kvm_main.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/pgtable.h>
  46. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  47. #include "coalesced_mmio.h"
  48. #endif
  49. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  50. #include <linux/pci.h>
  51. #include <linux/interrupt.h>
  52. #include "irq.h"
  53. #endif
  54. MODULE_AUTHOR("Qumranet");
  55. MODULE_LICENSE("GPL");
  56. DEFINE_SPINLOCK(kvm_lock);
  57. LIST_HEAD(vm_list);
  58. static cpumask_t cpus_hardware_enabled;
  59. struct kmem_cache *kvm_vcpu_cache;
  60. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  61. static __read_mostly struct preempt_ops kvm_preempt_ops;
  62. struct dentry *kvm_debugfs_dir;
  63. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  64. unsigned long arg);
  65. bool kvm_rebooting;
  66. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  67. static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
  68. int assigned_dev_id)
  69. {
  70. struct list_head *ptr;
  71. struct kvm_assigned_dev_kernel *match;
  72. list_for_each(ptr, head) {
  73. match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
  74. if (match->assigned_dev_id == assigned_dev_id)
  75. return match;
  76. }
  77. return NULL;
  78. }
  79. static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
  80. {
  81. struct kvm_assigned_dev_kernel *assigned_dev;
  82. assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
  83. interrupt_work);
  84. /* This is taken to safely inject irq inside the guest. When
  85. * the interrupt injection (or the ioapic code) uses a
  86. * finer-grained lock, update this
  87. */
  88. mutex_lock(&assigned_dev->kvm->lock);
  89. kvm_set_irq(assigned_dev->kvm,
  90. assigned_dev->irq_source_id,
  91. assigned_dev->guest_irq, 1);
  92. mutex_unlock(&assigned_dev->kvm->lock);
  93. kvm_put_kvm(assigned_dev->kvm);
  94. }
  95. static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
  96. {
  97. struct kvm_assigned_dev_kernel *assigned_dev =
  98. (struct kvm_assigned_dev_kernel *) dev_id;
  99. kvm_get_kvm(assigned_dev->kvm);
  100. schedule_work(&assigned_dev->interrupt_work);
  101. disable_irq_nosync(irq);
  102. return IRQ_HANDLED;
  103. }
  104. /* Ack the irq line for an assigned device */
  105. static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
  106. {
  107. struct kvm_assigned_dev_kernel *dev;
  108. if (kian->gsi == -1)
  109. return;
  110. dev = container_of(kian, struct kvm_assigned_dev_kernel,
  111. ack_notifier);
  112. kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
  113. enable_irq(dev->host_irq);
  114. }
  115. static void kvm_free_assigned_device(struct kvm *kvm,
  116. struct kvm_assigned_dev_kernel
  117. *assigned_dev)
  118. {
  119. if (irqchip_in_kernel(kvm) && assigned_dev->irq_requested)
  120. free_irq(assigned_dev->host_irq, (void *)assigned_dev);
  121. kvm_unregister_irq_ack_notifier(kvm, &assigned_dev->ack_notifier);
  122. kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
  123. if (cancel_work_sync(&assigned_dev->interrupt_work))
  124. /* We had pending work. That means we will have to take
  125. * care of kvm_put_kvm.
  126. */
  127. kvm_put_kvm(kvm);
  128. pci_release_regions(assigned_dev->dev);
  129. pci_disable_device(assigned_dev->dev);
  130. pci_dev_put(assigned_dev->dev);
  131. list_del(&assigned_dev->list);
  132. kfree(assigned_dev);
  133. }
  134. void kvm_free_all_assigned_devices(struct kvm *kvm)
  135. {
  136. struct list_head *ptr, *ptr2;
  137. struct kvm_assigned_dev_kernel *assigned_dev;
  138. list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
  139. assigned_dev = list_entry(ptr,
  140. struct kvm_assigned_dev_kernel,
  141. list);
  142. kvm_free_assigned_device(kvm, assigned_dev);
  143. }
  144. }
  145. static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
  146. struct kvm_assigned_irq
  147. *assigned_irq)
  148. {
  149. int r = 0;
  150. struct kvm_assigned_dev_kernel *match;
  151. mutex_lock(&kvm->lock);
  152. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  153. assigned_irq->assigned_dev_id);
  154. if (!match) {
  155. mutex_unlock(&kvm->lock);
  156. return -EINVAL;
  157. }
  158. if (match->irq_requested) {
  159. match->guest_irq = assigned_irq->guest_irq;
  160. match->ack_notifier.gsi = assigned_irq->guest_irq;
  161. mutex_unlock(&kvm->lock);
  162. return 0;
  163. }
  164. INIT_WORK(&match->interrupt_work,
  165. kvm_assigned_dev_interrupt_work_handler);
  166. if (irqchip_in_kernel(kvm)) {
  167. if (!capable(CAP_SYS_RAWIO)) {
  168. r = -EPERM;
  169. goto out_release;
  170. }
  171. if (assigned_irq->host_irq)
  172. match->host_irq = assigned_irq->host_irq;
  173. else
  174. match->host_irq = match->dev->irq;
  175. match->guest_irq = assigned_irq->guest_irq;
  176. match->ack_notifier.gsi = assigned_irq->guest_irq;
  177. match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
  178. kvm_register_irq_ack_notifier(kvm, &match->ack_notifier);
  179. r = kvm_request_irq_source_id(kvm);
  180. if (r < 0)
  181. goto out_release;
  182. else
  183. match->irq_source_id = r;
  184. /* Even though this is PCI, we don't want to use shared
  185. * interrupts. Sharing host devices with guest-assigned devices
  186. * on the same interrupt line is not a happy situation: there
  187. * are going to be long delays in accepting, acking, etc.
