page_alloc.c 130 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/oom.h>
  31. #include <linux/notifier.h>
  32. #include <linux/topology.h>
  33. #include <linux/sysctl.h>
  34. #include <linux/cpu.h>
  35. #include <linux/cpuset.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/vmalloc.h>
  39. #include <linux/mempolicy.h>
  40. #include <linux/stop_machine.h>
  41. #include <linux/sort.h>
  42. #include <linux/pfn.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/fault-inject.h>
  45. #include <linux/page-isolation.h>
  46. #include <linux/page_cgroup.h>
  47. #include <linux/debugobjects.h>
  48. #include <asm/tlbflush.h>
  49. #include <asm/div64.h>
  50. #include "internal.h"
  51. /*
  52. * Array of node states.
  53. */
  54. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  55. [N_POSSIBLE] = NODE_MASK_ALL,
  56. [N_ONLINE] = { { [0] = 1UL } },
  57. #ifndef CONFIG_NUMA
  58. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  59. #ifdef CONFIG_HIGHMEM
  60. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  61. #endif
  62. [N_CPU] = { { [0] = 1UL } },
  63. #endif /* NUMA */
  64. };
  65. EXPORT_SYMBOL(node_states);
  66. unsigned long totalram_pages __read_mostly;
  67. unsigned long totalreserve_pages __read_mostly;
  68. long nr_swap_pages;
  69. int percpu_pagelist_fraction;
  70. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  71. int pageblock_order __read_mostly;
  72. #endif
  73. static void __free_pages_ok(struct page *page, unsigned int order);
  74. /*
  75. * results with 256, 32 in the lowmem_reserve sysctl:
  76. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  77. * 1G machine -> (16M dma, 784M normal, 224M high)
  78. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  79. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  80. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  81. *
  82. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  83. * don't need any ZONE_NORMAL reservation
  84. */
  85. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  86. #ifdef CONFIG_ZONE_DMA
  87. 256,
  88. #endif
  89. #ifdef CONFIG_ZONE_DMA32
  90. 256,
  91. #endif
  92. #ifdef CONFIG_HIGHMEM
  93. 32,
  94. #endif
  95. 32,
  96. };
  97. EXPORT_SYMBOL(totalram_pages);
  98. static char * const zone_names[MAX_NR_ZONES] = {
  99. #ifdef CONFIG_ZONE_DMA
  100. "DMA",
  101. #endif
  102. #ifdef CONFIG_ZONE_DMA32
  103. "DMA32",
  104. #endif
  105. "Normal",
  106. #ifdef CONFIG_HIGHMEM
  107. "HighMem",
  108. #endif
  109. "Movable",
  110. };
  111. int min_free_kbytes = 1024;
  112. unsigned long __meminitdata nr_kernel_pages;
  113. unsigned long __meminitdata nr_all_pages;
  114. static unsigned long __meminitdata dma_reserve;
  115. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  116. /*
  117. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  118. * ranges of memory (RAM) that may be registered with add_active_range().
  119. * Ranges passed to add_active_range() will be merged if possible
  120. * so the number of times add_active_range() can be called is
  121. * related to the number of nodes and the number of holes
  122. */
  123. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  124. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  125. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  126. #else
  127. #if MAX_NUMNODES >= 32
  128. /* If there can be many nodes, allow up to 50 holes per node */
  129. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  130. #else
  131. /* By default, allow up to 256 distinct regions */
  132. #define MAX_ACTIVE_REGIONS 256
  133. #endif
  134. #endif
  135. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  136. static int __meminitdata nr_nodemap_entries;
  137. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  138. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  139. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  140. static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
  141. static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
  142. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  143. static unsigned long __initdata required_kernelcore;
  144. static unsigned long __initdata required_movablecore;
  145. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  146. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  147. int movable_zone;
  148. EXPORT_SYMBOL(movable_zone);
  149. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  150. #if MAX_NUMNODES > 1
  151. int nr_node_ids __read_mostly = MAX_NUMNODES;
  152. EXPORT_SYMBOL(nr_node_ids);
  153. #endif
  154. int page_group_by_mobility_disabled __read_mostly;
  155. static void set_pageblock_migratetype(struct page *page, int migratetype)
  156. {
  157. set_pageblock_flags_group(page, (unsigned long)migratetype,
  158. PB_migrate, PB_migrate_end);
  159. }
  160. #ifdef CONFIG_DEBUG_VM
  161. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  162. {
  163. int ret = 0;
  164. unsigned seq;
  165. unsigned long pfn = page_to_pfn(page);
  166. do {
  167. seq = zone_span_seqbegin(zone);
  168. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  169. ret = 1;
  170. else if (pfn < zone->zone_start_pfn)
  171. ret = 1;
  172. } while (zone_span_seqretry(zone, seq));
  173. return ret;
  174. }
  175. static int page_is_consistent(struct zone *zone, struct page *page)
  176. {
  177. if (!pfn_valid_within(page_to_pfn(page)))
  178. return 0;
  179. if (zone != page_zone(page))
  180. return 0;
  181. return 1;
  182. }
  183. /*
  184. * Temporary debugging check for pages not lying within a given zone.
  185. */
  186. static int bad_range(struct zone *zone, struct page *page)
  187. {
  188. if (page_outside_zone_boundaries(zone, page))
  189. return 1;
  190. if (!page_is_consistent(zone, page))
  191. return 1;
  192. return 0;
  193. }
  194. #else
  195. static inline int bad_range(struct zone *zone, struct page *page)
  196. {
  197. return 0;
  198. }
  199. #endif
  200. static void bad_page(struct page *page)
  201. {
  202. printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
  203. "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
  204. current->comm, page, (int)(2*sizeof(unsigned long)),
  205. (unsigned long)page->flags, page->mapping,
  206. page_mapcount(page), page_count(page));
  207. printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  208. KERN_EMERG "Backtrace:\n");
  209. dump_stack();
  210. page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
  211. set_page_count(page, 0);
  212. reset_page_mapcount(page);
  213. page->mapping = NULL;
  214. add_taint(TAINT_BAD_PAGE);
  215. }
  216. /*
  217. * Higher-order pages are called "compound pages". They are structured thusly:
  218. *
  219. * The first PAGE_SIZE page is called the "head page".
  220. *
  221. * The remaining PAGE_SIZE pages are called "tail pages".
  222. *
  223. * All pages have PG_compound set. All pages have their ->private pointing at
  224. * the head page (even the head page has this).
  225. *
  226. * The first tail page's ->lru.next holds the address of the compound page's
  227. * put_page() function. Its ->lru.prev holds the order of allocation.
  228. * This usage means that zero-order pages may not be compound.
  229. */
  230. static void free_compound_page(struct page *page)
  231. {
  232. __free_pages_ok(page, compound_order(page));
  233. }
  234. void prep_compound_page(struct page *page, unsigned long order)
  235. {
  236. int i;
  237. int nr_pages = 1 << order;
  238. set_compound_page_dtor(page, free_compound_page);
  239. set_compound_order(page, order);
  240. __SetPageHead(page);
  241. for (i = 1; i < nr_pages; i++) {
  242. struct page *p = page + i;
  243. __SetPageTail(p);
  244. p->first_page = page;
  245. }
  246. }
  247. #ifdef CONFIG_HUGETLBFS
  248. void prep_compound_gigantic_page(struct page *page, unsigned long order)
  249. {
  250. int i;
  251. int nr_pages = 1 << order;
  252. struct page *p = page + 1;
  253. set_compound_page_dtor(page, free_compound_page);
  254. set_compound_order(page, order);
  255. __SetPageHead(page);
  256. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  257. __SetPageTail(p);
  258. p->first_page = page;
  259. }
  260. }
  261. #endif
  262. static void destroy_compound_page(struct page *page, unsigned long order)
  263. {
  264. int i;
  265. int nr_pages = 1 << order;
  266. if (unlikely(compound_order(page) != order))
  267. bad_page(page);
  268. if (unlikely(!PageHead(page)))
  269. bad_page(page);
  270. __ClearPageHead(page);
  271. for (i = 1; i < nr_pages; i++) {
  272. struct page *p = page + i;
  273. if (unlikely(!PageTail(p) |
  274. (p->first_page != page)))
  275. bad_page(page);
  276. __ClearPageTail(p);
  277. }
  278. }
  279. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  280. {
  281. int i;
  282. /*
  283. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  284. * and __GFP_HIGHMEM from hard or soft interrupt context.
  285. */
  286. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  287. for (i = 0; i < (1 << order); i++)
  288. clear_highpage(page + i);
  289. }
  290. static inline void set_page_order(struct page *page, int order)
  291. {
  292. set_page_private(page, order);
  293. __SetPageBuddy(page);
  294. }
  295. static inline void rmv_page_order(struct page *page)
  296. {
  297. __ClearPageBuddy(page);
  298. set_page_private(page, 0);
  299. }
  300. /*
  301. * Locate the struct page for both the matching buddy in our
  302. * pair (buddy1) and the combined O(n+1) page they form (page).
  303. *
  304. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  305. * the following equation:
  306. * B2 = B1 ^ (1 << O)
  307. * For example, if the starting buddy (buddy2) is #8 its order
  308. * 1 buddy is #10:
  309. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  310. *
  311. * 2) Any buddy B will have an order O+1 parent P which
  312. * satisfies the following equation:
  313. * P = B & ~(1 << O)
  314. *
  315. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  316. */
  317. static inline struct page *
  318. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  319. {
  320. unsigned long buddy_idx = page_idx ^ (1 << order);
  321. return page + (buddy_idx - page_idx);
  322. }
  323. static inline unsigned long
  324. __find_combined_index(unsigned long page_idx, unsigned int order)
  325. {
  326. return (page_idx & ~(1 << order));
  327. }
  328. /*
  329. * This function checks whether a page is free && is the buddy
  330. * we can do coalesce a page and its buddy if
  331. * (a) the buddy is not in a hole &&
  332. * (b) the buddy is in the buddy system &&
  333. * (c) a page and its buddy have the same order &&
  334. * (d) a page and its buddy are in the same zone.
  335. *
  336. * For recording whether a page is in the buddy system, we use PG_buddy.
  337. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  338. *
  339. * For recording page's order, we use page_private(page).
  340. */
  341. static inline int page_is_buddy(struct page *page, struct page *buddy,
  342. int order)
  343. {
  344. if (!pfn_valid_within(page_to_pfn(buddy)))
  345. return 0;
  346. if (page_zone_id(page) != page_zone_id(buddy))
  347. return 0;
  348. if (PageBuddy(buddy) && page_order(buddy) == order) {
  349. BUG_ON(page_count(buddy) != 0);
  350. return 1;
  351. }
  352. return 0;
  353. }
  354. /*
  355. * Freeing function for a buddy system allocator.
  356. *
  357. * The concept of a buddy system is to maintain direct-mapped table
  358. * (containing bit values) for memory blocks of various "orders".
  359. * The bottom level table contains the map for the smallest allocatable
  360. * units of memory (here, pages), and each level above it describes
  361. * pairs of units from the levels below, hence, "buddies".
  362. * At a high level, all that happens here is marking the table entry
  363. * at the bottom level available, and propagating the changes upward
  364. * as necessary, plus some accounting needed to play nicely with other
  365. * parts of the VM system.
  366. * At each level, we keep a list of pages, which are heads of continuous
  367. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  368. * order is recorded in page_private(page) field.
  369. * So when we are allocating or freeing one, we can derive the state of the
  370. * other. That is, if we allocate a small block, and both were
  371. * free, the remainder of the region must be split into blocks.
  372. * If a block is freed, and its buddy is also free, then this
  373. * triggers coalescing into a block of larger size.
  374. *
  375. * -- wli
  376. */
  377. static inline void __free_one_page(struct page *page,
  378. struct zone *zone, unsigned int order)
  379. {
  380. unsigned long page_idx;
  381. int order_size = 1 << order;
  382. int migratetype = get_pageblock_migratetype(page);
  383. if (unlikely(PageCompound(page)))
  384. destroy_compound_page(page, order);
  385. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  386. VM_BUG_ON(page_idx & (order_size - 1));
  387. VM_BUG_ON(bad_range(zone, page));
  388. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  389. while (order < MAX_ORDER-1) {
  390. unsigned long combined_idx;
  391. struct page *buddy;
  392. buddy = __page_find_buddy(page, page_idx, order);
  393. if (!page_is_buddy(page, buddy, order))
  394. break;
  395. /* Our buddy is free, merge with it and move up one order. */
  396. list_del(&buddy->lru);
  397. zone->free_area[order].nr_free--;
  398. rmv_page_order(buddy);
  399. combined_idx = __find_combined_index(page_idx, order);
  400. page = page + (combined_idx - page_idx);
  401. page_idx = combined_idx;
  402. order++;
  403. }
  404. set_page_order(page, order);
  405. list_add(&page->lru,
  406. &zone->free_area[order].free_list[migratetype]);
  407. zone->free_area[order].nr_free++;
  408. }
  409. static inline int free_pages_check(struct page *page)
  410. {
  411. free_page_mlock(page);
  412. if (unlikely(page_mapcount(page) |
  413. (page->mapping != NULL) |
  414. (page_count(page) != 0) |
  415. (page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
  416. bad_page(page);
  417. if (PageDirty(page))
  418. __ClearPageDirty(page);
  419. if (PageSwapBacked(page))
  420. __ClearPageSwapBacked(page);
  421. /*
  422. * For now, we report if PG_reserved was found set, but do not
  423. * clear it, and do not free the page. But we shall soon need
  424. * to do more, for when the ZERO_PAGE count wraps negative.
  425. */
  426. return PageReserved(page);
  427. }
  428. /*
  429. * Frees a list of pages.
  430. * Assumes all pages on list are in same zone, and of same order.
  431. * count is the number of pages to free.
  432. *
  433. * If the zone was previously in an "all pages pinned" state then look to
  434. * see if this freeing clears that state.
  435. *
  436. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  437. * pinned" detection logic.
  438. */
  439. static void free_pages_bulk(struct zone *zone, int count,
  440. struct list_head *list, int order)
  441. {
  442. spin_lock(&zone->lock);
  443. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  444. zone->pages_scanned = 0;
  445. while (count--) {
  446. struct page *page;
  447. VM_BUG_ON(list_empty(list));
  448. page = list_entry(list->prev, struct page, lru);
  449. /* have to delete it as __free_one_page list manipulates */
  450. list_del(&page->lru);
  451. __free_one_page(page, zone, order);
  452. }
  453. spin_unlock(&zone->lock);
  454. }
  455. static void free_one_page(struct zone *zone, struct page *page, int order)
  456. {
  457. spin_lock(&zone->lock);
  458. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  459. zone->pages_scanned = 0;
  460. __free_one_page(page, zone, order);
  461. spin_unlock(&zone->lock);
  462. }
  463. static void __free_pages_ok(struct page *page, unsigned int order)
  464. {
  465. unsigned long flags;
  466. int i;
  467. int reserved = 0;
  468. for (i = 0 ; i < (1 << order) ; ++i)
  469. reserved += free_pages_check(page + i);
  470. if (reserved)
  471. return;
  472. if (!PageHighMem(page)) {
  473. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  474. debug_check_no_obj_freed(page_address(page),
  475. PAGE_SIZE << order);
  476. }
  477. arch_free_page(page, order);
  478. kernel_map_pages(page, 1 << order, 0);
  479. local_irq_save(flags);
  480. __count_vm_events(PGFREE, 1 << order);
  481. free_one_page(page_zone(page), page, order);
  482. local_irq_restore(flags);
  483. }
  484. /*
  485. * permit the bootmem allocator to evade page validation on high-order frees
  486. */
  487. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  488. {
  489. if (order == 0) {
  490. __ClearPageReserved(page);
  491. set_page_count(page, 0);
  492. set_page_refcounted(page);
  493. __free_page(page);
  494. } else {
  495. int loop;
  496. prefetchw(page);
  497. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  498. struct page *p = &page[loop];
  499. if (loop + 1 < BITS_PER_LONG)
  500. prefetchw(p + 1);
  501. __ClearPageReserved(p);
  502. set_page_count(p, 0);
  503. }
  504. set_page_refcounted(page);
  505. __free_pages(page, order);
  506. }
  507. }
  508. /*
  509. * The order of subdivision here is critical for the IO subsystem.
  510. * Please do not alter this order without good reasons and regression
  511. * testing. Specifically, as large blocks of memory are subdivided,
  512. * the order in which smaller blocks are delivered depends on the order
  513. * they're subdivided in this function. This is the primary factor
  514. * influencing the order in which pages are delivered to the IO
  515. * subsystem according to empirical testing, and this is also justified
  516. * by considering the behavior of a buddy system containing a single
  517. * large block of memory acted on by a series of small allocations.
  518. * This behavior is a critical factor in sglist merging's success.
  519. *
  520. * -- wli
  521. */
  522. static inline void expand(struct zone *zone, struct page *page,
  523. int low, int high, struct free_area *area,
  524. int migratetype)
  525. {
  526. unsigned long size = 1 << high;
  527. while (high > low) {
  528. area--;
  529. high--;
  530. size >>= 1;
  531. VM_BUG_ON(bad_range(zone, &page[size]));
  532. list_add(&page[size].lru, &area->free_list[migratetype]);
  533. area->nr_free++;
  534. set_page_order(&page[size], high);
  535. }
  536. }
  537. /*
  538. * This page is about to be returned from the page allocator
  539. */
  540. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  541. {
  542. if (unlikely(page_mapcount(page) |
  543. (page->mapping != NULL) |
  544. (page_count(page) != 0) |
  545. (page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
  546. bad_page(page);
  547. /*
  548. * For now, we report if PG_reserved was found set, but do not
  549. * clear it, and do not allocate the page: as a safety net.
