inode.c 97 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347
  1. /*
  2. * linux/fs/ext3/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/ext3_jbd.h>
  28. #include <linux/jbd.h>
  29. #include <linux/highuid.h>
  30. #include <linux/pagemap.h>
  31. #include <linux/quotaops.h>
  32. #include <linux/string.h>
  33. #include <linux/buffer_head.h>
  34. #include <linux/writeback.h>
  35. #include <linux/mpage.h>
  36. #include <linux/uio.h>
  37. #include <linux/bio.h>
  38. #include <linux/fiemap.h>
  39. #include "xattr.h"
  40. #include "acl.h"
  41. static int ext3_writepage_trans_blocks(struct inode *inode);
  42. /*
  43. * Test whether an inode is a fast symlink.
  44. */
  45. static int ext3_inode_is_fast_symlink(struct inode *inode)
  46. {
  47. int ea_blocks = EXT3_I(inode)->i_file_acl ?
  48. (inode->i_sb->s_blocksize >> 9) : 0;
  49. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  50. }
  51. /*
  52. * The ext3 forget function must perform a revoke if we are freeing data
  53. * which has been journaled. Metadata (eg. indirect blocks) must be
  54. * revoked in all cases.
  55. *
  56. * "bh" may be NULL: a metadata block may have been freed from memory
  57. * but there may still be a record of it in the journal, and that record
  58. * still needs to be revoked.
  59. */
  60. int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  61. struct buffer_head *bh, ext3_fsblk_t blocknr)
  62. {
  63. int err;
  64. might_sleep();
  65. BUFFER_TRACE(bh, "enter");
  66. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  67. "data mode %lx\n",
  68. bh, is_metadata, inode->i_mode,
  69. test_opt(inode->i_sb, DATA_FLAGS));
  70. /* Never use the revoke function if we are doing full data
  71. * journaling: there is no need to, and a V1 superblock won't
  72. * support it. Otherwise, only skip the revoke on un-journaled
  73. * data blocks. */
  74. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  75. (!is_metadata && !ext3_should_journal_data(inode))) {
  76. if (bh) {
  77. BUFFER_TRACE(bh, "call journal_forget");
  78. return ext3_journal_forget(handle, bh);
  79. }
  80. return 0;
  81. }
  82. /*
  83. * data!=journal && (is_metadata || should_journal_data(inode))
  84. */
  85. BUFFER_TRACE(bh, "call ext3_journal_revoke");
  86. err = ext3_journal_revoke(handle, blocknr, bh);
  87. if (err)
  88. ext3_abort(inode->i_sb, __func__,
  89. "error %d when attempting revoke", err);
  90. BUFFER_TRACE(bh, "exit");
  91. return err;
  92. }
  93. /*
  94. * Work out how many blocks we need to proceed with the next chunk of a
  95. * truncate transaction.
  96. */
  97. static unsigned long blocks_for_truncate(struct inode *inode)
  98. {
  99. unsigned long needed;
  100. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  101. /* Give ourselves just enough room to cope with inodes in which
  102. * i_blocks is corrupt: we've seen disk corruptions in the past
  103. * which resulted in random data in an inode which looked enough
  104. * like a regular file for ext3 to try to delete it. Things
  105. * will go a bit crazy if that happens, but at least we should
  106. * try not to panic the whole kernel. */
  107. if (needed < 2)
  108. needed = 2;
  109. /* But we need to bound the transaction so we don't overflow the
  110. * journal. */
  111. if (needed > EXT3_MAX_TRANS_DATA)
  112. needed = EXT3_MAX_TRANS_DATA;
  113. return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  114. }
  115. /*
  116. * Truncate transactions can be complex and absolutely huge. So we need to
  117. * be able to restart the transaction at a conventient checkpoint to make
  118. * sure we don't overflow the journal.
  119. *
  120. * start_transaction gets us a new handle for a truncate transaction,
  121. * and extend_transaction tries to extend the existing one a bit. If
  122. * extend fails, we need to propagate the failure up and restart the
  123. * transaction in the top-level truncate loop. --sct
  124. */
  125. static handle_t *start_transaction(struct inode *inode)
  126. {
  127. handle_t *result;
  128. result = ext3_journal_start(inode, blocks_for_truncate(inode));
  129. if (!IS_ERR(result))
  130. return result;
  131. ext3_std_error(inode->i_sb, PTR_ERR(result));
  132. return result;
  133. }
  134. /*
  135. * Try to extend this transaction for the purposes of truncation.
  136. *
  137. * Returns 0 if we managed to create more room. If we can't create more
  138. * room, and the transaction must be restarted we return 1.
  139. */
  140. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  141. {
  142. if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
  143. return 0;
  144. if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
  145. return 0;
  146. return 1;
  147. }
  148. /*
  149. * Restart the transaction associated with *handle. This does a commit,
  150. * so before we call here everything must be consistently dirtied against
  151. * this transaction.
  152. */
  153. static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
  154. {
  155. jbd_debug(2, "restarting handle %p\n", handle);
  156. return ext3_journal_restart(handle, blocks_for_truncate(inode));
  157. }
  158. /*
  159. * Called at the last iput() if i_nlink is zero.
  160. */
  161. void ext3_delete_inode (struct inode * inode)
  162. {
  163. handle_t *handle;
  164. truncate_inode_pages(&inode->i_data, 0);
  165. if (is_bad_inode(inode))
  166. goto no_delete;
  167. handle = start_transaction(inode);
  168. if (IS_ERR(handle)) {
  169. /*
  170. * If we're going to skip the normal cleanup, we still need to
  171. * make sure that the in-core orphan linked list is properly
  172. * cleaned up.
  173. */
  174. ext3_orphan_del(NULL, inode);
  175. goto no_delete;
  176. }
  177. if (IS_SYNC(inode))
  178. handle->h_sync = 1;
  179. inode->i_size = 0;
  180. if (inode->i_blocks)
  181. ext3_truncate(inode);
  182. /*
  183. * Kill off the orphan record which ext3_truncate created.
  184. * AKPM: I think this can be inside the above `if'.
  185. * Note that ext3_orphan_del() has to be able to cope with the
  186. * deletion of a non-existent orphan - this is because we don't
  187. * know if ext3_truncate() actually created an orphan record.
  188. * (Well, we could do this if we need to, but heck - it works)
  189. */
  190. ext3_orphan_del(handle, inode);
  191. EXT3_I(inode)->i_dtime = get_seconds();
  192. /*
  193. * One subtle ordering requirement: if anything has gone wrong
  194. * (transaction abort, IO errors, whatever), then we can still
  195. * do these next steps (the fs will already have been marked as
  196. * having errors), but we can't free the inode if the mark_dirty
  197. * fails.
  198. */
  199. if (ext3_mark_inode_dirty(handle, inode))
  200. /* If that failed, just do the required in-core inode clear. */
  201. clear_inode(inode);
  202. else
  203. ext3_free_inode(handle, inode);
  204. ext3_journal_stop(handle);
  205. return;
  206. no_delete:
  207. clear_inode(inode); /* We must guarantee clearing of inode... */
  208. }
  209. typedef struct {
  210. __le32 *p;
  211. __le32 key;
  212. struct buffer_head *bh;
  213. } Indirect;
  214. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  215. {
  216. p->key = *(p->p = v);
  217. p->bh = bh;
  218. }
  219. static int verify_chain(Indirect *from, Indirect *to)
  220. {
  221. while (from <= to && from->key == *from->p)
  222. from++;
  223. return (from > to);
  224. }
  225. /**
  226. * ext3_block_to_path - parse the block number into array of offsets
  227. * @inode: inode in question (we are only interested in its superblock)
  228. * @i_block: block number to be parsed
  229. * @offsets: array to store the offsets in
  230. * @boundary: set this non-zero if the referred-to block is likely to be
  231. * followed (on disk) by an indirect block.
  232. *
  233. * To store the locations of file's data ext3 uses a data structure common
  234. * for UNIX filesystems - tree of pointers anchored in the inode, with
  235. * data blocks at leaves and indirect blocks in intermediate nodes.
  236. * This function translates the block number into path in that tree -
  237. * return value is the path length and @offsets[n] is the offset of
  238. * pointer to (n+1)th node in the nth one. If @block is out of range
  239. * (negative or too large) warning is printed and zero returned.
  240. *
  241. * Note: function doesn't find node addresses, so no IO is needed. All
  242. * we need to know is the capacity of indirect blocks (taken from the
  243. * inode->i_sb).
  244. */
  245. /*
  246. * Portability note: the last comparison (check that we fit into triple
  247. * indirect block) is spelled differently, because otherwise on an
  248. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  249. * if our filesystem had 8Kb blocks. We might use long long, but that would
  250. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  251. * i_block would have to be negative in the very beginning, so we would not
  252. * get there at all.
  253. */
  254. static int ext3_block_to_path(struct inode *inode,
  255. long i_block, int offsets[4], int *boundary)
  256. {
  257. int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  258. int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
  259. const long direct_blocks = EXT3_NDIR_BLOCKS,
  260. indirect_blocks = ptrs,
  261. double_blocks = (1 << (ptrs_bits * 2));
  262. int n = 0;
  263. int final = 0;
  264. if (i_block < 0) {
  265. ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
  266. } else if (i_block < direct_blocks) {
  267. offsets[n++] = i_block;
  268. final = direct_blocks;
  269. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  270. offsets[n++] = EXT3_IND_BLOCK;
  271. offsets[n++] = i_block;
  272. final = ptrs;
  273. } else if ((i_block -= indirect_blocks) < double_blocks) {
  274. offsets[n++] = EXT3_DIND_BLOCK;
  275. offsets[n++] = i_block >> ptrs_bits;
  276. offsets[n++] = i_block & (ptrs - 1);
  277. final = ptrs;
  278. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  279. offsets[n++] = EXT3_TIND_BLOCK;
  280. offsets[n++] = i_block >> (ptrs_bits * 2);
  281. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  282. offsets[n++] = i_block & (ptrs - 1);
  283. final = ptrs;
  284. } else {
  285. ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
  286. }
  287. if (boundary)
  288. *boundary = final - 1 - (i_block & (ptrs - 1));
  289. return n;
  290. }
  291. /**
  292. * ext3_get_branch - read the chain of indirect blocks leading to data
  293. * @inode: inode in question
  294. * @depth: depth of the chain (1 - direct pointer, etc.)
  295. * @offsets: offsets of pointers in inode/indirect blocks
  296. * @chain: place to store the result
  297. * @err: here we store the error value
  298. *
  299. * Function fills the array of triples <key, p, bh> and returns %NULL
  300. * if everything went OK or the pointer to the last filled triple
  301. * (incomplete one) otherwise. Upon the return chain[i].key contains
  302. * the number of (i+1)-th block in the chain (as it is stored in memory,
  303. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  304. * number (it points into struct inode for i==0 and into the bh->b_data
  305. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  306. * block for i>0 and NULL for i==0. In other words, it holds the block
  307. * numbers of the chain, addresses they were taken from (and where we can
  308. * verify that chain did not change) and buffer_heads hosting these
  309. * numbers.
  310. *
  311. * Function stops when it stumbles upon zero pointer (absent block)
  312. * (pointer to last triple returned, *@err == 0)
  313. * or when it gets an IO error reading an indirect block
  314. * (ditto, *@err == -EIO)
  315. * or when it notices that chain had been changed while it was reading
  316. * (ditto, *@err == -EAGAIN)
  317. * or when it reads all @depth-1 indirect blocks successfully and finds
  318. * the whole chain, all way to the data (returns %NULL, *err == 0).
  319. */
  320. static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
  321. Indirect chain[4], int *err)
  322. {
  323. struct super_block *sb = inode->i_sb;
  324. Indirect *p = chain;
  325. struct buffer_head *bh;
  326. *err = 0;
  327. /* i_data is not going away, no lock needed */
  328. add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
  329. if (!p->key)
  330. goto no_block;
  331. while (--depth) {
  332. bh = sb_bread(sb, le32_to_cpu(p->key));
  333. if (!bh)
  334. goto failure;
  335. /* Reader: pointers */
  336. if (!verify_chain(chain, p))
  337. goto changed;
  338. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  339. /* Reader: end */
  340. if (!p->key)
  341. goto no_block;
  342. }
  343. return NULL;
  344. changed:
  345. brelse(bh);
  346. *err = -EAGAIN;
  347. goto no_block;
  348. failure:
  349. *err = -EIO;
  350. no_block:
  351. return p;
  352. }
  353. /**
  354. * ext3_find_near - find a place for allocation with sufficient locality
  355. * @inode: owner
  356. * @ind: descriptor of indirect block.
  357. *
  358. * This function returns the preferred place for block allocation.
  359. * It is used when heuristic for sequential allocation fails.
  360. * Rules are:
  361. * + if there is a block to the left of our position - allocate near it.
  362. * + if pointer will live in indirect block - allocate near that block.
  363. * + if pointer will live in inode - allocate in the same
  364. * cylinder group.
  365. *
  366. * In the latter case we colour the starting block by the callers PID to
  367. * prevent it from clashing with concurrent allocations for a different inode
  368. * in the same block group. The PID is used here so that functionally related
  369. * files will be close-by on-disk.
  370. *
  371. * Caller must make sure that @ind is valid and will stay that way.
  372. */
  373. static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
  374. {
  375. struct ext3_inode_info *ei = EXT3_I(inode);
  376. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  377. __le32 *p;
  378. ext3_fsblk_t bg_start;
  379. ext3_grpblk_t colour;
  380. /* Try to find previous block */
  381. for (p = ind->p - 1; p >= start; p--) {
  382. if (*p)
  383. return le32_to_cpu(*p);
  384. }
  385. /* No such thing, so let's try location of indirect block */
  386. if (ind->bh)
  387. return ind->bh->b_blocknr;
  388. /*
  389. * It is going to be referred to from the inode itself? OK, just put it
  390. * into the same cylinder group then.
  391. */
  392. bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
  393. colour = (current->pid % 16) *
  394. (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  395. return bg_start + colour;
  396. }
  397. /**
  398. * ext3_find_goal - find a preferred place for allocation.
  399. * @inode: owner
  400. * @block: block we want
  401. * @partial: pointer to the last triple within a chain
  402. *
  403. * Normally this function find the preferred place for block allocation,
  404. * returns it.
  405. */
  406. static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
  407. Indirect *partial)
  408. {
  409. struct ext3_block_alloc_info *block_i;
  410. block_i = EXT3_I(inode)->i_block_alloc_info;
  411. /*
  412. * try the heuristic for sequential allocation,
  413. * failing that at least try to get decent locality.
