dmar.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762
  1. /*
  2. * Copyright (c) 2006, Intel Corporation.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms and conditions of the GNU General Public License,
  6. * version 2, as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope it will be useful, but WITHOUT
  9. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  11. * more details.
  12. *
  13. * You should have received a copy of the GNU General Public License along with
  14. * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  15. * Place - Suite 330, Boston, MA 02111-1307 USA.
  16. *
  17. * Copyright (C) 2006-2008 Intel Corporation
  18. * Author: Ashok Raj <ashok.raj@intel.com>
  19. * Author: Shaohua Li <shaohua.li@intel.com>
  20. * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
  21. *
  22. * This file implements early detection/parsing of Remapping Devices
  23. * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
  24. * tables.
  25. *
  26. * These routines are used by both DMA-remapping and Interrupt-remapping
  27. */
  28. #include <linux/pci.h>
  29. #include <linux/dmar.h>
  30. #include <linux/iova.h>
  31. #include <linux/intel-iommu.h>
  32. #include <linux/timer.h>
  33. #undef PREFIX
  34. #define PREFIX "DMAR:"
  35. /* No locks are needed as DMA remapping hardware unit
  36. * list is constructed at boot time and hotplug of
  37. * these units are not supported by the architecture.
  38. */
  39. LIST_HEAD(dmar_drhd_units);
  40. static struct acpi_table_header * __initdata dmar_tbl;
  41. static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
  42. {
  43. /*
  44. * add INCLUDE_ALL at the tail, so scan the list will find it at
  45. * the very end.
  46. */
  47. if (drhd->include_all)
  48. list_add_tail(&drhd->list, &dmar_drhd_units);
  49. else
  50. list_add(&drhd->list, &dmar_drhd_units);
  51. }
  52. static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
  53. struct pci_dev **dev, u16 segment)
  54. {
  55. struct pci_bus *bus;
  56. struct pci_dev *pdev = NULL;
  57. struct acpi_dmar_pci_path *path;
  58. int count;
  59. bus = pci_find_bus(segment, scope->bus);
  60. path = (struct acpi_dmar_pci_path *)(scope + 1);
  61. count = (scope->length - sizeof(struct acpi_dmar_device_scope))
  62. / sizeof(struct acpi_dmar_pci_path);
  63. while (count) {
  64. if (pdev)
  65. pci_dev_put(pdev);
  66. /*
  67. * Some BIOSes list non-exist devices in DMAR table, just
  68. * ignore it
  69. */
  70. if (!bus) {
  71. printk(KERN_WARNING
  72. PREFIX "Device scope bus [%d] not found\n",
  73. scope->bus);
  74. break;
  75. }
  76. pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
  77. if (!pdev) {
  78. printk(KERN_WARNING PREFIX
  79. "Device scope device [%04x:%02x:%02x.%02x] not found\n",
  80. segment, bus->number, path->dev, path->fn);
  81. break;
  82. }
  83. path ++;
  84. count --;
  85. bus = pdev->subordinate;
  86. }
  87. if (!pdev) {
  88. printk(KERN_WARNING PREFIX
  89. "Device scope device [%04x:%02x:%02x.%02x] not found\n",
  90. segment, scope->bus, path->dev, path->fn);
  91. *dev = NULL;
  92. return 0;
  93. }
  94. if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
  95. pdev->subordinate) || (scope->entry_type == \
  96. ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
  97. pci_dev_put(pdev);
  98. printk(KERN_WARNING PREFIX
  99. "Device scope type does not match for %s\n",
  100. pci_name(pdev));
  101. return -EINVAL;
  102. }
  103. *dev = pdev;
  104. return 0;
  105. }
  106. static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
  107. struct pci_dev ***devices, u16 segment)
  108. {
  109. struct acpi_dmar_device_scope *scope;
  110. void * tmp = start;
  111. int index;
  112. int ret;
  113. *cnt = 0;
  114. while (start < end) {
  115. scope = start;
  116. if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
  117. scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
  118. (*cnt)++;
  119. else
  120. printk(KERN_WARNING PREFIX
  121. "Unsupported device scope\n");
  122. start += scope->length;
  123. }
  124. if (*cnt == 0)
  125. return 0;
  126. *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
  127. if (!*devices)
  128. return -ENOMEM;
  129. start = tmp;
  130. index = 0;
  131. while (start < end) {
  132. scope = start;
  133. if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
  134. scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
  135. ret = dmar_parse_one_dev_scope(scope,
  136. &(*devices)[index], segment);
  137. if (ret) {
  138. kfree(*devices);
  139. return ret;
  140. }
  141. index ++;
