kprobes-arm.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540
  1. /*
  2. * arch/arm/kernel/kprobes-decode.c
  3. *
  4. * Copyright (C) 2006, 2007 Motorola Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * General Public License for more details.
  14. */
  15. /*
  16. * We do not have hardware single-stepping on ARM, This
  17. * effort is further complicated by the ARM not having a
  18. * "next PC" register. Instructions that change the PC
  19. * can't be safely single-stepped in a MP environment, so
  20. * we have a lot of work to do:
  21. *
  22. * In the prepare phase:
  23. * *) If it is an instruction that does anything
  24. * with the CPU mode, we reject it for a kprobe.
  25. * (This is out of laziness rather than need. The
  26. * instructions could be simulated.)
  27. *
  28. * *) Otherwise, decode the instruction rewriting its
  29. * registers to take fixed, ordered registers and
  30. * setting a handler for it to run the instruction.
  31. *
  32. * In the execution phase by an instruction's handler:
  33. *
  34. * *) If the PC is written to by the instruction, the
  35. * instruction must be fully simulated in software.
  36. *
  37. * *) Otherwise, a modified form of the instruction is
  38. * directly executed. Its handler calls the
  39. * instruction in insn[0]. In insn[1] is a
  40. * "mov pc, lr" to return.
  41. *
  42. * Before calling, load up the reordered registers
  43. * from the original instruction's registers. If one
  44. * of the original input registers is the PC, compute
  45. * and adjust the appropriate input register.
  46. *
  47. * After call completes, copy the output registers to
  48. * the original instruction's original registers.
  49. *
  50. * We don't use a real breakpoint instruction since that
  51. * would have us in the kernel go from SVC mode to SVC
  52. * mode losing the link register. Instead we use an
  53. * undefined instruction. To simplify processing, the
  54. * undefined instruction used for kprobes must be reserved
  55. * exclusively for kprobes use.
  56. *
  57. * TODO: ifdef out some instruction decoding based on architecture.
  58. */
  59. #include <linux/kernel.h>
  60. #include <linux/kprobes.h>
  61. #include "kprobes.h"
  62. #define sign_extend(x, signbit) ((x) | (0 - ((x) & (1 << (signbit)))))
  63. #define branch_displacement(insn) sign_extend(((insn) & 0xffffff) << 2, 25)
  64. #if __LINUX_ARM_ARCH__ >= 6
  65. #define BLX(reg) "blx "reg" \n\t"
  66. #else
  67. #define BLX(reg) "mov lr, pc \n\t" \
  68. "mov pc, "reg" \n\t"
  69. #endif
  70. #define is_r15(insn, bitpos) (((insn) & (0xf << bitpos)) == (0xf << bitpos))
  71. #define PSR_fs (PSR_f|PSR_s)
  72. #define KPROBE_RETURN_INSTRUCTION 0xe1a0f00e /* mov pc, lr */
  73. typedef long (insn_0arg_fn_t)(void);
  74. typedef long (insn_1arg_fn_t)(long);
  75. typedef long (insn_2arg_fn_t)(long, long);
  76. typedef long (insn_3arg_fn_t)(long, long, long);
  77. typedef long (insn_4arg_fn_t)(long, long, long, long);
  78. typedef long long (insn_llret_0arg_fn_t)(void);
  79. typedef long long (insn_llret_3arg_fn_t)(long, long, long);
  80. typedef long long (insn_llret_4arg_fn_t)(long, long, long, long);
  81. union reg_pair {
  82. long long dr;
  83. #ifdef __LITTLE_ENDIAN
  84. struct { long r0, r1; };
  85. #else
  86. struct { long r1, r0; };
  87. #endif
  88. };
  89. /*
  90. * The insnslot_?arg_r[w]flags() functions below are to keep the
  91. * msr -> *fn -> mrs instruction sequences indivisible so that
  92. * the state of the CPSR flags aren't inadvertently modified
  93. * just before or just after the call.
  94. */
  95. static inline long __kprobes
  96. insnslot_0arg_rflags(long cpsr, insn_0arg_fn_t *fn)
  97. {
  98. register long ret asm("r0");
  99. __asm__ __volatile__ (
  100. "msr cpsr_fs, %[cpsr] \n\t"
  101. "mov lr, pc \n\t"
  102. "mov pc, %[fn] \n\t"
  103. : "=r" (ret)
  104. : [cpsr] "r" (cpsr), [fn] "r" (fn)
  105. : "lr", "cc"
  106. );
  107. return ret;
  108. }
  109. static inline long long __kprobes
  110. insnslot_llret_0arg_rflags(long cpsr, insn_llret_0arg_fn_t *fn)
  111. {
  112. register long ret0 asm("r0");
  113. register long ret1 asm("r1");
  114. union reg_pair fnr;
  115. __asm__ __volatile__ (
  116. "msr cpsr_fs, %[cpsr] \n\t"
  117. "mov lr, pc \n\t"
  118. "mov pc, %[fn] \n\t"
  119. : "=r" (ret0), "=r" (ret1)
  120. : [cpsr] "r" (cpsr), [fn] "r" (fn)
  121. : "lr", "cc"
  122. );
  123. fnr.r0 = ret0;
  124. fnr.r1 = ret1;
  125. return fnr.dr;
  126. }
  127. static inline long __kprobes
  128. insnslot_1arg_rflags(long r0, long cpsr, insn_1arg_fn_t *fn)
  129. {
  130. register long rr0 asm("r0") = r0;
  131. register long ret asm("r0");
  132. __asm__ __volatile__ (
  133. "msr cpsr_fs, %[cpsr] \n\t"
  134. "mov lr, pc \n\t"
  135. "mov pc, %[fn] \n\t"
  136. : "=r" (ret)
  137. : "0" (rr0), [cpsr] "r" (cpsr), [fn] "r" (fn)
  138. : "lr", "cc"
  139. );
  140. return ret;
  141. }
  142. static inline long __kprobes
  143. insnslot_2arg_rflags(long r0, long r1, long cpsr, insn_2arg_fn_t *fn)
  144. {
  145. register long rr0 asm("r0") = r0;
  146. register long rr1 asm("r1") = r1;
  147. register long ret asm("r0");
  148. __asm__ __volatile__ (
  149. "msr cpsr_fs, %[cpsr] \n\t"
  150. "mov lr, pc \n\t"
  151. "mov pc, %[fn] \n\t"
  152. : "=r" (ret)
  153. : "0" (rr0), "r" (rr1),
  154. [cpsr] "r" (cpsr), [fn] "r" (fn)
  155. : "lr", "cc"
  156. );
  157. return ret;
  158. }
  159. static inline long __kprobes
  160. insnslot_3arg_rflags(long r0, long r1, long r2, long cpsr, insn_3arg_fn_t *fn)
  161. {
  162. register long rr0 asm("r0") = r0;
  163. register long rr1 asm("r1") = r1;
  164. register long rr2 asm("r2") = r2;
  165. register long ret asm("r0");
  166. __asm__ __volatile__ (
  167. "msr cpsr_fs, %[cpsr] \n\t"
  168. "mov lr, pc \n\t"
  169. "mov pc, %[fn] \n\t"
  170. : "=r" (ret)
  171. : "0" (rr0), "r" (rr1), "r" (rr2),
  172. [cpsr] "r" (cpsr), [fn] "r" (fn)
  173. : "lr", "cc"
  174. );
  175. return ret;
  176. }
  177. static inline long long __kprobes
  178. insnslot_llret_3arg_rflags(long r0, long r1, long r2, long cpsr,
  179. insn_llret_3arg_fn_t *fn)
  180. {
  181. register long rr0 asm("r0") = r0;
  182. register long rr1 asm("r1") = r1;
  183. register long rr2 asm("r2") = r2;
  184. register long ret0 asm("r0");
  185. register long ret1 asm("r1");
  186. union reg_pair fnr;
  187. __asm__ __volatile__ (
  188. "msr cpsr_fs, %[cpsr] \n\t"
  189. "mov lr, pc \n\t"
  190. "mov pc, %[fn] \n\t"
  191. : "=r" (ret0), "=r" (ret1)
  192. : "0" (rr0), "r" (rr1), "r" (rr2),
  193. [cpsr] "r" (cpsr), [fn] "r" (fn)
  194. : "lr", "cc"
  195. );
  196. fnr.r0 = ret0;
  197. fnr.r1 = ret1;
  198. return fnr.dr;
  199. }
  200. static inline long __kprobes
  201. insnslot_4arg_rflags(long r0, long r1, long r2, long r3, long cpsr,
  202. insn_4arg_fn_t *fn)
  203. {
  204. register long rr0 asm("r0") = r0;
  205. register long rr1 asm("r1") = r1;
  206. register long rr2 asm("r2") = r2;
  207. register long rr3 asm("r3") = r3;
  208. register long ret asm("r0");
  209. __asm__ __volatile__ (
  210. "msr cpsr_fs, %[cpsr] \n\t"
  211. "mov lr, pc \n\t"
  212. "mov pc, %[fn] \n\t"
  213. : "=r" (ret)
  214. : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
  215. [cpsr] "r" (cpsr), [fn] "r" (fn)
  216. : "lr", "cc"
  217. );
  218. return ret;
  219. }
  220. static inline long __kprobes
  221. insnslot_1arg_rwflags(long r0, long *cpsr, insn_1arg_fn_t *fn)
  222. {
  223. register long rr0 asm("r0") = r0;
  224. register long ret asm("r0");
  225. long oldcpsr = *cpsr;
  226. long newcpsr;
  227. __asm__ __volatile__ (
  228. "msr cpsr_fs, %[oldcpsr] \n\t"
  229. "mov lr, pc \n\t"
  230. "mov pc, %[fn] \n\t"
  231. "mrs %[newcpsr], cpsr \n\t"
  232. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  233. : "0" (rr0), [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  234. : "lr", "cc"
  235. );
  236. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  237. return ret;
  238. }
  239. static inline long __kprobes
  240. insnslot_2arg_rwflags(long r0, long r1, long *cpsr, insn_2arg_fn_t *fn)
  241. {
  242. register long rr0 asm("r0") = r0;
  243. register long rr1 asm("r1") = r1;
