bio.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462
  1. /*
  2. * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public Licens
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
  16. *
  17. */
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/bio.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/slab.h>
  23. #include <linux/init.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/mempool.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/blktrace_api.h>
  29. #include <scsi/sg.h> /* for struct sg_iovec */
  30. static struct kmem_cache *bio_slab __read_mostly;
  31. static mempool_t *bio_split_pool __read_mostly;
  32. /*
  33. * if you change this list, also change bvec_alloc or things will
  34. * break badly! cannot be bigger than what you can fit into an
  35. * unsigned short
  36. */
  37. #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
  38. static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
  39. BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
  40. };
  41. #undef BV
  42. /*
  43. * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  44. * IO code that does not need private memory pools.
  45. */
  46. struct bio_set *fs_bio_set;
  47. unsigned int bvec_nr_vecs(unsigned short idx)
  48. {
  49. return bvec_slabs[idx].nr_vecs;
  50. }
  51. struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, struct bio_set *bs)
  52. {
  53. struct bio_vec *bvl;
  54. /*
  55. * If 'bs' is given, lookup the pool and do the mempool alloc.
  56. * If not, this is a bio_kmalloc() allocation and just do a
  57. * kzalloc() for the exact number of vecs right away.
  58. */
  59. if (bs) {
  60. /*
  61. * see comment near bvec_array define!
  62. */
  63. switch (nr) {
  64. case 1:
  65. *idx = 0;
  66. break;
  67. case 2 ... 4:
  68. *idx = 1;
  69. break;
  70. case 5 ... 16:
  71. *idx = 2;
  72. break;
  73. case 17 ... 64:
  74. *idx = 3;
  75. break;
  76. case 65 ... 128:
  77. *idx = 4;
  78. break;
  79. case 129 ... BIO_MAX_PAGES:
  80. *idx = 5;
  81. break;
  82. default:
  83. return NULL;
  84. }
  85. /*
  86. * idx now points to the pool we want to allocate from
  87. */
  88. bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask);
  89. if (bvl)
  90. memset(bvl, 0,
  91. bvec_nr_vecs(*idx) * sizeof(struct bio_vec));
  92. } else
  93. bvl = kzalloc(nr * sizeof(struct bio_vec), gfp_mask);
  94. return bvl;
  95. }
  96. void bio_free(struct bio *bio, struct bio_set *bio_set)
  97. {
  98. if (bio->bi_io_vec) {
  99. const int pool_idx = BIO_POOL_IDX(bio);
  100. BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
  101. mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]);
  102. }
  103. if (bio_integrity(bio))
  104. bio_integrity_free(bio, bio_set);
  105. mempool_free(bio, bio_set->bio_pool);
  106. }
  107. /*
  108. * default destructor for a bio allocated with bio_alloc_bioset()
  109. */
  110. static void bio_fs_destructor(struct bio *bio)
  111. {
  112. bio_free(bio, fs_bio_set);
  113. }
  114. static void bio_kmalloc_destructor(struct bio *bio)
  115. {
  116. kfree(bio->bi_io_vec);
  117. kfree(bio);
  118. }
  119. void bio_init(struct bio *bio)
  120. {
  121. memset(bio, 0, sizeof(*bio));
  122. bio->bi_flags = 1 << BIO_UPTODATE;
  123. bio->bi_comp_cpu = -1;
  124. atomic_set(&bio->bi_cnt, 1);
  125. }
  126. /**
  127. * bio_alloc_bioset - allocate a bio for I/O
  128. * @gfp_mask: the GFP_ mask given to the slab allocator
  129. * @nr_iovecs: number of iovecs to pre-allocate
  130. * @bs: the bio_set to allocate from. If %NULL, just use kmalloc
  131. *
  132. * Description:
  133. * bio_alloc_bioset will first try its own mempool to satisfy the allocation.
  134. * If %__GFP_WAIT is set then we will block on the internal pool waiting
  135. * for a &struct bio to become free. If a %NULL @bs is passed in, we will
  136. * fall back to just using @kmalloc to allocate the required memory.
  137. *
  138. * allocate bio and iovecs from the memory pools specified by the
  139. * bio_set structure, or @kmalloc if none given.
  140. **/
  141. struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
  142. {
  143. struct bio *bio;
  144. if (bs)
  145. bio = mempool_alloc(bs->bio_pool, gfp_mask);
  146. else
  147. bio = kmalloc(sizeof(*bio), gfp_mask);
  148. if (likely(bio)) {
  149. struct bio_vec *bvl = NULL;
  150. bio_init(bio);
  151. if (likely(nr_iovecs)) {
  152. unsigned long uninitialized_var(idx);
  153. bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
  154. if (unlikely(!bvl)) {
  155. if (bs)
  156. mempool_free(bio, bs->bio_pool);
  157. else
  158. kfree(bio);
  159. bio = NULL;
  160. goto out;
  161. }
  162. bio->bi_flags |= idx << BIO_POOL_OFFSET;
  163. bio->bi_max_vecs = bvec_nr_vecs(idx);
  164. }
  165. bio->bi_io_vec = bvl;
  166. }
  167. out:
  168. return bio;
  169. }
  170. struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
  171. {
  172. struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
  173. if (bio)
  174. bio->bi_destructor = bio_fs_destructor;
  175. return bio;
  176. }
  177. /*
  178. * Like bio_alloc(), but doesn't use a mempool backing. This means that
  179. * it CAN fail, but while bio_alloc() can only be used for allocations
  180. * that have a short (finite) life span, bio_kmalloc() should be used
  181. * for more permanent bio allocations (like allocating some bio's for
  182. * initalization or setup purposes).
