lguest.c 65 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088
  1. /*P:100 This is the Launcher code, a simple program which lays out the
  2. * "physical" memory for the new Guest by mapping the kernel image and
  3. * the virtual devices, then opens /dev/lguest to tell the kernel
  4. * about the Guest and control it. :*/
  5. #define _LARGEFILE64_SOURCE
  6. #define _GNU_SOURCE
  7. #include <stdio.h>
  8. #include <string.h>
  9. #include <unistd.h>
  10. #include <err.h>
  11. #include <stdint.h>
  12. #include <stdlib.h>
  13. #include <elf.h>
  14. #include <sys/mman.h>
  15. #include <sys/param.h>
  16. #include <sys/types.h>
  17. #include <sys/stat.h>
  18. #include <sys/wait.h>
  19. #include <fcntl.h>
  20. #include <stdbool.h>
  21. #include <errno.h>
  22. #include <ctype.h>
  23. #include <sys/socket.h>
  24. #include <sys/ioctl.h>
  25. #include <sys/time.h>
  26. #include <time.h>
  27. #include <netinet/in.h>
  28. #include <net/if.h>
  29. #include <linux/sockios.h>
  30. #include <linux/if_tun.h>
  31. #include <sys/uio.h>
  32. #include <termios.h>
  33. #include <getopt.h>
  34. #include <zlib.h>
  35. #include <assert.h>
  36. #include <sched.h>
  37. #include <limits.h>
  38. #include <stddef.h>
  39. #include <signal.h>
  40. #include "linux/lguest_launcher.h"
  41. #include "linux/virtio_config.h"
  42. #include "linux/virtio_net.h"
  43. #include "linux/virtio_blk.h"
  44. #include "linux/virtio_console.h"
  45. #include "linux/virtio_rng.h"
  46. #include "linux/virtio_ring.h"
  47. #include "asm/bootparam.h"
  48. /*L:110 We can ignore the 39 include files we need for this program, but I do
  49. * want to draw attention to the use of kernel-style types.
  50. *
  51. * As Linus said, "C is a Spartan language, and so should your naming be." I
  52. * like these abbreviations, so we define them here. Note that u64 is always
  53. * unsigned long long, which works on all Linux systems: this means that we can
  54. * use %llu in printf for any u64. */
  55. typedef unsigned long long u64;
  56. typedef uint32_t u32;
  57. typedef uint16_t u16;
  58. typedef uint8_t u8;
  59. /*:*/
  60. #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
  61. #define NET_PEERNUM 1
  62. #define BRIDGE_PFX "bridge:"
  63. #ifndef SIOCBRADDIF
  64. #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
  65. #endif
  66. /* We can have up to 256 pages for devices. */
  67. #define DEVICE_PAGES 256
  68. /* This will occupy 3 pages: it must be a power of 2. */
  69. #define VIRTQUEUE_NUM 256
  70. /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
  71. * this, and although I wouldn't recommend it, it works quite nicely here. */
  72. static bool verbose;
  73. #define verbose(args...) \
  74. do { if (verbose) printf(args); } while(0)
  75. /*:*/
  76. /* File descriptors for the Waker. */
  77. struct {
  78. int pipe[2];
  79. int lguest_fd;
  80. } waker_fds;
  81. /* The pointer to the start of guest memory. */
  82. static void *guest_base;
  83. /* The maximum guest physical address allowed, and maximum possible. */
  84. static unsigned long guest_limit, guest_max;
  85. /* The pipe for signal hander to write to. */
  86. static int timeoutpipe[2];
  87. static unsigned int timeout_usec = 500;
  88. /* a per-cpu variable indicating whose vcpu is currently running */
  89. static unsigned int __thread cpu_id;
  90. /* This is our list of devices. */
  91. struct device_list
  92. {
  93. /* Summary information about the devices in our list: ready to pass to
  94. * select() to ask which need servicing.*/
  95. fd_set infds;
  96. int max_infd;
  97. /* Counter to assign interrupt numbers. */
  98. unsigned int next_irq;
  99. /* Counter to print out convenient device numbers. */
  100. unsigned int device_num;
  101. /* The descriptor page for the devices. */
  102. u8 *descpage;
  103. /* A single linked list of devices. */
  104. struct device *dev;
  105. /* And a pointer to the last device for easy append and also for
  106. * configuration appending. */
  107. struct device *lastdev;
  108. };
  109. /* The list of Guest devices, based on command line arguments. */
  110. static struct device_list devices;
  111. /* The device structure describes a single device. */
  112. struct device
  113. {
  114. /* The linked-list pointer. */
  115. struct device *next;
  116. /* The this device's descriptor, as mapped into the Guest. */
  117. struct lguest_device_desc *desc;
  118. /* The name of this device, for --verbose. */
  119. const char *name;
  120. /* If handle_input is set, it wants to be called when this file
  121. * descriptor is ready. */
  122. int fd;
  123. bool (*handle_input)(int fd, struct device *me);
  124. /* Any queues attached to this device */
  125. struct virtqueue *vq;
  126. /* Handle status being finalized (ie. feature bits stable). */
  127. void (*ready)(struct device *me);
  128. /* Device-specific data. */
  129. void *priv;
  130. };
  131. /* The virtqueue structure describes a queue attached to a device. */
  132. struct virtqueue
  133. {
  134. struct virtqueue *next;
  135. /* Which device owns me. */
  136. struct device *dev;
  137. /* The configuration for this queue. */
  138. struct lguest_vqconfig config;
  139. /* The actual ring of buffers. */
  140. struct vring vring;
  141. /* Last available index we saw. */
  142. u16 last_avail_idx;
  143. /* The routine to call when the Guest pings us, or timeout. */
  144. void (*handle_output)(int fd, struct virtqueue *me, bool timeout);
  145. /* Outstanding buffers */
  146. unsigned int inflight;
  147. /* Is this blocked awaiting a timer? */
  148. bool blocked;
  149. };
  150. /* Remember the arguments to the program so we can "reboot" */
  151. static char **main_args;
  152. /* Since guest is UP and we don't run at the same time, we don't need barriers.
  153. * But I include them in the code in case others copy it. */
  154. #define wmb()
  155. /* Convert an iovec element to the given type.
  156. *
  157. * This is a fairly ugly trick: we need to know the size of the type and
  158. * alignment requirement to check the pointer is kosher. It's also nice to
  159. * have the name of the type in case we report failure.
  160. *
  161. * Typing those three things all the time is cumbersome and error prone, so we
  162. * have a macro which sets them all up and passes to the real function. */
  163. #define convert(iov, type) \
  164. ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
  165. static void *_convert(struct iovec *iov, size_t size, size_t align,
  166. const char *name)
  167. {
  168. if (iov->iov_len != size)
  169. errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
  170. if ((unsigned long)iov->iov_base % align != 0)
  171. errx(1, "Bad alignment %p for %s", iov->iov_base, name);
  172. return iov->iov_base;
  173. }
  174. /* Wrapper for the last available index. Makes it easier to change. */
  175. #define lg_last_avail(vq) ((vq)->last_avail_idx)
  176. /* The virtio configuration space is defined to be little-endian. x86 is
  177. * little-endian too, but it's nice to be explicit so we have these helpers. */
  178. #define cpu_to_le16(v16) (v16)
  179. #define cpu_to_le32(v32) (v32)
  180. #define cpu_to_le64(v64) (v64)
  181. #define le16_to_cpu(v16) (v16)
  182. #define le32_to_cpu(v32) (v32)
  183. #define le64_to_cpu(v64) (v64)
  184. /* Is this iovec empty? */
  185. static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
  186. {
  187. unsigned int i;
  188. for (i = 0; i < num_iov; i++)
  189. if (iov[i].iov_len)
  190. return false;
  191. return true;
  192. }
  193. /* Take len bytes from the front of this iovec. */
  194. static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
  195. {
  196. unsigned int i;
  197. for (i = 0; i < num_iov; i++) {
  198. unsigned int used;
  199. used = iov[i].iov_len < len ? iov[i].iov_len : len;
  200. iov[i].iov_base += used;
  201. iov[i].iov_len -= used;
  202. len -= used;
  203. }
  204. assert(len == 0);
  205. }
  206. /* The device virtqueue descriptors are followed by feature bitmasks. */
  207. static u8 *get_feature_bits(struct device *dev)
  208. {
  209. return (u8 *)(dev->desc + 1)
  210. + dev->desc->num_vq * sizeof(struct lguest_vqconfig);
  211. }
  212. /*L:100 The Launcher code itself takes us out into userspace, that scary place
  213. * where pointers run wild and free! Unfortunately, like most userspace
  214. * programs, it's quite boring (which is why everyone likes to hack on the
  215. * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
  216. * will get you through this section. Or, maybe not.
  217. *
  218. * The Launcher sets up a big chunk of memory to be the Guest's "physical"
  219. * memory and stores it in "guest_base". In other words, Guest physical ==
  220. * Launcher virtual with an offset.
  221. *
  222. * This can be tough to get your head around, but usually it just means that we
  223. * use these trivial conversion functions when the Guest gives us it's
  224. * "physical" addresses: */
  225. static void *from_guest_phys(unsigned long addr)
  226. {
  227. return guest_base + addr;
  228. }
  229. static unsigned long to_guest_phys(const void *addr)
  230. {
  231. return (addr - guest_base);
  232. }
  233. /*L:130
  234. * Loading the Kernel.
