slub.c 105 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/module.h>
  12. #include <linux/bit_spinlock.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/bitops.h>
  15. #include <linux/slab.h>
  16. #include <linux/proc_fs.h>
  17. #include <linux/seq_file.h>
  18. #include <linux/cpu.h>
  19. #include <linux/cpuset.h>
  20. #include <linux/mempolicy.h>
  21. #include <linux/ctype.h>
  22. #include <linux/debugobjects.h>
  23. #include <linux/kallsyms.h>
  24. #include <linux/memory.h>
  25. #include <linux/math64.h>
  26. /*
  27. * Lock order:
  28. * 1. slab_lock(page)
  29. * 2. slab->list_lock
  30. *
  31. * The slab_lock protects operations on the object of a particular
  32. * slab and its metadata in the page struct. If the slab lock
  33. * has been taken then no allocations nor frees can be performed
  34. * on the objects in the slab nor can the slab be added or removed
  35. * from the partial or full lists since this would mean modifying
  36. * the page_struct of the slab.
  37. *
  38. * The list_lock protects the partial and full list on each node and
  39. * the partial slab counter. If taken then no new slabs may be added or
  40. * removed from the lists nor make the number of partial slabs be modified.
  41. * (Note that the total number of slabs is an atomic value that may be
  42. * modified without taking the list lock).
  43. *
  44. * The list_lock is a centralized lock and thus we avoid taking it as
  45. * much as possible. As long as SLUB does not have to handle partial
  46. * slabs, operations can continue without any centralized lock. F.e.
  47. * allocating a long series of objects that fill up slabs does not require
  48. * the list lock.
  49. *
  50. * The lock order is sometimes inverted when we are trying to get a slab
  51. * off a list. We take the list_lock and then look for a page on the list
  52. * to use. While we do that objects in the slabs may be freed. We can
  53. * only operate on the slab if we have also taken the slab_lock. So we use
  54. * a slab_trylock() on the slab. If trylock was successful then no frees
  55. * can occur anymore and we can use the slab for allocations etc. If the
  56. * slab_trylock() does not succeed then frees are in progress in the slab and
  57. * we must stay away from it for a while since we may cause a bouncing
  58. * cacheline if we try to acquire the lock. So go onto the next slab.
  59. * If all pages are busy then we may allocate a new slab instead of reusing
  60. * a partial slab. A new slab has noone operating on it and thus there is
  61. * no danger of cacheline contention.
  62. *
  63. * Interrupts are disabled during allocation and deallocation in order to
  64. * make the slab allocator safe to use in the context of an irq. In addition
  65. * interrupts are disabled to ensure that the processor does not change
  66. * while handling per_cpu slabs, due to kernel preemption.
  67. *
  68. * SLUB assigns one slab for allocation to each processor.
  69. * Allocations only occur from these slabs called cpu slabs.
  70. *
  71. * Slabs with free elements are kept on a partial list and during regular
  72. * operations no list for full slabs is used. If an object in a full slab is
  73. * freed then the slab will show up again on the partial lists.
  74. * We track full slabs for debugging purposes though because otherwise we
  75. * cannot scan all objects.
  76. *
  77. * Slabs are freed when they become empty. Teardown and setup is
  78. * minimal so we rely on the page allocators per cpu caches for
  79. * fast frees and allocs.
  80. *
  81. * Overloading of page flags that are otherwise used for LRU management.
  82. *
  83. * PageActive The slab is frozen and exempt from list processing.
  84. * This means that the slab is dedicated to a purpose
  85. * such as satisfying allocations for a specific
  86. * processor. Objects may be freed in the slab while
  87. * it is frozen but slab_free will then skip the usual
  88. * list operations. It is up to the processor holding
  89. * the slab to integrate the slab into the slab lists
  90. * when the slab is no longer needed.
  91. *
  92. * One use of this flag is to mark slabs that are
  93. * used for allocations. Then such a slab becomes a cpu
  94. * slab. The cpu slab may be equipped with an additional
  95. * freelist that allows lockless access to
  96. * free objects in addition to the regular freelist
  97. * that requires the slab lock.
  98. *
  99. * PageError Slab requires special handling due to debug
  100. * options set. This moves slab handling out of
  101. * the fast path and disables lockless freelists.
  102. */
  103. #ifdef CONFIG_SLUB_DEBUG
  104. #define SLABDEBUG 1
  105. #else
  106. #define SLABDEBUG 0
  107. #endif
  108. /*
  109. * Issues still to be resolved:
  110. *
  111. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  112. *
  113. * - Variable sizing of the per node arrays
  114. */
  115. /* Enable to test recovery from slab corruption on boot */
  116. #undef SLUB_RESILIENCY_TEST
  117. /*
  118. * Mininum number of partial slabs. These will be left on the partial
  119. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  120. */
  121. #define MIN_PARTIAL 5
  122. /*
  123. * Maximum number of desirable partial slabs.
  124. * The existence of more partial slabs makes kmem_cache_shrink
  125. * sort the partial list by the number of objects in the.
  126. */
  127. #define MAX_PARTIAL 10
  128. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  129. SLAB_POISON | SLAB_STORE_USER)
  130. /*
  131. * Set of flags that will prevent slab merging
  132. */
  133. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  134. SLAB_TRACE | SLAB_DESTROY_BY_RCU)
  135. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  136. SLAB_CACHE_DMA)
  137. #ifndef ARCH_KMALLOC_MINALIGN
  138. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  139. #endif
  140. #ifndef ARCH_SLAB_MINALIGN
  141. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  142. #endif
  143. /* Internal SLUB flags */
  144. #define __OBJECT_POISON 0x80000000 /* Poison object */
  145. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  146. static int kmem_size = sizeof(struct kmem_cache);
  147. #ifdef CONFIG_SMP
  148. static struct notifier_block slab_notifier;
  149. #endif
  150. static enum {
  151. DOWN, /* No slab functionality available */
  152. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  153. UP, /* Everything works but does not show up in sysfs */
  154. SYSFS /* Sysfs up */
  155. } slab_state = DOWN;
  156. /* A list of all slab caches on the system */
  157. static DECLARE_RWSEM(slub_lock);
  158. static LIST_HEAD(slab_caches);
  159. /*
  160. * Tracking user of a slab.
  161. */
  162. struct track {
  163. void *addr; /* Called from address */
  164. int cpu; /* Was running on cpu */
  165. int pid; /* Pid context */
  166. unsigned long when; /* When did the operation occur */
  167. };
  168. enum track_item { TRACK_ALLOC, TRACK_FREE };
  169. #ifdef CONFIG_SLUB_DEBUG
  170. static int sysfs_slab_add(struct kmem_cache *);
  171. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  172. static void sysfs_slab_remove(struct kmem_cache *);
  173. #else
  174. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  175. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  176. { return 0; }
  177. static inline void sysfs_slab_remove(struct kmem_cache *s)
  178. {
  179. kfree(s);
  180. }
  181. #endif
  182. static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
  183. {
  184. #ifdef CONFIG_SLUB_STATS
  185. c->stat[si]++;
  186. #endif
  187. }
  188. /********************************************************************
  189. * Core slab cache functions
  190. *******************************************************************/
  191. int slab_is_available(void)
  192. {
  193. return slab_state >= UP;
  194. }
  195. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  196. {
  197. #ifdef CONFIG_NUMA
  198. return s->node[node];
  199. #else
  200. return &s->local_node;
  201. #endif
  202. }
  203. static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
  204. {
  205. #ifdef CONFIG_SMP
  206. return s->cpu_slab[cpu];
  207. #else
  208. return &s->cpu_slab;
  209. #endif
  210. }
  211. /* Verify that a pointer has an address that is valid within a slab page */
  212. static inline int check_valid_pointer(struct kmem_cache *s,
  213. struct page *page, const void *object)
  214. {
  215. void *base;
  216. if (!object)
  217. return 1;
  218. base = page_address(page);
  219. if (object < base || object >= base + page->objects * s->size ||
  220. (object - base) % s->size) {
  221. return 0;
  222. }
  223. return 1;
  224. }
  225. /*
  226. * Slow version of get and set free pointer.
  227. *
  228. * This version requires touching the cache lines of kmem_cache which
  229. * we avoid to do in the fast alloc free paths. There we obtain the offset
  230. * from the page struct.
  231. */
  232. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  233. {
  234. return *(void **)(object + s->offset);
  235. }
  236. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  237. {
  238. *(void **)(object + s->offset) = fp;
  239. }
  240. /* Loop over all objects in a slab */
  241. #define for_each_object(__p, __s, __addr, __objects) \
  242. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  243. __p += (__s)->size)
  244. /* Scan freelist */
  245. #define for_each_free_object(__p, __s, __free) \
  246. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  247. /* Determine object index from a given position */
  248. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  249. {
  250. return (p - addr) / s->size;
  251. }
  252. static inline struct kmem_cache_order_objects oo_make(int order,
  253. unsigned long size)
  254. {
  255. struct kmem_cache_order_objects x = {
  256. (order << 16) + (PAGE_SIZE << order) / size
  257. };
  258. return x;
  259. }
  260. static inline int oo_order(struct kmem_cache_order_objects x)
  261. {
  262. return x.x >> 16;
  263. }
  264. static inline int oo_objects(struct kmem_cache_order_objects x)
  265. {
  266. return x.x & ((1 << 16) - 1);
  267. }
  268. #ifdef CONFIG_SLUB_DEBUG
  269. /*
  270. * Debug settings:
  271. */
  272. #ifdef CONFIG_SLUB_DEBUG_ON
  273. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  274. #else
  275. static int slub_debug;
  276. #endif
  277. static char *slub_debug_slabs;
  278. /*
  279. * Object debugging
  280. */
  281. static void print_section(char *text, u8 *addr, unsigned int length)
  282. {
  283. int i, offset;
  284. int newline = 1;
  285. char ascii[17];
  286. ascii[16] = 0;
  287. for (i = 0; i < length; i++) {
  288. if (newline) {
  289. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  290. newline = 0;
  291. }
  292. printk(KERN_CONT " %02x", addr[i]);
  293. offset = i % 16;
  294. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  295. if (offset == 15) {
  296. printk(KERN_CONT " %s\n", ascii);
  297. newline = 1;
  298. }
  299. }
  300. if (!newline) {
  301. i %= 16;
  302. while (i < 16) {
  303. printk(KERN_CONT " ");
  304. ascii[i] = ' ';
  305. i++;
  306. }
  307. printk(KERN_CONT " %s\n", ascii);
  308. }
  309. }
  310. static struct track *get_track(struct kmem_cache *s, void *object,
  311. enum track_item alloc)
  312. {
  313. struct track *p;
  314. if (s->offset)
  315. p = object + s->offset + sizeof(void *);
  316. else
  317. p = object + s->inuse;
  318. return p + alloc;
  319. }
  320. static void set_track(struct kmem_cache *s, void *object,
  321. enum track_item alloc, void *addr)
  322. {
  323. struct track *p;
  324. if (s->offset)
  325. p = object + s->offset + sizeof(void *);
  326. else
  327. p = object + s->inuse;
  328. p += alloc;
  329. if (addr) {
  330. p->addr = addr;
  331. p->cpu = smp_processor_id();
  332. p->pid = current->pid;
  333. p->when = jiffies;
  334. } else
  335. memset(p, 0, sizeof(struct track));
  336. }
  337. static void init_tracking(struct kmem_cache *s, void *object)
  338. {
  339. if (!(s->flags & SLAB_STORE_USER))
  340. return;
  341. set_track(s, object, TRACK_FREE, NULL);
  342. set_track(s, object, TRACK_ALLOC, NULL);
  343. }
  344. static void print_track(const char *s, struct track *t)
  345. {
  346. if (!t->addr)
  347. return;
  348. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  349. s, t->addr, jiffies - t->when, t->cpu, t->pid);
  350. }
  351. static void print_tracking(struct kmem_cache *s, void *object)
  352. {
  353. if (!(s->flags & SLAB_STORE_USER))
  354. return;
  355. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  356. print_track("Freed", get_track(s, object, TRACK_FREE));
  357. }
  358. static void print_page_info(struct page *page)
  359. {
  360. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  361. page, page->objects, page->inuse, page->freelist, page->flags);
  362. }
  363. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  364. {
  365. va_list args;
  366. char buf[100];
  367. va_start(args, fmt);
  368. vsnprintf(buf, sizeof(buf), fmt, args);
  369. va_end(args);
  370. printk(KERN_ERR "========================================"
  371. "=====================================\n");
  372. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  373. printk(KERN_ERR "----------------------------------------"
  374. "-------------------------------------\n\n");
  375. }
  376. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  377. {
  378. va_list args;
  379. char buf[100];
  380. va_start(args, fmt);
  381. vsnprintf(buf, sizeof(buf), fmt, args);
  382. va_end(args);
  383. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  384. }
  385. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  386. {
  387. unsigned int off; /* Offset of last byte */
  388. u8 *addr = page_address(page);
  389. print_tracking(s, p);
  390. print_page_info(page);
  391. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  392. p, p - addr, get_freepointer(s, p));
  393. if (p > addr + 16)
  394. print_section("Bytes b4", p - 16, 16);
  395. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  396. if (s->flags & SLAB_RED_ZONE)
  397. print_section("Redzone", p + s->objsize,
  398. s->inuse - s->objsize);
  399. if (s->offset)
  400. off = s->offset + sizeof(void *);
  401. else
  402. off = s->inuse;
  403. if (s->flags & SLAB_STORE_USER)
  404. off += 2 * sizeof(struct track);
  405. if (off != s->size)
  406. /* Beginning of the filler is the free pointer */
  407. print_section("Padding", p + off, s->size - off);
  408. dump_stack();
  409. }
  410. static void object_err(struct kmem_cache *s, struct page *page,
  411. u8 *object, char *reason)
  412. {
  413. slab_bug(s, "%s", reason);
  414. print_trailer(s, page, object);
  415. }
  416. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  417. {
  418. va_list args;
  419. char buf[100];
  420. va_start(args, fmt);
  421. vsnprintf(buf, sizeof(buf), fmt, args);
  422. va_end(args);
  423. slab_bug(s, "%s", buf);
  424. print_page_info(page);
  425. dump_stack();
  426. }
  427. static void init_object(struct kmem_cache *s, void *object, int active)
  428. {
  429. u8 *p = object;
  430. if (s->flags & __OBJECT_POISON) {
  431. memset(p, POISON_FREE, s->objsize - 1);
  432. p[s->objsize - 1] = POISON_END;
  433. }
  434. if (s->flags & SLAB_RED_ZONE)
  435. memset(p + s->objsize,
  436. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  437. s->inuse - s->objsize);
  438. }
  439. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  440. {
  441. while (bytes) {
  442. if (*start != (u8)value)
  443. return start;
  444. start++;
  445. bytes--;
  446. }
  447. return NULL;
  448. }
  449. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  450. void *from, void *to)
  451. {
  452. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  453. memset(from, data, to - from);
  454. }
  455. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  456. u8 *object, char *what,
  457. u8 *start, unsigned int value, unsigned int bytes)
  458. {
  459. u8 *fault;
  460. u8 *end;
  461. fault = check_bytes(start, value, bytes);
  462. if (!fault)
  463. return 1;
  464. end = start + bytes;
  465. while (end > fault && end[-1] == value)
  466. end--;
  467. slab_bug(s, "%s overwritten", what);
  468. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  469. fault, end - 1, fault[0], value);
  470. print_trailer(s, page, object);
  471. restore_bytes(s, what, value, fault, end);
  472. return 0;
  473. }
  474. /*
  475. * Object layout:
  476. *
  477. * object address
  478. * Bytes of the object to be managed.
  479. * If the freepointer may overlay the object then the free
  480. * pointer is the first word of the object.
  481. *
  482. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  483. * 0xa5 (POISON_END)
  484. *
  485. * object + s->objsize
  486. * Padding to reach word boundary. This is also used for Redzoning.
  487. * Padding is extended by another word if Redzoning is enabled and
  488. * objsize == inuse.
  489. *
  490. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  491. * 0xcc (RED_ACTIVE) for objects in use.
  492. *
  493. * object + s->inuse
  494. * Meta data starts here.
  495. *
  496. * A. Free pointer (if we cannot overwrite object on free)
  497. * B. Tracking data for SLAB_STORE_USER
  498. * C. Padding to reach required alignment boundary or at mininum
  499. * one word if debugging is on to be able to detect writes
  500. * before the word boundary.
