process_32.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. *
  4. * Pentium III FXSR, SSE support
  5. * Gareth Hughes <gareth@valinux.com>, May 2000
  6. */
  7. /*
  8. * This file handles the architecture-dependent parts of process handling..
  9. */
  10. #include <stdarg.h>
  11. #include <linux/cpu.h>
  12. #include <linux/errno.h>
  13. #include <linux/sched.h>
  14. #include <linux/fs.h>
  15. #include <linux/kernel.h>
  16. #include <linux/mm.h>
  17. #include <linux/elfcore.h>
  18. #include <linux/smp.h>
  19. #include <linux/stddef.h>
  20. #include <linux/slab.h>
  21. #include <linux/vmalloc.h>
  22. #include <linux/user.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/utsname.h>
  25. #include <linux/delay.h>
  26. #include <linux/reboot.h>
  27. #include <linux/init.h>
  28. #include <linux/mc146818rtc.h>
  29. #include <linux/module.h>
  30. #include <linux/kallsyms.h>
  31. #include <linux/ptrace.h>
  32. #include <linux/random.h>
  33. #include <linux/personality.h>
  34. #include <linux/tick.h>
  35. #include <linux/percpu.h>
  36. #include <linux/prctl.h>
  37. #include <linux/dmi.h>
  38. #include <asm/uaccess.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/system.h>
  41. #include <asm/io.h>
  42. #include <asm/ldt.h>
  43. #include <asm/processor.h>
  44. #include <asm/i387.h>
  45. #include <asm/desc.h>
  46. #ifdef CONFIG_MATH_EMULATION
  47. #include <asm/math_emu.h>
  48. #endif
  49. #include <linux/err.h>
  50. #include <asm/tlbflush.h>
  51. #include <asm/cpu.h>
  52. #include <asm/kdebug.h>
  53. #include <asm/idle.h>
  54. #include <asm/syscalls.h>
  55. #include <asm/smp.h>
  56. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  57. DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
  58. EXPORT_PER_CPU_SYMBOL(current_task);
  59. DEFINE_PER_CPU(int, cpu_number);
  60. EXPORT_PER_CPU_SYMBOL(cpu_number);
  61. /*
  62. * Return saved PC of a blocked thread.
  63. */
  64. unsigned long thread_saved_pc(struct task_struct *tsk)
  65. {
  66. return ((unsigned long *)tsk->thread.sp)[3];
  67. }
  68. #ifndef CONFIG_SMP
  69. static inline void play_dead(void)
  70. {
  71. BUG();
  72. }
  73. #endif
  74. /*
  75. * The idle thread. There's no useful work to be
  76. * done, so just try to conserve power and have a
  77. * low exit latency (ie sit in a loop waiting for
  78. * somebody to say that they'd like to reschedule)
  79. */
  80. void cpu_idle(void)
  81. {
  82. int cpu = smp_processor_id();
  83. current_thread_info()->status |= TS_POLLING;
  84. /* endless idle loop with no priority at all */
  85. while (1) {
  86. tick_nohz_stop_sched_tick(1);
  87. while (!need_resched()) {
  88. check_pgt_cache();
  89. rmb();
  90. if (rcu_pending(cpu))
  91. rcu_check_callbacks(cpu, 0);
  92. if (cpu_is_offline(cpu))
  93. play_dead();
  94. local_irq_disable();
  95. __get_cpu_var(irq_stat).idle_timestamp = jiffies;
  96. /* Don't trace irqs off for idle */
  97. stop_critical_timings();
  98. pm_idle();
  99. start_critical_timings();
  100. }
  101. tick_nohz_restart_sched_tick();
  102. preempt_enable_no_resched();
  103. schedule();
  104. preempt_disable();
  105. }
  106. }
  107. void __show_regs(struct pt_regs *regs, int all)
  108. {
  109. unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
  110. unsigned long d0, d1, d2, d3, d6, d7;
  111. unsigned long sp;
  112. unsigned short ss, gs;
  113. const char *board;
  114. if (user_mode_vm(regs)) {
  115. sp = regs->sp;
  116. ss = regs->ss & 0xffff;
  117. savesegment(gs, gs);
  118. } else {
  119. sp = (unsigned long) (&regs->sp);
  120. savesegment(ss, ss);
  121. savesegment(gs, gs);
  122. }
  123. printk("\n");
  124. board = dmi_get_system_info(DMI_PRODUCT_NAME);
  125. if (!board)
  126. board = "";
  127. printk("Pid: %d, comm: %s %s (%s %.*s) %s\n",
  128. task_pid_nr(current), current->comm,
  129. print_tainted(), init_utsname()->release,
  130. (int)strcspn(init_utsname()->version, " "),
  131. init_utsname()->version, board);
