audit.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508
  1. /* audit.c -- Auditing support
  2. * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
  3. * System-call specific features have moved to auditsc.c
  4. *
  5. * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
  6. * All Rights Reserved.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  21. *
  22. * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  23. *
  24. * Goals: 1) Integrate fully with Security Modules.
  25. * 2) Minimal run-time overhead:
  26. * a) Minimal when syscall auditing is disabled (audit_enable=0).
  27. * b) Small when syscall auditing is enabled and no audit record
  28. * is generated (defer as much work as possible to record
  29. * generation time):
  30. * i) context is allocated,
  31. * ii) names from getname are stored without a copy, and
  32. * iii) inode information stored from path_lookup.
  33. * 3) Ability to disable syscall auditing at boot time (audit=0).
  34. * 4) Usable by other parts of the kernel (if audit_log* is called,
  35. * then a syscall record will be generated automatically for the
  36. * current syscall).
  37. * 5) Netlink interface to user-space.
  38. * 6) Support low-overhead kernel-based filtering to minimize the
  39. * information that must be passed to user-space.
  40. *
  41. * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
  42. */
  43. #include <linux/init.h>
  44. #include <asm/types.h>
  45. #include <asm/atomic.h>
  46. #include <linux/mm.h>
  47. #include <linux/module.h>
  48. #include <linux/err.h>
  49. #include <linux/kthread.h>
  50. #include <linux/audit.h>
  51. #include <net/sock.h>
  52. #include <net/netlink.h>
  53. #include <linux/skbuff.h>
  54. #include <linux/netlink.h>
  55. #include <linux/inotify.h>
  56. #include <linux/freezer.h>
  57. #include <linux/tty.h>
  58. #include "audit.h"
  59. /* No auditing will take place until audit_initialized != 0.
  60. * (Initialization happens after skb_init is called.) */
  61. static int audit_initialized;
  62. #define AUDIT_OFF 0
  63. #define AUDIT_ON 1
  64. #define AUDIT_LOCKED 2
  65. int audit_enabled;
  66. int audit_ever_enabled;
  67. /* Default state when kernel boots without any parameters. */
  68. static int audit_default;
  69. /* If auditing cannot proceed, audit_failure selects what happens. */
  70. static int audit_failure = AUDIT_FAIL_PRINTK;
  71. /*
  72. * If audit records are to be written to the netlink socket, audit_pid
  73. * contains the pid of the auditd process and audit_nlk_pid contains
  74. * the pid to use to send netlink messages to that process.
  75. */
  76. int audit_pid;
  77. static int audit_nlk_pid;
  78. /* If audit_rate_limit is non-zero, limit the rate of sending audit records
  79. * to that number per second. This prevents DoS attacks, but results in
  80. * audit records being dropped. */
  81. static int audit_rate_limit;
  82. /* Number of outstanding audit_buffers allowed. */
  83. static int audit_backlog_limit = 64;
  84. static int audit_backlog_wait_time = 60 * HZ;
  85. static int audit_backlog_wait_overflow = 0;
  86. /* The identity of the user shutting down the audit system. */
  87. uid_t audit_sig_uid = -1;
  88. pid_t audit_sig_pid = -1;
  89. u32 audit_sig_sid = 0;
  90. /* Records can be lost in several ways:
  91. 0) [suppressed in audit_alloc]
  92. 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
  93. 2) out of memory in audit_log_move [alloc_skb]
  94. 3) suppressed due to audit_rate_limit
  95. 4) suppressed due to audit_backlog_limit
  96. */
  97. static atomic_t audit_lost = ATOMIC_INIT(0);
  98. /* The netlink socket. */
  99. static struct sock *audit_sock;
  100. /* Inotify handle. */
  101. struct inotify_handle *audit_ih;
  102. /* Hash for inode-based rules */
  103. struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
  104. /* The audit_freelist is a list of pre-allocated audit buffers (if more
  105. * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
  106. * being placed on the freelist). */
  107. static DEFINE_SPINLOCK(audit_freelist_lock);
  108. static int audit_freelist_count;
  109. static LIST_HEAD(audit_freelist);
  110. static struct sk_buff_head audit_skb_queue;
  111. /* queue of skbs to send to auditd when/if it comes back */
  112. static struct sk_buff_head audit_skb_hold_queue;
  113. static struct task_struct *kauditd_task;
  114. static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
  115. static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
  116. /* Serialize requests from userspace. */
  117. static DEFINE_MUTEX(audit_cmd_mutex);
  118. /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
  119. * audit records. Since printk uses a 1024 byte buffer, this buffer
  120. * should be at least that large. */
  121. #define AUDIT_BUFSIZ 1024
  122. /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
  123. * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
  124. #define AUDIT_MAXFREE (2*NR_CPUS)
  125. /* The audit_buffer is used when formatting an audit record. The caller
  126. * locks briefly to get the record off the freelist or to allocate the
  127. * buffer, and locks briefly to send the buffer to the netlink layer or
  128. * to place it on a transmit queue. Multiple audit_buffers can be in
  129. * use simultaneously. */
  130. struct audit_buffer {
  131. struct list_head list;
  132. struct sk_buff *skb; /* formatted skb ready to send */
  133. struct audit_context *ctx; /* NULL or associated context */
  134. gfp_t gfp_mask;
  135. };
  136. struct audit_reply {
  137. int pid;
  138. struct sk_buff *skb;
  139. };
  140. static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
  141. {
  142. if (ab) {
  143. struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
  144. nlh->nlmsg_pid = pid;
  145. }
  146. }
  147. void audit_panic(const char *message)
  148. {
  149. switch (audit_failure)
  150. {
  151. case AUDIT_FAIL_SILENT:
  152. break;
  153. case AUDIT_FAIL_PRINTK:
  154. if (printk_ratelimit())
  155. printk(KERN_ERR "audit: %s\n", message);
  156. break;
  157. case AUDIT_FAIL_PANIC:
  158. /* test audit_pid since printk is always losey, why bother? */
  159. if (audit_pid)
  160. panic("audit: %s\n", message);
  161. break;
  162. }
  163. }
  164. static inline int audit_rate_check(void)
  165. {
  166. static unsigned long last_check = 0;
  167. static int messages = 0;
  168. static DEFINE_SPINLOCK(lock);
  169. unsigned long flags;
  170. unsigned long now;
  171. unsigned long elapsed;
  172. int retval = 0;
  173. if (!audit_rate_limit) return 1;
  174. spin_lock_irqsave(&lock, flags);
  175. if (++messages < audit_rate_limit) {
  176. retval = 1;
  177. } else {
  178. now = jiffies;
  179. elapsed = now - last_check;
  180. if (elapsed > HZ) {
  181. last_check = now;
  182. messages = 0;
  183. retval = 1;
  184. }
  185. }
  186. spin_unlock_irqrestore(&lock, flags);
  187. return retval;
  188. }
  189. /**
  190. * audit_log_lost - conditionally log lost audit message event
  191. * @message: the message stating reason for lost audit message
  192. *
  193. * Emit at least 1 message per second, even if audit_rate_check is
  194. * throttling.
