core.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837
  1. /*
  2. * linux/arch/arm/mach-versatile/core.c
  3. *
  4. * Copyright (C) 1999 - 2003 ARM Limited
  5. * Copyright (C) 2000 Deep Blue Solutions Ltd
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/init.h>
  22. #include <linux/device.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/sysdev.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/amba/bus.h>
  28. #include <linux/amba/clcd.h>
  29. #include <linux/amba/pl061.h>
  30. #include <linux/amba/mmci.h>
  31. #include <linux/amba/pl022.h>
  32. #include <linux/io.h>
  33. #include <linux/gfp.h>
  34. #include <linux/clkdev.h>
  35. #include <asm/system.h>
  36. #include <asm/irq.h>
  37. #include <asm/leds.h>
  38. #include <asm/hardware/arm_timer.h>
  39. #include <asm/hardware/icst.h>
  40. #include <asm/hardware/vic.h>
  41. #include <asm/mach-types.h>
  42. #include <asm/mach/arch.h>
  43. #include <asm/mach/flash.h>
  44. #include <asm/mach/irq.h>
  45. #include <asm/mach/time.h>
  46. #include <asm/mach/map.h>
  47. #include <mach/hardware.h>
  48. #include <mach/platform.h>
  49. #include <asm/hardware/timer-sp.h>
  50. #include <plat/clcd.h>
  51. #include <plat/sched_clock.h>
  52. #include "core.h"
  53. /*
  54. * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
  55. * is the (PA >> 12).
  56. *
  57. * Setup a VA for the Versatile Vectored Interrupt Controller.
  58. */
  59. #define VA_VIC_BASE __io_address(VERSATILE_VIC_BASE)
  60. #define VA_SIC_BASE __io_address(VERSATILE_SIC_BASE)
  61. static void sic_mask_irq(struct irq_data *d)
  62. {
  63. unsigned int irq = d->irq - IRQ_SIC_START;
  64. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  65. }
  66. static void sic_unmask_irq(struct irq_data *d)
  67. {
  68. unsigned int irq = d->irq - IRQ_SIC_START;
  69. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
  70. }
  71. static struct irq_chip sic_chip = {
  72. .name = "SIC",
  73. .irq_ack = sic_mask_irq,
  74. .irq_mask = sic_mask_irq,
  75. .irq_unmask = sic_unmask_irq,
  76. };
  77. static void
  78. sic_handle_irq(unsigned int irq, struct irq_desc *desc)
  79. {
  80. unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
  81. if (status == 0) {
  82. do_bad_IRQ(irq, desc);
  83. return;
  84. }
  85. do {
  86. irq = ffs(status) - 1;
  87. status &= ~(1 << irq);
  88. irq += IRQ_SIC_START;
  89. generic_handle_irq(irq);
  90. } while (status);
  91. }
  92. #if 1
  93. #define IRQ_MMCI0A IRQ_VICSOURCE22
  94. #define IRQ_AACI IRQ_VICSOURCE24
  95. #define IRQ_ETH IRQ_VICSOURCE25
  96. #define PIC_MASK 0xFFD00000
  97. #else
  98. #define IRQ_MMCI0A IRQ_SIC_MMCI0A
  99. #define IRQ_AACI IRQ_SIC_AACI
  100. #define IRQ_ETH IRQ_SIC_ETH
  101. #define PIC_MASK 0
  102. #endif
  103. void __init versatile_init_irq(void)
  104. {
  105. unsigned int i;
  106. vic_init(VA_VIC_BASE, IRQ_VIC_START, ~0, 0);
  107. set_irq_chained_handler(IRQ_VICSOURCE31, sic_handle_irq);
  108. /* Do second interrupt controller */
  109. writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  110. for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
  111. if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
  112. set_irq_chip(i, &sic_chip);
  113. set_irq_handler(i, handle_level_irq);
  114. set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
  115. }
  116. }
  117. /*
  118. * Interrupts on secondary controller from 0 to 8 are routed to
  119. * source 31 on PIC.