  132. printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
  133. (u16)regs->cs, regs->ip, regs->flags,
  134. smp_processor_id());
  135. print_symbol("EIP is at %s\n", regs->ip);
  136. printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
  137. regs->ax, regs->bx, regs->cx, regs->dx);
  138. printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
  139. regs->si, regs->di, regs->bp, sp);
  140. printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
  141. (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
  142. if (!all)
  143. return;
  144. cr0 = read_cr0();
  145. cr2 = read_cr2();
  146. cr3 = read_cr3();
  147. cr4 = read_cr4_safe();
  148. printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
  149. cr0, cr2, cr3, cr4);
  150. get_debugreg(d0, 0);
  151. get_debugreg(d1, 1);
  152. get_debugreg(d2, 2);
  153. get_debugreg(d3, 3);
  154. printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
  155. d0, d1, d2, d3);
  156. get_debugreg(d6, 6);
  157. get_debugreg(d7, 7);
  158. printk("DR6: %08lx DR7: %08lx\n",
  159. d6, d7);
  160. }
  161. void show_regs(struct pt_regs *regs)
  162. {
  163. __show_regs(regs, 1);
  164. show_trace(NULL, regs, &regs->sp, regs->bp);
  165. }
  166. /*
  167. * This gets run with %bx containing the
  168. * function to call, and %dx containing
  169. * the "args".
  170. */
  171. extern void kernel_thread_helper(void);
  172. /*
  173. * Create a kernel thread
  174. */
  175. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  176. {
  177. struct pt_regs regs;
  178. memset(&regs, 0, sizeof(regs));
  179. regs.bx = (unsigned long) fn;
  180. regs.dx = (unsigned long) arg;
  181. regs.ds = __USER_DS;
  182. regs.es = __USER_DS;
  183. regs.fs = __KERNEL_PERCPU;
  184. regs.orig_ax = -1;
  185. regs.ip = (unsigned long) kernel_thread_helper;
  186. regs.cs = __KERNEL_CS | get_kernel_rpl();
  187. regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
  188. /* Ok, create the new process.. */
  189. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  190. }
  191. EXPORT_SYMBOL(kernel_thread);
  192. /*
  193. * Free current thread data structures etc..
  194. */
  195. void exit_thread(void)
  196. {
  197. /* The process may have allocated an io port bitmap... nuke it. */
  198. if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
  199. struct task_struct *tsk = current;
  200. struct thread_struct *t = &tsk->thread;
  201. int cpu = get_cpu();
  202. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  203. kfree(t->io_bitmap_ptr);
  204. t->io_bitmap_ptr = NULL;
  205. clear_thread_flag(TIF_IO_BITMAP);
  206. /*
  207. * Careful, clear this in the TSS too:
  208. */
  209. memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
  210. t->io_bitmap_max = 0;
  211. tss->io_bitmap_owner = NULL;
  212. tss->io_bitmap_max = 0;
  213. tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
  214. put_cpu();
  215. }
  216. #ifdef CONFIG_X86_DS
  217. /* Free any DS contexts that have not been properly released. */
  218. if (unlikely(current->thread.ds_ctx)) {
  219. /* we clear debugctl to make sure DS is not used. */
  220. update_debugctlmsr(0);
  221. ds_free(current->thread.ds_ctx);
  222. }
  223. #endif /* CONFIG_X86_DS */
  224. }
  225. void flush_thread(void)
  226. {
  227. struct task_struct *tsk = current;
  228. tsk->thread.debugreg0 = 0;
  229. tsk->thread.debugreg1 = 0;
  230. tsk->thread.debugreg2 = 0;
  231. tsk->thread.debugreg3 = 0;
  232. tsk->thread.debugreg6 = 0;
  233. tsk->thread.debugreg7 = 0;
  234. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  235. clear_tsk_thread_flag(tsk, TIF_DEBUG);
  236. /*
  237. * Forget coprocessor state..
  238. */
  239. tsk->fpu_counter = 0;
  240. clear_fpu(tsk);
  241. clear_used_math();
  242. }
  243. void release_thread(struct task_struct *dead_task)
  244. {
  245. BUG_ON(dead_task->mm);
  246. release_vm86_irqs(dead_task);
  247. }
  248. /*
  249. * This gets called before we allocate a new thread and copy
  250. * the current task into it.