  195. * Always increment the lost messages counter.
  196. */
  197. void audit_log_lost(const char *message)
  198. {
  199. static unsigned long last_msg = 0;
  200. static DEFINE_SPINLOCK(lock);
  201. unsigned long flags;
  202. unsigned long now;
  203. int print;
  204. atomic_inc(&audit_lost);
  205. print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
  206. if (!print) {
  207. spin_lock_irqsave(&lock, flags);
  208. now = jiffies;
  209. if (now - last_msg > HZ) {
  210. print = 1;
  211. last_msg = now;
  212. }
  213. spin_unlock_irqrestore(&lock, flags);
  214. }
  215. if (print) {
  216. if (printk_ratelimit())
  217. printk(KERN_WARNING
  218. "audit: audit_lost=%d audit_rate_limit=%d "
  219. "audit_backlog_limit=%d\n",
  220. atomic_read(&audit_lost),
  221. audit_rate_limit,
  222. audit_backlog_limit);
  223. audit_panic(message);
  224. }
  225. }
  226. static int audit_log_config_change(char *function_name, int new, int old,
  227. uid_t loginuid, u32 sessionid, u32 sid,
  228. int allow_changes)
  229. {
  230. struct audit_buffer *ab;
  231. int rc = 0;
  232. ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
  233. audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new,
  234. old, loginuid, sessionid);
  235. if (sid) {
  236. char *ctx = NULL;
  237. u32 len;
  238. rc = security_secid_to_secctx(sid, &ctx, &len);
  239. if (rc) {
  240. audit_log_format(ab, " sid=%u", sid);
  241. allow_changes = 0; /* Something weird, deny request */
  242. } else {
  243. audit_log_format(ab, " subj=%s", ctx);
  244. security_release_secctx(ctx, len);
  245. }
  246. }
  247. audit_log_format(ab, " res=%d", allow_changes);
  248. audit_log_end(ab);
  249. return rc;
  250. }
  251. static int audit_do_config_change(char *function_name, int *to_change,
  252. int new, uid_t loginuid, u32 sessionid,
  253. u32 sid)
  254. {
  255. int allow_changes, rc = 0, old = *to_change;
  256. /* check if we are locked */
  257. if (audit_enabled == AUDIT_LOCKED)
  258. allow_changes = 0;
  259. else
  260. allow_changes = 1;
  261. if (audit_enabled != AUDIT_OFF) {
  262. rc = audit_log_config_change(function_name, new, old, loginuid,
  263. sessionid, sid, allow_changes);
  264. if (rc)
  265. allow_changes = 0;
  266. }
  267. /* If we are allowed, make the change */
  268. if (allow_changes == 1)
  269. *to_change = new;
  270. /* Not allowed, update reason */
  271. else if (rc == 0)
  272. rc = -EPERM;
  273. return rc;
  274. }
  275. static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid,
  276. u32 sid)
  277. {
  278. return audit_do_config_change("audit_rate_limit", &audit_rate_limit,
  279. limit, loginuid, sessionid, sid);
  280. }
  281. static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid,
  282. u32 sid)
  283. {
  284. return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit,
  285. limit, loginuid, sessionid, sid);
  286. }
  287. static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid)
  288. {
  289. int rc;
  290. if (state < AUDIT_OFF || state > AUDIT_LOCKED)
  291. return -EINVAL;
  292. rc = audit_do_config_change("audit_enabled", &audit_enabled, state,
  293. loginuid, sessionid, sid);
  294. if (!rc)
  295. audit_ever_enabled |= !!state;
  296. return rc;
  297. }
  298. static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid)
  299. {
  300. if (state != AUDIT_FAIL_SILENT
  301. && state != AUDIT_FAIL_PRINTK
  302. && state != AUDIT_FAIL_PANIC)
  303. return -EINVAL;
  304. return audit_do_config_change("audit_failure", &audit_failure, state,
  305. loginuid, sessionid, sid);
  306. }
  307. /*
  308. * Queue skbs to be sent to auditd when/if it comes back. These skbs should
  309. * already have been sent via prink/syslog and so if these messages are dropped
  310. * it is not a huge concern since we already passed the audit_log_lost()
  311. * notification and stuff. This is just nice to get audit messages during
  312. * boot before auditd is running or messages generated while auditd is stopped.
  313. * This only holds messages is audit_default is set, aka booting with audit=1
  314. * or building your kernel that way.
  315. */
  316. static void audit_hold_skb(struct sk_buff *skb)
  317. {
  318. if (audit_default &&
  319. skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)
  320. skb_queue_tail(&audit_skb_hold_queue, skb);
  321. else
  322. kfree_skb(skb);
  323. }
  324. static void kauditd_send_skb(struct sk_buff *skb)
  325. {
  326. int err;
  327. /* take a reference in case we can't send it and we want to hold it */
  328. skb_get(skb);
  329. err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0);
  330. if (err < 0) {
  331. BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */
  332. printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
  333. audit_log_lost("auditd dissapeared\n");
  334. audit_pid = 0;
  335. /* we might get lucky and get this in the next auditd */
  336. audit_hold_skb(skb);
  337. } else
  338. /* drop the extra reference if sent ok */
  339. kfree_skb(skb);
  340. }
  341. static int kauditd_thread(void *dummy)
  342. {
  343. struct sk_buff *skb;
  344. set_freezable();
  345. while (!kthread_should_stop()) {
  346. /*
  347. * if auditd just started drain the queue of messages already
  348. * sent to syslog/printk. remember loss here is ok. we already
  349. * called audit_log_lost() if it didn't go out normally. so the
  350. * race between the skb_dequeue and the next check for audit_pid
  351. * doesn't matter.