  142. }
  143. start += scope->length;
  144. }
  145. return 0;
  146. }
  147. /**
  148. * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
  149. * structure which uniquely represent one DMA remapping hardware unit
  150. * present in the platform
  151. */
  152. static int __init
  153. dmar_parse_one_drhd(struct acpi_dmar_header *header)
  154. {
  155. struct acpi_dmar_hardware_unit *drhd;
  156. struct dmar_drhd_unit *dmaru;
  157. int ret = 0;
  158. dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
  159. if (!dmaru)
  160. return -ENOMEM;
  161. dmaru->hdr = header;
  162. drhd = (struct acpi_dmar_hardware_unit *)header;
  163. dmaru->reg_base_addr = drhd->address;
  164. dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
  165. ret = alloc_iommu(dmaru);
  166. if (ret) {
  167. kfree(dmaru);
  168. return ret;
  169. }
  170. dmar_register_drhd_unit(dmaru);
  171. return 0;
  172. }
  173. static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
  174. {
  175. struct acpi_dmar_hardware_unit *drhd;
  176. static int include_all;
  177. int ret = 0;
  178. drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
  179. if (!dmaru->include_all)
  180. ret = dmar_parse_dev_scope((void *)(drhd + 1),
  181. ((void *)drhd) + drhd->header.length,
  182. &dmaru->devices_cnt, &dmaru->devices,
  183. drhd->segment);
  184. else {
  185. /* Only allow one INCLUDE_ALL */
  186. if (include_all) {
  187. printk(KERN_WARNING PREFIX "Only one INCLUDE_ALL "
  188. "device scope is allowed\n");
  189. ret = -EINVAL;
  190. }
  191. include_all = 1;
  192. }
  193. if (ret) {
  194. list_del(&dmaru->list);
  195. kfree(dmaru);
  196. }
  197. return ret;
  198. }
  199. #ifdef CONFIG_DMAR
  200. LIST_HEAD(dmar_rmrr_units);
  201. static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
  202. {
  203. list_add(&rmrr->list, &dmar_rmrr_units);
  204. }
  205. static int __init
  206. dmar_parse_one_rmrr(struct acpi_dmar_header *header)
  207. {
  208. struct acpi_dmar_reserved_memory *rmrr;
  209. struct dmar_rmrr_unit *rmrru;
  210. rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
  211. if (!rmrru)
  212. return -ENOMEM;
  213. rmrru->hdr = header;
  214. rmrr = (struct acpi_dmar_reserved_memory *)header;
  215. rmrru->base_address = rmrr->base_address;
  216. rmrru->end_address = rmrr->end_address;
  217. dmar_register_rmrr_unit(rmrru);
  218. return 0;
  219. }
  220. static int __init
  221. rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
  222. {
  223. struct acpi_dmar_reserved_memory *rmrr;
  224. int ret;
  225. rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
  226. ret = dmar_parse_dev_scope((void *)(rmrr + 1),
  227. ((void *)rmrr) + rmrr->header.length,
  228. &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
  229. if (ret || (rmrru->devices_cnt == 0)) {
  230. list_del(&rmrru->list);
  231. kfree(rmrru);
  232. }
  233. return ret;
  234. }
  235. #endif
  236. static void __init
  237. dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
  238. {
  239. struct acpi_dmar_hardware_unit *drhd;
  240. struct acpi_dmar_reserved_memory *rmrr;
  241. switch (header->type) {
  242. case ACPI_DMAR_TYPE_HARDWARE_UNIT:
  243. drhd = (struct acpi_dmar_hardware_unit *)header;
  244. printk (KERN_INFO PREFIX
  245. "DRHD (flags: 0x%08x)base: 0x%016Lx\n",
  246. drhd->flags, (unsigned long long)drhd->address);
  247. break;
  248. case ACPI_DMAR_TYPE_RESERVED_MEMORY:
  249. rmrr = (struct acpi_dmar_reserved_memory *)header;
  250. printk (KERN_INFO PREFIX
  251. "RMRR base: 0x%016Lx end: 0x%016Lx\n",
  252. (unsigned long long)rmrr->base_address,
  253. (unsigned long long)rmrr->end_address);
  254. break;
  255. }
  256. }
  257. /**
  258. * dmar_table_detect - checks to see if the platform supports DMAR devices
  259. */
  260. static int __init dmar_table_detect(void)
  261. {
  262. acpi_status status = AE_OK;
  263. /* if we could find DMAR table, then there are DMAR devices */
  264. status = acpi_get_table(ACPI_SIG_DMAR, 0,
  265. (struct acpi_table_header **)&dmar_tbl);
  266. if (ACPI_SUCCESS(status) && !dmar_tbl) {
  267. printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
  268. status = AE_NOT_FOUND;
  269. }
  270. return (ACPI_SUCCESS(status) ? 1 : 0);
  271. }
  272. /**
  273. * parse_dmar_table - parses the DMA reporting table
  274. */
  275. static int __init
  276. parse_dmar_table(void)
  277. {
  278. struct acpi_table_dmar *dmar;
  279. struct acpi_dmar_header *entry_header;
  280. int ret = 0;
  281. /*
  282. * Do it again, earlier dmar_tbl mapping could be mapped with
  283. * fixed map.
