uv_hub.h 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * SGI UV architectural definitions
  7. *
  8. * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
  9. */
  10. #ifndef _ASM_X86_UV_UV_HUB_H
  11. #define _ASM_X86_UV_UV_HUB_H
  12. #include <linux/numa.h>
  13. #include <linux/percpu.h>
  14. #include <linux/timer.h>
  15. #include <asm/types.h>
  16. #include <asm/percpu.h>
  17. /*
  18. * Addressing Terminology
  19. *
  20. * M - The low M bits of a physical address represent the offset
  21. * into the blade local memory. RAM memory on a blade is physically
  22. * contiguous (although various IO spaces may punch holes in
  23. * it)..
  24. *
  25. * N - Number of bits in the node portion of a socket physical
  26. * address.
  27. *
  28. * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
  29. * routers always have low bit of 1, C/MBricks have low bit
  30. * equal to 0. Most addressing macros that target UV hub chips
  31. * right shift the NASID by 1 to exclude the always-zero bit.
  32. * NASIDs contain up to 15 bits.
  33. *
  34. * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
  35. * of nasids.
  36. *
  37. * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
  38. * of the nasid for socket usage.
  39. *
  40. *
  41. * NumaLink Global Physical Address Format:
  42. * +--------------------------------+---------------------+
  43. * |00..000| GNODE | NodeOffset |
  44. * +--------------------------------+---------------------+
  45. * |<-------53 - M bits --->|<--------M bits ----->
  46. *
  47. * M - number of node offset bits (35 .. 40)
  48. *
  49. *
  50. * Memory/UV-HUB Processor Socket Address Format:
  51. * +----------------+---------------+---------------------+
  52. * |00..000000000000| PNODE | NodeOffset |
  53. * +----------------+---------------+---------------------+
  54. * <--- N bits --->|<--------M bits ----->
  55. *
  56. * M - number of node offset bits (35 .. 40)
  57. * N - number of PNODE bits (0 .. 10)
  58. *
  59. * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
  60. * The actual values are configuration dependent and are set at
  61. * boot time. M & N values are set by the hardware/BIOS at boot.
  62. *
  63. *
  64. * APICID format
  65. * NOTE!!!!!! This is the current format of the APICID. However, code
  66. * should assume that this will change in the future. Use functions
  67. * in this file for all APICID bit manipulations and conversion.
  68. *
  69. * 1111110000000000
  70. * 5432109876543210
  71. * pppppppppplc0cch
  72. * sssssssssss
  73. *
  74. * p = pnode bits
  75. * l = socket number on board
  76. * c = core
  77. * h = hyperthread
  78. * s = bits that are in the SOCKET_ID CSR
  79. *
  80. * Note: Processor only supports 12 bits in the APICID register. The ACPI
  81. * tables hold all 16 bits. Software needs to be aware of this.
  82. *
  83. * Unless otherwise specified, all references to APICID refer to
  84. * the FULL value contained in ACPI tables, not the subset in the
  85. * processor APICID register.
  86. */
  87. /*
  88. * Maximum number of bricks in all partitions and in all coherency domains.
  89. * This is the total number of bricks accessible in the numalink fabric. It
  90. * includes all C & M bricks. Routers are NOT included.
  91. *
  92. * This value is also the value of the maximum number of non-router NASIDs
  93. * in the numalink fabric.
  94. *
  95. * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
  96. */
  97. #define UV_MAX_NUMALINK_BLADES 16384
  98. /*
  99. * Maximum number of C/Mbricks within a software SSI (hardware may support
  100. * more).
  101. */
  102. #define UV_MAX_SSI_BLADES 256
  103. /*
  104. * The largest possible NASID of a C or M brick (+ 2)
  105. */
  106. #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_NODES * 2)
  107. /*
  108. * The following defines attributes of the HUB chip. These attributes are
  109. * frequently referenced and are kept in the per-cpu data areas of each cpu.
  110. * They are kept together in a struct to minimize cache misses.
  111. */
  112. struct uv_hub_info_s {
  113. unsigned long global_mmr_base;
  114. unsigned long gpa_mask;
  115. unsigned long gnode_upper;
  116. unsigned long lowmem_remap_top;
  117. unsigned long lowmem_remap_base;
  118. unsigned short pnode;
  119. unsigned short pnode_mask;
  120. unsigned short coherency_domain_number;
  121. unsigned short numa_blade_id;
  122. unsigned char blade_processor_id;
  123. unsigned char m_val;
  124. unsigned char n_val;
  125. };
  126. DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
  127. #define uv_hub_info (&__get_cpu_var(__uv_hub_info))
  128. #define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
  129. /*
  130. * Local & Global MMR space macros.
  131. * Note: macros are intended to be used ONLY by inline functions
  132. * in this file - not by other kernel code.
  133. * n - NASID (full 15-bit global nasid)
  134. * g - GNODE (full 15-bit global nasid, right shifted 1)
  135. * p - PNODE (local part of nsids, right shifted 1)
  136. */
  137. #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
  138. #define UV_PNODE_TO_NASID(p) (((p) << 1) | uv_hub_info->gnode_upper)
  139. #define UV_LOCAL_MMR_BASE 0xf4000000UL
  140. #define UV_GLOBAL_MMR32_BASE 0xf8000000UL
  141. #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
  142. #define UV_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
  143. #define UV_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
  144. #define UV_GLOBAL_MMR32_PNODE_SHIFT 15
  145. #define UV_GLOBAL_MMR64_PNODE_SHIFT 26
  146. #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
  147. #define UV_GLOBAL_MMR64_PNODE_BITS(p) \
  148. ((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)
  149. #define UV_APIC_PNODE_SHIFT 6
  150. /*
  151. * Macros for converting between kernel virtual addresses, socket local physical
  152. * addresses, and UV global physical addresses.
