rtc-sh.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667
  1. /*
  2. * SuperH On-Chip RTC Support
  3. *
  4. * Copyright (C) 2006, 2007 Paul Mundt
  5. * Copyright (C) 2006 Jamie Lenehan
  6. *
  7. * Based on the old arch/sh/kernel/cpu/rtc.c by:
  8. *
  9. * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
  10. * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
  11. *
  12. * This file is subject to the terms and conditions of the GNU General Public
  13. * License. See the file "COPYING" in the main directory of this archive
  14. * for more details.
  15. */
  16. #include <linux/module.h>
  17. #include <linux/kernel.h>
  18. #include <linux/bcd.h>
  19. #include <linux/rtc.h>
  20. #include <linux/init.h>
  21. #include <linux/platform_device.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/spinlock.h>
  25. #include <linux/io.h>
  26. #include <asm/rtc.h>
  27. #define DRV_NAME "sh-rtc"
  28. #define DRV_VERSION "0.1.6"
  29. #define RTC_REG(r) ((r) * rtc_reg_size)
  30. #define R64CNT RTC_REG(0)
  31. #define RSECCNT RTC_REG(1) /* RTC sec */
  32. #define RMINCNT RTC_REG(2) /* RTC min */
  33. #define RHRCNT RTC_REG(3) /* RTC hour */
  34. #define RWKCNT RTC_REG(4) /* RTC week */
  35. #define RDAYCNT RTC_REG(5) /* RTC day */
  36. #define RMONCNT RTC_REG(6) /* RTC month */
  37. #define RYRCNT RTC_REG(7) /* RTC year */
  38. #define RSECAR RTC_REG(8) /* ALARM sec */
  39. #define RMINAR RTC_REG(9) /* ALARM min */
  40. #define RHRAR RTC_REG(10) /* ALARM hour */
  41. #define RWKAR RTC_REG(11) /* ALARM week */
  42. #define RDAYAR RTC_REG(12) /* ALARM day */
  43. #define RMONAR RTC_REG(13) /* ALARM month */
  44. #define RCR1 RTC_REG(14) /* Control */
  45. #define RCR2 RTC_REG(15) /* Control */
  46. /*
  47. * Note on RYRAR and RCR3: Up until this point most of the register
  48. * definitions are consistent across all of the available parts. However,
  49. * the placement of the optional RYRAR and RCR3 (the RYRAR control
  50. * register used to control RYRCNT/RYRAR compare) varies considerably
  51. * across various parts, occasionally being mapped in to a completely
  52. * unrelated address space. For proper RYRAR support a separate resource
  53. * would have to be handed off, but as this is purely optional in
  54. * practice, we simply opt not to support it, thereby keeping the code
  55. * quite a bit more simplified.
  56. */
  57. /* ALARM Bits - or with BCD encoded value */
  58. #define AR_ENB 0x80 /* Enable for alarm cmp */
  59. /* RCR1 Bits */
  60. #define RCR1_CF 0x80 /* Carry Flag */
  61. #define RCR1_CIE 0x10 /* Carry Interrupt Enable */
  62. #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
  63. #define RCR1_AF 0x01 /* Alarm Flag */
  64. /* RCR2 Bits */
  65. #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
  66. #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
  67. #define RCR2_RTCEN 0x08 /* ENable RTC */
  68. #define RCR2_ADJ 0x04 /* ADJustment (30-second) */
  69. #define RCR2_RESET 0x02 /* Reset bit */
  70. #define RCR2_START 0x01 /* Start bit */
  71. struct sh_rtc {
  72. void __iomem *regbase;
  73. unsigned long regsize;
  74. struct resource *res;
  75. unsigned int alarm_irq, periodic_irq, carry_irq;
  76. struct rtc_device *rtc_dev;
  77. spinlock_t lock;
  78. int rearm_aie;
  79. unsigned long capabilities; /* See asm-sh/rtc.h for cap bits */
  80. };
  81. static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
  82. {
