smsc9420.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752
  1. /***************************************************************************
  2. *
  3. * Copyright (C) 2007,2008 SMSC
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18. *
  19. ***************************************************************************
  20. */
  21. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  22. #include <linux/interrupt.h>
  23. #include <linux/kernel.h>
  24. #include <linux/netdevice.h>
  25. #include <linux/phy.h>
  26. #include <linux/pci.h>
  27. #include <linux/if_vlan.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/crc32.h>
  30. #include <linux/slab.h>
  31. #include <linux/module.h>
  32. #include <asm/unaligned.h>
  33. #include "smsc9420.h"
  34. #define DRV_NAME "smsc9420"
  35. #define DRV_MDIONAME "smsc9420-mdio"
  36. #define DRV_DESCRIPTION "SMSC LAN9420 driver"
  37. #define DRV_VERSION "1.01"
  38. MODULE_LICENSE("GPL");
  39. MODULE_VERSION(DRV_VERSION);
  40. struct smsc9420_dma_desc {
  41. u32 status;
  42. u32 length;
  43. u32 buffer1;
  44. u32 buffer2;
  45. };
  46. struct smsc9420_ring_info {
  47. struct sk_buff *skb;
  48. dma_addr_t mapping;
  49. };
  50. struct smsc9420_pdata {
  51. void __iomem *ioaddr;
  52. struct pci_dev *pdev;
  53. struct net_device *dev;
  54. struct smsc9420_dma_desc *rx_ring;
  55. struct smsc9420_dma_desc *tx_ring;
  56. struct smsc9420_ring_info *tx_buffers;
  57. struct smsc9420_ring_info *rx_buffers;
  58. dma_addr_t rx_dma_addr;
  59. dma_addr_t tx_dma_addr;
  60. int tx_ring_head, tx_ring_tail;
  61. int rx_ring_head, rx_ring_tail;
  62. spinlock_t int_lock;
  63. spinlock_t phy_lock;
  64. struct napi_struct napi;
  65. bool software_irq_signal;
  66. bool rx_csum;
  67. u32 msg_enable;
  68. struct phy_device *phy_dev;
  69. struct mii_bus *mii_bus;
  70. int phy_irq[PHY_MAX_ADDR];
  71. int last_duplex;
  72. int last_carrier;
  73. };
  74. static DEFINE_PCI_DEVICE_TABLE(smsc9420_id_table) = {
  75. { PCI_VENDOR_ID_9420, PCI_DEVICE_ID_9420, PCI_ANY_ID, PCI_ANY_ID, },
  76. { 0, }
  77. };
  78. MODULE_DEVICE_TABLE(pci, smsc9420_id_table);
  79. #define SMSC_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  80. static uint smsc_debug;
  81. static uint debug = -1;
  82. module_param(debug, uint, 0);
  83. MODULE_PARM_DESC(debug, "debug level");
  84. static inline u32 smsc9420_reg_read(struct smsc9420_pdata *pd, u32 offset)
  85. {
  86. return ioread32(pd->ioaddr + offset);
  87. }
  88. static inline void
  89. smsc9420_reg_write(struct smsc9420_pdata *pd, u32 offset, u32 value)
  90. {
  91. iowrite32(value, pd->ioaddr + offset);
  92. }
  93. static inline void smsc9420_pci_flush_write(struct smsc9420_pdata *pd)
  94. {
  95. /* to ensure PCI write completion, we must perform a PCI read */
  96. smsc9420_reg_read(pd, ID_REV);
  97. }
  98. static int smsc9420_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
  99. {
  100. struct smsc9420_pdata *pd = (struct smsc9420_pdata *)bus->priv;
  101. unsigned long flags;
  102. u32 addr;
  103. int i, reg = -EIO;
  104. spin_lock_irqsave(&pd->phy_lock, flags);
  105. /* confirm MII not busy */
  106. if ((smsc9420_reg_read(pd, MII_ACCESS) & MII_ACCESS_MII_BUSY_)) {