  183. */
  184. struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
  185. {
  186. struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, NULL);
  187. if (bio)
  188. bio->bi_destructor = bio_kmalloc_destructor;
  189. return bio;
  190. }
  191. void zero_fill_bio(struct bio *bio)
  192. {
  193. unsigned long flags;
  194. struct bio_vec *bv;
  195. int i;
  196. bio_for_each_segment(bv, bio, i) {
  197. char *data = bvec_kmap_irq(bv, &flags);
  198. memset(data, 0, bv->bv_len);
  199. flush_dcache_page(bv->bv_page);
  200. bvec_kunmap_irq(data, &flags);
  201. }
  202. }
  203. EXPORT_SYMBOL(zero_fill_bio);
  204. /**
  205. * bio_put - release a reference to a bio
  206. * @bio: bio to release reference to
  207. *
  208. * Description:
  209. * Put a reference to a &struct bio, either one you have gotten with
  210. * bio_alloc or bio_get. The last put of a bio will free it.
  211. **/
  212. void bio_put(struct bio *bio)
  213. {
  214. BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
  215. /*
  216. * last put frees it
  217. */
  218. if (atomic_dec_and_test(&bio->bi_cnt)) {
  219. bio->bi_next = NULL;
  220. bio->bi_destructor(bio);
  221. }
  222. }
  223. inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
  224. {
  225. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  226. blk_recount_segments(q, bio);
  227. return bio->bi_phys_segments;
  228. }
  229. /**
  230. * __bio_clone - clone a bio
  231. * @bio: destination bio
  232. * @bio_src: bio to clone
  233. *
  234. * Clone a &bio. Caller will own the returned bio, but not
  235. * the actual data it points to. Reference count of returned
  236. * bio will be one.
  237. */
  238. void __bio_clone(struct bio *bio, struct bio *bio_src)
  239. {
  240. memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
  241. bio_src->bi_max_vecs * sizeof(struct bio_vec));
  242. /*
  243. * most users will be overriding ->bi_bdev with a new target,
  244. * so we don't set nor calculate new physical/hw segment counts here
  245. */
  246. bio->bi_sector = bio_src->bi_sector;
  247. bio->bi_bdev = bio_src->bi_bdev;
  248. bio->bi_flags |= 1 << BIO_CLONED;
  249. bio->bi_rw = bio_src->bi_rw;
  250. bio->bi_vcnt = bio_src->bi_vcnt;
  251. bio->bi_size = bio_src->bi_size;
  252. bio->bi_idx = bio_src->bi_idx;
  253. }
  254. /**
  255. * bio_clone - clone a bio
  256. * @bio: bio to clone
  257. * @gfp_mask: allocation priority
  258. *
  259. * Like __bio_clone, only also allocates the returned bio
  260. */
  261. struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
  262. {
  263. struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
  264. if (!b)
  265. return NULL;
  266. b->bi_destructor = bio_fs_destructor;
  267. __bio_clone(b, bio);
  268. if (bio_integrity(bio)) {
  269. int ret;
  270. ret = bio_integrity_clone(b, bio, fs_bio_set);
  271. if (ret < 0)
  272. return NULL;
  273. }
  274. return b;
  275. }
  276. /**
  277. * bio_get_nr_vecs - return approx number of vecs
  278. * @bdev: I/O target
  279. *
  280. * Return the approximate number of pages we can send to this target.
  281. * There's no guarantee that you will be able to fit this number of pages
  282. * into a bio, it does not account for dynamic restrictions that vary
  283. * on offset.
  284. */
  285. int bio_get_nr_vecs(struct block_device *bdev)
  286. {
  287. struct request_queue *q = bdev_get_queue(bdev);
  288. int nr_pages;
  289. nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  290. if (nr_pages > q->max_phys_segments)
  291. nr_pages = q->max_phys_segments;
  292. if (nr_pages > q->max_hw_segments)
  293. nr_pages = q->max_hw_segments;
  294. return nr_pages;
  295. }
  296. static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
  297. *page, unsigned int len, unsigned int offset,
  298. unsigned short max_sectors)
  299. {
  300. int retried_segments = 0;
  301. struct bio_vec *bvec;
  302. /*
  303. * cloned bio must not modify vec list
  304. */
  305. if (unlikely(bio_flagged(bio, BIO_CLONED)))
  306. return 0;
  307. if (((bio->bi_size + len) >> 9) > max_sectors)
  308. return 0;
  309. /*
  310. * For filesystems with a blocksize smaller than the pagesize
  311. * we will often be called with the same page as last time and
  312. * a consecutive offset. Optimize this special case.
  313. */
  314. if (bio->bi_vcnt > 0) {
  315. struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
  316. if (page == prev->bv_page &&
  317. offset == prev->bv_offset + prev->bv_len) {
  318. prev->bv_len += len;
  319. if (q->merge_bvec_fn) {
  320. struct bvec_merge_data bvm = {
  321. .bi_bdev = bio->bi_bdev,
  322. .bi_sector = bio->bi_sector,
  323. .bi_size = bio->bi_size,
  324. .bi_rw = bio->bi_rw,
  325. };
  326. if (q->merge_bvec_fn(q, &bvm, prev) < len) {
  327. prev->bv_len -= len;
  328. return 0;
  329. }
  330. }
  331. goto done;
  332. }
  333. }
  334. if (bio->bi_vcnt >= bio->bi_max_vecs)
  335. return 0;
  336. /*
  337. * we might lose a segment or two here, but rather that than
  338. * make this too complex.
