mlock.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669
  1. /*
  2. * linux/mm/mlock.c
  3. *
  4. * (C) Copyright 1995 Linus Torvalds
  5. * (C) Copyright 2002 Christoph Hellwig
  6. */
  7. #include <linux/capability.h>
  8. #include <linux/mman.h>
  9. #include <linux/mm.h>
  10. #include <linux/swap.h>
  11. #include <linux/swapops.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/mempolicy.h>
  14. #include <linux/syscalls.h>
  15. #include <linux/sched.h>
  16. #include <linux/module.h>
  17. #include <linux/rmap.h>
  18. #include <linux/mmzone.h>
  19. #include <linux/hugetlb.h>
  20. #include "internal.h"
  21. int can_do_mlock(void)
  22. {
  23. if (capable(CAP_IPC_LOCK))
  24. return 1;
  25. if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
  26. return 1;
  27. return 0;
  28. }
  29. EXPORT_SYMBOL(can_do_mlock);
  30. #ifdef CONFIG_UNEVICTABLE_LRU
  31. /*
  32. * Mlocked pages are marked with PageMlocked() flag for efficient testing
  33. * in vmscan and, possibly, the fault path; and to support semi-accurate
  34. * statistics.
  35. *
  36. * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
  37. * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  38. * The unevictable list is an LRU sibling list to the [in]active lists.
  39. * PageUnevictable is set to indicate the unevictable state.
  40. *
  41. * When lazy mlocking via vmscan, it is important to ensure that the
  42. * vma's VM_LOCKED status is not concurrently being modified, otherwise we
  43. * may have mlocked a page that is being munlocked. So lazy mlock must take
  44. * the mmap_sem for read, and verify that the vma really is locked
  45. * (see mm/rmap.c).
  46. */
  47. /*
  48. * LRU accounting for clear_page_mlock()
  49. */
  50. void __clear_page_mlock(struct page *page)
  51. {
  52. VM_BUG_ON(!PageLocked(page));
  53. if (!page->mapping) { /* truncated ? */
  54. return;
  55. }
  56. dec_zone_page_state(page, NR_MLOCK);
  57. count_vm_event(UNEVICTABLE_PGCLEARED);
  58. if (!isolate_lru_page(page)) {
  59. putback_lru_page(page);
  60. } else {
  61. /*
  62. * We lost the race. the page already moved to evictable list.
  63. */
  64. if (PageUnevictable(page))
  65. count_vm_event(UNEVICTABLE_PGSTRANDED);
  66. }
  67. }
  68. /*
  69. * Mark page as mlocked if not already.
  70. * If page on LRU, isolate and putback to move to unevictable list.
  71. */
  72. void mlock_vma_page(struct page *page)
  73. {
  74. BUG_ON(!PageLocked(page));
  75. if (!TestSetPageMlocked(page)) {
  76. inc_zone_page_state(page, NR_MLOCK);
  77. count_vm_event(UNEVICTABLE_PGMLOCKED);
  78. if (!isolate_lru_page(page))
  79. putback_lru_page(page);
  80. }
  81. }
  82. /*
  83. * called from munlock()/munmap() path with page supposedly on the LRU.
  84. *
  85. * Note: unlike mlock_vma_page(), we can't just clear the PageMlocked
  86. * [in try_to_munlock()] and then attempt to isolate the page. We must
  87. * isolate the page to keep others from messing with its unevictable
  88. * and mlocked state while trying to munlock. However, we pre-clear the
  89. * mlocked state anyway as we might lose the isolation race and we might
  90. * not get another chance to clear PageMlocked. If we successfully
  91. * isolate the page and try_to_munlock() detects other VM_LOCKED vmas
  92. * mapping the page, it will restore the PageMlocked state, unless the page
  93. * is mapped in a non-linear vma. So, we go ahead and SetPageMlocked(),
  94. * perhaps redundantly.
  95. * If we lose the isolation race, and the page is mapped by other VM_LOCKED
  96. * vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap()
  97. * either of which will restore the PageMlocked state by calling
  98. * mlock_vma_page() above, if it can grab the vma's mmap sem.
  99. */
  100. static void munlock_vma_page(struct page *page)
  101. {
  102. BUG_ON(!PageLocked(page));
  103. if (TestClearPageMlocked(page)) {
  104. dec_zone_page_state(page, NR_MLOCK);
  105. if (!isolate_lru_page(page)) {
  106. int ret = try_to_munlock(page);
  107. /*
  108. * did try_to_unlock() succeed or punt?