  235. *
  236. * We start with couple of simple helper routines. open_or_die() avoids
  237. * error-checking code cluttering the callers: */
  238. static int open_or_die(const char *name, int flags)
  239. {
  240. int fd = open(name, flags);
  241. if (fd < 0)
  242. err(1, "Failed to open %s", name);
  243. return fd;
  244. }
  245. /* map_zeroed_pages() takes a number of pages. */
  246. static void *map_zeroed_pages(unsigned int num)
  247. {
  248. int fd = open_or_die("/dev/zero", O_RDONLY);
  249. void *addr;
  250. /* We use a private mapping (ie. if we write to the page, it will be
  251. * copied). */
  252. addr = mmap(NULL, getpagesize() * num,
  253. PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
  254. if (addr == MAP_FAILED)
  255. err(1, "Mmaping %u pages of /dev/zero", num);
  256. close(fd);
  257. return addr;
  258. }
  259. /* Get some more pages for a device. */
  260. static void *get_pages(unsigned int num)
  261. {
  262. void *addr = from_guest_phys(guest_limit);
  263. guest_limit += num * getpagesize();
  264. if (guest_limit > guest_max)
  265. errx(1, "Not enough memory for devices");
  266. return addr;
  267. }
  268. /* This routine is used to load the kernel or initrd. It tries mmap, but if
  269. * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
  270. * it falls back to reading the memory in. */
  271. static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
  272. {
  273. ssize_t r;
  274. /* We map writable even though for some segments are marked read-only.
  275. * The kernel really wants to be writable: it patches its own
  276. * instructions.
  277. *
  278. * MAP_PRIVATE means that the page won't be copied until a write is
  279. * done to it. This allows us to share untouched memory between
  280. * Guests. */
  281. if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
  282. MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
  283. return;
  284. /* pread does a seek and a read in one shot: saves a few lines. */
  285. r = pread(fd, addr, len, offset);
  286. if (r != len)
  287. err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
  288. }
  289. /* This routine takes an open vmlinux image, which is in ELF, and maps it into
  290. * the Guest memory. ELF = Embedded Linking Format, which is the format used
  291. * by all modern binaries on Linux including the kernel.
  292. *
  293. * The ELF headers give *two* addresses: a physical address, and a virtual
  294. * address. We use the physical address; the Guest will map itself to the
  295. * virtual address.
  296. *
  297. * We return the starting address. */
  298. static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
  299. {
  300. Elf32_Phdr phdr[ehdr->e_phnum];
  301. unsigned int i;
  302. /* Sanity checks on the main ELF header: an x86 executable with a
  303. * reasonable number of correctly-sized program headers. */
  304. if (ehdr->e_type != ET_EXEC
  305. || ehdr->e_machine != EM_386
  306. || ehdr->e_phentsize != sizeof(Elf32_Phdr)
  307. || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
  308. errx(1, "Malformed elf header");
  309. /* An ELF executable contains an ELF header and a number of "program"
  310. * headers which indicate which parts ("segments") of the program to
  311. * load where. */
  312. /* We read in all the program headers at once: */
  313. if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
  314. err(1, "Seeking to program headers");
  315. if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
  316. err(1, "Reading program headers");
  317. /* Try all the headers: there are usually only three. A read-only one,
  318. * a read-write one, and a "note" section which we don't load. */
  319. for (i = 0; i < ehdr->e_phnum; i++) {
  320. /* If this isn't a loadable segment, we ignore it */
  321. if (phdr[i].p_type != PT_LOAD)
  322. continue;
  323. verbose("Section %i: size %i addr %p\n",
  324. i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
  325. /* We map this section of the file at its physical address. */
  326. map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
  327. phdr[i].p_offset, phdr[i].p_filesz);
  328. }
  329. /* The entry point is given in the ELF header. */
  330. return ehdr->e_entry;
  331. }
  332. /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
  333. * supposed to jump into it and it will unpack itself. We used to have to
  334. * perform some hairy magic because the unpacking code scared me.
  335. *
  336. * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
  337. * a small patch to jump over the tricky bits in the Guest, so now we just read
  338. * the funky header so we know where in the file to load, and away we go! */
  339. static unsigned long load_bzimage(int fd)
  340. {
  341. struct boot_params boot;
  342. int r;
  343. /* Modern bzImages get loaded at 1M. */
  344. void *p = from_guest_phys(0x100000);
  345. /* Go back to the start of the file and read the header. It should be
  346. * a Linux boot header (see Documentation/x86/i386/boot.txt) */
  347. lseek(fd, 0, SEEK_SET);
  348. read(fd, &boot, sizeof(boot));
  349. /* Inside the setup_hdr, we expect the magic "HdrS" */
  350. if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
  351. errx(1, "This doesn't look like a bzImage to me");
  352. /* Skip over the extra sectors of the header. */
  353. lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
  354. /* Now read everything into memory. in nice big chunks. */
  355. while ((r = read(fd, p, 65536)) > 0)
  356. p += r;
  357. /* Finally, code32_start tells us where to enter the kernel. */
  358. return boot.hdr.code32_start;
  359. }
  360. /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
  361. * come wrapped up in the self-decompressing "bzImage" format. With a little
  362. * work, we can load those, too. */
  363. static unsigned long load_kernel(int fd)
  364. {
  365. Elf32_Ehdr hdr;
  366. /* Read in the first few bytes. */
  367. if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
  368. err(1, "Reading kernel");
  369. /* If it's an ELF file, it starts with "\177ELF" */
  370. if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
  371. return map_elf(fd, &hdr);
  372. /* Otherwise we assume it's a bzImage, and try to load it. */
  373. return load_bzimage(fd);
  374. }
  375. /* This is a trivial little helper to align pages. Andi Kleen hated it because
  376. * it calls getpagesize() twice: "it's dumb code."
  377. *
  378. * Kernel guys get really het up about optimization, even when it's not
  379. * necessary. I leave this code as a reaction against that. */
  380. static inline unsigned long page_align(unsigned long addr)
  381. {
  382. /* Add upwards and truncate downwards. */
  383. return ((addr + getpagesize()-1) & ~(getpagesize()-1));
  384. }
  385. /*L:180 An "initial ram disk" is a disk image loaded into memory along with
  386. * the kernel which the kernel can use to boot from without needing any
  387. * drivers. Most distributions now use this as standard: the initrd contains
  388. * the code to load the appropriate driver modules for the current machine.
  389. *
  390. * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
  391. * kernels. He sent me this (and tells me when I break it). */
  392. static unsigned long load_initrd(const char *name, unsigned long mem)
  393. {
  394. int ifd;
  395. struct stat st;
  396. unsigned long len;
  397. ifd = open_or_die(name, O_RDONLY);
  398. /* fstat() is needed to get the file size. */
  399. if (fstat(ifd, &st) < 0)
  400. err(1, "fstat() on initrd '%s'", name);
  401. /* We map the initrd at the top of memory, but mmap wants it to be
  402. * page-aligned, so we round the size up for that. */
  403. len = page_align(st.st_size);
  404. map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
  405. /* Once a file is mapped, you can close the file descriptor. It's a
  406. * little odd, but quite useful. */
  407. close(ifd);
  408. verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
  409. /* We return the initrd size. */
  410. return len;
  411. }
  412. /* Once we know how much memory we have we can construct simple linear page
  413. * tables which set virtual == physical which will get the Guest far enough
  414. * into the boot to create its own.
  415. *
  416. * We lay them out of the way, just below the initrd (which is why we need to
  417. * know its size here). */
  418. static unsigned long setup_pagetables(unsigned long mem,
  419. unsigned long initrd_size)
  420. {
  421. unsigned long *pgdir, *linear;
  422. unsigned int mapped_pages, i, linear_pages;
  423. unsigned int ptes_per_page = getpagesize()/sizeof(void *);
  424. mapped_pages = mem/getpagesize();
  425. /* Each PTE page can map ptes_per_page pages: how many do we need? */
  426. linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
  427. /* We put the toplevel page directory page at the top of memory. */
  428. pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
  429. /* Now we use the next linear_pages pages as pte pages */
  430. linear = (void *)pgdir - linear_pages*getpagesize();
  431. /* Linear mapping is easy: put every page's address into the mapping in
  432. * order. PAGE_PRESENT contains the flags Present, Writable and
  433. * Executable. */
  434. for (i = 0; i < mapped_pages; i++)
  435. linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
  436. /* The top level points to the linear page table pages above. */
  437. for (i = 0; i < mapped_pages; i += ptes_per_page) {
  438. pgdir[i/ptes_per_page]
  439. = ((to_guest_phys(linear) + i*sizeof(void *))
  440. | PAGE_PRESENT);
  441. }
  442. verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
  443. mapped_pages, linear_pages, to_guest_phys(linear));
  444. /* We return the top level (guest-physical) address: the kernel needs
  445. * to know where it is. */
  446. return to_guest_phys(pgdir);
  447. }
  448. /*:*/
  449. /* Simple routine to roll all the commandline arguments together with spaces
  450. * between them. */
  451. static void concat(char *dst, char *args[])
  452. {
  453. unsigned int i, len = 0;
  454. for (i = 0; args[i]; i++) {
  455. if (i) {
  456. strcat(dst+len, " ");
  457. len++;
  458. }
  459. strcpy(dst+len, args[i]);
  460. len += strlen(args[i]);
  461. }
  462. /* In case it's empty. */
  463. dst[len] = '\0';
  464. }
  465. /*L:185 This is where we actually tell the kernel to initialize the Guest. We
  466. * saw the arguments it expects when we looked at initialize() in lguest_user.c:
  467. * the base of Guest "physical" memory, the top physical page to allow, the
  468. * top level pagetable and the entry point for the Guest. */
  469. static int tell_kernel(unsigned long pgdir, unsigned long start)
  470. {
  471. unsigned long args[] = { LHREQ_INITIALIZE,
  472. (unsigned long)guest_base,
  473. guest_limit / getpagesize(), pgdir, start };
  474. int fd;
  475. verbose("Guest: %p - %p (%#lx)\n",
  476. guest_base, guest_base + guest_limit, guest_limit);
  477. fd = open_or_die("/dev/lguest", O_RDWR);
  478. if (write(fd, args, sizeof(args)) < 0)
  479. err(1, "Writing to /dev/lguest");
  480. /* We return the /dev/lguest file descriptor to control this Guest */
  481. return fd;
  482. }
  483. /*:*/
  484. static void add_device_fd(int fd)
  485. {
  486. FD_SET(fd, &devices.infds);
  487. if (fd > devices.max_infd)
  488. devices.max_infd = fd;
  489. }
  490. /*L:200
  491. * The Waker.