  188. */
  189. if (request_irq(match->host_irq, kvm_assigned_dev_intr, 0,
  190. "kvm_assigned_device", (void *)match)) {
  191. r = -EIO;
  192. goto out_release;
  193. }
  194. }
  195. match->irq_requested = true;
  196. mutex_unlock(&kvm->lock);
  197. return r;
  198. out_release:
  199. mutex_unlock(&kvm->lock);
  200. kvm_free_assigned_device(kvm, match);
  201. return r;
  202. }
  203. static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
  204. struct kvm_assigned_pci_dev *assigned_dev)
  205. {
  206. int r = 0;
  207. struct kvm_assigned_dev_kernel *match;
  208. struct pci_dev *dev;
  209. mutex_lock(&kvm->lock);
  210. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  211. assigned_dev->assigned_dev_id);
  212. if (match) {
  213. /* device already assigned */
  214. r = -EINVAL;
  215. goto out;
  216. }
  217. match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
  218. if (match == NULL) {
  219. printk(KERN_INFO "%s: Couldn't allocate memory\n",
  220. __func__);
  221. r = -ENOMEM;
  222. goto out;
  223. }
  224. dev = pci_get_bus_and_slot(assigned_dev->busnr,
  225. assigned_dev->devfn);
  226. if (!dev) {
  227. printk(KERN_INFO "%s: host device not found\n", __func__);
  228. r = -EINVAL;
  229. goto out_free;
  230. }
  231. if (pci_enable_device(dev)) {
  232. printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
  233. r = -EBUSY;
  234. goto out_put;
  235. }
  236. r = pci_request_regions(dev, "kvm_assigned_device");
  237. if (r) {
  238. printk(KERN_INFO "%s: Could not get access to device regions\n",
  239. __func__);
  240. goto out_disable;
  241. }
  242. match->assigned_dev_id = assigned_dev->assigned_dev_id;
  243. match->host_busnr = assigned_dev->busnr;
  244. match->host_devfn = assigned_dev->devfn;
  245. match->dev = dev;
  246. match->kvm = kvm;
  247. list_add(&match->list, &kvm->arch.assigned_dev_head);
  248. if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
  249. r = kvm_iommu_map_guest(kvm, match);
  250. if (r)
  251. goto out_list_del;
  252. }
  253. out:
  254. mutex_unlock(&kvm->lock);
  255. return r;
  256. out_list_del:
  257. list_del(&match->list);
  258. pci_release_regions(dev);
  259. out_disable:
  260. pci_disable_device(dev);
  261. out_put:
  262. pci_dev_put(dev);
  263. out_free:
  264. kfree(match);
  265. mutex_unlock(&kvm->lock);
  266. return r;
  267. }
  268. #endif
  269. static inline int valid_vcpu(int n)
  270. {
  271. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  272. }
  273. inline int kvm_is_mmio_pfn(pfn_t pfn)
  274. {
  275. if (pfn_valid(pfn))
  276. return PageReserved(pfn_to_page(pfn));
  277. return true;
  278. }
  279. /*
  280. * Switches to specified vcpu, until a matching vcpu_put()
  281. */
  282. void vcpu_load(struct kvm_vcpu *vcpu)
  283. {
  284. int cpu;
  285. mutex_lock(&vcpu->mutex);
  286. cpu = get_cpu();
  287. preempt_notifier_register(&vcpu->preempt_notifier);
  288. kvm_arch_vcpu_load(vcpu, cpu);
  289. put_cpu();
  290. }
  291. void vcpu_put(struct kvm_vcpu *vcpu)
  292. {
  293. preempt_disable();
  294. kvm_arch_vcpu_put(vcpu);
  295. preempt_notifier_unregister(&vcpu->preempt_notifier);
  296. preempt_enable();
  297. mutex_unlock(&vcpu->mutex);
  298. }
  299. static void ack_flush(void *_completed)
  300. {
  301. }
  302. void kvm_flush_remote_tlbs(struct kvm *kvm)
  303. {
  304. int i, cpu, me;
  305. cpumask_t cpus;
  306. struct kvm_vcpu *vcpu;
  307. me = get_cpu();
  308. cpus_clear(cpus);
  309. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  310. vcpu = kvm->vcpus[i];
  311. if (!vcpu)
  312. continue;
  313. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  314. continue;
  315. cpu = vcpu->cpu;
  316. if (cpu != -1 && cpu != me)
  317. cpu_set(cpu, cpus);
  318. }
  319. if (cpus_empty(cpus))
  320. goto out;
  321. ++kvm->stat.remote_tlb_flush;
  322. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  323. out:
  324. put_cpu();
  325. }
  326. void kvm_reload_remote_mmus(struct kvm *kvm)
  327. {
  328. int i, cpu, me;
  329. cpumask_t cpus;
  330. struct kvm_vcpu *vcpu;
  331. me = get_cpu();
  332. cpus_clear(cpus);
  333. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  334. vcpu = kvm->vcpus[i];
  335. if (!vcpu)
  336. continue;
  337. if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  338. continue;
  339. cpu = vcpu->cpu;
  340. if (cpu != -1 && cpu != me)
  341. cpu_set(cpu, cpus);
  342. }
  343. if (cpus_empty(cpus))
  344. goto out;
  345. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  346. out:
  347. put_cpu();
  348. }
  349. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  350. {
  351. struct page *page;
  352. int r;
  353. mutex_init(&vcpu->mutex);
  354. vcpu->cpu = -1;
  355. vcpu->kvm = kvm;
  356. vcpu->vcpu_id = id;
  357. init_waitqueue_head(&vcpu->wq);
  358. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  359. if (!page) {
  360. r = -ENOMEM;
  361. goto fail;
  362. }
  363. vcpu->run = page_address(page);
  364. r = kvm_arch_vcpu_init(vcpu);
  365. if (r < 0)
  366. goto fail_free_run;
  367. return 0;
  368. fail_free_run:
  369. free_page((unsigned long)vcpu->run);
  370. fail:
  371. return r;
  372. }
  373. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  374. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  375. {
  376. kvm_arch_vcpu_uninit(vcpu);
  377. free_page((unsigned long)vcpu->run);
  378. }
  379. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  380. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  381. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  382. {
  383. return container_of(mn, struct kvm, mmu_notifier);
  384. }
  385. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  386. struct mm_struct *mm,
  387. unsigned long address)
  388. {
  389. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  390. int need_tlb_flush;
  391. /*
  392. * When ->invalidate_page runs, the linux pte has been zapped
  393. * already but the page is still allocated until
  394. * ->invalidate_page returns. So if we increase the sequence
  395. * here the kvm page fault will notice if the spte can't be
  396. * established because the page is going to be freed. If
  397. * instead the kvm page fault establishes the spte before
  398. * ->invalidate_page runs, kvm_unmap_hva will release it
  399. * before returning.
  400. *
  401. * The sequence increase only need to be seen at spin_unlock
  402. * time, and not at spin_lock time.
  403. *
  404. * Increasing the sequence after the spin_unlock would be
  405. * unsafe because the kvm page fault could then establish the
  406. * pte after kvm_unmap_hva returned, without noticing the page
  407. * is going to be freed.
  408. */
  409. spin_lock(&kvm->mmu_lock);
  410. kvm->mmu_notifier_seq++;
  411. need_tlb_flush = kvm_unmap_hva(kvm, address);
  412. spin_unlock(&kvm->mmu_lock);
  413. /* we've to flush the tlb before the pages can be freed */
  414. if (need_tlb_flush)
  415. kvm_flush_remote_tlbs(kvm);
  416. }
  417. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  418. struct mm_struct *mm,
  419. unsigned long start,
  420. unsigned long end)
  421. {
  422. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  423. int need_tlb_flush = 0;
  424. spin_lock(&kvm->mmu_lock);
  425. /*
  426. * The count increase must become visible at unlock time as no
  427. * spte can be established without taking the mmu_lock and
  428. * count is also read inside the mmu_lock critical section.
  429. */
  430. kvm->mmu_notifier_count++;
  431. for (; start < end; start += PAGE_SIZE)
  432. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  433. spin_unlock(&kvm->mmu_lock);
  434. /* we've to flush the tlb before the pages can be freed */
  435. if (need_tlb_flush)
  436. kvm_flush_remote_tlbs(kvm);
  437. }
  438. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  439. struct mm_struct *mm,
  440. unsigned long start,
  441. unsigned long end)
  442. {
  443. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  444. spin_lock(&kvm->mmu_lock);
  445. /*
  446. * This sequence increase will notify the kvm page fault that
  447. * the page that is going to be mapped in the spte could have
  448. * been freed.
  449. */
  450. kvm->mmu_notifier_seq++;
  451. /*
  452. * The above sequence increase must be visible before the
  453. * below count decrease but both values are read by the kvm
  454. * page fault under mmu_lock spinlock so we don't need to add
  455. * a smb_wmb() here in between the two.