  107. netif_warn(pd, drv, pd->dev, "MII is busy???\n");
  108. goto out;
  109. }
  110. /* set the address, index & direction (read from PHY) */
  111. addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6) |
  112. MII_ACCESS_MII_READ_;
  113. smsc9420_reg_write(pd, MII_ACCESS, addr);
  114. /* wait for read to complete with 50us timeout */
  115. for (i = 0; i < 5; i++) {
  116. if (!(smsc9420_reg_read(pd, MII_ACCESS) &
  117. MII_ACCESS_MII_BUSY_)) {
  118. reg = (u16)smsc9420_reg_read(pd, MII_DATA);
  119. goto out;
  120. }
  121. udelay(10);
  122. }
  123. netif_warn(pd, drv, pd->dev, "MII busy timeout!\n");
  124. out:
  125. spin_unlock_irqrestore(&pd->phy_lock, flags);
  126. return reg;
  127. }
  128. static int smsc9420_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
  129. u16 val)
  130. {
  131. struct smsc9420_pdata *pd = (struct smsc9420_pdata *)bus->priv;
  132. unsigned long flags;
  133. u32 addr;
  134. int i, reg = -EIO;
  135. spin_lock_irqsave(&pd->phy_lock, flags);
  136. /* confirm MII not busy */
  137. if ((smsc9420_reg_read(pd, MII_ACCESS) & MII_ACCESS_MII_BUSY_)) {
  138. netif_warn(pd, drv, pd->dev, "MII is busy???\n");
  139. goto out;
  140. }
  141. /* put the data to write in the MAC */
  142. smsc9420_reg_write(pd, MII_DATA, (u32)val);
  143. /* set the address, index & direction (write to PHY) */
  144. addr = ((phyaddr & 0x1F) << 11) | ((regidx & 0x1F) << 6) |
  145. MII_ACCESS_MII_WRITE_;
  146. smsc9420_reg_write(pd, MII_ACCESS, addr);
  147. /* wait for write to complete with 50us timeout */
  148. for (i = 0; i < 5; i++) {
  149. if (!(smsc9420_reg_read(pd, MII_ACCESS) &
  150. MII_ACCESS_MII_BUSY_)) {
  151. reg = 0;
  152. goto out;
  153. }
  154. udelay(10);
  155. }
  156. netif_warn(pd, drv, pd->dev, "MII busy timeout!\n");
  157. out:
  158. spin_unlock_irqrestore(&pd->phy_lock, flags);
  159. return reg;
  160. }
  161. /* Returns hash bit number for given MAC address
  162. * Example:
  163. * 01 00 5E 00 00 01 -> returns bit number 31 */
  164. static u32 smsc9420_hash(u8 addr[ETH_ALEN])
  165. {
  166. return (ether_crc(ETH_ALEN, addr) >> 26) & 0x3f;
  167. }
  168. static int smsc9420_eeprom_reload(struct smsc9420_pdata *pd)
  169. {
  170. int timeout = 100000;
  171. BUG_ON(!pd);
  172. if (smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_) {
  173. netif_dbg(pd, drv, pd->dev, "%s: Eeprom busy\n", __func__);
  174. return -EIO;
  175. }
  176. smsc9420_reg_write(pd, E2P_CMD,
  177. (E2P_CMD_EPC_BUSY_ | E2P_CMD_EPC_CMD_RELOAD_));
  178. do {
  179. udelay(10);
  180. if (!(smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_))
  181. return 0;
  182. } while (timeout--);
  183. netif_warn(pd, drv, pd->dev, "%s: Eeprom timed out\n", __func__);
  184. return -EIO;
  185. }
  186. /* Standard ioctls for mii-tool */
  187. static int smsc9420_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  188. {
  189. struct smsc9420_pdata *pd = netdev_priv(dev);
  190. if (!netif_running(dev) || !pd->phy_dev)
  191. return -EINVAL;
  192. return phy_mii_ioctl(pd->phy_dev, ifr, cmd);
  193. }
  194. static int smsc9420_ethtool_get_settings(struct net_device *dev,
  195. struct ethtool_cmd *cmd)