  492. *
  493. * With console, block and network devices, we can have lots of input which we
  494. * need to process. We could try to tell the kernel what file descriptors to
  495. * watch, but handing a file descriptor mask through to the kernel is fairly
  496. * icky.
  497. *
  498. * Instead, we clone off a thread which watches the file descriptors and writes
  499. * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
  500. * stop running the Guest. This causes the Launcher to return from the
  501. * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
  502. * the LHREQ_BREAK and wake us up again.
  503. *
  504. * This, of course, is merely a different *kind* of icky.
  505. *
  506. * Given my well-known antipathy to threads, I'd prefer to use processes. But
  507. * it's easier to share Guest memory with threads, and trivial to share the
  508. * devices.infds as the Launcher changes it.
  509. */
  510. static int waker(void *unused)
  511. {
  512. /* Close the write end of the pipe: only the Launcher has it open. */
  513. close(waker_fds.pipe[1]);
  514. for (;;) {
  515. fd_set rfds = devices.infds;
  516. unsigned long args[] = { LHREQ_BREAK, 1 };
  517. unsigned int maxfd = devices.max_infd;
  518. /* We also listen to the pipe from the Launcher. */
  519. FD_SET(waker_fds.pipe[0], &rfds);
  520. if (waker_fds.pipe[0] > maxfd)
  521. maxfd = waker_fds.pipe[0];
  522. /* Wait until input is ready from one of the devices. */
  523. select(maxfd+1, &rfds, NULL, NULL, NULL);
  524. /* Message from Launcher? */
  525. if (FD_ISSET(waker_fds.pipe[0], &rfds)) {
  526. char c;
  527. /* If this fails, then assume Launcher has exited.
  528. * Don't do anything on exit: we're just a thread! */
  529. if (read(waker_fds.pipe[0], &c, 1) != 1)
  530. _exit(0);
  531. continue;
  532. }
  533. /* Send LHREQ_BREAK command to snap the Launcher out of it. */
  534. pwrite(waker_fds.lguest_fd, args, sizeof(args), cpu_id);
  535. }
  536. return 0;
  537. }
  538. /* This routine just sets up a pipe to the Waker process. */
  539. static void setup_waker(int lguest_fd)
  540. {
  541. /* This pipe is closed when Launcher dies, telling Waker. */
  542. if (pipe(waker_fds.pipe) != 0)
  543. err(1, "Creating pipe for Waker");
  544. /* Waker also needs to know the lguest fd */
  545. waker_fds.lguest_fd = lguest_fd;
  546. if (clone(waker, malloc(4096) + 4096, CLONE_VM | SIGCHLD, NULL) == -1)
  547. err(1, "Creating Waker");
  548. }
  549. /*
  550. * Device Handling.
  551. *
  552. * When the Guest gives us a buffer, it sends an array of addresses and sizes.
  553. * We need to make sure it's not trying to reach into the Launcher itself, so
  554. * we have a convenient routine which checks it and exits with an error message
  555. * if something funny is going on:
  556. */
  557. static void *_check_pointer(unsigned long addr, unsigned int size,
  558. unsigned int line)
  559. {
  560. /* We have to separately check addr and addr+size, because size could
  561. * be huge and addr + size might wrap around. */
  562. if (addr >= guest_limit || addr + size >= guest_limit)
  563. errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
  564. /* We return a pointer for the caller's convenience, now we know it's
  565. * safe to use. */
  566. return from_guest_phys(addr);
  567. }
  568. /* A macro which transparently hands the line number to the real function. */
  569. #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
  570. /* Each buffer in the virtqueues is actually a chain of descriptors. This
  571. * function returns the next descriptor in the chain, or vq->vring.num if we're
  572. * at the end. */
  573. static unsigned next_desc(struct virtqueue *vq, unsigned int i)
  574. {
  575. unsigned int next;
  576. /* If this descriptor says it doesn't chain, we're done. */
  577. if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
  578. return vq->vring.num;
  579. /* Check they're not leading us off end of descriptors. */
  580. next = vq->vring.desc[i].next;
  581. /* Make sure compiler knows to grab that: we don't want it changing! */
  582. wmb();
  583. if (next >= vq->vring.num)
  584. errx(1, "Desc next is %u", next);
  585. return next;
  586. }
  587. /* This looks in the virtqueue and for the first available buffer, and converts
  588. * it to an iovec for convenient access. Since descriptors consist of some
  589. * number of output then some number of input descriptors, it's actually two
  590. * iovecs, but we pack them into one and note how many of each there were.
  591. *
  592. * This function returns the descriptor number found, or vq->vring.num (which
  593. * is never a valid descriptor number) if none was found. */
  594. static unsigned get_vq_desc(struct virtqueue *vq,
  595. struct iovec iov[],
  596. unsigned int *out_num, unsigned int *in_num)
  597. {
  598. unsigned int i, head;
  599. u16 last_avail;
  600. /* Check it isn't doing very strange things with descriptor numbers. */
  601. last_avail = lg_last_avail(vq);
  602. if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
  603. errx(1, "Guest moved used index from %u to %u",
  604. last_avail, vq->vring.avail->idx);
  605. /* If there's nothing new since last we looked, return invalid. */
  606. if (vq->vring.avail->idx == last_avail)
  607. return vq->vring.num;
  608. /* Grab the next descriptor number they're advertising, and increment
  609. * the index we've seen. */
  610. head = vq->vring.avail->ring[last_avail % vq->vring.num];
  611. lg_last_avail(vq)++;
  612. /* If their number is silly, that's a fatal mistake. */
  613. if (head >= vq->vring.num)
  614. errx(1, "Guest says index %u is available", head);
  615. /* When we start there are none of either input nor output. */
  616. *out_num = *in_num = 0;
  617. i = head;
  618. do {
  619. /* Grab the first descriptor, and check it's OK. */
  620. iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
  621. iov[*out_num + *in_num].iov_base
  622. = check_pointer(vq->vring.desc[i].addr,
  623. vq->vring.desc[i].len);
  624. /* If this is an input descriptor, increment that count. */
  625. if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
  626. (*in_num)++;
  627. else {
  628. /* If it's an output descriptor, they're all supposed
  629. * to come before any input descriptors. */
  630. if (*in_num)
  631. errx(1, "Descriptor has out after in");
  632. (*out_num)++;
  633. }
  634. /* If we've got too many, that implies a descriptor loop. */
  635. if (*out_num + *in_num > vq->vring.num)
  636. errx(1, "Looped descriptor");
  637. } while ((i = next_desc(vq, i)) != vq->vring.num);
  638. vq->inflight++;
  639. return head;
  640. }
  641. /* After we've used one of their buffers, we tell them about it. We'll then
  642. * want to send them an interrupt, using trigger_irq(). */
  643. static void add_used(struct virtqueue *vq, unsigned int head, int len)
  644. {
  645. struct vring_used_elem *used;
  646. /* The virtqueue contains a ring of used buffers. Get a pointer to the
  647. * next entry in that used ring. */
  648. used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
  649. used->id = head;
  650. used->len = len;
  651. /* Make sure buffer is written before we update index. */
  652. wmb();
  653. vq->vring.used->idx++;
  654. vq->inflight--;
  655. }
  656. /* This actually sends the interrupt for this virtqueue */
  657. static void trigger_irq(int fd, struct virtqueue *vq)
  658. {
  659. unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
  660. /* If they don't want an interrupt, don't send one, unless empty. */
  661. if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
  662. && vq->inflight)
  663. return;
  664. /* Send the Guest an interrupt tell them we used something up. */
  665. if (write(fd, buf, sizeof(buf)) != 0)
  666. err(1, "Triggering irq %i", vq->config.irq);
  667. }
  668. /* And here's the combo meal deal. Supersize me! */
  669. static void add_used_and_trigger(int fd, struct virtqueue *vq,
  670. unsigned int head, int len)
  671. {
  672. add_used(vq, head, len);
  673. trigger_irq(fd, vq);
  674. }
  675. /*
  676. * The Console
  677. *
  678. * Here is the input terminal setting we save, and the routine to restore them
  679. * on exit so the user gets their terminal back. */
  680. static struct termios orig_term;
  681. static void restore_term(void)
  682. {
  683. tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
  684. }
  685. /* We associate some data with the console for our exit hack. */
  686. struct console_abort
  687. {
  688. /* How many times have they hit ^C? */
  689. int count;
  690. /* When did they start? */
  691. struct timeval start;
  692. };
  693. /* This is the routine which handles console input (ie. stdin). */
  694. static bool handle_console_input(int fd, struct device *dev)
  695. {
  696. int len;
  697. unsigned int head, in_num, out_num;
  698. struct iovec iov[dev->vq->vring.num];
  699. struct console_abort *abort = dev->priv;
  700. /* First we need a console buffer from the Guests's input virtqueue. */
  701. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  702. /* If they're not ready for input, stop listening to this file
  703. * descriptor. We'll start again once they add an input buffer. */
  704. if (head == dev->vq->vring.num)
  705. return false;
  706. if (out_num)
  707. errx(1, "Output buffers in console in queue?");
  708. /* This is why we convert to iovecs: the readv() call uses them, and so
  709. * it reads straight into the Guest's buffer. */
  710. len = readv(dev->fd, iov, in_num);
  711. if (len <= 0) {
  712. /* This implies that the console is closed, is /dev/null, or
  713. * something went terribly wrong. */
  714. warnx("Failed to get console input, ignoring console.");
  715. /* Put the input terminal back. */
  716. restore_term();
  717. /* Remove callback from input vq, so it doesn't restart us. */
  718. dev->vq->handle_output = NULL;
  719. /* Stop listening to this fd: don't call us again. */
  720. return false;
  721. }
  722. /* Tell the Guest about the new input. */
  723. add_used_and_trigger(fd, dev->vq, head, len);
  724. /* Three ^C within one second? Exit.