  120. * Interrupts from 21 to 31 are routed directly to the VIC on
  121. * the corresponding number on primary controller. This is controlled
  122. * by setting PIC_ENABLEx.
  123. */
  124. writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
  125. }
  126. static struct map_desc versatile_io_desc[] __initdata = {
  127. {
  128. .virtual = IO_ADDRESS(VERSATILE_SYS_BASE),
  129. .pfn = __phys_to_pfn(VERSATILE_SYS_BASE),
  130. .length = SZ_4K,
  131. .type = MT_DEVICE
  132. }, {
  133. .virtual = IO_ADDRESS(VERSATILE_SIC_BASE),
  134. .pfn = __phys_to_pfn(VERSATILE_SIC_BASE),
  135. .length = SZ_4K,
  136. .type = MT_DEVICE
  137. }, {
  138. .virtual = IO_ADDRESS(VERSATILE_VIC_BASE),
  139. .pfn = __phys_to_pfn(VERSATILE_VIC_BASE),
  140. .length = SZ_4K,
  141. .type = MT_DEVICE
  142. }, {
  143. .virtual = IO_ADDRESS(VERSATILE_SCTL_BASE),
  144. .pfn = __phys_to_pfn(VERSATILE_SCTL_BASE),
  145. .length = SZ_4K * 9,
  146. .type = MT_DEVICE
  147. },
  148. #ifdef CONFIG_MACH_VERSATILE_AB
  149. {
  150. .virtual = IO_ADDRESS(VERSATILE_GPIO0_BASE),
  151. .pfn = __phys_to_pfn(VERSATILE_GPIO0_BASE),
  152. .length = SZ_4K,
  153. .type = MT_DEVICE
  154. }, {
  155. .virtual = IO_ADDRESS(VERSATILE_IB2_BASE),
  156. .pfn = __phys_to_pfn(VERSATILE_IB2_BASE),
  157. .length = SZ_64M,
  158. .type = MT_DEVICE
  159. },
  160. #endif
  161. #ifdef CONFIG_DEBUG_LL
  162. {
  163. .virtual = IO_ADDRESS(VERSATILE_UART0_BASE),
  164. .pfn = __phys_to_pfn(VERSATILE_UART0_BASE),
  165. .length = SZ_4K,
  166. .type = MT_DEVICE
  167. },
  168. #endif
  169. #ifdef CONFIG_PCI
  170. {
  171. .virtual = IO_ADDRESS(VERSATILE_PCI_CORE_BASE),
  172. .pfn = __phys_to_pfn(VERSATILE_PCI_CORE_BASE),
  173. .length = SZ_4K,
  174. .type = MT_DEVICE
  175. }, {
  176. .virtual = (unsigned long)VERSATILE_PCI_VIRT_BASE,
  177. .pfn = __phys_to_pfn(VERSATILE_PCI_BASE),
  178. .length = VERSATILE_PCI_BASE_SIZE,
  179. .type = MT_DEVICE
  180. }, {
  181. .virtual = (unsigned long)VERSATILE_PCI_CFG_VIRT_BASE,
  182. .pfn = __phys_to_pfn(VERSATILE_PCI_CFG_BASE),
  183. .length = VERSATILE_PCI_CFG_BASE_SIZE,
  184. .type = MT_DEVICE
  185. },
  186. #if 0
  187. {
  188. .virtual = VERSATILE_PCI_VIRT_MEM_BASE0,
  189. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE0),
  190. .length = SZ_16M,
  191. .type = MT_DEVICE
  192. }, {
  193. .virtual = VERSATILE_PCI_VIRT_MEM_BASE1,
  194. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE1),
  195. .length = SZ_16M,
  196. .type = MT_DEVICE
  197. }, {
  198. .virtual = VERSATILE_PCI_VIRT_MEM_BASE2,
  199. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE2),
  200. .length = SZ_16M,
  201. .type = MT_DEVICE
  202. },
  203. #endif
  204. #endif
  205. };
  206. void __init versatile_map_io(void)
  207. {
  208. iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
  209. }
  210. #define VERSATILE_FLASHCTRL (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
  211. static int versatile_flash_init(void)
  212. {
  213. u32 val;
  214. val = __raw_readl(VERSATILE_FLASHCTRL);
  215. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  216. __raw_writel(val, VERSATILE_FLASHCTRL);
  217. return 0;
  218. }
  219. static void versatile_flash_exit(void)