  196. {
  197. struct smsc9420_pdata *pd = netdev_priv(dev);
  198. if (!pd->phy_dev)
  199. return -ENODEV;
  200. cmd->maxtxpkt = 1;
  201. cmd->maxrxpkt = 1;
  202. return phy_ethtool_gset(pd->phy_dev, cmd);
  203. }
  204. static int smsc9420_ethtool_set_settings(struct net_device *dev,
  205. struct ethtool_cmd *cmd)
  206. {
  207. struct smsc9420_pdata *pd = netdev_priv(dev);
  208. if (!pd->phy_dev)
  209. return -ENODEV;
  210. return phy_ethtool_sset(pd->phy_dev, cmd);
  211. }
  212. static void smsc9420_ethtool_get_drvinfo(struct net_device *netdev,
  213. struct ethtool_drvinfo *drvinfo)
  214. {
  215. struct smsc9420_pdata *pd = netdev_priv(netdev);
  216. strlcpy(drvinfo->driver, DRV_NAME, sizeof(drvinfo->driver));
  217. strlcpy(drvinfo->bus_info, pci_name(pd->pdev),
  218. sizeof(drvinfo->bus_info));
  219. strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
  220. }
  221. static u32 smsc9420_ethtool_get_msglevel(struct net_device *netdev)
  222. {
  223. struct smsc9420_pdata *pd = netdev_priv(netdev);
  224. return pd->msg_enable;
  225. }
  226. static void smsc9420_ethtool_set_msglevel(struct net_device *netdev, u32 data)
  227. {
  228. struct smsc9420_pdata *pd = netdev_priv(netdev);
  229. pd->msg_enable = data;
  230. }
  231. static int smsc9420_ethtool_nway_reset(struct net_device *netdev)
  232. {
  233. struct smsc9420_pdata *pd = netdev_priv(netdev);
  234. if (!pd->phy_dev)
  235. return -ENODEV;
  236. return phy_start_aneg(pd->phy_dev);
  237. }
  238. static int smsc9420_ethtool_getregslen(struct net_device *dev)
  239. {
  240. /* all smsc9420 registers plus all phy registers */
  241. return 0x100 + (32 * sizeof(u32));
  242. }
  243. static void
  244. smsc9420_ethtool_getregs(struct net_device *dev, struct ethtool_regs *regs,
  245. void *buf)
  246. {
  247. struct smsc9420_pdata *pd = netdev_priv(dev);
  248. struct phy_device *phy_dev = pd->phy_dev;
  249. unsigned int i, j = 0;
  250. u32 *data = buf;
  251. regs->version = smsc9420_reg_read(pd, ID_REV);
  252. for (i = 0; i < 0x100; i += (sizeof(u32)))
  253. data[j++] = smsc9420_reg_read(pd, i);
  254. // cannot read phy registers if the net device is down
  255. if (!phy_dev)
  256. return;
  257. for (i = 0; i <= 31; i++)
  258. data[j++] = smsc9420_mii_read(phy_dev->bus, phy_dev->addr, i);
  259. }
  260. static void smsc9420_eeprom_enable_access(struct smsc9420_pdata *pd)
  261. {
  262. unsigned int temp = smsc9420_reg_read(pd, GPIO_CFG);
  263. temp &= ~GPIO_CFG_EEPR_EN_;
  264. smsc9420_reg_write(pd, GPIO_CFG, temp);
  265. msleep(1);
  266. }
  267. static int smsc9420_eeprom_send_cmd(struct smsc9420_pdata *pd, u32 op)
  268. {
  269. int timeout = 100;
  270. u32 e2cmd;
  271. netif_dbg(pd, hw, pd->dev, "op 0x%08x\n", op);
  272. if (smsc9420_reg_read(pd, E2P_CMD) & E2P_CMD_EPC_BUSY_) {
  273. netif_warn(pd, hw, pd->dev, "Busy at start\n");
  274. return -EBUSY;
  275. }
  276. e2cmd = op | E2P_CMD_EPC_BUSY_;
  277. smsc9420_reg_write(pd, E2P_CMD, e2cmd);
  278. do {
  279. msleep(1);
  280. e2cmd = smsc9420_reg_read(pd, E2P_CMD);
  281. } while ((e2cmd & E2P_CMD_EPC_BUSY_) && (--timeout));
  282. if (!timeout) {
  283. netif_info(pd, hw, pd->dev, "TIMED OUT\n");