  352. *
  353. * if you ever find kauditd to be too slow we can get a perf win
  354. * by doing our own locking and keeping better track if there
  355. * are messages in this queue. I don't see the need now, but
  356. * in 5 years when I want to play with this again I'll see this
  357. * note and still have no friggin idea what i'm thinking today.
  358. */
  359. if (audit_default && audit_pid) {
  360. skb = skb_dequeue(&audit_skb_hold_queue);
  361. if (unlikely(skb)) {
  362. while (skb && audit_pid) {
  363. kauditd_send_skb(skb);
  364. skb = skb_dequeue(&audit_skb_hold_queue);
  365. }
  366. }
  367. }
  368. skb = skb_dequeue(&audit_skb_queue);
  369. wake_up(&audit_backlog_wait);
  370. if (skb) {
  371. if (audit_pid)
  372. kauditd_send_skb(skb);
  373. else {
  374. if (printk_ratelimit())
  375. printk(KERN_NOTICE "%s\n", skb->data + NLMSG_SPACE(0));
  376. else
  377. audit_log_lost("printk limit exceeded\n");
  378. audit_hold_skb(skb);
  379. }
  380. } else {
  381. DECLARE_WAITQUEUE(wait, current);
  382. set_current_state(TASK_INTERRUPTIBLE);
  383. add_wait_queue(&kauditd_wait, &wait);
  384. if (!skb_queue_len(&audit_skb_queue)) {
  385. try_to_freeze();
  386. schedule();
  387. }
  388. __set_current_state(TASK_RUNNING);
  389. remove_wait_queue(&kauditd_wait, &wait);
  390. }
  391. }
  392. return 0;
  393. }
  394. static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid)
  395. {
  396. struct task_struct *tsk;
  397. int err;
  398. read_lock(&tasklist_lock);
  399. tsk = find_task_by_vpid(pid);
  400. err = -ESRCH;
  401. if (!tsk)
  402. goto out;
  403. err = 0;
  404. spin_lock_irq(&tsk->sighand->siglock);
  405. if (!tsk->signal->audit_tty)
  406. err = -EPERM;
  407. spin_unlock_irq(&tsk->sighand->siglock);
  408. if (err)
  409. goto out;
  410. tty_audit_push_task(tsk, loginuid, sessionid);
  411. out:
  412. read_unlock(&tasklist_lock);
  413. return err;
  414. }
  415. int audit_send_list(void *_dest)
  416. {
  417. struct audit_netlink_list *dest = _dest;
  418. int pid = dest->pid;
  419. struct sk_buff *skb;
  420. /* wait for parent to finish and send an ACK */
  421. mutex_lock(&audit_cmd_mutex);
  422. mutex_unlock(&audit_cmd_mutex);
  423. while ((skb = __skb_dequeue(&dest->q)) != NULL)
  424. netlink_unicast(audit_sock, skb, pid, 0);
  425. kfree(dest);
  426. return 0;
  427. }
  428. #ifdef CONFIG_AUDIT_TREE
  429. static int prune_tree_thread(void *unused)
  430. {
  431. mutex_lock(&audit_cmd_mutex);
  432. audit_prune_trees();
  433. mutex_unlock(&audit_cmd_mutex);
  434. return 0;
  435. }
  436. void audit_schedule_prune(void)
  437. {
  438. kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
  439. }
  440. #endif
  441. struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
  442. int multi, void *payload, int size)
  443. {
  444. struct sk_buff *skb;
  445. struct nlmsghdr *nlh;
  446. int len = NLMSG_SPACE(size);
  447. void *data;
  448. int flags = multi ? NLM_F_MULTI : 0;
  449. int t = done ? NLMSG_DONE : type;
  450. skb = alloc_skb(len, GFP_KERNEL);
  451. if (!skb)
  452. return NULL;
  453. nlh = NLMSG_PUT(skb, pid, seq, t, size);
  454. nlh->nlmsg_flags = flags;
  455. data = NLMSG_DATA(nlh);
  456. memcpy(data, payload, size);
  457. return skb;
  458. nlmsg_failure: /* Used by NLMSG_PUT */
  459. if (skb)
  460. kfree_skb(skb);
  461. return NULL;
  462. }
  463. static int audit_send_reply_thread(void *arg)
  464. {
  465. struct audit_reply *reply = (struct audit_reply *)arg;
  466. mutex_lock(&audit_cmd_mutex);
  467. mutex_unlock(&audit_cmd_mutex);
  468. /* Ignore failure. It'll only happen if the sender goes away,
  469. because our timeout is set to infinite. */
  470. netlink_unicast(audit_sock, reply->skb, reply->pid, 0);
  471. kfree(reply);
  472. return 0;
  473. }
  474. /**
  475. * audit_send_reply - send an audit reply message via netlink
  476. * @pid: process id to send reply to
  477. * @seq: sequence number
  478. * @type: audit message type
  479. * @done: done (last) flag
  480. * @multi: multi-part message flag
  481. * @payload: payload data
  482. * @size: payload size
  483. *
  484. * Allocates an skb, builds the netlink message, and sends it to the pid.
  485. * No failure notifications.
  486. */
  487. void audit_send_reply(int pid, int seq, int type, int done, int multi,
  488. void *payload, int size)
  489. {
  490. struct sk_buff *skb;
  491. struct task_struct *tsk;
  492. struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
  493. GFP_KERNEL);
  494. if (!reply)
  495. return;
  496. skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
  497. if (!skb)
  498. goto out;
  499. reply->pid = pid;
  500. reply->skb = skb;
  501. tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
  502. if (!IS_ERR(tsk))
  503. return;
  504. kfree_skb(skb);
  505. out:
  506. kfree(reply);
  507. }
  508. /*
  509. * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
  510. * control messages.
