->pm_step = ide_pm_state_completed;
  132. else
  133. pm->pm_step = idedisk_pm_standby;
  134. break;
  135. case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
  136. pm->pm_step = ide_pm_state_completed;
  137. break;
  138. case idedisk_pm_idle: /* Resume step 1 (idle) complete */
  139. pm->pm_step = ide_pm_restore_dma;
  140. break;
  141. }
  142. }
  143. static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
  144. {
  145. struct request_pm_state *pm = rq->end_io_data;
  146. ide_task_t *args = rq->special;
  147. memset(args, 0, sizeof(*args));
  148. if (drive->media != ide_disk) {
  149. /* skip idedisk_pm_idle for ATAPI devices */
  150. if (pm->pm_step == idedisk_pm_idle)
  151. pm->pm_step = ide_pm_restore_dma;
  152. }
  153. switch (pm->pm_step) {
  154. case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
  155. if (drive->media != ide_disk)
  156. break;
  157. /* Not supported? Switch to next step now. */
  158. if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
  159. ide_complete_power_step(drive, rq, 0, 0);
  160. return ide_stopped;
  161. }
  162. if (ide_id_has_flush_cache_ext(drive->id))
  163. args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
  164. else
  165. args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
  166. args->command_type = IDE_DRIVE_TASK_NO_DATA;
  167. args->handler = &task_no_data_intr;
  168. return do_rw_taskfile(drive, args);
  169. case idedisk_pm_standby: /* Suspend step 2 (standby) */
  170. args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
  171. args->command_type = IDE_DRIVE_TASK_NO_DATA;
  172. args->handler = &task_no_data_intr;
  173. return do_rw_taskfile(drive, args);
  174. case idedisk_pm_idle: /* Resume step 1 (idle) */
  175. args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
  176. args->command_type = IDE_DRIVE_TASK_NO_DATA;
  177. args->handler = task_no_data_intr;
  178. return do_rw_taskfile(drive, args);
  179. case ide_pm_restore_dma: /* Resume step 2 (restore DMA) */
  180. /*
  181. * Right now, all we do is call hwif->ide_dma_check(drive),
  182. * we could be smarter and check for current xfer_speed
  183. * in struct drive etc...
  184. */
  185. if ((drive->id->capability & 1) == 0)
  186. break;
  187. if (drive->hwif->ide_dma_check == NULL)
  188. break;
  189. drive->hwif->ide_dma_check(drive);
  190. break;
  191. }
  192. pm->pm_step = ide_pm_state_completed;
  193. return ide_stopped;
  194. }
  195. /**
  196. * ide_complete_pm_request - end the current Power Management request
  197. * @drive: target drive
  198. * @rq: request
  199. *
  200. * This function cleans up the current PM request and stops the queue
  201. * if necessary.
  202. */
  203. static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
  204. {
  205. unsigned long flags;
  206. #ifdef DEBUG_PM
  207. printk("%s: completing PM request, %s\n", drive->name,
  208. blk_pm_suspend_request(rq) ? "suspend" : "resume");
  209. #endif
  210. spin_lock_irqsave(&ide_lock, flags);
  211. if (blk_pm_suspend_request(rq)) {
  212. blk_stop_queue(drive->queue);
  213. } else {
  214. drive->blocked = 0;
  215. blk_start_queue(drive->queue);
  216. }
  217. blkdev_dequeue_request(rq);
  218. HWGROUP(drive)->rq = NULL;
  219. end_that_request_last(rq, 1);
  220. spin_unlock_irqrestore(&ide_lock, flags);
  221. }
  222. /*
  223. * FIXME: probably move this somewhere else, name is bad too :)
  224. */
  225. u64 ide_get_error_location(ide_drive_t *drive, char *args)
  226. {
  227. u32 high, low;
  228. u8 hcyl, lcyl, sect;
  229. u64 sector;
  230. high = 0;
  231. hcyl = args[5];
  232. lcyl = args[4];
  233. sect = args[3];
  234. if (ide_id_has_flush_cache_ext(drive->id)) {
  235. low = (hcyl << 16) | (lcyl << 8) | sect;
  236. HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
  237. high = ide_read_24(drive);
  238. } else {
  239. u8 cur = HWIF(drive)->INB(IDE_SELECT_REG);
  240. if (cur & 0x40) {
  241. high = cur & 0xf;
  242. low = (hcyl << 16) | (lcyl << 8) | sect;
  243. } else {
  244. low = hcyl * drive->head * drive->sect;
  245. low += lcyl * drive->sect;
  246. low += sect - 1;
  247. }
  248. }
  249. sector = ((u64) high << 24) | low;
  250. return sector;
  251. }
  252. EXPORT_SYMBOL(ide_get_error_location);
  253. /**
  254. * ide_end_drive_cmd - end an explicit drive command
  255. * @drive: command
  256. * @stat: status bits
  257. * @err: error bits
  258. *
  259. * Clean up after success/failure of an explicit drive command.
  260. * These get thrown onto the queue so they are synchronized with
  261. * real I/O operations on the drive.
  262. *
  263. * In LBA48 mode we have to read the register set twice to get
  264. * all the extra information out.