  284. */
  285. dmar_table_detect();
  286. dmar = (struct acpi_table_dmar *)dmar_tbl;
  287. if (!dmar)
  288. return -ENODEV;
  289. if (dmar->width < PAGE_SHIFT - 1) {
  290. printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
  291. return -EINVAL;
  292. }
  293. printk (KERN_INFO PREFIX "Host address width %d\n",
  294. dmar->width + 1);
  295. entry_header = (struct acpi_dmar_header *)(dmar + 1);
  296. while (((unsigned long)entry_header) <
  297. (((unsigned long)dmar) + dmar_tbl->length)) {
  298. dmar_table_print_dmar_entry(entry_header);
  299. switch (entry_header->type) {
  300. case ACPI_DMAR_TYPE_HARDWARE_UNIT:
  301. ret = dmar_parse_one_drhd(entry_header);
  302. break;
  303. case ACPI_DMAR_TYPE_RESERVED_MEMORY:
  304. #ifdef CONFIG_DMAR
  305. ret = dmar_parse_one_rmrr(entry_header);
  306. #endif
  307. break;
  308. default:
  309. printk(KERN_WARNING PREFIX
  310. "Unknown DMAR structure type\n");
  311. ret = 0; /* for forward compatibility */
  312. break;
  313. }
  314. if (ret)
  315. break;
  316. entry_header = ((void *)entry_header + entry_header->length);
  317. }
  318. return ret;
  319. }
  320. int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
  321. struct pci_dev *dev)
  322. {
  323. int index;
  324. while (dev) {
  325. for (index = 0; index < cnt; index++)
  326. if (dev == devices[index])
  327. return 1;
  328. /* Check our parent */
  329. dev = dev->bus->self;
  330. }
  331. return 0;
  332. }
  333. struct dmar_drhd_unit *
  334. dmar_find_matched_drhd_unit(struct pci_dev *dev)
  335. {
  336. struct dmar_drhd_unit *drhd = NULL;
  337. list_for_each_entry(drhd, &dmar_drhd_units, list) {
  338. if (drhd->include_all || dmar_pci_device_match(drhd->devices,
  339. drhd->devices_cnt, dev))
  340. return drhd;
  341. }
  342. return NULL;
  343. }
  344. int __init dmar_dev_scope_init(void)
  345. {
  346. struct dmar_drhd_unit *drhd, *drhd_n;
  347. int ret = -ENODEV;
  348. list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
  349. ret = dmar_parse_dev(drhd);
  350. if (ret)
  351. return ret;
  352. }
  353. #ifdef CONFIG_DMAR
  354. {
  355. struct dmar_rmrr_unit *rmrr, *rmrr_n;
  356. list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
  357. ret = rmrr_parse_dev(rmrr);
  358. if (ret)
  359. return ret;
  360. }
  361. }
  362. #endif
  363. return ret;
  364. }
  365. int __init dmar_table_init(void)
  366. {
  367. static int dmar_table_initialized;
  368. int ret;
  369. if (dmar_table_initialized)
  370. return 0;
  371. dmar_table_initialized = 1;
  372. ret = parse_dmar_table();
  373. if (ret) {
  374. if (ret != -ENODEV)
  375. printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
  376. return ret;
  377. }
  378. if (list_empty(&dmar_drhd_units)) {
  379. printk(KERN_INFO PREFIX "No DMAR devices found\n");
  380. return -ENODEV;
  381. }
  382. #ifdef CONFIG_DMAR
  383. if (list_empty(&dmar_rmrr_units))
  384. printk(KERN_INFO PREFIX "No RMRR found\n");
  385. #endif
  386. #ifdef CONFIG_INTR_REMAP
  387. parse_ioapics_under_ir();
  388. #endif
  389. return 0;
  390. }
  391. void __init detect_intel_iommu(void)
  392. {
  393. int ret;
  394. ret = dmar_table_detect();
  395. {
  396. #ifdef CONFIG_INTR_REMAP
  397. struct acpi_table_dmar *dmar;
  398. /*
  399. * for now we will disable dma-remapping when interrupt
  400. * remapping is enabled.