  511. */
  512. static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
  513. {
  514. int err = 0;
  515. switch (msg_type) {
  516. case AUDIT_GET:
  517. case AUDIT_LIST:
  518. case AUDIT_LIST_RULES:
  519. case AUDIT_SET:
  520. case AUDIT_ADD:
  521. case AUDIT_ADD_RULE:
  522. case AUDIT_DEL:
  523. case AUDIT_DEL_RULE:
  524. case AUDIT_SIGNAL_INFO:
  525. case AUDIT_TTY_GET:
  526. case AUDIT_TTY_SET:
  527. case AUDIT_TRIM:
  528. case AUDIT_MAKE_EQUIV:
  529. if (security_netlink_recv(skb, CAP_AUDIT_CONTROL))
  530. err = -EPERM;
  531. break;
  532. case AUDIT_USER:
  533. case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
  534. case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
  535. if (security_netlink_recv(skb, CAP_AUDIT_WRITE))
  536. err = -EPERM;
  537. break;
  538. default: /* bad msg */
  539. err = -EINVAL;
  540. }
  541. return err;
  542. }
  543. static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type,
  544. u32 pid, u32 uid, uid_t auid, u32 ses,
  545. u32 sid)
  546. {
  547. int rc = 0;
  548. char *ctx = NULL;
  549. u32 len;
  550. if (!audit_enabled) {
  551. *ab = NULL;
  552. return rc;
  553. }
  554. *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
  555. audit_log_format(*ab, "user pid=%d uid=%u auid=%u ses=%u",
  556. pid, uid, auid, ses);
  557. if (sid) {
  558. rc = security_secid_to_secctx(sid, &ctx, &len);
  559. if (rc)
  560. audit_log_format(*ab, " ssid=%u", sid);
  561. else {
  562. audit_log_format(*ab, " subj=%s", ctx);
  563. security_release_secctx(ctx, len);
  564. }
  565. }
  566. return rc;
  567. }
  568. static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
  569. {
  570. u32 uid, pid, seq, sid;
  571. void *data;
  572. struct audit_status *status_get, status_set;
  573. int err;
  574. struct audit_buffer *ab;
  575. u16 msg_type = nlh->nlmsg_type;
  576. uid_t loginuid; /* loginuid of sender */
  577. u32 sessionid;
  578. struct audit_sig_info *sig_data;
  579. char *ctx = NULL;
  580. u32 len;
  581. err = audit_netlink_ok(skb, msg_type);
  582. if (err)
  583. return err;
  584. /* As soon as there's any sign of userspace auditd,
  585. * start kauditd to talk to it */
  586. if (!kauditd_task)
  587. kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
  588. if (IS_ERR(kauditd_task)) {
  589. err = PTR_ERR(kauditd_task);
  590. kauditd_task = NULL;
  591. return err;
  592. }
  593. pid = NETLINK_CREDS(skb)->pid;
  594. uid = NETLINK_CREDS(skb)->uid;
  595. loginuid = NETLINK_CB(skb).loginuid;
  596. sessionid = NETLINK_CB(skb).sessionid;
  597. sid = NETLINK_CB(skb).sid;
  598. seq = nlh->nlmsg_seq;
  599. data = NLMSG_DATA(nlh);
  600. switch (msg_type) {
  601. case AUDIT_GET:
  602. status_set.enabled = audit_enabled;
  603. status_set.failure = audit_failure;
  604. status_set.pid = audit_pid;
  605. status_set.rate_limit = audit_rate_limit;
  606. status_set.backlog_limit = audit_backlog_limit;
  607. status_set.lost = atomic_read(&audit_lost);
  608. status_set.backlog = skb_queue_len(&audit_skb_queue);
  609. audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
  610. &status_set, sizeof(status_set));
  611. break;
  612. case AUDIT_SET:
  613. if (nlh->nlmsg_len < sizeof(struct audit_status))
  614. return -EINVAL;
  615. status_get = (struct audit_status *)data;
  616. if (status_get->mask & AUDIT_STATUS_ENABLED) {
  617. err = audit_set_enabled(status_get->enabled,
  618. loginuid, sessionid, sid);
  619. if (err < 0)
  620. return err;
  621. }
  622. if (status_get->mask & AUDIT_STATUS_FAILURE) {
  623. err = audit_set_failure(status_get->failure,
  624. loginuid, sessionid, sid);
  625. if (err < 0)
  626. return err;
  627. }
  628. if (status_get->mask & AUDIT_STATUS_PID) {
  629. int new_pid = status_get->pid;
  630. if (audit_enabled != AUDIT_OFF)
  631. audit_log_config_change("audit_pid", new_pid,
  632. audit_pid, loginuid,
  633. sessionid, sid, 1);
  634. audit_pid = new_pid;
  635. audit_nlk_pid = NETLINK_CB(skb).pid;
  636. }
  637. if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) {
  638. err = audit_set_rate_limit(status_get->rate_limit,
  639. loginuid, sessionid, sid);
  640. if (err < 0)
  641. return err;
  642. }
  643. if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
  644. err = audit_set_backlog_limit(status_get->backlog_limit,
  645. loginuid, sessionid, sid);
  646. break;
  647. case AUDIT_USER:
  648. case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
  649. case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
  650. if (!audit_enabled && msg_type != AUDIT_USER_AVC)
  651. return 0;
  652. err = audit_filter_user(&NETLINK_CB(skb));
  653. if (err == 1) {
  654. err = 0;
  655. if (msg_type == AUDIT_USER_TTY) {
  656. err = audit_prepare_user_tty(pid, loginuid,
  657. sessionid);
  658. if (err)
  659. break;
  660. }
  661. audit_log_common_recv_msg(&ab, msg_type, pid, uid,
  662. loginuid, sessionid, sid);