  265. */
  266. void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
  267. {
  268. ide_hwif_t *hwif = HWIF(drive);
  269. unsigned long flags;
  270. struct request *rq;
  271. spin_lock_irqsave(&ide_lock, flags);
  272. rq = HWGROUP(drive)->rq;
  273. spin_unlock_irqrestore(&ide_lock, flags);
  274. if (rq->flags & REQ_DRIVE_CMD) {
  275. u8 *args = (u8 *) rq->buffer;
  276. if (rq->errors == 0)
  277. rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
  278. if (args) {
  279. args[0] = stat;
  280. args[1] = err;
  281. args[2] = hwif->INB(IDE_NSECTOR_REG);
  282. }
  283. } else if (rq->flags & REQ_DRIVE_TASK) {
  284. u8 *args = (u8 *) rq->buffer;
  285. if (rq->errors == 0)
  286. rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
  287. if (args) {
  288. args[0] = stat;
  289. args[1] = err;
  290. args[2] = hwif->INB(IDE_NSECTOR_REG);
  291. args[3] = hwif->INB(IDE_SECTOR_REG);
  292. args[4] = hwif->INB(IDE_LCYL_REG);
  293. args[5] = hwif->INB(IDE_HCYL_REG);
  294. args[6] = hwif->INB(IDE_SELECT_REG);
  295. }
  296. } else if (rq->flags & REQ_DRIVE_TASKFILE) {
  297. ide_task_t *args = (ide_task_t *) rq->special;
  298. if (rq->errors == 0)
  299. rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
  300. if (args) {
  301. if (args->tf_in_flags.b.data) {
  302. u16 data = hwif->INW(IDE_DATA_REG);
  303. args->tfRegister[IDE_DATA_OFFSET] = (data) & 0xFF;
  304. args->hobRegister[IDE_DATA_OFFSET] = (data >> 8) & 0xFF;
  305. }
  306. args->tfRegister[IDE_ERROR_OFFSET] = err;
  307. /* be sure we're looking at the low order bits */
  308. hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
  309. args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
  310. args->tfRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
  311. args->tfRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
  312. args->tfRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
  313. args->tfRegister[IDE_SELECT_OFFSET] = hwif->INB(IDE_SELECT_REG);
  314. args->tfRegister[IDE_STATUS_OFFSET] = stat;
  315. if (drive->addressing == 1) {
  316. hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
  317. args->hobRegister[IDE_FEATURE_OFFSET] = hwif->INB(IDE_FEATURE_REG);
  318. args->hobRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
  319. args->hobRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG);
  320. args->hobRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG);
  321. args->hobRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG);
  322. }
  323. }
  324. } else if (blk_pm_request(rq)) {
  325. struct request_pm_state *pm = rq->end_io_data;
  326. #ifdef DEBUG_PM
  327. printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
  328. drive->name, rq->pm->pm_step, stat, err);
  329. #endif
  330. ide_complete_power_step(drive, rq, stat, err);
  331. if (pm->pm_step == ide_pm_state_completed)
  332. ide_complete_pm_request(drive, rq);
  333. return;
  334. }
  335. spin_lock_irqsave(&ide_lock, flags);
  336. blkdev_dequeue_request(rq);
  337. HWGROUP(drive)->rq = NULL;
  338. rq->errors = err;
  339. end_that_request_last(rq, !rq->errors);
  340. spin_unlock_irqrestore(&ide_lock, flags);
  341. }
  342. EXPORT_SYMBOL(ide_end_drive_cmd);
  343. /**
  344. * try_to_flush_leftover_data - flush junk
  345. * @drive: drive to flush
  346. *
  347. * try_to_flush_leftover_data() is invoked in response to a drive
  348. * unexpectedly having its DRQ_STAT bit set. As an alternative to
  349. * resetting the drive, this routine tries to clear the condition
  350. * by read a sector's worth of data from the drive. Of course,
  351. * this may not help if the drive is *waiting* for data from *us*.
  352. */
  353. static void try_to_flush_leftover_data (ide_drive_t *drive)
  354. {
  355. int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
  356. if (drive->media != ide_disk)
  357. return;
  358. while (i > 0) {
  359. u32 buffer[16];
  360. u32 wcount = (i > 16) ? 16 : i;
  361. i -= wcount;
  362. HWIF(drive)->ata_input_data(drive, buffer, wcount);
  363. }
  364. }
  365. static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
  366. {
  367. if (rq->rq_disk) {
  368. ide_driver_t *drv;
  369. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  370. drv->end_request(drive, 0, 0);
  371. } else
  372. ide_end_request(drive, 0, 0);
  373. }
  374. static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
  375. {
  376. ide_hwif_t *hwif = drive->hwif;
  377. if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
  378. /* other bits are useless when BUSY */
  379. rq->errors |= ERROR_RESET;
  380. } else if (stat & ERR_STAT) {
  381. /* err has different meaning on cdrom and tape */
  382. if (err == ABRT_ERR) {
  383. if (drive->select.b.lba &&
  384. /* some newer drives don't support WIN_SPECIFY */
  385. hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
  386. return ide_stopped;
  387. } else if ((err & BAD_CRC) == BAD_CRC) {
  388. /* UDMA crc error, just retry the operation */
  389. drive->crc_count++;
  390. } else if (err & (BBD_ERR | ECC_ERR)) {
  391. /* retries won't help these */
  392. rq->errors = ERROR_MAX;
  393. } else if (err & TRK0_ERR) {
  394. /* help it find track zero */
  395. rq->errors |= ERROR_RECAL;
  396. }
  397. }
  398. if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ)
  399. try_to_flush_leftover_data(drive);
  400. if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
  401. /* force an abort */
  402. hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
  403. if (rq->errors >= ERROR_MAX || blk_noretry_request(rq))
  404. ide_kill_rq(drive, rq);
  405. else {
  406. if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
  407. ++rq->errors;
  408. return ide_do_reset(drive);
  409. }
  410. if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
  411. drive->special.b.recalibrate = 1;
  412. ++rq->errors;
  413. }
  414. return ide_stopped;
  415. }
  416. static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
  417. {
  418. ide_hwif_t *hwif = drive->hwif;
  419. if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
  420. /* other bits are useless when BUSY */
  421. rq->errors |= ERROR_RESET;
  422. } else {
  423. /* add decoding error stuff */
  424. }
  425. if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
  426. /* force an abort */
  427. hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
  428. if (rq->errors >= ERROR_MAX) {
  429. ide_kill_rq(drive, rq);
  430. } else {
  431. if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
  432. ++rq->errors;
  433. return ide_do_reset(drive);
  434. }
  435. ++rq->errors;
  436. }
  437. return ide_stopped;
  438. }
  439. ide_startstop_t
  440. __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
  441. {
  442. if (drive->media == ide_disk)
  443. return ide_ata_error(drive, rq, stat, err);
  444. return ide_atapi_error(drive, rq, stat, err);
  445. }
  446. EXPORT_SYMBOL_GPL(__ide_error);
  447. /**
  448. * ide_error - handle an error on the IDE
  449. * @drive: drive the error occurred on
  450. * @msg: message to report
  451. * @stat: status bits
  452. *
  453. * ide_error() takes action based on the error returned by the drive.
  454. * For normal I/O that may well include retries. We deal with
  455. * both new-style (taskfile) and old style command handling here.
  456. * In the case of taskfile command handling there is work left to
  457. * do
  458. */
  459. ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
  460. {
  461. struct request *rq;
  462. u8 err;
  463. err = ide_dump_status(drive, msg, stat);
  464. if ((rq = HWGROUP(drive)->rq) == NULL)
  465. return ide_stopped;
  466. /* retry only "normal" I/O: */
  467. if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) {
  468. rq->errors = 1;
  469. ide_end_drive_cmd(drive, stat, err);
  470. return ide_stopped;
  471. }
  472. if (rq->rq_disk) {
  473. ide_driver_t *drv;
  474. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  475. return drv->error(drive, rq, stat, err);
  476. } else
  477. return __ide_error(drive, rq, stat, err);
  478. }
  479. EXPORT_SYMBOL_GPL(ide_error);
  480. ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
  481. {
  482. if (drive->media != ide_disk)
  483. rq->errors |= ERROR_RESET;
  484. ide_kill_rq(drive, rq);
  485. return ide_stopped;
  486. }
  487. EXPORT_SYMBOL_GPL(__ide_abort);
  488. /**
  489. * ide_abort - abort pending IDE operations
  490. * @drive: drive the error occurred on
  491. * @msg: message to report
  492. *
  493. * ide_abort kills and cleans up when we are about to do a
  494. * host initiated reset on active commands. Longer term we
  495. * want handlers to have sensible abort handling themselves
  496. *
  497. * This differs fundamentally from ide_error because in
  498. * this case the command is doing just fine when we
  499. * blow it away.