  284. return -EAGAIN;
  285. }
  286. if (e2cmd & E2P_CMD_EPC_TIMEOUT_) {
  287. netif_info(pd, hw, pd->dev,
  288. "Error occurred during eeprom operation\n");
  289. return -EINVAL;
  290. }
  291. return 0;
  292. }
  293. static int smsc9420_eeprom_read_location(struct smsc9420_pdata *pd,
  294. u8 address, u8 *data)
  295. {
  296. u32 op = E2P_CMD_EPC_CMD_READ_ | address;
  297. int ret;
  298. netif_dbg(pd, hw, pd->dev, "address 0x%x\n", address);
  299. ret = smsc9420_eeprom_send_cmd(pd, op);
  300. if (!ret)
  301. data[address] = smsc9420_reg_read(pd, E2P_DATA);
  302. return ret;
  303. }
  304. static int smsc9420_eeprom_write_location(struct smsc9420_pdata *pd,
  305. u8 address, u8 data)
  306. {
  307. u32 op = E2P_CMD_EPC_CMD_ERASE_ | address;
  308. int ret;
  309. netif_dbg(pd, hw, pd->dev, "address 0x%x, data 0x%x\n", address, data);
  310. ret = smsc9420_eeprom_send_cmd(pd, op);
  311. if (!ret) {
  312. op = E2P_CMD_EPC_CMD_WRITE_ | address;
  313. smsc9420_reg_write(pd, E2P_DATA, (u32)data);
  314. ret = smsc9420_eeprom_send_cmd(pd, op);
  315. }
  316. return ret;
  317. }
  318. static int smsc9420_ethtool_get_eeprom_len(struct net_device *dev)
  319. {
  320. return SMSC9420_EEPROM_SIZE;
  321. }
  322. static int smsc9420_ethtool_get_eeprom(struct net_device *dev,
  323. struct ethtool_eeprom *eeprom, u8 *data)
  324. {
  325. struct smsc9420_pdata *pd = netdev_priv(dev);
  326. u8 eeprom_data[SMSC9420_EEPROM_SIZE];
  327. int len, i;
  328. smsc9420_eeprom_enable_access(pd);
  329. len = min(eeprom->len, SMSC9420_EEPROM_SIZE);
  330. for (i = 0; i < len; i++) {
  331. int ret = smsc9420_eeprom_read_location(pd, i, eeprom_data);
  332. if (ret < 0) {
  333. eeprom->len = 0;
  334. return ret;
  335. }
  336. }
  337. memcpy(data, &eeprom_data[eeprom->offset], len);
  338. eeprom->magic = SMSC9420_EEPROM_MAGIC;
  339. eeprom->len = len;
  340. return 0;
  341. }
  342. static int smsc9420_ethtool_set_eeprom(struct net_device *dev,
  343. struct ethtool_eeprom *eeprom, u8 *data)
  344. {
  345. struct smsc9420_pdata *pd = netdev_priv(dev);
  346. int ret;
  347. if (eeprom->magic != SMSC9420_EEPROM_MAGIC)
  348. return -EINVAL;
  349. smsc9420_eeprom_enable_access(pd);
  350. smsc9420_eeprom_send_cmd(pd, E2P_CMD_EPC_CMD_EWEN_);
  351. ret = smsc9420_eeprom_write_location(pd, eeprom->offset, *data);
  352. smsc9420_eeprom_send_cmd(pd, E2P_CMD_EPC_CMD_EWDS_);
  353. /* Single byte write, according to man page */
  354. eeprom->len = 1;
  355. return ret;
  356. }
  357. static const struct ethtool_ops smsc9420_ethtool_ops = {
  358. .get_settings = smsc9420_ethtool_get_settings,
  359. .set_settings = smsc9420_ethtool_set_settings,
  360. .get_drvinfo = smsc9420_ethtool_get_drvinfo,
  361. .get_msglevel = smsc9420_ethtool_get_msglevel,
  362. .set_msglevel = smsc9420_ethtool_set_msglevel,
  363. .nway_reset = smsc9420_ethtool_nway_reset,
  364. .get_link = ethtool_op_get_link,
  365. .get_eeprom_len = smsc9420_ethtool_get_eeprom_len,
  366. .get_eeprom = smsc9420_ethtool_get_eeprom,
  367. .set_eeprom = smsc9420_ethtool_set_eeprom,
  368. .get_regs_len = smsc9420_ethtool_getregslen,
  369. .get_regs = smsc9420_ethtool_getregs,