  414. */
  415. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  416. && (block_i->last_alloc_physical_block != 0)) {
  417. return block_i->last_alloc_physical_block + 1;
  418. }
  419. return ext3_find_near(inode, partial);
  420. }
  421. /**
  422. * ext3_blks_to_allocate: Look up the block map and count the number
  423. * of direct blocks need to be allocated for the given branch.
  424. *
  425. * @branch: chain of indirect blocks
  426. * @k: number of blocks need for indirect blocks
  427. * @blks: number of data blocks to be mapped.
  428. * @blocks_to_boundary: the offset in the indirect block
  429. *
  430. * return the total number of blocks to be allocate, including the
  431. * direct and indirect blocks.
  432. */
  433. static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  434. int blocks_to_boundary)
  435. {
  436. unsigned long count = 0;
  437. /*
  438. * Simple case, [t,d]Indirect block(s) has not allocated yet
  439. * then it's clear blocks on that path have not allocated
  440. */
  441. if (k > 0) {
  442. /* right now we don't handle cross boundary allocation */
  443. if (blks < blocks_to_boundary + 1)
  444. count += blks;
  445. else
  446. count += blocks_to_boundary + 1;
  447. return count;
  448. }
  449. count++;
  450. while (count < blks && count <= blocks_to_boundary &&
  451. le32_to_cpu(*(branch[0].p + count)) == 0) {
  452. count++;
  453. }
  454. return count;
  455. }
  456. /**
  457. * ext3_alloc_blocks: multiple allocate blocks needed for a branch
  458. * @indirect_blks: the number of blocks need to allocate for indirect
  459. * blocks
  460. *
  461. * @new_blocks: on return it will store the new block numbers for
  462. * the indirect blocks(if needed) and the first direct block,
  463. * @blks: on return it will store the total number of allocated
  464. * direct blocks
  465. */
  466. static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
  467. ext3_fsblk_t goal, int indirect_blks, int blks,
  468. ext3_fsblk_t new_blocks[4], int *err)
  469. {
  470. int target, i;
  471. unsigned long count = 0;
  472. int index = 0;
  473. ext3_fsblk_t current_block = 0;
  474. int ret = 0;
  475. /*
  476. * Here we try to allocate the requested multiple blocks at once,
  477. * on a best-effort basis.
  478. * To build a branch, we should allocate blocks for
  479. * the indirect blocks(if not allocated yet), and at least
  480. * the first direct block of this branch. That's the
  481. * minimum number of blocks need to allocate(required)
  482. */
  483. target = blks + indirect_blks;
  484. while (1) {
  485. count = target;
  486. /* allocating blocks for indirect blocks and direct blocks */
  487. current_block = ext3_new_blocks(handle,inode,goal,&count,err);
  488. if (*err)
  489. goto failed_out;
  490. target -= count;
  491. /* allocate blocks for indirect blocks */
  492. while (index < indirect_blks && count) {
  493. new_blocks[index++] = current_block++;
  494. count--;
  495. }
  496. if (count > 0)
  497. break;
  498. }
  499. /* save the new block number for the first direct block */
  500. new_blocks[index] = current_block;
  501. /* total number of blocks allocated for direct blocks */
  502. ret = count;
  503. *err = 0;
  504. return ret;
  505. failed_out:
  506. for (i = 0; i <index; i++)
  507. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  508. return ret;
  509. }
  510. /**
  511. * ext3_alloc_branch - allocate and set up a chain of blocks.
  512. * @inode: owner
  513. * @indirect_blks: number of allocated indirect blocks
  514. * @blks: number of allocated direct blocks
  515. * @offsets: offsets (in the blocks) to store the pointers to next.
  516. * @branch: place to store the chain in.
  517. *
  518. * This function allocates blocks, zeroes out all but the last one,
  519. * links them into chain and (if we are synchronous) writes them to disk.
  520. * In other words, it prepares a branch that can be spliced onto the
  521. * inode. It stores the information about that chain in the branch[], in
  522. * the same format as ext3_get_branch() would do. We are calling it after
  523. * we had read the existing part of chain and partial points to the last
  524. * triple of that (one with zero ->key). Upon the exit we have the same
  525. * picture as after the successful ext3_get_block(), except that in one
  526. * place chain is disconnected - *branch->p is still zero (we did not
  527. * set the last link), but branch->key contains the number that should
  528. * be placed into *branch->p to fill that gap.
  529. *
  530. * If allocation fails we free all blocks we've allocated (and forget
  531. * their buffer_heads) and return the error value the from failed
  532. * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  533. * as described above and return 0.
  534. */
  535. static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
  536. int indirect_blks, int *blks, ext3_fsblk_t goal,
  537. int *offsets, Indirect *branch)
  538. {
  539. int blocksize = inode->i_sb->s_blocksize;
  540. int i, n = 0;
  541. int err = 0;
  542. struct buffer_head *bh;
  543. int num;
  544. ext3_fsblk_t new_blocks[4];
  545. ext3_fsblk_t current_block;
  546. num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
  547. *blks, new_blocks, &err);
  548. if (err)
  549. return err;
  550. branch[0].key = cpu_to_le32(new_blocks[0]);
  551. /*
  552. * metadata blocks and data blocks are allocated.
  553. */
  554. for (n = 1; n <= indirect_blks; n++) {
  555. /*
  556. * Get buffer_head for parent block, zero it out
  557. * and set the pointer to new one, then send
  558. * parent to disk.
  559. */
  560. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  561. branch[n].bh = bh;
  562. lock_buffer(bh);
  563. BUFFER_TRACE(bh, "call get_create_access");
  564. err = ext3_journal_get_create_access(handle, bh);
  565. if (err) {
  566. unlock_buffer(bh);
  567. brelse(bh);
  568. goto failed;
  569. }
  570. memset(bh->b_data, 0, blocksize);
  571. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  572. branch[n].key = cpu_to_le32(new_blocks[n]);
  573. *branch[n].p = branch[n].key;
  574. if ( n == indirect_blks) {
  575. current_block = new_blocks[n];
  576. /*
  577. * End of chain, update the last new metablock of
  578. * the chain to point to the new allocated
  579. * data blocks numbers
  580. */
  581. for (i=1; i < num; i++)
  582. *(branch[n].p + i) = cpu_to_le32(++current_block);
  583. }
  584. BUFFER_TRACE(bh, "marking uptodate");
  585. set_buffer_uptodate(bh);
  586. unlock_buffer(bh);
  587. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  588. err = ext3_journal_dirty_metadata(handle, bh);
  589. if (err)
  590. goto failed;
  591. }
  592. *blks = num;
  593. return err;
  594. failed:
  595. /* Allocation failed, free what we already allocated */
  596. for (i = 1; i <= n ; i++) {
  597. BUFFER_TRACE(branch[i].bh, "call journal_forget");
  598. ext3_journal_forget(handle, branch[i].bh);
  599. }
  600. for (i = 0; i <indirect_blks; i++)
  601. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  602. ext3_free_blocks(handle, inode, new_blocks[i], num);
  603. return err;
  604. }
  605. /**
  606. * ext3_splice_branch - splice the allocated branch onto inode.
  607. * @inode: owner
  608. * @block: (logical) number of block we are adding
  609. * @chain: chain of indirect blocks (with a missing link - see
  610. * ext3_alloc_branch)
  611. * @where: location of missing link
  612. * @num: number of indirect blocks we are adding
  613. * @blks: number of direct blocks we are adding
  614. *
  615. * This function fills the missing link and does all housekeeping needed in
  616. * inode (->i_blocks, etc.). In case of success we end up with the full
  617. * chain to new block and return 0.
  618. */
  619. static int ext3_splice_branch(handle_t *handle, struct inode *inode,
  620. long block, Indirect *where, int num, int blks)
  621. {
  622. int i;
  623. int err = 0;
  624. struct ext3_block_alloc_info *block_i;
  625. ext3_fsblk_t current_block;
  626. block_i = EXT3_I(inode)->i_block_alloc_info;
  627. /*
  628. * If we're splicing into a [td]indirect block (as opposed to the
  629. * inode) then we need to get write access to the [td]indirect block
  630. * before the splice.
  631. */
  632. if (where->bh) {
  633. BUFFER_TRACE(where->bh, "get_write_access");
  634. err = ext3_journal_get_write_access(handle, where->bh);
  635. if (err)
  636. goto err_out;
  637. }
  638. /* That's it */
  639. *where->p = where->key;
  640. /*
  641. * Update the host buffer_head or inode to point to more just allocated
  642. * direct blocks blocks
  643. */
  644. if (num == 0 && blks > 1) {
  645. current_block = le32_to_cpu(where->key) + 1;
  646. for (i = 1; i < blks; i++)
  647. *(where->p + i ) = cpu_to_le32(current_block++);
  648. }
  649. /*
  650. * update the most recently allocated logical & physical block
  651. * in i_block_alloc_info, to assist find the proper goal block for next
  652. * allocation
  653. */
  654. if (block_i) {
  655. block_i->last_alloc_logical_block = block + blks - 1;
  656. block_i->last_alloc_physical_block =
  657. le32_to_cpu(where[num].key) + blks - 1;
  658. }
  659. /* We are done with atomic stuff, now do the rest of housekeeping */
  660. inode->i_ctime = CURRENT_TIME_SEC;
  661. ext3_mark_inode_dirty(handle, inode);
  662. /* had we spliced it onto indirect block? */
  663. if (where->bh) {
  664. /*
  665. * If we spliced it onto an indirect block, we haven't
  666. * altered the inode. Note however that if it is being spliced
  667. * onto an indirect block at the very end of the file (the
  668. * file is growing) then we *will* alter the inode to reflect
  669. * the new i_size. But that is not done here - it is done in
  670. * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
  671. */
  672. jbd_debug(5, "splicing indirect only\n");
  673. BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
  674. err = ext3_journal_dirty_metadata(handle, where->bh);
  675. if (err)
  676. goto err_out;
  677. } else {
  678. /*
  679. * OK, we spliced it into the inode itself on a direct block.
  680. * Inode was dirtied above.
  681. */
  682. jbd_debug(5, "splicing direct\n");
  683. }
  684. return err;
  685. err_out:
  686. for (i = 1; i <= num; i++) {
  687. BUFFER_TRACE(where[i].bh, "call journal_forget");
  688. ext3_journal_forget(handle, where[i].bh);
  689. ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  690. }
  691. ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  692. return err;
  693. }
  694. /*
  695. * Allocation strategy is simple: if we have to allocate something, we will
  696. * have to go the whole way to leaf. So let's do it before attaching anything
  697. * to tree, set linkage between the newborn blocks, write them if sync is
  698. * required, recheck the path, free and repeat if check fails, otherwise
  699. * set the last missing link (that will protect us from any truncate-generated
  700. * removals - all blocks on the path are immune now) and possibly force the
  701. * write on the parent block.
  702. * That has a nice additional property: no special recovery from the failed
  703. * allocations is needed - we simply release blocks and do not touch anything
  704. * reachable from inode.
  705. *
  706. * `handle' can be NULL if create == 0.
  707. *
  708. * The BKL may not be held on entry here. Be sure to take it early.
  709. * return > 0, # of blocks mapped or allocated.
  710. * return = 0, if plain lookup failed.
  711. * return < 0, error case.
  712. */
  713. int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
  714. sector_t iblock, unsigned long maxblocks,
  715. struct buffer_head *bh_result,
  716. int create, int extend_disksize)
  717. {
  718. int err = -EIO;
  719. int offsets[4];
  720. Indirect chain[4];
  721. Indirect *partial;
  722. ext3_fsblk_t goal;
  723. int indirect_blks;
  724. int blocks_to_boundary = 0;
  725. int depth;
  726. struct ext3_inode_info *ei = EXT3_I(inode);
  727. int count = 0;
  728. ext3_fsblk_t first_block = 0;
  729. J_ASSERT(handle != NULL || create == 0);
  730. depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  731. if (depth == 0)
  732. goto out;
  733. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  734. /* Simplest case - block found, no allocation needed */
  735. if (!partial) {
  736. first_block = le32_to_cpu(chain[depth - 1].key);
  737. clear_buffer_new(bh_result);
  738. count++;
  739. /*map more blocks*/
  740. while (count < maxblocks && count <= blocks_to_boundary) {
  741. ext3_fsblk_t blk;
  742. if (!verify_chain(chain, partial)) {
  743. /*
  744. * Indirect block might be removed by
  745. * truncate while we were reading it.
  746. * Handling of that case: forget what we've
  747. * got now. Flag the err as EAGAIN, so it
  748. * will reread.
  749. */
  750. err = -EAGAIN;
  751. count = 0;
  752. break;
  753. }
  754. blk = le32_to_cpu(*(chain[depth-1].p + count));
  755. if (blk == first_block + count)
  756. count++;
  757. else
  758. break;
  759. }
  760. if (err != -EAGAIN)
  761. goto got_it;
  762. }
  763. /* Next simple case - plain lookup or failed read of indirect block */
  764. if (!create || err == -EIO)
  765. goto cleanup;
  766. mutex_lock(&ei->truncate_mutex);
  767. /*
  768. * If the indirect block is missing while we are reading
  769. * the chain(ext3_get_branch() returns -EAGAIN err), or
  770. * if the chain has been changed after we grab the semaphore,
  771. * (either because another process truncated this branch, or
  772. * another get_block allocated this branch) re-grab the chain to see if
  773. * the request block has been allocated or not.
  774. *
  775. * Since we already block the truncate/other get_block
  776. * at this point, we will have the current copy of the chain when we
  777. * splice the branch into the tree.
  778. */
  779. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  780. while (partial > chain) {
  781. brelse(partial->bh);
  782. partial--;
  783. }
  784. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  785. if (!partial) {
  786. count++;
  787. mutex_unlock(&ei->truncate_mutex);
  788. if (err)
  789. goto cleanup;
  790. clear_buffer_new(bh_result);
  791. goto got_it;
  792. }
  793. }
  794. /*
  795. * Okay, we need to do block allocation. Lazily initialize the block
  796. * allocation info here if necessary
  797. */
  798. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  799. ext3_init_block_alloc_info(inode);
  800. goal = ext3_find_goal(inode, iblock, partial);
  801. /* the number of blocks need to allocate for [d,t]indirect blocks */
  802. indirect_blks = (chain + depth) - partial - 1;
  803. /*
  804. * Next look up the indirect map to count the totoal number of
  805. * direct blocks to allocate for this branch.