  244. register long ret asm("r0");
  245. long oldcpsr = *cpsr;
  246. long newcpsr;
  247. __asm__ __volatile__ (
  248. "msr cpsr_fs, %[oldcpsr] \n\t"
  249. "mov lr, pc \n\t"
  250. "mov pc, %[fn] \n\t"
  251. "mrs %[newcpsr], cpsr \n\t"
  252. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  253. : "0" (rr0), "r" (rr1), [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  254. : "lr", "cc"
  255. );
  256. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  257. return ret;
  258. }
  259. static inline long __kprobes
  260. insnslot_3arg_rwflags(long r0, long r1, long r2, long *cpsr,
  261. insn_3arg_fn_t *fn)
  262. {
  263. register long rr0 asm("r0") = r0;
  264. register long rr1 asm("r1") = r1;
  265. register long rr2 asm("r2") = r2;
  266. register long ret asm("r0");
  267. long oldcpsr = *cpsr;
  268. long newcpsr;
  269. __asm__ __volatile__ (
  270. "msr cpsr_fs, %[oldcpsr] \n\t"
  271. "mov lr, pc \n\t"
  272. "mov pc, %[fn] \n\t"
  273. "mrs %[newcpsr], cpsr \n\t"
  274. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  275. : "0" (rr0), "r" (rr1), "r" (rr2),
  276. [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  277. : "lr", "cc"
  278. );
  279. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  280. return ret;
  281. }
  282. static inline long __kprobes
  283. insnslot_4arg_rwflags(long r0, long r1, long r2, long r3, long *cpsr,
  284. insn_4arg_fn_t *fn)
  285. {
  286. register long rr0 asm("r0") = r0;
  287. register long rr1 asm("r1") = r1;
  288. register long rr2 asm("r2") = r2;
  289. register long rr3 asm("r3") = r3;
  290. register long ret asm("r0");
  291. long oldcpsr = *cpsr;
  292. long newcpsr;
  293. __asm__ __volatile__ (
  294. "msr cpsr_fs, %[oldcpsr] \n\t"
  295. "mov lr, pc \n\t"
  296. "mov pc, %[fn] \n\t"
  297. "mrs %[newcpsr], cpsr \n\t"
  298. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  299. : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
  300. [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  301. : "lr", "cc"
  302. );
  303. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  304. return ret;
  305. }
  306. static inline long long __kprobes
  307. insnslot_llret_4arg_rwflags(long r0, long r1, long r2, long r3, long *cpsr,
  308. insn_llret_4arg_fn_t *fn)
  309. {
  310. register long rr0 asm("r0") = r0;
  311. register long rr1 asm("r1") = r1;
  312. register long rr2 asm("r2") = r2;
  313. register long rr3 asm("r3") = r3;
  314. register long ret0 asm("r0");
  315. register long ret1 asm("r1");
  316. long oldcpsr = *cpsr;
  317. long newcpsr;
  318. union reg_pair fnr;
  319. __asm__ __volatile__ (
  320. "msr cpsr_fs, %[oldcpsr] \n\t"
  321. "mov lr, pc \n\t"
  322. "mov pc, %[fn] \n\t"
  323. "mrs %[newcpsr], cpsr \n\t"
  324. : "=r" (ret0), "=r" (ret1), [newcpsr] "=r" (newcpsr)
  325. : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
  326. [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  327. : "lr", "cc"
  328. );
  329. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  330. fnr.r0 = ret0;
  331. fnr.r1 = ret1;
  332. return fnr.dr;
  333. }
  334. /*
  335. * To avoid the complications of mimicing single-stepping on a
  336. * processor without a Next-PC or a single-step mode, and to
  337. * avoid having to deal with the side-effects of boosting, we
  338. * simulate or emulate (almost) all ARM instructions.
  339. *
  340. * "Simulation" is where the instruction's behavior is duplicated in
  341. * C code. "Emulation" is where the original instruction is rewritten
  342. * and executed, often by altering its registers.
  343. *
  344. * By having all behavior of the kprobe'd instruction completed before
  345. * returning from the kprobe_handler(), all locks (scheduler and
  346. * interrupt) can safely be released. There is no need for secondary
  347. * breakpoints, no race with MP or preemptable kernels, nor having to
  348. * clean up resources counts at a later time impacting overall system
  349. * performance. By rewriting the instruction, only the minimum registers
  350. * need to be loaded and saved back optimizing performance.
  351. *
  352. * Calling the insnslot_*_rwflags version of a function doesn't hurt
  353. * anything even when the CPSR flags aren't updated by the
  354. * instruction. It's just a little slower in return for saving
  355. * a little space by not having a duplicate function that doesn't
  356. * update the flags. (The same optimization can be said for
  357. * instructions that do or don't perform register writeback)
  358. * Also, instructions can either read the flags, only write the
  359. * flags, or read and write the flags. To save combinations
  360. * rather than for sheer performance, flag functions just assume
  361. * read and write of flags.
  362. */
  363. static void __kprobes simulate_bbl(struct kprobe *p, struct pt_regs *regs)
  364. {
  365. kprobe_opcode_t insn = p->opcode;
  366. long iaddr = (long)p->addr;
  367. int disp = branch_displacement(insn);
  368. if (insn & (1 << 24))
  369. regs->ARM_lr = iaddr + 4;
  370. regs->ARM_pc = iaddr + 8 + disp;
  371. }
  372. static void __kprobes simulate_blx1(struct kprobe *p, struct pt_regs *regs)
  373. {
  374. kprobe_opcode_t insn = p->opcode;
  375. long iaddr = (long)p->addr;
  376. int disp = branch_displacement(insn);
  377. regs->ARM_lr = iaddr + 4;
  378. regs->ARM_pc = iaddr + 8 + disp + ((insn >> 23) & 0x2);
  379. regs->ARM_cpsr |= PSR_T_BIT;
  380. }
  381. static void __kprobes simulate_blx2bx(struct kprobe *p, struct pt_regs *regs)
  382. {
  383. kprobe_opcode_t insn = p->opcode;
  384. int rm = insn & 0xf;
  385. long rmv = regs->uregs[rm];
  386. if (insn & (1 << 5))
  387. regs->ARM_lr = (long)p->addr + 4;
  388. regs->ARM_pc = rmv & ~0x1;
  389. regs->ARM_cpsr &= ~PSR_T_BIT;
  390. if (rmv & 0x1)
  391. regs->ARM_cpsr |= PSR_T_BIT;
  392. }
  393. static void __kprobes simulate_mrs(struct kprobe *p, struct pt_regs *regs)
  394. {
  395. kprobe_opcode_t insn = p->opcode;
  396. int rd = (insn >> 12) & 0xf;
  397. unsigned long mask = 0xf8ff03df; /* Mask out execution state */
  398. regs->uregs[rd] = regs->ARM_cpsr & mask;
  399. }
  400. static void __kprobes simulate_mov_ipsp(struct kprobe *p, struct pt_regs *regs)
  401. {
  402. regs->uregs[12] = regs->uregs[13];
  403. }
  404. static void __kprobes emulate_ldrd(struct kprobe *p, struct pt_regs *regs)
  405. {
  406. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  407. kprobe_opcode_t insn = p->opcode;
  408. long ppc = (long)p->addr + 8;
  409. int rd = (insn >> 12) & 0xf;
  410. int rn = (insn >> 16) & 0xf;
  411. int rm = insn & 0xf; /* rm may be invalid, don't care. */
  412. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  413. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  414. /* Not following the C calling convention here, so need asm(). */
  415. __asm__ __volatile__ (
  416. "ldr r0, %[rn] \n\t"
  417. "ldr r1, %[rm] \n\t"
  418. "msr cpsr_fs, %[cpsr]\n\t"
  419. "mov lr, pc \n\t"
  420. "mov pc, %[i_fn] \n\t"
  421. "str r0, %[rn] \n\t" /* in case of writeback */
  422. "str r2, %[rd0] \n\t"
  423. "str r3, %[rd1] \n\t"
  424. : [rn] "+m" (rnv),
  425. [rd0] "=m" (regs->uregs[rd]),
  426. [rd1] "=m" (regs->uregs[rd+1])
  427. : [rm] "m" (rmv),
  428. [cpsr] "r" (regs->ARM_cpsr),
  429. [i_fn] "r" (i_fn)
  430. : "r0", "r1", "r2", "r3", "lr", "cc"
  431. );
  432. if (is_writeback(insn))
  433. regs->uregs[rn] = rnv;
  434. }
  435. static void __kprobes emulate_strd(struct kprobe *p, struct pt_regs *regs)
  436. {
  437. insn_4arg_fn_t *i_fn = (insn_4arg_fn_t *)&p->ainsn.insn[0];
  438. kprobe_opcode_t insn = p->opcode;
  439. long ppc = (long)p->addr + 8;
  440. int rd = (insn >> 12) & 0xf;
  441. int rn = (insn >> 16) & 0xf;
  442. int rm = insn & 0xf;
  443. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  444. /* rm/rmv may be invalid, don't care. */
  445. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  446. long rnv_wb;
  447. rnv_wb = insnslot_4arg_rflags(rnv, rmv, regs->uregs[rd],
  448. regs->uregs[rd+1],
  449. regs->ARM_cpsr, i_fn);
  450. if (is_writeback(insn))
  451. regs->uregs[rn] = rnv_wb;
  452. }