  153. * Note: use the standard __pa() & __va() macros for converting
  154. * between socket virtual and socket physical addresses.
  155. */
  156. /* socket phys RAM --> UV global physical address */
  157. static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
  158. {
  159. if (paddr < uv_hub_info->lowmem_remap_top)
  160. paddr += uv_hub_info->lowmem_remap_base;
  161. return paddr | uv_hub_info->gnode_upper;
  162. }
  163. /* socket virtual --> UV global physical address */
  164. static inline unsigned long uv_gpa(void *v)
  165. {
  166. return __pa(v) | uv_hub_info->gnode_upper;
  167. }
  168. /* socket virtual --> UV global physical address */
  169. static inline void *uv_vgpa(void *v)
  170. {
  171. return (void *)uv_gpa(v);
  172. }
  173. /* UV global physical address --> socket virtual */
  174. static inline void *uv_va(unsigned long gpa)
  175. {
  176. return __va(gpa & uv_hub_info->gpa_mask);
  177. }
  178. /* pnode, offset --> socket virtual */
  179. static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
  180. {
  181. return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
  182. }
  183. /*
  184. * Extract a PNODE from an APICID (full apicid, not processor subset)
  185. */
  186. static inline int uv_apicid_to_pnode(int apicid)
  187. {
  188. return (apicid >> UV_APIC_PNODE_SHIFT);
  189. }
  190. /*
  191. * Access global MMRs using the low memory MMR32 space. This region supports
  192. * faster MMR access but not all MMRs are accessible in this space.
  193. */
  194. static inline unsigned long *uv_global_mmr32_address(int pnode,
  195. unsigned long offset)
  196. {
  197. return __va(UV_GLOBAL_MMR32_BASE |
  198. UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
  199. }
  200. static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
  201. unsigned long val)
  202. {
  203. *uv_global_mmr32_address(pnode, offset) = val;
  204. }
  205. static inline unsigned long uv_read_global_mmr32(int pnode,
  206. unsigned long offset)
  207. {
  208. return *uv_global_mmr32_address(pnode, offset);
  209. }
  210. /*
  211. * Access Global MMR space using the MMR space located at the top of physical
  212. * memory.
  213. */
  214. static inline unsigned long *uv_global_mmr64_address(int pnode,
  215. unsigned long offset)
  216. {
  217. return __va(UV_GLOBAL_MMR64_BASE |
  218. UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
  219. }
  220. static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
  221. unsigned long val)
  222. {
  223. *uv_global_mmr64_address(pnode, offset) = val;
  224. }
  225. static inline unsigned long uv_read_global_mmr64(int pnode,
  226. unsigned long offset)
  227. {
  228. return *uv_global_mmr64_address(pnode, offset);
  229. }
  230. /*
  231. * Access hub local MMRs. Faster than using global space but only local MMRs
  232. * are accessible.
  233. */
  234. static inline unsigned long *uv_local_mmr_address(unsigned long offset)
  235. {
  236. return __va(UV_LOCAL_MMR_BASE | offset);
  237. }
  238. static inline unsigned long uv_read_local_mmr(unsigned long offset)
  239. {
  240. return *uv_local_mmr_address(offset);
  241. }
  242. static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
  243. {
  244. *uv_local_mmr_address(offset) = val;
  245. }
  246. /*
  247. * Structures and definitions for converting between cpu, node, pnode, and blade
  248. * numbers.
  249. */
  250. struct uv_blade_info {
  251. unsigned short nr_possible_cpus;
  252. unsigned short nr_online_cpus;
  253. unsigned short pnode;
  254. };
  255. extern struct uv_blade_info *uv_blade_info;
  256. extern short *uv_node_to_blade;
  257. extern short *uv_cpu_to_blade;
  258. extern short uv_possible_blades;
  259. /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
  260. static inline int uv_blade_processor_id(void)
  261. {
  262. return uv_hub_info->blade_processor_id;
  263. }
  264. /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
  265. static inline int uv_numa_blade_id(void)
  266. {
  267. return uv_hub_info->numa_blade_id;
  268. }
  269. /* Convert a cpu number to the the UV blade number */
  270. static inline int uv_cpu_to_blade_id(int cpu)
  271. {
  272. return uv_cpu_to_blade[cpu];
  273. }
  274. /* Convert linux node number to the UV blade number */
  275. static inline int uv_node_to_blade_id(int nid)
  276. {
  277. return uv_node_to_blade[nid];
  278. }
  279. /* Convert a blade id to the PNODE of the blade */
  280. static inline int uv_blade_to_pnode(int bid)
  281. {
  282. return uv_blade_info[bid].pnode;
  283. }
  284. /* Determine the number of possible cpus on a blade */
  285. static inline int uv_blade_nr_possible_cpus(int bid)
  286. {
  287. return uv_blade_info[bid].nr_possible_cpus;
  288. }
  289. /* Determine the number of online cpus on a blade */
  290. static inline int uv_blade_nr_online_cpus(int bid)
  291. {
  292. return uv_blade_info[bid].nr_online_cpus;
  293. }
  294. /* Convert a cpu id to the PNODE of the blade containing the cpu */
  295. static inline int uv_cpu_to_pnode(int cpu)
  296. {
  297. return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
  298. }
  299. /* Convert a linux node number to the PNODE of the blade */
  300. static inline int uv_node_to_pnode(int nid)
  301. {
  302. return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
  303. }
  304. /* Maximum possible number of blades */
  305. static inline int uv_num_possible_blades(void)
  306. {
  307. return uv_possible_blades;
  308. }
  309. #endif /* _ASM_X86_UV_UV_HUB_H */