lmb.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527
  1. /*
  2. * Procedures for maintaining information about logical memory blocks.
  3. *
  4. * Peter Bergner, IBM Corp. June 2001.
  5. * Copyright (C) 2001 Peter Bergner.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/init.h>
  14. #include <linux/bitops.h>
  15. #include <linux/lmb.h>
  16. #define LMB_ALLOC_ANYWHERE 0
  17. struct lmb lmb;
  18. static int lmb_debug;
  19. static int __init early_lmb(char *p)
  20. {
  21. if (p && strstr(p, "debug"))
  22. lmb_debug = 1;
  23. return 0;
  24. }
  25. early_param("lmb", early_lmb);
  26. void lmb_dump_all(void)
  27. {
  28. unsigned long i;
  29. if (!lmb_debug)
  30. return;
  31. pr_info("lmb_dump_all:\n");
  32. pr_info(" memory.cnt = 0x%lx\n", lmb.memory.cnt);
  33. pr_info(" memory.size = 0x%llx\n",
  34. (unsigned long long)lmb.memory.size);
  35. for (i=0; i < lmb.memory.cnt ;i++) {
  36. pr_info(" memory.region[0x%lx].base = 0x%llx\n",
  37. i, (unsigned long long)lmb.memory.region[i].base);
  38. pr_info(" .size = 0x%llx\n",
  39. (unsigned long long)lmb.memory.region[i].size);
  40. }
  41. pr_info(" reserved.cnt = 0x%lx\n", lmb.reserved.cnt);
  42. pr_info(" reserved.size = 0x%llx\n",
  43. (unsigned long long)lmb.memory.size);
  44. for (i=0; i < lmb.reserved.cnt ;i++) {
  45. pr_info(" reserved.region[0x%lx].base = 0x%llx\n",
  46. i, (unsigned long long)lmb.reserved.region[i].base);
  47. pr_info(" .size = 0x%llx\n",
  48. (unsigned long long)lmb.reserved.region[i].size);
  49. }
  50. }
  51. static unsigned long lmb_addrs_overlap(u64 base1, u64 size1, u64 base2,
  52. u64 size2)
  53. {
  54. return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
  55. }
  56. static long lmb_addrs_adjacent(u64 base1, u64 size1, u64 base2, u64 size2)
  57. {
  58. if (base2 == base1 + size1)
  59. return 1;
  60. else if (base1 == base2 + size2)
  61. return -1;
  62. return 0;
  63. }
  64. static long lmb_regions_adjacent(struct lmb_region *rgn,
  65. unsigned long r1, unsigned long r2)
  66. {
  67. u64 base1 = rgn->region[r1].base;
  68. u64 size1 = rgn->region[r1].size;
  69. u64 base2 = rgn->region[r2].base;
  70. u64 size2 = rgn->region[r2].size;
  71. return lmb_addrs_adjacent(base1, size1, base2, size2);
  72. }
  73. static void lmb_remove_region(struct lmb_region *rgn, unsigned long r)
  74. {
  75. unsigned long i;
  76. for (i = r; i < rgn->cnt - 1; i++) {
  77. rgn->region[i].base = rgn->region[i + 1].base;
  78. rgn->region[i].size = rgn->region[i + 1].size;
  79. }
  80. rgn->cnt--;
  81. }
  82. /* Assumption: base addr of region 1 < base addr of region 2 */
  83. static void lmb_coalesce_regions(struct lmb_region *rgn,
  84. unsigned long r1, unsigned long r2)
  85. {
  86. rgn->region[r1].size += rgn->region[r2].size;
  87. lmb_remove_region(rgn, r2);
  88. }
  89. void __init lmb_init(void)
  90. {
  91. /* Create a dummy zero size LMB which will get coalesced away later.
  92. * This simplifies the lmb_add() code below...