  220. {
  221. u32 val;
  222. val = __raw_readl(VERSATILE_FLASHCTRL);
  223. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  224. __raw_writel(val, VERSATILE_FLASHCTRL);
  225. }
  226. static void versatile_flash_set_vpp(int on)
  227. {
  228. u32 val;
  229. val = __raw_readl(VERSATILE_FLASHCTRL);
  230. if (on)
  231. val |= VERSATILE_FLASHPROG_FLVPPEN;
  232. else
  233. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  234. __raw_writel(val, VERSATILE_FLASHCTRL);
  235. }
  236. static struct flash_platform_data versatile_flash_data = {
  237. .map_name = "cfi_probe",
  238. .width = 4,
  239. .init = versatile_flash_init,
  240. .exit = versatile_flash_exit,
  241. .set_vpp = versatile_flash_set_vpp,
  242. };
  243. static struct resource versatile_flash_resource = {
  244. .start = VERSATILE_FLASH_BASE,
  245. .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE - 1,
  246. .flags = IORESOURCE_MEM,
  247. };
  248. static struct platform_device versatile_flash_device = {
  249. .name = "armflash",
  250. .id = 0,
  251. .dev = {
  252. .platform_data = &versatile_flash_data,
  253. },
  254. .num_resources = 1,
  255. .resource = &versatile_flash_resource,
  256. };
  257. static struct resource smc91x_resources[] = {
  258. [0] = {
  259. .start = VERSATILE_ETH_BASE,
  260. .end = VERSATILE_ETH_BASE + SZ_64K - 1,
  261. .flags = IORESOURCE_MEM,
  262. },
  263. [1] = {
  264. .start = IRQ_ETH,
  265. .end = IRQ_ETH,
  266. .flags = IORESOURCE_IRQ,
  267. },
  268. };
  269. static struct platform_device smc91x_device = {
  270. .name = "smc91x",
  271. .id = 0,
  272. .num_resources = ARRAY_SIZE(smc91x_resources),
  273. .resource = smc91x_resources,
  274. };
  275. static struct resource versatile_i2c_resource = {
  276. .start = VERSATILE_I2C_BASE,
  277. .end = VERSATILE_I2C_BASE + SZ_4K - 1,
  278. .flags = IORESOURCE_MEM,
  279. };
  280. static struct platform_device versatile_i2c_device = {
  281. .name = "versatile-i2c",
  282. .id = 0,
  283. .num_resources = 1,
  284. .resource = &versatile_i2c_resource,
  285. };
  286. static struct i2c_board_info versatile_i2c_board_info[] = {
  287. {
  288. I2C_BOARD_INFO("ds1338", 0xd0 >> 1),
  289. },
  290. };
  291. static int __init versatile_i2c_init(void)
  292. {
  293. return i2c_register_board_info(0, versatile_i2c_board_info,
  294. ARRAY_SIZE(versatile_i2c_board_info));
  295. }
  296. arch_initcall(versatile_i2c_init);
  297. #define VERSATILE_SYSMCI (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
  298. unsigned int mmc_status(struct device *dev)
  299. {
  300. struct amba_device *adev = container_of(dev, struct amba_device, dev);
  301. u32 mask;
  302. if (adev->res.start == VERSATILE_MMCI0_BASE)
  303. mask = 1;
  304. else
  305. mask = 2;
  306. return readl(VERSATILE_SYSMCI) & mask;
  307. }
  308. static struct mmci_platform_data mmc0_plat_data = {
  309. .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
  310. .status = mmc_status,
  311. .gpio_wp = -1,
  312. .gpio_cd = -1,
  313. };
  314. static struct resource char_lcd_resources[] = {
  315. {
  316. .start = VERSATILE_CHAR_LCD_BASE,
  317. .end = (VERSATILE_CHAR_LCD_BASE + SZ_4K - 1),
  318. .flags = IORESOURCE_MEM,
  319. },