  109. */
  110. if (ret == SWAP_SUCCESS || ret == SWAP_AGAIN)
  111. count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  112. putback_lru_page(page);
  113. } else {
  114. /*
  115. * We lost the race. let try_to_unmap() deal
  116. * with it. At least we get the page state and
  117. * mlock stats right. However, page is still on
  118. * the noreclaim list. We'll fix that up when
  119. * the page is eventually freed or we scan the
  120. * noreclaim list.
  121. */
  122. if (PageUnevictable(page))
  123. count_vm_event(UNEVICTABLE_PGSTRANDED);
  124. else
  125. count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  126. }
  127. }
  128. }
  129. /**
  130. * __mlock_vma_pages_range() - mlock/munlock a range of pages in the vma.
  131. * @vma: target vma
  132. * @start: start address
  133. * @end: end address
  134. * @mlock: 0 indicate munlock, otherwise mlock.
  135. *
  136. * If @mlock == 0, unlock an mlocked range;
  137. * else mlock the range of pages. This takes care of making the pages present ,
  138. * too.
  139. *
  140. * return 0 on success, negative error code on error.
  141. *
  142. * vma->vm_mm->mmap_sem must be held for at least read.
  143. */
  144. static long __mlock_vma_pages_range(struct vm_area_struct *vma,
  145. unsigned long start, unsigned long end,
  146. int mlock)
  147. {
  148. struct mm_struct *mm = vma->vm_mm;
  149. unsigned long addr = start;
  150. struct page *pages[16]; /* 16 gives a reasonable batch */
  151. int nr_pages = (end - start) / PAGE_SIZE;
  152. int ret = 0;
  153. int gup_flags = 0;
  154. VM_BUG_ON(start & ~PAGE_MASK);
  155. VM_BUG_ON(end & ~PAGE_MASK);
  156. VM_BUG_ON(start < vma->vm_start);
  157. VM_BUG_ON(end > vma->vm_end);
  158. VM_BUG_ON((!rwsem_is_locked(&mm->mmap_sem)) &&
  159. (atomic_read(&mm->mm_users) != 0));
  160. /*
  161. * mlock: don't page populate if page has PROT_NONE permission.
  162. * munlock: the pages always do munlock althrough
  163. * its has PROT_NONE permission.
  164. */
  165. if (!mlock)
  166. gup_flags |= GUP_FLAGS_IGNORE_VMA_PERMISSIONS;
  167. if (vma->vm_flags & VM_WRITE)
  168. gup_flags |= GUP_FLAGS_WRITE;
  169. while (nr_pages > 0) {
  170. int i;
  171. cond_resched();
  172. /*
  173. * get_user_pages makes pages present if we are
  174. * setting mlock. and this extra reference count will
  175. * disable migration of this page. However, page may
  176. * still be truncated out from under us.
  177. */
  178. ret = __get_user_pages(current, mm, addr,
  179. min_t(int, nr_pages, ARRAY_SIZE(pages)),
  180. gup_flags, pages, NULL);
  181. /*
  182. * This can happen for, e.g., VM_NONLINEAR regions before
  183. * a page has been allocated and mapped at a given offset,
  184. * or for addresses that map beyond end of a file.
  185. * We'll mlock the the pages if/when they get faulted in.
  186. */
  187. if (ret < 0)
  188. break;
  189. if (ret == 0) {
  190. /*
  191. * We know the vma is there, so the only time
  192. * we cannot get a single page should be an
  193. * error (ret < 0) case.
  194. */
  195. WARN_ON(1);
  196. break;
  197. }
  198. lru_add_drain(); /* push cached pages to LRU */
  199. for (i = 0; i < ret; i++) {
  200. struct page *page = pages[i];
  201. lock_page(page);
  202. /*
  203. * Because we lock page here and migration is blocked
  204. * by the elevated reference, we need only check for
  205. * page truncation (file-cache only).
  206. */
  207. if (page->mapping) {
  208. if (mlock)
  209. mlock_vma_page(page);
  210. else
  211. munlock_vma_page(page);
  212. }
  213. unlock_page(page);
  214. put_page(page); /* ref from get_user_pages() */
  215. /*
  216. * here we assume that get_user_pages() has given us
  217. * a list of virtually contiguous pages.