  456. */
  457. kvm->mmu_notifier_count--;
  458. spin_unlock(&kvm->mmu_lock);
  459. BUG_ON(kvm->mmu_notifier_count < 0);
  460. }
  461. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  462. struct mm_struct *mm,
  463. unsigned long address)
  464. {
  465. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  466. int young;
  467. spin_lock(&kvm->mmu_lock);
  468. young = kvm_age_hva(kvm, address);
  469. spin_unlock(&kvm->mmu_lock);
  470. if (young)
  471. kvm_flush_remote_tlbs(kvm);
  472. return young;
  473. }
  474. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  475. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  476. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  477. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  478. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  479. };
  480. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  481. static struct kvm *kvm_create_vm(void)
  482. {
  483. struct kvm *kvm = kvm_arch_create_vm();
  484. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  485. struct page *page;
  486. #endif
  487. if (IS_ERR(kvm))
  488. goto out;
  489. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  490. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  491. if (!page) {
  492. kfree(kvm);
  493. return ERR_PTR(-ENOMEM);
  494. }
  495. kvm->coalesced_mmio_ring =
  496. (struct kvm_coalesced_mmio_ring *)page_address(page);
  497. #endif
  498. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  499. {
  500. int err;
  501. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  502. err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  503. if (err) {
  504. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  505. put_page(page);
  506. #endif
  507. kfree(kvm);
  508. return ERR_PTR(err);
  509. }
  510. }
  511. #endif
  512. kvm->mm = current->mm;
  513. atomic_inc(&kvm->mm->mm_count);
  514. spin_lock_init(&kvm->mmu_lock);
  515. kvm_io_bus_init(&kvm->pio_bus);
  516. mutex_init(&kvm->lock);
  517. kvm_io_bus_init(&kvm->mmio_bus);
  518. init_rwsem(&kvm->slots_lock);
  519. atomic_set(&kvm->users_count, 1);
  520. spin_lock(&kvm_lock);
  521. list_add(&kvm->vm_list, &vm_list);
  522. spin_unlock(&kvm_lock);
  523. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  524. kvm_coalesced_mmio_init(kvm);
  525. #endif
  526. out:
  527. return kvm;
  528. }
  529. /*
  530. * Free any memory in @free but not in @dont.
  531. */
  532. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  533. struct kvm_memory_slot *dont)
  534. {
  535. if (!dont || free->rmap != dont->rmap)
  536. vfree(free->rmap);
  537. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  538. vfree(free->dirty_bitmap);
  539. if (!dont || free->lpage_info != dont->lpage_info)
  540. vfree(free->lpage_info);
  541. free->npages = 0;
  542. free->dirty_bitmap = NULL;
  543. free->rmap = NULL;
  544. free->lpage_info = NULL;
  545. }
  546. void kvm_free_physmem(struct kvm *kvm)
  547. {
  548. int i;
  549. for (i = 0; i < kvm->nmemslots; ++i)
  550. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  551. }
  552. static void kvm_destroy_vm(struct kvm *kvm)
  553. {
  554. struct mm_struct *mm = kvm->mm;
  555. spin_lock(&kvm_lock);
  556. list_del(&kvm->vm_list);
  557. spin_unlock(&kvm_lock);
  558. kvm_io_bus_destroy(&kvm->pio_bus);
  559. kvm_io_bus_destroy(&kvm->mmio_bus);
  560. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  561. if (kvm->coalesced_mmio_ring != NULL)
  562. free_page((unsigned long)kvm->coalesced_mmio_ring);
  563. #endif
  564. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  565. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  566. #endif
  567. kvm_arch_destroy_vm(kvm);
  568. mmdrop(mm);
  569. }
  570. void kvm_get_kvm(struct kvm *kvm)
  571. {
  572. atomic_inc(&kvm->users_count);
  573. }
  574. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  575. void kvm_put_kvm(struct kvm *kvm)
  576. {
  577. if (atomic_dec_and_test(&kvm->users_count))
  578. kvm_destroy_vm(kvm);
  579. }
  580. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  581. static int kvm_vm_release(struct inode *inode, struct file *filp)
  582. {
  583. struct kvm *kvm = filp->private_data;
  584. kvm_put_kvm(kvm);
  585. return 0;
  586. }
  587. /*
  588. * Allocate some memory and give it an address in the guest physical address
  589. * space.
  590. *
  591. * Discontiguous memory is allowed, mostly for framebuffers.
  592. *
  593. * Must be called holding mmap_sem for write.
  594. */
  595. int __kvm_set_memory_region(struct kvm *kvm,
  596. struct kvm_userspace_memory_region *mem,
  597. int user_alloc)
  598. {
  599. int r;
  600. gfn_t base_gfn;
  601. unsigned long npages;
  602. unsigned long i;
  603. struct kvm_memory_slot *memslot;
  604. struct kvm_memory_slot old, new;
  605. r = -EINVAL;
  606. /* General sanity checks */
  607. if (mem->memory_size & (PAGE_SIZE - 1))
  608. goto out;
  609. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  610. goto out;
  611. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  612. goto out;
  613. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  614. goto out;
  615. memslot = &kvm->memslots[mem->slot];
  616. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  617. npages = mem->memory_size >> PAGE_SHIFT;
  618. if (!npages)
  619. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  620. new = old = *memslot;
  621. new.base_gfn = base_gfn;
  622. new.npages = npages;
  623. new.flags = mem->flags;
  624. /* Disallow changing a memory slot's size. */
  625. r = -EINVAL;
  626. if (npages && old.npages && npages != old.npages)
  627. goto out_free;
  628. /* Check for overlaps */
  629. r = -EEXIST;
  630. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  631. struct kvm_memory_slot *s = &kvm->memslots[i];
  632. if (s == memslot)
  633. continue;
  634. if (!((base_gfn + npages <= s->base_gfn) ||
  635. (base_gfn >= s->base_gfn + s->npages)))
  636. goto out_free;
  637. }
  638. /* Free page dirty bitmap if unneeded */
  639. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  640. new.dirty_bitmap = NULL;
  641. r = -ENOMEM;
  642. /* Allocate if a slot is being created */
  643. #ifndef CONFIG_S390
  644. if (npages && !new.rmap) {
  645. new.rmap = vmalloc(npages * sizeof(struct page *));
  646. if (!new.rmap)
  647. goto out_free;
  648. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  649. new.user_alloc = user_alloc;
  650. /*
  651. * hva_to_rmmap() serialzies with the mmu_lock and to be
  652. * safe it has to ignore memslots with !user_alloc &&
  653. * !userspace_addr.