  320. };
  321. static struct platform_device char_lcd_device = {
  322. .name = "arm-charlcd",
  323. .id = -1,
  324. .num_resources = ARRAY_SIZE(char_lcd_resources),
  325. .resource = char_lcd_resources,
  326. };
  327. /*
  328. * Clock handling
  329. */
  330. static const struct icst_params versatile_oscvco_params = {
  331. .ref = 24000000,
  332. .vco_max = ICST307_VCO_MAX,
  333. .vco_min = ICST307_VCO_MIN,
  334. .vd_min = 4 + 8,
  335. .vd_max = 511 + 8,
  336. .rd_min = 1 + 2,
  337. .rd_max = 127 + 2,
  338. .s2div = icst307_s2div,
  339. .idx2s = icst307_idx2s,
  340. };
  341. static void versatile_oscvco_set(struct clk *clk, struct icst_vco vco)
  342. {
  343. void __iomem *sys_lock = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LOCK_OFFSET;
  344. u32 val;
  345. val = readl(clk->vcoreg) & ~0x7ffff;
  346. val |= vco.v | (vco.r << 9) | (vco.s << 16);
  347. writel(0xa05f, sys_lock);
  348. writel(val, clk->vcoreg);
  349. writel(0, sys_lock);
  350. }
  351. static const struct clk_ops osc4_clk_ops = {
  352. .round = icst_clk_round,
  353. .set = icst_clk_set,
  354. .setvco = versatile_oscvco_set,
  355. };
  356. static struct clk osc4_clk = {
  357. .ops = &osc4_clk_ops,
  358. .params = &versatile_oscvco_params,
  359. };
  360. /*
  361. * These are fixed clocks.
  362. */
  363. static struct clk ref24_clk = {
  364. .rate = 24000000,
  365. };
  366. static struct clk dummy_apb_pclk;
  367. static struct clk_lookup lookups[] = {
  368. { /* AMBA bus clock */
  369. .con_id = "apb_pclk",
  370. .clk = &dummy_apb_pclk,
  371. }, { /* UART0 */
  372. .dev_id = "dev:f1",
  373. .clk = &ref24_clk,
  374. }, { /* UART1 */
  375. .dev_id = "dev:f2",
  376. .clk = &ref24_clk,
  377. }, { /* UART2 */
  378. .dev_id = "dev:f3",
  379. .clk = &ref24_clk,
  380. }, { /* UART3 */
  381. .dev_id = "fpga:09",
  382. .clk = &ref24_clk,
  383. }, { /* KMI0 */
  384. .dev_id = "fpga:06",
  385. .clk = &ref24_clk,
  386. }, { /* KMI1 */
  387. .dev_id = "fpga:07",
  388. .clk = &ref24_clk,
  389. }, { /* MMC0 */
  390. .dev_id = "fpga:05",
  391. .clk = &ref24_clk,
  392. }, { /* MMC1 */
  393. .dev_id = "fpga:0b",
  394. .clk = &ref24_clk,
  395. }, { /* SSP */
  396. .dev_id = "dev:f4",
  397. .clk = &ref24_clk,
  398. }, { /* CLCD */
  399. .dev_id = "dev:20",
  400. .clk = &osc4_clk,
  401. }
  402. };
  403. /*
  404. * CLCD support.
  405. */
  406. #define SYS_CLCD_MODE_MASK (3 << 0)
  407. #define SYS_CLCD_MODE_888 (0 << 0)
  408. #define SYS_CLCD_MODE_5551 (1 << 0)
  409. #define SYS_CLCD_MODE_565_RLSB (2 << 0)
  410. #define SYS_CLCD_MODE_565_BLSB (3 << 0)
  411. #define SYS_CLCD_NLCDIOON (1 << 2)
  412. #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
  413. #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
  414. #define SYS_CLCD_ID_MASK (0x1f << 8)
  415. #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
  416. #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
  417. #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
  418. #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
  419. #define SYS_CLCD_ID_VGA (0x1f << 8)
  420. static bool is_sanyo_2_5_lcd;
  421. /*
  422. * Disable all display connectors on the interface module.