  806. */
  807. count = ext3_blks_to_allocate(partial, indirect_blks,
  808. maxblocks, blocks_to_boundary);
  809. /*
  810. * Block out ext3_truncate while we alter the tree
  811. */
  812. err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
  813. offsets + (partial - chain), partial);
  814. /*
  815. * The ext3_splice_branch call will free and forget any buffers
  816. * on the new chain if there is a failure, but that risks using
  817. * up transaction credits, especially for bitmaps where the
  818. * credits cannot be returned. Can we handle this somehow? We
  819. * may need to return -EAGAIN upwards in the worst case. --sct
  820. */
  821. if (!err)
  822. err = ext3_splice_branch(handle, inode, iblock,
  823. partial, indirect_blks, count);
  824. /*
  825. * i_disksize growing is protected by truncate_mutex. Don't forget to
  826. * protect it if you're about to implement concurrent
  827. * ext3_get_block() -bzzz
  828. */
  829. if (!err && extend_disksize && inode->i_size > ei->i_disksize)
  830. ei->i_disksize = inode->i_size;
  831. mutex_unlock(&ei->truncate_mutex);
  832. if (err)
  833. goto cleanup;
  834. set_buffer_new(bh_result);
  835. got_it:
  836. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  837. if (count > blocks_to_boundary)
  838. set_buffer_boundary(bh_result);
  839. err = count;
  840. /* Clean up and exit */
  841. partial = chain + depth - 1; /* the whole chain */
  842. cleanup:
  843. while (partial > chain) {
  844. BUFFER_TRACE(partial->bh, "call brelse");
  845. brelse(partial->bh);
  846. partial--;
  847. }
  848. BUFFER_TRACE(bh_result, "returned");
  849. out:
  850. return err;
  851. }
  852. /* Maximum number of blocks we map for direct IO at once. */
  853. #define DIO_MAX_BLOCKS 4096
  854. /*
  855. * Number of credits we need for writing DIO_MAX_BLOCKS:
  856. * We need sb + group descriptor + bitmap + inode -> 4
  857. * For B blocks with A block pointers per block we need:
  858. * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
  859. * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
  860. */
  861. #define DIO_CREDITS 25
  862. static int ext3_get_block(struct inode *inode, sector_t iblock,
  863. struct buffer_head *bh_result, int create)
  864. {
  865. handle_t *handle = ext3_journal_current_handle();
  866. int ret = 0, started = 0;
  867. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  868. if (create && !handle) { /* Direct IO write... */
  869. if (max_blocks > DIO_MAX_BLOCKS)
  870. max_blocks = DIO_MAX_BLOCKS;
  871. handle = ext3_journal_start(inode, DIO_CREDITS +
  872. 2 * EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb));
  873. if (IS_ERR(handle)) {
  874. ret = PTR_ERR(handle);
  875. goto out;
  876. }
  877. started = 1;
  878. }
  879. ret = ext3_get_blocks_handle(handle, inode, iblock,
  880. max_blocks, bh_result, create, 0);
  881. if (ret > 0) {
  882. bh_result->b_size = (ret << inode->i_blkbits);
  883. ret = 0;
  884. }
  885. if (started)
  886. ext3_journal_stop(handle);
  887. out:
  888. return ret;
  889. }
  890. int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
  891. u64 start, u64 len)
  892. {
  893. return generic_block_fiemap(inode, fieinfo, start, len,
  894. ext3_get_block);
  895. }
  896. /*
  897. * `handle' can be NULL if create is zero
  898. */
  899. struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
  900. long block, int create, int *errp)
  901. {
  902. struct buffer_head dummy;
  903. int fatal = 0, err;
  904. J_ASSERT(handle != NULL || create == 0);
  905. dummy.b_state = 0;
  906. dummy.b_blocknr = -1000;
  907. buffer_trace_init(&dummy.b_history);
  908. err = ext3_get_blocks_handle(handle, inode, block, 1,
  909. &dummy, create, 1);
  910. /*
  911. * ext3_get_blocks_handle() returns number of blocks
  912. * mapped. 0 in case of a HOLE.
  913. */
  914. if (err > 0) {
  915. if (err > 1)
  916. WARN_ON(1);
  917. err = 0;
  918. }
  919. *errp = err;
  920. if (!err && buffer_mapped(&dummy)) {
  921. struct buffer_head *bh;
  922. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  923. if (!bh) {
  924. *errp = -EIO;
  925. goto err;
  926. }
  927. if (buffer_new(&dummy)) {
  928. J_ASSERT(create != 0);
  929. J_ASSERT(handle != NULL);
  930. /*
  931. * Now that we do not always journal data, we should
  932. * keep in mind whether this should always journal the
  933. * new buffer as metadata. For now, regular file
  934. * writes use ext3_get_block instead, so it's not a
  935. * problem.
  936. */
  937. lock_buffer(bh);
  938. BUFFER_TRACE(bh, "call get_create_access");
  939. fatal = ext3_journal_get_create_access(handle, bh);
  940. if (!fatal && !buffer_uptodate(bh)) {
  941. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  942. set_buffer_uptodate(bh);
  943. }
  944. unlock_buffer(bh);
  945. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  946. err = ext3_journal_dirty_metadata(handle, bh);
  947. if (!fatal)
  948. fatal = err;
  949. } else {
  950. BUFFER_TRACE(bh, "not a new buffer");
  951. }
  952. if (fatal) {
  953. *errp = fatal;
  954. brelse(bh);
  955. bh = NULL;
  956. }
  957. return bh;
  958. }
  959. err:
  960. return NULL;
  961. }
  962. struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
  963. int block, int create, int *err)
  964. {
  965. struct buffer_head * bh;
  966. bh = ext3_getblk(handle, inode, block, create, err);
  967. if (!bh)
  968. return bh;
  969. if (buffer_uptodate(bh))
  970. return bh;
  971. ll_rw_block(READ_META, 1, &bh);
  972. wait_on_buffer(bh);
  973. if (buffer_uptodate(bh))
  974. return bh;
  975. put_bh(bh);
  976. *err = -EIO;
  977. return NULL;
  978. }
  979. static int walk_page_buffers( handle_t *handle,
  980. struct buffer_head *head,
  981. unsigned from,
  982. unsigned to,
  983. int *partial,
  984. int (*fn)( handle_t *handle,
  985. struct buffer_head *bh))
  986. {
  987. struct buffer_head *bh;
  988. unsigned block_start, block_end;
  989. unsigned blocksize = head->b_size;
  990. int err, ret = 0;
  991. struct buffer_head *next;
  992. for ( bh = head, block_start = 0;
  993. ret == 0 && (bh != head || !block_start);
  994. block_start = block_end, bh = next)
  995. {
  996. next = bh->b_this_page;
  997. block_end = block_start + blocksize;
  998. if (block_end <= from || block_start >= to) {
  999. if (partial && !buffer_uptodate(bh))
  1000. *partial = 1;
  1001. continue;
  1002. }
  1003. err = (*fn)(handle, bh);
  1004. if (!ret)
  1005. ret = err;
  1006. }
  1007. return ret;
  1008. }
  1009. /*
  1010. * To preserve ordering, it is essential that the hole instantiation and
  1011. * the data write be encapsulated in a single transaction. We cannot
  1012. * close off a transaction and start a new one between the ext3_get_block()
  1013. * and the commit_write(). So doing the journal_start at the start of
  1014. * prepare_write() is the right place.
  1015. *
  1016. * Also, this function can nest inside ext3_writepage() ->
  1017. * block_write_full_page(). In that case, we *know* that ext3_writepage()
  1018. * has generated enough buffer credits to do the whole page. So we won't
  1019. * block on the journal in that case, which is good, because the caller may
  1020. * be PF_MEMALLOC.
  1021. *
  1022. * By accident, ext3 can be reentered when a transaction is open via
  1023. * quota file writes. If we were to commit the transaction while thus
  1024. * reentered, there can be a deadlock - we would be holding a quota
  1025. * lock, and the commit would never complete if another thread had a
  1026. * transaction open and was blocking on the quota lock - a ranking
  1027. * violation.
  1028. *
  1029. * So what we do is to rely on the fact that journal_stop/journal_start
  1030. * will _not_ run commit under these circumstances because handle->h_ref
  1031. * is elevated. We'll still have enough credits for the tiny quotafile
  1032. * write.
  1033. */
  1034. static int do_journal_get_write_access(handle_t *handle,
  1035. struct buffer_head *bh)
  1036. {
  1037. if (!buffer_mapped(bh) || buffer_freed(bh))
  1038. return 0;
  1039. return ext3_journal_get_write_access(handle, bh);
  1040. }
  1041. static int ext3_write_begin(struct file *file, struct address_space *mapping,
  1042. loff_t pos, unsigned len, unsigned flags,
  1043. struct page **pagep, void **fsdata)
  1044. {
  1045. struct inode *inode = mapping->host;
  1046. int ret, needed_blocks = ext3_writepage_trans_blocks(inode);
  1047. handle_t *handle;
  1048. int retries = 0;
  1049. struct page *page;
  1050. pgoff_t index;
  1051. unsigned from, to;
  1052. index = pos >> PAGE_CACHE_SHIFT;
  1053. from = pos & (PAGE_CACHE_SIZE - 1);
  1054. to = from + len;
  1055. retry:
  1056. page = __grab_cache_page(mapping, index);
  1057. if (!page)
  1058. return -ENOMEM;
  1059. *pagep = page;
  1060. handle = ext3_journal_start(inode, needed_blocks);
  1061. if (IS_ERR(handle)) {
  1062. unlock_page(page);
  1063. page_cache_release(page);
  1064. ret = PTR_ERR(handle);
  1065. goto out;
  1066. }
  1067. ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  1068. ext3_get_block);
  1069. if (ret)
  1070. goto write_begin_failed;
  1071. if (ext3_should_journal_data(inode)) {
  1072. ret = walk_page_buffers(handle, page_buffers(page),
  1073. from, to, NULL, do_journal_get_write_access);
  1074. }
  1075. write_begin_failed:
  1076. if (ret) {
  1077. ext3_journal_stop(handle);
  1078. unlock_page(page);
  1079. page_cache_release(page);
  1080. /*
  1081. * block_write_begin may have instantiated a few blocks
  1082. * outside i_size. Trim these off again. Don't need
  1083. * i_size_read because we hold i_mutex.
  1084. */
  1085. if (pos + len > inode->i_size)
  1086. vmtruncate(inode, inode->i_size);
  1087. }
  1088. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1089. goto retry;
  1090. out:
  1091. return ret;
  1092. }
  1093. int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1094. {
  1095. int err = journal_dirty_data(handle, bh);
  1096. if (err)
  1097. ext3_journal_abort_handle(__func__, __func__,
  1098. bh, handle, err);
  1099. return err;
  1100. }
  1101. /* For write_end() in data=journal mode */
  1102. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1103. {
  1104. if (!buffer_mapped(bh) || buffer_freed(bh))
  1105. return 0;
  1106. set_buffer_uptodate(bh);
  1107. return ext3_journal_dirty_metadata(handle, bh);
  1108. }
  1109. /*
  1110. * Generic write_end handler for ordered and writeback ext3 journal modes.
  1111. * We can't use generic_write_end, because that unlocks the page and we need to
  1112. * unlock the page after ext3_journal_stop, but ext3_journal_stop must run
  1113. * after block_write_end.
  1114. */
  1115. static int ext3_generic_write_end(struct file *file,
  1116. struct address_space *mapping,
  1117. loff_t pos, unsigned len, unsigned copied,
  1118. struct page *page, void *fsdata)
  1119. {
  1120. struct inode *inode = file->f_mapping->host;
  1121. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1122. if (pos+copied > inode->i_size) {
  1123. i_size_write(inode, pos+copied);
  1124. mark_inode_dirty(inode);
  1125. }
  1126. return copied;
  1127. }
  1128. /*
  1129. * We need to pick up the new inode size which generic_commit_write gave us
  1130. * `file' can be NULL - eg, when called from page_symlink().
  1131. *
  1132. * ext3 never places buffers on inode->i_mapping->private_list. metadata
  1133. * buffers are managed internally.
  1134. */
  1135. static int ext3_ordered_write_end(struct file *file,
  1136. struct address_space *mapping,
  1137. loff_t pos, unsigned len, unsigned copied,
  1138. struct page *page, void *fsdata)
  1139. {
  1140. handle_t *handle = ext3_journal_current_handle();
  1141. struct inode *inode = file->f_mapping->host;
  1142. unsigned from, to;
  1143. int ret = 0, ret2;
  1144. from = pos & (PAGE_CACHE_SIZE - 1);
  1145. to = from + len;
  1146. ret = walk_page_buffers(handle, page_buffers(page),
  1147. from, to, NULL, ext3_journal_dirty_data);
  1148. if (ret == 0) {
  1149. /*
  1150. * generic_write_end() will run mark_inode_dirty() if i_size
  1151. * changes. So let's piggyback the i_disksize mark_inode_dirty
  1152. * into that.