  251. */
  252. void prepare_to_copy(struct task_struct *tsk)
  253. {
  254. unlazy_fpu(tsk);
  255. }
  256. int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
  257. unsigned long unused,
  258. struct task_struct * p, struct pt_regs * regs)
  259. {
  260. struct pt_regs * childregs;
  261. struct task_struct *tsk;
  262. int err;
  263. childregs = task_pt_regs(p);
  264. *childregs = *regs;
  265. childregs->ax = 0;
  266. childregs->sp = sp;
  267. p->thread.sp = (unsigned long) childregs;
  268. p->thread.sp0 = (unsigned long) (childregs+1);
  269. p->thread.ip = (unsigned long) ret_from_fork;
  270. savesegment(gs, p->thread.gs);
  271. tsk = current;
  272. if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
  273. p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
  274. IO_BITMAP_BYTES, GFP_KERNEL);
  275. if (!p->thread.io_bitmap_ptr) {
  276. p->thread.io_bitmap_max = 0;
  277. return -ENOMEM;
  278. }
  279. set_tsk_thread_flag(p, TIF_IO_BITMAP);
  280. }
  281. err = 0;
  282. /*
  283. * Set a new TLS for the child thread?
  284. */
  285. if (clone_flags & CLONE_SETTLS)
  286. err = do_set_thread_area(p, -1,
  287. (struct user_desc __user *)childregs->si, 0);
  288. if (err && p->thread.io_bitmap_ptr) {
  289. kfree(p->thread.io_bitmap_ptr);
  290. p->thread.io_bitmap_max = 0;
  291. }
  292. return err;
  293. }
  294. void
  295. start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
  296. {
  297. __asm__("movl %0, %%gs" :: "r"(0));
  298. regs->fs = 0;
  299. set_fs(USER_DS);
  300. regs->ds = __USER_DS;
  301. regs->es = __USER_DS;
  302. regs->ss = __USER_DS;
  303. regs->cs = __USER_CS;
  304. regs->ip = new_ip;
  305. regs->sp = new_sp;
  306. /*
  307. * Free the old FP and other extended state
  308. */
  309. free_thread_xstate(current);
  310. }
  311. EXPORT_SYMBOL_GPL(start_thread);
  312. static void hard_disable_TSC(void)
  313. {
  314. write_cr4(read_cr4() | X86_CR4_TSD);
  315. }
  316. void disable_TSC(void)
  317. {
  318. preempt_disable();
  319. if (!test_and_set_thread_flag(TIF_NOTSC))
  320. /*
  321. * Must flip the CPU state synchronously with
  322. * TIF_NOTSC in the current running context.
  323. */
  324. hard_disable_TSC();
  325. preempt_enable();
  326. }
  327. static void hard_enable_TSC(void)
  328. {
  329. write_cr4(read_cr4() & ~X86_CR4_TSD);
  330. }
  331. static void enable_TSC(void)
  332. {
  333. preempt_disable();
  334. if (test_and_clear_thread_flag(TIF_NOTSC))
  335. /*
  336. * Must flip the CPU state synchronously with
  337. * TIF_NOTSC in the current running context.
  338. */
  339. hard_enable_TSC();
  340. preempt_enable();
  341. }
  342. int get_tsc_mode(unsigned long adr)
  343. {
  344. unsigned int val;
  345. if (test_thread_flag(TIF_NOTSC))
  346. val = PR_TSC_SIGSEGV;
  347. else
  348. val = PR_TSC_ENABLE;
  349. return put_user(val, (unsigned int __user *)adr);
  350. }
  351. int set_tsc_mode(unsigned int val)
  352. {
  353. if (val == PR_TSC_SIGSEGV)
  354. disable_TSC();
  355. else if (val == PR_TSC_ENABLE)
  356. enable_TSC();
  357. else
  358. return -EINVAL;
  359. return 0;
  360. }
  361. #ifdef CONFIG_X86_DS
  362. static int update_debugctl(struct thread_struct *prev,
  363. struct thread_struct *next, unsigned long debugctl)
  364. {
  365. unsigned long ds_prev = 0;
  366. unsigned long ds_next = 0;
  367. if (prev->ds_ctx)
  368. ds_prev = (unsigned long)prev->ds_ctx->ds;
  369. if (next->ds_ctx)
  370. ds_next = (unsigned long)next->ds_ctx->ds;
  371. if (ds_next != ds_prev) {
  372. /* we clear debugctl to make sure DS
  373. * is not in use when we change it */
  374. debugctl = 0;
  375. update_debugctlmsr(0);
  376. wrmsr(MSR_IA32_DS_AREA, ds_next, 0);
  377. }
  378. return debugctl;
  379. }
  380. #else
  381. static int update_debugctl(struct thread_struct *prev,
  382. struct thread_struct *next, unsigned long debugctl)
  383. {
  384. return debugctl;
  385. }
  386. #endif /* CONFIG_X86_DS */
  387. static noinline void
  388. __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  389. struct tss_struct *tss)
  390. {
  391. struct thread_struct *prev, *next;
  392. unsigned long debugctl;
  393. prev = &prev_p->thread;
  394. next = &next_p->thread;
  395. debugctl = update_debugctl(prev, next, prev->debugctlmsr);
  396. if (next->debugctlmsr != debugctl)
  397. update_debugctlmsr(next->debugctlmsr);
  398. if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
  399. set_debugreg(next->debugreg0, 0);