  423. */
  424. static void versatile_clcd_disable(struct clcd_fb *fb)
  425. {
  426. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  427. u32 val;
  428. val = readl(sys_clcd);
  429. val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  430. writel(val, sys_clcd);
  431. #ifdef CONFIG_MACH_VERSATILE_AB
  432. /*
  433. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
  434. */
  435. if (machine_is_versatile_ab() && is_sanyo_2_5_lcd) {
  436. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  437. unsigned long ctrl;
  438. ctrl = readl(versatile_ib2_ctrl);
  439. ctrl &= ~0x01;
  440. writel(ctrl, versatile_ib2_ctrl);
  441. }
  442. #endif
  443. }
  444. /*
  445. * Enable the relevant connector on the interface module.
  446. */
  447. static void versatile_clcd_enable(struct clcd_fb *fb)
  448. {
  449. struct fb_var_screeninfo *var = &fb->fb.var;
  450. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  451. u32 val;
  452. val = readl(sys_clcd);
  453. val &= ~SYS_CLCD_MODE_MASK;
  454. switch (var->green.length) {
  455. case 5:
  456. val |= SYS_CLCD_MODE_5551;
  457. break;
  458. case 6:
  459. if (var->red.offset == 0)
  460. val |= SYS_CLCD_MODE_565_RLSB;
  461. else
  462. val |= SYS_CLCD_MODE_565_BLSB;
  463. break;
  464. case 8:
  465. val |= SYS_CLCD_MODE_888;
  466. break;
  467. }
  468. /*
  469. * Set the MUX
  470. */
  471. writel(val, sys_clcd);
  472. /*
  473. * And now enable the PSUs
  474. */
  475. val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  476. writel(val, sys_clcd);
  477. #ifdef CONFIG_MACH_VERSATILE_AB
  478. /*
  479. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
  480. */
  481. if (machine_is_versatile_ab() && is_sanyo_2_5_lcd) {
  482. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  483. unsigned long ctrl;
  484. ctrl = readl(versatile_ib2_ctrl);
  485. ctrl |= 0x01;
  486. writel(ctrl, versatile_ib2_ctrl);
  487. }
  488. #endif
  489. }
  490. /*
  491. * Detect which LCD panel is connected, and return the appropriate
  492. * clcd_panel structure. Note: we do not have any information on
  493. * the required timings for the 8.4in panel, so we presently assume
  494. * VGA timings.
  495. */
  496. static int versatile_clcd_setup(struct clcd_fb *fb)
  497. {
  498. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  499. const char *panel_name;
  500. u32 val;
  501. is_sanyo_2_5_lcd = false;
  502. val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
  503. if (val == SYS_CLCD_ID_SANYO_3_8)
  504. panel_name = "Sanyo TM38QV67A02A";
  505. else if (val == SYS_CLCD_ID_SANYO_2_5) {
  506. panel_name = "Sanyo QVGA Portrait";
  507. is_sanyo_2_5_lcd = true;
  508. } else if (val == SYS_CLCD_ID_EPSON_2_2)
  509. panel_name = "Epson L2F50113T00";
  510. else if (val == SYS_CLCD_ID_VGA)
  511. panel_name = "VGA";
  512. else {
  513. printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
  514. val);
  515. panel_name = "VGA";
  516. }
  517. fb->panel = versatile_clcd_get_panel(panel_name);
  518. if (!fb->panel)
  519. return -EINVAL;
  520. return versatile_clcd_setup_dma(fb, SZ_1M);
  521. }
  522. static void versatile_clcd_decode(struct clcd_fb *fb, struct clcd_regs *regs)
  523. {
  524. clcdfb_decode(fb, regs);
  525. /* Always clear BGR for RGB565: we do the routing externally */
  526. if (fb->fb.var.green.length == 6)
  527. regs->cntl &= ~CNTL_BGR;
  528. }
  529. static struct clcd_board clcd_plat_data = {
  530. .name = "Versatile",
  531. .caps = CLCD_CAP_5551 | CLCD_CAP_565 | CLCD_CAP_888,
  532. .check = clcdfb_check,
  533. .decode = versatile_clcd_decode,