  1153. */
  1154. loff_t new_i_size;
  1155. new_i_size = pos + copied;
  1156. if (new_i_size > EXT3_I(inode)->i_disksize)
  1157. EXT3_I(inode)->i_disksize = new_i_size;
  1158. ret2 = ext3_generic_write_end(file, mapping, pos, len, copied,
  1159. page, fsdata);
  1160. copied = ret2;
  1161. if (ret2 < 0)
  1162. ret = ret2;
  1163. }
  1164. ret2 = ext3_journal_stop(handle);
  1165. if (!ret)
  1166. ret = ret2;
  1167. unlock_page(page);
  1168. page_cache_release(page);
  1169. return ret ? ret : copied;
  1170. }
  1171. static int ext3_writeback_write_end(struct file *file,
  1172. struct address_space *mapping,
  1173. loff_t pos, unsigned len, unsigned copied,
  1174. struct page *page, void *fsdata)
  1175. {
  1176. handle_t *handle = ext3_journal_current_handle();
  1177. struct inode *inode = file->f_mapping->host;
  1178. int ret = 0, ret2;
  1179. loff_t new_i_size;
  1180. new_i_size = pos + copied;
  1181. if (new_i_size > EXT3_I(inode)->i_disksize)
  1182. EXT3_I(inode)->i_disksize = new_i_size;
  1183. ret2 = ext3_generic_write_end(file, mapping, pos, len, copied,
  1184. page, fsdata);
  1185. copied = ret2;
  1186. if (ret2 < 0)
  1187. ret = ret2;
  1188. ret2 = ext3_journal_stop(handle);
  1189. if (!ret)
  1190. ret = ret2;
  1191. unlock_page(page);
  1192. page_cache_release(page);
  1193. return ret ? ret : copied;
  1194. }
  1195. static int ext3_journalled_write_end(struct file *file,
  1196. struct address_space *mapping,
  1197. loff_t pos, unsigned len, unsigned copied,
  1198. struct page *page, void *fsdata)
  1199. {
  1200. handle_t *handle = ext3_journal_current_handle();
  1201. struct inode *inode = mapping->host;
  1202. int ret = 0, ret2;
  1203. int partial = 0;
  1204. unsigned from, to;
  1205. from = pos & (PAGE_CACHE_SIZE - 1);
  1206. to = from + len;
  1207. if (copied < len) {
  1208. if (!PageUptodate(page))
  1209. copied = 0;
  1210. page_zero_new_buffers(page, from+copied, to);
  1211. }
  1212. ret = walk_page_buffers(handle, page_buffers(page), from,
  1213. to, &partial, write_end_fn);
  1214. if (!partial)
  1215. SetPageUptodate(page);
  1216. if (pos+copied > inode->i_size)
  1217. i_size_write(inode, pos+copied);
  1218. EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
  1219. if (inode->i_size > EXT3_I(inode)->i_disksize) {
  1220. EXT3_I(inode)->i_disksize = inode->i_size;
  1221. ret2 = ext3_mark_inode_dirty(handle, inode);
  1222. if (!ret)
  1223. ret = ret2;
  1224. }
  1225. ret2 = ext3_journal_stop(handle);
  1226. if (!ret)
  1227. ret = ret2;
  1228. unlock_page(page);
  1229. page_cache_release(page);
  1230. return ret ? ret : copied;
  1231. }
  1232. /*
  1233. * bmap() is special. It gets used by applications such as lilo and by
  1234. * the swapper to find the on-disk block of a specific piece of data.
  1235. *
  1236. * Naturally, this is dangerous if the block concerned is still in the
  1237. * journal. If somebody makes a swapfile on an ext3 data-journaling
  1238. * filesystem and enables swap, then they may get a nasty shock when the
  1239. * data getting swapped to that swapfile suddenly gets overwritten by
  1240. * the original zero's written out previously to the journal and
  1241. * awaiting writeback in the kernel's buffer cache.
  1242. *
  1243. * So, if we see any bmap calls here on a modified, data-journaled file,
  1244. * take extra steps to flush any blocks which might be in the cache.
  1245. */
  1246. static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
  1247. {
  1248. struct inode *inode = mapping->host;
  1249. journal_t *journal;
  1250. int err;
  1251. if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
  1252. /*
  1253. * This is a REALLY heavyweight approach, but the use of
  1254. * bmap on dirty files is expected to be extremely rare:
  1255. * only if we run lilo or swapon on a freshly made file
  1256. * do we expect this to happen.
  1257. *
  1258. * (bmap requires CAP_SYS_RAWIO so this does not
  1259. * represent an unprivileged user DOS attack --- we'd be
  1260. * in trouble if mortal users could trigger this path at
  1261. * will.)
  1262. *
  1263. * NB. EXT3_STATE_JDATA is not set on files other than
  1264. * regular files. If somebody wants to bmap a directory
  1265. * or symlink and gets confused because the buffer
  1266. * hasn't yet been flushed to disk, they deserve
  1267. * everything they get.
  1268. */
  1269. EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
  1270. journal = EXT3_JOURNAL(inode);
  1271. journal_lock_updates(journal);
  1272. err = journal_flush(journal);
  1273. journal_unlock_updates(journal);
  1274. if (err)
  1275. return 0;
  1276. }
  1277. return generic_block_bmap(mapping,block,ext3_get_block);
  1278. }
  1279. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1280. {
  1281. get_bh(bh);
  1282. return 0;
  1283. }
  1284. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1285. {
  1286. put_bh(bh);
  1287. return 0;
  1288. }
  1289. static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1290. {
  1291. if (buffer_mapped(bh))
  1292. return ext3_journal_dirty_data(handle, bh);
  1293. return 0;
  1294. }
  1295. /*
  1296. * Note that we always start a transaction even if we're not journalling
  1297. * data. This is to preserve ordering: any hole instantiation within
  1298. * __block_write_full_page -> ext3_get_block() should be journalled
  1299. * along with the data so we don't crash and then get metadata which
  1300. * refers to old data.
  1301. *
  1302. * In all journalling modes block_write_full_page() will start the I/O.
  1303. *
  1304. * Problem:
  1305. *
  1306. * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1307. * ext3_writepage()
  1308. *
  1309. * Similar for:
  1310. *
  1311. * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1312. *
  1313. * Same applies to ext3_get_block(). We will deadlock on various things like
  1314. * lock_journal and i_truncate_mutex.
  1315. *
  1316. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1317. * allocations fail.
  1318. *
  1319. * 16May01: If we're reentered then journal_current_handle() will be
  1320. * non-zero. We simply *return*.
  1321. *
  1322. * 1 July 2001: @@@ FIXME:
  1323. * In journalled data mode, a data buffer may be metadata against the
  1324. * current transaction. But the same file is part of a shared mapping
  1325. * and someone does a writepage() on it.
  1326. *
  1327. * We will move the buffer onto the async_data list, but *after* it has
  1328. * been dirtied. So there's a small window where we have dirty data on
  1329. * BJ_Metadata.
  1330. *
  1331. * Note that this only applies to the last partial page in the file. The
  1332. * bit which block_write_full_page() uses prepare/commit for. (That's
  1333. * broken code anyway: it's wrong for msync()).
  1334. *
  1335. * It's a rare case: affects the final partial page, for journalled data
  1336. * where the file is subject to bith write() and writepage() in the same
  1337. * transction. To fix it we'll need a custom block_write_full_page().
  1338. * We'll probably need that anyway for journalling writepage() output.
  1339. *
  1340. * We don't honour synchronous mounts for writepage(). That would be
  1341. * disastrous. Any write() or metadata operation will sync the fs for
  1342. * us.
  1343. *
  1344. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1345. * we don't need to open a transaction here.
  1346. */
  1347. static int ext3_ordered_writepage(struct page *page,
  1348. struct writeback_control *wbc)
  1349. {
  1350. struct inode *inode = page->mapping->host;
  1351. struct buffer_head *page_bufs;
  1352. handle_t *handle = NULL;
  1353. int ret = 0;
  1354. int err;
  1355. J_ASSERT(PageLocked(page));
  1356. /*
  1357. * We give up here if we're reentered, because it might be for a
  1358. * different filesystem.
  1359. */
  1360. if (ext3_journal_current_handle())
  1361. goto out_fail;
  1362. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1363. if (IS_ERR(handle)) {
  1364. ret = PTR_ERR(handle);
  1365. goto out_fail;
  1366. }
  1367. if (!page_has_buffers(page)) {
  1368. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1369. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1370. }
  1371. page_bufs = page_buffers(page);
  1372. walk_page_buffers(handle, page_bufs, 0,
  1373. PAGE_CACHE_SIZE, NULL, bget_one);
  1374. ret = block_write_full_page(page, ext3_get_block, wbc);
  1375. /*
  1376. * The page can become unlocked at any point now, and
  1377. * truncate can then come in and change things. So we
  1378. * can't touch *page from now on. But *page_bufs is
  1379. * safe due to elevated refcount.
  1380. */
  1381. /*
  1382. * And attach them to the current transaction. But only if
  1383. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1384. * and generally junk.
  1385. */
  1386. if (ret == 0) {
  1387. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1388. NULL, journal_dirty_data_fn);
  1389. if (!ret)
  1390. ret = err;
  1391. }
  1392. walk_page_buffers(handle, page_bufs, 0,
  1393. PAGE_CACHE_SIZE, NULL, bput_one);
  1394. err = ext3_journal_stop(handle);
  1395. if (!ret)
  1396. ret = err;
  1397. return ret;
  1398. out_fail:
  1399. redirty_page_for_writepage(wbc, page);
  1400. unlock_page(page);
  1401. return ret;
  1402. }
  1403. static int ext3_writeback_writepage(struct page *page,
  1404. struct writeback_control *wbc)
  1405. {
  1406. struct inode *inode = page->mapping->host;
  1407. handle_t *handle = NULL;
  1408. int ret = 0;
  1409. int err;
  1410. if (ext3_journal_current_handle())
  1411. goto out_fail;
  1412. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1413. if (IS_ERR(handle)) {
  1414. ret = PTR_ERR(handle);
  1415. goto out_fail;
  1416. }
  1417. if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
  1418. ret = nobh_writepage(page, ext3_get_block, wbc);
  1419. else
  1420. ret = block_write_full_page(page, ext3_get_block, wbc);
  1421. err = ext3_journal_stop(handle);
  1422. if (!ret)
  1423. ret = err;
  1424. return ret;
  1425. out_fail:
  1426. redirty_page_for_writepage(wbc, page);
  1427. unlock_page(page);
  1428. return ret;
  1429. }
  1430. static int ext3_journalled_writepage(struct page *page,
  1431. struct writeback_control *wbc)
  1432. {
  1433. struct inode *inode = page->mapping->host;
  1434. handle_t *handle = NULL;
  1435. int ret = 0;
  1436. int err;
  1437. if (ext3_journal_current_handle())
  1438. goto no_write;
  1439. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1440. if (IS_ERR(handle)) {
  1441. ret = PTR_ERR(handle);
  1442. goto no_write;
  1443. }
  1444. if (!page_has_buffers(page) || PageChecked(page)) {
  1445. /*
  1446. * It's mmapped pagecache. Add buffers and journal it. There
  1447. * doesn't seem much point in redirtying the page here.
  1448. */
  1449. ClearPageChecked(page);
  1450. ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
  1451. ext3_get_block);
  1452. if (ret != 0) {
  1453. ext3_journal_stop(handle);
  1454. goto out_unlock;
  1455. }
  1456. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1457. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1458. err = walk_page_buffers(handle, page_buffers(page), 0,
  1459. PAGE_CACHE_SIZE, NULL, write_end_fn);
  1460. if (ret == 0)
  1461. ret = err;
  1462. EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
  1463. unlock_page(page);
  1464. } else {
  1465. /*
  1466. * It may be a page full of checkpoint-mode buffers. We don't
  1467. * really know unless we go poke around in the buffer_heads.
  1468. * But block_write_full_page will do the right thing.
  1469. */
  1470. ret = block_write_full_page(page, ext3_get_block, wbc);
  1471. }
  1472. err = ext3_journal_stop(handle);
  1473. if (!ret)
  1474. ret = err;
  1475. out:
  1476. return ret;
  1477. no_write:
  1478. redirty_page_for_writepage(wbc, page);
  1479. out_unlock:
  1480. unlock_page(page);
  1481. goto out;
  1482. }
  1483. static int ext3_readpage(struct file *file, struct page *page)
  1484. {
  1485. return mpage_readpage(page, ext3_get_block);
  1486. }
  1487. static int
  1488. ext3_readpages(struct file *file, struct address_space *mapping,
  1489. struct list_head *pages, unsigned nr_pages)
  1490. {
  1491. return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
  1492. }
  1493. static void ext3_invalidatepage(struct page *page, unsigned long offset)
  1494. {
  1495. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1496. /*
  1497. * If it's a full truncate we just forget about the pending dirtying
  1498. */
  1499. if (offset == 0)
  1500. ClearPageChecked(page);
  1501. journal_invalidatepage(journal, page, offset);
  1502. }
  1503. static int ext3_releasepage(struct page *page, gfp_t wait)
  1504. {
  1505. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1506. WARN_ON(PageChecked(page));
  1507. if (!page_has_buffers(page))
  1508. return 0;
  1509. return journal_try_to_free_buffers(journal, page, wait);
  1510. }
  1511. /*
  1512. * If the O_DIRECT write will extend the file then add this inode to the
  1513. * orphan list. So recovery will truncate it back to the original size
  1514. * if the machine crashes during the write.
  1515. *
  1516. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1517. * crashes then stale disk data _may_ be exposed inside the file. But current
  1518. * VFS code falls back into buffered path in that case so we are safe.
  1519. */
  1520. static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
  1521. const struct iovec *iov, loff_t offset,
  1522. unsigned long nr_segs)
  1523. {
  1524. struct file *file = iocb->ki_filp;
  1525. struct inode *inode = file->f_mapping->host;
  1526. struct ext3_inode_info *ei = EXT3_I(inode);
  1527. handle_t *handle;
  1528. ssize_t ret;
  1529. int orphan = 0;
  1530. size_t count = iov_length(iov, nr_segs);
  1531. if (rw == WRITE) {
  1532. loff_t final_size = offset + count;
  1533. if (final_size > inode->i_size) {
  1534. /* Credits for sb + inode write */
  1535. handle = ext3_journal_start(inode, 2);
  1536. if (IS_ERR(handle)) {
  1537. ret = PTR_ERR(handle);
  1538. goto out;
  1539. }
  1540. ret = ext3_orphan_add(handle, inode);
  1541. if (ret) {
  1542. ext3_journal_stop(handle);
  1543. goto out;
  1544. }
  1545. orphan = 1;
  1546. ei->i_disksize = inode->i_size;
  1547. ext3_journal_stop(handle);
  1548. }
  1549. }
  1550. ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
  1551. offset, nr_segs,
  1552. ext3_get_block, NULL);
  1553. if (orphan) {
  1554. int err;
  1555. /* Credits for sb + inode write */
  1556. handle = ext3_journal_start(inode, 2);
  1557. if (IS_ERR(handle)) {
  1558. /* This is really bad luck. We've written the data
  1559. * but cannot extend i_size. Bail out and pretend
  1560. * the write failed... */
  1561. ret = PTR_ERR(handle);
  1562. goto out;
  1563. }
  1564. if (inode->i_nlink)
  1565. ext3_orphan_del(handle, inode);
  1566. if (ret > 0) {
  1567. loff_t end = offset + ret;
  1568. if (end > inode->i_size) {
  1569. ei->i_disksize = end;
  1570. i_size_write(inode, end);
  1571. /*
  1572. * We're going to return a positive `ret'
  1573. * here due to non-zero-length I/O, so there's
  1574. * no way of reporting error returns from
  1575. * ext3_mark_inode_dirty() to userspace. So
  1576. * ignore it.