  654. */
  655. if (user_alloc)
  656. new.userspace_addr = mem->userspace_addr;
  657. else
  658. new.userspace_addr = 0;
  659. }
  660. if (npages && !new.lpage_info) {
  661. int largepages = npages / KVM_PAGES_PER_HPAGE;
  662. if (npages % KVM_PAGES_PER_HPAGE)
  663. largepages++;
  664. if (base_gfn % KVM_PAGES_PER_HPAGE)
  665. largepages++;
  666. new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
  667. if (!new.lpage_info)
  668. goto out_free;
  669. memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
  670. if (base_gfn % KVM_PAGES_PER_HPAGE)
  671. new.lpage_info[0].write_count = 1;
  672. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
  673. new.lpage_info[largepages-1].write_count = 1;
  674. }
  675. /* Allocate page dirty bitmap if needed */
  676. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  677. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  678. new.dirty_bitmap = vmalloc(dirty_bytes);
  679. if (!new.dirty_bitmap)
  680. goto out_free;
  681. memset(new.dirty_bitmap, 0, dirty_bytes);
  682. }
  683. #endif /* not defined CONFIG_S390 */
  684. if (!npages)
  685. kvm_arch_flush_shadow(kvm);
  686. spin_lock(&kvm->mmu_lock);
  687. if (mem->slot >= kvm->nmemslots)
  688. kvm->nmemslots = mem->slot + 1;
  689. *memslot = new;
  690. spin_unlock(&kvm->mmu_lock);
  691. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  692. if (r) {
  693. spin_lock(&kvm->mmu_lock);
  694. *memslot = old;
  695. spin_unlock(&kvm->mmu_lock);
  696. goto out_free;
  697. }
  698. kvm_free_physmem_slot(&old, &new);
  699. #ifdef CONFIG_DMAR
  700. /* map the pages in iommu page table */
  701. r = kvm_iommu_map_pages(kvm, base_gfn, npages);
  702. if (r)
  703. goto out;
  704. #endif
  705. return 0;
  706. out_free:
  707. kvm_free_physmem_slot(&new, &old);
  708. out:
  709. return r;
  710. }
  711. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  712. int kvm_set_memory_region(struct kvm *kvm,
  713. struct kvm_userspace_memory_region *mem,
  714. int user_alloc)
  715. {
  716. int r;
  717. down_write(&kvm->slots_lock);
  718. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  719. up_write(&kvm->slots_lock);
  720. return r;
  721. }
  722. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  723. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  724. struct
  725. kvm_userspace_memory_region *mem,
  726. int user_alloc)
  727. {
  728. if (mem->slot >= KVM_MEMORY_SLOTS)
  729. return -EINVAL;
  730. return kvm_set_memory_region(kvm, mem, user_alloc);
  731. }
  732. int kvm_get_dirty_log(struct kvm *kvm,
  733. struct kvm_dirty_log *log, int *is_dirty)
  734. {
  735. struct kvm_memory_slot *memslot;
  736. int r, i;
  737. int n;
  738. unsigned long any = 0;
  739. r = -EINVAL;
  740. if (log->slot >= KVM_MEMORY_SLOTS)
  741. goto out;
  742. memslot = &kvm->memslots[log->slot];
  743. r = -ENOENT;
  744. if (!memslot->dirty_bitmap)
  745. goto out;
  746. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  747. for (i = 0; !any && i < n/sizeof(long); ++i)
  748. any = memslot->dirty_bitmap[i];
  749. r = -EFAULT;
  750. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  751. goto out;
  752. if (any)
  753. *is_dirty = 1;
  754. r = 0;
  755. out:
  756. return r;
  757. }
  758. int is_error_page(struct page *page)
  759. {
  760. return page == bad_page;
  761. }
  762. EXPORT_SYMBOL_GPL(is_error_page);
  763. int is_error_pfn(pfn_t pfn)
  764. {
  765. return pfn == bad_pfn;
  766. }
  767. EXPORT_SYMBOL_GPL(is_error_pfn);
  768. static inline unsigned long bad_hva(void)
  769. {
  770. return PAGE_OFFSET;
  771. }
  772. int kvm_is_error_hva(unsigned long addr)
  773. {
  774. return addr == bad_hva();
  775. }
  776. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  777. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  778. {
  779. int i;
  780. for (i = 0; i < kvm->nmemslots; ++i) {
  781. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  782. if (gfn >= memslot->base_gfn
  783. && gfn < memslot->base_gfn + memslot->npages)
  784. return memslot;
  785. }
  786. return NULL;
  787. }
  788. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  789. {
  790. gfn = unalias_gfn(kvm, gfn);
  791. return __gfn_to_memslot(kvm, gfn);
  792. }
  793. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  794. {
  795. int i;
  796. gfn = unalias_gfn(kvm, gfn);
  797. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  798. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  799. if (gfn >= memslot->base_gfn
  800. && gfn < memslot->base_gfn + memslot->npages)
  801. return 1;
  802. }
  803. return 0;
  804. }
  805. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  806. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  807. {
  808. struct kvm_memory_slot *slot;
  809. gfn = unalias_gfn(kvm, gfn);
  810. slot = __gfn_to_memslot(kvm, gfn);
  811. if (!slot)
  812. return bad_hva();
  813. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  814. }
  815. EXPORT_SYMBOL_GPL(gfn_to_hva);
  816. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  817. {
  818. struct page *page[1];
  819. unsigned long addr;
  820. int npages;
  821. pfn_t pfn;
  822. might_sleep();
  823. addr = gfn_to_hva(kvm, gfn);
  824. if (kvm_is_error_hva(addr)) {
  825. get_page(bad_page);
  826. return page_to_pfn(bad_page);
  827. }
  828. npages = get_user_pages_fast(addr, 1, 1, page);
  829. if (unlikely(npages != 1)) {
  830. struct vm_area_struct *vma;
  831. down_read(&current->mm->mmap_sem);
  832. vma = find_vma(current->mm, addr);
  833. if (vma == NULL || addr < vma->vm_start ||
  834. !(vma->vm_flags & VM_PFNMAP)) {
  835. up_read(&current->mm->mmap_sem);
  836. get_page(bad_page);
  837. return page_to_pfn(bad_page);
  838. }
  839. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  840. up_read(&current->mm->mmap_sem);
  841. BUG_ON(!kvm_is_mmio_pfn(pfn));
  842. } else
  843. pfn = page_to_pfn(page[0]);
  844. return pfn;
  845. }
  846. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  847. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  848. {
  849. pfn_t pfn;
  850. pfn = gfn_to_pfn(kvm, gfn);
  851. if (!kvm_is_mmio_pfn(pfn))
  852. return pfn_to_page(pfn);
  853. WARN_ON(kvm_is_mmio_pfn(pfn));
  854. get_page(bad_page);
  855. return bad_page;
  856. }
  857. EXPORT_SYMBOL_GPL(gfn_to_page);
  858. void kvm_release_page_clean(struct page *page)
  859. {
  860. kvm_release_pfn_clean(page_to_pfn(page));
  861. }
  862. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  863. void kvm_release_pfn_clean(pfn_t pfn)
  864. {
  865. if (!kvm_is_mmio_pfn(pfn))
  866. put_page(pfn_to_page(pfn));
  867. }
  868. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  869. void kvm_release_page_dirty(struct page *page)
  870. {
  871. kvm_release_pfn_dirty(page_to_pfn(page));
  872. }
  873. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  874. void kvm_release_pfn_dirty(pfn_t pfn)
  875. {
  876. kvm_set_pfn_dirty(pfn);
  877. kvm_release_pfn_clean(pfn);