  550. */
  551. if (PageReserved(page))
  552. return 1;
  553. page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
  554. 1 << PG_referenced | 1 << PG_arch_1 |
  555. 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk
  556. #ifdef CONFIG_UNEVICTABLE_LRU
  557. | 1 << PG_mlocked
  558. #endif
  559. );
  560. set_page_private(page, 0);
  561. set_page_refcounted(page);
  562. arch_alloc_page(page, order);
  563. kernel_map_pages(page, 1 << order, 1);
  564. if (gfp_flags & __GFP_ZERO)
  565. prep_zero_page(page, order, gfp_flags);
  566. if (order && (gfp_flags & __GFP_COMP))
  567. prep_compound_page(page, order);
  568. return 0;
  569. }
  570. /*
  571. * Go through the free lists for the given migratetype and remove
  572. * the smallest available page from the freelists
  573. */
  574. static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  575. int migratetype)
  576. {
  577. unsigned int current_order;
  578. struct free_area * area;
  579. struct page *page;
  580. /* Find a page of the appropriate size in the preferred list */
  581. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  582. area = &(zone->free_area[current_order]);
  583. if (list_empty(&area->free_list[migratetype]))
  584. continue;
  585. page = list_entry(area->free_list[migratetype].next,
  586. struct page, lru);
  587. list_del(&page->lru);
  588. rmv_page_order(page);
  589. area->nr_free--;
  590. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  591. expand(zone, page, order, current_order, area, migratetype);
  592. return page;
  593. }
  594. return NULL;
  595. }
  596. /*
  597. * This array describes the order lists are fallen back to when
  598. * the free lists for the desirable migrate type are depleted
  599. */
  600. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  601. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  602. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  603. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  604. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  605. };
  606. /*
  607. * Move the free pages in a range to the free lists of the requested type.
  608. * Note that start_page and end_pages are not aligned on a pageblock
  609. * boundary. If alignment is required, use move_freepages_block()
  610. */
  611. static int move_freepages(struct zone *zone,
  612. struct page *start_page, struct page *end_page,
  613. int migratetype)
  614. {
  615. struct page *page;
  616. unsigned long order;
  617. int pages_moved = 0;
  618. #ifndef CONFIG_HOLES_IN_ZONE
  619. /*
  620. * page_zone is not safe to call in this context when
  621. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  622. * anyway as we check zone boundaries in move_freepages_block().
  623. * Remove at a later date when no bug reports exist related to
  624. * grouping pages by mobility
  625. */
  626. BUG_ON(page_zone(start_page) != page_zone(end_page));
  627. #endif
  628. for (page = start_page; page <= end_page;) {
  629. /* Make sure we are not inadvertently changing nodes */
  630. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  631. if (!pfn_valid_within(page_to_pfn(page))) {
  632. page++;
  633. continue;
  634. }
  635. if (!PageBuddy(page)) {
  636. page++;
  637. continue;
  638. }
  639. order = page_order(page);
  640. list_del(&page->lru);
  641. list_add(&page->lru,
  642. &zone->free_area[order].free_list[migratetype]);
  643. page += 1 << order;
  644. pages_moved += 1 << order;
  645. }
  646. return pages_moved;
  647. }
  648. static int move_freepages_block(struct zone *zone, struct page *page,
  649. int migratetype)
  650. {
  651. unsigned long start_pfn, end_pfn;
  652. struct page *start_page, *end_page;
  653. start_pfn = page_to_pfn(page);
  654. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  655. start_page = pfn_to_page(start_pfn);
  656. end_page = start_page + pageblock_nr_pages - 1;
  657. end_pfn = start_pfn + pageblock_nr_pages - 1;
  658. /* Do not cross zone boundaries */
  659. if (start_pfn < zone->zone_start_pfn)
  660. start_page = page;
  661. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  662. return 0;
  663. return move_freepages(zone, start_page, end_page, migratetype);
  664. }
  665. /* Remove an element from the buddy allocator from the fallback list */
  666. static struct page *__rmqueue_fallback(struct zone *zone, int order,
  667. int start_migratetype)
  668. {
  669. struct free_area * area;
  670. int current_order;
  671. struct page *page;
  672. int migratetype, i;
  673. /* Find the largest possible block of pages in the other list */
  674. for (current_order = MAX_ORDER-1; current_order >= order;
  675. --current_order) {
  676. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  677. migratetype = fallbacks[start_migratetype][i];
  678. /* MIGRATE_RESERVE handled later if necessary */
  679. if (migratetype == MIGRATE_RESERVE)
  680. continue;
  681. area = &(zone->free_area[current_order]);
  682. if (list_empty(&area->free_list[migratetype]))
  683. continue;
  684. page = list_entry(area->free_list[migratetype].next,
  685. struct page, lru);
  686. area->nr_free--;
  687. /*
  688. * If breaking a large block of pages, move all free
  689. * pages to the preferred allocation list. If falling
  690. * back for a reclaimable kernel allocation, be more
  691. * agressive about taking ownership of free pages
  692. */
  693. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  694. start_migratetype == MIGRATE_RECLAIMABLE) {
  695. unsigned long pages;
  696. pages = move_freepages_block(zone, page,
  697. start_migratetype);
  698. /* Claim the whole block if over half of it is free */
  699. if (pages >= (1 << (pageblock_order-1)))
  700. set_pageblock_migratetype(page,
  701. start_migratetype);
  702. migratetype = start_migratetype;
  703. }
  704. /* Remove the page from the freelists */
  705. list_del(&page->lru);
  706. rmv_page_order(page);
  707. __mod_zone_page_state(zone, NR_FREE_PAGES,
  708. -(1UL << order));
  709. if (current_order == pageblock_order)
  710. set_pageblock_migratetype(page,
  711. start_migratetype);
  712. expand(zone, page, order, current_order, area, migratetype);
  713. return page;
  714. }
  715. }
  716. /* Use MIGRATE_RESERVE rather than fail an allocation */
  717. return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
  718. }
  719. /*
  720. * Do the hard work of removing an element from the buddy allocator.
  721. * Call me with the zone->lock already held.
  722. */
  723. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  724. int migratetype)
  725. {
  726. struct page *page;
  727. page = __rmqueue_smallest(zone, order, migratetype);
  728. if (unlikely(!page))
  729. page = __rmqueue_fallback(zone, order, migratetype);
  730. return page;
  731. }
  732. /*
  733. * Obtain a specified number of elements from the buddy allocator, all under
  734. * a single hold of the lock, for efficiency. Add them to the supplied list.
  735. * Returns the number of new pages which were placed at *list.
  736. */
  737. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  738. unsigned long count, struct list_head *list,
  739. int migratetype)
  740. {
  741. int i;
  742. spin_lock(&zone->lock);
  743. for (i = 0; i < count; ++i) {
  744. struct page *page = __rmqueue(zone, order, migratetype);
  745. if (unlikely(page == NULL))
  746. break;
  747. /*
  748. * Split buddy pages returned by expand() are received here
  749. * in physical page order. The page is added to the callers and
  750. * list and the list head then moves forward. From the callers
  751. * perspective, the linked list is ordered by page number in
  752. * some conditions. This is useful for IO devices that can
  753. * merge IO requests if the physical pages are ordered
  754. * properly.
  755. */
  756. list_add(&page->lru, list);
  757. set_page_private(page, migratetype);
  758. list = &page->lru;
  759. }
  760. spin_unlock(&zone->lock);
  761. return i;
  762. }
  763. #ifdef CONFIG_NUMA
  764. /*
  765. * Called from the vmstat counter updater to drain pagesets of this
  766. * currently executing processor on remote nodes after they have
  767. * expired.
  768. *
  769. * Note that this function must be called with the thread pinned to
  770. * a single processor.
  771. */
  772. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  773. {
  774. unsigned long flags;
  775. int to_drain;
  776. local_irq_save(flags);
  777. if (pcp->count >= pcp->batch)
  778. to_drain = pcp->batch;
  779. else
  780. to_drain = pcp->count;
  781. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  782. pcp->count -= to_drain;
  783. local_irq_restore(flags);
  784. }
  785. #endif
  786. /*
  787. * Drain pages of the indicated processor.
  788. *
  789. * The processor must either be the current processor and the
  790. * thread pinned to the current processor or a processor that
  791. * is not online.
  792. */
  793. static void drain_pages(unsigned int cpu)
  794. {
  795. unsigned long flags;
  796. struct zone *zone;
  797. for_each_zone(zone) {
  798. struct per_cpu_pageset *pset;
  799. struct per_cpu_pages *pcp;
  800. if (!populated_zone(zone))
  801. continue;
  802. pset = zone_pcp(zone, cpu);
  803. pcp = &pset->pcp;
  804. local_irq_save(flags);
  805. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  806. pcp->count = 0;
  807. local_irq_restore(flags);
  808. }
  809. }
  810. /*
  811. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  812. */
  813. void drain_local_pages(void *arg)
  814. {
  815. drain_pages(smp_processor_id());
  816. }
  817. /*
  818. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  819. */
  820. void drain_all_pages(void)
  821. {
  822. on_each_cpu(drain_local_pages, NULL, 1);
  823. }
  824. #ifdef CONFIG_HIBERNATION
  825. void mark_free_pages(struct zone *zone)
  826. {
  827. unsigned long pfn, max_zone_pfn;
  828. unsigned long flags;
  829. int order, t;
  830. struct list_head *curr;
  831. if (!zone->spanned_pages)
  832. return;
  833. spin_lock_irqsave(&zone->lock, flags);
  834. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  835. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  836. if (pfn_valid(pfn)) {
  837. struct page *page = pfn_to_page(pfn);
  838. if (!swsusp_page_is_forbidden(page))
  839. swsusp_unset_page_free(page);
  840. }
  841. for_each_migratetype_order(order, t) {
  842. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  843. unsigned long i;
  844. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  845. for (i = 0; i < (1UL << order); i++)
  846. swsusp_set_page_free(pfn_to_page(pfn + i));
  847. }
  848. }
  849. spin_unlock_irqrestore(&zone->lock, flags);
  850. }
  851. #endif /* CONFIG_PM */
  852. /*
  853. * Free a 0-order page
  854. */
  855. static void free_hot_cold_page(struct page *page, int cold)
  856. {
  857. struct zone *zone = page_zone(page);
  858. struct per_cpu_pages *pcp;
  859. unsigned long flags;
  860. if (PageAnon(page))
  861. page->mapping = NULL;
  862. if (free_pages_check(page))
  863. return;
  864. if (!PageHighMem(page)) {
  865. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  866. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  867. }
  868. arch_free_page(page, 0);
  869. kernel_map_pages(page, 1, 0);
  870. pcp = &zone_pcp(zone, get_cpu())->pcp;
  871. local_irq_save(flags);
  872. __count_vm_event(PGFREE);
  873. if (cold)
  874. list_add_tail(&page->lru, &pcp->list);
  875. else
  876. list_add(&page->lru, &pcp->list);
  877. set_page_private(page, get_pageblock_migratetype(page));
  878. pcp->count++;
  879. if (pcp->count >= pcp->high) {
  880. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  881. pcp->count -= pcp->batch;
  882. }
  883. local_irq_restore(flags);
  884. put_cpu();
  885. }
  886. void free_hot_page(struct page *page)
  887. {
  888. free_hot_cold_page(page, 0);
  889. }
  890. void free_cold_page(struct page *page)
  891. {
  892. free_hot_cold_page(page, 1);
  893. }
  894. /*
  895. * split_page takes a non-compound higher-order page, and splits it into
  896. * n (1<<order) sub-pages: page[0..n]
  897. * Each sub-page must be freed individually.
  898. *
  899. * Note: this is probably too low level an operation for use in drivers.
  900. * Please consult with lkml before using this in your driver.
  901. */
  902. void split_page(struct page *page, unsigned int order)
  903. {
  904. int i;
  905. VM_BUG_ON(PageCompound(page));
  906. VM_BUG_ON(!page_count(page));
  907. for (i = 1; i < (1 << order); i++)
  908. set_page_refcounted(page + i);
  909. }
  910. /*
  911. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  912. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  913. * or two.
  914. */
  915. static struct page *buffered_rmqueue(struct zone *preferred_zone,
  916. struct zone *zone, int order, gfp_t gfp_flags)
  917. {
  918. unsigned long flags;
  919. struct page *page;
  920. int cold = !!(gfp_flags & __GFP_COLD);
  921. int cpu;
  922. int migratetype = allocflags_to_migratetype(gfp_flags);
  923. again:
  924. cpu = get_cpu();
  925. if (likely(order == 0)) {
  926. struct per_cpu_pages *pcp;
  927. pcp = &zone_pcp(zone, cpu)->pcp;
  928. local_irq_save(flags);
  929. if (!pcp->count) {
  930. pcp->count = rmqueue_bulk(zone, 0,
  931. pcp->batch, &pcp->list, migratetype);
  932. if (unlikely(!pcp->count))
  933. goto failed;
  934. }
  935. /* Find a page of the appropriate migrate type */
  936. if (cold) {
  937. list_for_each_entry_reverse(page, &pcp->list, lru)
  938. if (page_private(page) == migratetype)
  939. break;
  940. } else {
  941. list_for_each_entry(page, &pcp->list, lru)
  942. if (page_private(page) == migratetype)
  943. break;
  944. }
  945. /* Allocate more to the pcp list if necessary */
  946. if (unlikely(&page->lru == &pcp->list)) {
  947. pcp->count += rmqueue_bulk(zone, 0,
  948. pcp->batch, &pcp->list, migratetype);
  949. page = list_entry(pcp->list.next, struct page, lru);
  950. }
  951. list_del(&page->lru);
  952. pcp->count--;
  953. } else {
  954. spin_lock_irqsave(&zone->lock, flags);
  955. page = __rmqueue(zone, order, migratetype);
  956. spin_unlock(&zone->lock);
  957. if (!page)
  958. goto failed;
  959. }
  960. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  961. zone_statistics(preferred_zone, zone);
  962. local_irq_restore(flags);
  963. put_cpu();
  964. VM_BUG_ON(bad_range(zone, page));
  965. if (prep_new_page(page, order, gfp_flags))
  966. goto again;
  967. return page;
  968. failed:
  969. local_irq_restore(flags);
  970. put_cpu();
  971. return NULL;
  972. }
  973. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  974. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  975. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  976. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  977. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  978. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  979. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  980. #ifdef CONFIG_FAIL_PAGE_ALLOC
  981. static struct fail_page_alloc_attr {
  982. struct fault_attr attr;
  983. u32 ignore_gfp_highmem;
  984. u32 ignore_gfp_wait;
  985. u32 min_order;
  986. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  987. struct dentry *ignore_gfp_highmem_file;
  988. struct dentry *ignore_gfp_wait_file;
  989. struct dentry *min_order_file;
  990. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  991. } fail_page_alloc = {
  992. .attr = FAULT_ATTR_INITIALIZER,
  993. .ignore_gfp_wait = 1,
  994. .ignore_gfp_highmem = 1,
  995. .min_order = 1,
  996. };
  997. static int __init setup_fail_page_alloc(char *str)
  998. {
  999. return setup_fault_attr(&fail_page_alloc.attr, str);
  1000. }
  1001. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1002. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1003. {
  1004. if (order < fail_page_alloc.min_order)
  1005. return 0;
  1006. if (gfp_mask & __GFP_NOFAIL)
  1007. return 0;
  1008. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1009. return 0;
  1010. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1011. return 0;
  1012. return should_fail(&fail_page_alloc.attr, 1 << order);
  1013. }
  1014. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1015. static int __init fail_page_alloc_debugfs(void)
  1016. {
  1017. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1018. struct dentry *dir;
  1019. int err;
  1020. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1021. "fail_page_alloc");
  1022. if (err)
  1023. return err;
  1024. dir = fail_page_alloc.attr.dentries.dir;
  1025. fail_page_alloc.ignore_gfp_wait_file =
  1026. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1027. &fail_page_alloc.ignore_gfp_wait);
  1028. fail_page_alloc.ignore_gfp_highmem_file =
  1029. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1030. &fail_page_alloc.ignore_gfp_highmem);
  1031. fail_page_alloc.min_order_file =
  1032. debugfs_create_u32("min-order", mode, dir,
  1033. &fail_page_alloc.min_order);
  1034. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1035. !fail_page_alloc.ignore_gfp_highmem_file ||
  1036. !fail_page_alloc.min_order_file) {
  1037. err = -ENOMEM;
  1038. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1039. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1040. debugfs_remove(fail_page_alloc.min_order_file);
  1041. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1042. }
  1043. return err;
  1044. }
  1045. late_initcall(fail_page_alloc_debugfs);
  1046. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1047. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1048. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1049. {
  1050. return 0;
  1051. }
  1052. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1053. /*
  1054. * Return 1 if free pages are above 'mark'. This takes into account the order
  1055. * of the allocation.
  1056. */
  1057. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1058. int classzone_idx, int alloc_flags)
  1059. {
  1060. /* free_pages my go negative - that's OK */
  1061. long min = mark;
  1062. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1063. int o;
  1064. if (alloc_flags & ALLOC_HIGH)
  1065. min -= min / 2;
  1066. if (alloc_flags & ALLOC_HARDER)
  1067. min -= min / 4;
  1068. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1069. return 0;
  1070. for (o = 0; o < order; o++) {
  1071. /* At the next order, this order's pages become unavailable */
  1072. free_pages -= z->free_area[o].nr_free << o;
  1073. /* Require fewer higher order pages to be free */
  1074. min >>= 1;
  1075. if (free_pages <= min)
  1076. return 0;
  1077. }
  1078. return 1;
  1079. }
  1080. #ifdef CONFIG_NUMA
  1081. /*
  1082. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1083. * skip over zones that are not allowed by the cpuset, or that have
  1084. * been recently (in last second) found to be nearly full. See further
  1085. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1086. * that have to skip over a lot of full or unallowed zones.
  1087. *
  1088. * If the zonelist cache is present in the passed in zonelist, then
  1089. * returns a pointer to the allowed node mask (either the current
  1090. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1091. *
  1092. * If the zonelist cache is not available for this zonelist, does
  1093. * nothing and returns NULL.
  1094. *
  1095. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1096. * a second since last zap'd) then we zap it out (clear its bits.)
  1097. *
  1098. * We hold off even calling zlc_setup, until after we've checked the
  1099. * first zone in the zonelist, on the theory that most allocations will
  1100. * be satisfied from that first zone, so best to examine that zone as
  1101. * quickly as we can.