  1577. */
  1578. ext3_mark_inode_dirty(handle, inode);
  1579. }
  1580. }
  1581. err = ext3_journal_stop(handle);
  1582. if (ret == 0)
  1583. ret = err;
  1584. }
  1585. out:
  1586. return ret;
  1587. }
  1588. /*
  1589. * Pages can be marked dirty completely asynchronously from ext3's journalling
  1590. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1591. * much here because ->set_page_dirty is called under VFS locks. The page is
  1592. * not necessarily locked.
  1593. *
  1594. * We cannot just dirty the page and leave attached buffers clean, because the
  1595. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1596. * or jbddirty because all the journalling code will explode.
  1597. *
  1598. * So what we do is to mark the page "pending dirty" and next time writepage
  1599. * is called, propagate that into the buffers appropriately.
  1600. */
  1601. static int ext3_journalled_set_page_dirty(struct page *page)
  1602. {
  1603. SetPageChecked(page);
  1604. return __set_page_dirty_nobuffers(page);
  1605. }
  1606. static const struct address_space_operations ext3_ordered_aops = {
  1607. .readpage = ext3_readpage,
  1608. .readpages = ext3_readpages,
  1609. .writepage = ext3_ordered_writepage,
  1610. .sync_page = block_sync_page,
  1611. .write_begin = ext3_write_begin,
  1612. .write_end = ext3_ordered_write_end,
  1613. .bmap = ext3_bmap,
  1614. .invalidatepage = ext3_invalidatepage,
  1615. .releasepage = ext3_releasepage,
  1616. .direct_IO = ext3_direct_IO,
  1617. .migratepage = buffer_migrate_page,
  1618. .is_partially_uptodate = block_is_partially_uptodate,
  1619. };
  1620. static const struct address_space_operations ext3_writeback_aops = {
  1621. .readpage = ext3_readpage,
  1622. .readpages = ext3_readpages,
  1623. .writepage = ext3_writeback_writepage,
  1624. .sync_page = block_sync_page,
  1625. .write_begin = ext3_write_begin,
  1626. .write_end = ext3_writeback_write_end,
  1627. .bmap = ext3_bmap,
  1628. .invalidatepage = ext3_invalidatepage,
  1629. .releasepage = ext3_releasepage,
  1630. .direct_IO = ext3_direct_IO,
  1631. .migratepage = buffer_migrate_page,
  1632. .is_partially_uptodate = block_is_partially_uptodate,
  1633. };
  1634. static const struct address_space_operations ext3_journalled_aops = {
  1635. .readpage = ext3_readpage,
  1636. .readpages = ext3_readpages,
  1637. .writepage = ext3_journalled_writepage,
  1638. .sync_page = block_sync_page,
  1639. .write_begin = ext3_write_begin,
  1640. .write_end = ext3_journalled_write_end,
  1641. .set_page_dirty = ext3_journalled_set_page_dirty,
  1642. .bmap = ext3_bmap,
  1643. .invalidatepage = ext3_invalidatepage,
  1644. .releasepage = ext3_releasepage,
  1645. .is_partially_uptodate = block_is_partially_uptodate,
  1646. };
  1647. void ext3_set_aops(struct inode *inode)
  1648. {
  1649. if (ext3_should_order_data(inode))
  1650. inode->i_mapping->a_ops = &ext3_ordered_aops;
  1651. else if (ext3_should_writeback_data(inode))
  1652. inode->i_mapping->a_ops = &ext3_writeback_aops;
  1653. else
  1654. inode->i_mapping->a_ops = &ext3_journalled_aops;
  1655. }
  1656. /*
  1657. * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
  1658. * up to the end of the block which corresponds to `from'.
  1659. * This required during truncate. We need to physically zero the tail end
  1660. * of that block so it doesn't yield old data if the file is later grown.
  1661. */
  1662. static int ext3_block_truncate_page(handle_t *handle, struct page *page,
  1663. struct address_space *mapping, loff_t from)
  1664. {
  1665. ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1666. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  1667. unsigned blocksize, iblock, length, pos;
  1668. struct inode *inode = mapping->host;
  1669. struct buffer_head *bh;
  1670. int err = 0;
  1671. blocksize = inode->i_sb->s_blocksize;
  1672. length = blocksize - (offset & (blocksize - 1));
  1673. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1674. /*
  1675. * For "nobh" option, we can only work if we don't need to
  1676. * read-in the page - otherwise we create buffers to do the IO.
  1677. */
  1678. if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
  1679. ext3_should_writeback_data(inode) && PageUptodate(page)) {
  1680. zero_user(page, offset, length);
  1681. set_page_dirty(page);
  1682. goto unlock;
  1683. }
  1684. if (!page_has_buffers(page))
  1685. create_empty_buffers(page, blocksize, 0);
  1686. /* Find the buffer that contains "offset" */
  1687. bh = page_buffers(page);
  1688. pos = blocksize;
  1689. while (offset >= pos) {
  1690. bh = bh->b_this_page;
  1691. iblock++;
  1692. pos += blocksize;
  1693. }
  1694. err = 0;
  1695. if (buffer_freed(bh)) {
  1696. BUFFER_TRACE(bh, "freed: skip");
  1697. goto unlock;
  1698. }
  1699. if (!buffer_mapped(bh)) {
  1700. BUFFER_TRACE(bh, "unmapped");
  1701. ext3_get_block(inode, iblock, bh, 0);
  1702. /* unmapped? It's a hole - nothing to do */
  1703. if (!buffer_mapped(bh)) {
  1704. BUFFER_TRACE(bh, "still unmapped");
  1705. goto unlock;
  1706. }
  1707. }
  1708. /* Ok, it's mapped. Make sure it's up-to-date */
  1709. if (PageUptodate(page))
  1710. set_buffer_uptodate(bh);
  1711. if (!buffer_uptodate(bh)) {
  1712. err = -EIO;
  1713. ll_rw_block(READ, 1, &bh);
  1714. wait_on_buffer(bh);
  1715. /* Uhhuh. Read error. Complain and punt. */
  1716. if (!buffer_uptodate(bh))
  1717. goto unlock;
  1718. }
  1719. if (ext3_should_journal_data(inode)) {
  1720. BUFFER_TRACE(bh, "get write access");
  1721. err = ext3_journal_get_write_access(handle, bh);
  1722. if (err)
  1723. goto unlock;
  1724. }
  1725. zero_user(page, offset, length);
  1726. BUFFER_TRACE(bh, "zeroed end of block");
  1727. err = 0;
  1728. if (ext3_should_journal_data(inode)) {
  1729. err = ext3_journal_dirty_metadata(handle, bh);
  1730. } else {
  1731. if (ext3_should_order_data(inode))
  1732. err = ext3_journal_dirty_data(handle, bh);
  1733. mark_buffer_dirty(bh);
  1734. }
  1735. unlock:
  1736. unlock_page(page);
  1737. page_cache_release(page);
  1738. return err;
  1739. }
  1740. /*
  1741. * Probably it should be a library function... search for first non-zero word
  1742. * or memcmp with zero_page, whatever is better for particular architecture.
  1743. * Linus?
  1744. */
  1745. static inline int all_zeroes(__le32 *p, __le32 *q)
  1746. {
  1747. while (p < q)
  1748. if (*p++)
  1749. return 0;
  1750. return 1;
  1751. }
  1752. /**
  1753. * ext3_find_shared - find the indirect blocks for partial truncation.
  1754. * @inode: inode in question
  1755. * @depth: depth of the affected branch
  1756. * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
  1757. * @chain: place to store the pointers to partial indirect blocks
  1758. * @top: place to the (detached) top of branch
  1759. *
  1760. * This is a helper function used by ext3_truncate().
  1761. *
  1762. * When we do truncate() we may have to clean the ends of several
  1763. * indirect blocks but leave the blocks themselves alive. Block is
  1764. * partially truncated if some data below the new i_size is refered
  1765. * from it (and it is on the path to the first completely truncated
  1766. * data block, indeed). We have to free the top of that path along
  1767. * with everything to the right of the path. Since no allocation
  1768. * past the truncation point is possible until ext3_truncate()
  1769. * finishes, we may safely do the latter, but top of branch may
  1770. * require special attention - pageout below the truncation point
  1771. * might try to populate it.
  1772. *
  1773. * We atomically detach the top of branch from the tree, store the
  1774. * block number of its root in *@top, pointers to buffer_heads of
  1775. * partially truncated blocks - in @chain[].bh and pointers to
  1776. * their last elements that should not be removed - in
  1777. * @chain[].p. Return value is the pointer to last filled element
  1778. * of @chain.
  1779. *
  1780. * The work left to caller to do the actual freeing of subtrees:
  1781. * a) free the subtree starting from *@top
  1782. * b) free the subtrees whose roots are stored in
  1783. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1784. * c) free the subtrees growing from the inode past the @chain[0].
  1785. * (no partially truncated stuff there). */
  1786. static Indirect *ext3_find_shared(struct inode *inode, int depth,
  1787. int offsets[4], Indirect chain[4], __le32 *top)
  1788. {
  1789. Indirect *partial, *p;
  1790. int k, err;
  1791. *top = 0;
  1792. /* Make k index the deepest non-null offest + 1 */
  1793. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1794. ;
  1795. partial = ext3_get_branch(inode, k, offsets, chain, &err);
  1796. /* Writer: pointers */
  1797. if (!partial)
  1798. partial = chain + k-1;
  1799. /*
  1800. * If the branch acquired continuation since we've looked at it -
  1801. * fine, it should all survive and (new) top doesn't belong to us.
  1802. */
  1803. if (!partial->key && *partial->p)
  1804. /* Writer: end */
  1805. goto no_top;
  1806. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1807. ;
  1808. /*
  1809. * OK, we've found the last block that must survive. The rest of our
  1810. * branch should be detached before unlocking. However, if that rest
  1811. * of branch is all ours and does not grow immediately from the inode
  1812. * it's easier to cheat and just decrement partial->p.
  1813. */
  1814. if (p == chain + k - 1 && p > chain) {
  1815. p->p--;
  1816. } else {
  1817. *top = *p->p;
  1818. /* Nope, don't do this in ext3. Must leave the tree intact */
  1819. #if 0
  1820. *p->p = 0;
  1821. #endif
  1822. }
  1823. /* Writer: end */
  1824. while(partial > p) {
  1825. brelse(partial->bh);
  1826. partial--;
  1827. }
  1828. no_top:
  1829. return partial;
  1830. }
  1831. /*
  1832. * Zero a number of block pointers in either an inode or an indirect block.
  1833. * If we restart the transaction we must again get write access to the
  1834. * indirect block for further modification.
  1835. *
  1836. * We release `count' blocks on disk, but (last - first) may be greater
  1837. * than `count' because there can be holes in there.
  1838. */
  1839. static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
  1840. struct buffer_head *bh, ext3_fsblk_t block_to_free,
  1841. unsigned long count, __le32 *first, __le32 *last)
  1842. {
  1843. __le32 *p;
  1844. if (try_to_extend_transaction(handle, inode)) {
  1845. if (bh) {
  1846. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  1847. ext3_journal_dirty_metadata(handle, bh);
  1848. }
  1849. ext3_mark_inode_dirty(handle, inode);
  1850. ext3_journal_test_restart(handle, inode);
  1851. if (bh) {
  1852. BUFFER_TRACE(bh, "retaking write access");
  1853. ext3_journal_get_write_access(handle, bh);
  1854. }
  1855. }
  1856. /*
  1857. * Any buffers which are on the journal will be in memory. We find
  1858. * them on the hash table so journal_revoke() will run journal_forget()
  1859. * on them. We've already detached each block from the file, so
  1860. * bforget() in journal_forget() should be safe.
  1861. *
  1862. * AKPM: turn on bforget in journal_forget()!!!
  1863. */
  1864. for (p = first; p < last; p++) {
  1865. u32 nr = le32_to_cpu(*p);
  1866. if (nr) {
  1867. struct buffer_head *bh;
  1868. *p = 0;
  1869. bh = sb_find_get_block(inode->i_sb, nr);
  1870. ext3_forget(handle, 0, inode, bh, nr);
  1871. }
  1872. }
  1873. ext3_free_blocks(handle, inode, block_to_free, count);
  1874. }
  1875. /**
  1876. * ext3_free_data - free a list of data blocks
  1877. * @handle: handle for this transaction
  1878. * @inode: inode we are dealing with
  1879. * @this_bh: indirect buffer_head which contains *@first and *@last
  1880. * @first: array of block numbers
  1881. * @last: points immediately past the end of array
  1882. *
  1883. * We are freeing all blocks refered from that array (numbers are stored as
  1884. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  1885. *
  1886. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  1887. * blocks are contiguous then releasing them at one time will only affect one
  1888. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  1889. * actually use a lot of journal space.
  1890. *
  1891. * @this_bh will be %NULL if @first and @last point into the inode's direct
  1892. * block pointers.
  1893. */
  1894. static void ext3_free_data(handle_t *handle, struct inode *inode,
  1895. struct buffer_head *this_bh,
  1896. __le32 *first, __le32 *last)
  1897. {
  1898. ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
  1899. unsigned long count = 0; /* Number of blocks in the run */
  1900. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  1901. corresponding to
  1902. block_to_free */
  1903. ext3_fsblk_t nr; /* Current block # */
  1904. __le32 *p; /* Pointer into inode/ind
  1905. for current block */
  1906. int err;
  1907. if (this_bh) { /* For indirect block */
  1908. BUFFER_TRACE(this_bh, "get_write_access");
  1909. err = ext3_journal_get_write_access(handle, this_bh);
  1910. /* Important: if we can't update the indirect pointers
  1911. * to the blocks, we can't free them. */
  1912. if (err)
  1913. return;
  1914. }
  1915. for (p = first; p < last; p++) {
  1916. nr = le32_to_cpu(*p);
  1917. if (nr) {
  1918. /* accumulate blocks to free if they're contiguous */
  1919. if (count == 0) {
  1920. block_to_free = nr;
  1921. block_to_free_p = p;
  1922. count = 1;
  1923. } else if (nr == block_to_free + count) {
  1924. count++;
  1925. } else {
  1926. ext3_clear_blocks(handle, inode, this_bh,
  1927. block_to_free,
  1928. count, block_to_free_p, p);
  1929. block_to_free = nr;
  1930. block_to_free_p = p;
  1931. count = 1;
  1932. }
  1933. }
  1934. }
  1935. if (count > 0)
  1936. ext3_clear_blocks(handle, inode, this_bh, block_to_free,
  1937. count, block_to_free_p, p);
  1938. if (this_bh) {
  1939. BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
  1940. /*
  1941. * The buffer head should have an attached journal head at this
  1942. * point. However, if the data is corrupted and an indirect
  1943. * block pointed to itself, it would have been detached when
  1944. * the block was cleared. Check for this instead of OOPSing.