  501. *
  502. * Padding is done using 0x5a (POISON_INUSE)
  503. *
  504. * object + s->size
  505. * Nothing is used beyond s->size.
  506. *
  507. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  508. * ignored. And therefore no slab options that rely on these boundaries
  509. * may be used with merged slabcaches.
  510. */
  511. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  512. {
  513. unsigned long off = s->inuse; /* The end of info */
  514. if (s->offset)
  515. /* Freepointer is placed after the object. */
  516. off += sizeof(void *);
  517. if (s->flags & SLAB_STORE_USER)
  518. /* We also have user information there */
  519. off += 2 * sizeof(struct track);
  520. if (s->size == off)
  521. return 1;
  522. return check_bytes_and_report(s, page, p, "Object padding",
  523. p + off, POISON_INUSE, s->size - off);
  524. }
  525. /* Check the pad bytes at the end of a slab page */
  526. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  527. {
  528. u8 *start;
  529. u8 *fault;
  530. u8 *end;
  531. int length;
  532. int remainder;
  533. if (!(s->flags & SLAB_POISON))
  534. return 1;
  535. start = page_address(page);
  536. length = (PAGE_SIZE << compound_order(page));
  537. end = start + length;
  538. remainder = length % s->size;
  539. if (!remainder)
  540. return 1;
  541. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  542. if (!fault)
  543. return 1;
  544. while (end > fault && end[-1] == POISON_INUSE)
  545. end--;
  546. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  547. print_section("Padding", end - remainder, remainder);
  548. restore_bytes(s, "slab padding", POISON_INUSE, start, end);
  549. return 0;
  550. }
  551. static int check_object(struct kmem_cache *s, struct page *page,
  552. void *object, int active)
  553. {
  554. u8 *p = object;
  555. u8 *endobject = object + s->objsize;
  556. if (s->flags & SLAB_RED_ZONE) {
  557. unsigned int red =
  558. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  559. if (!check_bytes_and_report(s, page, object, "Redzone",
  560. endobject, red, s->inuse - s->objsize))
  561. return 0;
  562. } else {
  563. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  564. check_bytes_and_report(s, page, p, "Alignment padding",
  565. endobject, POISON_INUSE, s->inuse - s->objsize);
  566. }
  567. }
  568. if (s->flags & SLAB_POISON) {
  569. if (!active && (s->flags & __OBJECT_POISON) &&
  570. (!check_bytes_and_report(s, page, p, "Poison", p,
  571. POISON_FREE, s->objsize - 1) ||
  572. !check_bytes_and_report(s, page, p, "Poison",
  573. p + s->objsize - 1, POISON_END, 1)))
  574. return 0;
  575. /*
  576. * check_pad_bytes cleans up on its own.
  577. */
  578. check_pad_bytes(s, page, p);
  579. }
  580. if (!s->offset && active)
  581. /*
  582. * Object and freepointer overlap. Cannot check
  583. * freepointer while object is allocated.
  584. */
  585. return 1;
  586. /* Check free pointer validity */
  587. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  588. object_err(s, page, p, "Freepointer corrupt");
  589. /*
  590. * No choice but to zap it and thus loose the remainder
  591. * of the free objects in this slab. May cause
  592. * another error because the object count is now wrong.
  593. */
  594. set_freepointer(s, p, NULL);
  595. return 0;
  596. }
  597. return 1;
  598. }
  599. static int check_slab(struct kmem_cache *s, struct page *page)
  600. {
  601. int maxobj;
  602. VM_BUG_ON(!irqs_disabled());
  603. if (!PageSlab(page)) {
  604. slab_err(s, page, "Not a valid slab page");
  605. return 0;
  606. }
  607. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  608. if (page->objects > maxobj) {
  609. slab_err(s, page, "objects %u > max %u",
  610. s->name, page->objects, maxobj);
  611. return 0;
  612. }
  613. if (page->inuse > page->objects) {
  614. slab_err(s, page, "inuse %u > max %u",
  615. s->name, page->inuse, page->objects);
  616. return 0;
  617. }
  618. /* Slab_pad_check fixes things up after itself */
  619. slab_pad_check(s, page);
  620. return 1;
  621. }
  622. /*
  623. * Determine if a certain object on a page is on the freelist. Must hold the
  624. * slab lock to guarantee that the chains are in a consistent state.
  625. */
  626. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  627. {
  628. int nr = 0;
  629. void *fp = page->freelist;
  630. void *object = NULL;
  631. unsigned long max_objects;
  632. while (fp && nr <= page->objects) {
  633. if (fp == search)
  634. return 1;
  635. if (!check_valid_pointer(s, page, fp)) {
  636. if (object) {
  637. object_err(s, page, object,
  638. "Freechain corrupt");
  639. set_freepointer(s, object, NULL);
  640. break;
  641. } else {
  642. slab_err(s, page, "Freepointer corrupt");
  643. page->freelist = NULL;
  644. page->inuse = page->objects;
  645. slab_fix(s, "Freelist cleared");
  646. return 0;
  647. }
  648. break;
  649. }
  650. object = fp;
  651. fp = get_freepointer(s, object);
  652. nr++;
  653. }
  654. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  655. if (max_objects > 65535)
  656. max_objects = 65535;
  657. if (page->objects != max_objects) {
  658. slab_err(s, page, "Wrong number of objects. Found %d but "
  659. "should be %d", page->objects, max_objects);
  660. page->objects = max_objects;
  661. slab_fix(s, "Number of objects adjusted.");
  662. }
  663. if (page->inuse != page->objects - nr) {
  664. slab_err(s, page, "Wrong object count. Counter is %d but "
  665. "counted were %d", page->inuse, page->objects - nr);
  666. page->inuse = page->objects - nr;
  667. slab_fix(s, "Object count adjusted.");
  668. }
  669. return search == NULL;
  670. }
  671. static void trace(struct kmem_cache *s, struct page *page, void *object,
  672. int alloc)
  673. {
  674. if (s->flags & SLAB_TRACE) {
  675. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  676. s->name,
  677. alloc ? "alloc" : "free",
  678. object, page->inuse,
  679. page->freelist);
  680. if (!alloc)
  681. print_section("Object", (void *)object, s->objsize);
  682. dump_stack();
  683. }
  684. }
  685. /*
  686. * Tracking of fully allocated slabs for debugging purposes.
  687. */
  688. static void add_full(struct kmem_cache_node *n, struct page *page)
  689. {
  690. spin_lock(&n->list_lock);
  691. list_add(&page->lru, &n->full);
  692. spin_unlock(&n->list_lock);
  693. }
  694. static void remove_full(struct kmem_cache *s, struct page *page)
  695. {
  696. struct kmem_cache_node *n;
  697. if (!(s->flags & SLAB_STORE_USER))
  698. return;
  699. n = get_node(s, page_to_nid(page));
  700. spin_lock(&n->list_lock);
  701. list_del(&page->lru);
  702. spin_unlock(&n->list_lock);
  703. }
  704. /* Tracking of the number of slabs for debugging purposes */
  705. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  706. {
  707. struct kmem_cache_node *n = get_node(s, node);
  708. return atomic_long_read(&n->nr_slabs);
  709. }
  710. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  711. {
  712. struct kmem_cache_node *n = get_node(s, node);
  713. /*
  714. * May be called early in order to allocate a slab for the
  715. * kmem_cache_node structure. Solve the chicken-egg
  716. * dilemma by deferring the increment of the count during
  717. * bootstrap (see early_kmem_cache_node_alloc).
  718. */
  719. if (!NUMA_BUILD || n) {
  720. atomic_long_inc(&n->nr_slabs);
  721. atomic_long_add(objects, &n->total_objects);
  722. }
  723. }
  724. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  725. {
  726. struct kmem_cache_node *n = get_node(s, node);
  727. atomic_long_dec(&n->nr_slabs);
  728. atomic_long_sub(objects, &n->total_objects);
  729. }
  730. /* Object debug checks for alloc/free paths */
  731. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  732. void *object)
  733. {
  734. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  735. return;
  736. init_object(s, object, 0);
  737. init_tracking(s, object);
  738. }
  739. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  740. void *object, void *addr)
  741. {
  742. if (!check_slab(s, page))
  743. goto bad;
  744. if (!on_freelist(s, page, object)) {
  745. object_err(s, page, object, "Object already allocated");
  746. goto bad;
  747. }
  748. if (!check_valid_pointer(s, page, object)) {
  749. object_err(s, page, object, "Freelist Pointer check fails");
  750. goto bad;
  751. }
  752. if (!check_object(s, page, object, 0))
  753. goto bad;
  754. /* Success perform special debug activities for allocs */
  755. if (s->flags & SLAB_STORE_USER)
  756. set_track(s, object, TRACK_ALLOC, addr);
  757. trace(s, page, object, 1);
  758. init_object(s, object, 1);
  759. return 1;
  760. bad:
  761. if (PageSlab(page)) {
  762. /*
  763. * If this is a slab page then lets do the best we can
  764. * to avoid issues in the future. Marking all objects
  765. * as used avoids touching the remaining objects.
  766. */
  767. slab_fix(s, "Marking all objects used");
  768. page->inuse = page->objects;
  769. page->freelist = NULL;
  770. }
  771. return 0;
  772. }
  773. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  774. void *object, void *addr)
  775. {
  776. if (!check_slab(s, page))
  777. goto fail;
  778. if (!check_valid_pointer(s, page, object)) {
  779. slab_err(s, page, "Invalid object pointer 0x%p", object);
  780. goto fail;
  781. }
  782. if (on_freelist(s, page, object)) {
  783. object_err(s, page, object, "Object already free");
  784. goto fail;
  785. }
  786. if (!check_object(s, page, object, 1))
  787. return 0;
  788. if (unlikely(s != page->slab)) {
  789. if (!PageSlab(page)) {
  790. slab_err(s, page, "Attempt to free object(0x%p) "
  791. "outside of slab", object);
  792. } else if (!page->slab) {
  793. printk(KERN_ERR
  794. "SLUB <none>: no slab for object 0x%p.\n",
  795. object);
  796. dump_stack();
  797. } else
  798. object_err(s, page, object,
  799. "page slab pointer corrupt.");
  800. goto fail;
  801. }
  802. /* Special debug activities for freeing objects */
  803. if (!PageSlubFrozen(page) && !page->freelist)
  804. remove_full(s, page);
  805. if (s->flags & SLAB_STORE_USER)
  806. set_track(s, object, TRACK_FREE, addr);
  807. trace(s, page, object, 0);
  808. init_object(s, object, 0);
  809. return 1;
  810. fail:
  811. slab_fix(s, "Object at 0x%p not freed", object);
  812. return 0;
  813. }
  814. static int __init setup_slub_debug(char *str)
  815. {
  816. slub_debug = DEBUG_DEFAULT_FLAGS;
  817. if (*str++ != '=' || !*str)
  818. /*
  819. * No options specified. Switch on full debugging.
  820. */
  821. goto out;
  822. if (*str == ',')
  823. /*
  824. * No options but restriction on slabs. This means full
  825. * debugging for slabs matching a pattern.
  826. */
  827. goto check_slabs;
  828. slub_debug = 0;
  829. if (*str == '-')
  830. /*
  831. * Switch off all debugging measures.
  832. */
  833. goto out;
  834. /*
  835. * Determine which debug features should be switched on
  836. */
  837. for (; *str && *str != ','; str++) {
  838. switch (tolower(*str)) {
  839. case 'f':
  840. slub_debug |= SLAB_DEBUG_FREE;
  841. break;
  842. case 'z':
  843. slub_debug |= SLAB_RED_ZONE;
  844. break;
  845. case 'p':
  846. slub_debug |= SLAB_POISON;
  847. break;
  848. case 'u':
  849. slub_debug |= SLAB_STORE_USER;
  850. break;
  851. case 't':
  852. slub_debug |= SLAB_TRACE;
  853. break;
  854. default:
  855. printk(KERN_ERR "slub_debug option '%c' "
  856. "unknown. skipped\n", *str);
  857. }
  858. }
  859. check_slabs:
  860. if (*str == ',')
  861. slub_debug_slabs = str + 1;
  862. out:
  863. return 1;
  864. }
  865. __setup("slub_debug", setup_slub_debug);
  866. static unsigned long kmem_cache_flags(unsigned long objsize,
  867. unsigned long flags, const char *name,
  868. void (*ctor)(void *))
  869. {
  870. /*
  871. * Enable debugging if selected on the kernel commandline.
  872. */
  873. if (slub_debug && (!slub_debug_slabs ||
  874. strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
  875. flags |= slub_debug;
  876. return flags;
  877. }
  878. #else
  879. static inline void setup_object_debug(struct kmem_cache *s,
  880. struct page *page, void *object) {}
  881. static inline int alloc_debug_processing(struct kmem_cache *s,
  882. struct page *page, void *object, void *addr) { return 0; }
  883. static inline int free_debug_processing(struct kmem_cache *s,
  884. struct page *page, void *object, void *addr) { return 0; }
  885. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  886. { return 1; }
  887. static inline int check_object(struct kmem_cache *s, struct page *page,
  888. void *object, int active) { return 1; }
  889. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  890. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  891. unsigned long flags, const char *name,
  892. void (*ctor)(void *))
  893. {
  894. return flags;
  895. }
  896. #define slub_debug 0
  897. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  898. { return 0; }
  899. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  900. int objects) {}
  901. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  902. int objects) {}
  903. #endif
  904. /*
  905. * Slab allocation and freeing
  906. */
  907. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  908. struct kmem_cache_order_objects oo)
  909. {
  910. int order = oo_order(oo);
  911. if (node == -1)
  912. return alloc_pages(flags, order);
  913. else
  914. return alloc_pages_node(node, flags, order);
  915. }
  916. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  917. {
  918. struct page *page;
  919. struct kmem_cache_order_objects oo = s->oo;
  920. flags |= s->allocflags;
  921. page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
  922. oo);
  923. if (unlikely(!page)) {
  924. oo = s->min;
  925. /*
  926. * Allocation may have failed due to fragmentation.