  725. *
  726. * This is such a hack, but works surprisingly well. Each ^C has to be
  727. * in a buffer by itself, so they can't be too fast. But we check that
  728. * we get three within about a second, so they can't be too slow. */
  729. if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
  730. if (!abort->count++)
  731. gettimeofday(&abort->start, NULL);
  732. else if (abort->count == 3) {
  733. struct timeval now;
  734. gettimeofday(&now, NULL);
  735. if (now.tv_sec <= abort->start.tv_sec+1) {
  736. unsigned long args[] = { LHREQ_BREAK, 0 };
  737. /* Close the fd so Waker will know it has to
  738. * exit. */
  739. close(waker_fds.pipe[1]);
  740. /* Just in case Waker is blocked in BREAK, send
  741. * unbreak now. */
  742. write(fd, args, sizeof(args));
  743. exit(2);
  744. }
  745. abort->count = 0;
  746. }
  747. } else
  748. /* Any other key resets the abort counter. */
  749. abort->count = 0;
  750. /* Everything went OK! */
  751. return true;
  752. }
  753. /* Handling output for console is simple: we just get all the output buffers
  754. * and write them to stdout. */
  755. static void handle_console_output(int fd, struct virtqueue *vq, bool timeout)
  756. {
  757. unsigned int head, out, in;
  758. int len;
  759. struct iovec iov[vq->vring.num];
  760. /* Keep getting output buffers from the Guest until we run out. */
  761. while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
  762. if (in)
  763. errx(1, "Input buffers in output queue?");
  764. len = writev(STDOUT_FILENO, iov, out);
  765. add_used_and_trigger(fd, vq, head, len);
  766. }
  767. }
  768. /* This is called when we no longer want to hear about Guest changes to a
  769. * virtqueue. This is more efficient in high-traffic cases, but it means we
  770. * have to set a timer to check if any more changes have occurred. */
  771. static void block_vq(struct virtqueue *vq)
  772. {
  773. struct itimerval itm;
  774. vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
  775. vq->blocked = true;
  776. itm.it_interval.tv_sec = 0;
  777. itm.it_interval.tv_usec = 0;
  778. itm.it_value.tv_sec = 0;
  779. itm.it_value.tv_usec = timeout_usec;
  780. setitimer(ITIMER_REAL, &itm, NULL);
  781. }
  782. /*
  783. * The Network
  784. *
  785. * Handling output for network is also simple: we get all the output buffers
  786. * and write them (ignoring the first element) to this device's file descriptor
  787. * (/dev/net/tun).
  788. */
  789. static void handle_net_output(int fd, struct virtqueue *vq, bool timeout)
  790. {
  791. unsigned int head, out, in, num = 0;
  792. int len;
  793. struct iovec iov[vq->vring.num];
  794. static int last_timeout_num;
  795. /* Keep getting output buffers from the Guest until we run out. */
  796. while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
  797. if (in)
  798. errx(1, "Input buffers in output queue?");
  799. len = writev(vq->dev->fd, iov, out);
  800. if (len < 0)
  801. err(1, "Writing network packet to tun");
  802. add_used_and_trigger(fd, vq, head, len);
  803. num++;
  804. }
  805. /* Block further kicks and set up a timer if we saw anything. */
  806. if (!timeout && num)
  807. block_vq(vq);
  808. /* We never quite know how long should we wait before we check the
  809. * queue again for more packets. We start at 500 microseconds, and if
  810. * we get fewer packets than last time, we assume we made the timeout
  811. * too small and increase it by 10 microseconds. Otherwise, we drop it
  812. * by one microsecond every time. It seems to work well enough. */
  813. if (timeout) {
  814. if (num < last_timeout_num)
  815. timeout_usec += 10;
  816. else if (timeout_usec > 1)
  817. timeout_usec--;
  818. last_timeout_num = num;
  819. }
  820. }
  821. /* This is where we handle a packet coming in from the tun device to our
  822. * Guest. */
  823. static bool handle_tun_input(int fd, struct device *dev)
  824. {
  825. unsigned int head, in_num, out_num;
  826. int len;
  827. struct iovec iov[dev->vq->vring.num];
  828. /* First we need a network buffer from the Guests's recv virtqueue. */
  829. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  830. if (head == dev->vq->vring.num) {
  831. /* Now, it's expected that if we try to send a packet too
  832. * early, the Guest won't be ready yet. Wait until the device
  833. * status says it's ready. */
  834. /* FIXME: Actually want DRIVER_ACTIVE here. */
  835. /* Now tell it we want to know if new things appear. */
  836. dev->vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
  837. wmb();
  838. /* We'll turn this back on if input buffers are registered. */
  839. return false;
  840. } else if (out_num)
  841. errx(1, "Output buffers in network recv queue?");
  842. /* Read the packet from the device directly into the Guest's buffer. */
  843. len = readv(dev->fd, iov, in_num);
  844. if (len <= 0)
  845. err(1, "reading network");
  846. /* Tell the Guest about the new packet. */
  847. add_used_and_trigger(fd, dev->vq, head, len);
  848. verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
  849. ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
  850. head != dev->vq->vring.num ? "sent" : "discarded");
  851. /* All good. */
  852. return true;
  853. }
  854. /*L:215 This is the callback attached to the network and console input
  855. * virtqueues: it ensures we try again, in case we stopped console or net
  856. * delivery because Guest didn't have any buffers. */
  857. static void enable_fd(int fd, struct virtqueue *vq, bool timeout)
  858. {
  859. add_device_fd(vq->dev->fd);
  860. /* Snap the Waker out of its select loop. */
  861. write(waker_fds.pipe[1], "", 1);
  862. }
  863. static void net_enable_fd(int fd, struct virtqueue *vq, bool timeout)
  864. {
  865. /* We don't need to know again when Guest refills receive buffer. */
  866. vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
  867. enable_fd(fd, vq, timeout);
  868. }
  869. /* When the Guest tells us they updated the status field, we handle it. */
  870. static void update_device_status(struct device *dev)
  871. {
  872. struct virtqueue *vq;
  873. /* This is a reset. */
  874. if (dev->desc->status == 0) {
  875. verbose("Resetting device %s\n", dev->name);
  876. /* Clear any features they've acked. */
  877. memset(get_feature_bits(dev) + dev->desc->feature_len, 0,
  878. dev->desc->feature_len);
  879. /* Zero out the virtqueues. */
  880. for (vq = dev->vq; vq; vq = vq->next) {
  881. memset(vq->vring.desc, 0,
  882. vring_size(vq->config.num, getpagesize()));
  883. lg_last_avail(vq) = 0;
  884. }
  885. } else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
  886. warnx("Device %s configuration FAILED", dev->name);
  887. } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
  888. unsigned int i;
  889. verbose("Device %s OK: offered", dev->name);
  890. for (i = 0; i < dev->desc->feature_len; i++)
  891. verbose(" %02x", get_feature_bits(dev)[i]);
  892. verbose(", accepted");
  893. for (i = 0; i < dev->desc->feature_len; i++)
  894. verbose(" %02x", get_feature_bits(dev)
  895. [dev->desc->feature_len+i]);
  896. if (dev->ready)
  897. dev->ready(dev);
  898. }
  899. }
  900. /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
  901. static void handle_output(int fd, unsigned long addr)
  902. {
  903. struct device *i;
  904. struct virtqueue *vq;
  905. /* Check each device and virtqueue. */
  906. for (i = devices.dev; i; i = i->next) {
  907. /* Notifications to device descriptors update device status. */
  908. if (from_guest_phys(addr) == i->desc) {
  909. update_device_status(i);
  910. return;
  911. }
  912. /* Notifications to virtqueues mean output has occurred. */
  913. for (vq = i->vq; vq; vq = vq->next) {
  914. if (vq->config.pfn != addr/getpagesize())
  915. continue;
  916. /* Guest should acknowledge (and set features!) before
  917. * using the device. */
  918. if (i->desc->status == 0) {
  919. warnx("%s gave early output", i->name);
  920. return;
  921. }
  922. if (strcmp(vq->dev->name, "console") != 0)
  923. verbose("Output to %s\n", vq->dev->name);
  924. if (vq->handle_output)
  925. vq->handle_output(fd, vq, false);
  926. return;
  927. }
  928. }
  929. /* Early console write is done using notify on a nul-terminated string
  930. * in Guest memory. */
  931. if (addr >= guest_limit)
  932. errx(1, "Bad NOTIFY %#lx", addr);
  933. write(STDOUT_FILENO, from_guest_phys(addr),
  934. strnlen(from_guest_phys(addr), guest_limit - addr));
  935. }
  936. static void handle_timeout(int fd)
  937. {
  938. char buf[32];
  939. struct device *i;
  940. struct virtqueue *vq;
  941. /* Clear the pipe */
  942. read(timeoutpipe[0], buf, sizeof(buf));
  943. /* Check each device and virtqueue: flush blocked ones. */
  944. for (i = devices.dev; i; i = i->next) {
  945. for (vq = i->vq; vq; vq = vq->next) {
  946. if (!vq->blocked)
  947. continue;
  948. vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
  949. vq->blocked = false;
  950. if (vq->handle_output)
  951. vq->handle_output(fd, vq, true);
  952. }
  953. }
  954. }
  955. /* This is called when the Waker wakes us up: check for incoming file
  956. * descriptors. */
  957. static void handle_input(int fd)
  958. {
  959. /* select() wants a zeroed timeval to mean "don't wait". */
  960. struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