  500. */
  501. ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
  502. {
  503. struct request *rq;
  504. if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
  505. return ide_stopped;
  506. /* retry only "normal" I/O: */
  507. if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) {
  508. rq->errors = 1;
  509. ide_end_drive_cmd(drive, BUSY_STAT, 0);
  510. return ide_stopped;
  511. }
  512. if (rq->rq_disk) {
  513. ide_driver_t *drv;
  514. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  515. return drv->abort(drive, rq);
  516. } else
  517. return __ide_abort(drive, rq);
  518. }
  519. /**
  520. * ide_cmd - issue a simple drive command
  521. * @drive: drive the command is for
  522. * @cmd: command byte
  523. * @nsect: sector byte
  524. * @handler: handler for the command completion
  525. *
  526. * Issue a simple drive command with interrupts.
  527. * The drive must be selected beforehand.
  528. */
  529. static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
  530. ide_handler_t *handler)
  531. {
  532. ide_hwif_t *hwif = HWIF(drive);
  533. if (IDE_CONTROL_REG)
  534. hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
  535. SELECT_MASK(drive,0);
  536. hwif->OUTB(nsect,IDE_NSECTOR_REG);
  537. ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
  538. }
  539. /**
  540. * drive_cmd_intr - drive command completion interrupt
  541. * @drive: drive the completion interrupt occurred on
  542. *
  543. * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
  544. * We do any necessary data reading and then wait for the drive to
  545. * go non busy. At that point we may read the error data and complete
  546. * the request
  547. */
  548. static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
  549. {
  550. struct request *rq = HWGROUP(drive)->rq;
  551. ide_hwif_t *hwif = HWIF(drive);
  552. u8 *args = (u8 *) rq->buffer;
  553. u8 stat = hwif->INB(IDE_STATUS_REG);
  554. int retries = 10;
  555. local_irq_enable();
  556. if ((stat & DRQ_STAT) && args && args[3]) {
  557. u8 io_32bit = drive->io_32bit;
  558. drive->io_32bit = 0;
  559. hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
  560. drive->io_32bit = io_32bit;
  561. while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
  562. udelay(100);
  563. }
  564. if (!OK_STAT(stat, READY_STAT, BAD_STAT))
  565. return ide_error(drive, "drive_cmd", stat);
  566. /* calls ide_end_drive_cmd */
  567. ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
  568. return ide_stopped;
  569. }
  570. static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
  571. {
  572. task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
  573. task->tfRegister[IDE_SECTOR_OFFSET] = drive->sect;
  574. task->tfRegister[IDE_LCYL_OFFSET] = drive->cyl;
  575. task->tfRegister[IDE_HCYL_OFFSET] = drive->cyl>>8;
  576. task->tfRegister[IDE_SELECT_OFFSET] = ((drive->head-1)|drive->select.all)&0xBF;
  577. task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
  578. task->handler = &set_geometry_intr;
  579. }
  580. static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
  581. {
  582. task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
  583. task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
  584. task->handler = &recal_intr;
  585. }
  586. static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
  587. {
  588. task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
  589. task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
  590. task->handler = &set_multmode_intr;
  591. }
  592. static ide_startstop_t ide_disk_special(ide_drive_t *drive)
  593. {
  594. special_t *s = &drive->special;
  595. ide_task_t args;
  596. memset(&args, 0, sizeof(ide_task_t));
  597. args.command_type = IDE_DRIVE_TASK_NO_DATA;
  598. if (s->b.set_geometry) {
  599. s->b.set_geometry = 0;
  600. ide_init_specify_cmd(drive, &args);
  601. } else if (s->b.recalibrate) {
  602. s->b.recalibrate = 0;
  603. ide_init_restore_cmd(drive, &args);
  604. } else if (s->b.set_multmode) {
  605. s->b.set_multmode = 0;
  606. if (drive->mult_req > drive->id->max_multsect)
  607. drive->mult_req = drive->id->max_multsect;
  608. ide_init_setmult_cmd(drive, &args);
  609. } else if (s->all) {
  610. int special = s->all;
  611. s->all = 0;
  612. printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
  613. return ide_stopped;
  614. }
  615. do_rw_taskfile(drive, &args);
  616. return ide_started;
  617. }
  618. /**
  619. * do_special - issue some special commands
  620. * @drive: drive the command is for
  621. *
  622. * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
  623. * commands to a drive. It used to do much more, but has been scaled
  624. * back.
  625. */
  626. static ide_startstop_t do_special (ide_drive_t *drive)
  627. {
  628. special_t *s = &drive->special;
  629. #ifdef DEBUG
  630. printk("%s: do_special: 0x%02x\n", drive->name, s->all);
  631. #endif
  632. if (s->b.set_tune) {
  633. s->b.set_tune = 0;
  634. if (HWIF(drive)->tuneproc != NULL)
  635. HWIF(drive)->tuneproc(drive, drive->tune_req);
  636. return ide_stopped;
  637. } else {
  638. if (drive->media == ide_disk)
  639. return ide_disk_special(drive);
  640. s->all = 0;
  641. drive->mult_req = 0;
  642. return ide_stopped;
  643. }
  644. }
  645. void ide_map_sg(ide_drive_t *drive, struct request *rq)
  646. {
  647. ide_hwif_t *hwif = drive->hwif;
  648. struct scatterlist *sg = hwif->sg_table;
  649. if (hwif->sg_mapped) /* needed by ide-scsi */
  650. return;
  651. if ((rq->flags & REQ_DRIVE_TASKFILE) == 0) {
  652. hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
  653. } else {
  654. sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
  655. hwif->sg_nents = 1;
  656. }
  657. }
  658. EXPORT_SYMBOL_GPL(ide_map_sg);
  659. void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
  660. {
  661. ide_hwif_t *hwif = drive->hwif;
  662. hwif->nsect = hwif->nleft = rq->nr_sectors;
  663. hwif->cursg = hwif->cursg_ofs = 0;
  664. }
  665. EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
  666. /**
  667. * execute_drive_command - issue special drive command
  668. * @drive: the drive to issue the command on
  669. * @rq: the request structure holding the command
  670. *
  671. * execute_drive_cmd() issues a special drive command, usually
  672. * initiated by ioctl() from the external hdparm program. The
  673. * command can be a drive command, drive task or taskfile
  674. * operation. Weirdly you can call it with NULL to wait for
  675. * all commands to finish. Don't do this as that is due to change
  676. */
  677. static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