  218. */
  219. addr += PAGE_SIZE; /* for next get_user_pages() */
  220. nr_pages--;
  221. }
  222. ret = 0;
  223. }
  224. return ret; /* count entire vma as locked_vm */
  225. }
  226. /*
  227. * convert get_user_pages() return value to posix mlock() error
  228. */
  229. static int __mlock_posix_error_return(long retval)
  230. {
  231. if (retval == -EFAULT)
  232. retval = -ENOMEM;
  233. else if (retval == -ENOMEM)
  234. retval = -EAGAIN;
  235. return retval;
  236. }
  237. #else /* CONFIG_UNEVICTABLE_LRU */
  238. /*
  239. * Just make pages present if VM_LOCKED. No-op if unlocking.
  240. */
  241. static long __mlock_vma_pages_range(struct vm_area_struct *vma,
  242. unsigned long start, unsigned long end,
  243. int mlock)
  244. {
  245. if (mlock && (vma->vm_flags & VM_LOCKED))
  246. return make_pages_present(start, end);
  247. return 0;
  248. }
  249. static inline int __mlock_posix_error_return(long retval)
  250. {
  251. return 0;
  252. }
  253. #endif /* CONFIG_UNEVICTABLE_LRU */
  254. /**
  255. * mlock_vma_pages_range() - mlock pages in specified vma range.
  256. * @vma - the vma containing the specfied address range
  257. * @start - starting address in @vma to mlock
  258. * @end - end address [+1] in @vma to mlock
  259. *
  260. * For mmap()/mremap()/expansion of mlocked vma.
  261. *
  262. * return 0 on success for "normal" vmas.
  263. *
  264. * return number of pages [> 0] to be removed from locked_vm on success
  265. * of "special" vmas.
  266. *
  267. * return negative error if vma spanning @start-@range disappears while
  268. * mmap semaphore is dropped. Unlikely?
  269. */
  270. long mlock_vma_pages_range(struct vm_area_struct *vma,
  271. unsigned long start, unsigned long end)
  272. {
  273. struct mm_struct *mm = vma->vm_mm;
  274. int nr_pages = (end - start) / PAGE_SIZE;
  275. BUG_ON(!(vma->vm_flags & VM_LOCKED));
  276. /*
  277. * filter unlockable vmas
  278. */
  279. if (vma->vm_flags & (VM_IO | VM_PFNMAP))
  280. goto no_mlock;
  281. if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
  282. is_vm_hugetlb_page(vma) ||
  283. vma == get_gate_vma(current))) {
  284. long error;
  285. downgrade_write(&mm->mmap_sem);
  286. error = __mlock_vma_pages_range(vma, start, end, 1);
  287. up_read(&mm->mmap_sem);
  288. /* vma can change or disappear */
  289. down_write(&mm->mmap_sem);
  290. vma = find_vma(mm, start);
  291. /* non-NULL vma must contain @start, but need to check @end */
  292. if (!vma || end > vma->vm_end)
  293. return -ENOMEM;
  294. return 0; /* hide other errors from mmap(), et al */
  295. }
  296. /*
  297. * User mapped kernel pages or huge pages:
  298. * make these pages present to populate the ptes, but
  299. * fall thru' to reset VM_LOCKED--no need to unlock, and
  300. * return nr_pages so these don't get counted against task's
  301. * locked limit. huge pages are already counted against
  302. * locked vm limit.
  303. */
  304. make_pages_present(start, end);
  305. no_mlock:
  306. vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */
  307. return nr_pages; /* error or pages NOT mlocked */
  308. }
  309. /*
  310. * munlock_vma_pages_range() - munlock all pages in the vma range.'
  311. * @vma - vma containing range to be munlock()ed.
  312. * @start - start address in @vma of the range
  313. * @end - end of range in @vma.
  314. *
  315. * For mremap(), munmap() and exit().
  316. *
  317. * Called with @vma VM_LOCKED.
  318. *
  319. * Returns with VM_LOCKED cleared. Callers must be prepared to
  320. * deal with this.
  321. *
  322. * We don't save and restore VM_LOCKED here because pages are
  323. * still on lru. In unmap path, pages might be scanned by reclaim
  324. * and re-mlocked by try_to_{munlock|unmap} before we unmap and
  325. * free them. This will result in freeing mlocked pages.
  326. */
  327. void munlock_vma_pages_range(struct vm_area_struct *vma,
  328. unsigned long start, unsigned long end)
  329. {
  330. vma->vm_flags &= ~VM_LOCKED;
  331. __mlock_vma_pages_range(vma, start, end, 0);
  332. }
  333. /*
  334. * mlock_fixup - handle mlock[all]/munlock[all] requests.