  663. if (msg_type != AUDIT_USER_TTY)
  664. audit_log_format(ab, " msg='%.1024s'",
  665. (char *)data);
  666. else {
  667. int size;
  668. audit_log_format(ab, " msg=");
  669. size = nlmsg_len(nlh);
  670. audit_log_n_untrustedstring(ab, data, size);
  671. }
  672. audit_set_pid(ab, pid);
  673. audit_log_end(ab);
  674. }
  675. break;
  676. case AUDIT_ADD:
  677. case AUDIT_DEL:
  678. if (nlmsg_len(nlh) < sizeof(struct audit_rule))
  679. return -EINVAL;
  680. if (audit_enabled == AUDIT_LOCKED) {
  681. audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
  682. uid, loginuid, sessionid, sid);
  683. audit_log_format(ab, " audit_enabled=%d res=0",
  684. audit_enabled);
  685. audit_log_end(ab);
  686. return -EPERM;
  687. }
  688. /* fallthrough */
  689. case AUDIT_LIST:
  690. err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
  691. uid, seq, data, nlmsg_len(nlh),
  692. loginuid, sessionid, sid);
  693. break;
  694. case AUDIT_ADD_RULE:
  695. case AUDIT_DEL_RULE:
  696. if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
  697. return -EINVAL;
  698. if (audit_enabled == AUDIT_LOCKED) {
  699. audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
  700. uid, loginuid, sessionid, sid);
  701. audit_log_format(ab, " audit_enabled=%d res=0",
  702. audit_enabled);
  703. audit_log_end(ab);
  704. return -EPERM;
  705. }
  706. /* fallthrough */
  707. case AUDIT_LIST_RULES:
  708. err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
  709. uid, seq, data, nlmsg_len(nlh),
  710. loginuid, sessionid, sid);
  711. break;
  712. case AUDIT_TRIM:
  713. audit_trim_trees();
  714. audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
  715. uid, loginuid, sessionid, sid);
  716. audit_log_format(ab, " op=trim res=1");
  717. audit_log_end(ab);
  718. break;
  719. case AUDIT_MAKE_EQUIV: {
  720. void *bufp = data;
  721. u32 sizes[2];
  722. size_t msglen = nlmsg_len(nlh);
  723. char *old, *new;
  724. err = -EINVAL;
  725. if (msglen < 2 * sizeof(u32))
  726. break;
  727. memcpy(sizes, bufp, 2 * sizeof(u32));
  728. bufp += 2 * sizeof(u32);
  729. msglen -= 2 * sizeof(u32);
  730. old = audit_unpack_string(&bufp, &msglen, sizes[0]);
  731. if (IS_ERR(old)) {
  732. err = PTR_ERR(old);
  733. break;
  734. }
  735. new = audit_unpack_string(&bufp, &msglen, sizes[1]);
  736. if (IS_ERR(new)) {
  737. err = PTR_ERR(new);
  738. kfree(old);
  739. break;
  740. }
  741. /* OK, here comes... */
  742. err = audit_tag_tree(old, new);
  743. audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
  744. uid, loginuid, sessionid, sid);
  745. audit_log_format(ab, " op=make_equiv old=");
  746. audit_log_untrustedstring(ab, old);
  747. audit_log_format(ab, " new=");
  748. audit_log_untrustedstring(ab, new);
  749. audit_log_format(ab, " res=%d", !err);
  750. audit_log_end(ab);
  751. kfree(old);
  752. kfree(new);
  753. break;
  754. }
  755. case AUDIT_SIGNAL_INFO:
  756. err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
  757. if (err)
  758. return err;
  759. sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
  760. if (!sig_data) {
  761. security_release_secctx(ctx, len);
  762. return -ENOMEM;
  763. }
  764. sig_data->uid = audit_sig_uid;
  765. sig_data->pid = audit_sig_pid;
  766. memcpy(sig_data->ctx, ctx, len);
  767. security_release_secctx(ctx, len);
  768. audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
  769. 0, 0, sig_data, sizeof(*sig_data) + len);
  770. kfree(sig_data);
  771. break;
  772. case AUDIT_TTY_GET: {
  773. struct audit_tty_status s;
  774. struct task_struct *tsk;
  775. read_lock(&tasklist_lock);
  776. tsk = find_task_by_vpid(pid);
  777. if (!tsk)
  778. err = -ESRCH;
  779. else {
  780. spin_lock_irq(&tsk->sighand->siglock);
  781. s.enabled = tsk->signal->audit_tty != 0;
  782. spin_unlock_irq(&tsk->sighand->siglock);
  783. }
  784. read_unlock(&tasklist_lock);
  785. audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_TTY_GET, 0, 0,
  786. &s, sizeof(s));
  787. break;
  788. }
  789. case AUDIT_TTY_SET: {
  790. struct audit_tty_status *s;
  791. struct task_struct *tsk;
  792. if (nlh->nlmsg_len < sizeof(struct audit_tty_status))
  793. return -EINVAL;
  794. s = data;
  795. if (s->enabled != 0 && s->enabled != 1)
  796. return -EINVAL;
  797. read_lock(&tasklist_lock);
  798. tsk = find_task_by_vpid(pid);
  799. if (!tsk)
  800. err = -ESRCH;
  801. else {
  802. spin_lock_irq(&tsk->sighand->siglock);
  803. tsk->signal->audit_tty = s->enabled != 0;
  804. spin_unlock_irq(&tsk->sighand->siglock);
  805. }
  806. read_unlock(&tasklist_lock);
  807. break;
  808. }
  809. default:
  810. err = -EINVAL;
  811. break;
  812. }
  813. return err < 0 ? err : 0;
  814. }
  815. /*
  816. * Get message from skb (based on rtnetlink_rcv_skb). Each message is
  817. * processed by audit_receive_msg. Malformed skbs with wrong length are
  818. * discarded silently.