  1102. */
  1103. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1104. {
  1105. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1106. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1107. zlc = zonelist->zlcache_ptr;
  1108. if (!zlc)
  1109. return NULL;
  1110. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1111. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1112. zlc->last_full_zap = jiffies;
  1113. }
  1114. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1115. &cpuset_current_mems_allowed :
  1116. &node_states[N_HIGH_MEMORY];
  1117. return allowednodes;
  1118. }
  1119. /*
  1120. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1121. * if it is worth looking at further for free memory:
  1122. * 1) Check that the zone isn't thought to be full (doesn't have its
  1123. * bit set in the zonelist_cache fullzones BITMAP).
  1124. * 2) Check that the zones node (obtained from the zonelist_cache
  1125. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1126. * Return true (non-zero) if zone is worth looking at further, or
  1127. * else return false (zero) if it is not.
  1128. *
  1129. * This check -ignores- the distinction between various watermarks,
  1130. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1131. * found to be full for any variation of these watermarks, it will
  1132. * be considered full for up to one second by all requests, unless
  1133. * we are so low on memory on all allowed nodes that we are forced
  1134. * into the second scan of the zonelist.
  1135. *
  1136. * In the second scan we ignore this zonelist cache and exactly
  1137. * apply the watermarks to all zones, even it is slower to do so.
  1138. * We are low on memory in the second scan, and should leave no stone
  1139. * unturned looking for a free page.
  1140. */
  1141. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1142. nodemask_t *allowednodes)
  1143. {
  1144. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1145. int i; /* index of *z in zonelist zones */
  1146. int n; /* node that zone *z is on */
  1147. zlc = zonelist->zlcache_ptr;
  1148. if (!zlc)
  1149. return 1;
  1150. i = z - zonelist->_zonerefs;
  1151. n = zlc->z_to_n[i];
  1152. /* This zone is worth trying if it is allowed but not full */
  1153. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1154. }
  1155. /*
  1156. * Given 'z' scanning a zonelist, set the corresponding bit in
  1157. * zlc->fullzones, so that subsequent attempts to allocate a page
  1158. * from that zone don't waste time re-examining it.
  1159. */
  1160. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1161. {
  1162. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1163. int i; /* index of *z in zonelist zones */
  1164. zlc = zonelist->zlcache_ptr;
  1165. if (!zlc)
  1166. return;
  1167. i = z - zonelist->_zonerefs;
  1168. set_bit(i, zlc->fullzones);
  1169. }
  1170. #else /* CONFIG_NUMA */
  1171. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1172. {
  1173. return NULL;
  1174. }
  1175. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1176. nodemask_t *allowednodes)
  1177. {
  1178. return 1;
  1179. }
  1180. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1181. {
  1182. }
  1183. #endif /* CONFIG_NUMA */
  1184. /*
  1185. * get_page_from_freelist goes through the zonelist trying to allocate
  1186. * a page.
  1187. */
  1188. static struct page *
  1189. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1190. struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
  1191. {
  1192. struct zoneref *z;
  1193. struct page *page = NULL;
  1194. int classzone_idx;
  1195. struct zone *zone, *preferred_zone;
  1196. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1197. int zlc_active = 0; /* set if using zonelist_cache */
  1198. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1199. (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
  1200. &preferred_zone);
  1201. if (!preferred_zone)
  1202. return NULL;
  1203. classzone_idx = zone_idx(preferred_zone);
  1204. zonelist_scan:
  1205. /*
  1206. * Scan zonelist, looking for a zone with enough free.
  1207. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1208. */
  1209. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1210. high_zoneidx, nodemask) {
  1211. if (NUMA_BUILD && zlc_active &&
  1212. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1213. continue;
  1214. if ((alloc_flags & ALLOC_CPUSET) &&
  1215. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1216. goto try_next_zone;
  1217. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1218. unsigned long mark;
  1219. if (alloc_flags & ALLOC_WMARK_MIN)
  1220. mark = zone->pages_min;
  1221. else if (alloc_flags & ALLOC_WMARK_LOW)
  1222. mark = zone->pages_low;
  1223. else
  1224. mark = zone->pages_high;
  1225. if (!zone_watermark_ok(zone, order, mark,
  1226. classzone_idx, alloc_flags)) {
  1227. if (!zone_reclaim_mode ||
  1228. !zone_reclaim(zone, gfp_mask, order))
  1229. goto this_zone_full;
  1230. }
  1231. }
  1232. page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
  1233. if (page)
  1234. break;
  1235. this_zone_full:
  1236. if (NUMA_BUILD)
  1237. zlc_mark_zone_full(zonelist, z);
  1238. try_next_zone:
  1239. if (NUMA_BUILD && !did_zlc_setup) {
  1240. /* we do zlc_setup after the first zone is tried */
  1241. allowednodes = zlc_setup(zonelist, alloc_flags);
  1242. zlc_active = 1;
  1243. did_zlc_setup = 1;
  1244. }
  1245. }
  1246. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1247. /* Disable zlc cache for second zonelist scan */
  1248. zlc_active = 0;
  1249. goto zonelist_scan;
  1250. }
  1251. return page;
  1252. }
  1253. /*
  1254. * This is the 'heart' of the zoned buddy allocator.
  1255. */
  1256. struct page *
  1257. __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
  1258. struct zonelist *zonelist, nodemask_t *nodemask)
  1259. {
  1260. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1261. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1262. struct zoneref *z;
  1263. struct zone *zone;
  1264. struct page *page;
  1265. struct reclaim_state reclaim_state;
  1266. struct task_struct *p = current;
  1267. int do_retry;
  1268. int alloc_flags;
  1269. unsigned long did_some_progress;
  1270. unsigned long pages_reclaimed = 0;
  1271. might_sleep_if(wait);
  1272. if (should_fail_alloc_page(gfp_mask, order))
  1273. return NULL;
  1274. restart:
  1275. z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
  1276. if (unlikely(!z->zone)) {
  1277. /*
  1278. * Happens if we have an empty zonelist as a result of
  1279. * GFP_THISNODE being used on a memoryless node
  1280. */
  1281. return NULL;
  1282. }
  1283. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1284. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1285. if (page)
  1286. goto got_pg;
  1287. /*
  1288. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1289. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1290. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1291. * using a larger set of nodes after it has established that the
  1292. * allowed per node queues are empty and that nodes are
  1293. * over allocated.
  1294. */
  1295. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1296. goto nopage;
  1297. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1298. wakeup_kswapd(zone, order);
  1299. /*
  1300. * OK, we're below the kswapd watermark and have kicked background
  1301. * reclaim. Now things get more complex, so set up alloc_flags according
  1302. * to how we want to proceed.
  1303. *
  1304. * The caller may dip into page reserves a bit more if the caller
  1305. * cannot run direct reclaim, or if the caller has realtime scheduling
  1306. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1307. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1308. */
  1309. alloc_flags = ALLOC_WMARK_MIN;
  1310. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1311. alloc_flags |= ALLOC_HARDER;
  1312. if (gfp_mask & __GFP_HIGH)
  1313. alloc_flags |= ALLOC_HIGH;
  1314. if (wait)
  1315. alloc_flags |= ALLOC_CPUSET;
  1316. /*
  1317. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1318. * coming from realtime tasks go deeper into reserves.
  1319. *
  1320. * This is the last chance, in general, before the goto nopage.
  1321. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1322. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1323. */
  1324. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1325. high_zoneidx, alloc_flags);
  1326. if (page)
  1327. goto got_pg;
  1328. /* This allocation should allow future memory freeing. */
  1329. rebalance:
  1330. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1331. && !in_interrupt()) {
  1332. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1333. nofail_alloc:
  1334. /* go through the zonelist yet again, ignoring mins */
  1335. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1336. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
  1337. if (page)
  1338. goto got_pg;
  1339. if (gfp_mask & __GFP_NOFAIL) {
  1340. congestion_wait(WRITE, HZ/50);
  1341. goto nofail_alloc;
  1342. }
  1343. }
  1344. goto nopage;
  1345. }
  1346. /* Atomic allocations - we can't balance anything */
  1347. if (!wait)
  1348. goto nopage;
  1349. cond_resched();
  1350. /* We now go into synchronous reclaim */
  1351. cpuset_memory_pressure_bump();
  1352. /*
  1353. * The task's cpuset might have expanded its set of allowable nodes
  1354. */
  1355. cpuset_update_task_memory_state();
  1356. p->flags |= PF_MEMALLOC;
  1357. reclaim_state.reclaimed_slab = 0;
  1358. p->reclaim_state = &reclaim_state;
  1359. did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
  1360. p->reclaim_state = NULL;
  1361. p->flags &= ~PF_MEMALLOC;
  1362. cond_resched();
  1363. if (order != 0)
  1364. drain_all_pages();
  1365. if (likely(did_some_progress)) {
  1366. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1367. zonelist, high_zoneidx, alloc_flags);
  1368. if (page)
  1369. goto got_pg;
  1370. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1371. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1372. schedule_timeout_uninterruptible(1);
  1373. goto restart;
  1374. }
  1375. /*
  1376. * Go through the zonelist yet one more time, keep
  1377. * very high watermark here, this is only to catch
  1378. * a parallel oom killing, we must fail if we're still
  1379. * under heavy pressure.
  1380. */
  1381. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1382. order, zonelist, high_zoneidx,
  1383. ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1384. if (page) {
  1385. clear_zonelist_oom(zonelist, gfp_mask);
  1386. goto got_pg;
  1387. }
  1388. /* The OOM killer will not help higher order allocs so fail */
  1389. if (order > PAGE_ALLOC_COSTLY_ORDER) {
  1390. clear_zonelist_oom(zonelist, gfp_mask);
  1391. goto nopage;
  1392. }
  1393. out_of_memory(zonelist, gfp_mask, order);
  1394. clear_zonelist_oom(zonelist, gfp_mask);
  1395. goto restart;
  1396. }
  1397. /*
  1398. * Don't let big-order allocations loop unless the caller explicitly
  1399. * requests that. Wait for some write requests to complete then retry.
  1400. *
  1401. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1402. * means __GFP_NOFAIL, but that may not be true in other
  1403. * implementations.
  1404. *
  1405. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1406. * specified, then we retry until we no longer reclaim any pages
  1407. * (above), or we've reclaimed an order of pages at least as
  1408. * large as the allocation's order. In both cases, if the
  1409. * allocation still fails, we stop retrying.
  1410. */
  1411. pages_reclaimed += did_some_progress;
  1412. do_retry = 0;
  1413. if (!(gfp_mask & __GFP_NORETRY)) {
  1414. if (order <= PAGE_ALLOC_COSTLY_ORDER) {
  1415. do_retry = 1;
  1416. } else {
  1417. if (gfp_mask & __GFP_REPEAT &&
  1418. pages_reclaimed < (1 << order))
  1419. do_retry = 1;
  1420. }
  1421. if (gfp_mask & __GFP_NOFAIL)
  1422. do_retry = 1;
  1423. }
  1424. if (do_retry) {
  1425. congestion_wait(WRITE, HZ/50);
  1426. goto rebalance;
  1427. }
  1428. nopage:
  1429. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1430. printk(KERN_WARNING "%s: page allocation failure."
  1431. " order:%d, mode:0x%x\n",
  1432. p->comm, order, gfp_mask);
  1433. dump_stack();
  1434. show_mem();
  1435. }
  1436. got_pg:
  1437. return page;
  1438. }
  1439. EXPORT_SYMBOL(__alloc_pages_internal);
  1440. /*
  1441. * Common helper functions.
  1442. */
  1443. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1444. {
  1445. struct page * page;
  1446. page = alloc_pages(gfp_mask, order);
  1447. if (!page)
  1448. return 0;
  1449. return (unsigned long) page_address(page);
  1450. }
  1451. EXPORT_SYMBOL(__get_free_pages);
  1452. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1453. {
  1454. struct page * page;
  1455. /*
  1456. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1457. * a highmem page
  1458. */
  1459. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1460. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1461. if (page)
  1462. return (unsigned long) page_address(page);
  1463. return 0;
  1464. }
  1465. EXPORT_SYMBOL(get_zeroed_page);
  1466. void __pagevec_free(struct pagevec *pvec)
  1467. {
  1468. int i = pagevec_count(pvec);
  1469. while (--i >= 0)
  1470. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1471. }
  1472. void __free_pages(struct page *page, unsigned int order)
  1473. {
  1474. if (put_page_testzero(page)) {
  1475. if (order == 0)
  1476. free_hot_page(page);
  1477. else
  1478. __free_pages_ok(page, order);
  1479. }
  1480. }
  1481. EXPORT_SYMBOL(__free_pages);
  1482. void free_pages(unsigned long addr, unsigned int order)
  1483. {
  1484. if (addr != 0) {
  1485. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1486. __free_pages(virt_to_page((void *)addr), order);
  1487. }
  1488. }
  1489. EXPORT_SYMBOL(free_pages);
  1490. /**
  1491. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1492. * @size: the number of bytes to allocate
  1493. * @gfp_mask: GFP flags for the allocation
  1494. *
  1495. * This function is similar to alloc_pages(), except that it allocates the
  1496. * minimum number of pages to satisfy the request. alloc_pages() can only
  1497. * allocate memory in power-of-two pages.
  1498. *
  1499. * This function is also limited by MAX_ORDER.
  1500. *
  1501. * Memory allocated by this function must be released by free_pages_exact().
  1502. */
  1503. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1504. {
  1505. unsigned int order = get_order(size);
  1506. unsigned long addr;
  1507. addr = __get_free_pages(gfp_mask, order);
  1508. if (addr) {
  1509. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1510. unsigned long used = addr + PAGE_ALIGN(size);
  1511. split_page(virt_to_page(addr), order);
  1512. while (used < alloc_end) {
  1513. free_page(used);
  1514. used += PAGE_SIZE;
  1515. }
  1516. }
  1517. return (void *)addr;
  1518. }
  1519. EXPORT_SYMBOL(alloc_pages_exact);
  1520. /**
  1521. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1522. * @virt: the value returned by alloc_pages_exact.
  1523. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1524. *
  1525. * Release the memory allocated by a previous call to alloc_pages_exact.
  1526. */
  1527. void free_pages_exact(void *virt, size_t size)
  1528. {
  1529. unsigned long addr = (unsigned long)virt;
  1530. unsigned long end = addr + PAGE_ALIGN(size);
  1531. while (addr < end) {
  1532. free_page(addr);
  1533. addr += PAGE_SIZE;
  1534. }
  1535. }
  1536. EXPORT_SYMBOL(free_pages_exact);
  1537. static unsigned int nr_free_zone_pages(int offset)
  1538. {
  1539. struct zoneref *z;
  1540. struct zone *zone;
  1541. /* Just pick one node, since fallback list is circular */
  1542. unsigned int sum = 0;
  1543. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1544. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1545. unsigned long size = zone->present_pages;
  1546. unsigned long high = zone->pages_high;
  1547. if (size > high)
  1548. sum += size - high;
  1549. }
  1550. return sum;
  1551. }
  1552. /*
  1553. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1554. */
  1555. unsigned int nr_free_buffer_pages(void)
  1556. {
  1557. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1558. }
  1559. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1560. /*
  1561. * Amount of free RAM allocatable within all zones
  1562. */
  1563. unsigned int nr_free_pagecache_pages(void)
  1564. {
  1565. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1566. }
  1567. static inline void show_node(struct zone *zone)
  1568. {
  1569. if (NUMA_BUILD)
  1570. printk("Node %d ", zone_to_nid(zone));
  1571. }
  1572. void si_meminfo(struct sysinfo *val)
  1573. {
  1574. val->totalram = totalram_pages;
  1575. val->sharedram = 0;
  1576. val->freeram = global_page_state(NR_FREE_PAGES);
  1577. val->bufferram = nr_blockdev_pages();
  1578. val->totalhigh = totalhigh_pages;
  1579. val->freehigh = nr_free_highpages();
  1580. val->mem_unit = PAGE_SIZE;
  1581. }
  1582. EXPORT_SYMBOL(si_meminfo);
  1583. #ifdef CONFIG_NUMA
  1584. void si_meminfo_node(struct sysinfo *val, int nid)
  1585. {
  1586. pg_data_t *pgdat = NODE_DATA(nid);
  1587. val->totalram = pgdat->node_present_pages;
  1588. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1589. #ifdef CONFIG_HIGHMEM
  1590. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1591. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1592. NR_FREE_PAGES);
  1593. #else
  1594. val->totalhigh = 0;
  1595. val->freehigh = 0;
  1596. #endif
  1597. val->mem_unit = PAGE_SIZE;
  1598. }
  1599. #endif
  1600. #define K(x) ((x) << (PAGE_SHIFT-10))
  1601. /*
  1602. * Show free area list (used inside shift_scroll-lock stuff)
  1603. * We also calculate the percentage fragmentation. We do this by counting the
  1604. * memory on each free list with the exception of the first item on the list.