  83. struct platform_device *pdev = to_platform_device(dev_id);
  84. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  85. unsigned int tmp, events = 0;
  86. spin_lock(&rtc->lock);
  87. tmp = readb(rtc->regbase + RCR1);
  88. tmp &= ~RCR1_CF;
  89. if (rtc->rearm_aie) {
  90. if (tmp & RCR1_AF)
  91. tmp &= ~RCR1_AF; /* try to clear AF again */
  92. else {
  93. tmp |= RCR1_AIE; /* AF has cleared, rearm IRQ */
  94. rtc->rearm_aie = 0;
  95. }
  96. }
  97. writeb(tmp, rtc->regbase + RCR1);
  98. rtc_update_irq(rtc->rtc_dev, 1, events);
  99. spin_unlock(&rtc->lock);
  100. return IRQ_HANDLED;
  101. }
  102. static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
  103. {
  104. struct platform_device *pdev = to_platform_device(dev_id);
  105. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  106. unsigned int tmp, events = 0;
  107. spin_lock(&rtc->lock);
  108. tmp = readb(rtc->regbase + RCR1);
  109. /*
  110. * If AF is set then the alarm has triggered. If we clear AF while
  111. * the alarm time still matches the RTC time then AF will
  112. * immediately be set again, and if AIE is enabled then the alarm
  113. * interrupt will immediately be retrigger. So we clear AIE here
  114. * and use rtc->rearm_aie so that the carry interrupt will keep
  115. * trying to clear AF and once it stays cleared it'll re-enable
  116. * AIE.
  117. */
  118. if (tmp & RCR1_AF) {
  119. events |= RTC_AF | RTC_IRQF;
  120. tmp &= ~(RCR1_AF|RCR1_AIE);
  121. writeb(tmp, rtc->regbase + RCR1);
  122. rtc->rearm_aie = 1;
  123. rtc_update_irq(rtc->rtc_dev, 1, events);
  124. }
  125. spin_unlock(&rtc->lock);
  126. return IRQ_HANDLED;
  127. }
  128. static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
  129. {
  130. struct platform_device *pdev = to_platform_device(dev_id);
  131. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  132. spin_lock(&rtc->lock);
  133. rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
  134. spin_unlock(&rtc->lock);
  135. return IRQ_HANDLED;
  136. }
  137. static inline void sh_rtc_setpie(struct device *dev, unsigned int enable)
  138. {
  139. struct sh_rtc *rtc = dev_get_drvdata(dev);
  140. unsigned int tmp;
  141. spin_lock_irq(&rtc->lock);
  142. tmp = readb(rtc->regbase + RCR2);
  143. if (enable) {
  144. tmp &= ~RCR2_PESMASK;
  145. tmp |= RCR2_PEF | (2 << 4);
  146. } else
  147. tmp &= ~(RCR2_PESMASK | RCR2_PEF);
  148. writeb(tmp, rtc->regbase + RCR2);
  149. spin_unlock_irq(&rtc->lock);
  150. }
  151. static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
  152. {
  153. struct sh_rtc *rtc = dev_get_drvdata(dev);
  154. unsigned int tmp;
  155. spin_lock_irq(&rtc->lock);
  156. tmp = readb(rtc->regbase + RCR1);
  157. if (!enable) {
  158. tmp &= ~RCR1_AIE;
  159. rtc->rearm_aie = 0;
  160. } else if (rtc->rearm_aie == 0)
  161. tmp |= RCR1_AIE;
  162. writeb(tmp, rtc->regbase + RCR1);
  163. spin_unlock_irq(&rtc->lock);
  164. }
  165. static int sh_rtc_open(struct device *dev)
  166. {
  167. struct sh_rtc *rtc = dev_get_drvdata(dev);
  168. unsigned int tmp;
  169. int ret;
  170. tmp = readb(rtc->regbase + RCR1);
  171. tmp &= ~RCR1_CF;
  172. tmp |= RCR1_CIE;
  173. writeb(tmp, rtc->regbase + RCR1);
  174. ret = request_irq(rtc->periodic_irq, sh_rtc_periodic, IRQF_DISABLED,
  175. "sh-rtc period", dev);
  176. if (unlikely(ret)) {
  177. dev_err(dev, "request period IRQ failed with %d, IRQ %d\n",
  178. ret, rtc->periodic_irq);
  179. return ret;
  180. }