  339. */
  340. while (bio->bi_phys_segments >= q->max_phys_segments
  341. || bio->bi_phys_segments >= q->max_hw_segments) {
  342. if (retried_segments)
  343. return 0;
  344. retried_segments = 1;
  345. blk_recount_segments(q, bio);
  346. }
  347. /*
  348. * setup the new entry, we might clear it again later if we
  349. * cannot add the page
  350. */
  351. bvec = &bio->bi_io_vec[bio->bi_vcnt];
  352. bvec->bv_page = page;
  353. bvec->bv_len = len;
  354. bvec->bv_offset = offset;
  355. /*
  356. * if queue has other restrictions (eg varying max sector size
  357. * depending on offset), it can specify a merge_bvec_fn in the
  358. * queue to get further control
  359. */
  360. if (q->merge_bvec_fn) {
  361. struct bvec_merge_data bvm = {
  362. .bi_bdev = bio->bi_bdev,
  363. .bi_sector = bio->bi_sector,
  364. .bi_size = bio->bi_size,
  365. .bi_rw = bio->bi_rw,
  366. };
  367. /*
  368. * merge_bvec_fn() returns number of bytes it can accept
  369. * at this offset
  370. */
  371. if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
  372. bvec->bv_page = NULL;
  373. bvec->bv_len = 0;
  374. bvec->bv_offset = 0;
  375. return 0;
  376. }
  377. }
  378. /* If we may be able to merge these biovecs, force a recount */
  379. if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
  380. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  381. bio->bi_vcnt++;
  382. bio->bi_phys_segments++;
  383. done:
  384. bio->bi_size += len;
  385. return len;
  386. }
  387. /**
  388. * bio_add_pc_page - attempt to add page to bio
  389. * @q: the target queue
  390. * @bio: destination bio
  391. * @page: page to add
  392. * @len: vec entry length
  393. * @offset: vec entry offset
  394. *
  395. * Attempt to add a page to the bio_vec maplist. This can fail for a
  396. * number of reasons, such as the bio being full or target block
  397. * device limitations. The target block device must allow bio's
  398. * smaller than PAGE_SIZE, so it is always possible to add a single
  399. * page to an empty bio. This should only be used by REQ_PC bios.
  400. */
  401. int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
  402. unsigned int len, unsigned int offset)
  403. {
  404. return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors);
  405. }
  406. /**
  407. * bio_add_page - attempt to add page to bio
  408. * @bio: destination bio
  409. * @page: page to add
  410. * @len: vec entry length
  411. * @offset: vec entry offset
  412. *
  413. * Attempt to add a page to the bio_vec maplist. This can fail for a
  414. * number of reasons, such as the bio being full or target block
  415. * device limitations. The target block device must allow bio's
  416. * smaller than PAGE_SIZE, so it is always possible to add a single
  417. * page to an empty bio.
  418. */
  419. int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
  420. unsigned int offset)
  421. {
  422. struct request_queue *q = bdev_get_queue(bio->bi_bdev);
  423. return __bio_add_page(q, bio, page, len, offset, q->max_sectors);
  424. }
  425. struct bio_map_data {
  426. struct bio_vec *iovecs;
  427. struct sg_iovec *sgvecs;
  428. int nr_sgvecs;
  429. int is_our_pages;
  430. };
  431. static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
  432. struct sg_iovec *iov, int iov_count,
  433. int is_our_pages)
  434. {
  435. memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
  436. memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
  437. bmd->nr_sgvecs = iov_count;
  438. bmd->is_our_pages = is_our_pages;
  439. bio->bi_private = bmd;
  440. }
  441. static void bio_free_map_data(struct bio_map_data *bmd)
  442. {
  443. kfree(bmd->iovecs);
  444. kfree(bmd->sgvecs);
  445. kfree(bmd);
  446. }
  447. static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
  448. gfp_t gfp_mask)
  449. {
  450. struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
  451. if (!bmd)
  452. return NULL;
  453. bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
  454. if (!bmd->iovecs) {
  455. kfree(bmd);
  456. return NULL;
  457. }
  458. bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
  459. if (bmd->sgvecs)
  460. return bmd;
  461. kfree(bmd->iovecs);
  462. kfree(bmd);
  463. return NULL;
  464. }
  465. static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
  466. struct sg_iovec *iov, int iov_count, int uncopy,
  467. int do_free_page)
  468. {
  469. int ret = 0, i;
  470. struct bio_vec *bvec;
  471. int iov_idx = 0;
  472. unsigned int iov_off = 0;
  473. int read = bio_data_dir(bio) == READ;
  474. __bio_for_each_segment(bvec, bio, i, 0) {
  475. char *bv_addr = page_address(bvec->bv_page);
  476. unsigned int bv_len = iovecs[i].bv_len;
  477. while (bv_len && iov_idx < iov_count) {
  478. unsigned int bytes;
  479. char *iov_addr;
  480. bytes = min_t(unsigned int,
  481. iov[iov_idx].iov_len - iov_off, bv_len);
  482. iov_addr = iov[iov_idx].iov_base + iov_off;
  483. if (!ret) {
  484. if (!read && !uncopy)
  485. ret = copy_from_user(bv_addr, iov_addr,
  486. bytes);
  487. if (read && uncopy)
  488. ret = copy_to_user(iov_addr, bv_addr,
  489. bytes);
  490. if (ret)
  491. ret = -EFAULT;
  492. }
  493. bv_len -= bytes;
  494. bv_addr += bytes;
  495. iov_addr += bytes;
  496. iov_off += bytes;
  497. if (iov[iov_idx].iov_len == iov_off) {
  498. iov_idx++;
  499. iov_off = 0;
  500. }
  501. }
  502. if (do_free_page)
  503. __free_page(bvec->bv_page);
  504. }
  505. return ret;
  506. }
  507. /**
  508. * bio_uncopy_user - finish previously mapped bio
  509. * @bio: bio being terminated
  510. *
  511. * Free pages allocated from bio_copy_user() and write back data
  512. * to user space in case of a read.