  927. * Try a lower order alloc if possible
  928. */
  929. page = alloc_slab_page(flags, node, oo);
  930. if (!page)
  931. return NULL;
  932. stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
  933. }
  934. page->objects = oo_objects(oo);
  935. mod_zone_page_state(page_zone(page),
  936. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  937. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  938. 1 << oo_order(oo));
  939. return page;
  940. }
  941. static void setup_object(struct kmem_cache *s, struct page *page,
  942. void *object)
  943. {
  944. setup_object_debug(s, page, object);
  945. if (unlikely(s->ctor))
  946. s->ctor(object);
  947. }
  948. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  949. {
  950. struct page *page;
  951. void *start;
  952. void *last;
  953. void *p;
  954. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  955. page = allocate_slab(s,
  956. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  957. if (!page)
  958. goto out;
  959. inc_slabs_node(s, page_to_nid(page), page->objects);
  960. page->slab = s;
  961. page->flags |= 1 << PG_slab;
  962. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  963. SLAB_STORE_USER | SLAB_TRACE))
  964. __SetPageSlubDebug(page);
  965. start = page_address(page);
  966. if (unlikely(s->flags & SLAB_POISON))
  967. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  968. last = start;
  969. for_each_object(p, s, start, page->objects) {
  970. setup_object(s, page, last);
  971. set_freepointer(s, last, p);
  972. last = p;
  973. }
  974. setup_object(s, page, last);
  975. set_freepointer(s, last, NULL);
  976. page->freelist = start;
  977. page->inuse = 0;
  978. out:
  979. return page;
  980. }
  981. static void __free_slab(struct kmem_cache *s, struct page *page)
  982. {
  983. int order = compound_order(page);
  984. int pages = 1 << order;
  985. if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
  986. void *p;
  987. slab_pad_check(s, page);
  988. for_each_object(p, s, page_address(page),
  989. page->objects)
  990. check_object(s, page, p, 0);
  991. __ClearPageSlubDebug(page);
  992. }
  993. mod_zone_page_state(page_zone(page),
  994. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  995. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  996. -pages);
  997. __ClearPageSlab(page);
  998. reset_page_mapcount(page);
  999. __free_pages(page, order);
  1000. }
  1001. static void rcu_free_slab(struct rcu_head *h)
  1002. {
  1003. struct page *page;
  1004. page = container_of((struct list_head *)h, struct page, lru);
  1005. __free_slab(page->slab, page);
  1006. }
  1007. static void free_slab(struct kmem_cache *s, struct page *page)
  1008. {
  1009. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1010. /*
  1011. * RCU free overloads the RCU head over the LRU
  1012. */
  1013. struct rcu_head *head = (void *)&page->lru;
  1014. call_rcu(head, rcu_free_slab);
  1015. } else
  1016. __free_slab(s, page);
  1017. }
  1018. static void discard_slab(struct kmem_cache *s, struct page *page)
  1019. {
  1020. dec_slabs_node(s, page_to_nid(page), page->objects);
  1021. free_slab(s, page);
  1022. }
  1023. /*
  1024. * Per slab locking using the pagelock
  1025. */
  1026. static __always_inline void slab_lock(struct page *page)
  1027. {
  1028. bit_spin_lock(PG_locked, &page->flags);
  1029. }
  1030. static __always_inline void slab_unlock(struct page *page)
  1031. {
  1032. __bit_spin_unlock(PG_locked, &page->flags);
  1033. }
  1034. static __always_inline int slab_trylock(struct page *page)
  1035. {
  1036. int rc = 1;
  1037. rc = bit_spin_trylock(PG_locked, &page->flags);
  1038. return rc;
  1039. }
  1040. /*
  1041. * Management of partially allocated slabs
  1042. */
  1043. static void add_partial(struct kmem_cache_node *n,
  1044. struct page *page, int tail)
  1045. {
  1046. spin_lock(&n->list_lock);
  1047. n->nr_partial++;
  1048. if (tail)
  1049. list_add_tail(&page->lru, &n->partial);
  1050. else
  1051. list_add(&page->lru, &n->partial);
  1052. spin_unlock(&n->list_lock);
  1053. }
  1054. static void remove_partial(struct kmem_cache *s, struct page *page)
  1055. {
  1056. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1057. spin_lock(&n->list_lock);
  1058. list_del(&page->lru);
  1059. n->nr_partial--;
  1060. spin_unlock(&n->list_lock);
  1061. }
  1062. /*
  1063. * Lock slab and remove from the partial list.
  1064. *
  1065. * Must hold list_lock.
  1066. */
  1067. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1068. struct page *page)
  1069. {
  1070. if (slab_trylock(page)) {
  1071. list_del(&page->lru);
  1072. n->nr_partial--;
  1073. __SetPageSlubFrozen(page);
  1074. return 1;
  1075. }
  1076. return 0;
  1077. }
  1078. /*
  1079. * Try to allocate a partial slab from a specific node.
  1080. */
  1081. static struct page *get_partial_node(struct kmem_cache_node *n)
  1082. {
  1083. struct page *page;
  1084. /*
  1085. * Racy check. If we mistakenly see no partial slabs then we
  1086. * just allocate an empty slab. If we mistakenly try to get a
  1087. * partial slab and there is none available then get_partials()
  1088. * will return NULL.
  1089. */
  1090. if (!n || !n->nr_partial)
  1091. return NULL;
  1092. spin_lock(&n->list_lock);
  1093. list_for_each_entry(page, &n->partial, lru)
  1094. if (lock_and_freeze_slab(n, page))
  1095. goto out;
  1096. page = NULL;
  1097. out:
  1098. spin_unlock(&n->list_lock);
  1099. return page;
  1100. }
  1101. /*
  1102. * Get a page from somewhere. Search in increasing NUMA distances.
  1103. */
  1104. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1105. {
  1106. #ifdef CONFIG_NUMA
  1107. struct zonelist *zonelist;
  1108. struct zoneref *z;
  1109. struct zone *zone;
  1110. enum zone_type high_zoneidx = gfp_zone(flags);
  1111. struct page *page;
  1112. /*
  1113. * The defrag ratio allows a configuration of the tradeoffs between
  1114. * inter node defragmentation and node local allocations. A lower
  1115. * defrag_ratio increases the tendency to do local allocations
  1116. * instead of attempting to obtain partial slabs from other nodes.
  1117. *
  1118. * If the defrag_ratio is set to 0 then kmalloc() always
  1119. * returns node local objects. If the ratio is higher then kmalloc()
  1120. * may return off node objects because partial slabs are obtained
  1121. * from other nodes and filled up.
  1122. *
  1123. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1124. * defrag_ratio = 1000) then every (well almost) allocation will
  1125. * first attempt to defrag slab caches on other nodes. This means
  1126. * scanning over all nodes to look for partial slabs which may be
  1127. * expensive if we do it every time we are trying to find a slab
  1128. * with available objects.
  1129. */
  1130. if (!s->remote_node_defrag_ratio ||
  1131. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1132. return NULL;
  1133. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1134. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1135. struct kmem_cache_node *n;
  1136. n = get_node(s, zone_to_nid(zone));
  1137. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1138. n->nr_partial > n->min_partial) {
  1139. page = get_partial_node(n);
  1140. if (page)
  1141. return page;
  1142. }
  1143. }
  1144. #endif
  1145. return NULL;
  1146. }
  1147. /*
  1148. * Get a partial page, lock it and return it.
  1149. */
  1150. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1151. {
  1152. struct page *page;
  1153. int searchnode = (node == -1) ? numa_node_id() : node;
  1154. page = get_partial_node(get_node(s, searchnode));
  1155. if (page || (flags & __GFP_THISNODE))
  1156. return page;
  1157. return get_any_partial(s, flags);
  1158. }
  1159. /*
  1160. * Move a page back to the lists.
  1161. *
  1162. * Must be called with the slab lock held.
  1163. *
  1164. * On exit the slab lock will have been dropped.
  1165. */
  1166. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1167. {
  1168. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1169. struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
  1170. __ClearPageSlubFrozen(page);
  1171. if (page->inuse) {
  1172. if (page->freelist) {
  1173. add_partial(n, page, tail);
  1174. stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1175. } else {
  1176. stat(c, DEACTIVATE_FULL);
  1177. if (SLABDEBUG && PageSlubDebug(page) &&
  1178. (s->flags & SLAB_STORE_USER))
  1179. add_full(n, page);
  1180. }
  1181. slab_unlock(page);
  1182. } else {
  1183. stat(c, DEACTIVATE_EMPTY);
  1184. if (n->nr_partial < n->min_partial) {
  1185. /*
  1186. * Adding an empty slab to the partial slabs in order
  1187. * to avoid page allocator overhead. This slab needs
  1188. * to come after the other slabs with objects in
  1189. * so that the others get filled first. That way the
  1190. * size of the partial list stays small.
  1191. *
  1192. * kmem_cache_shrink can reclaim any empty slabs from
  1193. * the partial list.
  1194. */
  1195. add_partial(n, page, 1);
  1196. slab_unlock(page);
  1197. } else {
  1198. slab_unlock(page);
  1199. stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
  1200. discard_slab(s, page);
  1201. }
  1202. }
  1203. }
  1204. /*
  1205. * Remove the cpu slab
  1206. */
  1207. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1208. {
  1209. struct page *page = c->page;
  1210. int tail = 1;
  1211. if (page->freelist)
  1212. stat(c, DEACTIVATE_REMOTE_FREES);
  1213. /*
  1214. * Merge cpu freelist into slab freelist. Typically we get here
  1215. * because both freelists are empty. So this is unlikely
  1216. * to occur.
  1217. */
  1218. while (unlikely(c->freelist)) {
  1219. void **object;
  1220. tail = 0; /* Hot objects. Put the slab first */
  1221. /* Retrieve object from cpu_freelist */
  1222. object = c->freelist;
  1223. c->freelist = c->freelist[c->offset];
  1224. /* And put onto the regular freelist */
  1225. object[c->offset] = page->freelist;
  1226. page->freelist = object;
  1227. page->inuse--;
  1228. }
  1229. c->page = NULL;
  1230. unfreeze_slab(s, page, tail);
  1231. }
  1232. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1233. {
  1234. stat(c, CPUSLAB_FLUSH);
  1235. slab_lock(c->page);
  1236. deactivate_slab(s, c);
  1237. }
  1238. /*
  1239. * Flush cpu slab.
  1240. *
  1241. * Called from IPI handler with interrupts disabled.
  1242. */
  1243. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1244. {
  1245. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1246. if (likely(c && c->page))
  1247. flush_slab(s, c);
  1248. }
  1249. static void flush_cpu_slab(void *d)
  1250. {
  1251. struct kmem_cache *s = d;
  1252. __flush_cpu_slab(s, smp_processor_id());
  1253. }
  1254. static void flush_all(struct kmem_cache *s)
  1255. {
  1256. on_each_cpu(flush_cpu_slab, s, 1);
  1257. }
  1258. /*
  1259. * Check if the objects in a per cpu structure fit numa
  1260. * locality expectations.
  1261. */
  1262. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1263. {
  1264. #ifdef CONFIG_NUMA
  1265. if (node != -1 && c->node != node)
  1266. return 0;
  1267. #endif
  1268. return 1;
  1269. }
  1270. /*
  1271. * Slow path. The lockless freelist is empty or we need to perform
  1272. * debugging duties.
  1273. *
  1274. * Interrupts are disabled.
  1275. *
  1276. * Processing is still very fast if new objects have been freed to the
  1277. * regular freelist. In that case we simply take over the regular freelist
  1278. * as the lockless freelist and zap the regular freelist.
  1279. *
  1280. * If that is not working then we fall back to the partial lists. We take the
  1281. * first element of the freelist as the object to allocate now and move the
  1282. * rest of the freelist to the lockless freelist.
  1283. *
  1284. * And if we were unable to get a new slab from the partial slab lists then
  1285. * we need to allocate a new slab. This is the slowest path since it involves
  1286. * a call to the page allocator and the setup of a new slab.
  1287. */
  1288. static void *__slab_alloc(struct kmem_cache *s,
  1289. gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
  1290. {
  1291. void **object;
  1292. struct page *new;
  1293. /* We handle __GFP_ZERO in the caller */
  1294. gfpflags &= ~__GFP_ZERO;
  1295. if (!c->page)
  1296. goto new_slab;
  1297. slab_lock(c->page);
  1298. if (unlikely(!node_match(c, node)))
  1299. goto another_slab;
  1300. stat(c, ALLOC_REFILL);
  1301. load_freelist:
  1302. object = c->page->freelist;
  1303. if (unlikely(!object))
  1304. goto another_slab;
  1305. if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
  1306. goto debug;
  1307. c->freelist = object[c->offset];
  1308. c->page->inuse = c->page->objects;
  1309. c->page->freelist = NULL;
  1310. c->node = page_to_nid(c->page);
  1311. unlock_out:
  1312. slab_unlock(c->page);
  1313. stat(c, ALLOC_SLOWPATH);
  1314. return object;
  1315. another_slab:
  1316. deactivate_slab(s, c);
  1317. new_slab:
  1318. new = get_partial(s, gfpflags, node);
  1319. if (new) {
  1320. c->page = new;
  1321. stat(c, ALLOC_FROM_PARTIAL);
  1322. goto load_freelist;
  1323. }
  1324. if (gfpflags & __GFP_WAIT)
  1325. local_irq_enable();
  1326. new = new_slab(s, gfpflags, node);
  1327. if (gfpflags & __GFP_WAIT)
  1328. local_irq_disable();
  1329. if (new) {
  1330. c = get_cpu_slab(s, smp_processor_id());
  1331. stat(c, ALLOC_SLAB);
  1332. if (c->page)
  1333. flush_slab(s, c);
  1334. slab_lock(new);
  1335. __SetPageSlubFrozen(new);
  1336. c->page = new;
  1337. goto load_freelist;
  1338. }
  1339. return NULL;
  1340. debug:
  1341. if (!alloc_debug_processing(s, c->page, object, addr))
  1342. goto another_slab;
  1343. c->page->inuse++;
  1344. c->page->freelist = object[c->offset];
  1345. c->node = -1;
  1346. goto unlock_out;
  1347. }
  1348. /*
  1349. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1350. * have the fastpath folded into their functions. So no function call
  1351. * overhead for requests that can be satisfied on the fastpath.
  1352. *
  1353. * The fastpath works by first checking if the lockless freelist can be used.
  1354. * If not then __slab_alloc is called for slow processing.
  1355. *
  1356. * Otherwise we can simply pick the next object from the lockless free list.
  1357. */
  1358. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1359. gfp_t gfpflags, int node, void *addr)
  1360. {
  1361. void **object;
  1362. struct kmem_cache_cpu *c;
  1363. unsigned long flags;
  1364. unsigned int objsize;
  1365. local_irq_save(flags);
  1366. c = get_cpu_slab(s, smp_processor_id());
  1367. objsize = c->objsize;
  1368. if (unlikely(!c->freelist || !node_match(c, node)))
  1369. object = __slab_alloc(s, gfpflags, node, addr, c);
  1370. else {
  1371. object = c->freelist;
  1372. c->freelist = object[c->offset];
  1373. stat(c, ALLOC_FASTPATH);
  1374. }
  1375. local_irq_restore(flags);
  1376. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1377. memset(object, 0, objsize);
  1378. return object;
  1379. }
  1380. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1381. {
  1382. return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
  1383. }
  1384. EXPORT_SYMBOL(kmem_cache_alloc);
  1385. #ifdef CONFIG_NUMA
  1386. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1387. {
  1388. return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
  1389. }
  1390. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1391. #endif
  1392. /*
  1393. * Slow patch handling. This may still be called frequently since objects
  1394. * have a longer lifetime than the cpu slabs in most processing loads.
  1395. *
  1396. * So we still attempt to reduce cache line usage. Just take the slab
  1397. * lock and free the item. If there is no additional partial page
  1398. * handling required then we can return immediately.
  1399. */
  1400. static void __slab_free(struct kmem_cache *s, struct page *page,
  1401. void *x, void *addr, unsigned int offset)
  1402. {
  1403. void *prior;
  1404. void **object = (void *)x;
  1405. struct kmem_cache_cpu *c;
  1406. c = get_cpu_slab(s, raw_smp_processor_id());
  1407. stat(c, FREE_SLOWPATH);
  1408. slab_lock(page);
  1409. if (unlikely(SLABDEBUG && PageSlubDebug(page)))
  1410. goto debug;
  1411. checks_ok:
  1412. prior = object[offset] = page->freelist;
  1413. page->freelist = object;
  1414. page->inuse--;
  1415. if (unlikely(PageSlubFrozen(page))) {
  1416. stat(c, FREE_FROZEN);
  1417. goto out_unlock;
  1418. }
  1419. if (unlikely(!page->inuse))
  1420. goto slab_empty;
  1421. /*
  1422. * Objects left in the slab. If it was not on the partial list before
  1423. * then add it.
  1424. */
  1425. if (unlikely(!prior)) {
  1426. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1427. stat(c, FREE_ADD_PARTIAL);
  1428. }
  1429. out_unlock:
  1430. slab_unlock(page);
  1431. return;
  1432. slab_empty:
  1433. if (prior) {
  1434. /*
  1435. * Slab still on the partial list.
  1436. */
  1437. remove_partial(s, page);
  1438. stat(c, FREE_REMOVE_PARTIAL);
  1439. }
  1440. slab_unlock(page);
  1441. stat(c, FREE_SLAB);
  1442. discard_slab(s, page);
  1443. return;
  1444. debug:
  1445. if (!free_debug_processing(s, page, x, addr))
  1446. goto out_unlock;
  1447. goto checks_ok;
  1448. }
  1449. /*
  1450. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1451. * can perform fastpath freeing without additional function calls.
  1452. *
  1453. * The fastpath is only possible if we are freeing to the current cpu slab
  1454. * of this processor. This typically the case if we have just allocated
  1455. * the item before.
  1456. *
  1457. * If fastpath is not possible then fall back to __slab_free where we deal
  1458. * with all sorts of special processing.