  961. for (;;) {
  962. struct device *i;
  963. fd_set fds = devices.infds;
  964. int num;
  965. num = select(devices.max_infd+1, &fds, NULL, NULL, &poll);
  966. /* Could get interrupted */
  967. if (num < 0)
  968. continue;
  969. /* If nothing is ready, we're done. */
  970. if (num == 0)
  971. break;
  972. /* Otherwise, call the device(s) which have readable file
  973. * descriptors and a method of handling them. */
  974. for (i = devices.dev; i; i = i->next) {
  975. if (i->handle_input && FD_ISSET(i->fd, &fds)) {
  976. if (i->handle_input(fd, i))
  977. continue;
  978. /* If handle_input() returns false, it means we
  979. * should no longer service it. Networking and
  980. * console do this when there's no input
  981. * buffers to deliver into. Console also uses
  982. * it when it discovers that stdin is closed. */
  983. FD_CLR(i->fd, &devices.infds);
  984. }
  985. }
  986. /* Is this the timeout fd? */
  987. if (FD_ISSET(timeoutpipe[0], &fds))
  988. handle_timeout(fd);
  989. }
  990. }
  991. /*L:190
  992. * Device Setup
  993. *
  994. * All devices need a descriptor so the Guest knows it exists, and a "struct
  995. * device" so the Launcher can keep track of it. We have common helper
  996. * routines to allocate and manage them.
  997. */
  998. /* The layout of the device page is a "struct lguest_device_desc" followed by a
  999. * number of virtqueue descriptors, then two sets of feature bits, then an
  1000. * array of configuration bytes. This routine returns the configuration
  1001. * pointer. */
  1002. static u8 *device_config(const struct device *dev)
  1003. {
  1004. return (void *)(dev->desc + 1)
  1005. + dev->desc->num_vq * sizeof(struct lguest_vqconfig)
  1006. + dev->desc->feature_len * 2;
  1007. }
  1008. /* This routine allocates a new "struct lguest_device_desc" from descriptor
  1009. * table page just above the Guest's normal memory. It returns a pointer to
  1010. * that descriptor. */
  1011. static struct lguest_device_desc *new_dev_desc(u16 type)
  1012. {
  1013. struct lguest_device_desc d = { .type = type };
  1014. void *p;
  1015. /* Figure out where the next device config is, based on the last one. */
  1016. if (devices.lastdev)
  1017. p = device_config(devices.lastdev)
  1018. + devices.lastdev->desc->config_len;
  1019. else
  1020. p = devices.descpage;
  1021. /* We only have one page for all the descriptors. */
  1022. if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
  1023. errx(1, "Too many devices");
  1024. /* p might not be aligned, so we memcpy in. */
  1025. return memcpy(p, &d, sizeof(d));
  1026. }
  1027. /* Each device descriptor is followed by the description of its virtqueues. We
  1028. * specify how many descriptors the virtqueue is to have. */
  1029. static void add_virtqueue(struct device *dev, unsigned int num_descs,
  1030. void (*handle_output)(int, struct virtqueue *, bool))
  1031. {
  1032. unsigned int pages;
  1033. struct virtqueue **i, *vq = malloc(sizeof(*vq));
  1034. void *p;
  1035. /* First we need some memory for this virtqueue. */
  1036. pages = (vring_size(num_descs, getpagesize()) + getpagesize() - 1)
  1037. / getpagesize();
  1038. p = get_pages(pages);
  1039. /* Initialize the virtqueue */
  1040. vq->next = NULL;
  1041. vq->last_avail_idx = 0;
  1042. vq->dev = dev;
  1043. vq->inflight = 0;
  1044. vq->blocked = false;
  1045. /* Initialize the configuration. */
  1046. vq->config.num = num_descs;
  1047. vq->config.irq = devices.next_irq++;
  1048. vq->config.pfn = to_guest_phys(p) / getpagesize();
  1049. /* Initialize the vring. */
  1050. vring_init(&vq->vring, num_descs, p, getpagesize());
  1051. /* Append virtqueue to this device's descriptor. We use
  1052. * device_config() to get the end of the device's current virtqueues;
  1053. * we check that we haven't added any config or feature information
  1054. * yet, otherwise we'd be overwriting them. */
  1055. assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
  1056. memcpy(device_config(dev), &vq->config, sizeof(vq->config));
  1057. dev->desc->num_vq++;
  1058. verbose("Virtqueue page %#lx\n", to_guest_phys(p));
  1059. /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
  1060. * second. */
  1061. for (i = &dev->vq; *i; i = &(*i)->next);
  1062. *i = vq;
  1063. /* Set the routine to call when the Guest does something to this
  1064. * virtqueue. */
  1065. vq->handle_output = handle_output;
  1066. /* As an optimization, set the advisory "Don't Notify Me" flag if we
  1067. * don't have a handler */
  1068. if (!handle_output)
  1069. vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
  1070. }
  1071. /* The first half of the feature bitmask is for us to advertise features. The
  1072. * second half is for the Guest to accept features. */
  1073. static void add_feature(struct device *dev, unsigned bit)
  1074. {
  1075. u8 *features = get_feature_bits(dev);
  1076. /* We can't extend the feature bits once we've added config bytes */
  1077. if (dev->desc->feature_len <= bit / CHAR_BIT) {
  1078. assert(dev->desc->config_len == 0);
  1079. dev->desc->feature_len = (bit / CHAR_BIT) + 1;
  1080. }
  1081. features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
  1082. }
  1083. /* This routine sets the configuration fields for an existing device's
  1084. * descriptor. It only works for the last device, but that's OK because that's
  1085. * how we use it. */
  1086. static void set_config(struct device *dev, unsigned len, const void *conf)
  1087. {
  1088. /* Check we haven't overflowed our single page. */
  1089. if (device_config(dev) + len > devices.descpage + getpagesize())
  1090. errx(1, "Too many devices");
  1091. /* Copy in the config information, and store the length. */
  1092. memcpy(device_config(dev), conf, len);
  1093. dev->desc->config_len = len;
  1094. }
  1095. /* This routine does all the creation and setup of a new device, including
  1096. * calling new_dev_desc() to allocate the descriptor and device memory.
  1097. *
  1098. * See what I mean about userspace being boring? */
  1099. static struct device *new_device(const char *name, u16 type, int fd,
  1100. bool (*handle_input)(int, struct device *))
  1101. {
  1102. struct device *dev = malloc(sizeof(*dev));
  1103. /* Now we populate the fields one at a time. */
  1104. dev->fd = fd;
  1105. /* If we have an input handler for this file descriptor, then we add it
  1106. * to the device_list's fdset and maxfd. */
  1107. if (handle_input)
  1108. add_device_fd(dev->fd);
  1109. dev->desc = new_dev_desc(type);
  1110. dev->handle_input = handle_input;
  1111. dev->name = name;
  1112. dev->vq = NULL;
  1113. dev->ready = NULL;
  1114. /* Append to device list. Prepending to a single-linked list is
  1115. * easier, but the user expects the devices to be arranged on the bus
  1116. * in command-line order. The first network device on the command line
  1117. * is eth0, the first block device /dev/vda, etc. */
  1118. if (devices.lastdev)
  1119. devices.lastdev->next = dev;
  1120. else
  1121. devices.dev = dev;
  1122. devices.lastdev = dev;
  1123. return dev;
  1124. }
  1125. /* Our first setup routine is the console. It's a fairly simple device, but
  1126. * UNIX tty handling makes it uglier than it could be. */
  1127. static void setup_console(void)
  1128. {
  1129. struct device *dev;
  1130. /* If we can save the initial standard input settings... */
  1131. if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
  1132. struct termios term = orig_term;
  1133. /* Then we turn off echo, line buffering and ^C etc. We want a
  1134. * raw input stream to the Guest. */
  1135. term.c_lflag &= ~(ISIG|ICANON|ECHO);
  1136. tcsetattr(STDIN_FILENO, TCSANOW, &term);
  1137. /* If we exit gracefully, the original settings will be
  1138. * restored so the user can see what they're typing. */
  1139. atexit(restore_term);
  1140. }
  1141. dev = new_device("console", VIRTIO_ID_CONSOLE,
  1142. STDIN_FILENO, handle_console_input);
  1143. /* We store the console state in dev->priv, and initialize it. */
  1144. dev->priv = malloc(sizeof(struct console_abort));
  1145. ((struct console_abort *)dev->priv)->count = 0;
  1146. /* The console needs two virtqueues: the input then the output. When
  1147. * they put something the input queue, we make sure we're listening to
  1148. * stdin. When they put something in the output queue, we write it to
  1149. * stdout. */
  1150. add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
  1151. add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
  1152. verbose("device %u: console\n", devices.device_num++);
  1153. }
  1154. /*:*/
  1155. static void timeout_alarm(int sig)
  1156. {
  1157. write(timeoutpipe[1], "", 1);
  1158. }
  1159. static void setup_timeout(void)
  1160. {
  1161. if (pipe(timeoutpipe) != 0)
  1162. err(1, "Creating timeout pipe");
  1163. if (fcntl(timeoutpipe[1], F_SETFL,
  1164. fcntl(timeoutpipe[1], F_GETFL) | O_NONBLOCK) != 0)
  1165. err(1, "Making timeout pipe nonblocking");
  1166. add_device_fd(timeoutpipe[0]);
  1167. signal(SIGALRM, timeout_alarm);
  1168. }
  1169. /*M:010 Inter-guest networking is an interesting area. Simplest is to have a
  1170. * --sharenet=<name> option which opens or creates a named pipe. This can be
  1171. * used to send packets to another guest in a 1:1 manner.
