intr_remapping.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512
  1. #include <linux/interrupt.h>
  2. #include <linux/dmar.h>
  3. #include <linux/spinlock.h>
  4. #include <linux/jiffies.h>
  5. #include <linux/pci.h>
  6. #include <linux/irq.h>
  7. #include <asm/io_apic.h>
  8. #include <linux/intel-iommu.h>
  9. #include "intr_remapping.h"
  10. static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
  11. static int ir_ioapic_num;
  12. int intr_remapping_enabled;
  13. struct irq_2_iommu {
  14. struct intel_iommu *iommu;
  15. u16 irte_index;
  16. u16 sub_handle;
  17. u8 irte_mask;
  18. };
  19. static struct irq_2_iommu irq_2_iommuX[NR_IRQS];
  20. static struct irq_2_iommu *irq_2_iommu(unsigned int irq)
  21. {
  22. return (irq < nr_irqs) ? irq_2_iommuX + irq : NULL;
  23. }
  24. static struct irq_2_iommu *irq_2_iommu_alloc(unsigned int irq)
  25. {
  26. return irq_2_iommu(irq);
  27. }
  28. static DEFINE_SPINLOCK(irq_2_ir_lock);
  29. static struct irq_2_iommu *valid_irq_2_iommu(unsigned int irq)
  30. {
  31. struct irq_2_iommu *irq_iommu;
  32. irq_iommu = irq_2_iommu(irq);
  33. if (!irq_iommu)
  34. return NULL;
  35. if (!irq_iommu->iommu)
  36. return NULL;
  37. return irq_iommu;
  38. }
  39. int irq_remapped(int irq)
  40. {
  41. return valid_irq_2_iommu(irq) != NULL;
  42. }
  43. int get_irte(int irq, struct irte *entry)
  44. {
  45. int index;
  46. struct irq_2_iommu *irq_iommu;
  47. if (!entry)
  48. return -1;
  49. spin_lock(&irq_2_ir_lock);
  50. irq_iommu = valid_irq_2_iommu(irq);
  51. if (!irq_iommu) {
  52. spin_unlock(&irq_2_ir_lock);
  53. return -1;
  54. }
  55. index = irq_iommu->irte_index + irq_iommu->sub_handle;
  56. *entry = *(irq_iommu->iommu->ir_table->base + index);
  57. spin_unlock(&irq_2_ir_lock);
  58. return 0;
  59. }
  60. int alloc_irte(struct intel_iommu *iommu, int irq, u16 count)
  61. {
  62. struct ir_table *table = iommu->ir_table;
  63. struct irq_2_iommu *irq_iommu;
  64. u16 index, start_index;
  65. unsigned int mask = 0;
  66. int i;
  67. if (!count)
  68. return -1;
  69. /* protect irq_2_iommu_alloc later */
  70. if (irq >= nr_irqs)
  71. return -1;
  72. /*
  73. * start the IRTE search from index 0.