  1459. */
  1460. static __always_inline void slab_free(struct kmem_cache *s,
  1461. struct page *page, void *x, void *addr)
  1462. {
  1463. void **object = (void *)x;
  1464. struct kmem_cache_cpu *c;
  1465. unsigned long flags;
  1466. local_irq_save(flags);
  1467. c = get_cpu_slab(s, smp_processor_id());
  1468. debug_check_no_locks_freed(object, c->objsize);
  1469. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1470. debug_check_no_obj_freed(object, s->objsize);
  1471. if (likely(page == c->page && c->node >= 0)) {
  1472. object[c->offset] = c->freelist;
  1473. c->freelist = object;
  1474. stat(c, FREE_FASTPATH);
  1475. } else
  1476. __slab_free(s, page, x, addr, c->offset);
  1477. local_irq_restore(flags);
  1478. }
  1479. void kmem_cache_free(struct kmem_cache *s, void *x)
  1480. {
  1481. struct page *page;
  1482. page = virt_to_head_page(x);
  1483. slab_free(s, page, x, __builtin_return_address(0));
  1484. }
  1485. EXPORT_SYMBOL(kmem_cache_free);
  1486. /* Figure out on which slab object the object resides */
  1487. static struct page *get_object_page(const void *x)
  1488. {
  1489. struct page *page = virt_to_head_page(x);
  1490. if (!PageSlab(page))
  1491. return NULL;
  1492. return page;
  1493. }
  1494. /*
  1495. * Object placement in a slab is made very easy because we always start at
  1496. * offset 0. If we tune the size of the object to the alignment then we can
  1497. * get the required alignment by putting one properly sized object after
  1498. * another.
  1499. *
  1500. * Notice that the allocation order determines the sizes of the per cpu
  1501. * caches. Each processor has always one slab available for allocations.
  1502. * Increasing the allocation order reduces the number of times that slabs
  1503. * must be moved on and off the partial lists and is therefore a factor in
  1504. * locking overhead.
  1505. */
  1506. /*
  1507. * Mininum / Maximum order of slab pages. This influences locking overhead
  1508. * and slab fragmentation. A higher order reduces the number of partial slabs
  1509. * and increases the number of allocations possible without having to
  1510. * take the list_lock.
  1511. */
  1512. static int slub_min_order;
  1513. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1514. static int slub_min_objects;
  1515. /*
  1516. * Merge control. If this is set then no merging of slab caches will occur.
  1517. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1518. */
  1519. static int slub_nomerge;
  1520. /*
  1521. * Calculate the order of allocation given an slab object size.
  1522. *
  1523. * The order of allocation has significant impact on performance and other
  1524. * system components. Generally order 0 allocations should be preferred since
  1525. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1526. * be problematic to put into order 0 slabs because there may be too much
  1527. * unused space left. We go to a higher order if more than 1/16th of the slab
  1528. * would be wasted.
  1529. *
  1530. * In order to reach satisfactory performance we must ensure that a minimum
  1531. * number of objects is in one slab. Otherwise we may generate too much
  1532. * activity on the partial lists which requires taking the list_lock. This is
  1533. * less a concern for large slabs though which are rarely used.
  1534. *
  1535. * slub_max_order specifies the order where we begin to stop considering the
  1536. * number of objects in a slab as critical. If we reach slub_max_order then
  1537. * we try to keep the page order as low as possible. So we accept more waste
  1538. * of space in favor of a small page order.
  1539. *
  1540. * Higher order allocations also allow the placement of more objects in a
  1541. * slab and thereby reduce object handling overhead. If the user has
  1542. * requested a higher mininum order then we start with that one instead of
  1543. * the smallest order which will fit the object.
  1544. */
  1545. static inline int slab_order(int size, int min_objects,
  1546. int max_order, int fract_leftover)
  1547. {
  1548. int order;
  1549. int rem;
  1550. int min_order = slub_min_order;
  1551. if ((PAGE_SIZE << min_order) / size > 65535)
  1552. return get_order(size * 65535) - 1;
  1553. for (order = max(min_order,
  1554. fls(min_objects * size - 1) - PAGE_SHIFT);
  1555. order <= max_order; order++) {
  1556. unsigned long slab_size = PAGE_SIZE << order;
  1557. if (slab_size < min_objects * size)
  1558. continue;
  1559. rem = slab_size % size;
  1560. if (rem <= slab_size / fract_leftover)
  1561. break;
  1562. }
  1563. return order;
  1564. }
  1565. static inline int calculate_order(int size)
  1566. {
  1567. int order;
  1568. int min_objects;
  1569. int fraction;
  1570. /*
  1571. * Attempt to find best configuration for a slab. This
  1572. * works by first attempting to generate a layout with
  1573. * the best configuration and backing off gradually.
  1574. *
  1575. * First we reduce the acceptable waste in a slab. Then
  1576. * we reduce the minimum objects required in a slab.
  1577. */
  1578. min_objects = slub_min_objects;
  1579. if (!min_objects)
  1580. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1581. while (min_objects > 1) {
  1582. fraction = 16;
  1583. while (fraction >= 4) {
  1584. order = slab_order(size, min_objects,
  1585. slub_max_order, fraction);
  1586. if (order <= slub_max_order)
  1587. return order;
  1588. fraction /= 2;
  1589. }
  1590. min_objects /= 2;
  1591. }
  1592. /*
  1593. * We were unable to place multiple objects in a slab. Now
  1594. * lets see if we can place a single object there.
  1595. */
  1596. order = slab_order(size, 1, slub_max_order, 1);
  1597. if (order <= slub_max_order)
  1598. return order;
  1599. /*
  1600. * Doh this slab cannot be placed using slub_max_order.
  1601. */
  1602. order = slab_order(size, 1, MAX_ORDER, 1);
  1603. if (order <= MAX_ORDER)
  1604. return order;
  1605. return -ENOSYS;
  1606. }
  1607. /*
  1608. * Figure out what the alignment of the objects will be.
  1609. */
  1610. static unsigned long calculate_alignment(unsigned long flags,
  1611. unsigned long align, unsigned long size)
  1612. {
  1613. /*
  1614. * If the user wants hardware cache aligned objects then follow that
  1615. * suggestion if the object is sufficiently large.
  1616. *
  1617. * The hardware cache alignment cannot override the specified
  1618. * alignment though. If that is greater then use it.
  1619. */
  1620. if (flags & SLAB_HWCACHE_ALIGN) {
  1621. unsigned long ralign = cache_line_size();
  1622. while (size <= ralign / 2)
  1623. ralign /= 2;
  1624. align = max(align, ralign);
  1625. }
  1626. if (align < ARCH_SLAB_MINALIGN)
  1627. align = ARCH_SLAB_MINALIGN;
  1628. return ALIGN(align, sizeof(void *));
  1629. }
  1630. static void init_kmem_cache_cpu(struct kmem_cache *s,
  1631. struct kmem_cache_cpu *c)
  1632. {
  1633. c->page = NULL;
  1634. c->freelist = NULL;
  1635. c->node = 0;
  1636. c->offset = s->offset / sizeof(void *);
  1637. c->objsize = s->objsize;
  1638. #ifdef CONFIG_SLUB_STATS
  1639. memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
  1640. #endif
  1641. }
  1642. static void
  1643. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1644. {
  1645. n->nr_partial = 0;
  1646. /*
  1647. * The larger the object size is, the more pages we want on the partial
  1648. * list to avoid pounding the page allocator excessively.
  1649. */
  1650. n->min_partial = ilog2(s->size);
  1651. if (n->min_partial < MIN_PARTIAL)
  1652. n->min_partial = MIN_PARTIAL;
  1653. else if (n->min_partial > MAX_PARTIAL)
  1654. n->min_partial = MAX_PARTIAL;
  1655. spin_lock_init(&n->list_lock);
  1656. INIT_LIST_HEAD(&n->partial);
  1657. #ifdef CONFIG_SLUB_DEBUG
  1658. atomic_long_set(&n->nr_slabs, 0);
  1659. atomic_long_set(&n->total_objects, 0);
  1660. INIT_LIST_HEAD(&n->full);
  1661. #endif
  1662. }
  1663. #ifdef CONFIG_SMP
  1664. /*
  1665. * Per cpu array for per cpu structures.
  1666. *
  1667. * The per cpu array places all kmem_cache_cpu structures from one processor
  1668. * close together meaning that it becomes possible that multiple per cpu
  1669. * structures are contained in one cacheline. This may be particularly
  1670. * beneficial for the kmalloc caches.
  1671. *
  1672. * A desktop system typically has around 60-80 slabs. With 100 here we are
  1673. * likely able to get per cpu structures for all caches from the array defined
  1674. * here. We must be able to cover all kmalloc caches during bootstrap.
  1675. *
  1676. * If the per cpu array is exhausted then fall back to kmalloc
  1677. * of individual cachelines. No sharing is possible then.
  1678. */
  1679. #define NR_KMEM_CACHE_CPU 100
  1680. static DEFINE_PER_CPU(struct kmem_cache_cpu,
  1681. kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
  1682. static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
  1683. static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
  1684. static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
  1685. int cpu, gfp_t flags)
  1686. {
  1687. struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
  1688. if (c)
  1689. per_cpu(kmem_cache_cpu_free, cpu) =
  1690. (void *)c->freelist;
  1691. else {
  1692. /* Table overflow: So allocate ourselves */
  1693. c = kmalloc_node(
  1694. ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
  1695. flags, cpu_to_node(cpu));
  1696. if (!c)
  1697. return NULL;
  1698. }
  1699. init_kmem_cache_cpu(s, c);
  1700. return c;
  1701. }
  1702. static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
  1703. {
  1704. if (c < per_cpu(kmem_cache_cpu, cpu) ||
  1705. c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
  1706. kfree(c);
  1707. return;
  1708. }
  1709. c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
  1710. per_cpu(kmem_cache_cpu_free, cpu) = c;
  1711. }
  1712. static void free_kmem_cache_cpus(struct kmem_cache *s)
  1713. {
  1714. int cpu;
  1715. for_each_online_cpu(cpu) {
  1716. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1717. if (c) {
  1718. s->cpu_slab[cpu] = NULL;
  1719. free_kmem_cache_cpu(c, cpu);
  1720. }
  1721. }
  1722. }
  1723. static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1724. {
  1725. int cpu;
  1726. for_each_online_cpu(cpu) {
  1727. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1728. if (c)
  1729. continue;
  1730. c = alloc_kmem_cache_cpu(s, cpu, flags);
  1731. if (!c) {
  1732. free_kmem_cache_cpus(s);
  1733. return 0;
  1734. }
  1735. s->cpu_slab[cpu] = c;
  1736. }
  1737. return 1;
  1738. }
  1739. /*
  1740. * Initialize the per cpu array.
  1741. */
  1742. static void init_alloc_cpu_cpu(int cpu)
  1743. {
  1744. int i;
  1745. if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
  1746. return;
  1747. for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
  1748. free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
  1749. cpu_set(cpu, kmem_cach_cpu_free_init_once);
  1750. }
  1751. static void __init init_alloc_cpu(void)
  1752. {
  1753. int cpu;
  1754. for_each_online_cpu(cpu)
  1755. init_alloc_cpu_cpu(cpu);
  1756. }
  1757. #else
  1758. static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
  1759. static inline void init_alloc_cpu(void) {}
  1760. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1761. {
  1762. init_kmem_cache_cpu(s, &s->cpu_slab);
  1763. return 1;
  1764. }
  1765. #endif
  1766. #ifdef CONFIG_NUMA
  1767. /*
  1768. * No kmalloc_node yet so do it by hand. We know that this is the first
  1769. * slab on the node for this slabcache. There are no concurrent accesses
  1770. * possible.
  1771. *
  1772. * Note that this function only works on the kmalloc_node_cache
  1773. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1774. * memory on a fresh node that has no slab structures yet.
  1775. */
  1776. static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
  1777. int node)
  1778. {
  1779. struct page *page;
  1780. struct kmem_cache_node *n;
  1781. unsigned long flags;
  1782. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1783. page = new_slab(kmalloc_caches, gfpflags, node);
  1784. BUG_ON(!page);
  1785. if (page_to_nid(page) != node) {
  1786. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1787. "node %d\n", node);
  1788. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1789. "in order to be able to continue\n");
  1790. }
  1791. n = page->freelist;
  1792. BUG_ON(!n);
  1793. page->freelist = get_freepointer(kmalloc_caches, n);
  1794. page->inuse++;
  1795. kmalloc_caches->node[node] = n;
  1796. #ifdef CONFIG_SLUB_DEBUG
  1797. init_object(kmalloc_caches, n, 1);
  1798. init_tracking(kmalloc_caches, n);
  1799. #endif
  1800. init_kmem_cache_node(n, kmalloc_caches);
  1801. inc_slabs_node(kmalloc_caches, node, page->objects);
  1802. /*
  1803. * lockdep requires consistent irq usage for each lock
  1804. * so even though there cannot be a race this early in
  1805. * the boot sequence, we still disable irqs.
  1806. */
  1807. local_irq_save(flags);
  1808. add_partial(n, page, 0);
  1809. local_irq_restore(flags);
  1810. return n;
  1811. }
  1812. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1813. {
  1814. int node;
  1815. for_each_node_state(node, N_NORMAL_MEMORY) {
  1816. struct kmem_cache_node *n = s->node[node];
  1817. if (n && n != &s->local_node)
  1818. kmem_cache_free(kmalloc_caches, n);
  1819. s->node[node] = NULL;
  1820. }
  1821. }
  1822. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1823. {
  1824. int node;
  1825. int local_node;
  1826. if (slab_state >= UP)
  1827. local_node = page_to_nid(virt_to_page(s));
  1828. else
  1829. local_node = 0;
  1830. for_each_node_state(node, N_NORMAL_MEMORY) {
  1831. struct kmem_cache_node *n;
  1832. if (local_node == node)
  1833. n = &s->local_node;
  1834. else {
  1835. if (slab_state == DOWN) {
  1836. n = early_kmem_cache_node_alloc(gfpflags,
  1837. node);
  1838. continue;
  1839. }
  1840. n = kmem_cache_alloc_node(kmalloc_caches,
  1841. gfpflags, node);
  1842. if (!n) {
  1843. free_kmem_cache_nodes(s);
  1844. return 0;
  1845. }
  1846. }
  1847. s->node[node] = n;
  1848. init_kmem_cache_node(n, s);
  1849. }
  1850. return 1;
  1851. }
  1852. #else
  1853. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1854. {
  1855. }
  1856. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1857. {
  1858. init_kmem_cache_node(&s->local_node, s);
  1859. return 1;
  1860. }
  1861. #endif
  1862. /*
  1863. * calculate_sizes() determines the order and the distribution of data within
  1864. * a slab object.
  1865. */
  1866. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1867. {
  1868. unsigned long flags = s->flags;
  1869. unsigned long size = s->objsize;
  1870. unsigned long align = s->align;
  1871. int order;
  1872. /*
  1873. * Round up object size to the next word boundary. We can only
  1874. * place the free pointer at word boundaries and this determines
  1875. * the possible location of the free pointer.
  1876. */
  1877. size = ALIGN(size, sizeof(void *));
  1878. #ifdef CONFIG_SLUB_DEBUG
  1879. /*
  1880. * Determine if we can poison the object itself. If the user of
  1881. * the slab may touch the object after free or before allocation
  1882. * then we should never poison the object itself.
  1883. */
  1884. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1885. !s->ctor)
  1886. s->flags |= __OBJECT_POISON;
  1887. else
  1888. s->flags &= ~__OBJECT_POISON;
  1889. /*
  1890. * If we are Redzoning then check if there is some space between the
  1891. * end of the object and the free pointer. If not then add an
  1892. * additional word to have some bytes to store Redzone information.
  1893. */
  1894. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1895. size += sizeof(void *);
  1896. #endif
  1897. /*
  1898. * With that we have determined the number of bytes in actual use
  1899. * by the object. This is the potential offset to the free pointer.
  1900. */
  1901. s->inuse = size;
  1902. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1903. s->ctor)) {
  1904. /*
  1905. * Relocate free pointer after the object if it is not
  1906. * permitted to overwrite the first word of the object on
  1907. * kmem_cache_free.
  1908. *
  1909. * This is the case if we do RCU, have a constructor or
  1910. * destructor or are poisoning the objects.
  1911. */
  1912. s->offset = size;
  1913. size += sizeof(void *);
  1914. }
  1915. #ifdef CONFIG_SLUB_DEBUG
  1916. if (flags & SLAB_STORE_USER)
  1917. /*
  1918. * Need to store information about allocs and frees after
  1919. * the object.