  93. */
  94. lmb.memory.region[0].base = 0;
  95. lmb.memory.region[0].size = 0;
  96. lmb.memory.cnt = 1;
  97. /* Ditto. */
  98. lmb.reserved.region[0].base = 0;
  99. lmb.reserved.region[0].size = 0;
  100. lmb.reserved.cnt = 1;
  101. }
  102. void __init lmb_analyze(void)
  103. {
  104. int i;
  105. lmb.memory.size = 0;
  106. for (i = 0; i < lmb.memory.cnt; i++)
  107. lmb.memory.size += lmb.memory.region[i].size;
  108. }
  109. static long lmb_add_region(struct lmb_region *rgn, u64 base, u64 size)
  110. {
  111. unsigned long coalesced = 0;
  112. long adjacent, i;
  113. if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) {
  114. rgn->region[0].base = base;
  115. rgn->region[0].size = size;
  116. return 0;
  117. }
  118. /* First try and coalesce this LMB with another. */
  119. for (i = 0; i < rgn->cnt; i++) {
  120. u64 rgnbase = rgn->region[i].base;
  121. u64 rgnsize = rgn->region[i].size;
  122. if ((rgnbase == base) && (rgnsize == size))
  123. /* Already have this region, so we're done */
  124. return 0;
  125. adjacent = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
  126. if (adjacent > 0) {
  127. rgn->region[i].base -= size;
  128. rgn->region[i].size += size;
  129. coalesced++;
  130. break;
  131. } else if (adjacent < 0) {
  132. rgn->region[i].size += size;
  133. coalesced++;
  134. break;
  135. }
  136. }
  137. if ((i < rgn->cnt - 1) && lmb_regions_adjacent(rgn, i, i+1)) {
  138. lmb_coalesce_regions(rgn, i, i+1);
  139. coalesced++;
  140. }
  141. if (coalesced)
  142. return coalesced;
  143. if (rgn->cnt >= MAX_LMB_REGIONS)
  144. return -1;
  145. /* Couldn't coalesce the LMB, so add it to the sorted table. */
  146. for (i = rgn->cnt - 1; i >= 0; i--) {
  147. if (base < rgn->region[i].base) {
  148. rgn->region[i+1].base = rgn->region[i].base;
  149. rgn->region[i+1].size = rgn->region[i].size;
  150. } else {
  151. rgn->region[i+1].base = base;
  152. rgn->region[i+1].size = size;
  153. break;
  154. }
  155. }
  156. if (base < rgn->region[0].base) {
  157. rgn->region[0].base = base;
  158. rgn->region[0].size = size;
  159. }
  160. rgn->cnt++;
  161. return 0;
  162. }
  163. long lmb_add(u64 base, u64 size)
  164. {
  165. struct lmb_region *_rgn = &lmb.memory;
  166. /* On pSeries LPAR systems, the first LMB is our RMO region. */
  167. if (base == 0)
  168. lmb.rmo_size = size;
  169. return lmb_add_region(_rgn, base, size);
  170. }
  171. long lmb_remove(u64 base, u64 size)
  172. {
  173. struct lmb_region *rgn = &(lmb.memory);
  174. u64 rgnbegin, rgnend;
  175. u64 end = base + size;
  176. int i;
  177. rgnbegin = rgnend = 0; /* supress gcc warnings */
  178. /* Find the region where (base, size) belongs to */
  179. for (i=0; i < rgn->cnt; i++) {
  180. rgnbegin = rgn->region[i].base;
  181. rgnend = rgnbegin + rgn->region[i].size;
  182. if ((rgnbegin <= base) && (end <= rgnend))
  183. break;
  184. }
  185. /* Didn't find the region */
  186. if (i == rgn->cnt)
  187. return -1;
  188. /* Check to see if we are removing entire region */
  189. if ((rgnbegin == base) && (rgnend == end)) {
  190. lmb_remove_region(rgn, i);
  191. return 0;
  192. }
  193. /* Check to see if region is matching at the front */
  194. if (rgnbegin == base) {
  195. rgn->region[i].base = end;
  196. rgn->region[i].size -= size;
  197. return 0;
  198. }
  199. /* Check to see if the region is matching at the end */
  200. if (rgnend == end) {
  201. rgn->region[i].size -= size;
  202. return 0;
  203. }
  204. /*
  205. * We need to split the entry - adjust the current one to the
  206. * beginging of the hole and add the region after hole.