  181. ret = request_irq(rtc->carry_irq, sh_rtc_interrupt, IRQF_DISABLED,
  182. "sh-rtc carry", dev);
  183. if (unlikely(ret)) {
  184. dev_err(dev, "request carry IRQ failed with %d, IRQ %d\n",
  185. ret, rtc->carry_irq);
  186. free_irq(rtc->periodic_irq, dev);
  187. goto err_bad_carry;
  188. }
  189. ret = request_irq(rtc->alarm_irq, sh_rtc_alarm, IRQF_DISABLED,
  190. "sh-rtc alarm", dev);
  191. if (unlikely(ret)) {
  192. dev_err(dev, "request alarm IRQ failed with %d, IRQ %d\n",
  193. ret, rtc->alarm_irq);
  194. goto err_bad_alarm;
  195. }
  196. return 0;
  197. err_bad_alarm:
  198. free_irq(rtc->carry_irq, dev);
  199. err_bad_carry:
  200. free_irq(rtc->periodic_irq, dev);
  201. return ret;
  202. }
  203. static void sh_rtc_release(struct device *dev)
  204. {
  205. struct sh_rtc *rtc = dev_get_drvdata(dev);
  206. sh_rtc_setpie(dev, 0);
  207. sh_rtc_setaie(dev, 0);
  208. free_irq(rtc->periodic_irq, dev);
  209. free_irq(rtc->carry_irq, dev);
  210. free_irq(rtc->alarm_irq, dev);
  211. }
  212. static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
  213. {
  214. struct sh_rtc *rtc = dev_get_drvdata(dev);
  215. unsigned int tmp;
  216. tmp = readb(rtc->regbase + RCR1);
  217. seq_printf(seq, "carry_IRQ\t: %s\n",
  218. (tmp & RCR1_CIE) ? "yes" : "no");
  219. tmp = readb(rtc->regbase + RCR2);
  220. seq_printf(seq, "periodic_IRQ\t: %s\n",
  221. (tmp & RCR2_PEF) ? "yes" : "no");
  222. return 0;
  223. }
  224. static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
  225. {
  226. unsigned int ret = -ENOIOCTLCMD;
  227. switch (cmd) {
  228. case RTC_PIE_OFF:
  229. case RTC_PIE_ON:
  230. sh_rtc_setpie(dev, cmd == RTC_PIE_ON);
  231. ret = 0;
  232. break;
  233. case RTC_AIE_OFF:
  234. case RTC_AIE_ON:
  235. sh_rtc_setaie(dev, cmd == RTC_AIE_ON);
  236. ret = 0;
  237. break;
  238. }
  239. return ret;
  240. }
  241. static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
  242. {
  243. struct platform_device *pdev = to_platform_device(dev);
  244. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  245. unsigned int sec128, sec2, yr, yr100, cf_bit;
  246. do {
  247. unsigned int tmp;
  248. spin_lock_irq(&rtc->lock);
  249. tmp = readb(rtc->regbase + RCR1);
  250. tmp &= ~RCR1_CF; /* Clear CF-bit */
  251. tmp |= RCR1_CIE;
  252. writeb(tmp, rtc->regbase + RCR1);
  253. sec128 = readb(rtc->regbase + R64CNT);
  254. tm->tm_sec = BCD2BIN(readb(rtc->regbase + RSECCNT));
  255. tm->tm_min = BCD2BIN(readb(rtc->regbase + RMINCNT));
  256. tm->tm_hour = BCD2BIN(readb(rtc->regbase + RHRCNT));
  257. tm->tm_wday = BCD2BIN(readb(rtc->regbase + RWKCNT));
  258. tm->tm_mday = BCD2BIN(readb(rtc->regbase + RDAYCNT));
  259. tm->tm_mon = BCD2BIN(readb(rtc->regbase + RMONCNT)) - 1;
  260. if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
  261. yr = readw(rtc->regbase + RYRCNT);
  262. yr100 = BCD2BIN(yr >> 8);
  263. yr &= 0xff;
  264. } else {
  265. yr = readb(rtc->regbase + RYRCNT);
  266. yr100 = BCD2BIN((yr == 0x99) ? 0x19 : 0x20);
  267. }
  268. tm->tm_year = (yr100 * 100 + BCD2BIN(yr)) - 1900;
  269. sec2 = readb(rtc->regbase + R64CNT);
  270. cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
  271. spin_unlock_irq(&rtc->lock);
  272. } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
  273. #if RTC_BIT_INVERTED != 0
  274. if ((sec128 & RTC_BIT_INVERTED))
  275. tm->tm_sec--;
  276. #endif
  277. dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
  278. "mday=%d, mon=%d, year=%d, wday=%d\n",
