ubi-user.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322
  1. /*
  2. * Copyright (c) International Business Machines Corp., 2006
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12. * the GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17. *
  18. * Author: Artem Bityutskiy (Битюцкий Артём)
  19. */
  20. #ifndef __UBI_USER_H__
  21. #define __UBI_USER_H__
  22. /*
  23. * UBI device creation (the same as MTD device attachment)
  24. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  25. *
  26. * MTD devices may be attached using %UBI_IOCATT ioctl command of the UBI
  27. * control device. The caller has to properly fill and pass
  28. * &struct ubi_attach_req object - UBI will attach the MTD device specified in
  29. * the request and return the newly created UBI device number as the ioctl
  30. * return value.
  31. *
  32. * UBI device deletion (the same as MTD device detachment)
  33. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  34. *
  35. * An UBI device maybe deleted with %UBI_IOCDET ioctl command of the UBI
  36. * control device.
  37. *
  38. * UBI volume creation
  39. * ~~~~~~~~~~~~~~~~~~~
  40. *
  41. * UBI volumes are created via the %UBI_IOCMKVOL IOCTL command of UBI character
  42. * device. A &struct ubi_mkvol_req object has to be properly filled and a
  43. * pointer to it has to be passed to the IOCTL.
  44. *
  45. * UBI volume deletion
  46. * ~~~~~~~~~~~~~~~~~~~
  47. *
  48. * To delete a volume, the %UBI_IOCRMVOL IOCTL command of the UBI character
  49. * device should be used. A pointer to the 32-bit volume ID hast to be passed
  50. * to the IOCTL.
  51. *
  52. * UBI volume re-size
  53. * ~~~~~~~~~~~~~~~~~~
  54. *
  55. * To re-size a volume, the %UBI_IOCRSVOL IOCTL command of the UBI character
  56. * device should be used. A &struct ubi_rsvol_req object has to be properly
  57. * filled and a pointer to it has to be passed to the IOCTL.
  58. *
  59. * UBI volumes re-name
  60. * ~~~~~~~~~~~~~~~~~~~
  61. *
  62. * To re-name several volumes atomically at one go, the %UBI_IOCRNVOL command
  63. * of the UBI character device should be used. A &struct ubi_rnvol_req object
  64. * has to be properly filled and a pointer to it has to be passed to the IOCTL.
  65. *
  66. * UBI volume update
  67. * ~~~~~~~~~~~~~~~~~
  68. *
  69. * Volume update should be done via the %UBI_IOCVOLUP IOCTL command of the
  70. * corresponding UBI volume character device. A pointer to a 64-bit update
  71. * size should be passed to the IOCTL. After this, UBI expects user to write
  72. * this number of bytes to the volume character device. The update is finished
  73. * when the claimed number of bytes is passed. So, the volume update sequence
  74. * is something like:
  75. *
  76. * fd = open("/dev/my_volume");
  77. * ioctl(fd, UBI_IOCVOLUP, &image_size);
  78. * write(fd, buf, image_size);
  79. * close(fd);
  80. *
  81. * Atomic eraseblock change
  82. * ~~~~~~~~~~~~~~~~~~~~~~~~
  83. *
  84. * Atomic eraseblock change operation is done via the %UBI_IOCEBCH IOCTL
  85. * command of the corresponding UBI volume character device. A pointer to
  86. * &struct ubi_leb_change_req has to be passed to the IOCTL. Then the user is
  87. * expected to write the requested amount of bytes. This is similar to the
  88. * "volume update" IOCTL.
  89. */
  90. /*
  91. * When a new UBI volume or UBI device is created, users may either specify the
  92. * volume/device number they want to create or to let UBI automatically assign
  93. * the number using these constants.