  878. }
  879. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  880. void kvm_set_page_dirty(struct page *page)
  881. {
  882. kvm_set_pfn_dirty(page_to_pfn(page));
  883. }
  884. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  885. void kvm_set_pfn_dirty(pfn_t pfn)
  886. {
  887. if (!kvm_is_mmio_pfn(pfn)) {
  888. struct page *page = pfn_to_page(pfn);
  889. if (!PageReserved(page))
  890. SetPageDirty(page);
  891. }
  892. }
  893. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  894. void kvm_set_pfn_accessed(pfn_t pfn)
  895. {
  896. if (!kvm_is_mmio_pfn(pfn))
  897. mark_page_accessed(pfn_to_page(pfn));
  898. }
  899. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  900. void kvm_get_pfn(pfn_t pfn)
  901. {
  902. if (!kvm_is_mmio_pfn(pfn))
  903. get_page(pfn_to_page(pfn));
  904. }
  905. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  906. static int next_segment(unsigned long len, int offset)
  907. {
  908. if (len > PAGE_SIZE - offset)
  909. return PAGE_SIZE - offset;
  910. else
  911. return len;
  912. }
  913. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  914. int len)
  915. {
  916. int r;
  917. unsigned long addr;
  918. addr = gfn_to_hva(kvm, gfn);
  919. if (kvm_is_error_hva(addr))
  920. return -EFAULT;
  921. r = copy_from_user(data, (void __user *)addr + offset, len);
  922. if (r)
  923. return -EFAULT;
  924. return 0;
  925. }
  926. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  927. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  928. {
  929. gfn_t gfn = gpa >> PAGE_SHIFT;
  930. int seg;
  931. int offset = offset_in_page(gpa);
  932. int ret;
  933. while ((seg = next_segment(len, offset)) != 0) {
  934. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  935. if (ret < 0)
  936. return ret;
  937. offset = 0;
  938. len -= seg;
  939. data += seg;
  940. ++gfn;
  941. }
  942. return 0;
  943. }
  944. EXPORT_SYMBOL_GPL(kvm_read_guest);
  945. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  946. unsigned long len)
  947. {
  948. int r;
  949. unsigned long addr;
  950. gfn_t gfn = gpa >> PAGE_SHIFT;
  951. int offset = offset_in_page(gpa);
  952. addr = gfn_to_hva(kvm, gfn);
  953. if (kvm_is_error_hva(addr))
  954. return -EFAULT;
  955. pagefault_disable();
  956. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  957. pagefault_enable();
  958. if (r)
  959. return -EFAULT;
  960. return 0;
  961. }
  962. EXPORT_SYMBOL(kvm_read_guest_atomic);
  963. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  964. int offset, int len)
  965. {
  966. int r;
  967. unsigned long addr;
  968. addr = gfn_to_hva(kvm, gfn);
  969. if (kvm_is_error_hva(addr))
  970. return -EFAULT;
  971. r = copy_to_user((void __user *)addr + offset, data, len);
  972. if (r)
  973. return -EFAULT;
  974. mark_page_dirty(kvm, gfn);
  975. return 0;
  976. }
  977. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  978. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  979. unsigned long len)
  980. {
  981. gfn_t gfn = gpa >> PAGE_SHIFT;
  982. int seg;
  983. int offset = offset_in_page(gpa);
  984. int ret;
  985. while ((seg = next_segment(len, offset)) != 0) {
  986. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  987. if (ret < 0)
  988. return ret;
  989. offset = 0;
  990. len -= seg;
  991. data += seg;
  992. ++gfn;
  993. }
  994. return 0;
  995. }
  996. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  997. {
  998. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  999. }
  1000. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1001. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1002. {
  1003. gfn_t gfn = gpa >> PAGE_SHIFT;
  1004. int seg;
  1005. int offset = offset_in_page(gpa);
  1006. int ret;
  1007. while ((seg = next_segment(len, offset)) != 0) {
  1008. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1009. if (ret < 0)
  1010. return ret;
  1011. offset = 0;
  1012. len -= seg;
  1013. ++gfn;
  1014. }
  1015. return 0;
  1016. }
  1017. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1018. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1019. {
  1020. struct kvm_memory_slot *memslot;
  1021. gfn = unalias_gfn(kvm, gfn);
  1022. memslot = __gfn_to_memslot(kvm, gfn);
  1023. if (memslot && memslot->dirty_bitmap) {
  1024. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1025. /* avoid RMW */
  1026. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  1027. set_bit(rel_gfn, memslot->dirty_bitmap);
  1028. }
  1029. }
  1030. /*
  1031. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1032. */
  1033. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1034. {
  1035. DEFINE_WAIT(wait);
  1036. for (;;) {
  1037. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1038. if (kvm_cpu_has_interrupt(vcpu) ||
  1039. kvm_cpu_has_pending_timer(vcpu) ||
  1040. kvm_arch_vcpu_runnable(vcpu)) {
  1041. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  1042. break;
  1043. }
  1044. if (signal_pending(current))
  1045. break;
  1046. vcpu_put(vcpu);
  1047. schedule();
  1048. vcpu_load(vcpu);
  1049. }
  1050. finish_wait(&vcpu->wq, &wait);
  1051. }
  1052. void kvm_resched(struct kvm_vcpu *vcpu)
  1053. {
  1054. if (!need_resched())
  1055. return;
  1056. cond_resched();
  1057. }
  1058. EXPORT_SYMBOL_GPL(kvm_resched);
  1059. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1060. {
  1061. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1062. struct page *page;
  1063. if (vmf->pgoff == 0)
  1064. page = virt_to_page(vcpu->run);
  1065. #ifdef CONFIG_X86
  1066. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1067. page = virt_to_page(vcpu->arch.pio_data);
  1068. #endif
  1069. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1070. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1071. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1072. #endif
  1073. else
  1074. return VM_FAULT_SIGBUS;
  1075. get_page(page);
  1076. vmf->page = page;
  1077. return 0;
  1078. }
  1079. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1080. .fault = kvm_vcpu_fault,
  1081. };
  1082. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1083. {
  1084. vma->vm_ops = &kvm_vcpu_vm_ops;
  1085. return 0;
  1086. }
  1087. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1088. {
  1089. struct kvm_vcpu *vcpu = filp->private_data;
  1090. kvm_put_kvm(vcpu->kvm);
  1091. return 0;
  1092. }
  1093. static const struct file_operations kvm_vcpu_fops = {
  1094. .release = kvm_vcpu_release,
  1095. .unlocked_ioctl = kvm_vcpu_ioctl,
  1096. .compat_ioctl = kvm_vcpu_ioctl,
  1097. .mmap = kvm_vcpu_mmap,
  1098. };
  1099. /*
  1100. * Allocates an inode for the vcpu.
  1101. */
  1102. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1103. {
  1104. int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
  1105. if (fd < 0)
  1106. kvm_put_kvm(vcpu->kvm);
  1107. return fd;
  1108. }
  1109. /*
  1110. * Creates some virtual cpus. Good luck creating more than one.