  1945. */
  1946. if (bh2jh(this_bh))
  1947. ext3_journal_dirty_metadata(handle, this_bh);
  1948. else
  1949. ext3_error(inode->i_sb, "ext3_free_data",
  1950. "circular indirect block detected, "
  1951. "inode=%lu, block=%llu",
  1952. inode->i_ino,
  1953. (unsigned long long)this_bh->b_blocknr);
  1954. }
  1955. }
  1956. /**
  1957. * ext3_free_branches - free an array of branches
  1958. * @handle: JBD handle for this transaction
  1959. * @inode: inode we are dealing with
  1960. * @parent_bh: the buffer_head which contains *@first and *@last
  1961. * @first: array of block numbers
  1962. * @last: pointer immediately past the end of array
  1963. * @depth: depth of the branches to free
  1964. *
  1965. * We are freeing all blocks refered from these branches (numbers are
  1966. * stored as little-endian 32-bit) and updating @inode->i_blocks
  1967. * appropriately.
  1968. */
  1969. static void ext3_free_branches(handle_t *handle, struct inode *inode,
  1970. struct buffer_head *parent_bh,
  1971. __le32 *first, __le32 *last, int depth)
  1972. {
  1973. ext3_fsblk_t nr;
  1974. __le32 *p;
  1975. if (is_handle_aborted(handle))
  1976. return;
  1977. if (depth--) {
  1978. struct buffer_head *bh;
  1979. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  1980. p = last;
  1981. while (--p >= first) {
  1982. nr = le32_to_cpu(*p);
  1983. if (!nr)
  1984. continue; /* A hole */
  1985. /* Go read the buffer for the next level down */
  1986. bh = sb_bread(inode->i_sb, nr);
  1987. /*
  1988. * A read failure? Report error and clear slot
  1989. * (should be rare).
  1990. */
  1991. if (!bh) {
  1992. ext3_error(inode->i_sb, "ext3_free_branches",
  1993. "Read failure, inode=%lu, block="E3FSBLK,
  1994. inode->i_ino, nr);
  1995. continue;
  1996. }
  1997. /* This zaps the entire block. Bottom up. */
  1998. BUFFER_TRACE(bh, "free child branches");
  1999. ext3_free_branches(handle, inode, bh,
  2000. (__le32*)bh->b_data,
  2001. (__le32*)bh->b_data + addr_per_block,
  2002. depth);
  2003. /*
  2004. * We've probably journalled the indirect block several
  2005. * times during the truncate. But it's no longer
  2006. * needed and we now drop it from the transaction via
  2007. * journal_revoke().
  2008. *
  2009. * That's easy if it's exclusively part of this
  2010. * transaction. But if it's part of the committing
  2011. * transaction then journal_forget() will simply
  2012. * brelse() it. That means that if the underlying
  2013. * block is reallocated in ext3_get_block(),
  2014. * unmap_underlying_metadata() will find this block
  2015. * and will try to get rid of it. damn, damn.
  2016. *
  2017. * If this block has already been committed to the
  2018. * journal, a revoke record will be written. And
  2019. * revoke records must be emitted *before* clearing
  2020. * this block's bit in the bitmaps.
  2021. */
  2022. ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
  2023. /*
  2024. * Everything below this this pointer has been
  2025. * released. Now let this top-of-subtree go.
  2026. *
  2027. * We want the freeing of this indirect block to be
  2028. * atomic in the journal with the updating of the
  2029. * bitmap block which owns it. So make some room in
  2030. * the journal.
  2031. *
  2032. * We zero the parent pointer *after* freeing its
  2033. * pointee in the bitmaps, so if extend_transaction()
  2034. * for some reason fails to put the bitmap changes and
  2035. * the release into the same transaction, recovery
  2036. * will merely complain about releasing a free block,
  2037. * rather than leaking blocks.
  2038. */
  2039. if (is_handle_aborted(handle))
  2040. return;
  2041. if (try_to_extend_transaction(handle, inode)) {
  2042. ext3_mark_inode_dirty(handle, inode);
  2043. ext3_journal_test_restart(handle, inode);
  2044. }
  2045. ext3_free_blocks(handle, inode, nr, 1);
  2046. if (parent_bh) {
  2047. /*
  2048. * The block which we have just freed is
  2049. * pointed to by an indirect block: journal it
  2050. */
  2051. BUFFER_TRACE(parent_bh, "get_write_access");
  2052. if (!ext3_journal_get_write_access(handle,
  2053. parent_bh)){
  2054. *p = 0;
  2055. BUFFER_TRACE(parent_bh,
  2056. "call ext3_journal_dirty_metadata");
  2057. ext3_journal_dirty_metadata(handle,
  2058. parent_bh);
  2059. }
  2060. }
  2061. }
  2062. } else {
  2063. /* We have reached the bottom of the tree. */
  2064. BUFFER_TRACE(parent_bh, "free data blocks");
  2065. ext3_free_data(handle, inode, parent_bh, first, last);
  2066. }
  2067. }
  2068. int ext3_can_truncate(struct inode *inode)
  2069. {
  2070. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  2071. return 0;
  2072. if (S_ISREG(inode->i_mode))
  2073. return 1;
  2074. if (S_ISDIR(inode->i_mode))
  2075. return 1;
  2076. if (S_ISLNK(inode->i_mode))
  2077. return !ext3_inode_is_fast_symlink(inode);
  2078. return 0;
  2079. }
  2080. /*
  2081. * ext3_truncate()
  2082. *
  2083. * We block out ext3_get_block() block instantiations across the entire
  2084. * transaction, and VFS/VM ensures that ext3_truncate() cannot run
  2085. * simultaneously on behalf of the same inode.
  2086. *
  2087. * As we work through the truncate and commmit bits of it to the journal there
  2088. * is one core, guiding principle: the file's tree must always be consistent on
  2089. * disk. We must be able to restart the truncate after a crash.
  2090. *
  2091. * The file's tree may be transiently inconsistent in memory (although it
  2092. * probably isn't), but whenever we close off and commit a journal transaction,
  2093. * the contents of (the filesystem + the journal) must be consistent and
  2094. * restartable. It's pretty simple, really: bottom up, right to left (although
  2095. * left-to-right works OK too).
  2096. *
  2097. * Note that at recovery time, journal replay occurs *before* the restart of
  2098. * truncate against the orphan inode list.
  2099. *
  2100. * The committed inode has the new, desired i_size (which is the same as
  2101. * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
  2102. * that this inode's truncate did not complete and it will again call
  2103. * ext3_truncate() to have another go. So there will be instantiated blocks
  2104. * to the right of the truncation point in a crashed ext3 filesystem. But
  2105. * that's fine - as long as they are linked from the inode, the post-crash
  2106. * ext3_truncate() run will find them and release them.
  2107. */
  2108. void ext3_truncate(struct inode *inode)
  2109. {
  2110. handle_t *handle;
  2111. struct ext3_inode_info *ei = EXT3_I(inode);
  2112. __le32 *i_data = ei->i_data;
  2113. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2114. struct address_space *mapping = inode->i_mapping;
  2115. int offsets[4];
  2116. Indirect chain[4];
  2117. Indirect *partial;
  2118. __le32 nr = 0;
  2119. int n;
  2120. long last_block;
  2121. unsigned blocksize = inode->i_sb->s_blocksize;
  2122. struct page *page;
  2123. if (!ext3_can_truncate(inode))
  2124. return;
  2125. /*
  2126. * We have to lock the EOF page here, because lock_page() nests
  2127. * outside journal_start().
  2128. */
  2129. if ((inode->i_size & (blocksize - 1)) == 0) {
  2130. /* Block boundary? Nothing to do */
  2131. page = NULL;
  2132. } else {
  2133. page = grab_cache_page(mapping,
  2134. inode->i_size >> PAGE_CACHE_SHIFT);
  2135. if (!page)
  2136. return;
  2137. }
  2138. handle = start_transaction(inode);
  2139. if (IS_ERR(handle)) {
  2140. if (page) {
  2141. clear_highpage(page);
  2142. flush_dcache_page(page);
  2143. unlock_page(page);
  2144. page_cache_release(page);
  2145. }
  2146. return; /* AKPM: return what? */
  2147. }
  2148. last_block = (inode->i_size + blocksize-1)
  2149. >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
  2150. if (page)
  2151. ext3_block_truncate_page(handle, page, mapping, inode->i_size);
  2152. n = ext3_block_to_path(inode, last_block, offsets, NULL);
  2153. if (n == 0)
  2154. goto out_stop; /* error */
  2155. /*
  2156. * OK. This truncate is going to happen. We add the inode to the
  2157. * orphan list, so that if this truncate spans multiple transactions,
  2158. * and we crash, we will resume the truncate when the filesystem
  2159. * recovers. It also marks the inode dirty, to catch the new size.
  2160. *
  2161. * Implication: the file must always be in a sane, consistent
  2162. * truncatable state while each transaction commits.
  2163. */
  2164. if (ext3_orphan_add(handle, inode))
  2165. goto out_stop;
  2166. /*
  2167. * The orphan list entry will now protect us from any crash which
  2168. * occurs before the truncate completes, so it is now safe to propagate
  2169. * the new, shorter inode size (held for now in i_size) into the
  2170. * on-disk inode. We do this via i_disksize, which is the value which
  2171. * ext3 *really* writes onto the disk inode.
  2172. */
  2173. ei->i_disksize = inode->i_size;
  2174. /*
  2175. * From here we block out all ext3_get_block() callers who want to
  2176. * modify the block allocation tree.
  2177. */
  2178. mutex_lock(&ei->truncate_mutex);
  2179. if (n == 1) { /* direct blocks */
  2180. ext3_free_data(handle, inode, NULL, i_data+offsets[0],
  2181. i_data + EXT3_NDIR_BLOCKS);
  2182. goto do_indirects;
  2183. }
  2184. partial = ext3_find_shared(inode, n, offsets, chain, &nr);
  2185. /* Kill the top of shared branch (not detached) */
  2186. if (nr) {
  2187. if (partial == chain) {
  2188. /* Shared branch grows from the inode */
  2189. ext3_free_branches(handle, inode, NULL,
  2190. &nr, &nr+1, (chain+n-1) - partial);
  2191. *partial->p = 0;
  2192. /*
  2193. * We mark the inode dirty prior to restart,
  2194. * and prior to stop. No need for it here.
  2195. */
  2196. } else {
  2197. /* Shared branch grows from an indirect block */
  2198. BUFFER_TRACE(partial->bh, "get_write_access");
  2199. ext3_free_branches(handle, inode, partial->bh,
  2200. partial->p,
  2201. partial->p+1, (chain+n-1) - partial);
  2202. }
  2203. }
  2204. /* Clear the ends of indirect blocks on the shared branch */
  2205. while (partial > chain) {
  2206. ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
  2207. (__le32*)partial->bh->b_data+addr_per_block,
  2208. (chain+n-1) - partial);
  2209. BUFFER_TRACE(partial->bh, "call brelse");
  2210. brelse (partial->bh);
  2211. partial--;
  2212. }
  2213. do_indirects:
  2214. /* Kill the remaining (whole) subtrees */
  2215. switch (offsets[0]) {
  2216. default:
  2217. nr = i_data[EXT3_IND_BLOCK];
  2218. if (nr) {
  2219. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2220. i_data[EXT3_IND_BLOCK] = 0;
  2221. }
  2222. case EXT3_IND_BLOCK:
  2223. nr = i_data[EXT3_DIND_BLOCK];
  2224. if (nr) {
  2225. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2226. i_data[EXT3_DIND_BLOCK] = 0;
  2227. }
  2228. case EXT3_DIND_BLOCK:
  2229. nr = i_data[EXT3_TIND_BLOCK];
  2230. if (nr) {
  2231. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2232. i_data[EXT3_TIND_BLOCK] = 0;
  2233. }
  2234. case EXT3_TIND_BLOCK:
  2235. ;
  2236. }
  2237. ext3_discard_reservation(inode);
  2238. mutex_unlock(&ei->truncate_mutex);
  2239. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  2240. ext3_mark_inode_dirty(handle, inode);
  2241. /*
  2242. * In a multi-transaction truncate, we only make the final transaction
  2243. * synchronous
  2244. */
  2245. if (IS_SYNC(inode))
  2246. handle->h_sync = 1;
  2247. out_stop:
  2248. /*
  2249. * If this was a simple ftruncate(), and the file will remain alive
  2250. * then we need to clear up the orphan record which we created above.
  2251. * However, if this was a real unlink then we were called by
  2252. * ext3_delete_inode(), and we allow that function to clean up the
  2253. * orphan info for us.
  2254. */
  2255. if (inode->i_nlink)
  2256. ext3_orphan_del(handle, inode);
  2257. ext3_journal_stop(handle);
  2258. }
  2259. static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
  2260. unsigned long ino, struct ext3_iloc *iloc)
  2261. {
  2262. unsigned long block_group;
  2263. unsigned long offset;
  2264. ext3_fsblk_t block;
  2265. struct ext3_group_desc *gdp;
  2266. if (!ext3_valid_inum(sb, ino)) {
  2267. /*
  2268. * This error is already checked for in namei.c unless we are
  2269. * looking at an NFS filehandle, in which case no error
  2270. * report is needed
  2271. */
  2272. return 0;
  2273. }
  2274. block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
  2275. gdp = ext3_get_group_desc(sb, block_group, NULL);
  2276. if (!gdp)
  2277. return 0;
  2278. /*
  2279. * Figure out the offset within the block group inode table
  2280. */
  2281. offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
  2282. EXT3_INODE_SIZE(sb);
  2283. block = le32_to_cpu(gdp->bg_inode_table) +
  2284. (offset >> EXT3_BLOCK_SIZE_BITS(sb));
  2285. iloc->block_group = block_group;
  2286. iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
  2287. return block;
  2288. }
  2289. /*
  2290. * ext3_get_inode_loc returns with an extra refcount against the inode's
  2291. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2292. * data in memory that is needed to recreate the on-disk version of this
  2293. * inode.