  1920. */
  1921. size += 2 * sizeof(struct track);
  1922. if (flags & SLAB_RED_ZONE)
  1923. /*
  1924. * Add some empty padding so that we can catch
  1925. * overwrites from earlier objects rather than let
  1926. * tracking information or the free pointer be
  1927. * corrupted if an user writes before the start
  1928. * of the object.
  1929. */
  1930. size += sizeof(void *);
  1931. #endif
  1932. /*
  1933. * Determine the alignment based on various parameters that the
  1934. * user specified and the dynamic determination of cache line size
  1935. * on bootup.
  1936. */
  1937. align = calculate_alignment(flags, align, s->objsize);
  1938. /*
  1939. * SLUB stores one object immediately after another beginning from
  1940. * offset 0. In order to align the objects we have to simply size
  1941. * each object to conform to the alignment.
  1942. */
  1943. size = ALIGN(size, align);
  1944. s->size = size;
  1945. if (forced_order >= 0)
  1946. order = forced_order;
  1947. else
  1948. order = calculate_order(size);
  1949. if (order < 0)
  1950. return 0;
  1951. s->allocflags = 0;
  1952. if (order)
  1953. s->allocflags |= __GFP_COMP;
  1954. if (s->flags & SLAB_CACHE_DMA)
  1955. s->allocflags |= SLUB_DMA;
  1956. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1957. s->allocflags |= __GFP_RECLAIMABLE;
  1958. /*
  1959. * Determine the number of objects per slab
  1960. */
  1961. s->oo = oo_make(order, size);
  1962. s->min = oo_make(get_order(size), size);
  1963. if (oo_objects(s->oo) > oo_objects(s->max))
  1964. s->max = s->oo;
  1965. return !!oo_objects(s->oo);
  1966. }
  1967. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  1968. const char *name, size_t size,
  1969. size_t align, unsigned long flags,
  1970. void (*ctor)(void *))
  1971. {
  1972. memset(s, 0, kmem_size);
  1973. s->name = name;
  1974. s->ctor = ctor;
  1975. s->objsize = size;
  1976. s->align = align;
  1977. s->flags = kmem_cache_flags(size, flags, name, ctor);
  1978. if (!calculate_sizes(s, -1))
  1979. goto error;
  1980. s->refcount = 1;
  1981. #ifdef CONFIG_NUMA
  1982. s->remote_node_defrag_ratio = 1000;
  1983. #endif
  1984. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  1985. goto error;
  1986. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  1987. return 1;
  1988. free_kmem_cache_nodes(s);
  1989. error:
  1990. if (flags & SLAB_PANIC)
  1991. panic("Cannot create slab %s size=%lu realsize=%u "
  1992. "order=%u offset=%u flags=%lx\n",
  1993. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  1994. s->offset, flags);
  1995. return 0;
  1996. }
  1997. /*
  1998. * Check if a given pointer is valid
  1999. */
  2000. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2001. {
  2002. struct page *page;
  2003. page = get_object_page(object);
  2004. if (!page || s != page->slab)
  2005. /* No slab or wrong slab */
  2006. return 0;
  2007. if (!check_valid_pointer(s, page, object))
  2008. return 0;
  2009. /*
  2010. * We could also check if the object is on the slabs freelist.
  2011. * But this would be too expensive and it seems that the main
  2012. * purpose of kmem_ptr_valid() is to check if the object belongs
  2013. * to a certain slab.
  2014. */
  2015. return 1;
  2016. }
  2017. EXPORT_SYMBOL(kmem_ptr_validate);
  2018. /*
  2019. * Determine the size of a slab object
  2020. */
  2021. unsigned int kmem_cache_size(struct kmem_cache *s)
  2022. {
  2023. return s->objsize;
  2024. }
  2025. EXPORT_SYMBOL(kmem_cache_size);
  2026. const char *kmem_cache_name(struct kmem_cache *s)
  2027. {
  2028. return s->name;
  2029. }
  2030. EXPORT_SYMBOL(kmem_cache_name);
  2031. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2032. const char *text)
  2033. {
  2034. #ifdef CONFIG_SLUB_DEBUG
  2035. void *addr = page_address(page);
  2036. void *p;
  2037. DECLARE_BITMAP(map, page->objects);
  2038. bitmap_zero(map, page->objects);
  2039. slab_err(s, page, "%s", text);
  2040. slab_lock(page);
  2041. for_each_free_object(p, s, page->freelist)
  2042. set_bit(slab_index(p, s, addr), map);
  2043. for_each_object(p, s, addr, page->objects) {
  2044. if (!test_bit(slab_index(p, s, addr), map)) {
  2045. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2046. p, p - addr);
  2047. print_tracking(s, p);
  2048. }
  2049. }
  2050. slab_unlock(page);
  2051. #endif
  2052. }
  2053. /*
  2054. * Attempt to free all partial slabs on a node.
  2055. */
  2056. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2057. {
  2058. unsigned long flags;
  2059. struct page *page, *h;
  2060. spin_lock_irqsave(&n->list_lock, flags);
  2061. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2062. if (!page->inuse) {
  2063. list_del(&page->lru);
  2064. discard_slab(s, page);
  2065. n->nr_partial--;
  2066. } else {
  2067. list_slab_objects(s, page,
  2068. "Objects remaining on kmem_cache_close()");
  2069. }
  2070. }
  2071. spin_unlock_irqrestore(&n->list_lock, flags);
  2072. }
  2073. /*
  2074. * Release all resources used by a slab cache.
  2075. */
  2076. static inline int kmem_cache_close(struct kmem_cache *s)
  2077. {
  2078. int node;
  2079. flush_all(s);
  2080. /* Attempt to free all objects */
  2081. free_kmem_cache_cpus(s);
  2082. for_each_node_state(node, N_NORMAL_MEMORY) {
  2083. struct kmem_cache_node *n = get_node(s, node);
  2084. free_partial(s, n);
  2085. if (n->nr_partial || slabs_node(s, node))
  2086. return 1;
  2087. }
  2088. free_kmem_cache_nodes(s);
  2089. return 0;
  2090. }
  2091. /*
  2092. * Close a cache and release the kmem_cache structure
  2093. * (must be used for caches created using kmem_cache_create)
  2094. */
  2095. void kmem_cache_destroy(struct kmem_cache *s)
  2096. {
  2097. down_write(&slub_lock);
  2098. s->refcount--;
  2099. if (!s->refcount) {
  2100. list_del(&s->list);
  2101. up_write(&slub_lock);
  2102. if (kmem_cache_close(s)) {
  2103. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2104. "still has objects.\n", s->name, __func__);
  2105. dump_stack();
  2106. }
  2107. sysfs_slab_remove(s);
  2108. } else
  2109. up_write(&slub_lock);
  2110. }
  2111. EXPORT_SYMBOL(kmem_cache_destroy);
  2112. /********************************************************************
  2113. * Kmalloc subsystem
  2114. *******************************************************************/
  2115. struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
  2116. EXPORT_SYMBOL(kmalloc_caches);
  2117. static int __init setup_slub_min_order(char *str)
  2118. {
  2119. get_option(&str, &slub_min_order);
  2120. return 1;
  2121. }
  2122. __setup("slub_min_order=", setup_slub_min_order);
  2123. static int __init setup_slub_max_order(char *str)
  2124. {
  2125. get_option(&str, &slub_max_order);
  2126. return 1;
  2127. }
  2128. __setup("slub_max_order=", setup_slub_max_order);
  2129. static int __init setup_slub_min_objects(char *str)
  2130. {
  2131. get_option(&str, &slub_min_objects);
  2132. return 1;
  2133. }
  2134. __setup("slub_min_objects=", setup_slub_min_objects);
  2135. static int __init setup_slub_nomerge(char *str)
  2136. {
  2137. slub_nomerge = 1;
  2138. return 1;
  2139. }
  2140. __setup("slub_nomerge", setup_slub_nomerge);
  2141. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2142. const char *name, int size, gfp_t gfp_flags)
  2143. {
  2144. unsigned int flags = 0;
  2145. if (gfp_flags & SLUB_DMA)
  2146. flags = SLAB_CACHE_DMA;
  2147. down_write(&slub_lock);
  2148. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2149. flags, NULL))
  2150. goto panic;
  2151. list_add(&s->list, &slab_caches);
  2152. up_write(&slub_lock);
  2153. if (sysfs_slab_add(s))
  2154. goto panic;
  2155. return s;
  2156. panic:
  2157. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2158. }
  2159. #ifdef CONFIG_ZONE_DMA
  2160. static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
  2161. static void sysfs_add_func(struct work_struct *w)
  2162. {
  2163. struct kmem_cache *s;
  2164. down_write(&slub_lock);
  2165. list_for_each_entry(s, &slab_caches, list) {
  2166. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2167. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2168. sysfs_slab_add(s);
  2169. }
  2170. }
  2171. up_write(&slub_lock);
  2172. }
  2173. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2174. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2175. {
  2176. struct kmem_cache *s;
  2177. char *text;
  2178. size_t realsize;
  2179. s = kmalloc_caches_dma[index];
  2180. if (s)
  2181. return s;
  2182. /* Dynamically create dma cache */
  2183. if (flags & __GFP_WAIT)
  2184. down_write(&slub_lock);
  2185. else {
  2186. if (!down_write_trylock(&slub_lock))
  2187. goto out;
  2188. }
  2189. if (kmalloc_caches_dma[index])
  2190. goto unlock_out;
  2191. realsize = kmalloc_caches[index].objsize;
  2192. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
  2193. (unsigned int)realsize);
  2194. s = kmalloc(kmem_size, flags & ~SLUB_DMA);
  2195. if (!s || !text || !kmem_cache_open(s, flags, text,
  2196. realsize, ARCH_KMALLOC_MINALIGN,
  2197. SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
  2198. kfree(s);
  2199. kfree(text);
  2200. goto unlock_out;
  2201. }
  2202. list_add(&s->list, &slab_caches);
  2203. kmalloc_caches_dma[index] = s;
  2204. schedule_work(&sysfs_add_work);
  2205. unlock_out:
  2206. up_write(&slub_lock);
  2207. out:
  2208. return kmalloc_caches_dma[index];
  2209. }
  2210. #endif
  2211. /*
  2212. * Conversion table for small slabs sizes / 8 to the index in the
  2213. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2214. * of two cache sizes there. The size of larger slabs can be determined using
  2215. * fls.
  2216. */
  2217. static s8 size_index[24] = {
  2218. 3, /* 8 */
  2219. 4, /* 16 */
  2220. 5, /* 24 */
  2221. 5, /* 32 */
  2222. 6, /* 40 */
  2223. 6, /* 48 */
  2224. 6, /* 56 */
  2225. 6, /* 64 */
  2226. 1, /* 72 */
  2227. 1, /* 80 */
  2228. 1, /* 88 */
  2229. 1, /* 96 */
  2230. 7, /* 104 */
  2231. 7, /* 112 */
  2232. 7, /* 120 */
  2233. 7, /* 128 */
  2234. 2, /* 136 */
  2235. 2, /* 144 */
  2236. 2, /* 152 */
  2237. 2, /* 160 */
  2238. 2, /* 168 */
  2239. 2, /* 176 */
  2240. 2, /* 184 */
  2241. 2 /* 192 */
  2242. };
  2243. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2244. {
  2245. int index;
  2246. if (size <= 192) {
  2247. if (!size)
  2248. return ZERO_SIZE_PTR;
  2249. index = size_index[(size - 1) / 8];
  2250. } else
  2251. index = fls(size - 1);
  2252. #ifdef CONFIG_ZONE_DMA
  2253. if (unlikely((flags & SLUB_DMA)))
  2254. return dma_kmalloc_cache(index, flags);
  2255. #endif
  2256. return &kmalloc_caches[index];
  2257. }
  2258. void *__kmalloc(size_t size, gfp_t flags)
  2259. {
  2260. struct kmem_cache *s;
  2261. if (unlikely(size > PAGE_SIZE))
  2262. return kmalloc_large(size, flags);
  2263. s = get_slab(size, flags);
  2264. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2265. return s;
  2266. return slab_alloc(s, flags, -1, __builtin_return_address(0));
  2267. }
  2268. EXPORT_SYMBOL(__kmalloc);
  2269. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2270. {
  2271. struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
  2272. get_order(size));
  2273. if (page)
  2274. return page_address(page);
  2275. else
  2276. return NULL;
  2277. }
  2278. #ifdef CONFIG_NUMA
  2279. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2280. {
  2281. struct kmem_cache *s;
  2282. if (unlikely(size > PAGE_SIZE))
  2283. return kmalloc_large_node(size, flags, node);
  2284. s = get_slab(size, flags);
  2285. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2286. return s;
  2287. return slab_alloc(s, flags, node, __builtin_return_address(0));
  2288. }
  2289. EXPORT_SYMBOL(__kmalloc_node);
  2290. #endif
  2291. size_t ksize(const void *object)
  2292. {
  2293. struct page *page;
  2294. struct kmem_cache *s;
  2295. if (unlikely(object == ZERO_SIZE_PTR))
  2296. return 0;
  2297. page = virt_to_head_page(object);
  2298. if (unlikely(!PageSlab(page))) {
  2299. WARN_ON(!PageCompound(page));
  2300. return PAGE_SIZE << compound_order(page);
  2301. }
  2302. s = page->slab;
  2303. #ifdef CONFIG_SLUB_DEBUG
  2304. /*
  2305. * Debugging requires use of the padding between object
  2306. * and whatever may come after it.
  2307. */
  2308. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2309. return s->objsize;
  2310. #endif
  2311. /*
  2312. * If we have the need to store the freelist pointer
  2313. * back there or track user information then we can
  2314. * only use the space before that information.
  2315. */
  2316. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2317. return s->inuse;
  2318. /*
  2319. * Else we can use all the padding etc for the allocation
  2320. */
  2321. return s->size;
  2322. }
  2323. void kfree(const void *x)
  2324. {
  2325. struct page *page;
  2326. void *object = (void *)x;
  2327. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2328. return;
  2329. page = virt_to_head_page(x);
  2330. if (unlikely(!PageSlab(page))) {
  2331. BUG_ON(!PageCompound(page));
  2332. put_page(page);
  2333. return;
  2334. }
  2335. slab_free(page->slab, page, object, __builtin_return_address(0));
  2336. }
  2337. EXPORT_SYMBOL(kfree);
  2338. /*
  2339. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2340. * the remaining slabs by the number of items in use. The slabs with the
  2341. * most items in use come first. New allocations will then fill those up
  2342. * and thus they can be removed from the partial lists.
  2343. *
  2344. * The slabs with the least items are placed last. This results in them
  2345. * being allocated from last increasing the chance that the last objects
  2346. * are freed in them.
  2347. */
  2348. int kmem_cache_shrink(struct kmem_cache *s)
  2349. {
  2350. int node;
  2351. int i;
  2352. struct kmem_cache_node *n;
  2353. struct page *page;
  2354. struct page *t;
  2355. int objects = oo_objects(s->max);
  2356. struct list_head *slabs_by_inuse =
  2357. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2358. unsigned long flags;
  2359. if (!slabs_by_inuse)
  2360. return -ENOMEM;
  2361. flush_all(s);
  2362. for_each_node_state(node, N_NORMAL_MEMORY) {
  2363. n = get_node(s, node);
  2364. if (!n->nr_partial)
  2365. continue;
  2366. for (i = 0; i < objects; i++)
  2367. INIT_LIST_HEAD(slabs_by_inuse + i);
  2368. spin_lock_irqsave(&n->list_lock, flags);
  2369. /*
  2370. * Build lists indexed by the items in use in each slab.
  2371. *
  2372. * Note that concurrent frees may occur while we hold the
  2373. * list_lock. page->inuse here is the upper limit.
  2374. */
  2375. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2376. if (!page->inuse && slab_trylock(page)) {
  2377. /*
  2378. * Must hold slab lock here because slab_free
  2379. * may have freed the last object and be
  2380. * waiting to release the slab.
  2381. */
  2382. list_del(&page->lru);
  2383. n->nr_partial--;
  2384. slab_unlock(page);
  2385. discard_slab(s, page);
  2386. } else {
  2387. list_move(&page->lru,
  2388. slabs_by_inuse + page->inuse);
  2389. }
  2390. }
  2391. /*
  2392. * Rebuild the partial list with the slabs filled up most
  2393. * first and the least used slabs at the end.