  513. */
  514. int bio_uncopy_user(struct bio *bio)
  515. {
  516. struct bio_map_data *bmd = bio->bi_private;
  517. int ret = 0;
  518. if (!bio_flagged(bio, BIO_NULL_MAPPED))
  519. ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
  520. bmd->nr_sgvecs, 1, bmd->is_our_pages);
  521. bio_free_map_data(bmd);
  522. bio_put(bio);
  523. return ret;
  524. }
  525. /**
  526. * bio_copy_user_iov - copy user data to bio
  527. * @q: destination block queue
  528. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  529. * @iov: the iovec.
  530. * @iov_count: number of elements in the iovec
  531. * @write_to_vm: bool indicating writing to pages or not
  532. * @gfp_mask: memory allocation flags
  533. *
  534. * Prepares and returns a bio for indirect user io, bouncing data
  535. * to/from kernel pages as necessary. Must be paired with
  536. * call bio_uncopy_user() on io completion.
  537. */
  538. struct bio *bio_copy_user_iov(struct request_queue *q,
  539. struct rq_map_data *map_data,
  540. struct sg_iovec *iov, int iov_count,
  541. int write_to_vm, gfp_t gfp_mask)
  542. {
  543. struct bio_map_data *bmd;
  544. struct bio_vec *bvec;
  545. struct page *page;
  546. struct bio *bio;
  547. int i, ret;
  548. int nr_pages = 0;
  549. unsigned int len = 0;
  550. for (i = 0; i < iov_count; i++) {
  551. unsigned long uaddr;
  552. unsigned long end;
  553. unsigned long start;
  554. uaddr = (unsigned long)iov[i].iov_base;
  555. end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  556. start = uaddr >> PAGE_SHIFT;
  557. nr_pages += end - start;
  558. len += iov[i].iov_len;
  559. }
  560. bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
  561. if (!bmd)
  562. return ERR_PTR(-ENOMEM);
  563. ret = -ENOMEM;
  564. bio = bio_alloc(gfp_mask, nr_pages);
  565. if (!bio)
  566. goto out_bmd;
  567. bio->bi_rw |= (!write_to_vm << BIO_RW);
  568. ret = 0;
  569. i = 0;
  570. while (len) {
  571. unsigned int bytes;
  572. if (map_data)
  573. bytes = 1U << (PAGE_SHIFT + map_data->page_order);
  574. else
  575. bytes = PAGE_SIZE;
  576. if (bytes > len)
  577. bytes = len;
  578. if (map_data) {
  579. if (i == map_data->nr_entries) {
  580. ret = -ENOMEM;
  581. break;
  582. }
  583. page = map_data->pages[i++];
  584. } else
  585. page = alloc_page(q->bounce_gfp | gfp_mask);
  586. if (!page) {
  587. ret = -ENOMEM;
  588. break;
  589. }
  590. if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
  591. break;
  592. len -= bytes;
  593. }
  594. if (ret)
  595. goto cleanup;
  596. /*
  597. * success
  598. */
  599. if (!write_to_vm) {
  600. ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 0);
  601. if (ret)
  602. goto cleanup;
  603. }
  604. bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
  605. return bio;
  606. cleanup:
  607. if (!map_data)
  608. bio_for_each_segment(bvec, bio, i)
  609. __free_page(bvec->bv_page);
  610. bio_put(bio);
  611. out_bmd:
  612. bio_free_map_data(bmd);
  613. return ERR_PTR(ret);
  614. }
  615. /**
  616. * bio_copy_user - copy user data to bio
  617. * @q: destination block queue
  618. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  619. * @uaddr: start of user address
  620. * @len: length in bytes
  621. * @write_to_vm: bool indicating writing to pages or not
  622. * @gfp_mask: memory allocation flags
  623. *
  624. * Prepares and returns a bio for indirect user io, bouncing data
  625. * to/from kernel pages as necessary. Must be paired with
  626. * call bio_uncopy_user() on io completion.