  453. static void __kprobes emulate_ldr(struct kprobe *p, struct pt_regs *regs)
  454. {
  455. insn_llret_3arg_fn_t *i_fn = (insn_llret_3arg_fn_t *)&p->ainsn.insn[0];
  456. kprobe_opcode_t insn = p->opcode;
  457. long ppc = (long)p->addr + 8;
  458. union reg_pair fnr;
  459. int rd = (insn >> 12) & 0xf;
  460. int rn = (insn >> 16) & 0xf;
  461. int rm = insn & 0xf;
  462. long rdv;
  463. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  464. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  465. long cpsr = regs->ARM_cpsr;
  466. fnr.dr = insnslot_llret_3arg_rflags(rnv, 0, rmv, cpsr, i_fn);
  467. if (rn != 15)
  468. regs->uregs[rn] = fnr.r0; /* Save Rn in case of writeback. */
  469. rdv = fnr.r1;
  470. if (rd == 15) {
  471. #if __LINUX_ARM_ARCH__ >= 5
  472. cpsr &= ~PSR_T_BIT;
  473. if (rdv & 0x1)
  474. cpsr |= PSR_T_BIT;
  475. regs->ARM_cpsr = cpsr;
  476. rdv &= ~0x1;
  477. #else
  478. rdv &= ~0x2;
  479. #endif
  480. }
  481. regs->uregs[rd] = rdv;
  482. }
  483. static void __kprobes emulate_str(struct kprobe *p, struct pt_regs *regs)
  484. {
  485. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  486. kprobe_opcode_t insn = p->opcode;
  487. long iaddr = (long)p->addr;
  488. int rd = (insn >> 12) & 0xf;
  489. int rn = (insn >> 16) & 0xf;
  490. int rm = insn & 0xf;
  491. long rdv = (rd == 15) ? iaddr + str_pc_offset : regs->uregs[rd];
  492. long rnv = (rn == 15) ? iaddr + 8 : regs->uregs[rn];
  493. long rmv = regs->uregs[rm]; /* rm/rmv may be invalid, don't care. */
  494. long rnv_wb;
  495. rnv_wb = insnslot_3arg_rflags(rnv, rdv, rmv, regs->ARM_cpsr, i_fn);
  496. if (rn != 15)
  497. regs->uregs[rn] = rnv_wb; /* Save Rn in case of writeback. */
  498. }
  499. static void __kprobes emulate_sat(struct kprobe *p, struct pt_regs *regs)
  500. {
  501. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  502. kprobe_opcode_t insn = p->opcode;
  503. int rd = (insn >> 12) & 0xf;
  504. int rm = insn & 0xf;
  505. long rmv = regs->uregs[rm];
  506. /* Writes Q flag */
  507. regs->uregs[rd] = insnslot_1arg_rwflags(rmv, &regs->ARM_cpsr, i_fn);
  508. }
  509. static void __kprobes emulate_sel(struct kprobe *p, struct pt_regs *regs)
  510. {
  511. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  512. kprobe_opcode_t insn = p->opcode;
  513. int rd = (insn >> 12) & 0xf;
  514. int rn = (insn >> 16) & 0xf;
  515. int rm = insn & 0xf;
  516. long rnv = regs->uregs[rn];
  517. long rmv = regs->uregs[rm];
  518. /* Reads GE bits */
  519. regs->uregs[rd] = insnslot_2arg_rflags(rnv, rmv, regs->ARM_cpsr, i_fn);
  520. }
  521. static void __kprobes emulate_none(struct kprobe *p, struct pt_regs *regs)
  522. {
  523. insn_0arg_fn_t *i_fn = (insn_0arg_fn_t *)&p->ainsn.insn[0];
  524. insnslot_0arg_rflags(regs->ARM_cpsr, i_fn);
  525. }
  526. static void __kprobes emulate_nop(struct kprobe *p, struct pt_regs *regs)
  527. {
  528. }
  529. static void __kprobes
  530. emulate_rd12_modify(struct kprobe *p, struct pt_regs *regs)
  531. {
  532. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  533. kprobe_opcode_t insn = p->opcode;
  534. int rd = (insn >> 12) & 0xf;
  535. long rdv = regs->uregs[rd];
  536. regs->uregs[rd] = insnslot_1arg_rflags(rdv, regs->ARM_cpsr, i_fn);
  537. }
  538. static void __kprobes
  539. emulate_rd12rn0_modify(struct kprobe *p, struct pt_regs *regs)
  540. {
  541. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  542. kprobe_opcode_t insn = p->opcode;
  543. int rd = (insn >> 12) & 0xf;
  544. int rn = insn & 0xf;
  545. long rdv = regs->uregs[rd];
  546. long rnv = regs->uregs[rn];
  547. regs->uregs[rd] = insnslot_2arg_rflags(rdv, rnv, regs->ARM_cpsr, i_fn);
  548. }
  549. static void __kprobes emulate_rd12rm0(struct kprobe *p, struct pt_regs *regs)
  550. {
  551. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  552. kprobe_opcode_t insn = p->opcode;
  553. int rd = (insn >> 12) & 0xf;
  554. int rm = insn & 0xf;
  555. long rmv = regs->uregs[rm];
  556. regs->uregs[rd] = insnslot_1arg_rflags(rmv, regs->ARM_cpsr, i_fn);
  557. }
  558. static void __kprobes
  559. emulate_rd12rn16rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  560. {
  561. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  562. kprobe_opcode_t insn = p->opcode;
  563. int rd = (insn >> 12) & 0xf;
  564. int rn = (insn >> 16) & 0xf;
  565. int rm = insn & 0xf;
  566. long rnv = regs->uregs[rn];
  567. long rmv = regs->uregs[rm];
  568. regs->uregs[rd] =
  569. insnslot_2arg_rwflags(rnv, rmv, &regs->ARM_cpsr, i_fn);
  570. }
  571. static void __kprobes
  572. emulate_rd16rn12rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  573. {
  574. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  575. kprobe_opcode_t insn = p->opcode;
  576. int rd = (insn >> 16) & 0xf;
  577. int rn = (insn >> 12) & 0xf;
  578. int rs = (insn >> 8) & 0xf;
  579. int rm = insn & 0xf;
  580. long rnv = regs->uregs[rn];
  581. long rsv = regs->uregs[rs];
  582. long rmv = regs->uregs[rm];
  583. regs->uregs[rd] =
  584. insnslot_3arg_rwflags(rnv, rsv, rmv, &regs->ARM_cpsr, i_fn);
  585. }
  586. static void __kprobes
  587. emulate_rd16rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  588. {
  589. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  590. kprobe_opcode_t insn = p->opcode;
  591. int rd = (insn >> 16) & 0xf;
  592. int rs = (insn >> 8) & 0xf;
  593. int rm = insn & 0xf;
  594. long rsv = regs->uregs[rs];
  595. long rmv = regs->uregs[rm];
  596. regs->uregs[rd] =
  597. insnslot_2arg_rwflags(rsv, rmv, &regs->ARM_cpsr, i_fn);
  598. }
  599. static void __kprobes
  600. emulate_rdhi16rdlo12rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  601. {
  602. insn_llret_4arg_fn_t *i_fn = (insn_llret_4arg_fn_t *)&p->ainsn.insn[0];
  603. kprobe_opcode_t insn = p->opcode;
  604. union reg_pair fnr;
  605. int rdhi = (insn >> 16) & 0xf;
  606. int rdlo = (insn >> 12) & 0xf;
  607. int rs = (insn >> 8) & 0xf;
  608. int rm = insn & 0xf;
  609. long rsv = regs->uregs[rs];
  610. long rmv = regs->uregs[rm];
  611. fnr.dr = insnslot_llret_4arg_rwflags(regs->uregs[rdhi],
  612. regs->uregs[rdlo], rsv, rmv,
  613. &regs->ARM_cpsr, i_fn);
  614. regs->uregs[rdhi] = fnr.r0;
  615. regs->uregs[rdlo] = fnr.r1;
  616. }
  617. static void __kprobes
  618. emulate_alu_imm_rflags(struct kprobe *p, struct pt_regs *regs)
  619. {
  620. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  621. kprobe_opcode_t insn = p->opcode;
  622. int rd = (insn >> 12) & 0xf;
  623. int rn = (insn >> 16) & 0xf;
  624. long rnv = (rn == 15) ? (long)p->addr + 8 : regs->uregs[rn];
  625. regs->uregs[rd] = insnslot_1arg_rflags(rnv, regs->ARM_cpsr, i_fn);
  626. }
  627. static void __kprobes
  628. emulate_alu_imm_rwflags(struct kprobe *p, struct pt_regs *regs)
  629. {
  630. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  631. kprobe_opcode_t insn = p->opcode;
  632. int rd = (insn >> 12) & 0xf;
  633. int rn = (insn >> 16) & 0xf;
  634. long rnv = (rn == 15) ? (long)p->addr + 8 : regs->uregs[rn];
  635. regs->uregs[rd] = insnslot_1arg_rwflags(rnv, &regs->ARM_cpsr, i_fn);
  636. }
  637. static void __kprobes
  638. emulate_alu_tests_imm(struct kprobe *p, struct pt_regs *regs)
  639. {
  640. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  641. kprobe_opcode_t insn = p->opcode;
  642. int rn = (insn >> 16) & 0xf;
  643. long rnv = (rn == 15) ? (long)p->addr + 8 : regs->uregs[rn];
  644. insnslot_1arg_rwflags(rnv, &regs->ARM_cpsr, i_fn);
  645. }
  646. static void __kprobes
  647. emulate_alu_rflags(struct kprobe *p, struct pt_regs *regs)
  648. {
  649. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  650. kprobe_opcode_t insn = p->opcode;
  651. long ppc = (long)p->addr + 8;
  652. int rd = (insn >> 12) & 0xf;
  653. int rn = (insn >> 16) & 0xf; /* rn/rnv/rs/rsv may be */
  654. int rs = (insn >> 8) & 0xf; /* invalid, don't care. */
  655. int rm = insn & 0xf;
  656. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  657. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  658. long rsv = regs->uregs[rs];
  659. regs->uregs[rd] =
  660. insnslot_3arg_rflags(rnv, rmv, rsv, regs->ARM_cpsr, i_fn);
  661. }
  662. static void __kprobes
  663. emulate_alu_rwflags(struct kprobe *p, struct pt_regs *regs)