  207. */
  208. rgn->region[i].size = base - rgn->region[i].base;
  209. return lmb_add_region(rgn, end, rgnend - end);
  210. }
  211. long __init lmb_reserve(u64 base, u64 size)
  212. {
  213. struct lmb_region *_rgn = &lmb.reserved;
  214. BUG_ON(0 == size);
  215. return lmb_add_region(_rgn, base, size);
  216. }
  217. long __init lmb_overlaps_region(struct lmb_region *rgn, u64 base, u64 size)
  218. {
  219. unsigned long i;
  220. for (i = 0; i < rgn->cnt; i++) {
  221. u64 rgnbase = rgn->region[i].base;
  222. u64 rgnsize = rgn->region[i].size;
  223. if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
  224. break;
  225. }
  226. return (i < rgn->cnt) ? i : -1;
  227. }
  228. static u64 lmb_align_down(u64 addr, u64 size)
  229. {
  230. return addr & ~(size - 1);
  231. }
  232. static u64 lmb_align_up(u64 addr, u64 size)
  233. {
  234. return (addr + (size - 1)) & ~(size - 1);
  235. }
  236. static u64 __init lmb_alloc_nid_unreserved(u64 start, u64 end,
  237. u64 size, u64 align)
  238. {
  239. u64 base, res_base;
  240. long j;
  241. base = lmb_align_down((end - size), align);
  242. while (start <= base) {
  243. j = lmb_overlaps_region(&lmb.reserved, base, size);
  244. if (j < 0) {
  245. /* this area isn't reserved, take it */
  246. if (lmb_add_region(&lmb.reserved, base, size) < 0)
  247. base = ~(u64)0;
  248. return base;
  249. }
  250. res_base = lmb.reserved.region[j].base;
  251. if (res_base < size)
  252. break;
  253. base = lmb_align_down(res_base - size, align);
  254. }
  255. return ~(u64)0;
  256. }
  257. static u64 __init lmb_alloc_nid_region(struct lmb_property *mp,
  258. u64 (*nid_range)(u64, u64, int *),
  259. u64 size, u64 align, int nid)
  260. {
  261. u64 start, end;
  262. start = mp->base;
  263. end = start + mp->size;
  264. start = lmb_align_up(start, align);
  265. while (start < end) {
  266. u64 this_end;
  267. int this_nid;
  268. this_end = nid_range(start, end, &this_nid);
  269. if (this_nid == nid) {
  270. u64 ret = lmb_alloc_nid_unreserved(start, this_end,
  271. size, align);
  272. if (ret != ~(u64)0)
  273. return ret;
  274. }
  275. start = this_end;
  276. }
  277. return ~(u64)0;
  278. }
  279. u64 __init lmb_alloc_nid(u64 size, u64 align, int nid,
  280. u64 (*nid_range)(u64 start, u64 end, int *nid))
  281. {
  282. struct lmb_region *mem = &lmb.memory;
  283. int i;
  284. BUG_ON(0 == size);
  285. size = lmb_align_up(size, align);
  286. for (i = 0; i < mem->cnt; i++) {
  287. u64 ret = lmb_alloc_nid_region(&mem->region[i],
  288. nid_range,
  289. size, align, nid);
  290. if (ret != ~(u64)0)
  291. return ret;
  292. }
  293. return lmb_alloc(size, align);
  294. }
  295. u64 __init lmb_alloc(u64 size, u64 align)
  296. {
  297. return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE);
  298. }
  299. u64 __init lmb_alloc_base(u64 size, u64 align, u64 max_addr)
  300. {
  301. u64 alloc;
  302. alloc = __lmb_alloc_base(size, align, max_addr);
  303. if (alloc == 0)
  304. panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
  305. (unsigned long long) size, (unsigned long long) max_addr);
  306. return alloc;
  307. }
  308. u64 __init __lmb_alloc_base(u64 size, u64 align, u64 max_addr)
  309. {
  310. long i, j;
  311. u64 base = 0;
  312. u64 res_base;
  313. BUG_ON(0 == size);
  314. size = lmb_align_up(size, align);
  315. /* On some platforms, make sure we allocate lowmem */
  316. /* Note that LMB_REAL_LIMIT may be LMB_ALLOC_ANYWHERE */
  317. if (max_addr == LMB_ALLOC_ANYWHERE)