  74. */
  75. index = start_index = 0;
  76. if (count > 1) {
  77. count = __roundup_pow_of_two(count);
  78. mask = ilog2(count);
  79. }
  80. if (mask > ecap_max_handle_mask(iommu->ecap)) {
  81. printk(KERN_ERR
  82. "Requested mask %x exceeds the max invalidation handle"
  83. " mask value %Lx\n", mask,
  84. ecap_max_handle_mask(iommu->ecap));
  85. return -1;
  86. }
  87. spin_lock(&irq_2_ir_lock);
  88. do {
  89. for (i = index; i < index + count; i++)
  90. if (table->base[i].present)
  91. break;
  92. /* empty index found */
  93. if (i == index + count)
  94. break;
  95. index = (index + count) % INTR_REMAP_TABLE_ENTRIES;
  96. if (index == start_index) {
  97. spin_unlock(&irq_2_ir_lock);
  98. printk(KERN_ERR "can't allocate an IRTE\n");
  99. return -1;
  100. }
  101. } while (1);
  102. for (i = index; i < index + count; i++)
  103. table->base[i].present = 1;
  104. irq_iommu = irq_2_iommu_alloc(irq);
  105. irq_iommu->iommu = iommu;
  106. irq_iommu->irte_index = index;
  107. irq_iommu->sub_handle = 0;
  108. irq_iommu->irte_mask = mask;
  109. spin_unlock(&irq_2_ir_lock);
  110. return index;
  111. }
  112. static void qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
  113. {
  114. struct qi_desc desc;
  115. desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
  116. | QI_IEC_SELECTIVE;
  117. desc.high = 0;
  118. qi_submit_sync(&desc, iommu);
  119. }
  120. int map_irq_to_irte_handle(int irq, u16 *sub_handle)
  121. {
  122. int index;
  123. struct irq_2_iommu *irq_iommu;
  124. spin_lock(&irq_2_ir_lock);
  125. irq_iommu = valid_irq_2_iommu(irq);
  126. if (!irq_iommu) {
  127. spin_unlock(&irq_2_ir_lock);
  128. return -1;
  129. }
  130. *sub_handle = irq_iommu->sub_handle;
  131. index = irq_iommu->irte_index;
  132. spin_unlock(&irq_2_ir_lock);
  133. return index;
  134. }
  135. int set_irte_irq(int irq, struct intel_iommu *iommu, u16 index, u16 subhandle)
  136. {
  137. struct irq_2_iommu *irq_iommu;
  138. spin_lock(&irq_2_ir_lock);
  139. irq_iommu = irq_2_iommu_alloc(irq);
  140. irq_iommu->iommu = iommu;
  141. irq_iommu->irte_index = index;
  142. irq_iommu->sub_handle = subhandle;
  143. irq_iommu->irte_mask = 0;
  144. spin_unlock(&irq_2_ir_lock);
  145. return 0;
  146. }
  147. int clear_irte_irq(int irq, struct intel_iommu *iommu, u16 index)
  148. {
  149. struct irq_2_iommu *irq_iommu;
  150. spin_lock(&irq_2_ir_lock);
  151. irq_iommu = valid_irq_2_iommu(irq);
  152. if (!irq_iommu) {
  153. spin_unlock(&irq_2_ir_lock);
  154. return -1;
  155. }
  156. irq_iommu->iommu = NULL;
  157. irq_iommu->irte_index = 0;
  158. irq_iommu->sub_handle = 0;
  159. irq_2_iommu(irq)->irte_mask = 0;
  160. spin_unlock(&irq_2_ir_lock);
  161. return 0;
  162. }
  163. int modify_irte(int irq, struct irte *irte_modified)
  164. {
  165. int index;
  166. struct irte *irte;
  167. struct intel_iommu *iommu;
  168. struct irq_2_iommu *irq_iommu;
  169. spin_lock(&irq_2_ir_lock);
  170. irq_iommu = valid_irq_2_iommu(irq);
  171. if (!irq_iommu) {
  172. spin_unlock(&irq_2_ir_lock);
  173. return -1;
  174. }
  175. iommu = irq_iommu->iommu;
  176. index = irq_iommu->irte_index + irq_iommu->sub_handle;
  177. irte = &iommu->ir_table->base[index];
  178. set_64bit((unsigned long *)irte, irte_modified->low | (1 << 1));
  179. __iommu_flush_cache(iommu, irte, sizeof(*irte));
  180. qi_flush_iec(iommu, index, 0);
  181. spin_unlock(&irq_2_ir_lock);
  182. return 0;
  183. }
  184. int flush_irte(int irq)
  185. {
  186. int index;
  187. struct intel_iommu *iommu;
  188. struct irq_2_iommu *irq_iommu;
  189. spin_lock(&irq_2_ir_lock);
  190. irq_iommu = valid_irq_2_iommu(irq);
  191. if (!irq_iommu) {
  192. spin_unlock(&irq_2_ir_lock);
  193. return -1;
  194. }
  195. iommu = irq_iommu->iommu;
  196. index = irq_iommu->irte_index + irq_iommu->sub_handle;
  197. qi_flush_iec(iommu, index, irq_iommu->irte_mask);