  819. */
  820. static void audit_receive_skb(struct sk_buff *skb)
  821. {
  822. int err;
  823. struct nlmsghdr *nlh;
  824. u32 rlen;
  825. while (skb->len >= NLMSG_SPACE(0)) {
  826. nlh = nlmsg_hdr(skb);
  827. if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len)
  828. return;
  829. rlen = NLMSG_ALIGN(nlh->nlmsg_len);
  830. if (rlen > skb->len)
  831. rlen = skb->len;
  832. if ((err = audit_receive_msg(skb, nlh))) {
  833. netlink_ack(skb, nlh, err);
  834. } else if (nlh->nlmsg_flags & NLM_F_ACK)
  835. netlink_ack(skb, nlh, 0);
  836. skb_pull(skb, rlen);
  837. }
  838. }
  839. /* Receive messages from netlink socket. */
  840. static void audit_receive(struct sk_buff *skb)
  841. {
  842. mutex_lock(&audit_cmd_mutex);
  843. audit_receive_skb(skb);
  844. mutex_unlock(&audit_cmd_mutex);
  845. }
  846. #ifdef CONFIG_AUDITSYSCALL
  847. static const struct inotify_operations audit_inotify_ops = {
  848. .handle_event = audit_handle_ievent,
  849. .destroy_watch = audit_free_parent,
  850. };
  851. #endif
  852. /* Initialize audit support at boot time. */
  853. static int __init audit_init(void)
  854. {
  855. int i;
  856. printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
  857. audit_default ? "enabled" : "disabled");
  858. audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0,
  859. audit_receive, NULL, THIS_MODULE);
  860. if (!audit_sock)
  861. audit_panic("cannot initialize netlink socket");
  862. else
  863. audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  864. skb_queue_head_init(&audit_skb_queue);
  865. skb_queue_head_init(&audit_skb_hold_queue);
  866. audit_initialized = 1;
  867. audit_enabled = audit_default;
  868. audit_ever_enabled |= !!audit_default;
  869. audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
  870. #ifdef CONFIG_AUDITSYSCALL
  871. audit_ih = inotify_init(&audit_inotify_ops);
  872. if (IS_ERR(audit_ih))
  873. audit_panic("cannot initialize inotify handle");
  874. #endif
  875. for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
  876. INIT_LIST_HEAD(&audit_inode_hash[i]);
  877. return 0;
  878. }
  879. __initcall(audit_init);
  880. /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
  881. static int __init audit_enable(char *str)
  882. {
  883. audit_default = !!simple_strtol(str, NULL, 0);
  884. printk(KERN_INFO "audit: %s%s\n",
  885. audit_default ? "enabled" : "disabled",
  886. audit_initialized ? "" : " (after initialization)");
  887. if (audit_initialized) {
  888. audit_enabled = audit_default;
  889. audit_ever_enabled |= !!audit_default;
  890. }
  891. return 1;
  892. }
  893. __setup("audit=", audit_enable);
  894. static void audit_buffer_free(struct audit_buffer *ab)
  895. {
  896. unsigned long flags;
  897. if (!ab)
  898. return;
  899. if (ab->skb)
  900. kfree_skb(ab->skb);
  901. spin_lock_irqsave(&audit_freelist_lock, flags);
  902. if (audit_freelist_count > AUDIT_MAXFREE)
  903. kfree(ab);
  904. else {
  905. audit_freelist_count++;
  906. list_add(&ab->list, &audit_freelist);
  907. }
  908. spin_unlock_irqrestore(&audit_freelist_lock, flags);
  909. }
  910. static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
  911. gfp_t gfp_mask, int type)
  912. {
  913. unsigned long flags;
  914. struct audit_buffer *ab = NULL;
  915. struct nlmsghdr *nlh;
  916. spin_lock_irqsave(&audit_freelist_lock, flags);
  917. if (!list_empty(&audit_freelist)) {
  918. ab = list_entry(audit_freelist.next,
  919. struct audit_buffer, list);
  920. list_del(&ab->list);
  921. --audit_freelist_count;
  922. }
  923. spin_unlock_irqrestore(&audit_freelist_lock, flags);
  924. if (!ab) {
  925. ab = kmalloc(sizeof(*ab), gfp_mask);
  926. if (!ab)
  927. goto err;
  928. }
  929. ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask);
  930. if (!ab->skb)
  931. goto err;
  932. ab->ctx = ctx;
  933. ab->gfp_mask = gfp_mask;
  934. nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0));
  935. nlh->nlmsg_type = type;
  936. nlh->nlmsg_flags = 0;
  937. nlh->nlmsg_pid = 0;
  938. nlh->nlmsg_seq = 0;
  939. return ab;
  940. err:
  941. audit_buffer_free(ab);
  942. return NULL;
  943. }
  944. /**
  945. * audit_serial - compute a serial number for the audit record
  946. *
  947. * Compute a serial number for the audit record. Audit records are
  948. * written to user-space as soon as they are generated, so a complete
  949. * audit record may be written in several pieces. The timestamp of the
  950. * record and this serial number are used by the user-space tools to
  951. * determine which pieces belong to the same audit record. The
  952. * (timestamp,serial) tuple is unique for each syscall and is live from
  953. * syscall entry to syscall exit.
  954. *
  955. * NOTE: Another possibility is to store the formatted records off the
  956. * audit context (for those records that have a context), and emit them
  957. * all at syscall exit. However, this could delay the reporting of
  958. * significant errors until syscall exit (or never, if the system
  959. * halts).
  960. */
  961. unsigned int audit_serial(void)
  962. {
  963. static DEFINE_SPINLOCK(serial_lock);
  964. static unsigned int serial = 0;
  965. unsigned long flags;
  966. unsigned int ret;
  967. spin_lock_irqsave(&serial_lock, flags);
  968. do {
  969. ret = ++serial;
  970. } while (unlikely(!ret));
  971. spin_unlock_irqrestore(&serial_lock, flags);
  972. return ret;
  973. }
  974. static inline void audit_get_stamp(struct audit_context *ctx,
  975. struct timespec *t, unsigned int *serial)
  976. {
  977. if (ctx)
  978. auditsc_get_stamp(ctx, t, serial);
  979. else {
  980. *t = CURRENT_TIME;
  981. *serial = audit_serial();
  982. }
  983. }
  984. /* Obtain an audit buffer. This routine does locking to obtain the
  985. * audit buffer, but then no locking is required for calls to
  986. * audit_log_*format. If the tsk is a task that is currently in a
  987. * syscall, then the syscall is marked as auditable and an audit record
  988. * will be written at syscall exit. If there is no associated task, tsk
  989. * should be NULL. */
  990. /**
  991. * audit_log_start - obtain an audit buffer
  992. * @ctx: audit_context (may be NULL)
  993. * @gfp_mask: type of allocation
  994. * @type: audit message type
  995. *
  996. * Returns audit_buffer pointer on success or NULL on error.
  997. *
  998. * Obtain an audit buffer. This routine does locking to obtain the
  999. * audit buffer, but then no locking is required for calls to
  1000. * audit_log_*format. If the task (ctx) is a task that is currently in a
  1001. * syscall, then the syscall is marked as auditable and an audit record
  1002. * will be written at syscall exit. If there is no associated task, then
  1003. * task context (ctx) should be NULL.