  1172. *
  1173. * More sopisticated is to use one of the tools developed for project like UML
  1174. * to do networking.
  1175. *
  1176. * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
  1177. * completely generic ("here's my vring, attach to your vring") and would work
  1178. * for any traffic. Of course, namespace and permissions issues need to be
  1179. * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
  1180. * multiple inter-guest channels behind one interface, although it would
  1181. * require some manner of hotplugging new virtio channels.
  1182. *
  1183. * Finally, we could implement a virtio network switch in the kernel. :*/
  1184. static u32 str2ip(const char *ipaddr)
  1185. {
  1186. unsigned int b[4];
  1187. if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
  1188. errx(1, "Failed to parse IP address '%s'", ipaddr);
  1189. return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
  1190. }
  1191. static void str2mac(const char *macaddr, unsigned char mac[6])
  1192. {
  1193. unsigned int m[6];
  1194. if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
  1195. &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
  1196. errx(1, "Failed to parse mac address '%s'", macaddr);
  1197. mac[0] = m[0];
  1198. mac[1] = m[1];
  1199. mac[2] = m[2];
  1200. mac[3] = m[3];
  1201. mac[4] = m[4];
  1202. mac[5] = m[5];
  1203. }
  1204. /* This code is "adapted" from libbridge: it attaches the Host end of the
  1205. * network device to the bridge device specified by the command line.
  1206. *
  1207. * This is yet another James Morris contribution (I'm an IP-level guy, so I
  1208. * dislike bridging), and I just try not to break it. */
  1209. static void add_to_bridge(int fd, const char *if_name, const char *br_name)
  1210. {
  1211. int ifidx;
  1212. struct ifreq ifr;
  1213. if (!*br_name)
  1214. errx(1, "must specify bridge name");
  1215. ifidx = if_nametoindex(if_name);
  1216. if (!ifidx)
  1217. errx(1, "interface %s does not exist!", if_name);
  1218. strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
  1219. ifr.ifr_name[IFNAMSIZ-1] = '\0';
  1220. ifr.ifr_ifindex = ifidx;
  1221. if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
  1222. err(1, "can't add %s to bridge %s", if_name, br_name);
  1223. }
  1224. /* This sets up the Host end of the network device with an IP address, brings
  1225. * it up so packets will flow, the copies the MAC address into the hwaddr
  1226. * pointer. */
  1227. static void configure_device(int fd, const char *tapif, u32 ipaddr)
  1228. {
  1229. struct ifreq ifr;
  1230. struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
  1231. memset(&ifr, 0, sizeof(ifr));
  1232. strcpy(ifr.ifr_name, tapif);
  1233. /* Don't read these incantations. Just cut & paste them like I did! */
  1234. sin->sin_family = AF_INET;
  1235. sin->sin_addr.s_addr = htonl(ipaddr);
  1236. if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
  1237. err(1, "Setting %s interface address", tapif);
  1238. ifr.ifr_flags = IFF_UP;
  1239. if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
  1240. err(1, "Bringing interface %s up", tapif);
  1241. }
  1242. static int get_tun_device(char tapif[IFNAMSIZ])
  1243. {
  1244. struct ifreq ifr;
  1245. int netfd;
  1246. /* Start with this zeroed. Messy but sure. */
  1247. memset(&ifr, 0, sizeof(ifr));
  1248. /* We open the /dev/net/tun device and tell it we want a tap device. A
  1249. * tap device is like a tun device, only somehow different. To tell
  1250. * the truth, I completely blundered my way through this code, but it
  1251. * works now! */
  1252. netfd = open_or_die("/dev/net/tun", O_RDWR);
  1253. ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
  1254. strcpy(ifr.ifr_name, "tap%d");
  1255. if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
  1256. err(1, "configuring /dev/net/tun");
  1257. if (ioctl(netfd, TUNSETOFFLOAD,
  1258. TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
  1259. err(1, "Could not set features for tun device");
  1260. /* We don't need checksums calculated for packets coming in this
  1261. * device: trust us! */
  1262. ioctl(netfd, TUNSETNOCSUM, 1);
  1263. memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
  1264. return netfd;
  1265. }
  1266. /*L:195 Our network is a Host<->Guest network. This can either use bridging or
  1267. * routing, but the principle is the same: it uses the "tun" device to inject
  1268. * packets into the Host as if they came in from a normal network card. We
  1269. * just shunt packets between the Guest and the tun device. */
  1270. static void setup_tun_net(char *arg)
  1271. {
  1272. struct device *dev;
  1273. int netfd, ipfd;
  1274. u32 ip = INADDR_ANY;
  1275. bool bridging = false;
  1276. char tapif[IFNAMSIZ], *p;
  1277. struct virtio_net_config conf;
  1278. netfd = get_tun_device(tapif);
  1279. /* First we create a new network device. */
  1280. dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
  1281. /* Network devices need a receive and a send queue, just like
  1282. * console. */
  1283. add_virtqueue(dev, VIRTQUEUE_NUM, net_enable_fd);
  1284. add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
  1285. /* We need a socket to perform the magic network ioctls to bring up the
  1286. * tap interface, connect to the bridge etc. Any socket will do! */
  1287. ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
  1288. if (ipfd < 0)
  1289. err(1, "opening IP socket");
  1290. /* If the command line was --tunnet=bridge:<name> do bridging. */
  1291. if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
  1292. arg += strlen(BRIDGE_PFX);
  1293. bridging = true;
  1294. }
  1295. /* A mac address may follow the bridge name or IP address */
  1296. p = strchr(arg, ':');
  1297. if (p) {
  1298. str2mac(p+1, conf.mac);
  1299. add_feature(dev, VIRTIO_NET_F_MAC);
  1300. *p = '\0';
  1301. }
  1302. /* arg is now either an IP address or a bridge name */
  1303. if (bridging)
  1304. add_to_bridge(ipfd, tapif, arg);
  1305. else
  1306. ip = str2ip(arg);
  1307. /* Set up the tun device. */
  1308. configure_device(ipfd, tapif, ip);
  1309. add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
  1310. /* Expect Guest to handle everything except UFO */
  1311. add_feature(dev, VIRTIO_NET_F_CSUM);
  1312. add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
  1313. add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
  1314. add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
  1315. add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
  1316. add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
  1317. add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
  1318. add_feature(dev, VIRTIO_NET_F_HOST_ECN);
  1319. set_config(dev, sizeof(conf), &conf);
  1320. /* We don't need the socket any more; setup is done. */
  1321. close(ipfd);
  1322. devices.device_num++;
  1323. if (bridging)
  1324. verbose("device %u: tun %s attached to bridge: %s\n",
  1325. devices.device_num, tapif, arg);
  1326. else
  1327. verbose("device %u: tun %s: %s\n",
  1328. devices.device_num, tapif, arg);
  1329. }
  1330. /* Our block (disk) device should be really simple: the Guest asks for a block
  1331. * number and we read or write that position in the file. Unfortunately, that
  1332. * was amazingly slow: the Guest waits until the read is finished before
  1333. * running anything else, even if it could have been doing useful work.
  1334. *
  1335. * We could use async I/O, except it's reputed to suck so hard that characters
  1336. * actually go missing from your code when you try to use it.