  678. struct request *rq)
  679. {
  680. ide_hwif_t *hwif = HWIF(drive);
  681. if (rq->flags & REQ_DRIVE_TASKFILE) {
  682. ide_task_t *args = rq->special;
  683. if (!args)
  684. goto done;
  685. hwif->data_phase = args->data_phase;
  686. switch (hwif->data_phase) {
  687. case TASKFILE_MULTI_OUT:
  688. case TASKFILE_OUT:
  689. case TASKFILE_MULTI_IN:
  690. case TASKFILE_IN:
  691. ide_init_sg_cmd(drive, rq);
  692. ide_map_sg(drive, rq);
  693. default:
  694. break;
  695. }
  696. if (args->tf_out_flags.all != 0)
  697. return flagged_taskfile(drive, args);
  698. return do_rw_taskfile(drive, args);
  699. } else if (rq->flags & REQ_DRIVE_TASK) {
  700. u8 *args = rq->buffer;
  701. u8 sel;
  702. if (!args)
  703. goto done;
  704. #ifdef DEBUG
  705. printk("%s: DRIVE_TASK_CMD ", drive->name);
  706. printk("cmd=0x%02x ", args[0]);
  707. printk("fr=0x%02x ", args[1]);
  708. printk("ns=0x%02x ", args[2]);
  709. printk("sc=0x%02x ", args[3]);
  710. printk("lcyl=0x%02x ", args[4]);
  711. printk("hcyl=0x%02x ", args[5]);
  712. printk("sel=0x%02x\n", args[6]);
  713. #endif
  714. hwif->OUTB(args[1], IDE_FEATURE_REG);
  715. hwif->OUTB(args[3], IDE_SECTOR_REG);
  716. hwif->OUTB(args[4], IDE_LCYL_REG);
  717. hwif->OUTB(args[5], IDE_HCYL_REG);
  718. sel = (args[6] & ~0x10);
  719. if (drive->select.b.unit)
  720. sel |= 0x10;
  721. hwif->OUTB(sel, IDE_SELECT_REG);
  722. ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
  723. return ide_started;
  724. } else if (rq->flags & REQ_DRIVE_CMD) {
  725. u8 *args = rq->buffer;
  726. if (!args)
  727. goto done;
  728. #ifdef DEBUG
  729. printk("%s: DRIVE_CMD ", drive->name);
  730. printk("cmd=0x%02x ", args[0]);
  731. printk("sc=0x%02x ", args[1]);
  732. printk("fr=0x%02x ", args[2]);
  733. printk("xx=0x%02x\n", args[3]);
  734. #endif
  735. if (args[0] == WIN_SMART) {
  736. hwif->OUTB(0x4f, IDE_LCYL_REG);
  737. hwif->OUTB(0xc2, IDE_HCYL_REG);
  738. hwif->OUTB(args[2],IDE_FEATURE_REG);
  739. hwif->OUTB(args[1],IDE_SECTOR_REG);
  740. ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
  741. return ide_started;
  742. }
  743. hwif->OUTB(args[2],IDE_FEATURE_REG);
  744. ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
  745. return ide_started;
  746. }
  747. done:
  748. /*
  749. * NULL is actually a valid way of waiting for
  750. * all current requests to be flushed from the queue.
  751. */
  752. #ifdef DEBUG
  753. printk("%s: DRIVE_CMD (null)\n", drive->name);
  754. #endif
  755. ide_end_drive_cmd(drive,
  756. hwif->INB(IDE_STATUS_REG),
  757. hwif->INB(IDE_ERROR_REG));
  758. return ide_stopped;
  759. }
  760. static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
  761. {
  762. struct request_pm_state *pm = rq->end_io_data;
  763. if (blk_pm_suspend_request(rq) &&
  764. pm->pm_step == ide_pm_state_start_suspend)
  765. /* Mark drive blocked when starting the suspend sequence. */
  766. drive->blocked = 1;
  767. else if (blk_pm_resume_request(rq) &&
  768. pm->pm_step == ide_pm_state_start_resume) {
  769. /*
  770. * The first thing we do on wakeup is to wait for BSY bit to
  771. * go away (with a looong timeout) as a drive on this hwif may
  772. * just be POSTing itself.
  773. * We do that before even selecting as the "other" device on
  774. * the bus may be broken enough to walk on our toes at this
  775. * point.
  776. */
  777. int rc;
  778. #ifdef DEBUG_PM
  779. printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
  780. #endif
  781. rc = ide_wait_not_busy(HWIF(drive), 35000);
  782. if (rc)
  783. printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
  784. SELECT_DRIVE(drive);
  785. HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
  786. rc = ide_wait_not_busy(HWIF(drive), 10000);
  787. if (rc)
  788. printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
  789. }
  790. }
  791. /**
  792. * start_request - start of I/O and command issuing for IDE
  793. *
  794. * start_request() initiates handling of a new I/O request. It
  795. * accepts commands and I/O (read/write) requests. It also does
  796. * the final remapping for weird stuff like EZDrive. Once
  797. * device mapper can work sector level the EZDrive stuff can go away
  798. *
  799. * FIXME: this function needs a rename
  800. */
  801. static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
  802. {
  803. ide_startstop_t startstop;
  804. sector_t block;
  805. BUG_ON(!(rq->flags & REQ_STARTED));
  806. #ifdef DEBUG
  807. printk("%s: start_request: current=0x%08lx\n",
  808. HWIF(drive)->name, (unsigned long) rq);
  809. #endif
  810. /* bail early if we've exceeded max_failures */
  811. if (drive->max_failures && (drive->failures > drive->max_failures)) {
  812. goto kill_rq;
  813. }
  814. block = rq->sector;
  815. if (blk_fs_request(rq) &&
  816. (drive->media == ide_disk || drive->media == ide_floppy)) {
  817. block += drive->sect0;
  818. }
  819. /* Yecch - this will shift the entire interval,
  820. possibly killing some innocent following sector */
  821. if (block == 0 && drive->remap_0_to_1 == 1)
  822. block = 1; /* redirect MBR access to EZ-Drive partn table */
  823. if (blk_pm_request(rq))
  824. ide_check_pm_state(drive, rq);
  825. SELECT_DRIVE(drive);
  826. if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
  827. printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
  828. return startstop;
  829. }
  830. if (!drive->special.all) {
  831. ide_driver_t *drv;
  832. if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK))
  833. return execute_drive_cmd(drive, rq);
  834. else if (rq->flags & REQ_DRIVE_TASKFILE)
  835. return execute_drive_cmd(drive, rq);
  836. else if (blk_pm_request(rq)) {
  837. struct request_pm_state *pm = rq->end_io_data;
  838. #ifdef DEBUG_PM
  839. printk("%s: start_power_step(step: %d)\n",
  840. drive->name, rq->pm->pm_step);
  841. #endif
  842. startstop = ide_start_power_step(drive, rq);
  843. if (startstop == ide_stopped &&
  844. pm->pm_step == ide_pm_state_completed)
  845. ide_complete_pm_request(drive, rq);
  846. return startstop;
  847. }
  848. drv = *(ide_driver_t **)rq->rq_disk->private_data;
  849. return drv->do_request(drive, rq, block);
  850. }
  851. return do_special(drive);
  852. kill_rq:
  853. ide_kill_rq(drive, rq);
  854. return ide_stopped;
  855. }
  856. /**
  857. * ide_stall_queue - pause an IDE device
  858. * @drive: drive to stall
  859. * @timeout: time to stall for (jiffies)
  860. *
  861. * ide_stall_queue() can be used by a drive to give excess bandwidth back
  862. * to the hwgroup by sleeping for timeout jiffies.