  94. */
  95. #define UBI_VOL_NUM_AUTO (-1)
  96. #define UBI_DEV_NUM_AUTO (-1)
  97. /* Maximum volume name length */
  98. #define UBI_MAX_VOLUME_NAME 127
  99. /* IOCTL commands of UBI character devices */
  100. #define UBI_IOC_MAGIC 'o'
  101. /* Create an UBI volume */
  102. #define UBI_IOCMKVOL _IOW(UBI_IOC_MAGIC, 0, struct ubi_mkvol_req)
  103. /* Remove an UBI volume */
  104. #define UBI_IOCRMVOL _IOW(UBI_IOC_MAGIC, 1, int32_t)
  105. /* Re-size an UBI volume */
  106. #define UBI_IOCRSVOL _IOW(UBI_IOC_MAGIC, 2, struct ubi_rsvol_req)
  107. /* Re-name volumes */
  108. #define UBI_IOCRNVOL _IOW(UBI_IOC_MAGIC, 3, struct ubi_rnvol_req)
  109. /* IOCTL commands of the UBI control character device */
  110. #define UBI_CTRL_IOC_MAGIC 'o'
  111. /* Attach an MTD device */
  112. #define UBI_IOCATT _IOW(UBI_CTRL_IOC_MAGIC, 64, struct ubi_attach_req)
  113. /* Detach an MTD device */
  114. #define UBI_IOCDET _IOW(UBI_CTRL_IOC_MAGIC, 65, int32_t)
  115. /* IOCTL commands of UBI volume character devices */
  116. #define UBI_VOL_IOC_MAGIC 'O'
  117. /* Start UBI volume update */
  118. #define UBI_IOCVOLUP _IOW(UBI_VOL_IOC_MAGIC, 0, int64_t)
  119. /* An eraseblock erasure command, used for debugging, disabled by default */
  120. #define UBI_IOCEBER _IOW(UBI_VOL_IOC_MAGIC, 1, int32_t)
  121. /* An atomic eraseblock change command */
  122. #define UBI_IOCEBCH _IOW(UBI_VOL_IOC_MAGIC, 2, int32_t)
  123. /* Maximum MTD device name length supported by UBI */
  124. #define MAX_UBI_MTD_NAME_LEN 127
  125. /* Maximum amount of UBI volumes that can be re-named at one go */
  126. #define UBI_MAX_RNVOL 32
  127. /*
  128. * UBI data type hint constants.
  129. *
  130. * UBI_LONGTERM: long-term data
  131. * UBI_SHORTTERM: short-term data
  132. * UBI_UNKNOWN: data persistence is unknown
  133. *
  134. * These constants are used when data is written to UBI volumes in order to
  135. * help the UBI wear-leveling unit to find more appropriate physical
  136. * eraseblocks.
  137. */
  138. enum {
  139. UBI_LONGTERM = 1,
  140. UBI_SHORTTERM = 2,
  141. UBI_UNKNOWN = 3,
  142. };
  143. /*
  144. * UBI volume type constants.
  145. *
  146. * @UBI_DYNAMIC_VOLUME: dynamic volume
  147. * @UBI_STATIC_VOLUME: static volume
  148. */
  149. enum {
  150. UBI_DYNAMIC_VOLUME = 3,
  151. UBI_STATIC_VOLUME = 4,
  152. };
  153. /**
  154. * struct ubi_attach_req - attach MTD device request.
  155. * @ubi_num: UBI device number to create
  156. * @mtd_num: MTD device number to attach
  157. * @vid_hdr_offset: VID header offset (use defaults if %0)
  158. * @padding: reserved for future, not used, has to be zeroed
  159. *
  160. * This data structure is used to specify MTD device UBI has to attach and the
  161. * parameters it has to use. The number which should be assigned to the new UBI
  162. * device is passed in @ubi_num. UBI may automatically assign the number if
  163. * @UBI_DEV_NUM_AUTO is passed. In this case, the device number is returned in
  164. * @ubi_num.
  165. *
  166. * Most applications should pass %0 in @vid_hdr_offset to make UBI use default
  167. * offset of the VID header within physical eraseblocks. The default offset is
  168. * the next min. I/O unit after the EC header. For example, it will be offset
  169. * 512 in case of a 512 bytes page NAND flash with no sub-page support. Or
  170. * it will be 512 in case of a 2KiB page NAND flash with 4 512-byte sub-pages.
  171. *
  172. * But in rare cases, if this optimizes things, the VID header may be placed to
  173. * a different offset. For example, the boot-loader might do things faster if
  174. * the VID header sits at the end of the first 2KiB NAND page with 4 sub-pages.
  175. * As the boot-loader would not normally need to read EC headers (unless it
  176. * needs UBI in RW mode), it might be faster to calculate ECC. This is weird
  177. * example, but it real-life example. So, in this example, @vid_hdr_offer would
  178. * be 2KiB-64 bytes = 1984. Note, that this position is not even 512-bytes
  179. * aligned, which is OK, as UBI is clever enough to realize this is 4th
  180. * sub-page of the first page and add needed padding.
  181. */
  182. struct ubi_attach_req {
  183. int32_t ubi_num;
  184. int32_t mtd_num;
  185. int32_t vid_hdr_offset;
  186. int8_t padding[12];
  187. };
  188. /**
  189. * struct ubi_mkvol_req - volume description data structure used in
  190. * volume creation requests.
  191. * @vol_id: volume number
  192. * @alignment: volume alignment
  193. * @bytes: volume size in bytes
  194. * @vol_type: volume type (%UBI_DYNAMIC_VOLUME or %UBI_STATIC_VOLUME)
  195. * @padding1: reserved for future, not used, has to be zeroed
  196. * @name_len: volume name length
  197. * @padding2: reserved for future, not used, has to be zeroed
  198. * @name: volume name
  199. *
  200. * This structure is used by user-space programs when creating new volumes. The
  201. * @used_bytes field is only necessary when creating static volumes.