  335. *
  336. * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
  337. * munlock is a no-op. However, for some special vmas, we go ahead and
  338. * populate the ptes via make_pages_present().
  339. *
  340. * For vmas that pass the filters, merge/split as appropriate.
  341. */
  342. static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
  343. unsigned long start, unsigned long end, unsigned int newflags)
  344. {
  345. struct mm_struct *mm = vma->vm_mm;
  346. pgoff_t pgoff;
  347. int nr_pages;
  348. int ret = 0;
  349. int lock = newflags & VM_LOCKED;
  350. if (newflags == vma->vm_flags ||
  351. (vma->vm_flags & (VM_IO | VM_PFNMAP)))
  352. goto out; /* don't set VM_LOCKED, don't count */
  353. if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
  354. is_vm_hugetlb_page(vma) ||
  355. vma == get_gate_vma(current)) {
  356. if (lock)
  357. make_pages_present(start, end);
  358. goto out; /* don't set VM_LOCKED, don't count */
  359. }
  360. pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
  361. *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
  362. vma->vm_file, pgoff, vma_policy(vma));
  363. if (*prev) {
  364. vma = *prev;
  365. goto success;
  366. }
  367. if (start != vma->vm_start) {
  368. ret = split_vma(mm, vma, start, 1);
  369. if (ret)
  370. goto out;
  371. }
  372. if (end != vma->vm_end) {
  373. ret = split_vma(mm, vma, end, 0);
  374. if (ret)
  375. goto out;
  376. }
  377. success:
  378. /*
  379. * Keep track of amount of locked VM.
  380. */
  381. nr_pages = (end - start) >> PAGE_SHIFT;
  382. if (!lock)
  383. nr_pages = -nr_pages;
  384. mm->locked_vm += nr_pages;
  385. /*
  386. * vm_flags is protected by the mmap_sem held in write mode.
  387. * It's okay if try_to_unmap_one unmaps a page just after we
  388. * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
  389. */
  390. vma->vm_flags = newflags;
  391. if (lock) {
  392. /*
  393. * mmap_sem is currently held for write. Downgrade the write
  394. * lock to a read lock so that other faults, mmap scans, ...
  395. * while we fault in all pages.
  396. */
  397. downgrade_write(&mm->mmap_sem);
  398. ret = __mlock_vma_pages_range(vma, start, end, 1);
  399. /*
  400. * Need to reacquire mmap sem in write mode, as our callers
  401. * expect this. We have no support for atomically upgrading
  402. * a sem to write, so we need to check for ranges while sem
  403. * is unlocked.
  404. */
  405. up_read(&mm->mmap_sem);
  406. /* vma can change or disappear */
  407. down_write(&mm->mmap_sem);
  408. *prev = find_vma(mm, start);
  409. /* non-NULL *prev must contain @start, but need to check @end */
  410. if (!(*prev) || end > (*prev)->vm_end)
  411. ret = -ENOMEM;
  412. else if (ret > 0) {
  413. mm->locked_vm -= ret;
  414. ret = 0;
  415. } else
  416. ret = __mlock_posix_error_return(ret); /* translate if needed */
  417. } else {
  418. /*
  419. * TODO: for unlocking, pages will already be resident, so
  420. * we don't need to wait for allocations/reclaim/pagein, ...
  421. * However, unlocking a very large region can still take a
  422. * while. Should we downgrade the semaphore for both lock
  423. * AND unlock ?