  2394. */
  2395. for (i = objects - 1; i >= 0; i--)
  2396. list_splice(slabs_by_inuse + i, n->partial.prev);
  2397. spin_unlock_irqrestore(&n->list_lock, flags);
  2398. }
  2399. kfree(slabs_by_inuse);
  2400. return 0;
  2401. }
  2402. EXPORT_SYMBOL(kmem_cache_shrink);
  2403. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2404. static int slab_mem_going_offline_callback(void *arg)
  2405. {
  2406. struct kmem_cache *s;
  2407. down_read(&slub_lock);
  2408. list_for_each_entry(s, &slab_caches, list)
  2409. kmem_cache_shrink(s);
  2410. up_read(&slub_lock);
  2411. return 0;
  2412. }
  2413. static void slab_mem_offline_callback(void *arg)
  2414. {
  2415. struct kmem_cache_node *n;
  2416. struct kmem_cache *s;
  2417. struct memory_notify *marg = arg;
  2418. int offline_node;
  2419. offline_node = marg->status_change_nid;
  2420. /*
  2421. * If the node still has available memory. we need kmem_cache_node
  2422. * for it yet.
  2423. */
  2424. if (offline_node < 0)
  2425. return;
  2426. down_read(&slub_lock);
  2427. list_for_each_entry(s, &slab_caches, list) {
  2428. n = get_node(s, offline_node);
  2429. if (n) {
  2430. /*
  2431. * if n->nr_slabs > 0, slabs still exist on the node
  2432. * that is going down. We were unable to free them,
  2433. * and offline_pages() function shoudn't call this
  2434. * callback. So, we must fail.
  2435. */
  2436. BUG_ON(slabs_node(s, offline_node));
  2437. s->node[offline_node] = NULL;
  2438. kmem_cache_free(kmalloc_caches, n);
  2439. }
  2440. }
  2441. up_read(&slub_lock);
  2442. }
  2443. static int slab_mem_going_online_callback(void *arg)
  2444. {
  2445. struct kmem_cache_node *n;
  2446. struct kmem_cache *s;
  2447. struct memory_notify *marg = arg;
  2448. int nid = marg->status_change_nid;
  2449. int ret = 0;
  2450. /*
  2451. * If the node's memory is already available, then kmem_cache_node is
  2452. * already created. Nothing to do.
  2453. */
  2454. if (nid < 0)
  2455. return 0;
  2456. /*
  2457. * We are bringing a node online. No memory is available yet. We must
  2458. * allocate a kmem_cache_node structure in order to bring the node
  2459. * online.
  2460. */
  2461. down_read(&slub_lock);
  2462. list_for_each_entry(s, &slab_caches, list) {
  2463. /*
  2464. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2465. * since memory is not yet available from the node that
  2466. * is brought up.
  2467. */
  2468. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2469. if (!n) {
  2470. ret = -ENOMEM;
  2471. goto out;
  2472. }
  2473. init_kmem_cache_node(n, s);
  2474. s->node[nid] = n;
  2475. }
  2476. out:
  2477. up_read(&slub_lock);
  2478. return ret;
  2479. }
  2480. static int slab_memory_callback(struct notifier_block *self,
  2481. unsigned long action, void *arg)
  2482. {
  2483. int ret = 0;
  2484. switch (action) {
  2485. case MEM_GOING_ONLINE:
  2486. ret = slab_mem_going_online_callback(arg);
  2487. break;
  2488. case MEM_GOING_OFFLINE:
  2489. ret = slab_mem_going_offline_callback(arg);
  2490. break;
  2491. case MEM_OFFLINE:
  2492. case MEM_CANCEL_ONLINE:
  2493. slab_mem_offline_callback(arg);
  2494. break;
  2495. case MEM_ONLINE:
  2496. case MEM_CANCEL_OFFLINE:
  2497. break;
  2498. }
  2499. ret = notifier_from_errno(ret);
  2500. return ret;
  2501. }
  2502. #endif /* CONFIG_MEMORY_HOTPLUG */
  2503. /********************************************************************
  2504. * Basic setup of slabs
  2505. *******************************************************************/
  2506. void __init kmem_cache_init(void)
  2507. {
  2508. int i;
  2509. int caches = 0;
  2510. init_alloc_cpu();
  2511. #ifdef CONFIG_NUMA
  2512. /*
  2513. * Must first have the slab cache available for the allocations of the
  2514. * struct kmem_cache_node's. There is special bootstrap code in
  2515. * kmem_cache_open for slab_state == DOWN.
  2516. */
  2517. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2518. sizeof(struct kmem_cache_node), GFP_KERNEL);
  2519. kmalloc_caches[0].refcount = -1;
  2520. caches++;
  2521. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2522. #endif
  2523. /* Able to allocate the per node structures */
  2524. slab_state = PARTIAL;
  2525. /* Caches that are not of the two-to-the-power-of size */
  2526. if (KMALLOC_MIN_SIZE <= 64) {
  2527. create_kmalloc_cache(&kmalloc_caches[1],
  2528. "kmalloc-96", 96, GFP_KERNEL);
  2529. caches++;
  2530. create_kmalloc_cache(&kmalloc_caches[2],
  2531. "kmalloc-192", 192, GFP_KERNEL);
  2532. caches++;
  2533. }
  2534. for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
  2535. create_kmalloc_cache(&kmalloc_caches[i],
  2536. "kmalloc", 1 << i, GFP_KERNEL);
  2537. caches++;
  2538. }
  2539. /*
  2540. * Patch up the size_index table if we have strange large alignment
  2541. * requirements for the kmalloc array. This is only the case for
  2542. * MIPS it seems. The standard arches will not generate any code here.
  2543. *
  2544. * Largest permitted alignment is 256 bytes due to the way we
  2545. * handle the index determination for the smaller caches.
  2546. *
  2547. * Make sure that nothing crazy happens if someone starts tinkering
  2548. * around with ARCH_KMALLOC_MINALIGN
  2549. */
  2550. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2551. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2552. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
  2553. size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
  2554. if (KMALLOC_MIN_SIZE == 128) {
  2555. /*
  2556. * The 192 byte sized cache is not used if the alignment
  2557. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2558. * instead.
  2559. */
  2560. for (i = 128 + 8; i <= 192; i += 8)
  2561. size_index[(i - 1) / 8] = 8;
  2562. }
  2563. slab_state = UP;
  2564. /* Provide the correct kmalloc names now that the caches are up */
  2565. for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
  2566. kmalloc_caches[i]. name =
  2567. kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
  2568. #ifdef CONFIG_SMP
  2569. register_cpu_notifier(&slab_notifier);
  2570. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2571. nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
  2572. #else
  2573. kmem_size = sizeof(struct kmem_cache);
  2574. #endif
  2575. printk(KERN_INFO
  2576. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2577. " CPUs=%d, Nodes=%d\n",
  2578. caches, cache_line_size(),
  2579. slub_min_order, slub_max_order, slub_min_objects,
  2580. nr_cpu_ids, nr_node_ids);
  2581. }
  2582. /*
  2583. * Find a mergeable slab cache
  2584. */
  2585. static int slab_unmergeable(struct kmem_cache *s)
  2586. {
  2587. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2588. return 1;
  2589. if (s->ctor)
  2590. return 1;
  2591. /*
  2592. * We may have set a slab to be unmergeable during bootstrap.
  2593. */
  2594. if (s->refcount < 0)
  2595. return 1;
  2596. return 0;
  2597. }
  2598. static struct kmem_cache *find_mergeable(size_t size,
  2599. size_t align, unsigned long flags, const char *name,
  2600. void (*ctor)(void *))
  2601. {
  2602. struct kmem_cache *s;
  2603. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2604. return NULL;
  2605. if (ctor)
  2606. return NULL;
  2607. size = ALIGN(size, sizeof(void *));
  2608. align = calculate_alignment(flags, align, size);
  2609. size = ALIGN(size, align);
  2610. flags = kmem_cache_flags(size, flags, name, NULL);
  2611. list_for_each_entry(s, &slab_caches, list) {
  2612. if (slab_unmergeable(s))
  2613. continue;
  2614. if (size > s->size)
  2615. continue;
  2616. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2617. continue;
  2618. /*
  2619. * Check if alignment is compatible.
  2620. * Courtesy of Adrian Drzewiecki
  2621. */
  2622. if ((s->size & ~(align - 1)) != s->size)
  2623. continue;
  2624. if (s->size - size >= sizeof(void *))
  2625. continue;
  2626. return s;
  2627. }
  2628. return NULL;
  2629. }
  2630. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2631. size_t align, unsigned long flags, void (*ctor)(void *))
  2632. {
  2633. struct kmem_cache *s;
  2634. down_write(&slub_lock);
  2635. s = find_mergeable(size, align, flags, name, ctor);
  2636. if (s) {
  2637. int cpu;
  2638. s->refcount++;
  2639. /*
  2640. * Adjust the object sizes so that we clear
  2641. * the complete object on kzalloc.
  2642. */
  2643. s->objsize = max(s->objsize, (int)size);
  2644. /*
  2645. * And then we need to update the object size in the
  2646. * per cpu structures
  2647. */
  2648. for_each_online_cpu(cpu)
  2649. get_cpu_slab(s, cpu)->objsize = s->objsize;
  2650. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2651. up_write(&slub_lock);
  2652. if (sysfs_slab_alias(s, name))
  2653. goto err;
  2654. return s;
  2655. }
  2656. s = kmalloc(kmem_size, GFP_KERNEL);
  2657. if (s) {
  2658. if (kmem_cache_open(s, GFP_KERNEL, name,
  2659. size, align, flags, ctor)) {
  2660. list_add(&s->list, &slab_caches);
  2661. up_write(&slub_lock);
  2662. if (sysfs_slab_add(s))
  2663. goto err;
  2664. return s;
  2665. }
  2666. kfree(s);
  2667. }
  2668. up_write(&slub_lock);
  2669. err:
  2670. if (flags & SLAB_PANIC)
  2671. panic("Cannot create slabcache %s\n", name);
  2672. else
  2673. s = NULL;
  2674. return s;
  2675. }
  2676. EXPORT_SYMBOL(kmem_cache_create);
  2677. #ifdef CONFIG_SMP
  2678. /*
  2679. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2680. * necessary.
  2681. */
  2682. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2683. unsigned long action, void *hcpu)
  2684. {
  2685. long cpu = (long)hcpu;
  2686. struct kmem_cache *s;
  2687. unsigned long flags;
  2688. switch (action) {
  2689. case CPU_UP_PREPARE:
  2690. case CPU_UP_PREPARE_FROZEN:
  2691. init_alloc_cpu_cpu(cpu);
  2692. down_read(&slub_lock);
  2693. list_for_each_entry(s, &slab_caches, list)
  2694. s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
  2695. GFP_KERNEL);
  2696. up_read(&slub_lock);
  2697. break;
  2698. case CPU_UP_CANCELED:
  2699. case CPU_UP_CANCELED_FROZEN:
  2700. case CPU_DEAD:
  2701. case CPU_DEAD_FROZEN:
  2702. down_read(&slub_lock);
  2703. list_for_each_entry(s, &slab_caches, list) {
  2704. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2705. local_irq_save(flags);
  2706. __flush_cpu_slab(s, cpu);
  2707. local_irq_restore(flags);
  2708. free_kmem_cache_cpu(c, cpu);
  2709. s->cpu_slab[cpu] = NULL;
  2710. }
  2711. up_read(&slub_lock);
  2712. break;
  2713. default:
  2714. break;
  2715. }
  2716. return NOTIFY_OK;
  2717. }
  2718. static struct notifier_block __cpuinitdata slab_notifier = {
  2719. .notifier_call = slab_cpuup_callback
  2720. };
  2721. #endif
  2722. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
  2723. {
  2724. struct kmem_cache *s;
  2725. if (unlikely(size > PAGE_SIZE))
  2726. return kmalloc_large(size, gfpflags);
  2727. s = get_slab(size, gfpflags);
  2728. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2729. return s;
  2730. return slab_alloc(s, gfpflags, -1, caller);
  2731. }
  2732. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2733. int node, void *caller)
  2734. {
  2735. struct kmem_cache *s;
  2736. if (unlikely(size > PAGE_SIZE))
  2737. return kmalloc_large_node(size, gfpflags, node);
  2738. s = get_slab(size, gfpflags);
  2739. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2740. return s;
  2741. return slab_alloc(s, gfpflags, node, caller);
  2742. }
  2743. #ifdef CONFIG_SLUB_DEBUG
  2744. static unsigned long count_partial(struct kmem_cache_node *n,
  2745. int (*get_count)(struct page *))
  2746. {
  2747. unsigned long flags;
  2748. unsigned long x = 0;
  2749. struct page *page;
  2750. spin_lock_irqsave(&n->list_lock, flags);
  2751. list_for_each_entry(page, &n->partial, lru)
  2752. x += get_count(page);
  2753. spin_unlock_irqrestore(&n->list_lock, flags);
  2754. return x;
  2755. }
  2756. static int count_inuse(struct page *page)
  2757. {
  2758. return page->inuse;
  2759. }
  2760. static int count_total(struct page *page)
  2761. {
  2762. return page->objects;
  2763. }
  2764. static int count_free(struct page *page)
  2765. {
  2766. return page->objects - page->inuse;
  2767. }
  2768. static int validate_slab(struct kmem_cache *s, struct page *page,
  2769. unsigned long *map)
  2770. {
  2771. void *p;
  2772. void *addr = page_address(page);
  2773. if (!check_slab(s, page) ||
  2774. !on_freelist(s, page, NULL))
  2775. return 0;
  2776. /* Now we know that a valid freelist exists */
  2777. bitmap_zero(map, page->objects);
  2778. for_each_free_object(p, s, page->freelist) {
  2779. set_bit(slab_index(p, s, addr), map);
  2780. if (!check_object(s, page, p, 0))
  2781. return 0;
  2782. }
  2783. for_each_object(p, s, addr, page->objects)
  2784. if (!test_bit(slab_index(p, s, addr), map))
  2785. if (!check_object(s, page, p, 1))
  2786. return 0;
  2787. return 1;
  2788. }
  2789. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2790. unsigned long *map)
  2791. {
  2792. if (slab_trylock(page)) {
  2793. validate_slab(s, page, map);
  2794. slab_unlock(page);
  2795. } else
  2796. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2797. s->name, page);
  2798. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2799. if (!PageSlubDebug(page))
  2800. printk(KERN_ERR "SLUB %s: SlubDebug not set "
  2801. "on slab 0x%p\n", s->name, page);
  2802. } else {
  2803. if (PageSlubDebug(page))
  2804. printk(KERN_ERR "SLUB %s: SlubDebug set on "
  2805. "slab 0x%p\n", s->name, page);
  2806. }
  2807. }
  2808. static int validate_slab_node(struct kmem_cache *s,
  2809. struct kmem_cache_node *n, unsigned long *map)
  2810. {
  2811. unsigned long count = 0;
  2812. struct page *page;
  2813. unsigned long flags;
  2814. spin_lock_irqsave(&n->list_lock, flags);
  2815. list_for_each_entry(page, &n->partial, lru) {
  2816. validate_slab_slab(s, page, map);
  2817. count++;
  2818. }
  2819. if (count != n->nr_partial)
  2820. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2821. "counter=%ld\n", s->name, count, n->nr_partial);
  2822. if (!(s->flags & SLAB_STORE_USER))
  2823. goto out;
  2824. list_for_each_entry(page, &n->full, lru) {
  2825. validate_slab_slab(s, page, map);
  2826. count++;
  2827. }
  2828. if (count != atomic_long_read(&n->nr_slabs))
  2829. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2830. "counter=%ld\n", s->name, count,
  2831. atomic_long_read(&n->nr_slabs));
  2832. out:
  2833. spin_unlock_irqrestore(&n->list_lock, flags);
  2834. return count;
  2835. }
  2836. static long validate_slab_cache(struct kmem_cache *s)
  2837. {
  2838. int node;
  2839. unsigned long count = 0;
  2840. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2841. sizeof(unsigned long), GFP_KERNEL);
  2842. if (!map)
  2843. return -ENOMEM;
  2844. flush_all(s);
  2845. for_each_node_state(node, N_NORMAL_MEMORY) {
  2846. struct kmem_cache_node *n = get_node(s, node);
  2847. count += validate_slab_node(s, n, map);
  2848. }
  2849. kfree(map);
  2850. return count;
  2851. }
  2852. #ifdef SLUB_RESILIENCY_TEST
  2853. static void resiliency_test(void)
  2854. {
  2855. u8 *p;
  2856. printk(KERN_ERR "SLUB resiliency testing\n");
  2857. printk(KERN_ERR "-----------------------\n");
  2858. printk(KERN_ERR "A. Corruption after allocation\n");
  2859. p = kzalloc(16, GFP_KERNEL);
  2860. p[16] = 0x12;
  2861. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2862. " 0x12->0x%p\n\n", p + 16);
  2863. validate_slab_cache(kmalloc_caches + 4);
  2864. /* Hmmm... The next two are dangerous */
  2865. p = kzalloc(32, GFP_KERNEL);
  2866. p[32 + sizeof(void *)] = 0x34;
  2867. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2868. " 0x34 -> -0x%p\n", p);
  2869. printk(KERN_ERR
  2870. "If allocated object is overwritten then not detectable\n\n");
  2871. validate_slab_cache(kmalloc_caches + 5);
  2872. p = kzalloc(64, GFP_KERNEL);
  2873. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2874. *p = 0x56;
  2875. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2876. p);
  2877. printk(KERN_ERR
  2878. "If allocated object is overwritten then not detectable\n\n");
  2879. validate_slab_cache(kmalloc_caches + 6);
  2880. printk(KERN_ERR "\nB. Corruption after free\n");
  2881. p = kzalloc(128, GFP_KERNEL);
  2882. kfree(p);
  2883. *p = 0x78;
  2884. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2885. validate_slab_cache(kmalloc_caches + 7);
  2886. p = kzalloc(256, GFP_KERNEL);
  2887. kfree(p);
  2888. p[50] = 0x9a;
  2889. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  2890. p);
  2891. validate_slab_cache(kmalloc_caches + 8);
  2892. p = kzalloc(512, GFP_KERNEL);
  2893. kfree(p);
  2894. p[512] = 0xab;
  2895. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2896. validate_slab_cache(kmalloc_caches + 9);
  2897. }
  2898. #else
  2899. static void resiliency_test(void) {};
  2900. #endif
  2901. /*
  2902. * Generate lists of code addresses where slabcache objects are allocated
  2903. * and freed.
