123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508 |
- /*
- * Cryptographic API.
- *
- * AES Cipher Algorithm.
- *
- * Based on Brian Gladman's code.
- *
- * Linux developers:
- * Alexander Kjeldaas <astor@fast.no>
- * Herbert Valerio Riedel <hvr@hvrlab.org>
- * Kyle McMartin <kyle@debian.org>
- * Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API).
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * ---------------------------------------------------------------------------
- * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
- * All rights reserved.
- *
- * LICENSE TERMS
- *
- * The free distribution and use of this software in both source and binary
- * form is allowed (with or without changes) provided that:
- *
- * 1. distributions of this source code include the above copyright
- * notice, this list of conditions and the following disclaimer;
- *
- * 2. distributions in binary form include the above copyright
- * notice, this list of conditions and the following disclaimer
- * in the documentation and/or other associated materials;
- *
- * 3. the copyright holder's name is not used to endorse products
- * built using this software without specific written permission.
- *
- * ALTERNATIVELY, provided that this notice is retained in full, this product
- * may be distributed under the terms of the GNU General Public License (GPL),
- * in which case the provisions of the GPL apply INSTEAD OF those given above.
- *
- * DISCLAIMER
- *
- * This software is provided 'as is' with no explicit or implied warranties
- * in respect of its properties, including, but not limited to, correctness
- * and/or fitness for purpose.
- * ---------------------------------------------------------------------------
- */
- #include <crypto/aes.h>
- #include <linux/module.h>
- #include <linux/init.h>
- #include <linux/types.h>
- #include <linux/errno.h>
- #include <linux/crypto.h>
- #include <asm/byteorder.h>
- static inline u8 byte(const u32 x, const unsigned n)
- {
- return x >> (n << 3);
- }
- static u8 pow_tab[256] __initdata;
- static u8 log_tab[256] __initdata;
- static u8 sbx_tab[256] __initdata;
- static u8 isb_tab[256] __initdata;
- static u32 rco_tab[10];
- u32 crypto_ft_tab[4][256];
- u32 crypto_fl_tab[4][256];
- u32 crypto_it_tab[4][256];
- u32 crypto_il_tab[4][256];
- EXPORT_SYMBOL_GPL(crypto_ft_tab);
- EXPORT_SYMBOL_GPL(crypto_fl_tab);
- EXPORT_SYMBOL_GPL(crypto_it_tab);
- EXPORT_SYMBOL_GPL(crypto_il_tab);
- static inline u8 __init f_mult(u8 a, u8 b)
- {
- u8 aa = log_tab[a], cc = aa + log_tab[b];
- return pow_tab[cc + (cc < aa ? 1 : 0)];
- }
- #define ff_mult(a, b) (a && b ? f_mult(a, b) : 0)
- static void __init gen_tabs(void)
- {
- u32 i, t;
- u8 p, q;
- /*
- * log and power tables for GF(2**8) finite field with
- * 0x011b as modular polynomial - the simplest primitive
- * root is 0x03, used here to generate the tables
- */
- for (i = 0, p = 1; i < 256; ++i) {
- pow_tab[i] = (u8) p;
- log_tab[p] = (u8) i;
- p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
- }
- log_tab[1] = 0;
- for (i = 0, p = 1; i < 10; ++i) {
- rco_tab[i] = p;
- p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
- }
- for (i = 0; i < 256; ++i) {
- p = (i ? pow_tab[255 - log_tab[i]] : 0);
- q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
- p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
- sbx_tab[i] = p;
- isb_tab[p] = (u8) i;
- }
- for (i = 0; i < 256; ++i) {
- p = sbx_tab[i];
- t = p;
- crypto_fl_tab[0][i] = t;