  627. */
  628. struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
  629. unsigned long uaddr, unsigned int len,
  630. int write_to_vm, gfp_t gfp_mask)
  631. {
  632. struct sg_iovec iov;
  633. iov.iov_base = (void __user *)uaddr;
  634. iov.iov_len = len;
  635. return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
  636. }
  637. static struct bio *__bio_map_user_iov(struct request_queue *q,
  638. struct block_device *bdev,
  639. struct sg_iovec *iov, int iov_count,
  640. int write_to_vm, gfp_t gfp_mask)
  641. {
  642. int i, j;
  643. int nr_pages = 0;
  644. struct page **pages;
  645. struct bio *bio;
  646. int cur_page = 0;
  647. int ret, offset;
  648. for (i = 0; i < iov_count; i++) {
  649. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  650. unsigned long len = iov[i].iov_len;
  651. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  652. unsigned long start = uaddr >> PAGE_SHIFT;
  653. nr_pages += end - start;
  654. /*
  655. * buffer must be aligned to at least hardsector size for now
  656. */
  657. if (uaddr & queue_dma_alignment(q))
  658. return ERR_PTR(-EINVAL);
  659. }
  660. if (!nr_pages)
  661. return ERR_PTR(-EINVAL);
  662. bio = bio_alloc(gfp_mask, nr_pages);
  663. if (!bio)
  664. return ERR_PTR(-ENOMEM);
  665. ret = -ENOMEM;
  666. pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
  667. if (!pages)
  668. goto out;
  669. for (i = 0; i < iov_count; i++) {
  670. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  671. unsigned long len = iov[i].iov_len;
  672. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  673. unsigned long start = uaddr >> PAGE_SHIFT;
  674. const int local_nr_pages = end - start;
  675. const int page_limit = cur_page + local_nr_pages;
  676. ret = get_user_pages_fast(uaddr, local_nr_pages,
  677. write_to_vm, &pages[cur_page]);
  678. if (ret < local_nr_pages) {
  679. ret = -EFAULT;
  680. goto out_unmap;
  681. }
  682. offset = uaddr & ~PAGE_MASK;
  683. for (j = cur_page; j < page_limit; j++) {
  684. unsigned int bytes = PAGE_SIZE - offset;
  685. if (len <= 0)
  686. break;
  687. if (bytes > len)
  688. bytes = len;
  689. /*
  690. * sorry...
  691. */
  692. if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
  693. bytes)
  694. break;
  695. len -= bytes;
  696. offset = 0;
  697. }
  698. cur_page = j;
  699. /*
  700. * release the pages we didn't map into the bio, if any
  701. */
  702. while (j < page_limit)
  703. page_cache_release(pages[j++]);
  704. }
  705. kfree(pages);
  706. /*
  707. * set data direction, and check if mapped pages need bouncing
  708. */
  709. if (!write_to_vm)
  710. bio->bi_rw |= (1 << BIO_RW);
  711. bio->bi_bdev = bdev;
  712. bio->bi_flags |= (1 << BIO_USER_MAPPED);
  713. return bio;
  714. out_unmap:
  715. for (i = 0; i < nr_pages; i++) {
  716. if(!pages[i])
  717. break;
  718. page_cache_release(pages[i]);
  719. }
  720. out:
  721. kfree(pages);
  722. bio_put(bio);
  723. return ERR_PTR(ret);
  724. }
  725. /**
  726. * bio_map_user - map user address into bio
  727. * @q: the struct request_queue for the bio
  728. * @bdev: destination block device
  729. * @uaddr: start of user address
  730. * @len: length in bytes
  731. * @write_to_vm: bool indicating writing to pages or not
  732. * @gfp_mask: memory allocation flags
  733. *
  734. * Map the user space address into a bio suitable for io to a block
  735. * device. Returns an error pointer in case of error.
  736. */
  737. struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
  738. unsigned long uaddr, unsigned int len, int write_to_vm,
  739. gfp_t gfp_mask)
  740. {
  741. struct sg_iovec iov;
  742. iov.iov_base = (void __user *)uaddr;
  743. iov.iov_len = len;
  744. return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
  745. }
  746. /**
  747. * bio_map_user_iov - map user sg_iovec table into bio
  748. * @q: the struct request_queue for the bio
  749. * @bdev: destination block device
  750. * @iov: the iovec.
  751. * @iov_count: number of elements in the iovec
  752. * @write_to_vm: bool indicating writing to pages or not
  753. * @gfp_mask: memory allocation flags
  754. *
  755. * Map the user space address into a bio suitable for io to a block
  756. * device. Returns an error pointer in case of error.
  757. */
  758. struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
  759. struct sg_iovec *iov, int iov_count,
  760. int write_to_vm, gfp_t gfp_mask)
  761. {
  762. struct bio *bio;
  763. bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
  764. gfp_mask);
  765. if (IS_ERR(bio))
  766. return bio;
  767. /*
  768. * subtle -- if __bio_map_user() ended up bouncing a bio,
  769. * it would normally disappear when its bi_end_io is run.
  770. * however, we need it for the unmap, so grab an extra
  771. * reference to it
  772. */
  773. bio_get(bio);
  774. return bio;
  775. }
  776. static void __bio_unmap_user(struct bio *bio)
  777. {
  778. struct bio_vec *bvec;
  779. int i;
  780. /*
  781. * make sure we dirty pages we wrote to
  782. */
  783. __bio_for_each_segment(bvec, bio, i, 0) {
  784. if (bio_data_dir(bio) == READ)
  785. set_page_dirty_lock(bvec->bv_page);
  786. page_cache_release(bvec->bv_page);
  787. }
  788. bio_put(bio);
  789. }
  790. /**
  791. * bio_unmap_user - unmap a bio
  792. * @bio: the bio being unmapped
  793. *
  794. * Unmap a bio previously mapped by bio_map_user(). Must be called with
  795. * a process context.
  796. *
  797. * bio_unmap_user() may sleep.