  400. set_debugreg(next->debugreg1, 1);
  401. set_debugreg(next->debugreg2, 2);
  402. set_debugreg(next->debugreg3, 3);
  403. /* no 4 and 5 */
  404. set_debugreg(next->debugreg6, 6);
  405. set_debugreg(next->debugreg7, 7);
  406. }
  407. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  408. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  409. /* prev and next are different */
  410. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  411. hard_disable_TSC();
  412. else
  413. hard_enable_TSC();
  414. }
  415. #ifdef CONFIG_X86_PTRACE_BTS
  416. if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
  417. ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
  418. if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
  419. ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
  420. #endif /* CONFIG_X86_PTRACE_BTS */
  421. if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  422. /*
  423. * Disable the bitmap via an invalid offset. We still cache
  424. * the previous bitmap owner and the IO bitmap contents:
  425. */
  426. tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
  427. return;
  428. }
  429. if (likely(next == tss->io_bitmap_owner)) {
  430. /*
  431. * Previous owner of the bitmap (hence the bitmap content)
  432. * matches the next task, we dont have to do anything but
  433. * to set a valid offset in the TSS:
  434. */
  435. tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
  436. return;
  437. }
  438. /*
  439. * Lazy TSS's I/O bitmap copy. We set an invalid offset here
  440. * and we let the task to get a GPF in case an I/O instruction
  441. * is performed. The handler of the GPF will verify that the
  442. * faulting task has a valid I/O bitmap and, it true, does the
  443. * real copy and restart the instruction. This will save us
  444. * redundant copies when the currently switched task does not
  445. * perform any I/O during its timeslice.
  446. */
  447. tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
  448. }
  449. /*
  450. * switch_to(x,yn) should switch tasks from x to y.
  451. *
  452. * We fsave/fwait so that an exception goes off at the right time
  453. * (as a call from the fsave or fwait in effect) rather than to
  454. * the wrong process. Lazy FP saving no longer makes any sense
  455. * with modern CPU's, and this simplifies a lot of things (SMP
  456. * and UP become the same).
  457. *
  458. * NOTE! We used to use the x86 hardware context switching. The
  459. * reason for not using it any more becomes apparent when you
  460. * try to recover gracefully from saved state that is no longer
  461. * valid (stale segment register values in particular). With the
  462. * hardware task-switch, there is no way to fix up bad state in
  463. * a reasonable manner.
  464. *
  465. * The fact that Intel documents the hardware task-switching to
  466. * be slow is a fairly red herring - this code is not noticeably
  467. * faster. However, there _is_ some room for improvement here,
  468. * so the performance issues may eventually be a valid point.
  469. * More important, however, is the fact that this allows us much
  470. * more flexibility.
  471. *
  472. * The return value (in %ax) will be the "prev" task after
  473. * the task-switch, and shows up in ret_from_fork in entry.S,
  474. * for example.
  475. */
  476. struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
  477. {
  478. struct thread_struct *prev = &prev_p->thread,
  479. *next = &next_p->thread;
  480. int cpu = smp_processor_id();
  481. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  482. /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
  483. __unlazy_fpu(prev_p);
  484. /* we're going to use this soon, after a few expensive things */
  485. if (next_p->fpu_counter > 5)
  486. prefetch(next->xstate);
  487. /*
  488. * Reload esp0.
  489. */
  490. load_sp0(tss, next);
  491. /*
  492. * Save away %gs. No need to save %fs, as it was saved on the
  493. * stack on entry. No need to save %es and %ds, as those are
  494. * always kernel segments while inside the kernel. Doing this
  495. * before setting the new TLS descriptors avoids the situation
  496. * where we temporarily have non-reloadable segments in %fs
  497. * and %gs. This could be an issue if the NMI handler ever
  498. * used %fs or %gs (it does not today), or if the kernel is
  499. * running inside of a hypervisor layer.
  500. */
  501. savesegment(gs, prev->gs);
  502. /*
  503. * Load the per-thread Thread-Local Storage descriptor.