  424. */
  425. __mlock_vma_pages_range(vma, start, end, 0);
  426. }
  427. out:
  428. *prev = vma;
  429. return ret;
  430. }
  431. static int do_mlock(unsigned long start, size_t len, int on)
  432. {
  433. unsigned long nstart, end, tmp;
  434. struct vm_area_struct * vma, * prev;
  435. int error;
  436. len = PAGE_ALIGN(len);
  437. end = start + len;
  438. if (end < start)
  439. return -EINVAL;
  440. if (end == start)
  441. return 0;
  442. vma = find_vma_prev(current->mm, start, &prev);
  443. if (!vma || vma->vm_start > start)
  444. return -ENOMEM;
  445. if (start > vma->vm_start)
  446. prev = vma;
  447. for (nstart = start ; ; ) {
  448. unsigned int newflags;
  449. /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
  450. newflags = vma->vm_flags | VM_LOCKED;
  451. if (!on)
  452. newflags &= ~VM_LOCKED;
  453. tmp = vma->vm_end;
  454. if (tmp > end)
  455. tmp = end;
  456. error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
  457. if (error)
  458. break;
  459. nstart = tmp;
  460. if (nstart < prev->vm_end)
  461. nstart = prev->vm_end;
  462. if (nstart >= end)
  463. break;
  464. vma = prev->vm_next;
  465. if (!vma || vma->vm_start != nstart) {
  466. error = -ENOMEM;
  467. break;
  468. }
  469. }
  470. return error;
  471. }
  472. asmlinkage long sys_mlock(unsigned long start, size_t len)
  473. {
  474. unsigned long locked;
  475. unsigned long lock_limit;
  476. int error = -ENOMEM;
  477. if (!can_do_mlock())
  478. return -EPERM;
  479. lru_add_drain_all(); /* flush pagevec */
  480. down_write(&current->mm->mmap_sem);
  481. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  482. start &= PAGE_MASK;
  483. locked = len >> PAGE_SHIFT;
  484. locked += current->mm->locked_vm;
  485. lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
  486. lock_limit >>= PAGE_SHIFT;
  487. /* check against resource limits */
  488. if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
  489. error = do_mlock(start, len, 1);
  490. up_write(&current->mm->mmap_sem);
  491. return error;
  492. }
  493. asmlinkage long sys_munlock(unsigned long start, size_t len)
  494. {
  495. int ret;
  496. down_write(&current->mm->mmap_sem);
  497. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  498. start &= PAGE_MASK;
  499. ret = do_mlock(start, len, 0);
  500. up_write(&current->mm->mmap_sem);
  501. return ret;
  502. }
  503. static int do_mlockall(int flags)
  504. {
  505. struct vm_area_struct * vma, * prev = NULL;
  506. unsigned int def_flags = 0;
  507. if (flags & MCL_FUTURE)
  508. def_flags = VM_LOCKED;
  509. current->mm->def_flags = def_flags;
  510. if (flags == MCL_FUTURE)
  511. goto out;
  512. for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
  513. unsigned int newflags;
  514. newflags = vma->vm_flags | VM_LOCKED;
  515. if (!(flags & MCL_CURRENT))
  516. newflags &= ~VM_LOCKED;
  517. /* Ignore errors */
  518. mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
  519. }
  520. out:
  521. return 0;
  522. }
  523. asmlinkage long sys_mlockall(int flags)
  524. {
  525. unsigned long lock_limit;
  526. int ret = -EINVAL;
  527. if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
  528. goto out;
  529. ret = -EPERM;
  530. if (!can_do_mlock())
  531. goto out;
  532. lru_add_drain_all(); /* flush pagevec */
  533. down_write(&current->mm->mmap_sem);
  534. lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
  535. lock_limit >>= PAGE_SHIFT;
  536. ret = -ENOMEM;
  537. if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
  538. capable(CAP_IPC_LOCK))
  539. ret = do_mlockall(flags);
  540. up_write(&current->mm->mmap_sem);
  541. out:
  542. return ret;
  543. }
  544. asmlinkage long sys_munlockall(void)
  545. {
  546. int ret;
  547. down_write(&current->mm->mmap_sem);
  548. ret = do_mlockall(0);
  549. up_write(&current->mm->mmap_sem);
  550. return ret;
  551. }
  552. /*
  553. * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
  554. * shm segments) get accounted against the user_struct instead.
  555. */
  556. static DEFINE_SPINLOCK(shmlock_user_lock);
  557. int user_shm_lock(size_t size, struct user_struct *user)
  558. {
  559. unsigned long lock_limit, locked;
  560. int allowed = 0;
  561. locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  562. lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
  563. if (lock_limit == RLIM_INFINITY)
  564. allowed = 1;
  565. lock_limit >>= PAGE_SHIFT;
  566. spin_lock(&shmlock_user_lock);
  567. if (!allowed &&
  568. locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
  569. goto out;
  570. get_uid(user);
  571. user->locked_shm += locked;
  572. allowed = 1;
  573. out:
  574. spin_unlock(&shmlock_user_lock);
  575. return allowed;
  576. }
  577. void user_shm_unlock(size_t size, struct user_struct *user)
  578. {
  579. spin_lock(&shmlock_user_lock);
  580. user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  581. spin_unlock(&shmlock_user_lock);
  582. free_uid(user);
  583. }