  664. {
  665. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  666. kprobe_opcode_t insn = p->opcode;
  667. long ppc = (long)p->addr + 8;
  668. int rd = (insn >> 12) & 0xf;
  669. int rn = (insn >> 16) & 0xf; /* rn/rnv/rs/rsv may be */
  670. int rs = (insn >> 8) & 0xf; /* invalid, don't care. */
  671. int rm = insn & 0xf;
  672. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  673. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  674. long rsv = regs->uregs[rs];
  675. regs->uregs[rd] =
  676. insnslot_3arg_rwflags(rnv, rmv, rsv, &regs->ARM_cpsr, i_fn);
  677. }
  678. static void __kprobes
  679. emulate_alu_tests(struct kprobe *p, struct pt_regs *regs)
  680. {
  681. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  682. kprobe_opcode_t insn = p->opcode;
  683. long ppc = (long)p->addr + 8;
  684. int rn = (insn >> 16) & 0xf;
  685. int rs = (insn >> 8) & 0xf; /* rs/rsv may be invalid, don't care. */
  686. int rm = insn & 0xf;
  687. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  688. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  689. long rsv = regs->uregs[rs];
  690. insnslot_3arg_rwflags(rnv, rmv, rsv, &regs->ARM_cpsr, i_fn);
  691. }
  692. static enum kprobe_insn __kprobes
  693. prep_emulate_ldr_str(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  694. {
  695. int not_imm = (insn & (1 << 26)) ? (insn & (1 << 25))
  696. : (~insn & (1 << 22));
  697. if (is_writeback(insn) && is_r15(insn, 16))
  698. return INSN_REJECTED; /* Writeback to PC */
  699. insn &= 0xfff00fff;
  700. insn |= 0x00001000; /* Rn = r0, Rd = r1 */
  701. if (not_imm) {
  702. insn &= ~0xf;
  703. insn |= 2; /* Rm = r2 */
  704. }
  705. asi->insn[0] = insn;
  706. asi->insn_handler = (insn & (1 << 20)) ? emulate_ldr : emulate_str;
  707. return INSN_GOOD;
  708. }
  709. static enum kprobe_insn __kprobes
  710. prep_emulate_rd12_modify(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  711. {
  712. if (is_r15(insn, 12))
  713. return INSN_REJECTED; /* Rd is PC */
  714. insn &= 0xffff0fff; /* Rd = r0 */
  715. asi->insn[0] = insn;
  716. asi->insn_handler = emulate_rd12_modify;
  717. return INSN_GOOD;
  718. }
  719. static enum kprobe_insn __kprobes
  720. prep_emulate_rd12rn0_modify(kprobe_opcode_t insn,
  721. struct arch_specific_insn *asi)
  722. {
  723. if (is_r15(insn, 12))
  724. return INSN_REJECTED; /* Rd is PC */
  725. insn &= 0xffff0ff0; /* Rd = r0 */
  726. insn |= 0x00000001; /* Rn = r1 */
  727. asi->insn[0] = insn;
  728. asi->insn_handler = emulate_rd12rn0_modify;
  729. return INSN_GOOD;
  730. }
  731. static enum kprobe_insn __kprobes
  732. prep_emulate_rd12rm0(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  733. {
  734. if (is_r15(insn, 12))
  735. return INSN_REJECTED; /* Rd is PC */
  736. insn &= 0xffff0ff0; /* Rd = r0, Rm = r0 */
  737. asi->insn[0] = insn;
  738. asi->insn_handler = emulate_rd12rm0;
  739. return INSN_GOOD;
  740. }
  741. static enum kprobe_insn __kprobes
  742. prep_emulate_rd12rn16rm0_wflags(kprobe_opcode_t insn,
  743. struct arch_specific_insn *asi)
  744. {
  745. if (is_r15(insn, 12))
  746. return INSN_REJECTED; /* Rd is PC */
  747. insn &= 0xfff00ff0; /* Rd = r0, Rn = r0 */
  748. insn |= 0x00000001; /* Rm = r1 */
  749. asi->insn[0] = insn;
  750. asi->insn_handler = emulate_rd12rn16rm0_rwflags;
  751. return INSN_GOOD;
  752. }
  753. static enum kprobe_insn __kprobes
  754. prep_emulate_rd16rs8rm0_wflags(kprobe_opcode_t insn,
  755. struct arch_specific_insn *asi)
  756. {
  757. if (is_r15(insn, 16))
  758. return INSN_REJECTED; /* Rd is PC */
  759. insn &= 0xfff0f0f0; /* Rd = r0, Rs = r0 */
  760. insn |= 0x00000001; /* Rm = r1 */
  761. asi->insn[0] = insn;
  762. asi->insn_handler = emulate_rd16rs8rm0_rwflags;
  763. return INSN_GOOD;
  764. }
  765. static enum kprobe_insn __kprobes
  766. prep_emulate_rd16rn12rs8rm0_wflags(kprobe_opcode_t insn,
  767. struct arch_specific_insn *asi)
  768. {
  769. if (is_r15(insn, 16))
  770. return INSN_REJECTED; /* Rd is PC */
  771. insn &= 0xfff000f0; /* Rd = r0, Rn = r0 */
  772. insn |= 0x00000102; /* Rs = r1, Rm = r2 */
  773. asi->insn[0] = insn;
  774. asi->insn_handler = emulate_rd16rn12rs8rm0_rwflags;
  775. return INSN_GOOD;
  776. }
  777. static enum kprobe_insn __kprobes
  778. prep_emulate_rdhi16rdlo12rs8rm0_wflags(kprobe_opcode_t insn,
  779. struct arch_specific_insn *asi)
  780. {
  781. if (is_r15(insn, 16) || is_r15(insn, 12))
  782. return INSN_REJECTED; /* RdHi or RdLo is PC */
  783. insn &= 0xfff000f0; /* RdHi = r0, RdLo = r1 */
  784. insn |= 0x00001203; /* Rs = r2, Rm = r3 */
  785. asi->insn[0] = insn;
  786. asi->insn_handler = emulate_rdhi16rdlo12rs8rm0_rwflags;
  787. return INSN_GOOD;
  788. }
  789. static void __kprobes
  790. emulate_ldrdstrd(struct kprobe *p, struct pt_regs *regs)
  791. {
  792. kprobe_opcode_t insn = p->opcode;
  793. unsigned long pc = (unsigned long)p->addr + 8;
  794. int rt = (insn >> 12) & 0xf;
  795. int rn = (insn >> 16) & 0xf;
  796. int rm = insn & 0xf;
  797. register unsigned long rtv asm("r0") = regs->uregs[rt];
  798. register unsigned long rt2v asm("r1") = regs->uregs[rt+1];
  799. register unsigned long rnv asm("r2") = (rn == 15) ? pc
  800. : regs->uregs[rn];
  801. register unsigned long rmv asm("r3") = regs->uregs[rm];
  802. __asm__ __volatile__ (
  803. BLX("%[fn]")
  804. : "=r" (rtv), "=r" (rt2v), "=r" (rnv)
  805. : "0" (rtv), "1" (rt2v), "2" (rnv), "r" (rmv),
  806. [fn] "r" (p->ainsn.insn_fn)
  807. : "lr", "memory", "cc"
  808. );
  809. regs->uregs[rt] = rtv;
  810. regs->uregs[rt+1] = rt2v;
  811. if (is_writeback(insn))
  812. regs->uregs[rn] = rnv;
  813. }
  814. static void __kprobes
  815. emulate_rd12rn16rm0rs8_rwflags(struct kprobe *p, struct pt_regs *regs)
  816. {
  817. kprobe_opcode_t insn = p->opcode;
  818. unsigned long pc = (unsigned long)p->addr + 8;
  819. int rd = (insn >> 12) & 0xf;
  820. int rn = (insn >> 16) & 0xf;
  821. int rm = insn & 0xf;
  822. int rs = (insn >> 8) & 0xf;
  823. register unsigned long rdv asm("r0") = regs->uregs[rd];
  824. register unsigned long rnv asm("r2") = (rn == 15) ? pc
  825. : regs->uregs[rn];
  826. register unsigned long rmv asm("r3") = (rm == 15) ? pc
  827. : regs->uregs[rm];
  828. register unsigned long rsv asm("r1") = regs->uregs[rs];
  829. unsigned long cpsr = regs->ARM_cpsr;
  830. __asm__ __volatile__ (
  831. "msr cpsr_fs, %[cpsr] \n\t"
  832. BLX("%[fn]")
  833. "mrs %[cpsr], cpsr \n\t"
  834. : "=r" (rdv), [cpsr] "=r" (cpsr)
  835. : "0" (rdv), "r" (rnv), "r" (rmv), "r" (rsv),
  836. "1" (cpsr), [fn] "r" (p->ainsn.insn_fn)
  837. : "lr", "memory", "cc"
  838. );
  839. if (rd == 15)
  840. alu_write_pc(rdv, regs);
  841. else
  842. regs->uregs[rd] = rdv;
  843. regs->ARM_cpsr = (regs->ARM_cpsr & ~APSR_MASK) | (cpsr & APSR_MASK);
  844. }
  845. static void __kprobes
  846. emulate_rd12rn16rm0_rwflags_nopc(struct kprobe *p, struct pt_regs *regs)
  847. {
  848. kprobe_opcode_t insn = p->opcode;
  849. int rd = (insn >> 12) & 0xf;
  850. int rn = (insn >> 16) & 0xf;
  851. int rm = insn & 0xf;
  852. register unsigned long rdv asm("r0") = regs->uregs[rd];
  853. register unsigned long rnv asm("r2") = regs->uregs[rn];
  854. register unsigned long rmv asm("r3") = regs->uregs[rm];
  855. unsigned long cpsr = regs->ARM_cpsr;
  856. __asm__ __volatile__ (
  857. "msr cpsr_fs, %[cpsr] \n\t"
  858. BLX("%[fn]")
  859. "mrs %[cpsr], cpsr \n\t"
  860. : "=r" (rdv), [cpsr] "=r" (cpsr)
  861. : "0" (rdv), "r" (rnv), "r" (rmv),
  862. "1" (cpsr), [fn] "r" (p->ainsn.insn_fn)
  863. : "lr", "memory", "cc"
  864. );
  865. regs->uregs[rd] = rdv;
  866. regs->ARM_cpsr = (regs->ARM_cpsr & ~APSR_MASK) | (cpsr & APSR_MASK);
  867. }
  868. /*
  869. * For the instruction masking and comparisons in all the "space_*"
  870. * functions below, Do _not_ rearrange the order of tests unless
  871. * you're very, very sure of what you are doing. For the sake of
  872. * efficiency, the masks for some tests sometimes assume other test
  873. * have been done prior to them so the number of patterns to test
  874. * for an instruction set can be as broad as possible to reduce the
  875. * number of tests needed.