  1004. */
  1005. struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
  1006. int type)
  1007. {
  1008. struct audit_buffer *ab = NULL;
  1009. struct timespec t;
  1010. unsigned int uninitialized_var(serial);
  1011. int reserve;
  1012. unsigned long timeout_start = jiffies;
  1013. if (!audit_initialized)
  1014. return NULL;
  1015. if (unlikely(audit_filter_type(type)))
  1016. return NULL;
  1017. if (gfp_mask & __GFP_WAIT)
  1018. reserve = 0;
  1019. else
  1020. reserve = 5; /* Allow atomic callers to go up to five
  1021. entries over the normal backlog limit */
  1022. while (audit_backlog_limit
  1023. && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
  1024. if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
  1025. && time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
  1026. /* Wait for auditd to drain the queue a little */
  1027. DECLARE_WAITQUEUE(wait, current);
  1028. set_current_state(TASK_INTERRUPTIBLE);
  1029. add_wait_queue(&audit_backlog_wait, &wait);
  1030. if (audit_backlog_limit &&
  1031. skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
  1032. schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
  1033. __set_current_state(TASK_RUNNING);
  1034. remove_wait_queue(&audit_backlog_wait, &wait);
  1035. continue;
  1036. }
  1037. if (audit_rate_check() && printk_ratelimit())
  1038. printk(KERN_WARNING
  1039. "audit: audit_backlog=%d > "
  1040. "audit_backlog_limit=%d\n",
  1041. skb_queue_len(&audit_skb_queue),
  1042. audit_backlog_limit);
  1043. audit_log_lost("backlog limit exceeded");
  1044. audit_backlog_wait_time = audit_backlog_wait_overflow;
  1045. wake_up(&audit_backlog_wait);
  1046. return NULL;
  1047. }
  1048. ab = audit_buffer_alloc(ctx, gfp_mask, type);
  1049. if (!ab) {
  1050. audit_log_lost("out of memory in audit_log_start");
  1051. return NULL;
  1052. }
  1053. audit_get_stamp(ab->ctx, &t, &serial);
  1054. audit_log_format(ab, "audit(%lu.%03lu:%u): ",
  1055. t.tv_sec, t.tv_nsec/1000000, serial);
  1056. return ab;
  1057. }
  1058. /**
  1059. * audit_expand - expand skb in the audit buffer
  1060. * @ab: audit_buffer
  1061. * @extra: space to add at tail of the skb
  1062. *
  1063. * Returns 0 (no space) on failed expansion, or available space if
  1064. * successful.
  1065. */
  1066. static inline int audit_expand(struct audit_buffer *ab, int extra)
  1067. {
  1068. struct sk_buff *skb = ab->skb;
  1069. int oldtail = skb_tailroom(skb);
  1070. int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
  1071. int newtail = skb_tailroom(skb);
  1072. if (ret < 0) {
  1073. audit_log_lost("out of memory in audit_expand");
  1074. return 0;
  1075. }
  1076. skb->truesize += newtail - oldtail;
  1077. return newtail;
  1078. }
  1079. /*
  1080. * Format an audit message into the audit buffer. If there isn't enough
  1081. * room in the audit buffer, more room will be allocated and vsnprint
  1082. * will be called a second time. Currently, we assume that a printk
  1083. * can't format message larger than 1024 bytes, so we don't either.
  1084. */
  1085. static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
  1086. va_list args)
  1087. {
  1088. int len, avail;
  1089. struct sk_buff *skb;
  1090. va_list args2;
  1091. if (!ab)
  1092. return;
  1093. BUG_ON(!ab->skb);
  1094. skb = ab->skb;
  1095. avail = skb_tailroom(skb);
  1096. if (avail == 0) {
  1097. avail = audit_expand(ab, AUDIT_BUFSIZ);
  1098. if (!avail)
  1099. goto out;
  1100. }
  1101. va_copy(args2, args);
  1102. len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
  1103. if (len >= avail) {
  1104. /* The printk buffer is 1024 bytes long, so if we get
  1105. * here and AUDIT_BUFSIZ is at least 1024, then we can
  1106. * log everything that printk could have logged. */
  1107. avail = audit_expand(ab,
  1108. max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
  1109. if (!avail)
  1110. goto out;
  1111. len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
  1112. }
  1113. va_end(args2);
  1114. if (len > 0)
  1115. skb_put(skb, len);
  1116. out:
  1117. return;
  1118. }
  1119. /**
  1120. * audit_log_format - format a message into the audit buffer.
  1121. * @ab: audit_buffer
  1122. * @fmt: format string
  1123. * @...: optional parameters matching @fmt string
  1124. *
  1125. * All the work is done in audit_log_vformat.
  1126. */
  1127. void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
  1128. {
  1129. va_list args;
  1130. if (!ab)
  1131. return;
  1132. va_start(args, fmt);
  1133. audit_log_vformat(ab, fmt, args);
  1134. va_end(args);
  1135. }
  1136. /**
  1137. * audit_log_hex - convert a buffer to hex and append it to the audit skb
  1138. * @ab: the audit_buffer
  1139. * @buf: buffer to convert to hex
  1140. * @len: length of @buf to be converted
  1141. *
  1142. * No return value; failure to expand is silently ignored.
  1143. *
  1144. * This function will take the passed buf and convert it into a string of
  1145. * ascii hex digits. The new string is placed onto the skb.
  1146. */
  1147. void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
  1148. size_t len)
  1149. {
  1150. int i, avail, new_len;
  1151. unsigned char *ptr;
  1152. struct sk_buff *skb;
  1153. static const unsigned char *hex = "0123456789ABCDEF";
  1154. if (!ab)
  1155. return;
  1156. BUG_ON(!ab->skb);
  1157. skb = ab->skb;
  1158. avail = skb_tailroom(skb);
  1159. new_len = len<<1;
  1160. if (new_len >= avail) {
  1161. /* Round the buffer request up to the next multiple */
  1162. new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
  1163. avail = audit_expand(ab, new_len);
  1164. if (!avail)
  1165. return;
  1166. }
  1167. ptr = skb_tail_pointer(skb);
  1168. for (i=0; i<len; i++) {
  1169. *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
  1170. *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
  1171. }
  1172. *ptr = 0;
  1173. skb_put(skb, len << 1); /* new string is twice the old string */
  1174. }
  1175. /*
  1176. * Format a string of no more than slen characters into the audit buffer,
  1177. * enclosed in quote marks.