  798. */
  799. void bio_unmap_user(struct bio *bio)
  800. {
  801. __bio_unmap_user(bio);
  802. bio_put(bio);
  803. }
  804. static void bio_map_kern_endio(struct bio *bio, int err)
  805. {
  806. bio_put(bio);
  807. }
  808. static struct bio *__bio_map_kern(struct request_queue *q, void *data,
  809. unsigned int len, gfp_t gfp_mask)
  810. {
  811. unsigned long kaddr = (unsigned long)data;
  812. unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  813. unsigned long start = kaddr >> PAGE_SHIFT;
  814. const int nr_pages = end - start;
  815. int offset, i;
  816. struct bio *bio;
  817. bio = bio_alloc(gfp_mask, nr_pages);
  818. if (!bio)
  819. return ERR_PTR(-ENOMEM);
  820. offset = offset_in_page(kaddr);
  821. for (i = 0; i < nr_pages; i++) {
  822. unsigned int bytes = PAGE_SIZE - offset;
  823. if (len <= 0)
  824. break;
  825. if (bytes > len)
  826. bytes = len;
  827. if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
  828. offset) < bytes)
  829. break;
  830. data += bytes;
  831. len -= bytes;
  832. offset = 0;
  833. }
  834. bio->bi_end_io = bio_map_kern_endio;
  835. return bio;
  836. }
  837. /**
  838. * bio_map_kern - map kernel address into bio
  839. * @q: the struct request_queue for the bio
  840. * @data: pointer to buffer to map
  841. * @len: length in bytes
  842. * @gfp_mask: allocation flags for bio allocation
  843. *
  844. * Map the kernel address into a bio suitable for io to a block
  845. * device. Returns an error pointer in case of error.
  846. */
  847. struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
  848. gfp_t gfp_mask)
  849. {
  850. struct bio *bio;
  851. bio = __bio_map_kern(q, data, len, gfp_mask);
  852. if (IS_ERR(bio))
  853. return bio;
  854. if (bio->bi_size == len)
  855. return bio;
  856. /*
  857. * Don't support partial mappings.
  858. */
  859. bio_put(bio);
  860. return ERR_PTR(-EINVAL);
  861. }
  862. static void bio_copy_kern_endio(struct bio *bio, int err)
  863. {
  864. struct bio_vec *bvec;
  865. const int read = bio_data_dir(bio) == READ;
  866. struct bio_map_data *bmd = bio->bi_private;
  867. int i;
  868. char *p = bmd->sgvecs[0].iov_base;
  869. __bio_for_each_segment(bvec, bio, i, 0) {
  870. char *addr = page_address(bvec->bv_page);
  871. int len = bmd->iovecs[i].bv_len;
  872. if (read && !err)
  873. memcpy(p, addr, len);
  874. __free_page(bvec->bv_page);
  875. p += len;
  876. }
  877. bio_free_map_data(bmd);
  878. bio_put(bio);
  879. }
  880. /**
  881. * bio_copy_kern - copy kernel address into bio
  882. * @q: the struct request_queue for the bio
  883. * @data: pointer to buffer to copy
  884. * @len: length in bytes
  885. * @gfp_mask: allocation flags for bio and page allocation
  886. * @reading: data direction is READ
  887. *
  888. * copy the kernel address into a bio suitable for io to a block
  889. * device. Returns an error pointer in case of error.
  890. */
  891. struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
  892. gfp_t gfp_mask, int reading)
  893. {
  894. struct bio *bio;
  895. struct bio_vec *bvec;
  896. int i;
  897. bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
  898. if (IS_ERR(bio))
  899. return bio;
  900. if (!reading) {
  901. void *p = data;
  902. bio_for_each_segment(bvec, bio, i) {
  903. char *addr = page_address(bvec->bv_page);
  904. memcpy(addr, p, bvec->bv_len);
  905. p += bvec->bv_len;
  906. }
  907. }
  908. bio->bi_end_io = bio_copy_kern_endio;
  909. return bio;
  910. }
  911. /*
  912. * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
  913. * for performing direct-IO in BIOs.
  914. *
  915. * The problem is that we cannot run set_page_dirty() from interrupt context
  916. * because the required locks are not interrupt-safe. So what we can do is to
  917. * mark the pages dirty _before_ performing IO. And in interrupt context,
  918. * check that the pages are still dirty. If so, fine. If not, redirty them
  919. * in process context.
  920. *
  921. * We special-case compound pages here: normally this means reads into hugetlb
  922. * pages. The logic in here doesn't really work right for compound pages
  923. * because the VM does not uniformly chase down the head page in all cases.
  924. * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
  925. * handle them at all. So we skip compound pages here at an early stage.
  926. *
  927. * Note that this code is very hard to test under normal circumstances because
  928. * direct-io pins the pages with get_user_pages(). This makes
  929. * is_page_cache_freeable return false, and the VM will not clean the pages.
  930. * But other code (eg, pdflush) could clean the pages if they are mapped
  931. * pagecache.
  932. *
  933. * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
  934. * deferred bio dirtying paths.
  935. */
  936. /*
  937. * bio_set_pages_dirty() will mark all the bio's pages as dirty.
  938. */
  939. void bio_set_pages_dirty(struct bio *bio)
  940. {
  941. struct bio_vec *bvec = bio->bi_io_vec;
  942. int i;
  943. for (i = 0; i < bio->bi_vcnt; i++) {
  944. struct page *page = bvec[i].bv_page;
  945. if (page && !PageCompound(page))
  946. set_page_dirty_lock(page);
  947. }
  948. }
  949. static void bio_release_pages(struct bio *bio)
  950. {
  951. struct bio_vec *bvec = bio->bi_io_vec;
  952. int i;
  953. for (i = 0; i < bio->bi_vcnt; i++) {
  954. struct page *page = bvec[i].bv_page;
  955. if (page)
  956. put_page(page);
  957. }
  958. }
  959. /*
  960. * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
  961. * If they are, then fine. If, however, some pages are clean then they must
  962. * have been written out during the direct-IO read. So we take another ref on
  963. * the BIO and the offending pages and re-dirty the pages in process context.