  534. .disable = versatile_clcd_disable,
  535. .enable = versatile_clcd_enable,
  536. .setup = versatile_clcd_setup,
  537. .mmap = versatile_clcd_mmap_dma,
  538. .remove = versatile_clcd_remove_dma,
  539. };
  540. static struct pl061_platform_data gpio0_plat_data = {
  541. .gpio_base = 0,
  542. .irq_base = IRQ_GPIO0_START,
  543. };
  544. static struct pl061_platform_data gpio1_plat_data = {
  545. .gpio_base = 8,
  546. .irq_base = IRQ_GPIO1_START,
  547. };
  548. static struct pl022_ssp_controller ssp0_plat_data = {
  549. .bus_id = 0,
  550. .enable_dma = 0,
  551. .num_chipselect = 1,
  552. };
  553. #define AACI_IRQ { IRQ_AACI, NO_IRQ }
  554. #define AACI_DMA { 0x80, 0x81 }
  555. #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
  556. #define MMCI0_DMA { 0x84, 0 }
  557. #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
  558. #define KMI0_DMA { 0, 0 }
  559. #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
  560. #define KMI1_DMA { 0, 0 }
  561. /*
  562. * These devices are connected directly to the multi-layer AHB switch
  563. */
  564. #define SMC_IRQ { NO_IRQ, NO_IRQ }
  565. #define SMC_DMA { 0, 0 }
  566. #define MPMC_IRQ { NO_IRQ, NO_IRQ }
  567. #define MPMC_DMA { 0, 0 }
  568. #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
  569. #define CLCD_DMA { 0, 0 }
  570. #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
  571. #define DMAC_DMA { 0, 0 }
  572. /*
  573. * These devices are connected via the core APB bridge
  574. */
  575. #define SCTL_IRQ { NO_IRQ, NO_IRQ }
  576. #define SCTL_DMA { 0, 0 }
  577. #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
  578. #define WATCHDOG_DMA { 0, 0 }
  579. #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
  580. #define GPIO0_DMA { 0, 0 }
  581. #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
  582. #define GPIO1_DMA { 0, 0 }
  583. #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
  584. #define RTC_DMA { 0, 0 }
  585. /*
  586. * These devices are connected via the DMA APB bridge
  587. */
  588. #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
  589. #define SCI_DMA { 7, 6 }
  590. #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
  591. #define UART0_DMA { 15, 14 }
  592. #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
  593. #define UART1_DMA { 13, 12 }
  594. #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
  595. #define UART2_DMA { 11, 10 }
  596. #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
  597. #define SSP_DMA { 9, 8 }
  598. /* FPGA Primecells */
  599. AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
  600. AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
  601. AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
  602. AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
  603. /* DevChip Primecells */
  604. AMBA_DEVICE(smc, "dev:00", SMC, NULL);
  605. AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
  606. AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
  607. AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
  608. AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
  609. AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
  610. AMBA_DEVICE(gpio0, "dev:e4", GPIO0, &gpio0_plat_data);
  611. AMBA_DEVICE(gpio1, "dev:e5", GPIO1, &gpio1_plat_data);
  612. AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
  613. AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
  614. AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
  615. AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
  616. AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