  279. __FUNCTION__,
  280. tm->tm_sec, tm->tm_min, tm->tm_hour,
  281. tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
  282. if (rtc_valid_tm(tm) < 0) {
  283. dev_err(dev, "invalid date\n");
  284. rtc_time_to_tm(0, tm);
  285. }
  286. return 0;
  287. }
  288. static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
  289. {
  290. struct platform_device *pdev = to_platform_device(dev);
  291. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  292. unsigned int tmp;
  293. int year;
  294. spin_lock_irq(&rtc->lock);
  295. /* Reset pre-scaler & stop RTC */
  296. tmp = readb(rtc->regbase + RCR2);
  297. tmp |= RCR2_RESET;
  298. tmp &= ~RCR2_START;
  299. writeb(tmp, rtc->regbase + RCR2);
  300. writeb(BIN2BCD(tm->tm_sec), rtc->regbase + RSECCNT);
  301. writeb(BIN2BCD(tm->tm_min), rtc->regbase + RMINCNT);
  302. writeb(BIN2BCD(tm->tm_hour), rtc->regbase + RHRCNT);
  303. writeb(BIN2BCD(tm->tm_wday), rtc->regbase + RWKCNT);
  304. writeb(BIN2BCD(tm->tm_mday), rtc->regbase + RDAYCNT);
  305. writeb(BIN2BCD(tm->tm_mon + 1), rtc->regbase + RMONCNT);
  306. if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
  307. year = (BIN2BCD((tm->tm_year + 1900) / 100) << 8) |
  308. BIN2BCD(tm->tm_year % 100);
  309. writew(year, rtc->regbase + RYRCNT);
  310. } else {
  311. year = tm->tm_year % 100;
  312. writeb(BIN2BCD(year), rtc->regbase + RYRCNT);
  313. }
  314. /* Start RTC */
  315. tmp = readb(rtc->regbase + RCR2);
  316. tmp &= ~RCR2_RESET;
  317. tmp |= RCR2_RTCEN | RCR2_START;
  318. writeb(tmp, rtc->regbase + RCR2);
  319. spin_unlock_irq(&rtc->lock);
  320. return 0;
  321. }
  322. static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
  323. {
  324. unsigned int byte;
  325. int value = 0xff; /* return 0xff for ignored values */
  326. byte = readb(rtc->regbase + reg_off);
  327. if (byte & AR_ENB) {
  328. byte &= ~AR_ENB; /* strip the enable bit */
  329. value = BCD2BIN(byte);
  330. }
  331. return value;
  332. }
  333. static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
  334. {
  335. struct platform_device *pdev = to_platform_device(dev);
  336. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  337. struct rtc_time* tm = &wkalrm->time;
  338. spin_lock_irq(&rtc->lock);
  339. tm->tm_sec = sh_rtc_read_alarm_value(rtc, RSECAR);
  340. tm->tm_min = sh_rtc_read_alarm_value(rtc, RMINAR);
  341. tm->tm_hour = sh_rtc_read_alarm_value(rtc, RHRAR);
  342. tm->tm_wday = sh_rtc_read_alarm_value(rtc, RWKAR);
  343. tm->tm_mday = sh_rtc_read_alarm_value(rtc, RDAYAR);
  344. tm->tm_mon = sh_rtc_read_alarm_value(rtc, RMONAR);
  345. if (tm->tm_mon > 0)
  346. tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
  347. tm->tm_year = 0xffff;
  348. wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
  349. spin_unlock_irq(&rtc->lock);
  350. return 0;
  351. }
  352. static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
  353. int value, int reg_off)
  354. {
  355. /* < 0 for a value that is ignored */
  356. if (value < 0)
  357. writeb(0, rtc->regbase + reg_off);
  358. else
  359. writeb(BIN2BCD(value) | AR_ENB, rtc->regbase + reg_off);
  360. }
  361. static int sh_rtc_check_alarm(struct rtc_time* tm)
  362. {
  363. /*
  364. * The original rtc says anything > 0xc0 is "don't care" or "match
  365. * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
  366. * The original rtc doesn't support years - some things use -1 and
  367. * some 0xffff. We use -1 to make out tests easier.