  964. *
  965. * It is expected that bio_check_pages_dirty() will wholly own the BIO from
  966. * here on. It will run one page_cache_release() against each page and will
  967. * run one bio_put() against the BIO.
  968. */
  969. static void bio_dirty_fn(struct work_struct *work);
  970. static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
  971. static DEFINE_SPINLOCK(bio_dirty_lock);
  972. static struct bio *bio_dirty_list;
  973. /*
  974. * This runs in process context
  975. */
  976. static void bio_dirty_fn(struct work_struct *work)
  977. {
  978. unsigned long flags;
  979. struct bio *bio;
  980. spin_lock_irqsave(&bio_dirty_lock, flags);
  981. bio = bio_dirty_list;
  982. bio_dirty_list = NULL;
  983. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  984. while (bio) {
  985. struct bio *next = bio->bi_private;
  986. bio_set_pages_dirty(bio);
  987. bio_release_pages(bio);
  988. bio_put(bio);
  989. bio = next;
  990. }
  991. }
  992. void bio_check_pages_dirty(struct bio *bio)
  993. {
  994. struct bio_vec *bvec = bio->bi_io_vec;
  995. int nr_clean_pages = 0;
  996. int i;
  997. for (i = 0; i < bio->bi_vcnt; i++) {
  998. struct page *page = bvec[i].bv_page;
  999. if (PageDirty(page) || PageCompound(page)) {
  1000. page_cache_release(page);
  1001. bvec[i].bv_page = NULL;
  1002. } else {
  1003. nr_clean_pages++;
  1004. }
  1005. }
  1006. if (nr_clean_pages) {
  1007. unsigned long flags;
  1008. spin_lock_irqsave(&bio_dirty_lock, flags);
  1009. bio->bi_private = bio_dirty_list;
  1010. bio_dirty_list = bio;
  1011. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1012. schedule_work(&bio_dirty_work);
  1013. } else {
  1014. bio_put(bio);
  1015. }
  1016. }
  1017. /**
  1018. * bio_endio - end I/O on a bio
  1019. * @bio: bio
  1020. * @error: error, if any
  1021. *
  1022. * Description:
  1023. * bio_endio() will end I/O on the whole bio. bio_endio() is the
  1024. * preferred way to end I/O on a bio, it takes care of clearing
  1025. * BIO_UPTODATE on error. @error is 0 on success, and and one of the
  1026. * established -Exxxx (-EIO, for instance) error values in case
  1027. * something went wrong. Noone should call bi_end_io() directly on a
  1028. * bio unless they own it and thus know that it has an end_io
  1029. * function.
  1030. **/
  1031. void bio_endio(struct bio *bio, int error)
  1032. {
  1033. if (error)
  1034. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  1035. else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  1036. error = -EIO;
  1037. if (bio->bi_end_io)
  1038. bio->bi_end_io(bio, error);
  1039. }
  1040. void bio_pair_release(struct bio_pair *bp)
  1041. {
  1042. if (atomic_dec_and_test(&bp->cnt)) {
  1043. struct bio *master = bp->bio1.bi_private;
  1044. bio_endio(master, bp->error);
  1045. mempool_free(bp, bp->bio2.bi_private);
  1046. }
  1047. }
  1048. static void bio_pair_end_1(struct bio *bi, int err)
  1049. {
  1050. struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
  1051. if (err)
  1052. bp->error = err;
  1053. bio_pair_release(bp);
  1054. }
  1055. static void bio_pair_end_2(struct bio *bi, int err)
  1056. {
  1057. struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
  1058. if (err)
  1059. bp->error = err;
  1060. bio_pair_release(bp);
  1061. }
  1062. /*
  1063. * split a bio - only worry about a bio with a single page
  1064. * in it's iovec
  1065. */
  1066. struct bio_pair *bio_split(struct bio *bi, int first_sectors)
  1067. {
  1068. struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
  1069. if (!bp)
  1070. return bp;
  1071. blk_add_trace_pdu_int(bdev_get_queue(bi->bi_bdev), BLK_TA_SPLIT, bi,
  1072. bi->bi_sector + first_sectors);
  1073. BUG_ON(bi->bi_vcnt != 1);
  1074. BUG_ON(bi->bi_idx != 0);
  1075. atomic_set(&bp->cnt, 3);
  1076. bp->error = 0;
  1077. bp->bio1 = *bi;
  1078. bp->bio2 = *bi;
  1079. bp->bio2.bi_sector += first_sectors;
  1080. bp->bio2.bi_size -= first_sectors << 9;
  1081. bp->bio1.bi_size = first_sectors << 9;
  1082. bp->bv1 = bi->bi_io_vec[0];
  1083. bp->bv2 = bi->bi_io_vec[0];
  1084. bp->bv2.bv_offset += first_sectors << 9;
  1085. bp->bv2.bv_len -= first_sectors << 9;
  1086. bp->bv1.bv_len = first_sectors << 9;
  1087. bp->bio1.bi_io_vec = &bp->bv1;
  1088. bp->bio2.bi_io_vec = &bp->bv2;
  1089. bp->bio1.bi_max_vecs = 1;
  1090. bp->bio2.bi_max_vecs = 1;
  1091. bp->bio1.bi_end_io = bio_pair_end_1;
  1092. bp->bio2.bi_end_io = bio_pair_end_2;
  1093. bp->bio1.bi_private = bi;
  1094. bp->bio2.bi_private = bio_split_pool;
  1095. if (bio_integrity(bi))
  1096. bio_integrity_split(bi, bp, first_sectors);
  1097. return bp;
  1098. }
  1099. /**
  1100. * bio_sector_offset - Find hardware sector offset in bio
  1101. * @bio: bio to inspect
  1102. * @index: bio_vec index
  1103. * @offset: offset in bv_page
  1104. *
  1105. * Return the number of hardware sectors between beginning of bio
  1106. * and an end point indicated by a bio_vec index and an offset
  1107. * within that vector's page.