  318. max_addr = LMB_REAL_LIMIT;
  319. for (i = lmb.memory.cnt - 1; i >= 0; i--) {
  320. u64 lmbbase = lmb.memory.region[i].base;
  321. u64 lmbsize = lmb.memory.region[i].size;
  322. if (lmbsize < size)
  323. continue;
  324. if (max_addr == LMB_ALLOC_ANYWHERE)
  325. base = lmb_align_down(lmbbase + lmbsize - size, align);
  326. else if (lmbbase < max_addr) {
  327. base = min(lmbbase + lmbsize, max_addr);
  328. base = lmb_align_down(base - size, align);
  329. } else
  330. continue;
  331. while (base && lmbbase <= base) {
  332. j = lmb_overlaps_region(&lmb.reserved, base, size);
  333. if (j < 0) {
  334. /* this area isn't reserved, take it */
  335. if (lmb_add_region(&lmb.reserved, base, size) < 0)
  336. return 0;
  337. return base;
  338. }
  339. res_base = lmb.reserved.region[j].base;
  340. if (res_base < size)
  341. break;
  342. base = lmb_align_down(res_base - size, align);
  343. }
  344. }
  345. return 0;
  346. }
  347. /* You must call lmb_analyze() before this. */
  348. u64 __init lmb_phys_mem_size(void)
  349. {
  350. return lmb.memory.size;
  351. }
  352. u64 __init lmb_end_of_DRAM(void)
  353. {
  354. int idx = lmb.memory.cnt - 1;
  355. return (lmb.memory.region[idx].base + lmb.memory.region[idx].size);
  356. }
  357. /* You must call lmb_analyze() after this. */
  358. void __init lmb_enforce_memory_limit(u64 memory_limit)
  359. {
  360. unsigned long i;
  361. u64 limit;
  362. struct lmb_property *p;
  363. if (!memory_limit)
  364. return;
  365. /* Truncate the lmb regions to satisfy the memory limit. */
  366. limit = memory_limit;
  367. for (i = 0; i < lmb.memory.cnt; i++) {
  368. if (limit > lmb.memory.region[i].size) {
  369. limit -= lmb.memory.region[i].size;
  370. continue;
  371. }
  372. lmb.memory.region[i].size = limit;
  373. lmb.memory.cnt = i + 1;
  374. break;
  375. }
  376. if (lmb.memory.region[0].size < lmb.rmo_size)
  377. lmb.rmo_size = lmb.memory.region[0].size;
  378. memory_limit = lmb_end_of_DRAM();
  379. /* And truncate any reserves above the limit also. */
  380. for (i = 0; i < lmb.reserved.cnt; i++) {
  381. p = &lmb.reserved.region[i];
  382. if (p->base > memory_limit)
  383. p->size = 0;
  384. else if ((p->base + p->size) > memory_limit)
  385. p->size = memory_limit - p->base;
  386. if (p->size == 0) {
  387. lmb_remove_region(&lmb.reserved, i);
  388. i--;
  389. }
  390. }
  391. }
  392. int __init lmb_is_reserved(u64 addr)
  393. {
  394. int i;
  395. for (i = 0; i < lmb.reserved.cnt; i++) {
  396. u64 upper = lmb.reserved.region[i].base +
  397. lmb.reserved.region[i].size - 1;
  398. if ((addr >= lmb.reserved.region[i].base) && (addr <= upper))
  399. return 1;
  400. }
  401. return 0;
  402. }
  403. /*
  404. * Given a <base, len>, find which memory regions belong to this range.
  405. * Adjust the request and return a contiguous chunk.
  406. */
  407. int lmb_find(struct lmb_property *res)
  408. {
  409. int i;
  410. u64 rstart, rend;
  411. rstart = res->base;
  412. rend = rstart + res->size - 1;
  413. for (i = 0; i < lmb.memory.cnt; i++) {
  414. u64 start = lmb.memory.region[i].base;
  415. u64 end = start + lmb.memory.region[i].size - 1;
  416. if (start > rend)
  417. return -1;
  418. if ((end >= rstart) && (start < rend)) {
  419. /* adjust the request */
  420. if (rstart < start)
  421. rstart = start;
  422. if (rend > end)
  423. rend = end;
  424. res->base = rstart;
  425. res->size = rend - rstart + 1;
  426. return 0;
  427. }
  428. }
  429. return -1;
  430. }