  1178. */
  1179. void audit_log_n_string(struct audit_buffer *ab, const char *string,
  1180. size_t slen)
  1181. {
  1182. int avail, new_len;
  1183. unsigned char *ptr;
  1184. struct sk_buff *skb;
  1185. if (!ab)
  1186. return;
  1187. BUG_ON(!ab->skb);
  1188. skb = ab->skb;
  1189. avail = skb_tailroom(skb);
  1190. new_len = slen + 3; /* enclosing quotes + null terminator */
  1191. if (new_len > avail) {
  1192. avail = audit_expand(ab, new_len);
  1193. if (!avail)
  1194. return;
  1195. }
  1196. ptr = skb_tail_pointer(skb);
  1197. *ptr++ = '"';
  1198. memcpy(ptr, string, slen);
  1199. ptr += slen;
  1200. *ptr++ = '"';
  1201. *ptr = 0;
  1202. skb_put(skb, slen + 2); /* don't include null terminator */
  1203. }
  1204. /**
  1205. * audit_string_contains_control - does a string need to be logged in hex
  1206. * @string: string to be checked
  1207. * @len: max length of the string to check
  1208. */
  1209. int audit_string_contains_control(const char *string, size_t len)
  1210. {
  1211. const unsigned char *p;
  1212. for (p = string; p < (const unsigned char *)string + len && *p; p++) {
  1213. if (*p == '"' || *p < 0x21 || *p > 0x7e)
  1214. return 1;
  1215. }
  1216. return 0;
  1217. }
  1218. /**
  1219. * audit_log_n_untrustedstring - log a string that may contain random characters
  1220. * @ab: audit_buffer
  1221. * @len: length of string (not including trailing null)
  1222. * @string: string to be logged
  1223. *
  1224. * This code will escape a string that is passed to it if the string
  1225. * contains a control character, unprintable character, double quote mark,
  1226. * or a space. Unescaped strings will start and end with a double quote mark.
  1227. * Strings that are escaped are printed in hex (2 digits per char).
  1228. *
  1229. * The caller specifies the number of characters in the string to log, which may
  1230. * or may not be the entire string.
  1231. */
  1232. void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
  1233. size_t len)
  1234. {
  1235. if (audit_string_contains_control(string, len))
  1236. audit_log_n_hex(ab, string, len);
  1237. else
  1238. audit_log_n_string(ab, string, len);
  1239. }
  1240. /**
  1241. * audit_log_untrustedstring - log a string that may contain random characters
  1242. * @ab: audit_buffer
  1243. * @string: string to be logged
  1244. *
  1245. * Same as audit_log_n_untrustedstring(), except that strlen is used to
  1246. * determine string length.
  1247. */
  1248. void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
  1249. {
  1250. audit_log_n_untrustedstring(ab, string, strlen(string));
  1251. }
  1252. /* This is a helper-function to print the escaped d_path */
  1253. void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
  1254. struct path *path)
  1255. {
  1256. char *p, *pathname;
  1257. if (prefix)
  1258. audit_log_format(ab, " %s", prefix);
  1259. /* We will allow 11 spaces for ' (deleted)' to be appended */
  1260. pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
  1261. if (!pathname) {
  1262. audit_log_format(ab, "<no memory>");
  1263. return;
  1264. }
  1265. p = d_path(path, pathname, PATH_MAX+11);
  1266. if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
  1267. /* FIXME: can we save some information here? */
  1268. audit_log_format(ab, "<too long>");
  1269. } else
  1270. audit_log_untrustedstring(ab, p);
  1271. kfree(pathname);
  1272. }
  1273. /**
  1274. * audit_log_end - end one audit record
  1275. * @ab: the audit_buffer
  1276. *
  1277. * The netlink_* functions cannot be called inside an irq context, so
  1278. * the audit buffer is placed on a queue and a tasklet is scheduled to
  1279. * remove them from the queue outside the irq context. May be called in
  1280. * any context.
  1281. */
  1282. void audit_log_end(struct audit_buffer *ab)
  1283. {
  1284. if (!ab)
  1285. return;
  1286. if (!audit_rate_check()) {
  1287. audit_log_lost("rate limit exceeded");
  1288. } else {
  1289. struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
  1290. nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
  1291. if (audit_pid) {
  1292. skb_queue_tail(&audit_skb_queue, ab->skb);
  1293. wake_up_interruptible(&kauditd_wait);
  1294. } else {
  1295. if (nlh->nlmsg_type != AUDIT_EOE) {
  1296. if (printk_ratelimit()) {
  1297. printk(KERN_NOTICE "type=%d %s\n",
  1298. nlh->nlmsg_type,
  1299. ab->skb->data + NLMSG_SPACE(0));
  1300. } else
  1301. audit_log_lost("printk limit exceeded\n");
  1302. }
  1303. audit_hold_skb(ab->skb);
  1304. }
  1305. ab->skb = NULL;
  1306. }
  1307. audit_buffer_free(ab);
  1308. }
  1309. /**
  1310. * audit_log - Log an audit record
  1311. * @ctx: audit context
  1312. * @gfp_mask: type of allocation
  1313. * @type: audit message type
  1314. * @fmt: format string to use
  1315. * @...: variable parameters matching the format string
  1316. *
  1317. * This is a convenience function that calls audit_log_start,
  1318. * audit_log_vformat, and audit_log_end. It may be called
  1319. * in any context.
  1320. */
  1321. void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
  1322. const char *fmt, ...)
  1323. {
  1324. struct audit_buffer *ab;
  1325. va_list args;
  1326. ab = audit_log_start(ctx, gfp_mask, type);
  1327. if (ab) {
  1328. va_start(args, fmt);
  1329. audit_log_vformat(ab, fmt, args);
  1330. va_end(args);
  1331. audit_log_end(ab);
  1332. }
  1333. }
  1334. EXPORT_SYMBOL(audit_log_start);
  1335. EXPORT_SYMBOL(audit_log_end);
  1336. EXPORT_SYMBOL(audit_log_format);
  1337. EXPORT_SYMBOL(audit_log);