  1108. */
  1109. sector_t bio_sector_offset(struct bio *bio, unsigned short index,
  1110. unsigned int offset)
  1111. {
  1112. unsigned int sector_sz = queue_hardsect_size(bio->bi_bdev->bd_disk->queue);
  1113. struct bio_vec *bv;
  1114. sector_t sectors;
  1115. int i;
  1116. sectors = 0;
  1117. if (index >= bio->bi_idx)
  1118. index = bio->bi_vcnt - 1;
  1119. __bio_for_each_segment(bv, bio, i, 0) {
  1120. if (i == index) {
  1121. if (offset > bv->bv_offset)
  1122. sectors += (offset - bv->bv_offset) / sector_sz;
  1123. break;
  1124. }
  1125. sectors += bv->bv_len / sector_sz;
  1126. }
  1127. return sectors;
  1128. }
  1129. EXPORT_SYMBOL(bio_sector_offset);
  1130. /*
  1131. * create memory pools for biovec's in a bio_set.
  1132. * use the global biovec slabs created for general use.
  1133. */
  1134. static int biovec_create_pools(struct bio_set *bs, int pool_entries)
  1135. {
  1136. int i;
  1137. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  1138. struct biovec_slab *bp = bvec_slabs + i;
  1139. mempool_t **bvp = bs->bvec_pools + i;
  1140. *bvp = mempool_create_slab_pool(pool_entries, bp->slab);
  1141. if (!*bvp)
  1142. return -ENOMEM;
  1143. }
  1144. return 0;
  1145. }
  1146. static void biovec_free_pools(struct bio_set *bs)
  1147. {
  1148. int i;
  1149. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  1150. mempool_t *bvp = bs->bvec_pools[i];
  1151. if (bvp)
  1152. mempool_destroy(bvp);
  1153. }
  1154. }
  1155. void bioset_free(struct bio_set *bs)
  1156. {
  1157. if (bs->bio_pool)
  1158. mempool_destroy(bs->bio_pool);
  1159. bioset_integrity_free(bs);
  1160. biovec_free_pools(bs);
  1161. kfree(bs);
  1162. }
  1163. struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size)
  1164. {
  1165. struct bio_set *bs = kzalloc(sizeof(*bs), GFP_KERNEL);
  1166. if (!bs)
  1167. return NULL;
  1168. bs->bio_pool = mempool_create_slab_pool(bio_pool_size, bio_slab);
  1169. if (!bs->bio_pool)
  1170. goto bad;
  1171. if (bioset_integrity_create(bs, bio_pool_size))
  1172. goto bad;
  1173. if (!biovec_create_pools(bs, bvec_pool_size))
  1174. return bs;
  1175. bad:
  1176. bioset_free(bs);
  1177. return NULL;
  1178. }
  1179. static void __init biovec_init_slabs(void)
  1180. {
  1181. int i;
  1182. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  1183. int size;
  1184. struct biovec_slab *bvs = bvec_slabs + i;
  1185. size = bvs->nr_vecs * sizeof(struct bio_vec);
  1186. bvs->slab = kmem_cache_create(bvs->name, size, 0,
  1187. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1188. }
  1189. }
  1190. static int __init init_bio(void)
  1191. {
  1192. bio_slab = KMEM_CACHE(bio, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  1193. bio_integrity_init_slab();
  1194. biovec_init_slabs();
  1195. fs_bio_set = bioset_create(BIO_POOL_SIZE, 2);
  1196. if (!fs_bio_set)
  1197. panic("bio: can't allocate bios\n");
  1198. bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
  1199. sizeof(struct bio_pair));
  1200. if (!bio_split_pool)
  1201. panic("bio: can't create split pool\n");
  1202. return 0;
  1203. }
  1204. subsys_initcall(init_bio);
  1205. EXPORT_SYMBOL(bio_alloc);
  1206. EXPORT_SYMBOL(bio_kmalloc);
  1207. EXPORT_SYMBOL(bio_put);
  1208. EXPORT_SYMBOL(bio_free);
  1209. EXPORT_SYMBOL(bio_endio);
  1210. EXPORT_SYMBOL(bio_init);
  1211. EXPORT_SYMBOL(__bio_clone);
  1212. EXPORT_SYMBOL(bio_clone);
  1213. EXPORT_SYMBOL(bio_phys_segments);
  1214. EXPORT_SYMBOL(bio_add_page);
  1215. EXPORT_SYMBOL(bio_add_pc_page);
  1216. EXPORT_SYMBOL(bio_get_nr_vecs);
  1217. EXPORT_SYMBOL(bio_map_user);
  1218. EXPORT_SYMBOL(bio_unmap_user);
  1219. EXPORT_SYMBOL(bio_map_kern);
  1220. EXPORT_SYMBOL(bio_copy_kern);
  1221. EXPORT_SYMBOL(bio_pair_release);
  1222. EXPORT_SYMBOL(bio_split);
  1223. EXPORT_SYMBOL(bio_copy_user);
  1224. EXPORT_SYMBOL(bio_uncopy_user);
  1225. EXPORT_SYMBOL(bioset_create);
  1226. EXPORT_SYMBOL(bioset_free);
  1227. EXPORT_SYMBOL(bio_alloc_bioset);