  1337. *
  1338. * So we farm the I/O out to thread, and communicate with it via a pipe. */
  1339. /* This hangs off device->priv. */
  1340. struct vblk_info
  1341. {
  1342. /* The size of the file. */
  1343. off64_t len;
  1344. /* The file descriptor for the file. */
  1345. int fd;
  1346. /* IO thread listens on this file descriptor [0]. */
  1347. int workpipe[2];
  1348. /* IO thread writes to this file descriptor to mark it done, then
  1349. * Launcher triggers interrupt to Guest. */
  1350. int done_fd;
  1351. };
  1352. /*L:210
  1353. * The Disk
  1354. *
  1355. * Remember that the block device is handled by a separate I/O thread. We head
  1356. * straight into the core of that thread here:
  1357. */
  1358. static bool service_io(struct device *dev)
  1359. {
  1360. struct vblk_info *vblk = dev->priv;
  1361. unsigned int head, out_num, in_num, wlen;
  1362. int ret;
  1363. u8 *in;
  1364. struct virtio_blk_outhdr *out;
  1365. struct iovec iov[dev->vq->vring.num];
  1366. off64_t off;
  1367. /* See if there's a request waiting. If not, nothing to do. */
  1368. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  1369. if (head == dev->vq->vring.num)
  1370. return false;
  1371. /* Every block request should contain at least one output buffer
  1372. * (detailing the location on disk and the type of request) and one
  1373. * input buffer (to hold the result). */
  1374. if (out_num == 0 || in_num == 0)
  1375. errx(1, "Bad virtblk cmd %u out=%u in=%u",
  1376. head, out_num, in_num);
  1377. out = convert(&iov[0], struct virtio_blk_outhdr);
  1378. in = convert(&iov[out_num+in_num-1], u8);
  1379. off = out->sector * 512;
  1380. /* The block device implements "barriers", where the Guest indicates
  1381. * that it wants all previous writes to occur before this write. We
  1382. * don't have a way of asking our kernel to do a barrier, so we just
  1383. * synchronize all the data in the file. Pretty poor, no? */
  1384. if (out->type & VIRTIO_BLK_T_BARRIER)
  1385. fdatasync(vblk->fd);
  1386. /* In general the virtio block driver is allowed to try SCSI commands.
  1387. * It'd be nice if we supported eject, for example, but we don't. */
  1388. if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
  1389. fprintf(stderr, "Scsi commands unsupported\n");
  1390. *in = VIRTIO_BLK_S_UNSUPP;
  1391. wlen = sizeof(*in);
  1392. } else if (out->type & VIRTIO_BLK_T_OUT) {
  1393. /* Write */
  1394. /* Move to the right location in the block file. This can fail
  1395. * if they try to write past end. */
  1396. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1397. err(1, "Bad seek to sector %llu", out->sector);
  1398. ret = writev(vblk->fd, iov+1, out_num-1);
  1399. verbose("WRITE to sector %llu: %i\n", out->sector, ret);
  1400. /* Grr... Now we know how long the descriptor they sent was, we
  1401. * make sure they didn't try to write over the end of the block
  1402. * file (possibly extending it). */
  1403. if (ret > 0 && off + ret > vblk->len) {
  1404. /* Trim it back to the correct length */
  1405. ftruncate64(vblk->fd, vblk->len);
  1406. /* Die, bad Guest, die. */
  1407. errx(1, "Write past end %llu+%u", off, ret);
  1408. }
  1409. wlen = sizeof(*in);
  1410. *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
  1411. } else {
  1412. /* Read */
  1413. /* Move to the right location in the block file. This can fail
  1414. * if they try to read past end. */
  1415. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1416. err(1, "Bad seek to sector %llu", out->sector);
  1417. ret = readv(vblk->fd, iov+1, in_num-1);
  1418. verbose("READ from sector %llu: %i\n", out->sector, ret);
  1419. if (ret >= 0) {
  1420. wlen = sizeof(*in) + ret;
  1421. *in = VIRTIO_BLK_S_OK;
  1422. } else {
  1423. wlen = sizeof(*in);
  1424. *in = VIRTIO_BLK_S_IOERR;
  1425. }
  1426. }
  1427. /* We can't trigger an IRQ, because we're not the Launcher. It does
  1428. * that when we tell it we're done. */
  1429. add_used(dev->vq, head, wlen);
  1430. return true;
  1431. }
  1432. /* This is the thread which actually services the I/O. */
  1433. static int io_thread(void *_dev)
  1434. {
  1435. struct device *dev = _dev;
  1436. struct vblk_info *vblk = dev->priv;
  1437. char c;
  1438. /* Close other side of workpipe so we get 0 read when main dies. */
  1439. close(vblk->workpipe[1]);
  1440. /* Close the other side of the done_fd pipe. */
  1441. close(dev->fd);
  1442. /* When this read fails, it means Launcher died, so we follow. */
  1443. while (read(vblk->workpipe[0], &c, 1) == 1) {
  1444. /* We acknowledge each request immediately to reduce latency,
  1445. * rather than waiting until we've done them all. I haven't
  1446. * measured to see if it makes any difference.
  1447. *
  1448. * That would be an interesting test, wouldn't it? You could
  1449. * also try having more than one I/O thread. */
  1450. while (service_io(dev))
  1451. write(vblk->done_fd, &c, 1);
  1452. }
  1453. return 0;
  1454. }
  1455. /* Now we've seen the I/O thread, we return to the Launcher to see what happens
  1456. * when that thread tells us it's completed some I/O. */
  1457. static bool handle_io_finish(int fd, struct device *dev)
  1458. {
  1459. char c;
  1460. /* If the I/O thread died, presumably it printed the error, so we
  1461. * simply exit. */
  1462. if (read(dev->fd, &c, 1) != 1)
  1463. exit(1);
  1464. /* It did some work, so trigger the irq. */
  1465. trigger_irq(fd, dev->vq);
  1466. return true;
  1467. }
  1468. /* When the Guest submits some I/O, we just need to wake the I/O thread. */
  1469. static void handle_virtblk_output(int fd, struct virtqueue *vq, bool timeout)
  1470. {
  1471. struct vblk_info *vblk = vq->dev->priv;
  1472. char c = 0;
  1473. /* Wake up I/O thread and tell it to go to work! */
  1474. if (write(vblk->workpipe[1], &c, 1) != 1)
  1475. /* Presumably it indicated why it died. */
  1476. exit(1);
  1477. }
  1478. /*L:198 This actually sets up a virtual block device. */
  1479. static void setup_block_file(const char *filename)
  1480. {
  1481. int p[2];
  1482. struct device *dev;
  1483. struct vblk_info *vblk;
  1484. void *stack;
  1485. struct virtio_blk_config conf;
  1486. /* This is the pipe the I/O thread will use to tell us I/O is done. */
  1487. pipe(p);
  1488. /* The device responds to return from I/O thread. */
  1489. dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
  1490. /* The device has one virtqueue, where the Guest places requests. */
  1491. add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
  1492. /* Allocate the room for our own bookkeeping */
  1493. vblk = dev->priv = malloc(sizeof(*vblk));
  1494. /* First we open the file and store the length. */
  1495. vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
  1496. vblk->len = lseek64(vblk->fd, 0, SEEK_END);
  1497. /* We support barriers. */
  1498. add_feature(dev, VIRTIO_BLK_F_BARRIER);
  1499. /* Tell Guest how many sectors this device has. */
  1500. conf.capacity = cpu_to_le64(vblk->len / 512);
  1501. /* Tell Guest not to put in too many descriptors at once: two are used
  1502. * for the in and out elements. */
  1503. add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
  1504. conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
  1505. set_config(dev, sizeof(conf), &conf);
  1506. /* The I/O thread writes to this end of the pipe when done. */
  1507. vblk->done_fd = p[1];
  1508. /* This is the second pipe, which is how we tell the I/O thread about
  1509. * more work. */
  1510. pipe(vblk->workpipe);
  1511. /* Create stack for thread and run it. Since stack grows upwards, we
  1512. * point the stack pointer to the end of this region. */
  1513. stack = malloc(32768);
  1514. /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
  1515. * becoming a zombie. */
  1516. if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
  1517. err(1, "Creating clone");
  1518. /* We don't need to keep the I/O thread's end of the pipes open. */
  1519. close(vblk->done_fd);
  1520. close(vblk->workpipe[0]);
  1521. verbose("device %u: virtblock %llu sectors\n",
  1522. devices.device_num, le64_to_cpu(conf.capacity));
  1523. }
  1524. /* Our random number generator device reads from /dev/random into the Guest's
  1525. * input buffers. The usual case is that the Guest doesn't want random numbers
  1526. * and so has no buffers although /dev/random is still readable, whereas
  1527. * console is the reverse.