- crypto_fl_tab[1][i] = rol32(t, 8);
- crypto_fl_tab[2][i] = rol32(t, 16);
- crypto_fl_tab[3][i] = rol32(t, 24);
- t = ((u32) ff_mult(2, p)) |
- ((u32) p << 8) |
- ((u32) p << 16) | ((u32) ff_mult(3, p) << 24);
- crypto_ft_tab[0][i] = t;
- crypto_ft_tab[1][i] = rol32(t, 8);
- crypto_ft_tab[2][i] = rol32(t, 16);
- crypto_ft_tab[3][i] = rol32(t, 24);
- p = isb_tab[i];
- t = p;
- crypto_il_tab[0][i] = t;
- crypto_il_tab[1][i] = rol32(t, 8);
- crypto_il_tab[2][i] = rol32(t, 16);
- crypto_il_tab[3][i] = rol32(t, 24);
- t = ((u32) ff_mult(14, p)) |
- ((u32) ff_mult(9, p) << 8) |
- ((u32) ff_mult(13, p) << 16) |
- ((u32) ff_mult(11, p) << 24);
- crypto_it_tab[0][i] = t;
- crypto_it_tab[1][i] = rol32(t, 8);
- crypto_it_tab[2][i] = rol32(t, 16);
- crypto_it_tab[3][i] = rol32(t, 24);
- }
- }
- /* initialise the key schedule from the user supplied key */
- #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
- #define imix_col(y,x) do { \
- u = star_x(x); \
- v = star_x(u); \
- w = star_x(v); \
- t = w ^ (x); \
- (y) = u ^ v ^ w; \
- (y) ^= ror32(u ^ t, 8) ^ \
- ror32(v ^ t, 16) ^ \
- ror32(t, 24); \
- } while (0)
- #define ls_box(x) \
- crypto_fl_tab[0][byte(x, 0)] ^ \
- crypto_fl_tab[1][byte(x, 1)] ^ \
- crypto_fl_tab[2][byte(x, 2)] ^ \
- crypto_fl_tab[3][byte(x, 3)]
- #define loop4(i) do { \
- t = ror32(t, 8); \
- t = ls_box(t) ^ rco_tab[i]; \
- t ^= ctx->key_enc[4 * i]; \
- ctx->key_enc[4 * i + 4] = t; \
- t ^= ctx->key_enc[4 * i + 1]; \
- ctx->key_enc[4 * i + 5] = t; \
- t ^= ctx->key_enc[4 * i + 2]; \
- ctx->key_enc[4 * i + 6] = t; \
- t ^= ctx->key_enc[4 * i + 3]; \
- ctx->key_enc[4 * i + 7] = t; \
- } while (0)
- #define loop6(i) do { \
- t = ror32(t, 8); \
- t = ls_box(t) ^ rco_tab[i]; \
- t ^= ctx->key_enc[6 * i]; \
- ctx->key_enc[6 * i + 6] = t; \
- t ^= ctx->key_enc[6 * i + 1]; \
- ctx->key_enc[6 * i + 7] = t; \
- t ^= ctx->key_enc[6 * i + 2]; \
- ctx->key_enc[6 * i + 8] = t; \
- t ^= ctx->key_enc[6 * i + 3]; \
- ctx->key_enc[6 * i + 9] = t; \
- t ^= ctx->key_enc[6 * i + 4]; \
- ctx->key_enc[6 * i + 10] = t; \
- t ^= ctx->key_enc[6 * i + 5]; \
- ctx->key_enc[6 * i + 11] = t; \
- } while (0)
- #define loop8(i) do { \
- t = ror32(t, 8); \
- t = ls_box(t) ^ rco_tab[i]; \
- t ^= ctx->key_enc[8 * i]; \
- ctx->key_enc[8 * i + 8] = t; \
- t ^= ctx->key_enc[8 * i + 1]; \
- ctx->key_enc[8 * i + 9] = t; \
- t ^= ctx->key_enc[8 * i + 2]; \
- ctx->key_enc[8 * i + 10] = t; \
- t ^= ctx->key_enc[8 * i + 3]; \
- ctx->key_enc[8 * i + 11] = t; \
- t = ctx->key_enc[8 * i + 4] ^ ls_box(t); \
- ctx->key_enc[8 * i + 12] = t; \
- t ^= ctx->key_enc[8 * i + 5]; \
- ctx->key_enc[8 * i + 13] = t; \
- t ^= ctx->key_enc[8 * i + 6]; \
- ctx->key_enc[8 * i + 14] = t; \
- t ^= ctx->key_enc[8 * i + 7]; \
- ctx->key_enc[8 * i + 15] = t; \
- } while (0)
- /**
- * crypto_aes_expand_key - Expands the AES key as described in FIPS-197
- * @ctx: The location where the computed key will be stored.
- * @in_key: The supplied key.
- * @key_len: The length of the supplied key.
- *
- * Returns 0 on success. The function fails only if an invalid key size (or
- * pointer) is supplied.
- * The expanded key size is 240 bytes (max of 14 rounds with a unique 16 bytes
- * key schedule plus a 16 bytes key which is used before the first round).
- * The decryption key is prepared for the "Equivalent Inverse Cipher" as
- * described in FIPS-197. The first slot (16 bytes) of each key (enc or dec) is
- * for the initial combination, the second slot for the first round and so on.