  401. * When support for queued invalidation for IOTLB invalidation
  402. * is added, we will not need this any more.
  403. */
  404. dmar = (struct acpi_table_dmar *) dmar_tbl;
  405. if (ret && cpu_has_x2apic && dmar->flags & 0x1)
  406. printk(KERN_INFO
  407. "Queued invalidation will be enabled to support "
  408. "x2apic and Intr-remapping.\n");
  409. #endif
  410. #ifdef CONFIG_DMAR
  411. if (ret && !no_iommu && !iommu_detected && !swiotlb &&
  412. !dmar_disabled)
  413. iommu_detected = 1;
  414. #endif
  415. }
  416. dmar_tbl = NULL;
  417. }
  418. int alloc_iommu(struct dmar_drhd_unit *drhd)
  419. {
  420. struct intel_iommu *iommu;
  421. int map_size;
  422. u32 ver;
  423. static int iommu_allocated = 0;
  424. iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
  425. if (!iommu)
  426. return -ENOMEM;
  427. iommu->seq_id = iommu_allocated++;
  428. iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
  429. if (!iommu->reg) {
  430. printk(KERN_ERR "IOMMU: can't map the region\n");
  431. goto error;
  432. }
  433. iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
  434. iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
  435. /* the registers might be more than one page */
  436. map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
  437. cap_max_fault_reg_offset(iommu->cap));
  438. map_size = VTD_PAGE_ALIGN(map_size);
  439. if (map_size > VTD_PAGE_SIZE) {
  440. iounmap(iommu->reg);
  441. iommu->reg = ioremap(drhd->reg_base_addr, map_size);
  442. if (!iommu->reg) {
  443. printk(KERN_ERR "IOMMU: can't map the region\n");
  444. goto error;
  445. }
  446. }
  447. ver = readl(iommu->reg + DMAR_VER_REG);
  448. pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
  449. (unsigned long long)drhd->reg_base_addr,
  450. DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
  451. (unsigned long long)iommu->cap,
  452. (unsigned long long)iommu->ecap);
  453. spin_lock_init(&iommu->register_lock);
  454. drhd->iommu = iommu;
  455. return 0;
  456. error:
  457. kfree(iommu);
  458. return -1;
  459. }
  460. void free_iommu(struct intel_iommu *iommu)
  461. {
  462. if (!iommu)
  463. return;
  464. #ifdef CONFIG_DMAR
  465. free_dmar_iommu(iommu);
  466. #endif
  467. if (iommu->reg)
  468. iounmap(iommu->reg);
  469. kfree(iommu);
  470. }
  471. /*
  472. * Reclaim all the submitted descriptors which have completed its work.
  473. */
  474. static inline void reclaim_free_desc(struct q_inval *qi)
  475. {
  476. while (qi->desc_status[qi->free_tail] == QI_DONE) {
  477. qi->desc_status[qi->free_tail] = QI_FREE;
  478. qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
  479. qi->free_cnt++;
  480. }
  481. }
  482. /*
  483. * Submit the queued invalidation descriptor to the remapping
  484. * hardware unit and wait for its completion.
  485. */
  486. void qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
  487. {
  488. struct q_inval *qi = iommu->qi;
  489. struct qi_desc *hw, wait_desc;
  490. int wait_index, index;
  491. unsigned long flags;
  492. if (!qi)
  493. return;
  494. hw = qi->desc;
  495. spin_lock_irqsave(&qi->q_lock, flags);
  496. while (qi->free_cnt < 3) {
  497. spin_unlock_irqrestore(&qi->q_lock, flags);
  498. cpu_relax();
  499. spin_lock_irqsave(&qi->q_lock, flags);
  500. }
  501. index = qi->free_head;
  502. wait_index = (index + 1) % QI_LENGTH;
  503. qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
  504. hw[index] = *desc;
  505. wait_desc.low = QI_IWD_STATUS_DATA(2) | QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
  506. wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
  507. hw[wait_index] = wait_desc;
  508. __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
  509. __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
  510. qi->free_head = (qi->free_head + 2) % QI_LENGTH;
  511. qi->free_cnt -= 2;
  512. spin_lock(&iommu->register_lock);
  513. /*
  514. * update the HW tail register indicating the presence of
  515. * new descriptors.