  1528. *
  1529. * The same logic applies, however. */
  1530. static bool handle_rng_input(int fd, struct device *dev)
  1531. {
  1532. int len;
  1533. unsigned int head, in_num, out_num, totlen = 0;
  1534. struct iovec iov[dev->vq->vring.num];
  1535. /* First we need a buffer from the Guests's virtqueue. */
  1536. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  1537. /* If they're not ready for input, stop listening to this file
  1538. * descriptor. We'll start again once they add an input buffer. */
  1539. if (head == dev->vq->vring.num)
  1540. return false;
  1541. if (out_num)
  1542. errx(1, "Output buffers in rng?");
  1543. /* This is why we convert to iovecs: the readv() call uses them, and so
  1544. * it reads straight into the Guest's buffer. We loop to make sure we
  1545. * fill it. */
  1546. while (!iov_empty(iov, in_num)) {
  1547. len = readv(dev->fd, iov, in_num);
  1548. if (len <= 0)
  1549. err(1, "Read from /dev/random gave %i", len);
  1550. iov_consume(iov, in_num, len);
  1551. totlen += len;
  1552. }
  1553. /* Tell the Guest about the new input. */
  1554. add_used_and_trigger(fd, dev->vq, head, totlen);
  1555. /* Everything went OK! */
  1556. return true;
  1557. }
  1558. /* And this creates a "hardware" random number device for the Guest. */
  1559. static void setup_rng(void)
  1560. {
  1561. struct device *dev;
  1562. int fd;
  1563. fd = open_or_die("/dev/random", O_RDONLY);
  1564. /* The device responds to return from I/O thread. */
  1565. dev = new_device("rng", VIRTIO_ID_RNG, fd, handle_rng_input);
  1566. /* The device has one virtqueue, where the Guest places inbufs. */
  1567. add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
  1568. verbose("device %u: rng\n", devices.device_num++);
  1569. }
  1570. /* That's the end of device setup. */
  1571. /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
  1572. static void __attribute__((noreturn)) restart_guest(void)
  1573. {
  1574. unsigned int i;
  1575. /* Since we don't track all open fds, we simply close everything beyond
  1576. * stderr. */
  1577. for (i = 3; i < FD_SETSIZE; i++)
  1578. close(i);
  1579. /* The exec automatically gets rid of the I/O and Waker threads. */
  1580. execv(main_args[0], main_args);
  1581. err(1, "Could not exec %s", main_args[0]);
  1582. }
  1583. /*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
  1584. * its input and output, and finally, lays it to rest. */
  1585. static void __attribute__((noreturn)) run_guest(int lguest_fd)
  1586. {
  1587. for (;;) {
  1588. unsigned long args[] = { LHREQ_BREAK, 0 };
  1589. unsigned long notify_addr;
  1590. int readval;
  1591. /* We read from the /dev/lguest device to run the Guest. */
  1592. readval = pread(lguest_fd, &notify_addr,
  1593. sizeof(notify_addr), cpu_id);
  1594. /* One unsigned long means the Guest did HCALL_NOTIFY */
  1595. if (readval == sizeof(notify_addr)) {
  1596. verbose("Notify on address %#lx\n", notify_addr);
  1597. handle_output(lguest_fd, notify_addr);
  1598. continue;
  1599. /* ENOENT means the Guest died. Reading tells us why. */
  1600. } else if (errno == ENOENT) {
  1601. char reason[1024] = { 0 };
  1602. pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
  1603. errx(1, "%s", reason);
  1604. /* ERESTART means that we need to reboot the guest */
  1605. } else if (errno == ERESTART) {
  1606. restart_guest();
  1607. /* EAGAIN means a signal (timeout).
  1608. * Anything else means a bug or incompatible change. */
  1609. } else if (errno != EAGAIN)
  1610. err(1, "Running guest failed");
  1611. /* Only service input on thread for CPU 0. */
  1612. if (cpu_id != 0)
  1613. continue;
  1614. /* Service input, then unset the BREAK to release the Waker. */
  1615. handle_input(lguest_fd);
  1616. if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
  1617. err(1, "Resetting break");
  1618. }
  1619. }
  1620. /*L:240
  1621. * This is the end of the Launcher. The good news: we are over halfway
  1622. * through! The bad news: the most fiendish part of the code still lies ahead
  1623. * of us.
  1624. *
  1625. * Are you ready? Take a deep breath and join me in the core of the Host, in
  1626. * "make Host".
  1627. :*/
  1628. static struct option opts[] = {
  1629. { "verbose", 0, NULL, 'v' },
  1630. { "tunnet", 1, NULL, 't' },
  1631. { "block", 1, NULL, 'b' },
  1632. { "rng", 0, NULL, 'r' },
  1633. { "initrd", 1, NULL, 'i' },
  1634. { NULL },
  1635. };
  1636. static void usage(void)
  1637. {
  1638. errx(1, "Usage: lguest [--verbose] "
  1639. "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
  1640. "|--block=<filename>|--initrd=<filename>]...\n"
  1641. "<mem-in-mb> vmlinux [args...]");
  1642. }
  1643. /*L:105 The main routine is where the real work begins: */
  1644. int main(int argc, char *argv[])
  1645. {
  1646. /* Memory, top-level pagetable, code startpoint and size of the
  1647. * (optional) initrd. */
  1648. unsigned long mem = 0, pgdir, start, initrd_size = 0;
  1649. /* Two temporaries and the /dev/lguest file descriptor. */
  1650. int i, c, lguest_fd;
  1651. /* The boot information for the Guest. */
  1652. struct boot_params *boot;
  1653. /* If they specify an initrd file to load. */
  1654. const char *initrd_name = NULL;
  1655. /* Save the args: we "reboot" by execing ourselves again. */
  1656. main_args = argv;
  1657. /* We don't "wait" for the children, so prevent them from becoming
  1658. * zombies. */
  1659. signal(SIGCHLD, SIG_IGN);
  1660. /* First we initialize the device list. Since console and network
  1661. * device receive input from a file descriptor, we keep an fdset
  1662. * (infds) and the maximum fd number (max_infd) with the head of the
  1663. * list. We also keep a pointer to the last device. Finally, we keep
  1664. * the next interrupt number to use for devices (1: remember that 0 is
  1665. * used by the timer). */
  1666. FD_ZERO(&devices.infds);
  1667. devices.max_infd = -1;
  1668. devices.lastdev = NULL;
  1669. devices.next_irq = 1;
  1670. cpu_id = 0;
  1671. /* We need to know how much memory so we can set up the device
  1672. * descriptor and memory pages for the devices as we parse the command
  1673. * line. So we quickly look through the arguments to find the amount
  1674. * of memory now. */
  1675. for (i = 1; i < argc; i++) {
  1676. if (argv[i][0] != '-') {
  1677. mem = atoi(argv[i]) * 1024 * 1024;
  1678. /* We start by mapping anonymous pages over all of
  1679. * guest-physical memory range. This fills it with 0,
  1680. * and ensures that the Guest won't be killed when it
  1681. * tries to access it. */
  1682. guest_base = map_zeroed_pages(mem / getpagesize()
  1683. + DEVICE_PAGES);
  1684. guest_limit = mem;
  1685. guest_max = mem + DEVICE_PAGES*getpagesize();
  1686. devices.descpage = get_pages(1);
  1687. break;
  1688. }
  1689. }
  1690. /* The options are fairly straight-forward */
  1691. while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
  1692. switch (c) {
  1693. case 'v':
  1694. verbose = true;
  1695. break;
  1696. case 't':
  1697. setup_tun_net(optarg);
  1698. break;
  1699. case 'b':
  1700. setup_block_file(optarg);
  1701. break;
  1702. case 'r':
  1703. setup_rng();
  1704. break;
  1705. case 'i':
  1706. initrd_name = optarg;
  1707. break;
  1708. default:
  1709. warnx("Unknown argument %s", argv[optind]);
  1710. usage();
  1711. }
  1712. }
  1713. /* After the other arguments we expect memory and kernel image name,
  1714. * followed by command line arguments for the kernel. */
  1715. if (optind + 2 > argc)
  1716. usage();
  1717. verbose("Guest base is at %p\n", guest_base);
  1718. /* We always have a console device */
  1719. setup_console();
  1720. /* We can timeout waiting for Guest network transmit. */
  1721. setup_timeout();
  1722. /* Now we load the kernel */
  1723. start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
  1724. /* Boot information is stashed at physical address 0 */
  1725. boot = from_guest_phys(0);
  1726. /* Map the initrd image if requested (at top of physical memory) */
  1727. if (initrd_name) {
  1728. initrd_size = load_initrd(initrd_name, mem);
  1729. /* These are the location in the Linux boot header where the
  1730. * start and size of the initrd are expected to be found. */
  1731. boot->hdr.ramdisk_image = mem - initrd_size;
  1732. boot->hdr.ramdisk_size = initrd_size;
  1733. /* The bootloader type 0xFF means "unknown"; that's OK. */
  1734. boot->hdr.type_of_loader = 0xFF;
  1735. }
  1736. /* Set up the initial linear pagetables, starting below the initrd. */
  1737. pgdir = setup_pagetables(mem, initrd_size);
  1738. /* The Linux boot header contains an "E820" memory map: ours is a
  1739. * simple, single region. */
  1740. boot->e820_entries = 1;
  1741. boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
  1742. /* The boot header contains a command line pointer: we put the command
  1743. * line after the boot header. */
  1744. boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
  1745. /* We use a simple helper to copy the arguments separated by spaces. */
  1746. concat((char *)(boot + 1), argv+optind+2);
  1747. /* Boot protocol version: 2.07 supports the fields for lguest. */
  1748. boot->hdr.version = 0x207;
  1749. /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
  1750. boot->hdr.hardware_subarch = 1;
  1751. /* Tell the entry path not to try to reload segment registers. */
  1752. boot->hdr.loadflags |= KEEP_SEGMENTS;
  1753. /* We tell the kernel to initialize the Guest: this returns the open
  1754. * /dev/lguest file descriptor. */
  1755. lguest_fd = tell_kernel(pgdir, start);
  1756. /* We clone off a thread, which wakes the Launcher whenever one of the
  1757. * input file descriptors needs attention. We call this the Waker, and
  1758. * we'll cover it in a moment. */
  1759. setup_waker(lguest_fd);
  1760. /* Finally, run the Guest. This doesn't return. */
  1761. run_guest(lguest_fd);
  1762. }
  1763. /*:*/
  1764. /*M:999
  1765. * Mastery is done: you now know everything I do.
  1766. *
  1767. * But surely you have seen code, features and bugs in your wanderings which
  1768. * you now yearn to attack? That is the real game, and I look forward to you
  1769. * patching and forking lguest into the Your-Name-Here-visor.
  1770. *
  1771. * Farewell, and good coding!
  1772. * Rusty Russell.
  1773. */