  2904. */
  2905. struct location {
  2906. unsigned long count;
  2907. void *addr;
  2908. long long sum_time;
  2909. long min_time;
  2910. long max_time;
  2911. long min_pid;
  2912. long max_pid;
  2913. cpumask_t cpus;
  2914. nodemask_t nodes;
  2915. };
  2916. struct loc_track {
  2917. unsigned long max;
  2918. unsigned long count;
  2919. struct location *loc;
  2920. };
  2921. static void free_loc_track(struct loc_track *t)
  2922. {
  2923. if (t->max)
  2924. free_pages((unsigned long)t->loc,
  2925. get_order(sizeof(struct location) * t->max));
  2926. }
  2927. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2928. {
  2929. struct location *l;
  2930. int order;
  2931. order = get_order(sizeof(struct location) * max);
  2932. l = (void *)__get_free_pages(flags, order);
  2933. if (!l)
  2934. return 0;
  2935. if (t->count) {
  2936. memcpy(l, t->loc, sizeof(struct location) * t->count);
  2937. free_loc_track(t);
  2938. }
  2939. t->max = max;
  2940. t->loc = l;
  2941. return 1;
  2942. }
  2943. static int add_location(struct loc_track *t, struct kmem_cache *s,
  2944. const struct track *track)
  2945. {
  2946. long start, end, pos;
  2947. struct location *l;
  2948. void *caddr;
  2949. unsigned long age = jiffies - track->when;
  2950. start = -1;
  2951. end = t->count;
  2952. for ( ; ; ) {
  2953. pos = start + (end - start + 1) / 2;
  2954. /*
  2955. * There is nothing at "end". If we end up there
  2956. * we need to add something to before end.
  2957. */
  2958. if (pos == end)
  2959. break;
  2960. caddr = t->loc[pos].addr;
  2961. if (track->addr == caddr) {
  2962. l = &t->loc[pos];
  2963. l->count++;
  2964. if (track->when) {
  2965. l->sum_time += age;
  2966. if (age < l->min_time)
  2967. l->min_time = age;
  2968. if (age > l->max_time)
  2969. l->max_time = age;
  2970. if (track->pid < l->min_pid)
  2971. l->min_pid = track->pid;
  2972. if (track->pid > l->max_pid)
  2973. l->max_pid = track->pid;
  2974. cpu_set(track->cpu, l->cpus);
  2975. }
  2976. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2977. return 1;
  2978. }
  2979. if (track->addr < caddr)
  2980. end = pos;
  2981. else
  2982. start = pos;
  2983. }
  2984. /*
  2985. * Not found. Insert new tracking element.
  2986. */
  2987. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  2988. return 0;
  2989. l = t->loc + pos;
  2990. if (pos < t->count)
  2991. memmove(l + 1, l,
  2992. (t->count - pos) * sizeof(struct location));
  2993. t->count++;
  2994. l->count = 1;
  2995. l->addr = track->addr;
  2996. l->sum_time = age;
  2997. l->min_time = age;
  2998. l->max_time = age;
  2999. l->min_pid = track->pid;
  3000. l->max_pid = track->pid;
  3001. cpus_clear(l->cpus);
  3002. cpu_set(track->cpu, l->cpus);
  3003. nodes_clear(l->nodes);
  3004. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3005. return 1;
  3006. }
  3007. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3008. struct page *page, enum track_item alloc)
  3009. {
  3010. void *addr = page_address(page);
  3011. DECLARE_BITMAP(map, page->objects);
  3012. void *p;
  3013. bitmap_zero(map, page->objects);
  3014. for_each_free_object(p, s, page->freelist)
  3015. set_bit(slab_index(p, s, addr), map);
  3016. for_each_object(p, s, addr, page->objects)
  3017. if (!test_bit(slab_index(p, s, addr), map))
  3018. add_location(t, s, get_track(s, p, alloc));
  3019. }
  3020. static int list_locations(struct kmem_cache *s, char *buf,
  3021. enum track_item alloc)
  3022. {
  3023. int len = 0;
  3024. unsigned long i;
  3025. struct loc_track t = { 0, 0, NULL };
  3026. int node;
  3027. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3028. GFP_TEMPORARY))
  3029. return sprintf(buf, "Out of memory\n");
  3030. /* Push back cpu slabs */
  3031. flush_all(s);
  3032. for_each_node_state(node, N_NORMAL_MEMORY) {
  3033. struct kmem_cache_node *n = get_node(s, node);
  3034. unsigned long flags;
  3035. struct page *page;
  3036. if (!atomic_long_read(&n->nr_slabs))
  3037. continue;
  3038. spin_lock_irqsave(&n->list_lock, flags);
  3039. list_for_each_entry(page, &n->partial, lru)
  3040. process_slab(&t, s, page, alloc);
  3041. list_for_each_entry(page, &n->full, lru)
  3042. process_slab(&t, s, page, alloc);
  3043. spin_unlock_irqrestore(&n->list_lock, flags);
  3044. }
  3045. for (i = 0; i < t.count; i++) {
  3046. struct location *l = &t.loc[i];
  3047. if (len > PAGE_SIZE - 100)
  3048. break;
  3049. len += sprintf(buf + len, "%7ld ", l->count);
  3050. if (l->addr)
  3051. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3052. else
  3053. len += sprintf(buf + len, "<not-available>");
  3054. if (l->sum_time != l->min_time) {
  3055. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3056. l->min_time,
  3057. (long)div_u64(l->sum_time, l->count),
  3058. l->max_time);
  3059. } else
  3060. len += sprintf(buf + len, " age=%ld",
  3061. l->min_time);
  3062. if (l->min_pid != l->max_pid)
  3063. len += sprintf(buf + len, " pid=%ld-%ld",
  3064. l->min_pid, l->max_pid);
  3065. else
  3066. len += sprintf(buf + len, " pid=%ld",
  3067. l->min_pid);
  3068. if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
  3069. len < PAGE_SIZE - 60) {
  3070. len += sprintf(buf + len, " cpus=");
  3071. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3072. l->cpus);
  3073. }
  3074. if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
  3075. len < PAGE_SIZE - 60) {
  3076. len += sprintf(buf + len, " nodes=");
  3077. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3078. l->nodes);
  3079. }
  3080. len += sprintf(buf + len, "\n");
  3081. }
  3082. free_loc_track(&t);
  3083. if (!t.count)
  3084. len += sprintf(buf, "No data\n");
  3085. return len;
  3086. }
  3087. enum slab_stat_type {
  3088. SL_ALL, /* All slabs */
  3089. SL_PARTIAL, /* Only partially allocated slabs */
  3090. SL_CPU, /* Only slabs used for cpu caches */
  3091. SL_OBJECTS, /* Determine allocated objects not slabs */
  3092. SL_TOTAL /* Determine object capacity not slabs */
  3093. };
  3094. #define SO_ALL (1 << SL_ALL)
  3095. #define SO_PARTIAL (1 << SL_PARTIAL)
  3096. #define SO_CPU (1 << SL_CPU)
  3097. #define SO_OBJECTS (1 << SL_OBJECTS)
  3098. #define SO_TOTAL (1 << SL_TOTAL)
  3099. static ssize_t show_slab_objects(struct kmem_cache *s,
  3100. char *buf, unsigned long flags)
  3101. {
  3102. unsigned long total = 0;
  3103. int node;
  3104. int x;
  3105. unsigned long *nodes;
  3106. unsigned long *per_cpu;
  3107. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3108. if (!nodes)
  3109. return -ENOMEM;
  3110. per_cpu = nodes + nr_node_ids;
  3111. if (flags & SO_CPU) {
  3112. int cpu;
  3113. for_each_possible_cpu(cpu) {
  3114. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3115. if (!c || c->node < 0)
  3116. continue;
  3117. if (c->page) {
  3118. if (flags & SO_TOTAL)
  3119. x = c->page->objects;
  3120. else if (flags & SO_OBJECTS)
  3121. x = c->page->inuse;
  3122. else
  3123. x = 1;
  3124. total += x;
  3125. nodes[c->node] += x;
  3126. }
  3127. per_cpu[c->node]++;
  3128. }
  3129. }
  3130. if (flags & SO_ALL) {
  3131. for_each_node_state(node, N_NORMAL_MEMORY) {
  3132. struct kmem_cache_node *n = get_node(s, node);
  3133. if (flags & SO_TOTAL)
  3134. x = atomic_long_read(&n->total_objects);
  3135. else if (flags & SO_OBJECTS)
  3136. x = atomic_long_read(&n->total_objects) -
  3137. count_partial(n, count_free);
  3138. else
  3139. x = atomic_long_read(&n->nr_slabs);
  3140. total += x;
  3141. nodes[node] += x;
  3142. }
  3143. } else if (flags & SO_PARTIAL) {
  3144. for_each_node_state(node, N_NORMAL_MEMORY) {
  3145. struct kmem_cache_node *n = get_node(s, node);
  3146. if (flags & SO_TOTAL)
  3147. x = count_partial(n, count_total);
  3148. else if (flags & SO_OBJECTS)
  3149. x = count_partial(n, count_inuse);
  3150. else
  3151. x = n->nr_partial;
  3152. total += x;
  3153. nodes[node] += x;
  3154. }
  3155. }
  3156. x = sprintf(buf, "%lu", total);
  3157. #ifdef CONFIG_NUMA
  3158. for_each_node_state(node, N_NORMAL_MEMORY)
  3159. if (nodes[node])
  3160. x += sprintf(buf + x, " N%d=%lu",
  3161. node, nodes[node]);
  3162. #endif
  3163. kfree(nodes);
  3164. return x + sprintf(buf + x, "\n");
  3165. }
  3166. static int any_slab_objects(struct kmem_cache *s)
  3167. {
  3168. int node;
  3169. for_each_online_node(node) {
  3170. struct kmem_cache_node *n = get_node(s, node);
  3171. if (!n)
  3172. continue;
  3173. if (atomic_long_read(&n->total_objects))
  3174. return 1;
  3175. }
  3176. return 0;
  3177. }
  3178. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3179. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3180. struct slab_attribute {
  3181. struct attribute attr;
  3182. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3183. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3184. };
  3185. #define SLAB_ATTR_RO(_name) \
  3186. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3187. #define SLAB_ATTR(_name) \
  3188. static struct slab_attribute _name##_attr = \
  3189. __ATTR(_name, 0644, _name##_show, _name##_store)
  3190. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3191. {
  3192. return sprintf(buf, "%d\n", s->size);
  3193. }
  3194. SLAB_ATTR_RO(slab_size);
  3195. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3196. {
  3197. return sprintf(buf, "%d\n", s->align);
  3198. }
  3199. SLAB_ATTR_RO(align);
  3200. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3201. {
  3202. return sprintf(buf, "%d\n", s->objsize);
  3203. }
  3204. SLAB_ATTR_RO(object_size);
  3205. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3206. {
  3207. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3208. }
  3209. SLAB_ATTR_RO(objs_per_slab);
  3210. static ssize_t order_store(struct kmem_cache *s,
  3211. const char *buf, size_t length)
  3212. {
  3213. unsigned long order;
  3214. int err;
  3215. err = strict_strtoul(buf, 10, &order);
  3216. if (err)
  3217. return err;
  3218. if (order > slub_max_order || order < slub_min_order)
  3219. return -EINVAL;
  3220. calculate_sizes(s, order);
  3221. return length;
  3222. }
  3223. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3224. {
  3225. return sprintf(buf, "%d\n", oo_order(s->oo));
  3226. }
  3227. SLAB_ATTR(order);
  3228. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3229. {
  3230. if (s->ctor) {
  3231. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3232. return n + sprintf(buf + n, "\n");
  3233. }
  3234. return 0;
  3235. }
  3236. SLAB_ATTR_RO(ctor);
  3237. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3238. {
  3239. return sprintf(buf, "%d\n", s->refcount - 1);
  3240. }
  3241. SLAB_ATTR_RO(aliases);
  3242. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3243. {
  3244. return show_slab_objects(s, buf, SO_ALL);
  3245. }
  3246. SLAB_ATTR_RO(slabs);
  3247. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3248. {
  3249. return show_slab_objects(s, buf, SO_PARTIAL);
  3250. }
  3251. SLAB_ATTR_RO(partial);
  3252. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3253. {
  3254. return show_slab_objects(s, buf, SO_CPU);
  3255. }
  3256. SLAB_ATTR_RO(cpu_slabs);
  3257. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3258. {
  3259. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3260. }
  3261. SLAB_ATTR_RO(objects);
  3262. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3263. {
  3264. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3265. }
  3266. SLAB_ATTR_RO(objects_partial);
  3267. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3268. {
  3269. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3270. }
  3271. SLAB_ATTR_RO(total_objects);
  3272. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3273. {
  3274. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3275. }
  3276. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3277. const char *buf, size_t length)
  3278. {
  3279. s->flags &= ~SLAB_DEBUG_FREE;
  3280. if (buf[0] == '1')
  3281. s->flags |= SLAB_DEBUG_FREE;
  3282. return length;
  3283. }
  3284. SLAB_ATTR(sanity_checks);
  3285. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3286. {
  3287. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3288. }
  3289. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3290. size_t length)
  3291. {
  3292. s->flags &= ~SLAB_TRACE;
  3293. if (buf[0] == '1')
  3294. s->flags |= SLAB_TRACE;
  3295. return length;
  3296. }
  3297. SLAB_ATTR(trace);
  3298. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3299. {
  3300. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3301. }
  3302. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3303. const char *buf, size_t length)
  3304. {
  3305. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3306. if (buf[0] == '1')
  3307. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3308. return length;
  3309. }
  3310. SLAB_ATTR(reclaim_account);
  3311. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3312. {
  3313. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3314. }
  3315. SLAB_ATTR_RO(hwcache_align);
  3316. #ifdef CONFIG_ZONE_DMA
  3317. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3318. {
  3319. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3320. }
  3321. SLAB_ATTR_RO(cache_dma);
  3322. #endif
  3323. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3324. {
  3325. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3326. }
  3327. SLAB_ATTR_RO(destroy_by_rcu);
  3328. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3329. {
  3330. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3331. }
  3332. static ssize_t red_zone_store(struct kmem_cache *s,
  3333. const char *buf, size_t length)
  3334. {
  3335. if (any_slab_objects(s))
  3336. return -EBUSY;
  3337. s->flags &= ~SLAB_RED_ZONE;
  3338. if (buf[0] == '1')
  3339. s->flags |= SLAB_RED_ZONE;
  3340. calculate_sizes(s, -1);
  3341. return length;
  3342. }
  3343. SLAB_ATTR(red_zone);
  3344. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3345. {
  3346. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3347. }
  3348. static ssize_t poison_store(struct kmem_cache *s,
  3349. const char *buf, size_t length)
  3350. {
  3351. if (any_slab_objects(s))
  3352. return -EBUSY;
  3353. s->flags &= ~SLAB_POISON;
  3354. if (buf[0] == '1')
  3355. s->flags |= SLAB_POISON;
  3356. calculate_sizes(s, -1);
  3357. return length;
  3358. }