- */
- int crypto_aes_expand_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
- unsigned int key_len)
- {
- const __le32 *key = (const __le32 *)in_key;
- u32 i, t, u, v, w, j;
- if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
- key_len != AES_KEYSIZE_256)
- return -EINVAL;
- ctx->key_length = key_len;
- ctx->key_dec[key_len + 24] = ctx->key_enc[0] = le32_to_cpu(key[0]);
- ctx->key_dec[key_len + 25] = ctx->key_enc[1] = le32_to_cpu(key[1]);
- ctx->key_dec[key_len + 26] = ctx->key_enc[2] = le32_to_cpu(key[2]);
- ctx->key_dec[key_len + 27] = ctx->key_enc[3] = le32_to_cpu(key[3]);
- switch (key_len) {
- case AES_KEYSIZE_128:
- t = ctx->key_enc[3];
- for (i = 0; i < 10; ++i)
- loop4(i);
- break;
- case AES_KEYSIZE_192:
- ctx->key_enc[4] = le32_to_cpu(key[4]);
- t = ctx->key_enc[5] = le32_to_cpu(key[5]);
- for (i = 0; i < 8; ++i)
- loop6(i);
- break;
- case AES_KEYSIZE_256:
- ctx->key_enc[4] = le32_to_cpu(key[4]);
- ctx->key_enc[5] = le32_to_cpu(key[5]);
- ctx->key_enc[6] = le32_to_cpu(key[6]);
- t = ctx->key_enc[7] = le32_to_cpu(key[7]);
- for (i = 0; i < 7; ++i)
- loop8(i);
- break;
- }
- ctx->key_dec[0] = ctx->key_enc[key_len + 24];
- ctx->key_dec[1] = ctx->key_enc[key_len + 25];
- ctx->key_dec[2] = ctx->key_enc[key_len + 26];
- ctx->key_dec[3] = ctx->key_enc[key_len + 27];
- for (i = 4; i < key_len + 24; ++i) {
- j = key_len + 24 - (i & ~3) + (i & 3);
- imix_col(ctx->key_dec[j], ctx->key_enc[i]);
- }
- return 0;
- }
- EXPORT_SYMBOL_GPL(crypto_aes_expand_key);
- /**
- * crypto_aes_set_key - Set the AES key.
- * @tfm: The %crypto_tfm that is used in the context.
- * @in_key: The input key.
- * @key_len: The size of the key.
- *
- * Returns 0 on success, on failure the %CRYPTO_TFM_RES_BAD_KEY_LEN flag in tfm
- * is set. The function uses crypto_aes_expand_key() to expand the key.
- * &crypto_aes_ctx _must_ be the private data embedded in @tfm which is
- * retrieved with crypto_tfm_ctx().
- */
- int crypto_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
- unsigned int key_len)
- {
- struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
- u32 *flags = &tfm->crt_flags;
- int ret;
- ret = crypto_aes_expand_key(ctx, in_key, key_len);
- if (!ret)
- return 0;
- *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
- return -EINVAL;
- }
- EXPORT_SYMBOL_GPL(crypto_aes_set_key);
- /* encrypt a block of text */
- #define f_rn(bo, bi, n, k) do { \
- bo[n] = crypto_ft_tab[0][byte(bi[n], 0)] ^ \
- crypto_ft_tab[1][byte(bi[(n + 1) & 3], 1)] ^ \
- crypto_ft_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
- crypto_ft_tab[3][byte(bi[(n + 3) & 3], 3)] ^ *(k + n); \
- } while (0)
- #define f_nround(bo, bi, k) do {\
- f_rn(bo, bi, 0, k); \
- f_rn(bo, bi, 1, k); \
- f_rn(bo, bi, 2, k); \
- f_rn(bo, bi, 3, k); \
- k += 4; \
- } while (0)
- #define f_rl(bo, bi, n, k) do { \
- bo[n] = crypto_fl_tab[0][byte(bi[n], 0)] ^ \
- crypto_fl_tab[1][byte(bi[(n + 1) & 3], 1)] ^ \
- crypto_fl_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
- crypto_fl_tab[3][byte(bi[(n + 3) & 3], 3)] ^ *(k + n); \
- } while (0)
- #define f_lround(bo, bi, k) do {\
- f_rl(bo, bi, 0, k); \
- f_rl(bo, bi, 1, k); \
- f_rl(bo, bi, 2, k); \
- f_rl(bo, bi, 3, k); \
- } while (0)
- static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
- {
- const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
- const __le32 *src = (const __le32 *)in;
- __le32 *dst = (__le32 *)out;
- u32 b0[4], b1[4];
- const u32 *kp = ctx->key_enc + 4;
- const int key_len = ctx->key_length;