  863. */
  864. void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
  865. {
  866. if (timeout > WAIT_WORSTCASE)
  867. timeout = WAIT_WORSTCASE;
  868. drive->sleep = timeout + jiffies;
  869. drive->sleeping = 1;
  870. }
  871. EXPORT_SYMBOL(ide_stall_queue);
  872. #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
  873. /**
  874. * choose_drive - select a drive to service
  875. * @hwgroup: hardware group to select on
  876. *
  877. * choose_drive() selects the next drive which will be serviced.
  878. * This is necessary because the IDE layer can't issue commands
  879. * to both drives on the same cable, unlike SCSI.
  880. */
  881. static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
  882. {
  883. ide_drive_t *drive, *best;
  884. repeat:
  885. best = NULL;
  886. drive = hwgroup->drive;
  887. /*
  888. * drive is doing pre-flush, ordered write, post-flush sequence. even
  889. * though that is 3 requests, it must be seen as a single transaction.
  890. * we must not preempt this drive until that is complete
  891. */
  892. if (blk_queue_flushing(drive->queue)) {
  893. /*
  894. * small race where queue could get replugged during
  895. * the 3-request flush cycle, just yank the plug since
  896. * we want it to finish asap
  897. */
  898. blk_remove_plug(drive->queue);
  899. return drive;
  900. }
  901. do {
  902. if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
  903. && !elv_queue_empty(drive->queue)) {
  904. if (!best
  905. || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
  906. || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
  907. {
  908. if (!blk_queue_plugged(drive->queue))
  909. best = drive;
  910. }
  911. }
  912. } while ((drive = drive->next) != hwgroup->drive);
  913. if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
  914. long t = (signed long)(WAKEUP(best) - jiffies);
  915. if (t >= WAIT_MIN_SLEEP) {
  916. /*
  917. * We *may* have some time to spare, but first let's see if
  918. * someone can potentially benefit from our nice mood today..
  919. */
  920. drive = best->next;
  921. do {
  922. if (!drive->sleeping
  923. && time_before(jiffies - best->service_time, WAKEUP(drive))
  924. && time_before(WAKEUP(drive), jiffies + t))
  925. {
  926. ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
  927. goto repeat;
  928. }
  929. } while ((drive = drive->next) != best);
  930. }
  931. }
  932. return best;
  933. }
  934. /*
  935. * Issue a new request to a drive from hwgroup
  936. * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
  937. *
  938. * A hwgroup is a serialized group of IDE interfaces. Usually there is
  939. * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
  940. * may have both interfaces in a single hwgroup to "serialize" access.
  941. * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
  942. * together into one hwgroup for serialized access.
  943. *
  944. * Note also that several hwgroups can end up sharing a single IRQ,
  945. * possibly along with many other devices. This is especially common in
  946. * PCI-based systems with off-board IDE controller cards.
  947. *
  948. * The IDE driver uses the single global ide_lock spinlock to protect
  949. * access to the request queues, and to protect the hwgroup->busy flag.
  950. *
  951. * The first thread into the driver for a particular hwgroup sets the
  952. * hwgroup->busy flag to indicate that this hwgroup is now active,
  953. * and then initiates processing of the top request from the request queue.
  954. *
  955. * Other threads attempting entry notice the busy setting, and will simply
  956. * queue their new requests and exit immediately. Note that hwgroup->busy
  957. * remains set even when the driver is merely awaiting the next interrupt.
  958. * Thus, the meaning is "this hwgroup is busy processing a request".
  959. *
  960. * When processing of a request completes, the completing thread or IRQ-handler
  961. * will start the next request from the queue. If no more work remains,
  962. * the driver will clear the hwgroup->busy flag and exit.
  963. *
  964. * The ide_lock (spinlock) is used to protect all access to the
  965. * hwgroup->busy flag, but is otherwise not needed for most processing in
  966. * the driver. This makes the driver much more friendlier to shared IRQs
  967. * than previous designs, while remaining 100% (?) SMP safe and capable.
  968. */
  969. static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
  970. {
  971. ide_drive_t *drive;
  972. ide_hwif_t *hwif;
  973. struct request *rq;
  974. ide_startstop_t startstop;
  975. int loops = 0;
  976. /* for atari only: POSSIBLY BROKEN HERE(?) */
  977. ide_get_lock(ide_intr, hwgroup);
  978. /* caller must own ide_lock */
  979. BUG_ON(!irqs_disabled());
  980. while (!hwgroup->busy) {
  981. hwgroup->busy = 1;
  982. drive = choose_drive(hwgroup);
  983. if (drive == NULL) {
  984. int sleeping = 0;
  985. unsigned long sleep = 0; /* shut up, gcc */
  986. hwgroup->rq = NULL;
  987. drive = hwgroup->drive;
  988. do {
  989. if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
  990. sleeping = 1;
  991. sleep = drive->sleep;
  992. }
  993. } while ((drive = drive->next) != hwgroup->drive);
  994. if (sleeping) {
  995. /*
  996. * Take a short snooze, and then wake up this hwgroup again.
  997. * This gives other hwgroups on the same a chance to
  998. * play fairly with us, just in case there are big differences
  999. * in relative throughputs.. don't want to hog the cpu too much.
  1000. */
  1001. if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
  1002. sleep = jiffies + WAIT_MIN_SLEEP;
  1003. #if 1
  1004. if (timer_pending(&hwgroup->timer))
  1005. printk(KERN_CRIT "ide_set_handler: timer already active\n");
  1006. #endif
  1007. /* so that ide_timer_expiry knows what to do */
  1008. hwgroup->sleeping = 1;
  1009. mod_timer(&hwgroup->timer, sleep);
  1010. /* we purposely leave hwgroup->busy==1
  1011. * while sleeping */
  1012. } else {
  1013. /* Ugly, but how can we sleep for the lock
  1014. * otherwise? perhaps from tq_disk?