  198. spin_unlock(&irq_2_ir_lock);
  199. return 0;
  200. }
  201. struct intel_iommu *map_ioapic_to_ir(int apic)
  202. {
  203. int i;
  204. for (i = 0; i < MAX_IO_APICS; i++)
  205. if (ir_ioapic[i].id == apic)
  206. return ir_ioapic[i].iommu;
  207. return NULL;
  208. }
  209. struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
  210. {
  211. struct dmar_drhd_unit *drhd;
  212. drhd = dmar_find_matched_drhd_unit(dev);
  213. if (!drhd)
  214. return NULL;
  215. return drhd->iommu;
  216. }
  217. int free_irte(int irq)
  218. {
  219. int index, i;
  220. struct irte *irte;
  221. struct intel_iommu *iommu;
  222. struct irq_2_iommu *irq_iommu;
  223. spin_lock(&irq_2_ir_lock);
  224. irq_iommu = valid_irq_2_iommu(irq);
  225. if (!irq_iommu) {
  226. spin_unlock(&irq_2_ir_lock);
  227. return -1;
  228. }
  229. iommu = irq_iommu->iommu;
  230. index = irq_iommu->irte_index + irq_iommu->sub_handle;
  231. irte = &iommu->ir_table->base[index];
  232. if (!irq_iommu->sub_handle) {
  233. for (i = 0; i < (1 << irq_iommu->irte_mask); i++)
  234. set_64bit((unsigned long *)irte, 0);
  235. qi_flush_iec(iommu, index, irq_iommu->irte_mask);
  236. }
  237. irq_iommu->iommu = NULL;
  238. irq_iommu->irte_index = 0;
  239. irq_iommu->sub_handle = 0;
  240. irq_iommu->irte_mask = 0;
  241. spin_unlock(&irq_2_ir_lock);
  242. return 0;
  243. }
  244. static void iommu_set_intr_remapping(struct intel_iommu *iommu, int mode)
  245. {
  246. u64 addr;
  247. u32 cmd, sts;
  248. unsigned long flags;
  249. addr = virt_to_phys((void *)iommu->ir_table->base);
  250. spin_lock_irqsave(&iommu->register_lock, flags);
  251. dmar_writeq(iommu->reg + DMAR_IRTA_REG,
  252. (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
  253. /* Set interrupt-remapping table pointer */
  254. cmd = iommu->gcmd | DMA_GCMD_SIRTP;
  255. writel(cmd, iommu->reg + DMAR_GCMD_REG);
  256. IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
  257. readl, (sts & DMA_GSTS_IRTPS), sts);
  258. spin_unlock_irqrestore(&iommu->register_lock, flags);
  259. /*
  260. * global invalidation of interrupt entry cache before enabling
  261. * interrupt-remapping.
  262. */
  263. qi_global_iec(iommu);
  264. spin_lock_irqsave(&iommu->register_lock, flags);
  265. /* Enable interrupt-remapping */
  266. cmd = iommu->gcmd | DMA_GCMD_IRE;
  267. iommu->gcmd |= DMA_GCMD_IRE;
  268. writel(cmd, iommu->reg + DMAR_GCMD_REG);
  269. IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
  270. readl, (sts & DMA_GSTS_IRES), sts);
  271. spin_unlock_irqrestore(&iommu->register_lock, flags);
  272. }
  273. static int setup_intr_remapping(struct intel_iommu *iommu, int mode)
  274. {
  275. struct ir_table *ir_table;
  276. struct page *pages;
  277. ir_table = iommu->ir_table = kzalloc(sizeof(struct ir_table),
  278. GFP_KERNEL);
  279. if (!iommu->ir_table)
  280. return -ENOMEM;
  281. pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, INTR_REMAP_PAGE_ORDER);
  282. if (!pages) {
  283. printk(KERN_ERR "failed to allocate pages of order %d\n",
  284. INTR_REMAP_PAGE_ORDER);
  285. kfree(iommu->ir_table);
  286. return -ENOMEM;
  287. }
  288. ir_table->base = page_address(pages);
  289. iommu_set_intr_remapping(iommu, mode);
  290. return 0;
  291. }
  292. int __init enable_intr_remapping(int eim)
  293. {
  294. struct dmar_drhd_unit *drhd;
  295. int setup = 0;
  296. /*
  297. * check for the Interrupt-remapping support
  298. */
  299. for_each_drhd_unit(drhd) {
  300. struct intel_iommu *iommu = drhd->iommu;
  301. if (!ecap_ir_support(iommu->ecap))
  302. continue;
  303. if (eim && !ecap_eim_support(iommu->ecap)) {
  304. printk(KERN_INFO "DRHD %Lx: EIM not supported by DRHD, "
  305. " ecap %Lx\n", drhd->reg_base_addr, iommu->ecap);
  306. return -1;
  307. }
  308. }
  309. /*
  310. * Enable queued invalidation for all the DRHD's.