  1605. */
  1606. void show_free_areas(void)
  1607. {
  1608. int cpu;
  1609. struct zone *zone;
  1610. for_each_zone(zone) {
  1611. if (!populated_zone(zone))
  1612. continue;
  1613. show_node(zone);
  1614. printk("%s per-cpu:\n", zone->name);
  1615. for_each_online_cpu(cpu) {
  1616. struct per_cpu_pageset *pageset;
  1617. pageset = zone_pcp(zone, cpu);
  1618. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1619. cpu, pageset->pcp.high,
  1620. pageset->pcp.batch, pageset->pcp.count);
  1621. }
  1622. }
  1623. printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
  1624. " inactive_file:%lu"
  1625. //TODO: check/adjust line lengths
  1626. #ifdef CONFIG_UNEVICTABLE_LRU
  1627. " unevictable:%lu"
  1628. #endif
  1629. " dirty:%lu writeback:%lu unstable:%lu\n"
  1630. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1631. global_page_state(NR_ACTIVE_ANON),
  1632. global_page_state(NR_ACTIVE_FILE),
  1633. global_page_state(NR_INACTIVE_ANON),
  1634. global_page_state(NR_INACTIVE_FILE),
  1635. #ifdef CONFIG_UNEVICTABLE_LRU
  1636. global_page_state(NR_UNEVICTABLE),
  1637. #endif
  1638. global_page_state(NR_FILE_DIRTY),
  1639. global_page_state(NR_WRITEBACK),
  1640. global_page_state(NR_UNSTABLE_NFS),
  1641. global_page_state(NR_FREE_PAGES),
  1642. global_page_state(NR_SLAB_RECLAIMABLE) +
  1643. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1644. global_page_state(NR_FILE_MAPPED),
  1645. global_page_state(NR_PAGETABLE),
  1646. global_page_state(NR_BOUNCE));
  1647. for_each_zone(zone) {
  1648. int i;
  1649. if (!populated_zone(zone))
  1650. continue;
  1651. show_node(zone);
  1652. printk("%s"
  1653. " free:%lukB"
  1654. " min:%lukB"
  1655. " low:%lukB"
  1656. " high:%lukB"
  1657. " active_anon:%lukB"
  1658. " inactive_anon:%lukB"
  1659. " active_file:%lukB"
  1660. " inactive_file:%lukB"
  1661. #ifdef CONFIG_UNEVICTABLE_LRU
  1662. " unevictable:%lukB"
  1663. #endif
  1664. " present:%lukB"
  1665. " pages_scanned:%lu"
  1666. " all_unreclaimable? %s"
  1667. "\n",
  1668. zone->name,
  1669. K(zone_page_state(zone, NR_FREE_PAGES)),
  1670. K(zone->pages_min),
  1671. K(zone->pages_low),
  1672. K(zone->pages_high),
  1673. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  1674. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  1675. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  1676. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  1677. #ifdef CONFIG_UNEVICTABLE_LRU
  1678. K(zone_page_state(zone, NR_UNEVICTABLE)),
  1679. #endif
  1680. K(zone->present_pages),
  1681. zone->pages_scanned,
  1682. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1683. );
  1684. printk("lowmem_reserve[]:");
  1685. for (i = 0; i < MAX_NR_ZONES; i++)
  1686. printk(" %lu", zone->lowmem_reserve[i]);
  1687. printk("\n");
  1688. }
  1689. for_each_zone(zone) {
  1690. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1691. if (!populated_zone(zone))
  1692. continue;
  1693. show_node(zone);
  1694. printk("%s: ", zone->name);
  1695. spin_lock_irqsave(&zone->lock, flags);
  1696. for (order = 0; order < MAX_ORDER; order++) {
  1697. nr[order] = zone->free_area[order].nr_free;
  1698. total += nr[order] << order;
  1699. }
  1700. spin_unlock_irqrestore(&zone->lock, flags);
  1701. for (order = 0; order < MAX_ORDER; order++)
  1702. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1703. printk("= %lukB\n", K(total));
  1704. }
  1705. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1706. show_swap_cache_info();
  1707. }
  1708. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1709. {
  1710. zoneref->zone = zone;
  1711. zoneref->zone_idx = zone_idx(zone);
  1712. }
  1713. /*
  1714. * Builds allocation fallback zone lists.
  1715. *
  1716. * Add all populated zones of a node to the zonelist.
  1717. */
  1718. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1719. int nr_zones, enum zone_type zone_type)
  1720. {
  1721. struct zone *zone;
  1722. BUG_ON(zone_type >= MAX_NR_ZONES);
  1723. zone_type++;
  1724. do {
  1725. zone_type--;
  1726. zone = pgdat->node_zones + zone_type;
  1727. if (populated_zone(zone)) {
  1728. zoneref_set_zone(zone,
  1729. &zonelist->_zonerefs[nr_zones++]);
  1730. check_highest_zone(zone_type);
  1731. }
  1732. } while (zone_type);
  1733. return nr_zones;
  1734. }
  1735. /*
  1736. * zonelist_order:
  1737. * 0 = automatic detection of better ordering.
  1738. * 1 = order by ([node] distance, -zonetype)
  1739. * 2 = order by (-zonetype, [node] distance)
  1740. *
  1741. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1742. * the same zonelist. So only NUMA can configure this param.
  1743. */
  1744. #define ZONELIST_ORDER_DEFAULT 0
  1745. #define ZONELIST_ORDER_NODE 1
  1746. #define ZONELIST_ORDER_ZONE 2
  1747. /* zonelist order in the kernel.
  1748. * set_zonelist_order() will set this to NODE or ZONE.
  1749. */
  1750. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1751. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1752. #ifdef CONFIG_NUMA
  1753. /* The value user specified ....changed by config */
  1754. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1755. /* string for sysctl */
  1756. #define NUMA_ZONELIST_ORDER_LEN 16
  1757. char numa_zonelist_order[16] = "default";
  1758. /*
  1759. * interface for configure zonelist ordering.
  1760. * command line option "numa_zonelist_order"
  1761. * = "[dD]efault - default, automatic configuration.
  1762. * = "[nN]ode - order by node locality, then by zone within node
  1763. * = "[zZ]one - order by zone, then by locality within zone
  1764. */
  1765. static int __parse_numa_zonelist_order(char *s)
  1766. {
  1767. if (*s == 'd' || *s == 'D') {
  1768. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1769. } else if (*s == 'n' || *s == 'N') {
  1770. user_zonelist_order = ZONELIST_ORDER_NODE;
  1771. } else if (*s == 'z' || *s == 'Z') {
  1772. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1773. } else {
  1774. printk(KERN_WARNING
  1775. "Ignoring invalid numa_zonelist_order value: "
  1776. "%s\n", s);
  1777. return -EINVAL;
  1778. }
  1779. return 0;
  1780. }
  1781. static __init int setup_numa_zonelist_order(char *s)
  1782. {
  1783. if (s)
  1784. return __parse_numa_zonelist_order(s);
  1785. return 0;
  1786. }
  1787. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1788. /*
  1789. * sysctl handler for numa_zonelist_order
  1790. */
  1791. int numa_zonelist_order_handler(ctl_table *table, int write,
  1792. struct file *file, void __user *buffer, size_t *length,
  1793. loff_t *ppos)
  1794. {
  1795. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1796. int ret;
  1797. if (write)
  1798. strncpy(saved_string, (char*)table->data,
  1799. NUMA_ZONELIST_ORDER_LEN);
  1800. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1801. if (ret)
  1802. return ret;
  1803. if (write) {
  1804. int oldval = user_zonelist_order;
  1805. if (__parse_numa_zonelist_order((char*)table->data)) {
  1806. /*
  1807. * bogus value. restore saved string
  1808. */
  1809. strncpy((char*)table->data, saved_string,
  1810. NUMA_ZONELIST_ORDER_LEN);
  1811. user_zonelist_order = oldval;
  1812. } else if (oldval != user_zonelist_order)
  1813. build_all_zonelists();
  1814. }
  1815. return 0;
  1816. }
  1817. #define MAX_NODE_LOAD (num_online_nodes())
  1818. static int node_load[MAX_NUMNODES];
  1819. /**
  1820. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1821. * @node: node whose fallback list we're appending
  1822. * @used_node_mask: nodemask_t of already used nodes
  1823. *
  1824. * We use a number of factors to determine which is the next node that should
  1825. * appear on a given node's fallback list. The node should not have appeared
  1826. * already in @node's fallback list, and it should be the next closest node
  1827. * according to the distance array (which contains arbitrary distance values
  1828. * from each node to each node in the system), and should also prefer nodes
  1829. * with no CPUs, since presumably they'll have very little allocation pressure
  1830. * on them otherwise.
  1831. * It returns -1 if no node is found.
  1832. */
  1833. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1834. {
  1835. int n, val;
  1836. int min_val = INT_MAX;
  1837. int best_node = -1;
  1838. node_to_cpumask_ptr(tmp, 0);
  1839. /* Use the local node if we haven't already */
  1840. if (!node_isset(node, *used_node_mask)) {
  1841. node_set(node, *used_node_mask);
  1842. return node;
  1843. }
  1844. for_each_node_state(n, N_HIGH_MEMORY) {
  1845. /* Don't want a node to appear more than once */
  1846. if (node_isset(n, *used_node_mask))
  1847. continue;
  1848. /* Use the distance array to find the distance */
  1849. val = node_distance(node, n);
  1850. /* Penalize nodes under us ("prefer the next node") */
  1851. val += (n < node);
  1852. /* Give preference to headless and unused nodes */
  1853. node_to_cpumask_ptr_next(tmp, n);
  1854. if (!cpus_empty(*tmp))
  1855. val += PENALTY_FOR_NODE_WITH_CPUS;
  1856. /* Slight preference for less loaded node */
  1857. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1858. val += node_load[n];
  1859. if (val < min_val) {
  1860. min_val = val;
  1861. best_node = n;
  1862. }
  1863. }
  1864. if (best_node >= 0)
  1865. node_set(best_node, *used_node_mask);
  1866. return best_node;
  1867. }
  1868. /*
  1869. * Build zonelists ordered by node and zones within node.
  1870. * This results in maximum locality--normal zone overflows into local
  1871. * DMA zone, if any--but risks exhausting DMA zone.
  1872. */
  1873. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1874. {
  1875. int j;
  1876. struct zonelist *zonelist;
  1877. zonelist = &pgdat->node_zonelists[0];
  1878. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  1879. ;
  1880. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  1881. MAX_NR_ZONES - 1);
  1882. zonelist->_zonerefs[j].zone = NULL;
  1883. zonelist->_zonerefs[j].zone_idx = 0;
  1884. }
  1885. /*
  1886. * Build gfp_thisnode zonelists
  1887. */
  1888. static void build_thisnode_zonelists(pg_data_t *pgdat)
  1889. {
  1890. int j;
  1891. struct zonelist *zonelist;
  1892. zonelist = &pgdat->node_zonelists[1];
  1893. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  1894. zonelist->_zonerefs[j].zone = NULL;
  1895. zonelist->_zonerefs[j].zone_idx = 0;
  1896. }
  1897. /*
  1898. * Build zonelists ordered by zone and nodes within zones.
  1899. * This results in conserving DMA zone[s] until all Normal memory is
  1900. * exhausted, but results in overflowing to remote node while memory
  1901. * may still exist in local DMA zone.
  1902. */
  1903. static int node_order[MAX_NUMNODES];
  1904. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1905. {
  1906. int pos, j, node;
  1907. int zone_type; /* needs to be signed */
  1908. struct zone *z;
  1909. struct zonelist *zonelist;
  1910. zonelist = &pgdat->node_zonelists[0];
  1911. pos = 0;
  1912. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  1913. for (j = 0; j < nr_nodes; j++) {
  1914. node = node_order[j];
  1915. z = &NODE_DATA(node)->node_zones[zone_type];
  1916. if (populated_zone(z)) {
  1917. zoneref_set_zone(z,
  1918. &zonelist->_zonerefs[pos++]);
  1919. check_highest_zone(zone_type);
  1920. }
  1921. }
  1922. }
  1923. zonelist->_zonerefs[pos].zone = NULL;
  1924. zonelist->_zonerefs[pos].zone_idx = 0;
  1925. }
  1926. static int default_zonelist_order(void)
  1927. {
  1928. int nid, zone_type;
  1929. unsigned long low_kmem_size,total_size;
  1930. struct zone *z;
  1931. int average_size;
  1932. /*
  1933. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1934. * If they are really small and used heavily, the system can fall
  1935. * into OOM very easily.
  1936. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1937. */
  1938. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1939. low_kmem_size = 0;
  1940. total_size = 0;
  1941. for_each_online_node(nid) {
  1942. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1943. z = &NODE_DATA(nid)->node_zones[zone_type];
  1944. if (populated_zone(z)) {
  1945. if (zone_type < ZONE_NORMAL)
  1946. low_kmem_size += z->present_pages;
  1947. total_size += z->present_pages;
  1948. }
  1949. }
  1950. }
  1951. if (!low_kmem_size || /* there are no DMA area. */
  1952. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1953. return ZONELIST_ORDER_NODE;
  1954. /*
  1955. * look into each node's config.
  1956. * If there is a node whose DMA/DMA32 memory is very big area on
  1957. * local memory, NODE_ORDER may be suitable.
  1958. */
  1959. average_size = total_size /
  1960. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  1961. for_each_online_node(nid) {
  1962. low_kmem_size = 0;
  1963. total_size = 0;
  1964. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1965. z = &NODE_DATA(nid)->node_zones[zone_type];
  1966. if (populated_zone(z)) {
  1967. if (zone_type < ZONE_NORMAL)
  1968. low_kmem_size += z->present_pages;
  1969. total_size += z->present_pages;
  1970. }
  1971. }
  1972. if (low_kmem_size &&
  1973. total_size > average_size && /* ignore small node */
  1974. low_kmem_size > total_size * 70/100)
  1975. return ZONELIST_ORDER_NODE;
  1976. }
  1977. return ZONELIST_ORDER_ZONE;
  1978. }
  1979. static void set_zonelist_order(void)
  1980. {
  1981. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1982. current_zonelist_order = default_zonelist_order();
  1983. else
  1984. current_zonelist_order = user_zonelist_order;
  1985. }
  1986. static void build_zonelists(pg_data_t *pgdat)
  1987. {
  1988. int j, node, load;
  1989. enum zone_type i;
  1990. nodemask_t used_mask;
  1991. int local_node, prev_node;
  1992. struct zonelist *zonelist;
  1993. int order = current_zonelist_order;
  1994. /* initialize zonelists */
  1995. for (i = 0; i < MAX_ZONELISTS; i++) {
  1996. zonelist = pgdat->node_zonelists + i;
  1997. zonelist->_zonerefs[0].zone = NULL;
  1998. zonelist->_zonerefs[0].zone_idx = 0;
  1999. }
  2000. /* NUMA-aware ordering of nodes */
  2001. local_node = pgdat->node_id;
  2002. load = num_online_nodes();
  2003. prev_node = local_node;
  2004. nodes_clear(used_mask);
  2005. memset(node_load, 0, sizeof(node_load));
  2006. memset(node_order, 0, sizeof(node_order));
  2007. j = 0;
  2008. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2009. int distance = node_distance(local_node, node);
  2010. /*
  2011. * If another node is sufficiently far away then it is better
  2012. * to reclaim pages in a zone before going off node.
  2013. */
  2014. if (distance > RECLAIM_DISTANCE)
  2015. zone_reclaim_mode = 1;
  2016. /*
  2017. * We don't want to pressure a particular node.
  2018. * So adding penalty to the first node in same
  2019. * distance group to make it round-robin.
  2020. */
  2021. if (distance != node_distance(local_node, prev_node))
  2022. node_load[node] = load;
  2023. prev_node = node;
  2024. load--;
  2025. if (order == ZONELIST_ORDER_NODE)
  2026. build_zonelists_in_node_order(pgdat, node);
  2027. else
  2028. node_order[j++] = node; /* remember order */
  2029. }
  2030. if (order == ZONELIST_ORDER_ZONE) {
  2031. /* calculate node order -- i.e., DMA last! */
  2032. build_zonelists_in_zone_order(pgdat, j);
  2033. }
  2034. build_thisnode_zonelists(pgdat);
  2035. }
  2036. /* Construct the zonelist performance cache - see further mmzone.h */
  2037. static void build_zonelist_cache(pg_data_t *pgdat)
  2038. {
  2039. struct zonelist *zonelist;
  2040. struct zonelist_cache *zlc;
  2041. struct zoneref *z;
  2042. zonelist = &pgdat->node_zonelists[0];
  2043. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2044. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2045. for (z = zonelist->_zonerefs; z->zone; z++)
  2046. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2047. }
  2048. #else /* CONFIG_NUMA */
  2049. static void set_zonelist_order(void)
  2050. {
  2051. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2052. }
  2053. static void build_zonelists(pg_data_t *pgdat)
  2054. {
  2055. int node, local_node;
  2056. enum zone_type j;
  2057. struct zonelist *zonelist;
  2058. local_node = pgdat->node_id;
  2059. zonelist = &pgdat->node_zonelists[0];
  2060. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2061. /*
  2062. * Now we build the zonelist so that it contains the zones
  2063. * of all the other nodes.
  2064. * We don't want to pressure a particular node, so when
  2065. * building the zones for node N, we make sure that the
  2066. * zones coming right after the local ones are those from
  2067. * node N+1 (modulo N)
  2068. */
  2069. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2070. if (!node_online(node))
  2071. continue;
  2072. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2073. MAX_NR_ZONES - 1);
  2074. }
  2075. for (node = 0; node < local_node; node++) {
  2076. if (!node_online(node))
  2077. continue;
  2078. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2079. MAX_NR_ZONES - 1);
  2080. }
  2081. zonelist->_zonerefs[j].zone = NULL;
  2082. zonelist->_zonerefs[j].zone_idx = 0;
  2083. }
  2084. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2085. static void build_zonelist_cache(pg_data_t *pgdat)
  2086. {
  2087. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2088. }
  2089. #endif /* CONFIG_NUMA */
  2090. /* return values int ....just for stop_machine() */
  2091. static int __build_all_zonelists(void *dummy)
  2092. {
  2093. int nid;
  2094. for_each_online_node(nid) {
  2095. pg_data_t *pgdat = NODE_DATA(nid);
  2096. build_zonelists(pgdat);
  2097. build_zonelist_cache(pgdat);
  2098. }
  2099. return 0;
  2100. }
  2101. void build_all_zonelists(void)
  2102. {
  2103. set_zonelist_order();
  2104. if (system_state == SYSTEM_BOOTING) {
  2105. __build_all_zonelists(NULL);
  2106. mminit_verify_zonelist();
  2107. cpuset_init_current_mems_allowed();
  2108. } else {
  2109. /* we have to stop all cpus to guarantee there is no user
  2110. of zonelist */
  2111. stop_machine(__build_all_zonelists, NULL, NULL);
  2112. /* cpuset refresh routine should be here */
  2113. }
  2114. vm_total_pages = nr_free_pagecache_pages();
  2115. /*
  2116. * Disable grouping by mobility if the number of pages in the
  2117. * system is too low to allow the mechanism to work. It would be
  2118. * more accurate, but expensive to check per-zone. This check is
  2119. * made on memory-hotadd so a system can start with mobility
  2120. * disabled and enable it later
  2121. */
  2122. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2123. page_group_by_mobility_disabled = 1;
  2124. else
  2125. page_group_by_mobility_disabled = 0;
  2126. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2127. "Total pages: %ld\n",
  2128. num_online_nodes(),
  2129. zonelist_order_name[current_zonelist_order],
  2130. page_group_by_mobility_disabled ? "off" : "on",
  2131. vm_total_pages);
  2132. #ifdef CONFIG_NUMA
  2133. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2134. #endif
  2135. }
  2136. /*
  2137. * Helper functions to size the waitqueue hash table.