  2294. */
  2295. static int __ext3_get_inode_loc(struct inode *inode,
  2296. struct ext3_iloc *iloc, int in_mem)
  2297. {
  2298. ext3_fsblk_t block;
  2299. struct buffer_head *bh;
  2300. block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2301. if (!block)
  2302. return -EIO;
  2303. bh = sb_getblk(inode->i_sb, block);
  2304. if (!bh) {
  2305. ext3_error (inode->i_sb, "ext3_get_inode_loc",
  2306. "unable to read inode block - "
  2307. "inode=%lu, block="E3FSBLK,
  2308. inode->i_ino, block);
  2309. return -EIO;
  2310. }
  2311. if (!buffer_uptodate(bh)) {
  2312. lock_buffer(bh);
  2313. /*
  2314. * If the buffer has the write error flag, we have failed
  2315. * to write out another inode in the same block. In this
  2316. * case, we don't have to read the block because we may
  2317. * read the old inode data successfully.
  2318. */
  2319. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  2320. set_buffer_uptodate(bh);
  2321. if (buffer_uptodate(bh)) {
  2322. /* someone brought it uptodate while we waited */
  2323. unlock_buffer(bh);
  2324. goto has_buffer;
  2325. }
  2326. /*
  2327. * If we have all information of the inode in memory and this
  2328. * is the only valid inode in the block, we need not read the
  2329. * block.
  2330. */
  2331. if (in_mem) {
  2332. struct buffer_head *bitmap_bh;
  2333. struct ext3_group_desc *desc;
  2334. int inodes_per_buffer;
  2335. int inode_offset, i;
  2336. int block_group;
  2337. int start;
  2338. block_group = (inode->i_ino - 1) /
  2339. EXT3_INODES_PER_GROUP(inode->i_sb);
  2340. inodes_per_buffer = bh->b_size /
  2341. EXT3_INODE_SIZE(inode->i_sb);
  2342. inode_offset = ((inode->i_ino - 1) %
  2343. EXT3_INODES_PER_GROUP(inode->i_sb));
  2344. start = inode_offset & ~(inodes_per_buffer - 1);
  2345. /* Is the inode bitmap in cache? */
  2346. desc = ext3_get_group_desc(inode->i_sb,
  2347. block_group, NULL);
  2348. if (!desc)
  2349. goto make_io;
  2350. bitmap_bh = sb_getblk(inode->i_sb,
  2351. le32_to_cpu(desc->bg_inode_bitmap));
  2352. if (!bitmap_bh)
  2353. goto make_io;
  2354. /*
  2355. * If the inode bitmap isn't in cache then the
  2356. * optimisation may end up performing two reads instead
  2357. * of one, so skip it.
  2358. */
  2359. if (!buffer_uptodate(bitmap_bh)) {
  2360. brelse(bitmap_bh);
  2361. goto make_io;
  2362. }
  2363. for (i = start; i < start + inodes_per_buffer; i++) {
  2364. if (i == inode_offset)
  2365. continue;
  2366. if (ext3_test_bit(i, bitmap_bh->b_data))
  2367. break;
  2368. }
  2369. brelse(bitmap_bh);
  2370. if (i == start + inodes_per_buffer) {
  2371. /* all other inodes are free, so skip I/O */
  2372. memset(bh->b_data, 0, bh->b_size);
  2373. set_buffer_uptodate(bh);
  2374. unlock_buffer(bh);
  2375. goto has_buffer;
  2376. }
  2377. }
  2378. make_io:
  2379. /*
  2380. * There are other valid inodes in the buffer, this inode
  2381. * has in-inode xattrs, or we don't have this inode in memory.
  2382. * Read the block from disk.
  2383. */
  2384. get_bh(bh);
  2385. bh->b_end_io = end_buffer_read_sync;
  2386. submit_bh(READ_META, bh);
  2387. wait_on_buffer(bh);
  2388. if (!buffer_uptodate(bh)) {
  2389. ext3_error(inode->i_sb, "ext3_get_inode_loc",
  2390. "unable to read inode block - "
  2391. "inode=%lu, block="E3FSBLK,
  2392. inode->i_ino, block);
  2393. brelse(bh);
  2394. return -EIO;
  2395. }
  2396. }
  2397. has_buffer:
  2398. iloc->bh = bh;
  2399. return 0;
  2400. }
  2401. int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
  2402. {
  2403. /* We have all inode data except xattrs in memory here. */
  2404. return __ext3_get_inode_loc(inode, iloc,
  2405. !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
  2406. }
  2407. void ext3_set_inode_flags(struct inode *inode)
  2408. {
  2409. unsigned int flags = EXT3_I(inode)->i_flags;
  2410. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2411. if (flags & EXT3_SYNC_FL)
  2412. inode->i_flags |= S_SYNC;
  2413. if (flags & EXT3_APPEND_FL)
  2414. inode->i_flags |= S_APPEND;
  2415. if (flags & EXT3_IMMUTABLE_FL)
  2416. inode->i_flags |= S_IMMUTABLE;
  2417. if (flags & EXT3_NOATIME_FL)
  2418. inode->i_flags |= S_NOATIME;
  2419. if (flags & EXT3_DIRSYNC_FL)
  2420. inode->i_flags |= S_DIRSYNC;
  2421. }
  2422. /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
  2423. void ext3_get_inode_flags(struct ext3_inode_info *ei)
  2424. {
  2425. unsigned int flags = ei->vfs_inode.i_flags;
  2426. ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
  2427. EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
  2428. if (flags & S_SYNC)
  2429. ei->i_flags |= EXT3_SYNC_FL;
  2430. if (flags & S_APPEND)
  2431. ei->i_flags |= EXT3_APPEND_FL;
  2432. if (flags & S_IMMUTABLE)
  2433. ei->i_flags |= EXT3_IMMUTABLE_FL;
  2434. if (flags & S_NOATIME)
  2435. ei->i_flags |= EXT3_NOATIME_FL;
  2436. if (flags & S_DIRSYNC)
  2437. ei->i_flags |= EXT3_DIRSYNC_FL;
  2438. }
  2439. struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
  2440. {
  2441. struct ext3_iloc iloc;
  2442. struct ext3_inode *raw_inode;
  2443. struct ext3_inode_info *ei;
  2444. struct buffer_head *bh;
  2445. struct inode *inode;
  2446. long ret;
  2447. int block;
  2448. inode = iget_locked(sb, ino);
  2449. if (!inode)
  2450. return ERR_PTR(-ENOMEM);
  2451. if (!(inode->i_state & I_NEW))
  2452. return inode;
  2453. ei = EXT3_I(inode);
  2454. #ifdef CONFIG_EXT3_FS_POSIX_ACL
  2455. ei->i_acl = EXT3_ACL_NOT_CACHED;
  2456. ei->i_default_acl = EXT3_ACL_NOT_CACHED;
  2457. #endif
  2458. ei->i_block_alloc_info = NULL;
  2459. ret = __ext3_get_inode_loc(inode, &iloc, 0);
  2460. if (ret < 0)
  2461. goto bad_inode;
  2462. bh = iloc.bh;
  2463. raw_inode = ext3_raw_inode(&iloc);
  2464. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2465. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2466. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2467. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2468. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2469. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2470. }
  2471. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  2472. inode->i_size = le32_to_cpu(raw_inode->i_size);
  2473. inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
  2474. inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
  2475. inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
  2476. inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  2477. ei->i_state = 0;
  2478. ei->i_dir_start_lookup = 0;
  2479. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2480. /* We now have enough fields to check if the inode was active or not.
  2481. * This is needed because nfsd might try to access dead inodes
  2482. * the test is that same one that e2fsck uses
  2483. * NeilBrown 1999oct15
  2484. */
  2485. if (inode->i_nlink == 0) {
  2486. if (inode->i_mode == 0 ||
  2487. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
  2488. /* this inode is deleted */
  2489. brelse (bh);
  2490. ret = -ESTALE;
  2491. goto bad_inode;
  2492. }
  2493. /* The only unlinked inodes we let through here have
  2494. * valid i_mode and are being read by the orphan
  2495. * recovery code: that's fine, we're about to complete
  2496. * the process of deleting those. */
  2497. }
  2498. inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  2499. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2500. #ifdef EXT3_FRAGMENTS
  2501. ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  2502. ei->i_frag_no = raw_inode->i_frag;
  2503. ei->i_frag_size = raw_inode->i_fsize;
  2504. #endif
  2505. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  2506. if (!S_ISREG(inode->i_mode)) {
  2507. ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  2508. } else {
  2509. inode->i_size |=
  2510. ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  2511. }
  2512. ei->i_disksize = inode->i_size;
  2513. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2514. ei->i_block_group = iloc.block_group;
  2515. /*
  2516. * NOTE! The in-memory inode i_data array is in little-endian order
  2517. * even on big-endian machines: we do NOT byteswap the block numbers!
  2518. */
  2519. for (block = 0; block < EXT3_N_BLOCKS; block++)
  2520. ei->i_data[block] = raw_inode->i_block[block];
  2521. INIT_LIST_HEAD(&ei->i_orphan);
  2522. if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
  2523. EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
  2524. /*
  2525. * When mke2fs creates big inodes it does not zero out
  2526. * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
  2527. * so ignore those first few inodes.
  2528. */
  2529. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2530. if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2531. EXT3_INODE_SIZE(inode->i_sb)) {
  2532. brelse (bh);
  2533. ret = -EIO;
  2534. goto bad_inode;
  2535. }
  2536. if (ei->i_extra_isize == 0) {
  2537. /* The extra space is currently unused. Use it. */
  2538. ei->i_extra_isize = sizeof(struct ext3_inode) -
  2539. EXT3_GOOD_OLD_INODE_SIZE;
  2540. } else {
  2541. __le32 *magic = (void *)raw_inode +
  2542. EXT3_GOOD_OLD_INODE_SIZE +
  2543. ei->i_extra_isize;
  2544. if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
  2545. ei->i_state |= EXT3_STATE_XATTR;
  2546. }
  2547. } else
  2548. ei->i_extra_isize = 0;
  2549. if (S_ISREG(inode->i_mode)) {
  2550. inode->i_op = &ext3_file_inode_operations;
  2551. inode->i_fop = &ext3_file_operations;
  2552. ext3_set_aops(inode);
  2553. } else if (S_ISDIR(inode->i_mode)) {
  2554. inode->i_op = &ext3_dir_inode_operations;
  2555. inode->i_fop = &ext3_dir_operations;
  2556. } else if (S_ISLNK(inode->i_mode)) {
  2557. if (ext3_inode_is_fast_symlink(inode))
  2558. inode->i_op = &ext3_fast_symlink_inode_operations;
  2559. else {
  2560. inode->i_op = &ext3_symlink_inode_operations;
  2561. ext3_set_aops(inode);
  2562. }
  2563. } else {
  2564. inode->i_op = &ext3_special_inode_operations;
  2565. if (raw_inode->i_block[0])
  2566. init_special_inode(inode, inode->i_mode,
  2567. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2568. else
  2569. init_special_inode(inode, inode->i_mode,
  2570. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2571. }
  2572. brelse (iloc.bh);
  2573. ext3_set_inode_flags(inode);
  2574. unlock_new_inode(inode);
  2575. return inode;
  2576. bad_inode:
  2577. iget_failed(inode);
  2578. return ERR_PTR(ret);
  2579. }
  2580. /*
  2581. * Post the struct inode info into an on-disk inode location in the
  2582. * buffer-cache. This gobbles the caller's reference to the
  2583. * buffer_head in the inode location struct.
  2584. *
  2585. * The caller must have write access to iloc->bh.
  2586. */
  2587. static int ext3_do_update_inode(handle_t *handle,
  2588. struct inode *inode,
  2589. struct ext3_iloc *iloc)
  2590. {
  2591. struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
  2592. struct ext3_inode_info *ei = EXT3_I(inode);
  2593. struct buffer_head *bh = iloc->bh;
  2594. int err = 0, rc, block;
  2595. /* For fields not not tracking in the in-memory inode,
  2596. * initialise them to zero for new inodes. */
  2597. if (ei->i_state & EXT3_STATE_NEW)
  2598. memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
  2599. ext3_get_inode_flags(ei);
  2600. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2601. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2602. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  2603. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  2604. /*
  2605. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2606. * re-used with the upper 16 bits of the uid/gid intact
  2607. */
  2608. if(!ei->i_dtime) {
  2609. raw_inode->i_uid_high =
  2610. cpu_to_le16(high_16_bits(inode->i_uid));
  2611. raw_inode->i_gid_high =
  2612. cpu_to_le16(high_16_bits(inode->i_gid));
  2613. } else {
  2614. raw_inode->i_uid_high = 0;
  2615. raw_inode->i_gid_high = 0;
  2616. }
  2617. } else {
  2618. raw_inode->i_uid_low =
  2619. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  2620. raw_inode->i_gid_low =
  2621. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  2622. raw_inode->i_uid_high = 0;
  2623. raw_inode->i_gid_high = 0;
  2624. }
  2625. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2626. raw_inode->i_size = cpu_to_le32(ei->i_disksize);
  2627. raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  2628. raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  2629. raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  2630. raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  2631. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2632. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2633. #ifdef EXT3_FRAGMENTS
  2634. raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  2635. raw_inode->i_frag = ei->i_frag_no;
  2636. raw_inode->i_fsize = ei->i_frag_size;
  2637. #endif
  2638. raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  2639. if (!S_ISREG(inode->i_mode)) {
  2640. raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  2641. } else {
  2642. raw_inode->i_size_high =
  2643. cpu_to_le32(ei->i_disksize >> 32);
  2644. if (ei->i_disksize > 0x7fffffffULL) {
  2645. struct super_block *sb = inode->i_sb;
  2646. if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
  2647. EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2648. EXT3_SB(sb)->s_es->s_rev_level ==
  2649. cpu_to_le32(EXT3_GOOD_OLD_REV)) {
  2650. /* If this is the first large file
  2651. * created, add a flag to the superblock.