  617. AMBA_DEVICE(ssp0, "dev:f4", SSP, &ssp0_plat_data);
  618. static struct amba_device *amba_devs[] __initdata = {
  619. &dmac_device,
  620. &uart0_device,
  621. &uart1_device,
  622. &uart2_device,
  623. &smc_device,
  624. &mpmc_device,
  625. &clcd_device,
  626. &sctl_device,
  627. &wdog_device,
  628. &gpio0_device,
  629. &gpio1_device,
  630. &rtc_device,
  631. &sci0_device,
  632. &ssp0_device,
  633. &aaci_device,
  634. &mmc0_device,
  635. &kmi0_device,
  636. &kmi1_device,
  637. };
  638. #ifdef CONFIG_LEDS
  639. #define VA_LEDS_BASE (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
  640. static void versatile_leds_event(led_event_t ledevt)
  641. {
  642. unsigned long flags;
  643. u32 val;
  644. local_irq_save(flags);
  645. val = readl(VA_LEDS_BASE);
  646. switch (ledevt) {
  647. case led_idle_start:
  648. val = val & ~VERSATILE_SYS_LED0;
  649. break;
  650. case led_idle_end:
  651. val = val | VERSATILE_SYS_LED0;
  652. break;
  653. case led_timer:
  654. val = val ^ VERSATILE_SYS_LED1;
  655. break;
  656. case led_halted:
  657. val = 0;
  658. break;
  659. default:
  660. break;
  661. }
  662. writel(val, VA_LEDS_BASE);
  663. local_irq_restore(flags);
  664. }
  665. #endif /* CONFIG_LEDS */
  666. /* Early initializations */
  667. void __init versatile_init_early(void)
  668. {
  669. void __iomem *sys = __io_address(VERSATILE_SYS_BASE);
  670. osc4_clk.vcoreg = sys + VERSATILE_SYS_OSCCLCD_OFFSET;
  671. clkdev_add_table(lookups, ARRAY_SIZE(lookups));
  672. versatile_sched_clock_init(sys + VERSATILE_SYS_24MHz_OFFSET, 24000000);
  673. }
  674. void __init versatile_init(void)
  675. {
  676. int i;
  677. platform_device_register(&versatile_flash_device);
  678. platform_device_register(&versatile_i2c_device);
  679. platform_device_register(&smc91x_device);
  680. platform_device_register(&char_lcd_device);
  681. for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
  682. struct amba_device *d = amba_devs[i];
  683. amba_device_register(d, &iomem_resource);
  684. }
  685. #ifdef CONFIG_LEDS
  686. leds_event = versatile_leds_event;
  687. #endif
  688. }
  689. /*
  690. * Where is the timer (VA)?
  691. */
  692. #define TIMER0_VA_BASE __io_address(VERSATILE_TIMER0_1_BASE)
  693. #define TIMER1_VA_BASE (__io_address(VERSATILE_TIMER0_1_BASE) + 0x20)
  694. #define TIMER2_VA_BASE __io_address(VERSATILE_TIMER2_3_BASE)
  695. #define TIMER3_VA_BASE (__io_address(VERSATILE_TIMER2_3_BASE) + 0x20)
  696. /*
  697. * Set up timer interrupt, and return the current time in seconds.
  698. */
  699. static void __init versatile_timer_init(void)
  700. {
  701. u32 val;
  702. /*
  703. * set clock frequency:
  704. * VERSATILE_REFCLK is 32KHz
  705. * VERSATILE_TIMCLK is 1MHz
  706. */
  707. val = readl(__io_address(VERSATILE_SCTL_BASE));
  708. writel((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) |
  709. (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
  710. (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) |
  711. (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel) | val,
  712. __io_address(VERSATILE_SCTL_BASE));
  713. /*
  714. * Initialise to a known state (all timers off)
  715. */
  716. writel(0, TIMER0_VA_BASE + TIMER_CTRL);
  717. writel(0, TIMER1_VA_BASE + TIMER_CTRL);
  718. writel(0, TIMER2_VA_BASE + TIMER_CTRL);
  719. writel(0, TIMER3_VA_BASE + TIMER_CTRL);
  720. sp804_clocksource_init(TIMER3_VA_BASE);
  721. sp804_clockevents_init(TIMER0_VA_BASE, IRQ_TIMERINT0_1);
  722. }
  723. struct sys_timer versatile_timer = {
  724. .init = versatile_timer_init,
  725. };