  2138. * Essentially these want to choose hash table sizes sufficiently
  2139. * large so that collisions trying to wait on pages are rare.
  2140. * But in fact, the number of active page waitqueues on typical
  2141. * systems is ridiculously low, less than 200. So this is even
  2142. * conservative, even though it seems large.
  2143. *
  2144. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2145. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2146. */
  2147. #define PAGES_PER_WAITQUEUE 256
  2148. #ifndef CONFIG_MEMORY_HOTPLUG
  2149. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2150. {
  2151. unsigned long size = 1;
  2152. pages /= PAGES_PER_WAITQUEUE;
  2153. while (size < pages)
  2154. size <<= 1;
  2155. /*
  2156. * Once we have dozens or even hundreds of threads sleeping
  2157. * on IO we've got bigger problems than wait queue collision.
  2158. * Limit the size of the wait table to a reasonable size.
  2159. */
  2160. size = min(size, 4096UL);
  2161. return max(size, 4UL);
  2162. }
  2163. #else
  2164. /*
  2165. * A zone's size might be changed by hot-add, so it is not possible to determine
  2166. * a suitable size for its wait_table. So we use the maximum size now.
  2167. *
  2168. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2169. *
  2170. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2171. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2172. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2173. *
  2174. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2175. * or more by the traditional way. (See above). It equals:
  2176. *
  2177. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2178. * ia64(16K page size) : = ( 8G + 4M)byte.
  2179. * powerpc (64K page size) : = (32G +16M)byte.
  2180. */
  2181. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2182. {
  2183. return 4096UL;
  2184. }
  2185. #endif
  2186. /*
  2187. * This is an integer logarithm so that shifts can be used later
  2188. * to extract the more random high bits from the multiplicative
  2189. * hash function before the remainder is taken.
  2190. */
  2191. static inline unsigned long wait_table_bits(unsigned long size)
  2192. {
  2193. return ffz(~size);
  2194. }
  2195. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2196. /*
  2197. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2198. * of blocks reserved is based on zone->pages_min. The memory within the
  2199. * reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2200. * higher will lead to a bigger reserve which will get freed as contiguous
  2201. * blocks as reclaim kicks in
  2202. */
  2203. static void setup_zone_migrate_reserve(struct zone *zone)
  2204. {
  2205. unsigned long start_pfn, pfn, end_pfn;
  2206. struct page *page;
  2207. unsigned long reserve, block_migratetype;
  2208. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2209. start_pfn = zone->zone_start_pfn;
  2210. end_pfn = start_pfn + zone->spanned_pages;
  2211. reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
  2212. pageblock_order;
  2213. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2214. if (!pfn_valid(pfn))
  2215. continue;
  2216. page = pfn_to_page(pfn);
  2217. /* Watch out for overlapping nodes */
  2218. if (page_to_nid(page) != zone_to_nid(zone))
  2219. continue;
  2220. /* Blocks with reserved pages will never free, skip them. */
  2221. if (PageReserved(page))
  2222. continue;
  2223. block_migratetype = get_pageblock_migratetype(page);
  2224. /* If this block is reserved, account for it */
  2225. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2226. reserve--;
  2227. continue;
  2228. }
  2229. /* Suitable for reserving if this block is movable */
  2230. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2231. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2232. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2233. reserve--;
  2234. continue;
  2235. }
  2236. /*
  2237. * If the reserve is met and this is a previous reserved block,
  2238. * take it back
  2239. */
  2240. if (block_migratetype == MIGRATE_RESERVE) {
  2241. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2242. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2243. }
  2244. }
  2245. }
  2246. /*
  2247. * Initially all pages are reserved - free ones are freed
  2248. * up by free_all_bootmem() once the early boot process is
  2249. * done. Non-atomic initialization, single-pass.
  2250. */
  2251. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2252. unsigned long start_pfn, enum memmap_context context)
  2253. {
  2254. struct page *page;
  2255. unsigned long end_pfn = start_pfn + size;
  2256. unsigned long pfn;
  2257. struct zone *z;
  2258. z = &NODE_DATA(nid)->node_zones[zone];
  2259. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2260. /*
  2261. * There can be holes in boot-time mem_map[]s
  2262. * handed to this function. They do not
  2263. * exist on hotplugged memory.
  2264. */
  2265. if (context == MEMMAP_EARLY) {
  2266. if (!early_pfn_valid(pfn))
  2267. continue;
  2268. if (!early_pfn_in_nid(pfn, nid))
  2269. continue;
  2270. }
  2271. page = pfn_to_page(pfn);
  2272. set_page_links(page, zone, nid, pfn);
  2273. mminit_verify_page_links(page, zone, nid, pfn);
  2274. init_page_count(page);
  2275. reset_page_mapcount(page);
  2276. SetPageReserved(page);
  2277. /*
  2278. * Mark the block movable so that blocks are reserved for
  2279. * movable at startup. This will force kernel allocations
  2280. * to reserve their blocks rather than leaking throughout
  2281. * the address space during boot when many long-lived
  2282. * kernel allocations are made. Later some blocks near
  2283. * the start are marked MIGRATE_RESERVE by
  2284. * setup_zone_migrate_reserve()
  2285. *
  2286. * bitmap is created for zone's valid pfn range. but memmap
  2287. * can be created for invalid pages (for alignment)
  2288. * check here not to call set_pageblock_migratetype() against
  2289. * pfn out of zone.
  2290. */
  2291. if ((z->zone_start_pfn <= pfn)
  2292. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2293. && !(pfn & (pageblock_nr_pages - 1)))
  2294. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2295. INIT_LIST_HEAD(&page->lru);
  2296. #ifdef WANT_PAGE_VIRTUAL
  2297. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2298. if (!is_highmem_idx(zone))
  2299. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2300. #endif
  2301. }
  2302. }
  2303. static void __meminit zone_init_free_lists(struct zone *zone)
  2304. {
  2305. int order, t;
  2306. for_each_migratetype_order(order, t) {
  2307. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2308. zone->free_area[order].nr_free = 0;
  2309. }
  2310. }
  2311. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2312. #define memmap_init(size, nid, zone, start_pfn) \
  2313. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2314. #endif
  2315. static int zone_batchsize(struct zone *zone)
  2316. {
  2317. int batch;
  2318. /*
  2319. * The per-cpu-pages pools are set to around 1000th of the
  2320. * size of the zone. But no more than 1/2 of a meg.
  2321. *
  2322. * OK, so we don't know how big the cache is. So guess.
  2323. */
  2324. batch = zone->present_pages / 1024;
  2325. if (batch * PAGE_SIZE > 512 * 1024)
  2326. batch = (512 * 1024) / PAGE_SIZE;
  2327. batch /= 4; /* We effectively *= 4 below */
  2328. if (batch < 1)
  2329. batch = 1;
  2330. /*
  2331. * Clamp the batch to a 2^n - 1 value. Having a power
  2332. * of 2 value was found to be more likely to have
  2333. * suboptimal cache aliasing properties in some cases.
  2334. *
  2335. * For example if 2 tasks are alternately allocating
  2336. * batches of pages, one task can end up with a lot
  2337. * of pages of one half of the possible page colors
  2338. * and the other with pages of the other colors.
  2339. */
  2340. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  2341. return batch;
  2342. }
  2343. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2344. {
  2345. struct per_cpu_pages *pcp;
  2346. memset(p, 0, sizeof(*p));
  2347. pcp = &p->pcp;
  2348. pcp->count = 0;
  2349. pcp->high = 6 * batch;
  2350. pcp->batch = max(1UL, 1 * batch);
  2351. INIT_LIST_HEAD(&pcp->list);
  2352. }
  2353. /*
  2354. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2355. * to the value high for the pageset p.
  2356. */
  2357. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2358. unsigned long high)
  2359. {
  2360. struct per_cpu_pages *pcp;
  2361. pcp = &p->pcp;
  2362. pcp->high = high;
  2363. pcp->batch = max(1UL, high/4);
  2364. if ((high/4) > (PAGE_SHIFT * 8))
  2365. pcp->batch = PAGE_SHIFT * 8;
  2366. }
  2367. #ifdef CONFIG_NUMA
  2368. /*
  2369. * Boot pageset table. One per cpu which is going to be used for all
  2370. * zones and all nodes. The parameters will be set in such a way
  2371. * that an item put on a list will immediately be handed over to
  2372. * the buddy list. This is safe since pageset manipulation is done
  2373. * with interrupts disabled.
  2374. *
  2375. * Some NUMA counter updates may also be caught by the boot pagesets.
  2376. *
  2377. * The boot_pagesets must be kept even after bootup is complete for
  2378. * unused processors and/or zones. They do play a role for bootstrapping
  2379. * hotplugged processors.
  2380. *
  2381. * zoneinfo_show() and maybe other functions do
  2382. * not check if the processor is online before following the pageset pointer.
  2383. * Other parts of the kernel may not check if the zone is available.
  2384. */
  2385. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2386. /*
  2387. * Dynamically allocate memory for the
  2388. * per cpu pageset array in struct zone.
  2389. */
  2390. static int __cpuinit process_zones(int cpu)
  2391. {
  2392. struct zone *zone, *dzone;
  2393. int node = cpu_to_node(cpu);
  2394. node_set_state(node, N_CPU); /* this node has a cpu */
  2395. for_each_zone(zone) {
  2396. if (!populated_zone(zone))
  2397. continue;
  2398. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2399. GFP_KERNEL, node);
  2400. if (!zone_pcp(zone, cpu))
  2401. goto bad;
  2402. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2403. if (percpu_pagelist_fraction)
  2404. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2405. (zone->present_pages / percpu_pagelist_fraction));
  2406. }
  2407. return 0;
  2408. bad:
  2409. for_each_zone(dzone) {
  2410. if (!populated_zone(dzone))
  2411. continue;
  2412. if (dzone == zone)
  2413. break;
  2414. kfree(zone_pcp(dzone, cpu));
  2415. zone_pcp(dzone, cpu) = NULL;
  2416. }
  2417. return -ENOMEM;
  2418. }
  2419. static inline void free_zone_pagesets(int cpu)
  2420. {
  2421. struct zone *zone;
  2422. for_each_zone(zone) {
  2423. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2424. /* Free per_cpu_pageset if it is slab allocated */
  2425. if (pset != &boot_pageset[cpu])
  2426. kfree(pset);
  2427. zone_pcp(zone, cpu) = NULL;
  2428. }
  2429. }
  2430. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2431. unsigned long action,
  2432. void *hcpu)
  2433. {
  2434. int cpu = (long)hcpu;
  2435. int ret = NOTIFY_OK;
  2436. switch (action) {
  2437. case CPU_UP_PREPARE:
  2438. case CPU_UP_PREPARE_FROZEN:
  2439. if (process_zones(cpu))
  2440. ret = NOTIFY_BAD;
  2441. break;
  2442. case CPU_UP_CANCELED:
  2443. case CPU_UP_CANCELED_FROZEN:
  2444. case CPU_DEAD:
  2445. case CPU_DEAD_FROZEN:
  2446. free_zone_pagesets(cpu);
  2447. break;
  2448. default:
  2449. break;
  2450. }
  2451. return ret;
  2452. }
  2453. static struct notifier_block __cpuinitdata pageset_notifier =
  2454. { &pageset_cpuup_callback, NULL, 0 };
  2455. void __init setup_per_cpu_pageset(void)
  2456. {
  2457. int err;
  2458. /* Initialize per_cpu_pageset for cpu 0.
  2459. * A cpuup callback will do this for every cpu
  2460. * as it comes online
  2461. */
  2462. err = process_zones(smp_processor_id());
  2463. BUG_ON(err);
  2464. register_cpu_notifier(&pageset_notifier);
  2465. }
  2466. #endif
  2467. static noinline __init_refok
  2468. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2469. {
  2470. int i;
  2471. struct pglist_data *pgdat = zone->zone_pgdat;
  2472. size_t alloc_size;
  2473. /*
  2474. * The per-page waitqueue mechanism uses hashed waitqueues
  2475. * per zone.
  2476. */
  2477. zone->wait_table_hash_nr_entries =
  2478. wait_table_hash_nr_entries(zone_size_pages);
  2479. zone->wait_table_bits =
  2480. wait_table_bits(zone->wait_table_hash_nr_entries);
  2481. alloc_size = zone->wait_table_hash_nr_entries
  2482. * sizeof(wait_queue_head_t);
  2483. if (!slab_is_available()) {
  2484. zone->wait_table = (wait_queue_head_t *)
  2485. alloc_bootmem_node(pgdat, alloc_size);
  2486. } else {
  2487. /*
  2488. * This case means that a zone whose size was 0 gets new memory
  2489. * via memory hot-add.
  2490. * But it may be the case that a new node was hot-added. In
  2491. * this case vmalloc() will not be able to use this new node's
  2492. * memory - this wait_table must be initialized to use this new
  2493. * node itself as well.
  2494. * To use this new node's memory, further consideration will be
  2495. * necessary.
  2496. */
  2497. zone->wait_table = vmalloc(alloc_size);
  2498. }
  2499. if (!zone->wait_table)
  2500. return -ENOMEM;
  2501. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2502. init_waitqueue_head(zone->wait_table + i);
  2503. return 0;
  2504. }
  2505. static __meminit void zone_pcp_init(struct zone *zone)
  2506. {
  2507. int cpu;
  2508. unsigned long batch = zone_batchsize(zone);
  2509. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2510. #ifdef CONFIG_NUMA
  2511. /* Early boot. Slab allocator not functional yet */
  2512. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2513. setup_pageset(&boot_pageset[cpu],0);
  2514. #else
  2515. setup_pageset(zone_pcp(zone,cpu), batch);
  2516. #endif
  2517. }
  2518. if (zone->present_pages)
  2519. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2520. zone->name, zone->present_pages, batch);
  2521. }
  2522. __meminit int init_currently_empty_zone(struct zone *zone,
  2523. unsigned long zone_start_pfn,
  2524. unsigned long size,
  2525. enum memmap_context context)
  2526. {
  2527. struct pglist_data *pgdat = zone->zone_pgdat;
  2528. int ret;
  2529. ret = zone_wait_table_init(zone, size);
  2530. if (ret)
  2531. return ret;
  2532. pgdat->nr_zones = zone_idx(zone) + 1;
  2533. zone->zone_start_pfn = zone_start_pfn;
  2534. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2535. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2536. pgdat->node_id,
  2537. (unsigned long)zone_idx(zone),
  2538. zone_start_pfn, (zone_start_pfn + size));
  2539. zone_init_free_lists(zone);
  2540. return 0;
  2541. }
  2542. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2543. /*
  2544. * Basic iterator support. Return the first range of PFNs for a node
  2545. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2546. */
  2547. static int __meminit first_active_region_index_in_nid(int nid)
  2548. {
  2549. int i;
  2550. for (i = 0; i < nr_nodemap_entries; i++)
  2551. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2552. return i;
  2553. return -1;
  2554. }
  2555. /*
  2556. * Basic iterator support. Return the next active range of PFNs for a node
  2557. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2558. */
  2559. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2560. {
  2561. for (index = index + 1; index < nr_nodemap_entries; index++)
  2562. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2563. return index;
  2564. return -1;
  2565. }
  2566. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2567. /*
  2568. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2569. * Architectures may implement their own version but if add_active_range()
  2570. * was used and there are no special requirements, this is a convenient
  2571. * alternative
  2572. */
  2573. int __meminit early_pfn_to_nid(unsigned long pfn)
  2574. {
  2575. int i;
  2576. for (i = 0; i < nr_nodemap_entries; i++) {
  2577. unsigned long start_pfn = early_node_map[i].start_pfn;
  2578. unsigned long end_pfn = early_node_map[i].end_pfn;
  2579. if (start_pfn <= pfn && pfn < end_pfn)
  2580. return early_node_map[i].nid;
  2581. }
  2582. return 0;
  2583. }
  2584. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2585. /* Basic iterator support to walk early_node_map[] */
  2586. #define for_each_active_range_index_in_nid(i, nid) \
  2587. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2588. i = next_active_region_index_in_nid(i, nid))
  2589. /**
  2590. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2591. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2592. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2593. *
  2594. * If an architecture guarantees that all ranges registered with
  2595. * add_active_ranges() contain no holes and may be freed, this
  2596. * this function may be used instead of calling free_bootmem() manually.
  2597. */
  2598. void __init free_bootmem_with_active_regions(int nid,
  2599. unsigned long max_low_pfn)
  2600. {
  2601. int i;
  2602. for_each_active_range_index_in_nid(i, nid) {
  2603. unsigned long size_pages = 0;
  2604. unsigned long end_pfn = early_node_map[i].end_pfn;
  2605. if (early_node_map[i].start_pfn >= max_low_pfn)
  2606. continue;
  2607. if (end_pfn > max_low_pfn)
  2608. end_pfn = max_low_pfn;
  2609. size_pages = end_pfn - early_node_map[i].start_pfn;
  2610. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2611. PFN_PHYS(early_node_map[i].start_pfn),
  2612. size_pages << PAGE_SHIFT);
  2613. }
  2614. }
  2615. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  2616. {
  2617. int i;
  2618. int ret;
  2619. for_each_active_range_index_in_nid(i, nid) {
  2620. ret = work_fn(early_node_map[i].start_pfn,
  2621. early_node_map[i].end_pfn, data);
  2622. if (ret)
  2623. break;
  2624. }
  2625. }
  2626. /**
  2627. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2628. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2629. *
  2630. * If an architecture guarantees that all ranges registered with
  2631. * add_active_ranges() contain no holes and may be freed, this
  2632. * function may be used instead of calling memory_present() manually.