  1111. */
  1112. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1113. {
  1114. int r;
  1115. struct kvm_vcpu *vcpu;
  1116. if (!valid_vcpu(n))
  1117. return -EINVAL;
  1118. vcpu = kvm_arch_vcpu_create(kvm, n);
  1119. if (IS_ERR(vcpu))
  1120. return PTR_ERR(vcpu);
  1121. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1122. r = kvm_arch_vcpu_setup(vcpu);
  1123. if (r)
  1124. return r;
  1125. mutex_lock(&kvm->lock);
  1126. if (kvm->vcpus[n]) {
  1127. r = -EEXIST;
  1128. goto vcpu_destroy;
  1129. }
  1130. kvm->vcpus[n] = vcpu;
  1131. mutex_unlock(&kvm->lock);
  1132. /* Now it's all set up, let userspace reach it */
  1133. kvm_get_kvm(kvm);
  1134. r = create_vcpu_fd(vcpu);
  1135. if (r < 0)
  1136. goto unlink;
  1137. return r;
  1138. unlink:
  1139. mutex_lock(&kvm->lock);
  1140. kvm->vcpus[n] = NULL;
  1141. vcpu_destroy:
  1142. mutex_unlock(&kvm->lock);
  1143. kvm_arch_vcpu_destroy(vcpu);
  1144. return r;
  1145. }
  1146. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1147. {
  1148. if (sigset) {
  1149. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1150. vcpu->sigset_active = 1;
  1151. vcpu->sigset = *sigset;
  1152. } else
  1153. vcpu->sigset_active = 0;
  1154. return 0;
  1155. }
  1156. static long kvm_vcpu_ioctl(struct file *filp,
  1157. unsigned int ioctl, unsigned long arg)
  1158. {
  1159. struct kvm_vcpu *vcpu = filp->private_data;
  1160. void __user *argp = (void __user *)arg;
  1161. int r;
  1162. struct kvm_fpu *fpu = NULL;
  1163. struct kvm_sregs *kvm_sregs = NULL;
  1164. if (vcpu->kvm->mm != current->mm)
  1165. return -EIO;
  1166. switch (ioctl) {
  1167. case KVM_RUN:
  1168. r = -EINVAL;
  1169. if (arg)
  1170. goto out;
  1171. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1172. break;
  1173. case KVM_GET_REGS: {
  1174. struct kvm_regs *kvm_regs;
  1175. r = -ENOMEM;
  1176. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1177. if (!kvm_regs)
  1178. goto out;
  1179. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1180. if (r)
  1181. goto out_free1;
  1182. r = -EFAULT;
  1183. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1184. goto out_free1;
  1185. r = 0;
  1186. out_free1:
  1187. kfree(kvm_regs);
  1188. break;
  1189. }
  1190. case KVM_SET_REGS: {
  1191. struct kvm_regs *kvm_regs;
  1192. r = -ENOMEM;
  1193. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1194. if (!kvm_regs)
  1195. goto out;
  1196. r = -EFAULT;
  1197. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1198. goto out_free2;
  1199. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1200. if (r)
  1201. goto out_free2;
  1202. r = 0;
  1203. out_free2:
  1204. kfree(kvm_regs);
  1205. break;
  1206. }
  1207. case KVM_GET_SREGS: {
  1208. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1209. r = -ENOMEM;
  1210. if (!kvm_sregs)
  1211. goto out;
  1212. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1213. if (r)
  1214. goto out;
  1215. r = -EFAULT;
  1216. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1217. goto out;
  1218. r = 0;
  1219. break;
  1220. }
  1221. case KVM_SET_SREGS: {
  1222. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1223. r = -ENOMEM;
  1224. if (!kvm_sregs)
  1225. goto out;
  1226. r = -EFAULT;
  1227. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1228. goto out;
  1229. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1230. if (r)
  1231. goto out;
  1232. r = 0;
  1233. break;
  1234. }
  1235. case KVM_GET_MP_STATE: {
  1236. struct kvm_mp_state mp_state;
  1237. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1238. if (r)
  1239. goto out;
  1240. r = -EFAULT;
  1241. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1242. goto out;
  1243. r = 0;
  1244. break;
  1245. }
  1246. case KVM_SET_MP_STATE: {
  1247. struct kvm_mp_state mp_state;
  1248. r = -EFAULT;
  1249. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1250. goto out;
  1251. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1252. if (r)
  1253. goto out;
  1254. r = 0;
  1255. break;
  1256. }
  1257. case KVM_TRANSLATE: {
  1258. struct kvm_translation tr;
  1259. r = -EFAULT;
  1260. if (copy_from_user(&tr, argp, sizeof tr))
  1261. goto out;
  1262. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1263. if (r)
  1264. goto out;
  1265. r = -EFAULT;
  1266. if (copy_to_user(argp, &tr, sizeof tr))
  1267. goto out;
  1268. r = 0;
  1269. break;
  1270. }
  1271. case KVM_DEBUG_GUEST: {
  1272. struct kvm_debug_guest dbg;
  1273. r = -EFAULT;
  1274. if (copy_from_user(&dbg, argp, sizeof dbg))
  1275. goto out;
  1276. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  1277. if (r)
  1278. goto out;
  1279. r = 0;
  1280. break;
  1281. }
  1282. case KVM_SET_SIGNAL_MASK: {
  1283. struct kvm_signal_mask __user *sigmask_arg = argp;
  1284. struct kvm_signal_mask kvm_sigmask;
  1285. sigset_t sigset, *p;
  1286. p = NULL;
  1287. if (argp) {
  1288. r = -EFAULT;
  1289. if (copy_from_user(&kvm_sigmask, argp,
  1290. sizeof kvm_sigmask))
  1291. goto out;
  1292. r = -EINVAL;
  1293. if (kvm_sigmask.len != sizeof sigset)
  1294. goto out;
  1295. r = -EFAULT;
  1296. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1297. sizeof sigset))
  1298. goto out;
  1299. p = &sigset;
  1300. }
  1301. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1302. break;
  1303. }
  1304. case KVM_GET_FPU: {
  1305. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1306. r = -ENOMEM;
  1307. if (!fpu)
  1308. goto out;
  1309. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1310. if (r)
  1311. goto out;
  1312. r = -EFAULT;
  1313. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1314. goto out;
  1315. r = 0;
  1316. break;
  1317. }
  1318. case KVM_SET_FPU: {
  1319. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1320. r = -ENOMEM;
  1321. if (!fpu)
  1322. goto out;
  1323. r = -EFAULT;
  1324. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1325. goto out;
  1326. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1327. if (r)
  1328. goto out;
  1329. r = 0;
  1330. break;
  1331. }
  1332. default:
  1333. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1334. }
  1335. out:
  1336. kfree(fpu);
  1337. kfree(kvm_sregs);
  1338. return r;
  1339. }
  1340. static long kvm_vm_ioctl(struct file *filp,
  1341. unsigned int ioctl, unsigned long arg)
  1342. {
  1343. struct kvm *kvm = filp->private_data;
  1344. void __user *argp = (void __user *)arg;
  1345. int r;
  1346. if (kvm->mm != current->mm)
  1347. return -EIO;
  1348. switch (ioctl) {
  1349. case KVM_CREATE_VCPU:
  1350. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1351. if (r < 0)