  202. *
  203. * The @alignment field specifies the required alignment of the volume logical
  204. * eraseblock. This means, that the size of logical eraseblocks will be aligned
  205. * to this number, i.e.,
  206. * (UBI device logical eraseblock size) mod (@alignment) = 0.
  207. *
  208. * To put it differently, the logical eraseblock of this volume may be slightly
  209. * shortened in order to make it properly aligned. The alignment has to be
  210. * multiple of the flash minimal input/output unit, or %1 to utilize the entire
  211. * available space of logical eraseblocks.
  212. *
  213. * The @alignment field may be useful, for example, when one wants to maintain
  214. * a block device on top of an UBI volume. In this case, it is desirable to fit
  215. * an integer number of blocks in logical eraseblocks of this UBI volume. With
  216. * alignment it is possible to update this volume using plane UBI volume image
  217. * BLOBs, without caring about how to properly align them.
  218. */
  219. struct ubi_mkvol_req {
  220. int32_t vol_id;
  221. int32_t alignment;
  222. int64_t bytes;
  223. int8_t vol_type;
  224. int8_t padding1;
  225. int16_t name_len;
  226. int8_t padding2[4];
  227. char name[UBI_MAX_VOLUME_NAME + 1];
  228. } __attribute__ ((packed));
  229. /**
  230. * struct ubi_rsvol_req - a data structure used in volume re-size requests.
  231. * @vol_id: ID of the volume to re-size
  232. * @bytes: new size of the volume in bytes
  233. *
  234. * Re-sizing is possible for both dynamic and static volumes. But while dynamic
  235. * volumes may be re-sized arbitrarily, static volumes cannot be made to be
  236. * smaller then the number of bytes they bear. To arbitrarily shrink a static
  237. * volume, it must be wiped out first (by means of volume update operation with
  238. * zero number of bytes).
  239. */
  240. struct ubi_rsvol_req {
  241. int64_t bytes;
  242. int32_t vol_id;
  243. } __attribute__ ((packed));
  244. /**
  245. * struct ubi_rnvol_req - volumes re-name request.
  246. * @count: count of volumes to re-name
  247. * @padding1: reserved for future, not used, has to be zeroed
  248. * @vol_id: ID of the volume to re-name
  249. * @name_len: name length
  250. * @padding2: reserved for future, not used, has to be zeroed
  251. * @name: new volume name
  252. *
  253. * UBI allows to re-name up to %32 volumes at one go. The count of volumes to
  254. * re-name is specified in the @count field. The ID of the volumes to re-name
  255. * and the new names are specified in the @vol_id and @name fields.
  256. *
  257. * The UBI volume re-name operation is atomic, which means that should power cut
  258. * happen, the volumes will have either old name or new name. So the possible
  259. * use-cases of this command is atomic upgrade. Indeed, to upgrade, say, volumes
  260. * A and B one may create temporary volumes %A1 and %B1 with the new contents,
  261. * then atomically re-name A1->A and B1->B, in which case old %A and %B will
  262. * be removed.
  263. *
  264. * If it is not desirable to remove old A and B, the re-name request has to
  265. * contain 4 entries: A1->A, A->A1, B1->B, B->B1, in which case old A1 and B1
  266. * become A and B, and old A and B will become A1 and B1.
  267. *
  268. * It is also OK to request: A1->A, A1->X, B1->B, B->Y, in which case old A1
  269. * and B1 become A and B, and old A and B become X and Y.
  270. *
  271. * In other words, in case of re-naming into an existing volume name, the
  272. * existing volume is removed, unless it is re-named as well at the same
  273. * re-name request.
  274. */
  275. struct ubi_rnvol_req {
  276. int32_t count;
  277. int8_t padding1[12];
  278. struct {
  279. int32_t vol_id;
  280. int16_t name_len;
  281. int8_t padding2[2];
  282. char name[UBI_MAX_VOLUME_NAME + 1];
  283. } ents[UBI_MAX_RNVOL];
  284. } __attribute__ ((packed));
  285. /**
  286. * struct ubi_leb_change_req - a data structure used in atomic logical
  287. * eraseblock change requests.
  288. * @lnum: logical eraseblock number to change
  289. * @bytes: how many bytes will be written to the logical eraseblock
  290. * @dtype: data type (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
  291. * @padding: reserved for future, not used, has to be zeroed
  292. */
  293. struct ubi_leb_change_req {
  294. int32_t lnum;
  295. int32_t bytes;
  296. int8_t dtype;
  297. int8_t padding[7];
  298. } __attribute__ ((packed));
  299. #endif /* __UBI_USER_H__ */