  2633. */
  2634. void __init sparse_memory_present_with_active_regions(int nid)
  2635. {
  2636. int i;
  2637. for_each_active_range_index_in_nid(i, nid)
  2638. memory_present(early_node_map[i].nid,
  2639. early_node_map[i].start_pfn,
  2640. early_node_map[i].end_pfn);
  2641. }
  2642. /**
  2643. * push_node_boundaries - Push node boundaries to at least the requested boundary
  2644. * @nid: The nid of the node to push the boundary for
  2645. * @start_pfn: The start pfn of the node
  2646. * @end_pfn: The end pfn of the node
  2647. *
  2648. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  2649. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  2650. * be hotplugged even though no physical memory exists. This function allows
  2651. * an arch to push out the node boundaries so mem_map is allocated that can
  2652. * be used later.
  2653. */
  2654. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2655. void __init push_node_boundaries(unsigned int nid,
  2656. unsigned long start_pfn, unsigned long end_pfn)
  2657. {
  2658. mminit_dprintk(MMINIT_TRACE, "zoneboundary",
  2659. "Entering push_node_boundaries(%u, %lu, %lu)\n",
  2660. nid, start_pfn, end_pfn);
  2661. /* Initialise the boundary for this node if necessary */
  2662. if (node_boundary_end_pfn[nid] == 0)
  2663. node_boundary_start_pfn[nid] = -1UL;
  2664. /* Update the boundaries */
  2665. if (node_boundary_start_pfn[nid] > start_pfn)
  2666. node_boundary_start_pfn[nid] = start_pfn;
  2667. if (node_boundary_end_pfn[nid] < end_pfn)
  2668. node_boundary_end_pfn[nid] = end_pfn;
  2669. }
  2670. /* If necessary, push the node boundary out for reserve hotadd */
  2671. static void __meminit account_node_boundary(unsigned int nid,
  2672. unsigned long *start_pfn, unsigned long *end_pfn)
  2673. {
  2674. mminit_dprintk(MMINIT_TRACE, "zoneboundary",
  2675. "Entering account_node_boundary(%u, %lu, %lu)\n",
  2676. nid, *start_pfn, *end_pfn);
  2677. /* Return if boundary information has not been provided */
  2678. if (node_boundary_end_pfn[nid] == 0)
  2679. return;
  2680. /* Check the boundaries and update if necessary */
  2681. if (node_boundary_start_pfn[nid] < *start_pfn)
  2682. *start_pfn = node_boundary_start_pfn[nid];
  2683. if (node_boundary_end_pfn[nid] > *end_pfn)
  2684. *end_pfn = node_boundary_end_pfn[nid];
  2685. }
  2686. #else
  2687. void __init push_node_boundaries(unsigned int nid,
  2688. unsigned long start_pfn, unsigned long end_pfn) {}
  2689. static void __meminit account_node_boundary(unsigned int nid,
  2690. unsigned long *start_pfn, unsigned long *end_pfn) {}
  2691. #endif
  2692. /**
  2693. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2694. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2695. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2696. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2697. *
  2698. * It returns the start and end page frame of a node based on information
  2699. * provided by an arch calling add_active_range(). If called for a node
  2700. * with no available memory, a warning is printed and the start and end
  2701. * PFNs will be 0.
  2702. */
  2703. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2704. unsigned long *start_pfn, unsigned long *end_pfn)
  2705. {
  2706. int i;
  2707. *start_pfn = -1UL;
  2708. *end_pfn = 0;
  2709. for_each_active_range_index_in_nid(i, nid) {
  2710. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2711. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2712. }
  2713. if (*start_pfn == -1UL)
  2714. *start_pfn = 0;
  2715. /* Push the node boundaries out if requested */
  2716. account_node_boundary(nid, start_pfn, end_pfn);
  2717. }
  2718. /*
  2719. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2720. * assumption is made that zones within a node are ordered in monotonic
  2721. * increasing memory addresses so that the "highest" populated zone is used
  2722. */
  2723. static void __init find_usable_zone_for_movable(void)
  2724. {
  2725. int zone_index;
  2726. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2727. if (zone_index == ZONE_MOVABLE)
  2728. continue;
  2729. if (arch_zone_highest_possible_pfn[zone_index] >
  2730. arch_zone_lowest_possible_pfn[zone_index])
  2731. break;
  2732. }
  2733. VM_BUG_ON(zone_index == -1);
  2734. movable_zone = zone_index;
  2735. }
  2736. /*
  2737. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2738. * because it is sized independant of architecture. Unlike the other zones,
  2739. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2740. * in each node depending on the size of each node and how evenly kernelcore
  2741. * is distributed. This helper function adjusts the zone ranges
  2742. * provided by the architecture for a given node by using the end of the
  2743. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2744. * zones within a node are in order of monotonic increases memory addresses
  2745. */
  2746. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  2747. unsigned long zone_type,
  2748. unsigned long node_start_pfn,
  2749. unsigned long node_end_pfn,
  2750. unsigned long *zone_start_pfn,
  2751. unsigned long *zone_end_pfn)
  2752. {
  2753. /* Only adjust if ZONE_MOVABLE is on this node */
  2754. if (zone_movable_pfn[nid]) {
  2755. /* Size ZONE_MOVABLE */
  2756. if (zone_type == ZONE_MOVABLE) {
  2757. *zone_start_pfn = zone_movable_pfn[nid];
  2758. *zone_end_pfn = min(node_end_pfn,
  2759. arch_zone_highest_possible_pfn[movable_zone]);
  2760. /* Adjust for ZONE_MOVABLE starting within this range */
  2761. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2762. *zone_end_pfn > zone_movable_pfn[nid]) {
  2763. *zone_end_pfn = zone_movable_pfn[nid];
  2764. /* Check if this whole range is within ZONE_MOVABLE */
  2765. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2766. *zone_start_pfn = *zone_end_pfn;
  2767. }
  2768. }
  2769. /*
  2770. * Return the number of pages a zone spans in a node, including holes
  2771. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2772. */
  2773. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2774. unsigned long zone_type,
  2775. unsigned long *ignored)
  2776. {
  2777. unsigned long node_start_pfn, node_end_pfn;
  2778. unsigned long zone_start_pfn, zone_end_pfn;
  2779. /* Get the start and end of the node and zone */
  2780. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2781. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2782. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2783. adjust_zone_range_for_zone_movable(nid, zone_type,
  2784. node_start_pfn, node_end_pfn,
  2785. &zone_start_pfn, &zone_end_pfn);
  2786. /* Check that this node has pages within the zone's required range */
  2787. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2788. return 0;
  2789. /* Move the zone boundaries inside the node if necessary */
  2790. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2791. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2792. /* Return the spanned pages */
  2793. return zone_end_pfn - zone_start_pfn;
  2794. }
  2795. /*
  2796. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2797. * then all holes in the requested range will be accounted for.
  2798. */
  2799. static unsigned long __meminit __absent_pages_in_range(int nid,
  2800. unsigned long range_start_pfn,
  2801. unsigned long range_end_pfn)
  2802. {
  2803. int i = 0;
  2804. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2805. unsigned long start_pfn;
  2806. /* Find the end_pfn of the first active range of pfns in the node */
  2807. i = first_active_region_index_in_nid(nid);
  2808. if (i == -1)
  2809. return 0;
  2810. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2811. /* Account for ranges before physical memory on this node */
  2812. if (early_node_map[i].start_pfn > range_start_pfn)
  2813. hole_pages = prev_end_pfn - range_start_pfn;
  2814. /* Find all holes for the zone within the node */
  2815. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2816. /* No need to continue if prev_end_pfn is outside the zone */
  2817. if (prev_end_pfn >= range_end_pfn)
  2818. break;
  2819. /* Make sure the end of the zone is not within the hole */
  2820. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2821. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2822. /* Update the hole size cound and move on */
  2823. if (start_pfn > range_start_pfn) {
  2824. BUG_ON(prev_end_pfn > start_pfn);
  2825. hole_pages += start_pfn - prev_end_pfn;
  2826. }
  2827. prev_end_pfn = early_node_map[i].end_pfn;
  2828. }
  2829. /* Account for ranges past physical memory on this node */
  2830. if (range_end_pfn > prev_end_pfn)
  2831. hole_pages += range_end_pfn -
  2832. max(range_start_pfn, prev_end_pfn);
  2833. return hole_pages;
  2834. }
  2835. /**
  2836. * absent_pages_in_range - Return number of page frames in holes within a range
  2837. * @start_pfn: The start PFN to start searching for holes
  2838. * @end_pfn: The end PFN to stop searching for holes
  2839. *
  2840. * It returns the number of pages frames in memory holes within a range.
  2841. */
  2842. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2843. unsigned long end_pfn)
  2844. {
  2845. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2846. }
  2847. /* Return the number of page frames in holes in a zone on a node */
  2848. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2849. unsigned long zone_type,
  2850. unsigned long *ignored)
  2851. {
  2852. unsigned long node_start_pfn, node_end_pfn;
  2853. unsigned long zone_start_pfn, zone_end_pfn;
  2854. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2855. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2856. node_start_pfn);
  2857. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2858. node_end_pfn);
  2859. adjust_zone_range_for_zone_movable(nid, zone_type,
  2860. node_start_pfn, node_end_pfn,
  2861. &zone_start_pfn, &zone_end_pfn);
  2862. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2863. }
  2864. #else
  2865. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2866. unsigned long zone_type,
  2867. unsigned long *zones_size)
  2868. {
  2869. return zones_size[zone_type];
  2870. }
  2871. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2872. unsigned long zone_type,
  2873. unsigned long *zholes_size)
  2874. {
  2875. if (!zholes_size)
  2876. return 0;
  2877. return zholes_size[zone_type];
  2878. }
  2879. #endif
  2880. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2881. unsigned long *zones_size, unsigned long *zholes_size)
  2882. {
  2883. unsigned long realtotalpages, totalpages = 0;
  2884. enum zone_type i;
  2885. for (i = 0; i < MAX_NR_ZONES; i++)
  2886. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2887. zones_size);
  2888. pgdat->node_spanned_pages = totalpages;
  2889. realtotalpages = totalpages;
  2890. for (i = 0; i < MAX_NR_ZONES; i++)
  2891. realtotalpages -=
  2892. zone_absent_pages_in_node(pgdat->node_id, i,
  2893. zholes_size);
  2894. pgdat->node_present_pages = realtotalpages;
  2895. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2896. realtotalpages);
  2897. }
  2898. #ifndef CONFIG_SPARSEMEM
  2899. /*
  2900. * Calculate the size of the zone->blockflags rounded to an unsigned long
  2901. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  2902. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  2903. * round what is now in bits to nearest long in bits, then return it in
  2904. * bytes.
  2905. */
  2906. static unsigned long __init usemap_size(unsigned long zonesize)
  2907. {
  2908. unsigned long usemapsize;
  2909. usemapsize = roundup(zonesize, pageblock_nr_pages);
  2910. usemapsize = usemapsize >> pageblock_order;
  2911. usemapsize *= NR_PAGEBLOCK_BITS;
  2912. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  2913. return usemapsize / 8;
  2914. }
  2915. static void __init setup_usemap(struct pglist_data *pgdat,
  2916. struct zone *zone, unsigned long zonesize)
  2917. {
  2918. unsigned long usemapsize = usemap_size(zonesize);
  2919. zone->pageblock_flags = NULL;
  2920. if (usemapsize) {
  2921. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  2922. memset(zone->pageblock_flags, 0, usemapsize);
  2923. }
  2924. }
  2925. #else
  2926. static void inline setup_usemap(struct pglist_data *pgdat,
  2927. struct zone *zone, unsigned long zonesize) {}
  2928. #endif /* CONFIG_SPARSEMEM */
  2929. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  2930. /* Return a sensible default order for the pageblock size. */
  2931. static inline int pageblock_default_order(void)
  2932. {
  2933. if (HPAGE_SHIFT > PAGE_SHIFT)
  2934. return HUGETLB_PAGE_ORDER;
  2935. return MAX_ORDER-1;
  2936. }
  2937. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  2938. static inline void __init set_pageblock_order(unsigned int order)
  2939. {
  2940. /* Check that pageblock_nr_pages has not already been setup */
  2941. if (pageblock_order)
  2942. return;
  2943. /*
  2944. * Assume the largest contiguous order of interest is a huge page.
  2945. * This value may be variable depending on boot parameters on IA64
  2946. */
  2947. pageblock_order = order;
  2948. }
  2949. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2950. /*
  2951. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  2952. * and pageblock_default_order() are unused as pageblock_order is set
  2953. * at compile-time. See include/linux/pageblock-flags.h for the values of
  2954. * pageblock_order based on the kernel config
  2955. */
  2956. static inline int pageblock_default_order(unsigned int order)
  2957. {
  2958. return MAX_ORDER-1;
  2959. }
  2960. #define set_pageblock_order(x) do {} while (0)
  2961. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2962. /*
  2963. * Set up the zone data structures:
  2964. * - mark all pages reserved
  2965. * - mark all memory queues empty
  2966. * - clear the memory bitmaps
  2967. */
  2968. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  2969. unsigned long *zones_size, unsigned long *zholes_size)
  2970. {
  2971. enum zone_type j;
  2972. int nid = pgdat->node_id;
  2973. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2974. int ret;
  2975. pgdat_resize_init(pgdat);
  2976. pgdat->nr_zones = 0;
  2977. init_waitqueue_head(&pgdat->kswapd_wait);
  2978. pgdat->kswapd_max_order = 0;
  2979. pgdat_page_cgroup_init(pgdat);
  2980. for (j = 0; j < MAX_NR_ZONES; j++) {
  2981. struct zone *zone = pgdat->node_zones + j;
  2982. unsigned long size, realsize, memmap_pages;
  2983. enum lru_list l;
  2984. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2985. realsize = size - zone_absent_pages_in_node(nid, j,
  2986. zholes_size);
  2987. /*
  2988. * Adjust realsize so that it accounts for how much memory
  2989. * is used by this zone for memmap. This affects the watermark
  2990. * and per-cpu initialisations
  2991. */
  2992. memmap_pages =
  2993. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  2994. if (realsize >= memmap_pages) {
  2995. realsize -= memmap_pages;
  2996. printk(KERN_DEBUG
  2997. " %s zone: %lu pages used for memmap\n",
  2998. zone_names[j], memmap_pages);
  2999. } else
  3000. printk(KERN_WARNING
  3001. " %s zone: %lu pages exceeds realsize %lu\n",
  3002. zone_names[j], memmap_pages, realsize);
  3003. /* Account for reserved pages */
  3004. if (j == 0 && realsize > dma_reserve) {
  3005. realsize -= dma_reserve;
  3006. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3007. zone_names[0], dma_reserve);
  3008. }
  3009. if (!is_highmem_idx(j))
  3010. nr_kernel_pages += realsize;
  3011. nr_all_pages += realsize;
  3012. zone->spanned_pages = size;
  3013. zone->present_pages = realsize;
  3014. #ifdef CONFIG_NUMA
  3015. zone->node = nid;
  3016. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3017. / 100;
  3018. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3019. #endif
  3020. zone->name = zone_names[j];
  3021. spin_lock_init(&zone->lock);
  3022. spin_lock_init(&zone->lru_lock);
  3023. zone_seqlock_init(zone);
  3024. zone->zone_pgdat = pgdat;
  3025. zone->prev_priority = DEF_PRIORITY;
  3026. zone_pcp_init(zone);
  3027. for_each_lru(l) {
  3028. INIT_LIST_HEAD(&zone->lru[l].list);
  3029. zone->lru[l].nr_scan = 0;
  3030. }
  3031. zone->recent_rotated[0] = 0;
  3032. zone->recent_rotated[1] = 0;
  3033. zone->recent_scanned[0] = 0;
  3034. zone->recent_scanned[1] = 0;
  3035. zap_zone_vm_stats(zone);
  3036. zone->flags = 0;
  3037. if (!size)
  3038. continue;
  3039. set_pageblock_order(pageblock_default_order());
  3040. setup_usemap(pgdat, zone, size);
  3041. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3042. size, MEMMAP_EARLY);
  3043. BUG_ON(ret);
  3044. memmap_init(size, nid, j, zone_start_pfn);
  3045. zone_start_pfn += size;
  3046. }
  3047. }
  3048. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3049. {
  3050. /* Skip empty nodes */
  3051. if (!pgdat->node_spanned_pages)
  3052. return;
  3053. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3054. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3055. if (!pgdat->node_mem_map) {
  3056. unsigned long size, start, end;
  3057. struct page *map;
  3058. /*
  3059. * The zone's endpoints aren't required to be MAX_ORDER
  3060. * aligned but the node_mem_map endpoints must be in order
  3061. * for the buddy allocator to function correctly.
  3062. */
  3063. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3064. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3065. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3066. size = (end - start) * sizeof(struct page);
  3067. map = alloc_remap(pgdat->node_id, size);
  3068. if (!map)
  3069. map = alloc_bootmem_node(pgdat, size);
  3070. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3071. }
  3072. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3073. /*
  3074. * With no DISCONTIG, the global mem_map is just set as node 0's
  3075. */
  3076. if (pgdat == NODE_DATA(0)) {
  3077. mem_map = NODE_DATA(0)->node_mem_map;
  3078. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3079. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3080. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3081. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3082. }
  3083. #endif
  3084. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3085. }
  3086. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3087. unsigned long node_start_pfn, unsigned long *zholes_size)
  3088. {
  3089. pg_data_t *pgdat = NODE_DATA(nid);
  3090. pgdat->node_id = nid;
  3091. pgdat->node_start_pfn = node_start_pfn;
  3092. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3093. alloc_node_mem_map(pgdat);
  3094. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3095. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3096. nid, (unsigned long)pgdat,
  3097. (unsigned long)pgdat->node_mem_map);
  3098. #endif
  3099. free_area_init_core(pgdat, zones_size, zholes_size);
  3100. }
  3101. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3102. #if MAX_NUMNODES > 1
  3103. /*
  3104. * Figure out the number of possible node ids.