  1352. goto out;
  1353. break;
  1354. case KVM_SET_USER_MEMORY_REGION: {
  1355. struct kvm_userspace_memory_region kvm_userspace_mem;
  1356. r = -EFAULT;
  1357. if (copy_from_user(&kvm_userspace_mem, argp,
  1358. sizeof kvm_userspace_mem))
  1359. goto out;
  1360. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1361. if (r)
  1362. goto out;
  1363. break;
  1364. }
  1365. case KVM_GET_DIRTY_LOG: {
  1366. struct kvm_dirty_log log;
  1367. r = -EFAULT;
  1368. if (copy_from_user(&log, argp, sizeof log))
  1369. goto out;
  1370. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1371. if (r)
  1372. goto out;
  1373. break;
  1374. }
  1375. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1376. case KVM_REGISTER_COALESCED_MMIO: {
  1377. struct kvm_coalesced_mmio_zone zone;
  1378. r = -EFAULT;
  1379. if (copy_from_user(&zone, argp, sizeof zone))
  1380. goto out;
  1381. r = -ENXIO;
  1382. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1383. if (r)
  1384. goto out;
  1385. r = 0;
  1386. break;
  1387. }
  1388. case KVM_UNREGISTER_COALESCED_MMIO: {
  1389. struct kvm_coalesced_mmio_zone zone;
  1390. r = -EFAULT;
  1391. if (copy_from_user(&zone, argp, sizeof zone))
  1392. goto out;
  1393. r = -ENXIO;
  1394. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1395. if (r)
  1396. goto out;
  1397. r = 0;
  1398. break;
  1399. }
  1400. #endif
  1401. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1402. case KVM_ASSIGN_PCI_DEVICE: {
  1403. struct kvm_assigned_pci_dev assigned_dev;
  1404. r = -EFAULT;
  1405. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1406. goto out;
  1407. r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
  1408. if (r)
  1409. goto out;
  1410. break;
  1411. }
  1412. case KVM_ASSIGN_IRQ: {
  1413. struct kvm_assigned_irq assigned_irq;
  1414. r = -EFAULT;
  1415. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1416. goto out;
  1417. r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
  1418. if (r)
  1419. goto out;
  1420. break;
  1421. }
  1422. #endif
  1423. default:
  1424. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1425. }
  1426. out:
  1427. return r;
  1428. }
  1429. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1430. {
  1431. struct page *page[1];
  1432. unsigned long addr;
  1433. int npages;
  1434. gfn_t gfn = vmf->pgoff;
  1435. struct kvm *kvm = vma->vm_file->private_data;
  1436. addr = gfn_to_hva(kvm, gfn);
  1437. if (kvm_is_error_hva(addr))
  1438. return VM_FAULT_SIGBUS;
  1439. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1440. NULL);
  1441. if (unlikely(npages != 1))
  1442. return VM_FAULT_SIGBUS;
  1443. vmf->page = page[0];
  1444. return 0;
  1445. }
  1446. static struct vm_operations_struct kvm_vm_vm_ops = {
  1447. .fault = kvm_vm_fault,
  1448. };
  1449. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1450. {
  1451. vma->vm_ops = &kvm_vm_vm_ops;
  1452. return 0;
  1453. }
  1454. static const struct file_operations kvm_vm_fops = {
  1455. .release = kvm_vm_release,
  1456. .unlocked_ioctl = kvm_vm_ioctl,
  1457. .compat_ioctl = kvm_vm_ioctl,
  1458. .mmap = kvm_vm_mmap,
  1459. };
  1460. static int kvm_dev_ioctl_create_vm(void)
  1461. {
  1462. int fd;
  1463. struct kvm *kvm;
  1464. kvm = kvm_create_vm();
  1465. if (IS_ERR(kvm))
  1466. return PTR_ERR(kvm);
  1467. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
  1468. if (fd < 0)
  1469. kvm_put_kvm(kvm);
  1470. return fd;
  1471. }
  1472. static long kvm_dev_ioctl(struct file *filp,
  1473. unsigned int ioctl, unsigned long arg)
  1474. {
  1475. long r = -EINVAL;
  1476. switch (ioctl) {
  1477. case KVM_GET_API_VERSION:
  1478. r = -EINVAL;
  1479. if (arg)
  1480. goto out;
  1481. r = KVM_API_VERSION;
  1482. break;
  1483. case KVM_CREATE_VM:
  1484. r = -EINVAL;
  1485. if (arg)
  1486. goto out;
  1487. r = kvm_dev_ioctl_create_vm();
  1488. break;
  1489. case KVM_CHECK_EXTENSION:
  1490. r = kvm_dev_ioctl_check_extension(arg);
  1491. break;
  1492. case KVM_GET_VCPU_MMAP_SIZE:
  1493. r = -EINVAL;
  1494. if (arg)
  1495. goto out;
  1496. r = PAGE_SIZE; /* struct kvm_run */
  1497. #ifdef CONFIG_X86
  1498. r += PAGE_SIZE; /* pio data page */
  1499. #endif
  1500. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1501. r += PAGE_SIZE; /* coalesced mmio ring page */
  1502. #endif
  1503. break;
  1504. case KVM_TRACE_ENABLE:
  1505. case KVM_TRACE_PAUSE:
  1506. case KVM_TRACE_DISABLE:
  1507. r = kvm_trace_ioctl(ioctl, arg);
  1508. break;
  1509. default:
  1510. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1511. }
  1512. out:
  1513. return r;
  1514. }
  1515. static struct file_operations kvm_chardev_ops = {
  1516. .unlocked_ioctl = kvm_dev_ioctl,
  1517. .compat_ioctl = kvm_dev_ioctl,
  1518. };
  1519. static struct miscdevice kvm_dev = {
  1520. KVM_MINOR,
  1521. "kvm",
  1522. &kvm_chardev_ops,
  1523. };
  1524. static void hardware_enable(void *junk)
  1525. {
  1526. int cpu = raw_smp_processor_id();
  1527. if (cpu_isset(cpu, cpus_hardware_enabled))
  1528. return;
  1529. cpu_set(cpu, cpus_hardware_enabled);
  1530. kvm_arch_hardware_enable(NULL);
  1531. }
  1532. static void hardware_disable(void *junk)
  1533. {
  1534. int cpu = raw_smp_processor_id();
  1535. if (!cpu_isset(cpu, cpus_hardware_enabled))
  1536. return;
  1537. cpu_clear(cpu, cpus_hardware_enabled);
  1538. kvm_arch_hardware_disable(NULL);
  1539. }
  1540. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1541. void *v)
  1542. {
  1543. int cpu = (long)v;
  1544. val &= ~CPU_TASKS_FROZEN;
  1545. switch (val) {
  1546. case CPU_DYING:
  1547. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1548. cpu);
  1549. hardware_disable(NULL);
  1550. break;
  1551. case CPU_UP_CANCELED:
  1552. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1553. cpu);
  1554. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  1555. break;
  1556. case CPU_ONLINE:
  1557. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1558. cpu);
  1559. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  1560. break;
  1561. }
  1562. return NOTIFY_OK;
  1563. }
  1564. asmlinkage void kvm_handle_fault_on_reboot(void)
  1565. {
  1566. if (kvm_rebooting)
  1567. /* spin while reset goes on */
  1568. while (true)
  1569. ;
  1570. /* Fault while not rebooting. We want the trace. */
  1571. BUG();
  1572. }
  1573. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  1574. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1575. void *v)
  1576. {
  1577. if (val == SYS_RESTART) {
  1578. /*
  1579. * Some (well, at least mine) BIOSes hang on reboot if
  1580. * in vmx root mode.