  876. */
  877. static const union decode_item arm_1111_table[] = {
  878. /* Unconditional instructions */
  879. /* memory hint 1111 0100 x001 xxxx xxxx xxxx xxxx xxxx */
  880. /* PLDI (immediate) 1111 0100 x101 xxxx xxxx xxxx xxxx xxxx */
  881. /* PLDW (immediate) 1111 0101 x001 xxxx xxxx xxxx xxxx xxxx */
  882. /* PLD (immediate) 1111 0101 x101 xxxx xxxx xxxx xxxx xxxx */
  883. DECODE_SIMULATE (0xfe300000, 0xf4100000, kprobe_simulate_nop),
  884. /* BLX (immediate) 1111 101x xxxx xxxx xxxx xxxx xxxx xxxx */
  885. DECODE_SIMULATE (0xfe000000, 0xfa000000, simulate_blx1),
  886. /* CPS 1111 0001 0000 xxx0 xxxx xxxx xx0x xxxx */
  887. /* SETEND 1111 0001 0000 0001 xxxx xxxx 0000 xxxx */
  888. /* SRS 1111 100x x1x0 xxxx xxxx xxxx xxxx xxxx */
  889. /* RFE 1111 100x x0x1 xxxx xxxx xxxx xxxx xxxx */
  890. /* Coprocessor instructions... */
  891. /* MCRR2 1111 1100 0100 xxxx xxxx xxxx xxxx xxxx */
  892. /* MRRC2 1111 1100 0101 xxxx xxxx xxxx xxxx xxxx */
  893. /* LDC2 1111 110x xxx1 xxxx xxxx xxxx xxxx xxxx */
  894. /* STC2 1111 110x xxx0 xxxx xxxx xxxx xxxx xxxx */
  895. /* CDP2 1111 1110 xxxx xxxx xxxx xxxx xxx0 xxxx */
  896. /* MCR2 1111 1110 xxx0 xxxx xxxx xxxx xxx1 xxxx */
  897. /* MRC2 1111 1110 xxx1 xxxx xxxx xxxx xxx1 xxxx */
  898. /* Other unallocated instructions... */
  899. DECODE_END
  900. };
  901. static const union decode_item arm_cccc_0001_0xx0____0xxx_table[] = {
  902. /* Miscellaneous instructions */
  903. /* MRS cpsr cccc 0001 0000 xxxx xxxx xxxx 0000 xxxx */
  904. DECODE_SIMULATEX(0x0ff000f0, 0x01000000, simulate_mrs,
  905. REGS(0, NOPC, 0, 0, 0)),
  906. /* BX cccc 0001 0010 xxxx xxxx xxxx 0001 xxxx */
  907. DECODE_SIMULATE (0x0ff000f0, 0x01200010, simulate_blx2bx),
  908. /* BLX (register) cccc 0001 0010 xxxx xxxx xxxx 0011 xxxx */
  909. DECODE_SIMULATEX(0x0ff000f0, 0x01200030, simulate_blx2bx,
  910. REGS(0, 0, 0, 0, NOPC)),
  911. /* CLZ cccc 0001 0110 xxxx xxxx xxxx 0001 xxxx */
  912. DECODE_CUSTOM (0x0ff000f0, 0x01600010, prep_emulate_rd12rm0),
  913. /* QADD cccc 0001 0000 xxxx xxxx xxxx 0101 xxxx */
  914. /* QSUB cccc 0001 0010 xxxx xxxx xxxx 0101 xxxx */
  915. /* QDADD cccc 0001 0100 xxxx xxxx xxxx 0101 xxxx */
  916. /* QDSUB cccc 0001 0110 xxxx xxxx xxxx 0101 xxxx */
  917. DECODE_CUSTOM (0x0f9000f0, 0x01000050, prep_emulate_rd12rn16rm0_wflags),
  918. /* BXJ cccc 0001 0010 xxxx xxxx xxxx 0010 xxxx */
  919. /* MSR cccc 0001 0x10 xxxx xxxx xxxx 0000 xxxx */
  920. /* MRS spsr cccc 0001 0100 xxxx xxxx xxxx 0000 xxxx */
  921. /* BKPT 1110 0001 0010 xxxx xxxx xxxx 0111 xxxx */
  922. /* SMC cccc 0001 0110 xxxx xxxx xxxx 0111 xxxx */
  923. /* And unallocated instructions... */
  924. DECODE_END
  925. };
  926. static const union decode_item arm_cccc_0001_0xx0____1xx0_table[] = {
  927. /* Halfword multiply and multiply-accumulate */
  928. /* SMLALxy cccc 0001 0100 xxxx xxxx xxxx 1xx0 xxxx */
  929. DECODE_CUSTOM (0x0ff00090, 0x01400080, prep_emulate_rdhi16rdlo12rs8rm0_wflags),
  930. /* SMULWy cccc 0001 0010 xxxx xxxx xxxx 1x10 xxxx */
  931. DECODE_OR (0x0ff000b0, 0x012000a0),
  932. /* SMULxy cccc 0001 0110 xxxx xxxx xxxx 1xx0 xxxx */
  933. DECODE_CUSTOM (0x0ff00090, 0x01600080, prep_emulate_rd16rs8rm0_wflags),
  934. /* SMLAxy cccc 0001 0000 xxxx xxxx xxxx 1xx0 xxxx */
  935. DECODE_OR (0x0ff00090, 0x01000080),
  936. /* SMLAWy cccc 0001 0010 xxxx xxxx xxxx 1x00 xxxx */
  937. DECODE_CUSTOM (0x0ff000b0, 0x01200080, prep_emulate_rd16rn12rs8rm0_wflags),
  938. DECODE_END
  939. };
  940. static const union decode_item arm_cccc_0000_____1001_table[] = {
  941. /* Multiply and multiply-accumulate */
  942. /* MUL cccc 0000 0000 xxxx xxxx xxxx 1001 xxxx */
  943. /* MULS cccc 0000 0001 xxxx xxxx xxxx 1001 xxxx */
  944. DECODE_CUSTOM (0x0fe000f0, 0x00000090, prep_emulate_rd16rs8rm0_wflags),
  945. /* MLA cccc 0000 0010 xxxx xxxx xxxx 1001 xxxx */
  946. /* MLAS cccc 0000 0011 xxxx xxxx xxxx 1001 xxxx */
  947. DECODE_OR (0x0fe000f0, 0x00200090),
  948. /* MLS cccc 0000 0110 xxxx xxxx xxxx 1001 xxxx */
  949. DECODE_CUSTOM (0x0ff000f0, 0x00600090, prep_emulate_rd16rn12rs8rm0_wflags),
  950. /* UMAAL cccc 0000 0100 xxxx xxxx xxxx 1001 xxxx */
  951. DECODE_OR (0x0ff000f0, 0x00400090),
  952. /* UMULL cccc 0000 1000 xxxx xxxx xxxx 1001 xxxx */
  953. /* UMULLS cccc 0000 1001 xxxx xxxx xxxx 1001 xxxx */
  954. /* UMLAL cccc 0000 1010 xxxx xxxx xxxx 1001 xxxx */
  955. /* UMLALS cccc 0000 1011 xxxx xxxx xxxx 1001 xxxx */
  956. /* SMULL cccc 0000 1100 xxxx xxxx xxxx 1001 xxxx */
  957. /* SMULLS cccc 0000 1101 xxxx xxxx xxxx 1001 xxxx */
  958. /* SMLAL cccc 0000 1110 xxxx xxxx xxxx 1001 xxxx */
  959. /* SMLALS cccc 0000 1111 xxxx xxxx xxxx 1001 xxxx */
  960. DECODE_CUSTOM (0x0f8000f0, 0x00800090, prep_emulate_rdhi16rdlo12rs8rm0_wflags),
  961. DECODE_END
  962. };
  963. static const union decode_item arm_cccc_0001_____1001_table[] = {
  964. /* Synchronization primitives */
  965. /* SMP/SWPB cccc 0001 0x00 xxxx xxxx xxxx 1001 xxxx */
  966. DECODE_CUSTOM (0x0fb000f0, 0x01000090, prep_emulate_rd12rn16rm0_wflags),
  967. /* LDREX/STREX{,D,B,H} cccc 0001 1xxx xxxx xxxx xxxx 1001 xxxx */
  968. /* And unallocated instructions... */
  969. DECODE_END
  970. };
  971. static const union decode_item arm_cccc_000x_____1xx1_table[] = {
  972. /* Extra load/store instructions */
  973. /* LDRD/STRD lr,pc,{... cccc 000x x0x0 xxxx 111x xxxx 1101 xxxx */
  974. DECODE_REJECT (0x0e10e0d0, 0x0000e0d0),
  975. /* LDRD (register) cccc 000x x0x0 xxxx xxxx xxxx 1101 xxxx */
  976. /* STRD (register) cccc 000x x0x0 xxxx xxxx xxxx 1111 xxxx */
  977. DECODE_EMULATEX (0x0e5000d0, 0x000000d0, emulate_ldrdstrd,
  978. REGS(NOPCWB, NOPCX, 0, 0, NOPC)),
  979. /* LDRD (immediate) cccc 000x x1x0 xxxx xxxx xxxx 1101 xxxx */
  980. /* STRD (immediate) cccc 000x x1x0 xxxx xxxx xxxx 1111 xxxx */
  981. DECODE_EMULATEX (0x0e5000d0, 0x004000d0, emulate_ldrdstrd,
  982. REGS(NOPCWB, NOPCX, 0, 0, 0)),
  983. /* Reject Rd is PC */
  984. /* TODO: fold this into next entry when it is made a DECODE_EMULATE */
  985. DECODE_REJECT (0x0000f000, 0x0000f000),
  986. /* STRH (register) cccc 000x x0x0 xxxx xxxx xxxx 1011 xxxx */
  987. /* LDRH (register) cccc 000x x0x1 xxxx xxxx xxxx 1011 xxxx */
  988. /* LDRSB (register) cccc 000x x0x1 xxxx xxxx xxxx 1101 xxxx */