  368. */
  369. if (tm->tm_year == 0xffff)
  370. tm->tm_year = -1;
  371. if (tm->tm_mon >= 0xff)
  372. tm->tm_mon = -1;
  373. if (tm->tm_mday >= 0xff)
  374. tm->tm_mday = -1;
  375. if (tm->tm_wday >= 0xff)
  376. tm->tm_wday = -1;
  377. if (tm->tm_hour >= 0xff)
  378. tm->tm_hour = -1;
  379. if (tm->tm_min >= 0xff)
  380. tm->tm_min = -1;
  381. if (tm->tm_sec >= 0xff)
  382. tm->tm_sec = -1;
  383. if (tm->tm_year > 9999 ||
  384. tm->tm_mon >= 12 ||
  385. tm->tm_mday == 0 || tm->tm_mday >= 32 ||
  386. tm->tm_wday >= 7 ||
  387. tm->tm_hour >= 24 ||
  388. tm->tm_min >= 60 ||
  389. tm->tm_sec >= 60)
  390. return -EINVAL;
  391. return 0;
  392. }
  393. static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
  394. {
  395. struct platform_device *pdev = to_platform_device(dev);
  396. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  397. unsigned int rcr1;
  398. struct rtc_time *tm = &wkalrm->time;
  399. int mon, err;
  400. err = sh_rtc_check_alarm(tm);
  401. if (unlikely(err < 0))
  402. return err;
  403. spin_lock_irq(&rtc->lock);
  404. /* disable alarm interrupt and clear the alarm flag */
  405. rcr1 = readb(rtc->regbase + RCR1);
  406. rcr1 &= ~(RCR1_AF|RCR1_AIE);
  407. writeb(rcr1, rtc->regbase + RCR1);
  408. rtc->rearm_aie = 0;
  409. /* set alarm time */
  410. sh_rtc_write_alarm_value(rtc, tm->tm_sec, RSECAR);
  411. sh_rtc_write_alarm_value(rtc, tm->tm_min, RMINAR);
  412. sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
  413. sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
  414. sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
  415. mon = tm->tm_mon;
  416. if (mon >= 0)
  417. mon += 1;
  418. sh_rtc_write_alarm_value(rtc, mon, RMONAR);
  419. if (wkalrm->enabled) {
  420. rcr1 |= RCR1_AIE;
  421. writeb(rcr1, rtc->regbase + RCR1);
  422. }
  423. spin_unlock_irq(&rtc->lock);
  424. return 0;
  425. }
  426. static struct rtc_class_ops sh_rtc_ops = {
  427. .open = sh_rtc_open,
  428. .release = sh_rtc_release,
  429. .ioctl = sh_rtc_ioctl,
  430. .read_time = sh_rtc_read_time,
  431. .set_time = sh_rtc_set_time,
  432. .read_alarm = sh_rtc_read_alarm,
  433. .set_alarm = sh_rtc_set_alarm,
  434. .proc = sh_rtc_proc,
  435. };
  436. static int __devinit sh_rtc_probe(struct platform_device *pdev)
  437. {
  438. struct sh_rtc *rtc;
  439. struct resource *res;
  440. int ret = -ENOENT;
  441. rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
  442. if (unlikely(!rtc))
  443. return -ENOMEM;
  444. spin_lock_init(&rtc->lock);
  445. rtc->periodic_irq = platform_get_irq(pdev, 0);
  446. if (unlikely(rtc->periodic_irq < 0)) {
  447. dev_err(&pdev->dev, "No IRQ for period\n");
  448. goto err_badres;
  449. }
  450. rtc->carry_irq = platform_get_irq(pdev, 1);