  1581. */
  1582. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1583. kvm_rebooting = true;
  1584. on_each_cpu(hardware_disable, NULL, 1);
  1585. }
  1586. return NOTIFY_OK;
  1587. }
  1588. static struct notifier_block kvm_reboot_notifier = {
  1589. .notifier_call = kvm_reboot,
  1590. .priority = 0,
  1591. };
  1592. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1593. {
  1594. memset(bus, 0, sizeof(*bus));
  1595. }
  1596. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1597. {
  1598. int i;
  1599. for (i = 0; i < bus->dev_count; i++) {
  1600. struct kvm_io_device *pos = bus->devs[i];
  1601. kvm_iodevice_destructor(pos);
  1602. }
  1603. }
  1604. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
  1605. gpa_t addr, int len, int is_write)
  1606. {
  1607. int i;
  1608. for (i = 0; i < bus->dev_count; i++) {
  1609. struct kvm_io_device *pos = bus->devs[i];
  1610. if (pos->in_range(pos, addr, len, is_write))
  1611. return pos;
  1612. }
  1613. return NULL;
  1614. }
  1615. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1616. {
  1617. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1618. bus->devs[bus->dev_count++] = dev;
  1619. }
  1620. static struct notifier_block kvm_cpu_notifier = {
  1621. .notifier_call = kvm_cpu_hotplug,
  1622. .priority = 20, /* must be > scheduler priority */
  1623. };
  1624. static int vm_stat_get(void *_offset, u64 *val)
  1625. {
  1626. unsigned offset = (long)_offset;
  1627. struct kvm *kvm;
  1628. *val = 0;
  1629. spin_lock(&kvm_lock);
  1630. list_for_each_entry(kvm, &vm_list, vm_list)
  1631. *val += *(u32 *)((void *)kvm + offset);
  1632. spin_unlock(&kvm_lock);
  1633. return 0;
  1634. }
  1635. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1636. static int vcpu_stat_get(void *_offset, u64 *val)
  1637. {
  1638. unsigned offset = (long)_offset;
  1639. struct kvm *kvm;
  1640. struct kvm_vcpu *vcpu;
  1641. int i;
  1642. *val = 0;
  1643. spin_lock(&kvm_lock);
  1644. list_for_each_entry(kvm, &vm_list, vm_list)
  1645. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1646. vcpu = kvm->vcpus[i];
  1647. if (vcpu)
  1648. *val += *(u32 *)((void *)vcpu + offset);
  1649. }
  1650. spin_unlock(&kvm_lock);
  1651. return 0;
  1652. }
  1653. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1654. static struct file_operations *stat_fops[] = {
  1655. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1656. [KVM_STAT_VM] = &vm_stat_fops,
  1657. };
  1658. static void kvm_init_debug(void)
  1659. {
  1660. struct kvm_stats_debugfs_item *p;
  1661. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1662. for (p = debugfs_entries; p->name; ++p)
  1663. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1664. (void *)(long)p->offset,
  1665. stat_fops[p->kind]);
  1666. }
  1667. static void kvm_exit_debug(void)
  1668. {
  1669. struct kvm_stats_debugfs_item *p;
  1670. for (p = debugfs_entries; p->name; ++p)
  1671. debugfs_remove(p->dentry);
  1672. debugfs_remove(kvm_debugfs_dir);
  1673. }
  1674. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1675. {
  1676. hardware_disable(NULL);
  1677. return 0;
  1678. }
  1679. static int kvm_resume(struct sys_device *dev)
  1680. {
  1681. hardware_enable(NULL);
  1682. return 0;
  1683. }
  1684. static struct sysdev_class kvm_sysdev_class = {
  1685. .name = "kvm",
  1686. .suspend = kvm_suspend,
  1687. .resume = kvm_resume,
  1688. };
  1689. static struct sys_device kvm_sysdev = {
  1690. .id = 0,
  1691. .cls = &kvm_sysdev_class,
  1692. };
  1693. struct page *bad_page;
  1694. pfn_t bad_pfn;
  1695. static inline
  1696. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1697. {
  1698. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1699. }
  1700. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1701. {
  1702. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1703. kvm_arch_vcpu_load(vcpu, cpu);
  1704. }
  1705. static void kvm_sched_out(struct preempt_notifier *pn,
  1706. struct task_struct *next)
  1707. {
  1708. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1709. kvm_arch_vcpu_put(vcpu);
  1710. }
  1711. int kvm_init(void *opaque, unsigned int vcpu_size,
  1712. struct module *module)
  1713. {
  1714. int r;
  1715. int cpu;
  1716. kvm_init_debug();
  1717. r = kvm_arch_init(opaque);
  1718. if (r)
  1719. goto out_fail;
  1720. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1721. if (bad_page == NULL) {
  1722. r = -ENOMEM;
  1723. goto out;
  1724. }
  1725. bad_pfn = page_to_pfn(bad_page);
  1726. r = kvm_arch_hardware_setup();
  1727. if (r < 0)
  1728. goto out_free_0;
  1729. for_each_online_cpu(cpu) {
  1730. smp_call_function_single(cpu,
  1731. kvm_arch_check_processor_compat,
  1732. &r, 1);
  1733. if (r < 0)
  1734. goto out_free_1;
  1735. }
  1736. on_each_cpu(hardware_enable, NULL, 1);
  1737. r = register_cpu_notifier(&kvm_cpu_notifier);
  1738. if (r)
  1739. goto out_free_2;
  1740. register_reboot_notifier(&kvm_reboot_notifier);
  1741. r = sysdev_class_register(&kvm_sysdev_class);
  1742. if (r)
  1743. goto out_free_3;
  1744. r = sysdev_register(&kvm_sysdev);
  1745. if (r)
  1746. goto out_free_4;
  1747. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1748. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1749. __alignof__(struct kvm_vcpu),
  1750. 0, NULL);
  1751. if (!kvm_vcpu_cache) {
  1752. r = -ENOMEM;
  1753. goto out_free_5;
  1754. }
  1755. kvm_chardev_ops.owner = module;
  1756. r = misc_register(&kvm_dev);
  1757. if (r) {
  1758. printk(KERN_ERR "kvm: misc device register failed\n");
  1759. goto out_free;
  1760. }
  1761. kvm_preempt_ops.sched_in = kvm_sched_in;
  1762. kvm_preempt_ops.sched_out = kvm_sched_out;
  1763. return 0;
  1764. out_free:
  1765. kmem_cache_destroy(kvm_vcpu_cache);
  1766. out_free_5:
  1767. sysdev_unregister(&kvm_sysdev);
  1768. out_free_4:
  1769. sysdev_class_unregister(&kvm_sysdev_class);
  1770. out_free_3:
  1771. unregister_reboot_notifier(&kvm_reboot_notifier);
  1772. unregister_cpu_notifier(&kvm_cpu_notifier);
  1773. out_free_2:
  1774. on_each_cpu(hardware_disable, NULL, 1);
  1775. out_free_1:
  1776. kvm_arch_hardware_unsetup();
  1777. out_free_0:
  1778. __free_page(bad_page);
  1779. out:
  1780. kvm_arch_exit();
  1781. kvm_exit_debug();
  1782. out_fail:
  1783. return r;
  1784. }
  1785. EXPORT_SYMBOL_GPL(kvm_init);
  1786. void kvm_exit(void)
  1787. {
  1788. kvm_trace_cleanup();
  1789. misc_deregister(&kvm_dev);
  1790. kmem_cache_destroy(kvm_vcpu_cache);
  1791. sysdev_unregister(&kvm_sysdev);
  1792. sysdev_class_unregister(&kvm_sysdev_class);
  1793. unregister_reboot_notifier(&kvm_reboot_notifier);
  1794. unregister_cpu_notifier(&kvm_cpu_notifier);
  1795. on_each_cpu(hardware_disable, NULL, 1);
  1796. kvm_arch_hardware_unsetup();
  1797. kvm_arch_exit();
  1798. kvm_exit_debug();
  1799. __free_page(bad_page);
  1800. }
  1801. EXPORT_SYMBOL_GPL(kvm_exit);