  311. */
  312. for_each_drhd_unit(drhd) {
  313. int ret;
  314. struct intel_iommu *iommu = drhd->iommu;
  315. ret = dmar_enable_qi(iommu);
  316. if (ret) {
  317. printk(KERN_ERR "DRHD %Lx: failed to enable queued, "
  318. " invalidation, ecap %Lx, ret %d\n",
  319. drhd->reg_base_addr, iommu->ecap, ret);
  320. return -1;
  321. }
  322. }
  323. /*
  324. * Setup Interrupt-remapping for all the DRHD's now.
  325. */
  326. for_each_drhd_unit(drhd) {
  327. struct intel_iommu *iommu = drhd->iommu;
  328. if (!ecap_ir_support(iommu->ecap))
  329. continue;
  330. if (setup_intr_remapping(iommu, eim))
  331. goto error;
  332. setup = 1;
  333. }
  334. if (!setup)
  335. goto error;
  336. intr_remapping_enabled = 1;
  337. return 0;
  338. error:
  339. /*
  340. * handle error condition gracefully here!
  341. */
  342. return -1;
  343. }
  344. static int ir_parse_ioapic_scope(struct acpi_dmar_header *header,
  345. struct intel_iommu *iommu)
  346. {
  347. struct acpi_dmar_hardware_unit *drhd;
  348. struct acpi_dmar_device_scope *scope;
  349. void *start, *end;
  350. drhd = (struct acpi_dmar_hardware_unit *)header;
  351. start = (void *)(drhd + 1);
  352. end = ((void *)drhd) + header->length;
  353. while (start < end) {
  354. scope = start;
  355. if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
  356. if (ir_ioapic_num == MAX_IO_APICS) {
  357. printk(KERN_WARNING "Exceeded Max IO APICS\n");
  358. return -1;
  359. }
  360. printk(KERN_INFO "IOAPIC id %d under DRHD base"
  361. " 0x%Lx\n", scope->enumeration_id,
  362. drhd->address);
  363. ir_ioapic[ir_ioapic_num].iommu = iommu;
  364. ir_ioapic[ir_ioapic_num].id = scope->enumeration_id;
  365. ir_ioapic_num++;
  366. }
  367. start += scope->length;
  368. }
  369. return 0;
  370. }
  371. /*
  372. * Finds the assocaition between IOAPIC's and its Interrupt-remapping
  373. * hardware unit.
  374. */
  375. int __init parse_ioapics_under_ir(void)
  376. {
  377. struct dmar_drhd_unit *drhd;
  378. int ir_supported = 0;
  379. for_each_drhd_unit(drhd) {
  380. struct intel_iommu *iommu = drhd->iommu;
  381. if (ecap_ir_support(iommu->ecap)) {
  382. if (ir_parse_ioapic_scope(drhd->hdr, iommu))
  383. return -1;
  384. ir_supported = 1;
  385. }
  386. }
  387. if (ir_supported && ir_ioapic_num != nr_ioapics) {
  388. printk(KERN_WARNING
  389. "Not all IO-APIC's listed under remapping hardware\n");
  390. return -1;
  391. }
  392. return ir_supported;
  393. }