  989. /* LDRSH (register) cccc 000x x0x1 xxxx xxxx xxxx 1111 xxxx */
  990. /* STRH (immediate) cccc 000x x1x0 xxxx xxxx xxxx 1011 xxxx */
  991. /* LDRH (immediate) cccc 000x x1x1 xxxx xxxx xxxx 1011 xxxx */
  992. /* LDRSB (immediate) cccc 000x x1x1 xxxx xxxx xxxx 1101 xxxx */
  993. /* LDRSH (immediate) cccc 000x x1x1 xxxx xxxx xxxx 1111 xxxx */
  994. DECODE_CUSTOM (0x0e000090, 0x00000090, prep_emulate_ldr_str),
  995. DECODE_END
  996. };
  997. static const union decode_item arm_cccc_000x_table[] = {
  998. /* Data-processing (register) */
  999. /* <op>S PC, ... cccc 000x xxx1 xxxx 1111 xxxx xxxx xxxx */
  1000. DECODE_REJECT (0x0e10f000, 0x0010f000),
  1001. /* MOV IP, SP 1110 0001 1010 0000 1100 0000 0000 1101 */
  1002. DECODE_SIMULATE (0xffffffff, 0xe1a0c00d, simulate_mov_ipsp),
  1003. /* TST (register) cccc 0001 0001 xxxx xxxx xxxx xxx0 xxxx */
  1004. /* TEQ (register) cccc 0001 0011 xxxx xxxx xxxx xxx0 xxxx */
  1005. /* CMP (register) cccc 0001 0101 xxxx xxxx xxxx xxx0 xxxx */
  1006. /* CMN (register) cccc 0001 0111 xxxx xxxx xxxx xxx0 xxxx */
  1007. DECODE_EMULATEX (0x0f900010, 0x01100000, emulate_rd12rn16rm0rs8_rwflags,
  1008. REGS(ANY, 0, 0, 0, ANY)),
  1009. /* MOV (register) cccc 0001 101x xxxx xxxx xxxx xxx0 xxxx */
  1010. /* MVN (register) cccc 0001 111x xxxx xxxx xxxx xxx0 xxxx */
  1011. DECODE_EMULATEX (0x0fa00010, 0x01a00000, emulate_rd12rn16rm0rs8_rwflags,
  1012. REGS(0, ANY, 0, 0, ANY)),
  1013. /* AND (register) cccc 0000 000x xxxx xxxx xxxx xxx0 xxxx */
  1014. /* EOR (register) cccc 0000 001x xxxx xxxx xxxx xxx0 xxxx */
  1015. /* SUB (register) cccc 0000 010x xxxx xxxx xxxx xxx0 xxxx */
  1016. /* RSB (register) cccc 0000 011x xxxx xxxx xxxx xxx0 xxxx */
  1017. /* ADD (register) cccc 0000 100x xxxx xxxx xxxx xxx0 xxxx */
  1018. /* ADC (register) cccc 0000 101x xxxx xxxx xxxx xxx0 xxxx */
  1019. /* SBC (register) cccc 0000 110x xxxx xxxx xxxx xxx0 xxxx */
  1020. /* RSC (register) cccc 0000 111x xxxx xxxx xxxx xxx0 xxxx */
  1021. /* ORR (register) cccc 0001 100x xxxx xxxx xxxx xxx0 xxxx */
  1022. /* BIC (register) cccc 0001 110x xxxx xxxx xxxx xxx0 xxxx */
  1023. DECODE_EMULATEX (0x0e000010, 0x00000000, emulate_rd12rn16rm0rs8_rwflags,
  1024. REGS(ANY, ANY, 0, 0, ANY)),
  1025. /* TST (reg-shift reg) cccc 0001 0001 xxxx xxxx xxxx 0xx1 xxxx */
  1026. /* TEQ (reg-shift reg) cccc 0001 0011 xxxx xxxx xxxx 0xx1 xxxx */
  1027. /* CMP (reg-shift reg) cccc 0001 0101 xxxx xxxx xxxx 0xx1 xxxx */
  1028. /* CMN (reg-shift reg) cccc 0001 0111 xxxx xxxx xxxx 0xx1 xxxx */
  1029. DECODE_EMULATEX (0x0f900090, 0x01100010, emulate_rd12rn16rm0rs8_rwflags,
  1030. REGS(ANY, 0, NOPC, 0, ANY)),
  1031. /* MOV (reg-shift reg) cccc 0001 101x xxxx xxxx xxxx 0xx1 xxxx */
  1032. /* MVN (reg-shift reg) cccc 0001 111x xxxx xxxx xxxx 0xx1 xxxx */
  1033. DECODE_EMULATEX (0x0fa00090, 0x01a00010, emulate_rd12rn16rm0rs8_rwflags,
  1034. REGS(0, ANY, NOPC, 0, ANY)),
  1035. /* AND (reg-shift reg) cccc 0000 000x xxxx xxxx xxxx 0xx1 xxxx */
  1036. /* EOR (reg-shift reg) cccc 0000 001x xxxx xxxx xxxx 0xx1 xxxx */
  1037. /* SUB (reg-shift reg) cccc 0000 010x xxxx xxxx xxxx 0xx1 xxxx */
  1038. /* RSB (reg-shift reg) cccc 0000 011x xxxx xxxx xxxx 0xx1 xxxx */
  1039. /* ADD (reg-shift reg) cccc 0000 100x xxxx xxxx xxxx 0xx1 xxxx */
  1040. /* ADC (reg-shift reg) cccc 0000 101x xxxx xxxx xxxx 0xx1 xxxx */
  1041. /* SBC (reg-shift reg) cccc 0000 110x xxxx xxxx xxxx 0xx1 xxxx */
  1042. /* RSC (reg-shift reg) cccc 0000 111x xxxx xxxx xxxx 0xx1 xxxx */
  1043. /* ORR (reg-shift reg) cccc 0001 100x xxxx xxxx xxxx 0xx1 xxxx */
  1044. /* BIC (reg-shift reg) cccc 0001 110x xxxx xxxx xxxx 0xx1 xxxx */
  1045. DECODE_EMULATEX (0x0e000090, 0x00000010, emulate_rd12rn16rm0rs8_rwflags,
  1046. REGS(ANY, ANY, NOPC, 0, ANY)),
  1047. DECODE_END
  1048. };
  1049. static enum kprobe_insn __kprobes
  1050. space_cccc_000x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1051. {
  1052. if ((insn & 0x0f900080) == 0x01000000)
  1053. return kprobe_decode_insn(insn, asi, arm_cccc_0001_0xx0____0xxx_table, false);
  1054. if ((insn & 0x0f900090) == 0x01000080)
  1055. return kprobe_decode_insn(insn, asi, arm_cccc_0001_0xx0____1xx0_table, false);
  1056. if ((insn & 0x0f0000f0) == 0x00000090)
  1057. return kprobe_decode_insn(insn, asi, arm_cccc_0000_____1001_table, false);
  1058. if ((insn & 0x0f0000f0) == 0x01000090)
  1059. return kprobe_decode_insn(insn, asi, arm_cccc_0001_____1001_table, false);
  1060. if ((insn & 0x0e000090) == 0x00000090)
  1061. return kprobe_decode_insn(insn, asi, arm_cccc_000x_____1xx1_table, false);
  1062. return kprobe_decode_insn(insn, asi, arm_cccc_000x_table, false);
  1063. }
  1064. static const union decode_item arm_cccc_001x_table[] = {
  1065. /* Data-processing (immediate) */
  1066. /* MOVW cccc 0011 0000 xxxx xxxx xxxx xxxx xxxx */
  1067. /* MOVT cccc 0011 0100 xxxx xxxx xxxx xxxx xxxx */
  1068. DECODE_CUSTOM (0x0fb00000, 0x03000000, prep_emulate_rd12_modify),
  1069. /* YIELD cccc 0011 0010 0000 xxxx xxxx 0000 0001 */
  1070. DECODE_OR (0x0fff00ff, 0x03200001),
  1071. /* SEV cccc 0011 0010 0000 xxxx xxxx 0000 0100 */
  1072. DECODE_EMULATE (0x0fff00ff, 0x03200004, kprobe_emulate_none),
  1073. /* NOP cccc 0011 0010 0000 xxxx xxxx 0000 0000 */
  1074. /* WFE cccc 0011 0010 0000 xxxx xxxx 0000 0010 */
  1075. /* WFI cccc 0011 0010 0000 xxxx xxxx 0000 0011 */
  1076. DECODE_SIMULATE (0x0fff00fc, 0x03200000, kprobe_simulate_nop),
  1077. /* DBG cccc 0011 0010 0000 xxxx xxxx ffff xxxx */
  1078. /* unallocated hints cccc 0011 0010 0000 xxxx xxxx xxxx xxxx */
  1079. /* MSR (immediate) cccc 0011 0x10 xxxx xxxx xxxx xxxx xxxx */
  1080. DECODE_REJECT (0x0fb00000, 0x03200000),
  1081. /* <op>S PC, ... cccc 001x xxx1 xxxx 1111 xxxx xxxx xxxx */
  1082. DECODE_REJECT (0x0e10f000, 0x0210f000),
  1083. /* TST (immediate) cccc 0011 0001 xxxx xxxx xxxx xxxx xxxx */
  1084. /* TEQ (immediate) cccc 0011 0011 xxxx xxxx xxxx xxxx xxxx */
  1085. /* CMP (immediate) cccc 0011 0101 xxxx xxxx xxxx xxxx xxxx */
  1086. /* CMN (immediate) cccc 0011 0111 xxxx xxxx xxxx xxxx xxxx */
  1087. DECODE_EMULATEX (0x0f900000, 0x03100000, emulate_rd12rn16rm0rs8_rwflags,
  1088. REGS(ANY, 0, 0, 0, 0)),