  516. */
  517. writel(qi->free_head << 4, iommu->reg + DMAR_IQT_REG);
  518. spin_unlock(&iommu->register_lock);
  519. while (qi->desc_status[wait_index] != QI_DONE) {
  520. /*
  521. * We will leave the interrupts disabled, to prevent interrupt
  522. * context to queue another cmd while a cmd is already submitted
  523. * and waiting for completion on this cpu. This is to avoid
  524. * a deadlock where the interrupt context can wait indefinitely
  525. * for free slots in the queue.
  526. */
  527. spin_unlock(&qi->q_lock);
  528. cpu_relax();
  529. spin_lock(&qi->q_lock);
  530. }
  531. qi->desc_status[index] = QI_DONE;
  532. reclaim_free_desc(qi);
  533. spin_unlock_irqrestore(&qi->q_lock, flags);
  534. }
  535. /*
  536. * Flush the global interrupt entry cache.
  537. */
  538. void qi_global_iec(struct intel_iommu *iommu)
  539. {
  540. struct qi_desc desc;
  541. desc.low = QI_IEC_TYPE;
  542. desc.high = 0;
  543. qi_submit_sync(&desc, iommu);
  544. }
  545. int qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
  546. u64 type, int non_present_entry_flush)
  547. {
  548. struct qi_desc desc;
  549. if (non_present_entry_flush) {
  550. if (!cap_caching_mode(iommu->cap))
  551. return 1;
  552. else
  553. did = 0;
  554. }
  555. desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
  556. | QI_CC_GRAN(type) | QI_CC_TYPE;
  557. desc.high = 0;
  558. qi_submit_sync(&desc, iommu);
  559. return 0;
  560. }
  561. int qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
  562. unsigned int size_order, u64 type,
  563. int non_present_entry_flush)
  564. {
  565. u8 dw = 0, dr = 0;
  566. struct qi_desc desc;
  567. int ih = 0;
  568. if (non_present_entry_flush) {
  569. if (!cap_caching_mode(iommu->cap))
  570. return 1;
  571. else
  572. did = 0;
  573. }
  574. if (cap_write_drain(iommu->cap))
  575. dw = 1;
  576. if (cap_read_drain(iommu->cap))
  577. dr = 1;
  578. desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
  579. | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
  580. desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
  581. | QI_IOTLB_AM(size_order);
  582. qi_submit_sync(&desc, iommu);
  583. return 0;
  584. }
  585. /*
  586. * Enable Queued Invalidation interface. This is a must to support
  587. * interrupt-remapping. Also used by DMA-remapping, which replaces
  588. * register based IOTLB invalidation.
  589. */
  590. int dmar_enable_qi(struct intel_iommu *iommu)
  591. {
  592. u32 cmd, sts;
  593. unsigned long flags;
  594. struct q_inval *qi;
  595. if (!ecap_qis(iommu->ecap))
  596. return -ENOENT;
  597. /*
  598. * queued invalidation is already setup and enabled.
  599. */
  600. if (iommu->qi)
  601. return 0;
  602. iommu->qi = kmalloc(sizeof(*qi), GFP_KERNEL);
  603. if (!iommu->qi)
  604. return -ENOMEM;
  605. qi = iommu->qi;
  606. qi->desc = (void *)(get_zeroed_page(GFP_KERNEL));
  607. if (!qi->desc) {
  608. kfree(qi);
  609. iommu->qi = 0;
  610. return -ENOMEM;
  611. }
  612. qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_KERNEL);
  613. if (!qi->desc_status) {
  614. free_page((unsigned long) qi->desc);
  615. kfree(qi);
  616. iommu->qi = 0;
  617. return -ENOMEM;
  618. }
  619. qi->free_head = qi->free_tail = 0;
  620. qi->free_cnt = QI_LENGTH;
  621. spin_lock_init(&qi->q_lock);
  622. spin_lock_irqsave(&iommu->register_lock, flags);
  623. /* write zero to the tail reg */
  624. writel(0, iommu->reg + DMAR_IQT_REG);
  625. dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
  626. cmd = iommu->gcmd | DMA_GCMD_QIE;
  627. iommu->gcmd |= DMA_GCMD_QIE;
  628. writel(cmd, iommu->reg + DMAR_GCMD_REG);
  629. /* Make sure hardware complete it */
  630. IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
  631. spin_unlock_irqrestore(&iommu->register_lock, flags);
  632. return 0;
  633. }