- b0[0] = le32_to_cpu(src[0]) ^ ctx->key_enc[0];
- b0[1] = le32_to_cpu(src[1]) ^ ctx->key_enc[1];
- b0[2] = le32_to_cpu(src[2]) ^ ctx->key_enc[2];
- b0[3] = le32_to_cpu(src[3]) ^ ctx->key_enc[3];
- if (key_len > 24) {
- f_nround(b1, b0, kp);
- f_nround(b0, b1, kp);
- }
- if (key_len > 16) {
- f_nround(b1, b0, kp);
- f_nround(b0, b1, kp);
- }
- f_nround(b1, b0, kp);
- f_nround(b0, b1, kp);
- f_nround(b1, b0, kp);
- f_nround(b0, b1, kp);
- f_nround(b1, b0, kp);
- f_nround(b0, b1, kp);
- f_nround(b1, b0, kp);
- f_nround(b0, b1, kp);
- f_nround(b1, b0, kp);
- f_lround(b0, b1, kp);
- dst[0] = cpu_to_le32(b0[0]);
- dst[1] = cpu_to_le32(b0[1]);
- dst[2] = cpu_to_le32(b0[2]);
- dst[3] = cpu_to_le32(b0[3]);
- }
- /* decrypt a block of text */
- #define i_rn(bo, bi, n, k) do { \
- bo[n] = crypto_it_tab[0][byte(bi[n], 0)] ^ \
- crypto_it_tab[1][byte(bi[(n + 3) & 3], 1)] ^ \
- crypto_it_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
- crypto_it_tab[3][byte(bi[(n + 1) & 3], 3)] ^ *(k + n); \
- } while (0)
- #define i_nround(bo, bi, k) do {\
- i_rn(bo, bi, 0, k); \
- i_rn(bo, bi, 1, k); \
- i_rn(bo, bi, 2, k); \
- i_rn(bo, bi, 3, k); \
- k += 4; \
- } while (0)
- #define i_rl(bo, bi, n, k) do { \
- bo[n] = crypto_il_tab[0][byte(bi[n], 0)] ^ \
- crypto_il_tab[1][byte(bi[(n + 3) & 3], 1)] ^ \
- crypto_il_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
- crypto_il_tab[3][byte(bi[(n + 1) & 3], 3)] ^ *(k + n); \
- } while (0)
- #define i_lround(bo, bi, k) do {\
- i_rl(bo, bi, 0, k); \
- i_rl(bo, bi, 1, k); \
- i_rl(bo, bi, 2, k); \
- i_rl(bo, bi, 3, k); \
- } while (0)
- static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
- {
- const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
- const __le32 *src = (const __le32 *)in;
- __le32 *dst = (__le32 *)out;
- u32 b0[4], b1[4];
- const int key_len = ctx->key_length;
- const u32 *kp = ctx->key_dec + 4;
- b0[0] = le32_to_cpu(src[0]) ^ ctx->key_dec[0];
- b0[1] = le32_to_cpu(src[1]) ^ ctx->key_dec[1];
- b0[2] = le32_to_cpu(src[2]) ^ ctx->key_dec[2];
- b0[3] = le32_to_cpu(src[3]) ^ ctx->key_dec[3];
- if (key_len > 24) {
- i_nround(b1, b0, kp);
- i_nround(b0, b1, kp);
- }
- if (key_len > 16) {
- i_nround(b1, b0, kp);
- i_nround(b0, b1, kp);
- }
- i_nround(b1, b0, kp);
- i_nround(b0, b1, kp);
- i_nround(b1, b0, kp);
- i_nround(b0, b1, kp);
- i_nround(b1, b0, kp);
- i_nround(b0, b1, kp);
- i_nround(b1, b0, kp);
- i_nround(b0, b1, kp);
- i_nround(b1, b0, kp);
- i_lround(b0, b1, kp);
- dst[0] = cpu_to_le32(b0[0]);
- dst[1] = cpu_to_le32(b0[1]);
- dst[2] = cpu_to_le32(b0[2]);
- dst[3] = cpu_to_le32(b0[3]);
- }
- static struct crypto_alg aes_alg = {
- .cra_name = "aes",
- .cra_driver_name = "aes-generic",
- .cra_priority = 100,
- .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
- .cra_blocksize = AES_BLOCK_SIZE,
- .cra_ctxsize = sizeof(struct crypto_aes_ctx),
- .cra_alignmask = 3,
- .cra_module = THIS_MODULE,
- .cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
- .cra_u = {
- .cipher = {
- .cia_min_keysize = AES_MIN_KEY_SIZE,
- .cia_max_keysize = AES_MAX_KEY_SIZE,
- .cia_setkey = crypto_aes_set_key,
- .cia_encrypt = aes_encrypt,
- .cia_decrypt = aes_decrypt
- }
- }
- };
- static int __init aes_init(void)
- {
- gen_tabs();
- return crypto_register_alg(&aes_alg);
- }
- static void __exit aes_fini(void)
- {
- crypto_unregister_alg(&aes_alg);
- }
- module_init(aes_init);
- module_exit(aes_fini);
- MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
- MODULE_LICENSE("Dual BSD/GPL");
- MODULE_ALIAS("aes");
|