  1089. /* MOV (immediate) cccc 0011 101x xxxx xxxx xxxx xxxx xxxx */
  1090. /* MVN (immediate) cccc 0011 111x xxxx xxxx xxxx xxxx xxxx */
  1091. DECODE_EMULATEX (0x0fa00000, 0x03a00000, emulate_rd12rn16rm0rs8_rwflags,
  1092. REGS(0, ANY, 0, 0, 0)),
  1093. /* AND (immediate) cccc 0010 000x xxxx xxxx xxxx xxxx xxxx */
  1094. /* EOR (immediate) cccc 0010 001x xxxx xxxx xxxx xxxx xxxx */
  1095. /* SUB (immediate) cccc 0010 010x xxxx xxxx xxxx xxxx xxxx */
  1096. /* RSB (immediate) cccc 0010 011x xxxx xxxx xxxx xxxx xxxx */
  1097. /* ADD (immediate) cccc 0010 100x xxxx xxxx xxxx xxxx xxxx */
  1098. /* ADC (immediate) cccc 0010 101x xxxx xxxx xxxx xxxx xxxx */
  1099. /* SBC (immediate) cccc 0010 110x xxxx xxxx xxxx xxxx xxxx */
  1100. /* RSC (immediate) cccc 0010 111x xxxx xxxx xxxx xxxx xxxx */
  1101. /* ORR (immediate) cccc 0011 100x xxxx xxxx xxxx xxxx xxxx */
  1102. /* BIC (immediate) cccc 0011 110x xxxx xxxx xxxx xxxx xxxx */
  1103. DECODE_EMULATEX (0x0e000000, 0x02000000, emulate_rd12rn16rm0rs8_rwflags,
  1104. REGS(ANY, ANY, 0, 0, 0)),
  1105. DECODE_END
  1106. };
  1107. static const union decode_item arm_cccc_0110_____xxx1_table[] = {
  1108. /* Media instructions */
  1109. /* SEL cccc 0110 1000 xxxx xxxx xxxx 1011 xxxx */
  1110. DECODE_EMULATEX (0x0ff000f0, 0x068000b0, emulate_rd12rn16rm0_rwflags_nopc,
  1111. REGS(NOPC, NOPC, 0, 0, NOPC)),
  1112. /* SSAT cccc 0110 101x xxxx xxxx xxxx xx01 xxxx */
  1113. /* USAT cccc 0110 111x xxxx xxxx xxxx xx01 xxxx */
  1114. DECODE_OR(0x0fa00030, 0x06a00010),
  1115. /* SSAT16 cccc 0110 1010 xxxx xxxx xxxx 0011 xxxx */
  1116. /* USAT16 cccc 0110 1110 xxxx xxxx xxxx 0011 xxxx */
  1117. DECODE_EMULATEX (0x0fb000f0, 0x06a00030, emulate_rd12rn16rm0_rwflags_nopc,
  1118. REGS(0, NOPC, 0, 0, NOPC)),
  1119. /* REV cccc 0110 1011 xxxx xxxx xxxx 0011 xxxx */
  1120. /* REV16 cccc 0110 1011 xxxx xxxx xxxx 1011 xxxx */
  1121. /* RBIT cccc 0110 1111 xxxx xxxx xxxx 0011 xxxx */
  1122. /* REVSH cccc 0110 1111 xxxx xxxx xxxx 1011 xxxx */
  1123. DECODE_CUSTOM (0x0fb00070, 0x06b00030, prep_emulate_rd12rm0),
  1124. /* ??? cccc 0110 0x00 xxxx xxxx xxxx xxx1 xxxx */
  1125. DECODE_REJECT (0x0fb00010, 0x06000010),
  1126. /* ??? cccc 0110 0xxx xxxx xxxx xxxx 1011 xxxx */
  1127. DECODE_REJECT (0x0f8000f0, 0x060000b0),
  1128. /* ??? cccc 0110 0xxx xxxx xxxx xxxx 1101 xxxx */
  1129. DECODE_REJECT (0x0f8000f0, 0x060000d0),
  1130. /* SADD16 cccc 0110 0001 xxxx xxxx xxxx 0001 xxxx */
  1131. /* SADDSUBX cccc 0110 0001 xxxx xxxx xxxx 0011 xxxx */
  1132. /* SSUBADDX cccc 0110 0001 xxxx xxxx xxxx 0101 xxxx */
  1133. /* SSUB16 cccc 0110 0001 xxxx xxxx xxxx 0111 xxxx */
  1134. /* SADD8 cccc 0110 0001 xxxx xxxx xxxx 1001 xxxx */
  1135. /* SSUB8 cccc 0110 0001 xxxx xxxx xxxx 1111 xxxx */
  1136. /* QADD16 cccc 0110 0010 xxxx xxxx xxxx 0001 xxxx */
  1137. /* QADDSUBX cccc 0110 0010 xxxx xxxx xxxx 0011 xxxx */
  1138. /* QSUBADDX cccc 0110 0010 xxxx xxxx xxxx 0101 xxxx */
  1139. /* QSUB16 cccc 0110 0010 xxxx xxxx xxxx 0111 xxxx */
  1140. /* QADD8 cccc 0110 0010 xxxx xxxx xxxx 1001 xxxx */
  1141. /* QSUB8 cccc 0110 0010 xxxx xxxx xxxx 1111 xxxx */
  1142. /* SHADD16 cccc 0110 0011 xxxx xxxx xxxx 0001 xxxx */
  1143. /* SHADDSUBX cccc 0110 0011 xxxx xxxx xxxx 0011 xxxx */
  1144. /* SHSUBADDX cccc 0110 0011 xxxx xxxx xxxx 0101 xxxx */
  1145. /* SHSUB16 cccc 0110 0011 xxxx xxxx xxxx 0111 xxxx */
  1146. /* SHADD8 cccc 0110 0011 xxxx xxxx xxxx 1001 xxxx */
  1147. /* SHSUB8 cccc 0110 0011 xxxx xxxx xxxx 1111 xxxx */
  1148. /* UADD16 cccc 0110 0101 xxxx xxxx xxxx 0001 xxxx */
  1149. /* UADDSUBX cccc 0110 0101 xxxx xxxx xxxx 0011 xxxx */
  1150. /* USUBADDX cccc 0110 0101 xxxx xxxx xxxx 0101 xxxx */
  1151. /* USUB16 cccc 0110 0101 xxxx xxxx xxxx 0111 xxxx */
  1152. /* UADD8 cccc 0110 0101 xxxx xxxx xxxx 1001 xxxx */
  1153. /* USUB8 cccc 0110 0101 xxxx xxxx xxxx 1111 xxxx */
  1154. /* UQADD16 cccc 0110 0110 xxxx xxxx xxxx 0001 xxxx */
  1155. /* UQADDSUBX cccc 0110 0110 xxxx xxxx xxxx 0011 xxxx */
  1156. /* UQSUBADDX cccc 0110 0110 xxxx xxxx xxxx 0101 xxxx */
  1157. /* UQSUB16 cccc 0110 0110 xxxx xxxx xxxx 0111 xxxx */
  1158. /* UQADD8 cccc 0110 0110 xxxx xxxx xxxx 1001 xxxx */
  1159. /* UQSUB8 cccc 0110 0110 xxxx xxxx xxxx 1111 xxxx */
  1160. /* UHADD16 cccc 0110 0111 xxxx xxxx xxxx 0001 xxxx */
  1161. /* UHADDSUBX cccc 0110 0111 xxxx xxxx xxxx 0011 xxxx */
  1162. /* UHSUBADDX cccc 0110 0111 xxxx xxxx xxxx 0101 xxxx */
  1163. /* UHSUB16 cccc 0110 0111 xxxx xxxx xxxx 0111 xxxx */
  1164. /* UHADD8 cccc 0110 0111 xxxx xxxx xxxx 1001 xxxx */
  1165. /* UHSUB8 cccc 0110 0111 xxxx xxxx xxxx 1111 xxxx */
  1166. DECODE_CUSTOM (0x0f800010, 0x06000010, prep_emulate_rd12rn16rm0_wflags),
  1167. /* PKHBT cccc 0110 1000 xxxx xxxx xxxx x001 xxxx */
  1168. /* PKHTB cccc 0110 1000 xxxx xxxx xxxx x101 xxxx */
  1169. DECODE_CUSTOM (0x0ff00030, 0x06800010, prep_emulate_rd12rn16rm0_wflags),
  1170. /* ??? cccc 0110 1001 xxxx xxxx xxxx 0111 xxxx */
  1171. /* ??? cccc 0110 1101 xxxx xxxx xxxx 0111 xxxx */
  1172. DECODE_REJECT (0x0fb000f0, 0x06900070),
  1173. /* SXTB16 cccc 0110 1000 1111 xxxx xxxx 0111 xxxx */
  1174. /* SXTB cccc 0110 1010 1111 xxxx xxxx 0111 xxxx */
  1175. /* SXTH cccc 0110 1011 1111 xxxx xxxx 0111 xxxx */
  1176. /* UXTB16 cccc 0110 1100 1111 xxxx xxxx 0111 xxxx */
  1177. /* UXTB cccc 0110 1110 1111 xxxx xxxx 0111 xxxx */
  1178. /* UXTH cccc 0110 1111 1111 xxxx xxxx 0111 xxxx */
  1179. DECODE_CUSTOM (0x0f8f00f0, 0x068f0070, prep_emulate_rd12rm0),
  1180. /* SXTAB16 cccc 0110 1000 xxxx xxxx xxxx 0111 xxxx */
  1181. /* SXTAB cccc 0110 1010 xxxx xxxx xxxx 0111 xxxx */
  1182. /* SXTAH cccc 0110 1011 xxxx xxxx xxxx 0111 xxxx */
  1183. /* UXTAB16 cccc 0110 1100 xxxx xxxx xxxx 0111 xxxx */
  1184. /* UXTAB cccc 0110 1110 xxxx xxxx xxxx 0111 xxxx */
  1185. /* UXTAH cccc 0110 1111 xxxx xxxx xxxx 0111 xxxx */
  1186. DECODE_CUSTOM (0x0f8000f0, 0x06800070, prep_emulate_rd12rn16rm0_wflags),
  1187. DECODE_END
  1188. };
  1189. static const union decode_item arm_cccc_0111_____xxx1_table[] = {
  1190. /* Media instructions */
  1191. /* UNDEFINED cccc 0111 1111 xxxx xxxx xxxx 1111 xxxx */
  1192. DECODE_REJECT (0x0ff000f0, 0x07f000f0),
  1193. /* SMLALD cccc 0111 0100 xxxx xxxx xxxx 00x1 xxxx */