  2652. */
  2653. err = ext3_journal_get_write_access(handle,
  2654. EXT3_SB(sb)->s_sbh);
  2655. if (err)
  2656. goto out_brelse;
  2657. ext3_update_dynamic_rev(sb);
  2658. EXT3_SET_RO_COMPAT_FEATURE(sb,
  2659. EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
  2660. sb->s_dirt = 1;
  2661. handle->h_sync = 1;
  2662. err = ext3_journal_dirty_metadata(handle,
  2663. EXT3_SB(sb)->s_sbh);
  2664. }
  2665. }
  2666. }
  2667. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2668. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2669. if (old_valid_dev(inode->i_rdev)) {
  2670. raw_inode->i_block[0] =
  2671. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2672. raw_inode->i_block[1] = 0;
  2673. } else {
  2674. raw_inode->i_block[0] = 0;
  2675. raw_inode->i_block[1] =
  2676. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2677. raw_inode->i_block[2] = 0;
  2678. }
  2679. } else for (block = 0; block < EXT3_N_BLOCKS; block++)
  2680. raw_inode->i_block[block] = ei->i_data[block];
  2681. if (ei->i_extra_isize)
  2682. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2683. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2684. rc = ext3_journal_dirty_metadata(handle, bh);
  2685. if (!err)
  2686. err = rc;
  2687. ei->i_state &= ~EXT3_STATE_NEW;
  2688. out_brelse:
  2689. brelse (bh);
  2690. ext3_std_error(inode->i_sb, err);
  2691. return err;
  2692. }
  2693. /*
  2694. * ext3_write_inode()
  2695. *
  2696. * We are called from a few places:
  2697. *
  2698. * - Within generic_file_write() for O_SYNC files.
  2699. * Here, there will be no transaction running. We wait for any running
  2700. * trasnaction to commit.
  2701. *
  2702. * - Within sys_sync(), kupdate and such.
  2703. * We wait on commit, if tol to.
  2704. *
  2705. * - Within prune_icache() (PF_MEMALLOC == true)
  2706. * Here we simply return. We can't afford to block kswapd on the
  2707. * journal commit.
  2708. *
  2709. * In all cases it is actually safe for us to return without doing anything,
  2710. * because the inode has been copied into a raw inode buffer in
  2711. * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2712. * knfsd.
  2713. *
  2714. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2715. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2716. * which we are interested.
  2717. *
  2718. * It would be a bug for them to not do this. The code:
  2719. *
  2720. * mark_inode_dirty(inode)
  2721. * stuff();
  2722. * inode->i_size = expr;
  2723. *
  2724. * is in error because a kswapd-driven write_inode() could occur while
  2725. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2726. * will no longer be on the superblock's dirty inode list.
  2727. */
  2728. int ext3_write_inode(struct inode *inode, int wait)
  2729. {
  2730. if (current->flags & PF_MEMALLOC)
  2731. return 0;
  2732. if (ext3_journal_current_handle()) {
  2733. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  2734. dump_stack();
  2735. return -EIO;
  2736. }
  2737. if (!wait)
  2738. return 0;
  2739. return ext3_force_commit(inode->i_sb);
  2740. }
  2741. /*
  2742. * ext3_setattr()
  2743. *
  2744. * Called from notify_change.
  2745. *
  2746. * We want to trap VFS attempts to truncate the file as soon as
  2747. * possible. In particular, we want to make sure that when the VFS
  2748. * shrinks i_size, we put the inode on the orphan list and modify
  2749. * i_disksize immediately, so that during the subsequent flushing of
  2750. * dirty pages and freeing of disk blocks, we can guarantee that any
  2751. * commit will leave the blocks being flushed in an unused state on
  2752. * disk. (On recovery, the inode will get truncated and the blocks will
  2753. * be freed, so we have a strong guarantee that no future commit will
  2754. * leave these blocks visible to the user.)
  2755. *
  2756. * Called with inode->sem down.
  2757. */
  2758. int ext3_setattr(struct dentry *dentry, struct iattr *attr)
  2759. {
  2760. struct inode *inode = dentry->d_inode;
  2761. int error, rc = 0;
  2762. const unsigned int ia_valid = attr->ia_valid;
  2763. error = inode_change_ok(inode, attr);
  2764. if (error)
  2765. return error;
  2766. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  2767. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  2768. handle_t *handle;
  2769. /* (user+group)*(old+new) structure, inode write (sb,
  2770. * inode block, ? - but truncate inode update has it) */
  2771. handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
  2772. EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
  2773. if (IS_ERR(handle)) {
  2774. error = PTR_ERR(handle);
  2775. goto err_out;
  2776. }
  2777. error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
  2778. if (error) {
  2779. ext3_journal_stop(handle);
  2780. return error;
  2781. }
  2782. /* Update corresponding info in inode so that everything is in
  2783. * one transaction */
  2784. if (attr->ia_valid & ATTR_UID)
  2785. inode->i_uid = attr->ia_uid;
  2786. if (attr->ia_valid & ATTR_GID)
  2787. inode->i_gid = attr->ia_gid;
  2788. error = ext3_mark_inode_dirty(handle, inode);
  2789. ext3_journal_stop(handle);
  2790. }
  2791. if (S_ISREG(inode->i_mode) &&
  2792. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  2793. handle_t *handle;
  2794. handle = ext3_journal_start(inode, 3);
  2795. if (IS_ERR(handle)) {
  2796. error = PTR_ERR(handle);
  2797. goto err_out;
  2798. }
  2799. error = ext3_orphan_add(handle, inode);
  2800. EXT3_I(inode)->i_disksize = attr->ia_size;
  2801. rc = ext3_mark_inode_dirty(handle, inode);
  2802. if (!error)
  2803. error = rc;
  2804. ext3_journal_stop(handle);
  2805. }
  2806. rc = inode_setattr(inode, attr);
  2807. /* If inode_setattr's call to ext3_truncate failed to get a
  2808. * transaction handle at all, we need to clean up the in-core
  2809. * orphan list manually. */
  2810. if (inode->i_nlink)
  2811. ext3_orphan_del(NULL, inode);
  2812. if (!rc && (ia_valid & ATTR_MODE))
  2813. rc = ext3_acl_chmod(inode);
  2814. err_out:
  2815. ext3_std_error(inode->i_sb, error);
  2816. if (!error)
  2817. error = rc;
  2818. return error;
  2819. }
  2820. /*
  2821. * How many blocks doth make a writepage()?
  2822. *
  2823. * With N blocks per page, it may be:
  2824. * N data blocks
  2825. * 2 indirect block
  2826. * 2 dindirect
  2827. * 1 tindirect
  2828. * N+5 bitmap blocks (from the above)
  2829. * N+5 group descriptor summary blocks
  2830. * 1 inode block
  2831. * 1 superblock.
  2832. * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
  2833. *
  2834. * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
  2835. *
  2836. * With ordered or writeback data it's the same, less the N data blocks.
  2837. *
  2838. * If the inode's direct blocks can hold an integral number of pages then a
  2839. * page cannot straddle two indirect blocks, and we can only touch one indirect
  2840. * and dindirect block, and the "5" above becomes "3".
  2841. *
  2842. * This still overestimates under most circumstances. If we were to pass the
  2843. * start and end offsets in here as well we could do block_to_path() on each
  2844. * block and work out the exact number of indirects which are touched. Pah.
  2845. */
  2846. static int ext3_writepage_trans_blocks(struct inode *inode)
  2847. {
  2848. int bpp = ext3_journal_blocks_per_page(inode);
  2849. int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
  2850. int ret;
  2851. if (ext3_should_journal_data(inode))
  2852. ret = 3 * (bpp + indirects) + 2;
  2853. else
  2854. ret = 2 * (bpp + indirects) + 2;
  2855. #ifdef CONFIG_QUOTA
  2856. /* We know that structure was already allocated during DQUOT_INIT so
  2857. * we will be updating only the data blocks + inodes */
  2858. ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
  2859. #endif
  2860. return ret;
  2861. }
  2862. /*
  2863. * The caller must have previously called ext3_reserve_inode_write().
  2864. * Give this, we know that the caller already has write access to iloc->bh.
  2865. */
  2866. int ext3_mark_iloc_dirty(handle_t *handle,
  2867. struct inode *inode, struct ext3_iloc *iloc)
  2868. {
  2869. int err = 0;
  2870. /* the do_update_inode consumes one bh->b_count */
  2871. get_bh(iloc->bh);
  2872. /* ext3_do_update_inode() does journal_dirty_metadata */
  2873. err = ext3_do_update_inode(handle, inode, iloc);
  2874. put_bh(iloc->bh);
  2875. return err;
  2876. }
  2877. /*
  2878. * On success, We end up with an outstanding reference count against
  2879. * iloc->bh. This _must_ be cleaned up later.
  2880. */
  2881. int
  2882. ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
  2883. struct ext3_iloc *iloc)
  2884. {
  2885. int err = 0;
  2886. if (handle) {
  2887. err = ext3_get_inode_loc(inode, iloc);
  2888. if (!err) {
  2889. BUFFER_TRACE(iloc->bh, "get_write_access");
  2890. err = ext3_journal_get_write_access(handle, iloc->bh);
  2891. if (err) {
  2892. brelse(iloc->bh);
  2893. iloc->bh = NULL;
  2894. }
  2895. }
  2896. }
  2897. ext3_std_error(inode->i_sb, err);
  2898. return err;
  2899. }
  2900. /*
  2901. * What we do here is to mark the in-core inode as clean with respect to inode
  2902. * dirtiness (it may still be data-dirty).
  2903. * This means that the in-core inode may be reaped by prune_icache
  2904. * without having to perform any I/O. This is a very good thing,
  2905. * because *any* task may call prune_icache - even ones which
  2906. * have a transaction open against a different journal.
  2907. *
  2908. * Is this cheating? Not really. Sure, we haven't written the
  2909. * inode out, but prune_icache isn't a user-visible syncing function.
  2910. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  2911. * we start and wait on commits.
  2912. *
  2913. * Is this efficient/effective? Well, we're being nice to the system
  2914. * by cleaning up our inodes proactively so they can be reaped
  2915. * without I/O. But we are potentially leaving up to five seconds'
  2916. * worth of inodes floating about which prune_icache wants us to
  2917. * write out. One way to fix that would be to get prune_icache()
  2918. * to do a write_super() to free up some memory. It has the desired
  2919. * effect.
  2920. */
  2921. int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
  2922. {
  2923. struct ext3_iloc iloc;
  2924. int err;
  2925. might_sleep();
  2926. err = ext3_reserve_inode_write(handle, inode, &iloc);
  2927. if (!err)
  2928. err = ext3_mark_iloc_dirty(handle, inode, &iloc);
  2929. return err;
  2930. }
  2931. /*
  2932. * ext3_dirty_inode() is called from __mark_inode_dirty()
  2933. *
  2934. * We're really interested in the case where a file is being extended.
  2935. * i_size has been changed by generic_commit_write() and we thus need
  2936. * to include the updated inode in the current transaction.
  2937. *
  2938. * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
  2939. * are allocated to the file.
  2940. *
  2941. * If the inode is marked synchronous, we don't honour that here - doing
  2942. * so would cause a commit on atime updates, which we don't bother doing.
  2943. * We handle synchronous inodes at the highest possible level.
  2944. */
  2945. void ext3_dirty_inode(struct inode *inode)
  2946. {
  2947. handle_t *current_handle = ext3_journal_current_handle();
  2948. handle_t *handle;
  2949. handle = ext3_journal_start(inode, 2);
  2950. if (IS_ERR(handle))
  2951. goto out;
  2952. if (current_handle &&
  2953. current_handle->h_transaction != handle->h_transaction) {
  2954. /* This task has a transaction open against a different fs */
  2955. printk(KERN_EMERG "%s: transactions do not match!\n",
  2956. __func__);
  2957. } else {
  2958. jbd_debug(5, "marking dirty. outer handle=%p\n",
  2959. current_handle);
  2960. ext3_mark_inode_dirty(handle, inode);
  2961. }
  2962. ext3_journal_stop(handle);
  2963. out:
  2964. return;
  2965. }
  2966. #if 0
  2967. /*
  2968. * Bind an inode's backing buffer_head into this transaction, to prevent
  2969. * it from being flushed to disk early. Unlike
  2970. * ext3_reserve_inode_write, this leaves behind no bh reference and
  2971. * returns no iloc structure, so the caller needs to repeat the iloc
  2972. * lookup to mark the inode dirty later.
  2973. */
  2974. static int ext3_pin_inode(handle_t *handle, struct inode *inode)
  2975. {
  2976. struct ext3_iloc iloc;
  2977. int err = 0;
  2978. if (handle) {
  2979. err = ext3_get_inode_loc(inode, &iloc);
  2980. if (!err) {
  2981. BUFFER_TRACE(iloc.bh, "get_write_access");
  2982. err = journal_get_write_access(handle, iloc.bh);
  2983. if (!err)
  2984. err = ext3_journal_dirty_metadata(handle,
  2985. iloc.bh);
  2986. brelse(iloc.bh);
  2987. }
  2988. }
  2989. ext3_std_error(inode->i_sb, err);
  2990. return err;
  2991. }
  2992. #endif
  2993. int ext3_change_inode_journal_flag(struct inode *inode, int val)
  2994. {
  2995. journal_t *journal;
  2996. handle_t *handle;
  2997. int err;
  2998. /*
  2999. * We have to be very careful here: changing a data block's
  3000. * journaling status dynamically is dangerous. If we write a
  3001. * data block to the journal, change the status and then delete
  3002. * that block, we risk forgetting to revoke the old log record
  3003. * from the journal and so a subsequent replay can corrupt data.
  3004. * So, first we make sure that the journal is empty and that
  3005. * nobody is changing anything.
  3006. */
  3007. journal = EXT3_JOURNAL(inode);
  3008. if (is_journal_aborted(journal))
  3009. return -EROFS;
  3010. journal_lock_updates(journal);
  3011. journal_flush(journal);
  3012. /*
  3013. * OK, there are no updates running now, and all cached data is
  3014. * synced to disk. We are now in a completely consistent state
  3015. * which doesn't have anything in the journal, and we know that
  3016. * no filesystem updates are running, so it is safe to modify
  3017. * the inode's in-core data-journaling state flag now.
  3018. */
  3019. if (val)
  3020. EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
  3021. else
  3022. EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
  3023. ext3_set_aops(inode);
  3024. journal_unlock_updates(journal);
  3025. /* Finally we can mark the inode as dirty. */
  3026. handle = ext3_journal_start(inode, 1);
  3027. if (IS_ERR(handle))
  3028. return PTR_ERR(handle);
  3029. err = ext3_mark_inode_dirty(handle, inode);
  3030. handle->h_sync = 1;
  3031. ext3_journal_stop(handle);
  3032. ext3_std_error(inode->i_sb, err);
  3033. return err;
  3034. }