  3359. SLAB_ATTR(poison);
  3360. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3361. {
  3362. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3363. }
  3364. static ssize_t store_user_store(struct kmem_cache *s,
  3365. const char *buf, size_t length)
  3366. {
  3367. if (any_slab_objects(s))
  3368. return -EBUSY;
  3369. s->flags &= ~SLAB_STORE_USER;
  3370. if (buf[0] == '1')
  3371. s->flags |= SLAB_STORE_USER;
  3372. calculate_sizes(s, -1);
  3373. return length;
  3374. }
  3375. SLAB_ATTR(store_user);
  3376. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3377. {
  3378. return 0;
  3379. }
  3380. static ssize_t validate_store(struct kmem_cache *s,
  3381. const char *buf, size_t length)
  3382. {
  3383. int ret = -EINVAL;
  3384. if (buf[0] == '1') {
  3385. ret = validate_slab_cache(s);
  3386. if (ret >= 0)
  3387. ret = length;
  3388. }
  3389. return ret;
  3390. }
  3391. SLAB_ATTR(validate);
  3392. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3393. {
  3394. return 0;
  3395. }
  3396. static ssize_t shrink_store(struct kmem_cache *s,
  3397. const char *buf, size_t length)
  3398. {
  3399. if (buf[0] == '1') {
  3400. int rc = kmem_cache_shrink(s);
  3401. if (rc)
  3402. return rc;
  3403. } else
  3404. return -EINVAL;
  3405. return length;
  3406. }
  3407. SLAB_ATTR(shrink);
  3408. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3409. {
  3410. if (!(s->flags & SLAB_STORE_USER))
  3411. return -ENOSYS;
  3412. return list_locations(s, buf, TRACK_ALLOC);
  3413. }
  3414. SLAB_ATTR_RO(alloc_calls);
  3415. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3416. {
  3417. if (!(s->flags & SLAB_STORE_USER))
  3418. return -ENOSYS;
  3419. return list_locations(s, buf, TRACK_FREE);
  3420. }
  3421. SLAB_ATTR_RO(free_calls);
  3422. #ifdef CONFIG_NUMA
  3423. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3424. {
  3425. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3426. }
  3427. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3428. const char *buf, size_t length)
  3429. {
  3430. unsigned long ratio;
  3431. int err;
  3432. err = strict_strtoul(buf, 10, &ratio);
  3433. if (err)
  3434. return err;
  3435. if (ratio <= 100)
  3436. s->remote_node_defrag_ratio = ratio * 10;
  3437. return length;
  3438. }
  3439. SLAB_ATTR(remote_node_defrag_ratio);
  3440. #endif
  3441. #ifdef CONFIG_SLUB_STATS
  3442. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3443. {
  3444. unsigned long sum = 0;
  3445. int cpu;
  3446. int len;
  3447. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3448. if (!data)
  3449. return -ENOMEM;
  3450. for_each_online_cpu(cpu) {
  3451. unsigned x = get_cpu_slab(s, cpu)->stat[si];
  3452. data[cpu] = x;
  3453. sum += x;
  3454. }
  3455. len = sprintf(buf, "%lu", sum);
  3456. #ifdef CONFIG_SMP
  3457. for_each_online_cpu(cpu) {
  3458. if (data[cpu] && len < PAGE_SIZE - 20)
  3459. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3460. }
  3461. #endif
  3462. kfree(data);
  3463. return len + sprintf(buf + len, "\n");
  3464. }
  3465. #define STAT_ATTR(si, text) \
  3466. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3467. { \
  3468. return show_stat(s, buf, si); \
  3469. } \
  3470. SLAB_ATTR_RO(text); \
  3471. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3472. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3473. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3474. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3475. STAT_ATTR(FREE_FROZEN, free_frozen);
  3476. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3477. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3478. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3479. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3480. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3481. STAT_ATTR(FREE_SLAB, free_slab);
  3482. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3483. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3484. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3485. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3486. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3487. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3488. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3489. #endif
  3490. static struct attribute *slab_attrs[] = {
  3491. &slab_size_attr.attr,
  3492. &object_size_attr.attr,
  3493. &objs_per_slab_attr.attr,
  3494. &order_attr.attr,
  3495. &objects_attr.attr,
  3496. &objects_partial_attr.attr,
  3497. &total_objects_attr.attr,
  3498. &slabs_attr.attr,
  3499. &partial_attr.attr,
  3500. &cpu_slabs_attr.attr,
  3501. &ctor_attr.attr,
  3502. &aliases_attr.attr,
  3503. &align_attr.attr,
  3504. &sanity_checks_attr.attr,
  3505. &trace_attr.attr,
  3506. &hwcache_align_attr.attr,
  3507. &reclaim_account_attr.attr,
  3508. &destroy_by_rcu_attr.attr,
  3509. &red_zone_attr.attr,
  3510. &poison_attr.attr,
  3511. &store_user_attr.attr,
  3512. &validate_attr.attr,
  3513. &shrink_attr.attr,
  3514. &alloc_calls_attr.attr,
  3515. &free_calls_attr.attr,
  3516. #ifdef CONFIG_ZONE_DMA
  3517. &cache_dma_attr.attr,
  3518. #endif
  3519. #ifdef CONFIG_NUMA
  3520. &remote_node_defrag_ratio_attr.attr,
  3521. #endif
  3522. #ifdef CONFIG_SLUB_STATS
  3523. &alloc_fastpath_attr.attr,
  3524. &alloc_slowpath_attr.attr,
  3525. &free_fastpath_attr.attr,
  3526. &free_slowpath_attr.attr,
  3527. &free_frozen_attr.attr,
  3528. &free_add_partial_attr.attr,
  3529. &free_remove_partial_attr.attr,
  3530. &alloc_from_partial_attr.attr,
  3531. &alloc_slab_attr.attr,
  3532. &alloc_refill_attr.attr,
  3533. &free_slab_attr.attr,
  3534. &cpuslab_flush_attr.attr,
  3535. &deactivate_full_attr.attr,
  3536. &deactivate_empty_attr.attr,
  3537. &deactivate_to_head_attr.attr,
  3538. &deactivate_to_tail_attr.attr,
  3539. &deactivate_remote_frees_attr.attr,
  3540. &order_fallback_attr.attr,
  3541. #endif
  3542. NULL
  3543. };
  3544. static struct attribute_group slab_attr_group = {
  3545. .attrs = slab_attrs,
  3546. };
  3547. static ssize_t slab_attr_show(struct kobject *kobj,
  3548. struct attribute *attr,
  3549. char *buf)
  3550. {
  3551. struct slab_attribute *attribute;
  3552. struct kmem_cache *s;
  3553. int err;
  3554. attribute = to_slab_attr(attr);
  3555. s = to_slab(kobj);
  3556. if (!attribute->show)
  3557. return -EIO;
  3558. err = attribute->show(s, buf);
  3559. return err;
  3560. }
  3561. static ssize_t slab_attr_store(struct kobject *kobj,
  3562. struct attribute *attr,
  3563. const char *buf, size_t len)
  3564. {
  3565. struct slab_attribute *attribute;
  3566. struct kmem_cache *s;
  3567. int err;
  3568. attribute = to_slab_attr(attr);
  3569. s = to_slab(kobj);
  3570. if (!attribute->store)
  3571. return -EIO;
  3572. err = attribute->store(s, buf, len);
  3573. return err;
  3574. }
  3575. static void kmem_cache_release(struct kobject *kobj)
  3576. {
  3577. struct kmem_cache *s = to_slab(kobj);
  3578. kfree(s);
  3579. }
  3580. static struct sysfs_ops slab_sysfs_ops = {
  3581. .show = slab_attr_show,
  3582. .store = slab_attr_store,
  3583. };
  3584. static struct kobj_type slab_ktype = {
  3585. .sysfs_ops = &slab_sysfs_ops,
  3586. .release = kmem_cache_release
  3587. };
  3588. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3589. {
  3590. struct kobj_type *ktype = get_ktype(kobj);
  3591. if (ktype == &slab_ktype)
  3592. return 1;
  3593. return 0;
  3594. }
  3595. static struct kset_uevent_ops slab_uevent_ops = {
  3596. .filter = uevent_filter,
  3597. };
  3598. static struct kset *slab_kset;
  3599. #define ID_STR_LENGTH 64
  3600. /* Create a unique string id for a slab cache:
  3601. *
  3602. * Format :[flags-]size
  3603. */
  3604. static char *create_unique_id(struct kmem_cache *s)
  3605. {
  3606. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3607. char *p = name;
  3608. BUG_ON(!name);
  3609. *p++ = ':';
  3610. /*
  3611. * First flags affecting slabcache operations. We will only
  3612. * get here for aliasable slabs so we do not need to support
  3613. * too many flags. The flags here must cover all flags that
  3614. * are matched during merging to guarantee that the id is
  3615. * unique.
  3616. */
  3617. if (s->flags & SLAB_CACHE_DMA)
  3618. *p++ = 'd';
  3619. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3620. *p++ = 'a';
  3621. if (s->flags & SLAB_DEBUG_FREE)
  3622. *p++ = 'F';
  3623. if (p != name + 1)
  3624. *p++ = '-';
  3625. p += sprintf(p, "%07d", s->size);
  3626. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3627. return name;
  3628. }
  3629. static int sysfs_slab_add(struct kmem_cache *s)
  3630. {
  3631. int err;
  3632. const char *name;
  3633. int unmergeable;
  3634. if (slab_state < SYSFS)
  3635. /* Defer until later */
  3636. return 0;
  3637. unmergeable = slab_unmergeable(s);
  3638. if (unmergeable) {
  3639. /*
  3640. * Slabcache can never be merged so we can use the name proper.
  3641. * This is typically the case for debug situations. In that
  3642. * case we can catch duplicate names easily.
  3643. */
  3644. sysfs_remove_link(&slab_kset->kobj, s->name);
  3645. name = s->name;
  3646. } else {
  3647. /*
  3648. * Create a unique name for the slab as a target
  3649. * for the symlinks.
  3650. */
  3651. name = create_unique_id(s);
  3652. }
  3653. s->kobj.kset = slab_kset;
  3654. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3655. if (err) {
  3656. kobject_put(&s->kobj);
  3657. return err;
  3658. }
  3659. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3660. if (err)
  3661. return err;
  3662. kobject_uevent(&s->kobj, KOBJ_ADD);
  3663. if (!unmergeable) {
  3664. /* Setup first alias */
  3665. sysfs_slab_alias(s, s->name);
  3666. kfree(name);
  3667. }
  3668. return 0;
  3669. }
  3670. static void sysfs_slab_remove(struct kmem_cache *s)
  3671. {
  3672. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3673. kobject_del(&s->kobj);
  3674. kobject_put(&s->kobj);
  3675. }
  3676. /*
  3677. * Need to buffer aliases during bootup until sysfs becomes
  3678. * available lest we loose that information.
  3679. */
  3680. struct saved_alias {
  3681. struct kmem_cache *s;
  3682. const char *name;
  3683. struct saved_alias *next;
  3684. };
  3685. static struct saved_alias *alias_list;
  3686. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3687. {
  3688. struct saved_alias *al;
  3689. if (slab_state == SYSFS) {
  3690. /*
  3691. * If we have a leftover link then remove it.
  3692. */
  3693. sysfs_remove_link(&slab_kset->kobj, name);
  3694. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3695. }
  3696. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3697. if (!al)
  3698. return -ENOMEM;
  3699. al->s = s;
  3700. al->name = name;
  3701. al->next = alias_list;
  3702. alias_list = al;
  3703. return 0;
  3704. }
  3705. static int __init slab_sysfs_init(void)
  3706. {
  3707. struct kmem_cache *s;
  3708. int err;
  3709. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3710. if (!slab_kset) {
  3711. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3712. return -ENOSYS;
  3713. }
  3714. slab_state = SYSFS;
  3715. list_for_each_entry(s, &slab_caches, list) {
  3716. err = sysfs_slab_add(s);
  3717. if (err)
  3718. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3719. " to sysfs\n", s->name);
  3720. }
  3721. while (alias_list) {
  3722. struct saved_alias *al = alias_list;
  3723. alias_list = alias_list->next;
  3724. err = sysfs_slab_alias(al->s, al->name);
  3725. if (err)
  3726. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3727. " %s to sysfs\n", s->name);
  3728. kfree(al);
  3729. }
  3730. resiliency_test();
  3731. return 0;
  3732. }
  3733. __initcall(slab_sysfs_init);
  3734. #endif
  3735. /*
  3736. * The /proc/slabinfo ABI
  3737. */
  3738. #ifdef CONFIG_SLABINFO
  3739. static void print_slabinfo_header(struct seq_file *m)
  3740. {
  3741. seq_puts(m, "slabinfo - version: 2.1\n");
  3742. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3743. "<objperslab> <pagesperslab>");
  3744. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3745. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3746. seq_putc(m, '\n');
  3747. }
  3748. static void *s_start(struct seq_file *m, loff_t *pos)
  3749. {
  3750. loff_t n = *pos;
  3751. down_read(&slub_lock);
  3752. if (!n)
  3753. print_slabinfo_header(m);
  3754. return seq_list_start(&slab_caches, *pos);
  3755. }
  3756. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3757. {
  3758. return seq_list_next(p, &slab_caches, pos);
  3759. }
  3760. static void s_stop(struct seq_file *m, void *p)
  3761. {
  3762. up_read(&slub_lock);
  3763. }
  3764. static int s_show(struct seq_file *m, void *p)
  3765. {
  3766. unsigned long nr_partials = 0;
  3767. unsigned long nr_slabs = 0;
  3768. unsigned long nr_inuse = 0;
  3769. unsigned long nr_objs = 0;
  3770. unsigned long nr_free = 0;
  3771. struct kmem_cache *s;
  3772. int node;
  3773. s = list_entry(p, struct kmem_cache, list);
  3774. for_each_online_node(node) {
  3775. struct kmem_cache_node *n = get_node(s, node);
  3776. if (!n)
  3777. continue;
  3778. nr_partials += n->nr_partial;
  3779. nr_slabs += atomic_long_read(&n->nr_slabs);
  3780. nr_objs += atomic_long_read(&n->total_objects);
  3781. nr_free += count_partial(n, count_free);
  3782. }
  3783. nr_inuse = nr_objs - nr_free;
  3784. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3785. nr_objs, s->size, oo_objects(s->oo),
  3786. (1 << oo_order(s->oo)));
  3787. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3788. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3789. 0UL);
  3790. seq_putc(m, '\n');
  3791. return 0;
  3792. }
  3793. static const struct seq_operations slabinfo_op = {
  3794. .start = s_start,
  3795. .next = s_next,
  3796. .stop = s_stop,
  3797. .show = s_show,
  3798. };
  3799. static int slabinfo_open(struct inode *inode, struct file *file)
  3800. {
  3801. return seq_open(file, &slabinfo_op);
  3802. }
  3803. static const struct file_operations proc_slabinfo_operations = {
  3804. .open = slabinfo_open,
  3805. .read = seq_read,
  3806. .llseek = seq_lseek,
  3807. .release = seq_release,
  3808. };
  3809. static int __init slab_proc_init(void)
  3810. {
  3811. proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
  3812. return 0;
  3813. }
  3814. module_init(slab_proc_init);
  3815. #endif /* CONFIG_SLABINFO */