  1194. /* SMLSLD cccc 0111 0100 xxxx xxxx xxxx 01x1 xxxx */
  1195. DECODE_CUSTOM (0x0ff00090, 0x07400010, prep_emulate_rdhi16rdlo12rs8rm0_wflags),
  1196. /* SMUAD cccc 0111 0000 xxxx 1111 xxxx 00x1 xxxx */
  1197. /* SMUSD cccc 0111 0000 xxxx 1111 xxxx 01x1 xxxx */
  1198. DECODE_OR (0x0ff0f090, 0x0700f010),
  1199. /* SMMUL cccc 0111 0101 xxxx 1111 xxxx 00x1 xxxx */
  1200. DECODE_OR (0x0ff0f0d0, 0x0750f010),
  1201. /* USAD8 cccc 0111 1000 xxxx 1111 xxxx 0001 xxxx */
  1202. DECODE_CUSTOM (0x0ff0f0f0, 0x0780f010, prep_emulate_rd16rs8rm0_wflags),
  1203. /* SMLAD cccc 0111 0000 xxxx xxxx xxxx 00x1 xxxx */
  1204. /* SMLSD cccc 0111 0000 xxxx xxxx xxxx 01x1 xxxx */
  1205. DECODE_OR (0x0ff00090, 0x07000010),
  1206. /* SMMLA cccc 0111 0101 xxxx xxxx xxxx 00x1 xxxx */
  1207. DECODE_OR (0x0ff000d0, 0x07500010),
  1208. /* USADA8 cccc 0111 1000 xxxx xxxx xxxx 0001 xxxx */
  1209. DECODE_CUSTOM (0x0ff000f0, 0x07800010, prep_emulate_rd16rn12rs8rm0_wflags),
  1210. /* SMMLS cccc 0111 0101 xxxx xxxx xxxx 11x1 xxxx */
  1211. DECODE_CUSTOM (0x0ff000d0, 0x075000d0, prep_emulate_rd16rn12rs8rm0_wflags),
  1212. /* SBFX cccc 0111 101x xxxx xxxx xxxx x101 xxxx */
  1213. /* UBFX cccc 0111 111x xxxx xxxx xxxx x101 xxxx */
  1214. DECODE_CUSTOM (0x0fa00070, 0x07a00050, prep_emulate_rd12rm0),
  1215. /* BFC cccc 0111 110x xxxx xxxx xxxx x001 1111 */
  1216. DECODE_CUSTOM (0x0fe0007f, 0x07c0001f, prep_emulate_rd12_modify),
  1217. /* BFI cccc 0111 110x xxxx xxxx xxxx x001 xxxx */
  1218. DECODE_CUSTOM (0x0fe00070, 0x07c00010, prep_emulate_rd12rn0_modify),
  1219. DECODE_END
  1220. };
  1221. static enum kprobe_insn __kprobes
  1222. space_cccc_01xx(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1223. {
  1224. /* LDR : cccc 01xx x0x1 xxxx xxxx xxxx xxxx xxxx */
  1225. /* LDRB : cccc 01xx x1x1 xxxx xxxx xxxx xxxx xxxx */
  1226. /* LDRBT : cccc 01x0 x111 xxxx xxxx xxxx xxxx xxxx */
  1227. /* LDRT : cccc 01x0 x011 xxxx xxxx xxxx xxxx xxxx */
  1228. /* STR : cccc 01xx x0x0 xxxx xxxx xxxx xxxx xxxx */
  1229. /* STRB : cccc 01xx x1x0 xxxx xxxx xxxx xxxx xxxx */
  1230. /* STRBT : cccc 01x0 x110 xxxx xxxx xxxx xxxx xxxx */
  1231. /* STRT : cccc 01x0 x010 xxxx xxxx xxxx xxxx xxxx */
  1232. if ((insn & 0x00500000) == 0x00500000 && is_r15(insn, 12))
  1233. return INSN_REJECTED; /* LDRB into PC */
  1234. return prep_emulate_ldr_str(insn, asi);
  1235. }
  1236. static enum kprobe_insn __kprobes
  1237. space_cccc_100x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1238. {
  1239. /* LDM(2) : cccc 100x x101 xxxx 0xxx xxxx xxxx xxxx */
  1240. /* LDM(3) : cccc 100x x1x1 xxxx 1xxx xxxx xxxx xxxx */
  1241. if ((insn & 0x0e708000) == 0x85000000 ||
  1242. (insn & 0x0e508000) == 0x85010000)
  1243. return INSN_REJECTED;
  1244. /* LDM(1) : cccc 100x x0x1 xxxx xxxx xxxx xxxx xxxx */
  1245. /* STM(1) : cccc 100x x0x0 xxxx xxxx xxxx xxxx xxxx */
  1246. /*
  1247. * Make the instruction unconditional because the new emulation
  1248. * functions don't bother to setup the PSR context.
  1249. */
  1250. insn = (insn | 0xe0000000) & ~0x10000000;
  1251. return kprobe_decode_ldmstm(insn, asi);
  1252. }
  1253. static enum kprobe_insn __kprobes
  1254. space_cccc_101x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1255. {
  1256. /* B : cccc 1010 xxxx xxxx xxxx xxxx xxxx xxxx */
  1257. /* BL : cccc 1011 xxxx xxxx xxxx xxxx xxxx xxxx */
  1258. asi->insn_handler = simulate_bbl;
  1259. return INSN_GOOD_NO_SLOT;
  1260. }
  1261. static enum kprobe_insn __kprobes
  1262. space_cccc_11xx(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1263. {
  1264. /* Coprocessor instructions... */
  1265. /* MCRR : cccc 1100 0100 xxxx xxxx xxxx xxxx xxxx : (Rd!=Rn) */
  1266. /* MRRC : cccc 1100 0101 xxxx xxxx xxxx xxxx xxxx : (Rd!=Rn) */
  1267. /* LDC : cccc 110x xxx1 xxxx xxxx xxxx xxxx xxxx */
  1268. /* STC : cccc 110x xxx0 xxxx xxxx xxxx xxxx xxxx */
  1269. /* CDP : cccc 1110 xxxx xxxx xxxx xxxx xxx0 xxxx */
  1270. /* MCR : cccc 1110 xxx0 xxxx xxxx xxxx xxx1 xxxx */
  1271. /* MRC : cccc 1110 xxx1 xxxx xxxx xxxx xxx1 xxxx */
  1272. /* SVC : cccc 1111 xxxx xxxx xxxx xxxx xxxx xxxx */
  1273. return INSN_REJECTED;
  1274. }
  1275. static void __kprobes arm_singlestep(struct kprobe *p, struct pt_regs *regs)
  1276. {
  1277. regs->ARM_pc += 4;
  1278. p->ainsn.insn_handler(p, regs);
  1279. }
  1280. /* Return:
  1281. * INSN_REJECTED If instruction is one not allowed to kprobe,
  1282. * INSN_GOOD If instruction is supported and uses instruction slot,
  1283. * INSN_GOOD_NO_SLOT If instruction is supported but doesn't use its slot.
  1284. *
  1285. * For instructions we don't want to kprobe (INSN_REJECTED return result):
  1286. * These are generally ones that modify the processor state making
  1287. * them "hard" to simulate such as switches processor modes or
  1288. * make accesses in alternate modes. Any of these could be simulated
  1289. * if the work was put into it, but low return considering they
  1290. * should also be very rare.
  1291. */
  1292. enum kprobe_insn __kprobes
  1293. arm_kprobe_decode_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1294. {
  1295. asi->insn_singlestep = arm_singlestep;
  1296. asi->insn_check_cc = kprobe_condition_checks[insn>>28];
  1297. asi->insn[1] = KPROBE_RETURN_INSTRUCTION;
  1298. if ((insn & 0xf0000000) == 0xf0000000)
  1299. return kprobe_decode_insn(insn, asi, arm_1111_table, false);
  1300. else if ((insn & 0x0e000000) == 0x00000000)
  1301. return space_cccc_000x(insn, asi);
  1302. else if ((insn & 0x0e000000) == 0x02000000)
  1303. return kprobe_decode_insn(insn, asi, arm_cccc_001x_table, false);
  1304. else if ((insn & 0x0f000010) == 0x06000010)
  1305. return kprobe_decode_insn(insn, asi, arm_cccc_0110_____xxx1_table, false);
  1306. else if ((insn & 0x0f000010) == 0x07000010)
  1307. return kprobe_decode_insn(insn, asi, arm_cccc_0111_____xxx1_table, false);
  1308. else if ((insn & 0x0c000000) == 0x04000000)
  1309. return space_cccc_01xx(insn, asi);
  1310. else if ((insn & 0x0e000000) == 0x08000000)
  1311. return space_cccc_100x(insn, asi);
  1312. else if ((insn & 0x0e000000) == 0x0a000000)
  1313. return space_cccc_101x(insn, asi);
  1314. return space_cccc_11xx(insn, asi);
  1315. }