  504. */
  505. load_TLS(next, cpu);
  506. /*
  507. * Restore IOPL if needed. In normal use, the flags restore
  508. * in the switch assembly will handle this. But if the kernel
  509. * is running virtualized at a non-zero CPL, the popf will
  510. * not restore flags, so it must be done in a separate step.
  511. */
  512. if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
  513. set_iopl_mask(next->iopl);
  514. /*
  515. * Now maybe handle debug registers and/or IO bitmaps
  516. */
  517. if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
  518. task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
  519. __switch_to_xtra(prev_p, next_p, tss);
  520. /*
  521. * Leave lazy mode, flushing any hypercalls made here.
  522. * This must be done before restoring TLS segments so
  523. * the GDT and LDT are properly updated, and must be
  524. * done before math_state_restore, so the TS bit is up
  525. * to date.
  526. */
  527. arch_leave_lazy_cpu_mode();
  528. /* If the task has used fpu the last 5 timeslices, just do a full
  529. * restore of the math state immediately to avoid the trap; the
  530. * chances of needing FPU soon are obviously high now
  531. *
  532. * tsk_used_math() checks prevent calling math_state_restore(),
  533. * which can sleep in the case of !tsk_used_math()
  534. */
  535. if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
  536. math_state_restore();
  537. /*
  538. * Restore %gs if needed (which is common)
  539. */
  540. if (prev->gs | next->gs)
  541. loadsegment(gs, next->gs);
  542. x86_write_percpu(current_task, next_p);
  543. return prev_p;
  544. }
  545. asmlinkage int sys_fork(struct pt_regs regs)
  546. {
  547. return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
  548. }
  549. asmlinkage int sys_clone(struct pt_regs regs)
  550. {
  551. unsigned long clone_flags;
  552. unsigned long newsp;
  553. int __user *parent_tidptr, *child_tidptr;
  554. clone_flags = regs.bx;
  555. newsp = regs.cx;
  556. parent_tidptr = (int __user *)regs.dx;
  557. child_tidptr = (int __user *)regs.di;
  558. if (!newsp)
  559. newsp = regs.sp;
  560. return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
  561. }
  562. /*
  563. * This is trivial, and on the face of it looks like it
  564. * could equally well be done in user mode.
  565. *
  566. * Not so, for quite unobvious reasons - register pressure.
  567. * In user mode vfork() cannot have a stack frame, and if
  568. * done by calling the "clone()" system call directly, you
  569. * do not have enough call-clobbered registers to hold all
  570. * the information you need.
  571. */
  572. asmlinkage int sys_vfork(struct pt_regs regs)
  573. {
  574. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
  575. }
  576. /*
  577. * sys_execve() executes a new program.
  578. */
  579. asmlinkage int sys_execve(struct pt_regs regs)
  580. {
  581. int error;
  582. char * filename;
  583. filename = getname((char __user *) regs.bx);
  584. error = PTR_ERR(filename);
  585. if (IS_ERR(filename))
  586. goto out;
  587. error = do_execve(filename,
  588. (char __user * __user *) regs.cx,
  589. (char __user * __user *) regs.dx,
  590. &regs);
  591. if (error == 0) {
  592. /* Make sure we don't return using sysenter.. */
  593. set_thread_flag(TIF_IRET);
  594. }
  595. putname(filename);
  596. out:
  597. return error;
  598. }
  599. #define top_esp (THREAD_SIZE - sizeof(unsigned long))
  600. #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
  601. unsigned long get_wchan(struct task_struct *p)
  602. {
  603. unsigned long bp, sp, ip;
  604. unsigned long stack_page;
  605. int count = 0;
  606. if (!p || p == current || p->state == TASK_RUNNING)
  607. return 0;
  608. stack_page = (unsigned long)task_stack_page(p);
  609. sp = p->thread.sp;
  610. if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
  611. return 0;
  612. /* include/asm-i386/system.h:switch_to() pushes bp last. */
  613. bp = *(unsigned long *) sp;
  614. do {
  615. if (bp < stack_page || bp > top_ebp+stack_page)
  616. return 0;
  617. ip = *(unsigned long *) (bp+4);
  618. if (!in_sched_functions(ip))
  619. return ip;
  620. bp = *(unsigned long *) bp;
  621. } while (count++ < 16);
  622. return 0;
  623. }
  624. unsigned long arch_align_stack(unsigned long sp)
  625. {
  626. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  627. sp -= get_random_int() % 8192;
  628. return sp & ~0xf;
  629. }
  630. unsigned long arch_randomize_brk(struct mm_struct *mm)
  631. {
  632. unsigned long range_end = mm->brk + 0x02000000;
  633. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  634. }