  1015. */
  1016. /* for atari only */
  1017. ide_release_lock();
  1018. hwgroup->busy = 0;
  1019. }
  1020. /* no more work for this hwgroup (for now) */
  1021. return;
  1022. }
  1023. again:
  1024. hwif = HWIF(drive);
  1025. if (hwgroup->hwif->sharing_irq &&
  1026. hwif != hwgroup->hwif &&
  1027. hwif->io_ports[IDE_CONTROL_OFFSET]) {
  1028. /* set nIEN for previous hwif */
  1029. SELECT_INTERRUPT(drive);
  1030. }
  1031. hwgroup->hwif = hwif;
  1032. hwgroup->drive = drive;
  1033. drive->sleeping = 0;
  1034. drive->service_start = jiffies;
  1035. if (blk_queue_plugged(drive->queue)) {
  1036. printk(KERN_ERR "ide: huh? queue was plugged!\n");
  1037. break;
  1038. }
  1039. /*
  1040. * we know that the queue isn't empty, but this can happen
  1041. * if the q->prep_rq_fn() decides to kill a request
  1042. */
  1043. rq = elv_next_request(drive->queue);
  1044. if (!rq) {
  1045. hwgroup->busy = 0;
  1046. break;
  1047. }
  1048. /*
  1049. * Sanity: don't accept a request that isn't a PM request
  1050. * if we are currently power managed. This is very important as
  1051. * blk_stop_queue() doesn't prevent the elv_next_request()
  1052. * above to return us whatever is in the queue. Since we call
  1053. * ide_do_request() ourselves, we end up taking requests while
  1054. * the queue is blocked...
  1055. *
  1056. * We let requests forced at head of queue with ide-preempt
  1057. * though. I hope that doesn't happen too much, hopefully not
  1058. * unless the subdriver triggers such a thing in its own PM
  1059. * state machine.
  1060. *
  1061. * We count how many times we loop here to make sure we service
  1062. * all drives in the hwgroup without looping for ever
  1063. */
  1064. if (drive->blocked && !blk_pm_request(rq) && !(rq->flags & REQ_PREEMPT)) {
  1065. drive = drive->next ? drive->next : hwgroup->drive;
  1066. if (loops++ < 4 && !blk_queue_plugged(drive->queue))
  1067. goto again;
  1068. /* We clear busy, there should be no pending ATA command at this point. */
  1069. hwgroup->busy = 0;
  1070. break;
  1071. }
  1072. hwgroup->rq = rq;
  1073. /*
  1074. * Some systems have trouble with IDE IRQs arriving while
  1075. * the driver is still setting things up. So, here we disable
  1076. * the IRQ used by this interface while the request is being started.
  1077. * This may look bad at first, but pretty much the same thing
  1078. * happens anyway when any interrupt comes in, IDE or otherwise
  1079. * -- the kernel masks the IRQ while it is being handled.
  1080. */
  1081. if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
  1082. disable_irq_nosync(hwif->irq);
  1083. spin_unlock(&ide_lock);
  1084. local_irq_enable();
  1085. /* allow other IRQs while we start this request */
  1086. startstop = start_request(drive, rq);
  1087. spin_lock_irq(&ide_lock);
  1088. if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
  1089. enable_irq(hwif->irq);
  1090. if (startstop == ide_stopped)
  1091. hwgroup->busy = 0;
  1092. }
  1093. }
  1094. /*
  1095. * Passes the stuff to ide_do_request
  1096. */
  1097. void do_ide_request(request_queue_t *q)
  1098. {
  1099. ide_drive_t *drive = q->queuedata;
  1100. ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
  1101. }
  1102. /*
  1103. * un-busy the hwgroup etc, and clear any pending DMA status. we want to
  1104. * retry the current request in pio mode instead of risking tossing it
  1105. * all away
  1106. */
  1107. static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
  1108. {
  1109. ide_hwif_t *hwif = HWIF(drive);
  1110. struct request *rq;
  1111. ide_startstop_t ret = ide_stopped;
  1112. /*
  1113. * end current dma transaction
  1114. */
  1115. if (error < 0) {
  1116. printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
  1117. (void)HWIF(drive)->ide_dma_end(drive);
  1118. ret = ide_error(drive, "dma timeout error",
  1119. hwif->INB(IDE_STATUS_REG));
  1120. } else {
  1121. printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
  1122. (void) hwif->ide_dma_timeout(drive);
  1123. }
  1124. /*
  1125. * disable dma for now, but remember that we did so because of
  1126. * a timeout -- we'll reenable after we finish this next request
  1127. * (or rather the first chunk of it) in pio.
  1128. */
  1129. drive->retry_pio++;
  1130. drive->state = DMA_PIO_RETRY;
  1131. (void) hwif->ide_dma_off_quietly(drive);
  1132. /*
  1133. * un-busy drive etc (hwgroup->busy is cleared on return) and
  1134. * make sure request is sane
  1135. */
  1136. rq = HWGROUP(drive)->rq;
  1137. HWGROUP(drive)->rq = NULL;
  1138. rq->errors = 0;
  1139. if (!rq->bio)
  1140. goto out;
  1141. rq->sector = rq->bio->bi_sector;
  1142. rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
  1143. rq->hard_cur_sectors = rq->current_nr_sectors;
  1144. rq->buffer = bio_data(rq->bio);
  1145. out:
  1146. return ret;
  1147. }
  1148. /**
  1149. * ide_timer_expiry - handle lack of an IDE interrupt
  1150. * @data: timer callback magic (hwgroup)
  1151. *
  1152. * An IDE command has timed out before the expected drive return
  1153. * occurred. At this point we attempt to clean up the current
  1154. * mess. If the current handler includes an expiry handler then
  1155. * we invoke the expiry handler, and providing it is happy the
  1156. * work is done. If that fails we apply generic recovery rules
  1157. * invoking the handler and checking the drive DMA status. We
  1158. * have an excessively incestuous relationship with the DMA
  1159. * logic that wants cleaning up.
  1160. */
  1161. void ide_timer_expiry (unsigned long data)
  1162. {
  1163. ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
  1164. ide_handler_t *handler;
  1165. ide_expiry_t *expiry;
  1166. unsigned long flags;
  1167. unsigned long wait = -1;
  1168. spin_lock_irqsave(&ide_lock, flags);
  1169. if ((handler = hwgroup->handler) == NULL) {
  1170. /*
  1171. * Either a marginal timeout occurred
  1172. * (got the interrupt just as timer expired),
  1173. * or we were "sleeping" to give other devices a chance.
  1174. * Either way, we don't really want to complain about anything.