  3105. */
  3106. static void __init setup_nr_node_ids(void)
  3107. {
  3108. unsigned int node;
  3109. unsigned int highest = 0;
  3110. for_each_node_mask(node, node_possible_map)
  3111. highest = node;
  3112. nr_node_ids = highest + 1;
  3113. }
  3114. #else
  3115. static inline void setup_nr_node_ids(void)
  3116. {
  3117. }
  3118. #endif
  3119. /**
  3120. * add_active_range - Register a range of PFNs backed by physical memory
  3121. * @nid: The node ID the range resides on
  3122. * @start_pfn: The start PFN of the available physical memory
  3123. * @end_pfn: The end PFN of the available physical memory
  3124. *
  3125. * These ranges are stored in an early_node_map[] and later used by
  3126. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3127. * range spans a memory hole, it is up to the architecture to ensure
  3128. * the memory is not freed by the bootmem allocator. If possible
  3129. * the range being registered will be merged with existing ranges.
  3130. */
  3131. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3132. unsigned long end_pfn)
  3133. {
  3134. int i;
  3135. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3136. "Entering add_active_range(%d, %#lx, %#lx) "
  3137. "%d entries of %d used\n",
  3138. nid, start_pfn, end_pfn,
  3139. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3140. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3141. /* Merge with existing active regions if possible */
  3142. for (i = 0; i < nr_nodemap_entries; i++) {
  3143. if (early_node_map[i].nid != nid)
  3144. continue;
  3145. /* Skip if an existing region covers this new one */
  3146. if (start_pfn >= early_node_map[i].start_pfn &&
  3147. end_pfn <= early_node_map[i].end_pfn)
  3148. return;
  3149. /* Merge forward if suitable */
  3150. if (start_pfn <= early_node_map[i].end_pfn &&
  3151. end_pfn > early_node_map[i].end_pfn) {
  3152. early_node_map[i].end_pfn = end_pfn;
  3153. return;
  3154. }
  3155. /* Merge backward if suitable */
  3156. if (start_pfn < early_node_map[i].end_pfn &&
  3157. end_pfn >= early_node_map[i].start_pfn) {
  3158. early_node_map[i].start_pfn = start_pfn;
  3159. return;
  3160. }
  3161. }
  3162. /* Check that early_node_map is large enough */
  3163. if (i >= MAX_ACTIVE_REGIONS) {
  3164. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3165. MAX_ACTIVE_REGIONS);
  3166. return;
  3167. }
  3168. early_node_map[i].nid = nid;
  3169. early_node_map[i].start_pfn = start_pfn;
  3170. early_node_map[i].end_pfn = end_pfn;
  3171. nr_nodemap_entries = i + 1;
  3172. }
  3173. /**
  3174. * remove_active_range - Shrink an existing registered range of PFNs
  3175. * @nid: The node id the range is on that should be shrunk
  3176. * @start_pfn: The new PFN of the range
  3177. * @end_pfn: The new PFN of the range
  3178. *
  3179. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3180. * The map is kept near the end physical page range that has already been
  3181. * registered. This function allows an arch to shrink an existing registered
  3182. * range.
  3183. */
  3184. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3185. unsigned long end_pfn)
  3186. {
  3187. int i, j;
  3188. int removed = 0;
  3189. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3190. nid, start_pfn, end_pfn);
  3191. /* Find the old active region end and shrink */
  3192. for_each_active_range_index_in_nid(i, nid) {
  3193. if (early_node_map[i].start_pfn >= start_pfn &&
  3194. early_node_map[i].end_pfn <= end_pfn) {
  3195. /* clear it */
  3196. early_node_map[i].start_pfn = 0;
  3197. early_node_map[i].end_pfn = 0;
  3198. removed = 1;
  3199. continue;
  3200. }
  3201. if (early_node_map[i].start_pfn < start_pfn &&
  3202. early_node_map[i].end_pfn > start_pfn) {
  3203. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3204. early_node_map[i].end_pfn = start_pfn;
  3205. if (temp_end_pfn > end_pfn)
  3206. add_active_range(nid, end_pfn, temp_end_pfn);
  3207. continue;
  3208. }
  3209. if (early_node_map[i].start_pfn >= start_pfn &&
  3210. early_node_map[i].end_pfn > end_pfn &&
  3211. early_node_map[i].start_pfn < end_pfn) {
  3212. early_node_map[i].start_pfn = end_pfn;
  3213. continue;
  3214. }
  3215. }
  3216. if (!removed)
  3217. return;
  3218. /* remove the blank ones */
  3219. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3220. if (early_node_map[i].nid != nid)
  3221. continue;
  3222. if (early_node_map[i].end_pfn)
  3223. continue;
  3224. /* we found it, get rid of it */
  3225. for (j = i; j < nr_nodemap_entries - 1; j++)
  3226. memcpy(&early_node_map[j], &early_node_map[j+1],
  3227. sizeof(early_node_map[j]));
  3228. j = nr_nodemap_entries - 1;
  3229. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3230. nr_nodemap_entries--;
  3231. }
  3232. }
  3233. /**
  3234. * remove_all_active_ranges - Remove all currently registered regions
  3235. *
  3236. * During discovery, it may be found that a table like SRAT is invalid
  3237. * and an alternative discovery method must be used. This function removes
  3238. * all currently registered regions.
  3239. */
  3240. void __init remove_all_active_ranges(void)
  3241. {
  3242. memset(early_node_map, 0, sizeof(early_node_map));
  3243. nr_nodemap_entries = 0;
  3244. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  3245. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  3246. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  3247. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  3248. }
  3249. /* Compare two active node_active_regions */
  3250. static int __init cmp_node_active_region(const void *a, const void *b)
  3251. {
  3252. struct node_active_region *arange = (struct node_active_region *)a;
  3253. struct node_active_region *brange = (struct node_active_region *)b;
  3254. /* Done this way to avoid overflows */
  3255. if (arange->start_pfn > brange->start_pfn)
  3256. return 1;
  3257. if (arange->start_pfn < brange->start_pfn)
  3258. return -1;
  3259. return 0;
  3260. }
  3261. /* sort the node_map by start_pfn */
  3262. static void __init sort_node_map(void)
  3263. {
  3264. sort(early_node_map, (size_t)nr_nodemap_entries,
  3265. sizeof(struct node_active_region),
  3266. cmp_node_active_region, NULL);
  3267. }
  3268. /* Find the lowest pfn for a node */
  3269. static unsigned long __init find_min_pfn_for_node(int nid)
  3270. {
  3271. int i;
  3272. unsigned long min_pfn = ULONG_MAX;
  3273. /* Assuming a sorted map, the first range found has the starting pfn */
  3274. for_each_active_range_index_in_nid(i, nid)
  3275. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3276. if (min_pfn == ULONG_MAX) {
  3277. printk(KERN_WARNING
  3278. "Could not find start_pfn for node %d\n", nid);
  3279. return 0;
  3280. }
  3281. return min_pfn;
  3282. }
  3283. /**
  3284. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3285. *
  3286. * It returns the minimum PFN based on information provided via
  3287. * add_active_range().
  3288. */
  3289. unsigned long __init find_min_pfn_with_active_regions(void)
  3290. {
  3291. return find_min_pfn_for_node(MAX_NUMNODES);
  3292. }
  3293. /*
  3294. * early_calculate_totalpages()
  3295. * Sum pages in active regions for movable zone.
  3296. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3297. */
  3298. static unsigned long __init early_calculate_totalpages(void)
  3299. {
  3300. int i;
  3301. unsigned long totalpages = 0;
  3302. for (i = 0; i < nr_nodemap_entries; i++) {
  3303. unsigned long pages = early_node_map[i].end_pfn -
  3304. early_node_map[i].start_pfn;
  3305. totalpages += pages;
  3306. if (pages)
  3307. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3308. }
  3309. return totalpages;
  3310. }
  3311. /*
  3312. * Find the PFN the Movable zone begins in each node. Kernel memory
  3313. * is spread evenly between nodes as long as the nodes have enough
  3314. * memory. When they don't, some nodes will have more kernelcore than
  3315. * others
  3316. */
  3317. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3318. {
  3319. int i, nid;
  3320. unsigned long usable_startpfn;
  3321. unsigned long kernelcore_node, kernelcore_remaining;
  3322. unsigned long totalpages = early_calculate_totalpages();
  3323. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3324. /*
  3325. * If movablecore was specified, calculate what size of
  3326. * kernelcore that corresponds so that memory usable for
  3327. * any allocation type is evenly spread. If both kernelcore
  3328. * and movablecore are specified, then the value of kernelcore
  3329. * will be used for required_kernelcore if it's greater than
  3330. * what movablecore would have allowed.
  3331. */
  3332. if (required_movablecore) {
  3333. unsigned long corepages;
  3334. /*
  3335. * Round-up so that ZONE_MOVABLE is at least as large as what
  3336. * was requested by the user
  3337. */
  3338. required_movablecore =
  3339. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3340. corepages = totalpages - required_movablecore;
  3341. required_kernelcore = max(required_kernelcore, corepages);
  3342. }
  3343. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3344. if (!required_kernelcore)
  3345. return;
  3346. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3347. find_usable_zone_for_movable();
  3348. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3349. restart:
  3350. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3351. kernelcore_node = required_kernelcore / usable_nodes;
  3352. for_each_node_state(nid, N_HIGH_MEMORY) {
  3353. /*
  3354. * Recalculate kernelcore_node if the division per node
  3355. * now exceeds what is necessary to satisfy the requested
  3356. * amount of memory for the kernel
  3357. */
  3358. if (required_kernelcore < kernelcore_node)
  3359. kernelcore_node = required_kernelcore / usable_nodes;
  3360. /*
  3361. * As the map is walked, we track how much memory is usable
  3362. * by the kernel using kernelcore_remaining. When it is
  3363. * 0, the rest of the node is usable by ZONE_MOVABLE
  3364. */
  3365. kernelcore_remaining = kernelcore_node;
  3366. /* Go through each range of PFNs within this node */
  3367. for_each_active_range_index_in_nid(i, nid) {
  3368. unsigned long start_pfn, end_pfn;
  3369. unsigned long size_pages;
  3370. start_pfn = max(early_node_map[i].start_pfn,
  3371. zone_movable_pfn[nid]);
  3372. end_pfn = early_node_map[i].end_pfn;
  3373. if (start_pfn >= end_pfn)
  3374. continue;
  3375. /* Account for what is only usable for kernelcore */
  3376. if (start_pfn < usable_startpfn) {
  3377. unsigned long kernel_pages;
  3378. kernel_pages = min(end_pfn, usable_startpfn)
  3379. - start_pfn;
  3380. kernelcore_remaining -= min(kernel_pages,
  3381. kernelcore_remaining);
  3382. required_kernelcore -= min(kernel_pages,
  3383. required_kernelcore);
  3384. /* Continue if range is now fully accounted */
  3385. if (end_pfn <= usable_startpfn) {
  3386. /*
  3387. * Push zone_movable_pfn to the end so
  3388. * that if we have to rebalance
  3389. * kernelcore across nodes, we will
  3390. * not double account here
  3391. */
  3392. zone_movable_pfn[nid] = end_pfn;
  3393. continue;
  3394. }
  3395. start_pfn = usable_startpfn;
  3396. }
  3397. /*
  3398. * The usable PFN range for ZONE_MOVABLE is from
  3399. * start_pfn->end_pfn. Calculate size_pages as the
  3400. * number of pages used as kernelcore
  3401. */
  3402. size_pages = end_pfn - start_pfn;
  3403. if (size_pages > kernelcore_remaining)
  3404. size_pages = kernelcore_remaining;
  3405. zone_movable_pfn[nid] = start_pfn + size_pages;
  3406. /*
  3407. * Some kernelcore has been met, update counts and
  3408. * break if the kernelcore for this node has been
  3409. * satisified
  3410. */
  3411. required_kernelcore -= min(required_kernelcore,
  3412. size_pages);
  3413. kernelcore_remaining -= size_pages;
  3414. if (!kernelcore_remaining)
  3415. break;
  3416. }
  3417. }
  3418. /*
  3419. * If there is still required_kernelcore, we do another pass with one
  3420. * less node in the count. This will push zone_movable_pfn[nid] further
  3421. * along on the nodes that still have memory until kernelcore is
  3422. * satisified
  3423. */
  3424. usable_nodes--;
  3425. if (usable_nodes && required_kernelcore > usable_nodes)
  3426. goto restart;
  3427. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3428. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3429. zone_movable_pfn[nid] =
  3430. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3431. }
  3432. /* Any regular memory on that node ? */
  3433. static void check_for_regular_memory(pg_data_t *pgdat)
  3434. {
  3435. #ifdef CONFIG_HIGHMEM
  3436. enum zone_type zone_type;
  3437. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3438. struct zone *zone = &pgdat->node_zones[zone_type];
  3439. if (zone->present_pages)
  3440. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3441. }
  3442. #endif
  3443. }
  3444. /**
  3445. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3446. * @max_zone_pfn: an array of max PFNs for each zone
  3447. *
  3448. * This will call free_area_init_node() for each active node in the system.
  3449. * Using the page ranges provided by add_active_range(), the size of each
  3450. * zone in each node and their holes is calculated. If the maximum PFN
  3451. * between two adjacent zones match, it is assumed that the zone is empty.
  3452. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3453. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3454. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3455. * at arch_max_dma_pfn.
  3456. */
  3457. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3458. {
  3459. unsigned long nid;
  3460. int i;
  3461. /* Sort early_node_map as initialisation assumes it is sorted */
  3462. sort_node_map();
  3463. /* Record where the zone boundaries are */
  3464. memset(arch_zone_lowest_possible_pfn, 0,
  3465. sizeof(arch_zone_lowest_possible_pfn));
  3466. memset(arch_zone_highest_possible_pfn, 0,
  3467. sizeof(arch_zone_highest_possible_pfn));
  3468. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3469. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3470. for (i = 1; i < MAX_NR_ZONES; i++) {
  3471. if (i == ZONE_MOVABLE)
  3472. continue;
  3473. arch_zone_lowest_possible_pfn[i] =
  3474. arch_zone_highest_possible_pfn[i-1];
  3475. arch_zone_highest_possible_pfn[i] =
  3476. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3477. }
  3478. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3479. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3480. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3481. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3482. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3483. /* Print out the zone ranges */
  3484. printk("Zone PFN ranges:\n");
  3485. for (i = 0; i < MAX_NR_ZONES; i++) {
  3486. if (i == ZONE_MOVABLE)
  3487. continue;
  3488. printk(" %-8s %0#10lx -> %0#10lx\n",
  3489. zone_names[i],
  3490. arch_zone_lowest_possible_pfn[i],
  3491. arch_zone_highest_possible_pfn[i]);
  3492. }
  3493. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3494. printk("Movable zone start PFN for each node\n");
  3495. for (i = 0; i < MAX_NUMNODES; i++) {
  3496. if (zone_movable_pfn[i])
  3497. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3498. }
  3499. /* Print out the early_node_map[] */
  3500. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3501. for (i = 0; i < nr_nodemap_entries; i++)
  3502. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3503. early_node_map[i].start_pfn,
  3504. early_node_map[i].end_pfn);
  3505. /* Initialise every node */
  3506. mminit_verify_pageflags_layout();
  3507. setup_nr_node_ids();
  3508. for_each_online_node(nid) {
  3509. pg_data_t *pgdat = NODE_DATA(nid);
  3510. free_area_init_node(nid, NULL,
  3511. find_min_pfn_for_node(nid), NULL);
  3512. /* Any memory on that node */
  3513. if (pgdat->node_present_pages)
  3514. node_set_state(nid, N_HIGH_MEMORY);
  3515. check_for_regular_memory(pgdat);
  3516. }
  3517. }
  3518. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3519. {
  3520. unsigned long long coremem;
  3521. if (!p)
  3522. return -EINVAL;
  3523. coremem = memparse(p, &p);
  3524. *core = coremem >> PAGE_SHIFT;
  3525. /* Paranoid check that UL is enough for the coremem value */
  3526. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3527. return 0;
  3528. }
  3529. /*
  3530. * kernelcore=size sets the amount of memory for use for allocations that
  3531. * cannot be reclaimed or migrated.
  3532. */
  3533. static int __init cmdline_parse_kernelcore(char *p)
  3534. {
  3535. return cmdline_parse_core(p, &required_kernelcore);
  3536. }
  3537. /*
  3538. * movablecore=size sets the amount of memory for use for allocations that
  3539. * can be reclaimed or migrated.
  3540. */
  3541. static int __init cmdline_parse_movablecore(char *p)
  3542. {
  3543. return cmdline_parse_core(p, &required_movablecore);
  3544. }
  3545. early_param("kernelcore", cmdline_parse_kernelcore);
  3546. early_param("movablecore", cmdline_parse_movablecore);
  3547. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3548. /**
  3549. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3550. * @new_dma_reserve: The number of pages to mark reserved
  3551. *
  3552. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3553. * In the DMA zone, a significant percentage may be consumed by kernel image
  3554. * and other unfreeable allocations which can skew the watermarks badly. This
  3555. * function may optionally be used to account for unfreeable pages in the
  3556. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3557. * smaller per-cpu batchsize.
  3558. */
  3559. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3560. {
  3561. dma_reserve = new_dma_reserve;
  3562. }
  3563. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3564. struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
  3565. EXPORT_SYMBOL(contig_page_data);
  3566. #endif
  3567. void __init free_area_init(unsigned long *zones_size)
  3568. {
  3569. free_area_init_node(0, zones_size,
  3570. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3571. }
  3572. static int page_alloc_cpu_notify(struct notifier_block *self,
  3573. unsigned long action, void *hcpu)
  3574. {
  3575. int cpu = (unsigned long)hcpu;
  3576. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3577. drain_pages(cpu);
  3578. /*
  3579. * Spill the event counters of the dead processor
  3580. * into the current processors event counters.
  3581. * This artificially elevates the count of the current
  3582. * processor.
  3583. */
  3584. vm_events_fold_cpu(cpu);
  3585. /*
  3586. * Zero the differential counters of the dead processor
  3587. * so that the vm statistics are consistent.
  3588. *
  3589. * This is only okay since the processor is dead and cannot
  3590. * race with what we are doing.
  3591. */
  3592. refresh_cpu_vm_stats(cpu);
  3593. }
  3594. return NOTIFY_OK;
  3595. }
  3596. void __init page_alloc_init(void)
  3597. {
  3598. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3599. }
  3600. /*
  3601. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3602. * or min_free_kbytes changes.