  451. if (unlikely(rtc->carry_irq < 0)) {
  452. dev_err(&pdev->dev, "No IRQ for carry\n");
  453. goto err_badres;
  454. }
  455. rtc->alarm_irq = platform_get_irq(pdev, 2);
  456. if (unlikely(rtc->alarm_irq < 0)) {
  457. dev_err(&pdev->dev, "No IRQ for alarm\n");
  458. goto err_badres;
  459. }
  460. res = platform_get_resource(pdev, IORESOURCE_IO, 0);
  461. if (unlikely(res == NULL)) {
  462. dev_err(&pdev->dev, "No IO resource\n");
  463. goto err_badres;
  464. }
  465. rtc->regsize = res->end - res->start + 1;
  466. rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
  467. if (unlikely(!rtc->res)) {
  468. ret = -EBUSY;
  469. goto err_badres;
  470. }
  471. rtc->regbase = (void __iomem *)rtc->res->start;
  472. if (unlikely(!rtc->regbase)) {
  473. ret = -EINVAL;
  474. goto err_badmap;
  475. }
  476. rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
  477. &sh_rtc_ops, THIS_MODULE);
  478. if (IS_ERR(rtc->rtc_dev)) {
  479. ret = PTR_ERR(rtc->rtc_dev);
  480. goto err_badmap;
  481. }
  482. rtc->capabilities = RTC_DEF_CAPABILITIES;
  483. if (pdev->dev.platform_data) {
  484. struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;
  485. /*
  486. * Some CPUs have special capabilities in addition to the
  487. * default set. Add those in here.
  488. */
  489. rtc->capabilities |= pinfo->capabilities;
  490. }
  491. platform_set_drvdata(pdev, rtc);
  492. return 0;
  493. err_badmap:
  494. release_resource(rtc->res);
  495. err_badres:
  496. kfree(rtc);
  497. return ret;
  498. }
  499. static int __devexit sh_rtc_remove(struct platform_device *pdev)
  500. {
  501. struct sh_rtc *rtc = platform_get_drvdata(pdev);
  502. if (likely(rtc->rtc_dev))
  503. rtc_device_unregister(rtc->rtc_dev);
  504. sh_rtc_setpie(&pdev->dev, 0);
  505. sh_rtc_setaie(&pdev->dev, 0);
  506. release_resource(rtc->res);
  507. platform_set_drvdata(pdev, NULL);
  508. kfree(rtc);
  509. return 0;
  510. }
  511. static struct platform_driver sh_rtc_platform_driver = {
  512. .driver = {
  513. .name = DRV_NAME,
  514. .owner = THIS_MODULE,
  515. },
  516. .probe = sh_rtc_probe,
  517. .remove = __devexit_p(sh_rtc_remove),
  518. };
  519. static int __init sh_rtc_init(void)
  520. {
  521. return platform_driver_register(&sh_rtc_platform_driver);
  522. }
  523. static void __exit sh_rtc_exit(void)
  524. {
  525. platform_driver_unregister(&sh_rtc_platform_driver);
  526. }
  527. module_init(sh_rtc_init);
  528. module_exit(sh_rtc_exit);
  529. MODULE_DESCRIPTION("SuperH on-chip RTC driver");
  530. MODULE_VERSION(DRV_VERSION);
  531. MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, Jamie Lenehan <lenehan@twibble.org>");
  532. MODULE_LICENSE("GPL");
  533. MODULE_ALIAS("platform:" DRV_NAME);