  1175. */
  1176. if (hwgroup->sleeping) {
  1177. hwgroup->sleeping = 0;
  1178. hwgroup->busy = 0;
  1179. }
  1180. } else {
  1181. ide_drive_t *drive = hwgroup->drive;
  1182. if (!drive) {
  1183. printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
  1184. hwgroup->handler = NULL;
  1185. } else {
  1186. ide_hwif_t *hwif;
  1187. ide_startstop_t startstop = ide_stopped;
  1188. if (!hwgroup->busy) {
  1189. hwgroup->busy = 1; /* paranoia */
  1190. printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
  1191. }
  1192. if ((expiry = hwgroup->expiry) != NULL) {
  1193. /* continue */
  1194. if ((wait = expiry(drive)) > 0) {
  1195. /* reset timer */
  1196. hwgroup->timer.expires = jiffies + wait;
  1197. add_timer(&hwgroup->timer);
  1198. spin_unlock_irqrestore(&ide_lock, flags);
  1199. return;
  1200. }
  1201. }
  1202. hwgroup->handler = NULL;
  1203. /*
  1204. * We need to simulate a real interrupt when invoking
  1205. * the handler() function, which means we need to
  1206. * globally mask the specific IRQ:
  1207. */
  1208. spin_unlock(&ide_lock);
  1209. hwif = HWIF(drive);
  1210. #if DISABLE_IRQ_NOSYNC
  1211. disable_irq_nosync(hwif->irq);
  1212. #else
  1213. /* disable_irq_nosync ?? */
  1214. disable_irq(hwif->irq);
  1215. #endif /* DISABLE_IRQ_NOSYNC */
  1216. /* local CPU only,
  1217. * as if we were handling an interrupt */
  1218. local_irq_disable();
  1219. if (hwgroup->polling) {
  1220. startstop = handler(drive);
  1221. } else if (drive_is_ready(drive)) {
  1222. if (drive->waiting_for_dma)
  1223. (void) hwgroup->hwif->ide_dma_lostirq(drive);
  1224. (void)ide_ack_intr(hwif);
  1225. printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
  1226. startstop = handler(drive);
  1227. } else {
  1228. if (drive->waiting_for_dma) {
  1229. startstop = ide_dma_timeout_retry(drive, wait);
  1230. } else
  1231. startstop =
  1232. ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
  1233. }
  1234. drive->service_time = jiffies - drive->service_start;
  1235. spin_lock_irq(&ide_lock);
  1236. enable_irq(hwif->irq);
  1237. if (startstop == ide_stopped)
  1238. hwgroup->busy = 0;
  1239. }
  1240. }
  1241. ide_do_request(hwgroup, IDE_NO_IRQ);
  1242. spin_unlock_irqrestore(&ide_lock, flags);
  1243. }
  1244. /**
  1245. * unexpected_intr - handle an unexpected IDE interrupt
  1246. * @irq: interrupt line
  1247. * @hwgroup: hwgroup being processed
  1248. *
  1249. * There's nothing really useful we can do with an unexpected interrupt,
  1250. * other than reading the status register (to clear it), and logging it.
  1251. * There should be no way that an irq can happen before we're ready for it,
  1252. * so we needn't worry much about losing an "important" interrupt here.
  1253. *
  1254. * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
  1255. * the drive enters "idle", "standby", or "sleep" mode, so if the status
  1256. * looks "good", we just ignore the interrupt completely.
  1257. *
  1258. * This routine assumes __cli() is in effect when called.
  1259. *
  1260. * If an unexpected interrupt happens on irq15 while we are handling irq14
  1261. * and if the two interfaces are "serialized" (CMD640), then it looks like
  1262. * we could screw up by interfering with a new request being set up for
  1263. * irq15.
  1264. *
  1265. * In reality, this is a non-issue. The new command is not sent unless
  1266. * the drive is ready to accept one, in which case we know the drive is
  1267. * not trying to interrupt us. And ide_set_handler() is always invoked
  1268. * before completing the issuance of any new drive command, so we will not
  1269. * be accidentally invoked as a result of any valid command completion
  1270. * interrupt.
  1271. *
  1272. * Note that we must walk the entire hwgroup here. We know which hwif
  1273. * is doing the current command, but we don't know which hwif burped
  1274. * mysteriously.
  1275. */
  1276. static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
  1277. {
  1278. u8 stat;
  1279. ide_hwif_t *hwif = hwgroup->hwif;
  1280. /*
  1281. * handle the unexpected interrupt
  1282. */
  1283. do {
  1284. if (hwif->irq == irq) {
  1285. stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
  1286. if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
  1287. /* Try to not flood the console with msgs */
  1288. static unsigned long last_msgtime, count;
  1289. ++count;
  1290. if (time_after(jiffies, last_msgtime + HZ)) {
  1291. last_msgtime = jiffies;
  1292. printk(KERN_ERR "%s%s: unexpected interrupt, "
  1293. "status=0x%02x, count=%ld\n",
  1294. hwif->name,
  1295. (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
  1296. }
  1297. }
  1298. }
  1299. } while ((hwif = hwif->next) != hwgroup->hwif);
  1300. }
  1301. /**
  1302. * ide_intr - default IDE interrupt handler
  1303. * @irq: interrupt number
  1304. * @dev_id: hwif group
  1305. * @regs: unused weirdness from the kernel irq layer
  1306. *
  1307. * This is the default IRQ handler for the IDE layer. You should
  1308. * not need to override it. If you do be aware it is subtle in
  1309. * places
  1310. *
  1311. * hwgroup->hwif is the interface in the group currently performing
  1312. * a command. hwgroup->drive is the drive and hwgroup->handler is
  1313. * the IRQ handler to call. As we issue a command the handlers
  1314. * step through multiple states, reassigning the handler to the
  1315. * next step in the process. Unlike a smart SCSI controller IDE
  1316. * expects the main processor to sequence the various transfer
  1317. * stages. We also manage a poll timer to catch up with most
  1318. * timeout situations. There are still a few where the handlers
  1319. * don't ever decide to give up.
  1320. *
  1321. * The handler eventually returns ide_stopped to indicate the
  1322. * request completed. At this point we issue the next request
  1323. * on the hwgroup and the process begins again.
  1324. */
  1325. irqreturn_t ide_intr (int irq, void *dev_id, struct pt_regs *regs)
  1326. {
  1327. unsigned long flags;
  1328. ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
  1329. ide_hwif_t *hwif;
  1330. ide_drive_t *drive;
  1331. ide_handler_t *handler;
  1332. ide_startstop_t startstop;
  1333. spin_lock_irqsave(&ide_lock, flags);
  1334. hwif = hwgroup->hwif;
  1335. if (!ide_ack_intr(hwif)) {
  1336. spin_unlock_irqrestore(&ide_lock, flags);
  1337. return IRQ_NONE;
  1338. }
  1339. if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
  1340. /*
  1341. * Not expecting an interrupt from this drive.
  1342. * That means this could be:
  1343. * (1) an interrupt from another PCI device
  1344. * sharing the same PCI INT# as us.
  1345. * or (2) a drive just entered sleep or standby mode,
  1346. * and is interrupting to let us know.
  1347. * or (3) a spurious interrupt of unknown origin.