  3603. */
  3604. static void calculate_totalreserve_pages(void)
  3605. {
  3606. struct pglist_data *pgdat;
  3607. unsigned long reserve_pages = 0;
  3608. enum zone_type i, j;
  3609. for_each_online_pgdat(pgdat) {
  3610. for (i = 0; i < MAX_NR_ZONES; i++) {
  3611. struct zone *zone = pgdat->node_zones + i;
  3612. unsigned long max = 0;
  3613. /* Find valid and maximum lowmem_reserve in the zone */
  3614. for (j = i; j < MAX_NR_ZONES; j++) {
  3615. if (zone->lowmem_reserve[j] > max)
  3616. max = zone->lowmem_reserve[j];
  3617. }
  3618. /* we treat pages_high as reserved pages. */
  3619. max += zone->pages_high;
  3620. if (max > zone->present_pages)
  3621. max = zone->present_pages;
  3622. reserve_pages += max;
  3623. }
  3624. }
  3625. totalreserve_pages = reserve_pages;
  3626. }
  3627. /*
  3628. * setup_per_zone_lowmem_reserve - called whenever
  3629. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3630. * has a correct pages reserved value, so an adequate number of
  3631. * pages are left in the zone after a successful __alloc_pages().
  3632. */
  3633. static void setup_per_zone_lowmem_reserve(void)
  3634. {
  3635. struct pglist_data *pgdat;
  3636. enum zone_type j, idx;
  3637. for_each_online_pgdat(pgdat) {
  3638. for (j = 0; j < MAX_NR_ZONES; j++) {
  3639. struct zone *zone = pgdat->node_zones + j;
  3640. unsigned long present_pages = zone->present_pages;
  3641. zone->lowmem_reserve[j] = 0;
  3642. idx = j;
  3643. while (idx) {
  3644. struct zone *lower_zone;
  3645. idx--;
  3646. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3647. sysctl_lowmem_reserve_ratio[idx] = 1;
  3648. lower_zone = pgdat->node_zones + idx;
  3649. lower_zone->lowmem_reserve[j] = present_pages /
  3650. sysctl_lowmem_reserve_ratio[idx];
  3651. present_pages += lower_zone->present_pages;
  3652. }
  3653. }
  3654. }
  3655. /* update totalreserve_pages */
  3656. calculate_totalreserve_pages();
  3657. }
  3658. /**
  3659. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3660. *
  3661. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3662. * with respect to min_free_kbytes.
  3663. */
  3664. void setup_per_zone_pages_min(void)
  3665. {
  3666. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3667. unsigned long lowmem_pages = 0;
  3668. struct zone *zone;
  3669. unsigned long flags;
  3670. /* Calculate total number of !ZONE_HIGHMEM pages */
  3671. for_each_zone(zone) {
  3672. if (!is_highmem(zone))
  3673. lowmem_pages += zone->present_pages;
  3674. }
  3675. for_each_zone(zone) {
  3676. u64 tmp;
  3677. spin_lock_irqsave(&zone->lock, flags);
  3678. tmp = (u64)pages_min * zone->present_pages;
  3679. do_div(tmp, lowmem_pages);
  3680. if (is_highmem(zone)) {
  3681. /*
  3682. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3683. * need highmem pages, so cap pages_min to a small
  3684. * value here.
  3685. *
  3686. * The (pages_high-pages_low) and (pages_low-pages_min)
  3687. * deltas controls asynch page reclaim, and so should
  3688. * not be capped for highmem.
  3689. */
  3690. int min_pages;
  3691. min_pages = zone->present_pages / 1024;
  3692. if (min_pages < SWAP_CLUSTER_MAX)
  3693. min_pages = SWAP_CLUSTER_MAX;
  3694. if (min_pages > 128)
  3695. min_pages = 128;
  3696. zone->pages_min = min_pages;
  3697. } else {
  3698. /*
  3699. * If it's a lowmem zone, reserve a number of pages
  3700. * proportionate to the zone's size.
  3701. */
  3702. zone->pages_min = tmp;
  3703. }
  3704. zone->pages_low = zone->pages_min + (tmp >> 2);
  3705. zone->pages_high = zone->pages_min + (tmp >> 1);
  3706. setup_zone_migrate_reserve(zone);
  3707. spin_unlock_irqrestore(&zone->lock, flags);
  3708. }
  3709. /* update totalreserve_pages */
  3710. calculate_totalreserve_pages();
  3711. }
  3712. /**
  3713. * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
  3714. *
  3715. * The inactive anon list should be small enough that the VM never has to
  3716. * do too much work, but large enough that each inactive page has a chance
  3717. * to be referenced again before it is swapped out.
  3718. *
  3719. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  3720. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  3721. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  3722. * the anonymous pages are kept on the inactive list.
  3723. *
  3724. * total target max
  3725. * memory ratio inactive anon
  3726. * -------------------------------------
  3727. * 10MB 1 5MB
  3728. * 100MB 1 50MB
  3729. * 1GB 3 250MB
  3730. * 10GB 10 0.9GB
  3731. * 100GB 31 3GB
  3732. * 1TB 101 10GB
  3733. * 10TB 320 32GB
  3734. */
  3735. void setup_per_zone_inactive_ratio(void)
  3736. {
  3737. struct zone *zone;
  3738. for_each_zone(zone) {
  3739. unsigned int gb, ratio;
  3740. /* Zone size in gigabytes */
  3741. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  3742. ratio = int_sqrt(10 * gb);
  3743. if (!ratio)
  3744. ratio = 1;
  3745. zone->inactive_ratio = ratio;
  3746. }
  3747. }
  3748. /*
  3749. * Initialise min_free_kbytes.
  3750. *
  3751. * For small machines we want it small (128k min). For large machines
  3752. * we want it large (64MB max). But it is not linear, because network
  3753. * bandwidth does not increase linearly with machine size. We use
  3754. *
  3755. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3756. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3757. *
  3758. * which yields
  3759. *
  3760. * 16MB: 512k
  3761. * 32MB: 724k
  3762. * 64MB: 1024k
  3763. * 128MB: 1448k
  3764. * 256MB: 2048k
  3765. * 512MB: 2896k
  3766. * 1024MB: 4096k
  3767. * 2048MB: 5792k
  3768. * 4096MB: 8192k
  3769. * 8192MB: 11584k
  3770. * 16384MB: 16384k
  3771. */
  3772. static int __init init_per_zone_pages_min(void)
  3773. {
  3774. unsigned long lowmem_kbytes;
  3775. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3776. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3777. if (min_free_kbytes < 128)
  3778. min_free_kbytes = 128;
  3779. if (min_free_kbytes > 65536)
  3780. min_free_kbytes = 65536;
  3781. setup_per_zone_pages_min();
  3782. setup_per_zone_lowmem_reserve();
  3783. setup_per_zone_inactive_ratio();
  3784. return 0;
  3785. }
  3786. module_init(init_per_zone_pages_min)
  3787. /*
  3788. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3789. * that we can call two helper functions whenever min_free_kbytes
  3790. * changes.
  3791. */
  3792. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3793. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3794. {
  3795. proc_dointvec(table, write, file, buffer, length, ppos);
  3796. if (write)
  3797. setup_per_zone_pages_min();
  3798. return 0;
  3799. }
  3800. #ifdef CONFIG_NUMA
  3801. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3802. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3803. {
  3804. struct zone *zone;
  3805. int rc;
  3806. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3807. if (rc)
  3808. return rc;
  3809. for_each_zone(zone)
  3810. zone->min_unmapped_pages = (zone->present_pages *
  3811. sysctl_min_unmapped_ratio) / 100;
  3812. return 0;
  3813. }
  3814. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3815. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3816. {
  3817. struct zone *zone;
  3818. int rc;
  3819. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3820. if (rc)
  3821. return rc;
  3822. for_each_zone(zone)
  3823. zone->min_slab_pages = (zone->present_pages *
  3824. sysctl_min_slab_ratio) / 100;
  3825. return 0;
  3826. }
  3827. #endif
  3828. /*
  3829. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3830. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3831. * whenever sysctl_lowmem_reserve_ratio changes.
  3832. *
  3833. * The reserve ratio obviously has absolutely no relation with the
  3834. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3835. * if in function of the boot time zone sizes.
  3836. */
  3837. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3838. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3839. {
  3840. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3841. setup_per_zone_lowmem_reserve();
  3842. return 0;
  3843. }
  3844. /*
  3845. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3846. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3847. * can have before it gets flushed back to buddy allocator.
  3848. */
  3849. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3850. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3851. {
  3852. struct zone *zone;
  3853. unsigned int cpu;
  3854. int ret;
  3855. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3856. if (!write || (ret == -EINVAL))
  3857. return ret;
  3858. for_each_zone(zone) {
  3859. for_each_online_cpu(cpu) {
  3860. unsigned long high;
  3861. high = zone->present_pages / percpu_pagelist_fraction;
  3862. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3863. }
  3864. }
  3865. return 0;
  3866. }
  3867. int hashdist = HASHDIST_DEFAULT;
  3868. #ifdef CONFIG_NUMA
  3869. static int __init set_hashdist(char *str)
  3870. {
  3871. if (!str)
  3872. return 0;
  3873. hashdist = simple_strtoul(str, &str, 0);
  3874. return 1;
  3875. }
  3876. __setup("hashdist=", set_hashdist);
  3877. #endif
  3878. /*
  3879. * allocate a large system hash table from bootmem
  3880. * - it is assumed that the hash table must contain an exact power-of-2
  3881. * quantity of entries
  3882. * - limit is the number of hash buckets, not the total allocation size
  3883. */
  3884. void *__init alloc_large_system_hash(const char *tablename,
  3885. unsigned long bucketsize,
  3886. unsigned long numentries,
  3887. int scale,
  3888. int flags,
  3889. unsigned int *_hash_shift,
  3890. unsigned int *_hash_mask,
  3891. unsigned long limit)
  3892. {
  3893. unsigned long long max = limit;
  3894. unsigned long log2qty, size;
  3895. void *table = NULL;
  3896. /* allow the kernel cmdline to have a say */
  3897. if (!numentries) {
  3898. /* round applicable memory size up to nearest megabyte */
  3899. numentries = nr_kernel_pages;
  3900. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3901. numentries >>= 20 - PAGE_SHIFT;
  3902. numentries <<= 20 - PAGE_SHIFT;
  3903. /* limit to 1 bucket per 2^scale bytes of low memory */
  3904. if (scale > PAGE_SHIFT)
  3905. numentries >>= (scale - PAGE_SHIFT);
  3906. else
  3907. numentries <<= (PAGE_SHIFT - scale);
  3908. /* Make sure we've got at least a 0-order allocation.. */
  3909. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3910. numentries = PAGE_SIZE / bucketsize;
  3911. }
  3912. numentries = roundup_pow_of_two(numentries);
  3913. /* limit allocation size to 1/16 total memory by default */
  3914. if (max == 0) {
  3915. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3916. do_div(max, bucketsize);
  3917. }
  3918. if (numentries > max)
  3919. numentries = max;
  3920. log2qty = ilog2(numentries);
  3921. do {
  3922. size = bucketsize << log2qty;
  3923. if (flags & HASH_EARLY)
  3924. table = alloc_bootmem_nopanic(size);
  3925. else if (hashdist)
  3926. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3927. else {
  3928. unsigned long order = get_order(size);
  3929. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3930. /*
  3931. * If bucketsize is not a power-of-two, we may free
  3932. * some pages at the end of hash table.
  3933. */
  3934. if (table) {
  3935. unsigned long alloc_end = (unsigned long)table +
  3936. (PAGE_SIZE << order);
  3937. unsigned long used = (unsigned long)table +
  3938. PAGE_ALIGN(size);
  3939. split_page(virt_to_page(table), order);
  3940. while (used < alloc_end) {
  3941. free_page(used);
  3942. used += PAGE_SIZE;
  3943. }
  3944. }
  3945. }
  3946. } while (!table && size > PAGE_SIZE && --log2qty);
  3947. if (!table)
  3948. panic("Failed to allocate %s hash table\n", tablename);
  3949. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3950. tablename,
  3951. (1U << log2qty),
  3952. ilog2(size) - PAGE_SHIFT,
  3953. size);
  3954. if (_hash_shift)
  3955. *_hash_shift = log2qty;
  3956. if (_hash_mask)
  3957. *_hash_mask = (1 << log2qty) - 1;
  3958. return table;
  3959. }
  3960. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  3961. struct page *pfn_to_page(unsigned long pfn)
  3962. {
  3963. return __pfn_to_page(pfn);
  3964. }
  3965. unsigned long page_to_pfn(struct page *page)
  3966. {
  3967. return __page_to_pfn(page);
  3968. }
  3969. EXPORT_SYMBOL(pfn_to_page);
  3970. EXPORT_SYMBOL(page_to_pfn);
  3971. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
  3972. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  3973. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  3974. unsigned long pfn)
  3975. {
  3976. #ifdef CONFIG_SPARSEMEM
  3977. return __pfn_to_section(pfn)->pageblock_flags;
  3978. #else
  3979. return zone->pageblock_flags;
  3980. #endif /* CONFIG_SPARSEMEM */
  3981. }
  3982. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  3983. {
  3984. #ifdef CONFIG_SPARSEMEM
  3985. pfn &= (PAGES_PER_SECTION-1);
  3986. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3987. #else
  3988. pfn = pfn - zone->zone_start_pfn;
  3989. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3990. #endif /* CONFIG_SPARSEMEM */
  3991. }
  3992. /**
  3993. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  3994. * @page: The page within the block of interest
  3995. * @start_bitidx: The first bit of interest to retrieve
  3996. * @end_bitidx: The last bit of interest
  3997. * returns pageblock_bits flags
  3998. */
  3999. unsigned long get_pageblock_flags_group(struct page *page,
  4000. int start_bitidx, int end_bitidx)
  4001. {
  4002. struct zone *zone;
  4003. unsigned long *bitmap;
  4004. unsigned long pfn, bitidx;
  4005. unsigned long flags = 0;
  4006. unsigned long value = 1;
  4007. zone = page_zone(page);
  4008. pfn = page_to_pfn(page);
  4009. bitmap = get_pageblock_bitmap(zone, pfn);
  4010. bitidx = pfn_to_bitidx(zone, pfn);
  4011. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4012. if (test_bit(bitidx + start_bitidx, bitmap))
  4013. flags |= value;
  4014. return flags;
  4015. }
  4016. /**
  4017. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4018. * @page: The page within the block of interest
  4019. * @start_bitidx: The first bit of interest
  4020. * @end_bitidx: The last bit of interest
  4021. * @flags: The flags to set
  4022. */
  4023. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4024. int start_bitidx, int end_bitidx)
  4025. {
  4026. struct zone *zone;
  4027. unsigned long *bitmap;
  4028. unsigned long pfn, bitidx;
  4029. unsigned long value = 1;
  4030. zone = page_zone(page);
  4031. pfn = page_to_pfn(page);
  4032. bitmap = get_pageblock_bitmap(zone, pfn);
  4033. bitidx = pfn_to_bitidx(zone, pfn);
  4034. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4035. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4036. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4037. if (flags & value)
  4038. __set_bit(bitidx + start_bitidx, bitmap);
  4039. else
  4040. __clear_bit(bitidx + start_bitidx, bitmap);
  4041. }
  4042. /*
  4043. * This is designed as sub function...plz see page_isolation.c also.
  4044. * set/clear page block's type to be ISOLATE.
  4045. * page allocater never alloc memory from ISOLATE block.
  4046. */
  4047. int set_migratetype_isolate(struct page *page)
  4048. {
  4049. struct zone *zone;
  4050. unsigned long flags;
  4051. int ret = -EBUSY;
  4052. zone = page_zone(page);
  4053. spin_lock_irqsave(&zone->lock, flags);
  4054. /*
  4055. * In future, more migrate types will be able to be isolation target.
  4056. */
  4057. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  4058. goto out;
  4059. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4060. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4061. ret = 0;
  4062. out:
  4063. spin_unlock_irqrestore(&zone->lock, flags);
  4064. if (!ret)
  4065. drain_all_pages();
  4066. return ret;
  4067. }
  4068. void unset_migratetype_isolate(struct page *page)
  4069. {
  4070. struct zone *zone;
  4071. unsigned long flags;
  4072. zone = page_zone(page);
  4073. spin_lock_irqsave(&zone->lock, flags);
  4074. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4075. goto out;
  4076. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4077. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4078. out:
  4079. spin_unlock_irqrestore(&zone->lock, flags);
  4080. }
  4081. #ifdef CONFIG_MEMORY_HOTREMOVE
  4082. /*
  4083. * All pages in the range must be isolated before calling this.
  4084. */
  4085. void
  4086. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4087. {
  4088. struct page *page;
  4089. struct zone *zone;
  4090. int order, i;
  4091. unsigned long pfn;
  4092. unsigned long flags;
  4093. /* find the first valid pfn */
  4094. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4095. if (pfn_valid(pfn))
  4096. break;
  4097. if (pfn == end_pfn)
  4098. return;
  4099. zone = page_zone(pfn_to_page(pfn));
  4100. spin_lock_irqsave(&zone->lock, flags);
  4101. pfn = start_pfn;
  4102. while (pfn < end_pfn) {
  4103. if (!pfn_valid(pfn)) {
  4104. pfn++;
  4105. continue;
  4106. }
  4107. page = pfn_to_page(pfn);
  4108. BUG_ON(page_count(page));
  4109. BUG_ON(!PageBuddy(page));
  4110. order = page_order(page);
  4111. #ifdef CONFIG_DEBUG_VM
  4112. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4113. pfn, 1 << order, end_pfn);
  4114. #endif
  4115. list_del(&page->lru);
  4116. rmv_page_order(page);
  4117. zone->free_area[order].nr_free--;
  4118. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4119. - (1UL << order));
  4120. for (i = 0; i < (1 << order); i++)
  4121. SetPageReserved((page+i));
  4122. pfn += (1 << order);
  4123. }
  4124. spin_unlock_irqrestore(&zone->lock, flags);
  4125. }
  4126. #endif