  1348. *
  1349. * For PCI, we cannot tell the difference,
  1350. * so in that case we just ignore it and hope it goes away.
  1351. *
  1352. * FIXME: unexpected_intr should be hwif-> then we can
  1353. * remove all the ifdef PCI crap
  1354. */
  1355. #ifdef CONFIG_BLK_DEV_IDEPCI
  1356. if (hwif->pci_dev && !hwif->pci_dev->vendor)
  1357. #endif /* CONFIG_BLK_DEV_IDEPCI */
  1358. {
  1359. /*
  1360. * Probably not a shared PCI interrupt,
  1361. * so we can safely try to do something about it:
  1362. */
  1363. unexpected_intr(irq, hwgroup);
  1364. #ifdef CONFIG_BLK_DEV_IDEPCI
  1365. } else {
  1366. /*
  1367. * Whack the status register, just in case
  1368. * we have a leftover pending IRQ.
  1369. */
  1370. (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
  1371. #endif /* CONFIG_BLK_DEV_IDEPCI */
  1372. }
  1373. spin_unlock_irqrestore(&ide_lock, flags);
  1374. return IRQ_NONE;
  1375. }
  1376. drive = hwgroup->drive;
  1377. if (!drive) {
  1378. /*
  1379. * This should NEVER happen, and there isn't much
  1380. * we could do about it here.
  1381. *
  1382. * [Note - this can occur if the drive is hot unplugged]
  1383. */
  1384. spin_unlock_irqrestore(&ide_lock, flags);
  1385. return IRQ_HANDLED;
  1386. }
  1387. if (!drive_is_ready(drive)) {
  1388. /*
  1389. * This happens regularly when we share a PCI IRQ with
  1390. * another device. Unfortunately, it can also happen
  1391. * with some buggy drives that trigger the IRQ before
  1392. * their status register is up to date. Hopefully we have
  1393. * enough advance overhead that the latter isn't a problem.
  1394. */
  1395. spin_unlock_irqrestore(&ide_lock, flags);
  1396. return IRQ_NONE;
  1397. }
  1398. if (!hwgroup->busy) {
  1399. hwgroup->busy = 1; /* paranoia */
  1400. printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
  1401. }
  1402. hwgroup->handler = NULL;
  1403. del_timer(&hwgroup->timer);
  1404. spin_unlock(&ide_lock);
  1405. if (drive->unmask)
  1406. local_irq_enable();
  1407. /* service this interrupt, may set handler for next interrupt */
  1408. startstop = handler(drive);
  1409. spin_lock_irq(&ide_lock);
  1410. /*
  1411. * Note that handler() may have set things up for another
  1412. * interrupt to occur soon, but it cannot happen until
  1413. * we exit from this routine, because it will be the
  1414. * same irq as is currently being serviced here, and Linux
  1415. * won't allow another of the same (on any CPU) until we return.
  1416. */
  1417. drive->service_time = jiffies - drive->service_start;
  1418. if (startstop == ide_stopped) {
  1419. if (hwgroup->handler == NULL) { /* paranoia */
  1420. hwgroup->busy = 0;
  1421. ide_do_request(hwgroup, hwif->irq);
  1422. } else {
  1423. printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
  1424. "on exit\n", drive->name);
  1425. }
  1426. }
  1427. spin_unlock_irqrestore(&ide_lock, flags);
  1428. return IRQ_HANDLED;
  1429. }
  1430. /**
  1431. * ide_init_drive_cmd - initialize a drive command request
  1432. * @rq: request object
  1433. *
  1434. * Initialize a request before we fill it in and send it down to
  1435. * ide_do_drive_cmd. Commands must be set up by this function. Right
  1436. * now it doesn't do a lot, but if that changes abusers will have a
  1437. * nasty suprise.
  1438. */
  1439. void ide_init_drive_cmd (struct request *rq)
  1440. {
  1441. memset(rq, 0, sizeof(*rq));
  1442. rq->flags = REQ_DRIVE_CMD;
  1443. rq->ref_count = 1;
  1444. }
  1445. EXPORT_SYMBOL(ide_init_drive_cmd);
  1446. /**
  1447. * ide_do_drive_cmd - issue IDE special command
  1448. * @drive: device to issue command
  1449. * @rq: request to issue
  1450. * @action: action for processing
  1451. *
  1452. * This function issues a special IDE device request
  1453. * onto the request queue.
  1454. *
  1455. * If action is ide_wait, then the rq is queued at the end of the
  1456. * request queue, and the function sleeps until it has been processed.
  1457. * This is for use when invoked from an ioctl handler.
  1458. *
  1459. * If action is ide_preempt, then the rq is queued at the head of
  1460. * the request queue, displacing the currently-being-processed
  1461. * request and this function returns immediately without waiting
  1462. * for the new rq to be completed. This is VERY DANGEROUS, and is
  1463. * intended for careful use by the ATAPI tape/cdrom driver code.
  1464. *
  1465. * If action is ide_end, then the rq is queued at the end of the
  1466. * request queue, and the function returns immediately without waiting
  1467. * for the new rq to be completed. This is again intended for careful
  1468. * use by the ATAPI tape/cdrom driver code.
  1469. */
  1470. int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
  1471. {
  1472. unsigned long flags;
  1473. ide_hwgroup_t *hwgroup = HWGROUP(drive);
  1474. DECLARE_COMPLETION(wait);
  1475. int where = ELEVATOR_INSERT_BACK, err;
  1476. int must_wait = (action == ide_wait || action == ide_head_wait);
  1477. rq->errors = 0;
  1478. rq->rq_status = RQ_ACTIVE;
  1479. /*
  1480. * we need to hold an extra reference to request for safe inspection
  1481. * after completion
  1482. */
  1483. if (must_wait) {
  1484. rq->ref_count++;
  1485. rq->waiting = &wait;
  1486. rq->end_io = blk_end_sync_rq;
  1487. }
  1488. spin_lock_irqsave(&ide_lock, flags);
  1489. if (action == ide_preempt)
  1490. hwgroup->rq = NULL;
  1491. if (action == ide_preempt || action == ide_head_wait) {
  1492. where = ELEVATOR_INSERT_FRONT;
  1493. rq->flags |= REQ_PREEMPT;
  1494. }
  1495. __elv_add_request(drive->queue, rq, where, 0);
  1496. ide_do_request(hwgroup, IDE_NO_IRQ);
  1497. spin_unlock_irqrestore(&ide_lock, flags);
  1498. err = 0;
  1499. if (must_wait) {
  1500. wait_for_completion(&wait);
  1501. rq->waiting = NULL;
  1502. if (rq->errors)
  1503. err = -EIO;
  1504. blk_put_request(rq);
  1505. }
  1506. return err;
  1507. }
  1508. EXPORT_SYMBOL(ide_do_drive_cmd);