  370. .get_ts_info = ethtool_op_get_ts_info,
  371. };
  372. /* Sets the device MAC address to dev_addr */
  373. static void smsc9420_set_mac_address(struct net_device *dev)
  374. {
  375. struct smsc9420_pdata *pd = netdev_priv(dev);
  376. u8 *dev_addr = dev->dev_addr;
  377. u32 mac_high16 = (dev_addr[5] << 8) | dev_addr[4];
  378. u32 mac_low32 = (dev_addr[3] << 24) | (dev_addr[2] << 16) |
  379. (dev_addr[1] << 8) | dev_addr[0];
  380. smsc9420_reg_write(pd, ADDRH, mac_high16);
  381. smsc9420_reg_write(pd, ADDRL, mac_low32);
  382. }
  383. static void smsc9420_check_mac_address(struct net_device *dev)
  384. {
  385. struct smsc9420_pdata *pd = netdev_priv(dev);
  386. /* Check if mac address has been specified when bringing interface up */
  387. if (is_valid_ether_addr(dev->dev_addr)) {
  388. smsc9420_set_mac_address(dev);
  389. netif_dbg(pd, probe, pd->dev,
  390. "MAC Address is specified by configuration\n");
  391. } else {
  392. /* Try reading mac address from device. if EEPROM is present
  393. * it will already have been set */
  394. u32 mac_high16 = smsc9420_reg_read(pd, ADDRH);
  395. u32 mac_low32 = smsc9420_reg_read(pd, ADDRL);
  396. dev->dev_addr[0] = (u8)(mac_low32);
  397. dev->dev_addr[1] = (u8)(mac_low32 >> 8);
  398. dev->dev_addr[2] = (u8)(mac_low32 >> 16);
  399. dev->dev_addr[3] = (u8)(mac_low32 >> 24);
  400. dev->dev_addr[4] = (u8)(mac_high16);
  401. dev->dev_addr[5] = (u8)(mac_high16 >> 8);
  402. if (is_valid_ether_addr(dev->dev_addr)) {
  403. /* eeprom values are valid so use them */
  404. netif_dbg(pd, probe, pd->dev,
  405. "Mac Address is read from EEPROM\n");
  406. } else {
  407. /* eeprom values are invalid, generate random MAC */
  408. eth_hw_addr_random(dev);
  409. smsc9420_set_mac_address(dev);
  410. netif_dbg(pd, probe, pd->dev,
  411. "MAC Address is set to random\n");
  412. }
  413. }
  414. }
  415. static void smsc9420_stop_tx(struct smsc9420_pdata *pd)
  416. {
  417. u32 dmac_control, mac_cr, dma_intr_ena;
  418. int timeout = 1000;
  419. /* disable TX DMAC */
  420. dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
  421. dmac_control &= (~DMAC_CONTROL_ST_);
  422. smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
  423. /* Wait max 10ms for transmit process to stop */
  424. while (--timeout) {
  425. if (smsc9420_reg_read(pd, DMAC_STATUS) & DMAC_STS_TS_)
  426. break;
  427. udelay(10);
  428. }
  429. if (!timeout)
  430. netif_warn(pd, ifdown, pd->dev, "TX DMAC failed to stop\n");
  431. /* ACK Tx DMAC stop bit */
  432. smsc9420_reg_write(pd, DMAC_STATUS, DMAC_STS_TXPS_);
  433. /* mask TX DMAC interrupts */
  434. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  435. dma_intr_ena &= ~(DMAC_INTR_ENA_TX_);
  436. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  437. smsc9420_pci_flush_write(pd);
  438. /* stop MAC TX */
  439. mac_cr = smsc9420_reg_read(pd, MAC_CR) & (~MAC_CR_TXEN_);
  440. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  441. smsc9420_pci_flush_write(pd);
  442. }
  443. static void smsc9420_free_tx_ring(struct smsc9420_pdata *pd)
  444. {
  445. int i;
  446. BUG_ON(!pd->tx_ring);
  447. if (!pd->tx_buffers)
  448. return;
  449. for (i = 0; i < TX_RING_SIZE; i++) {
  450. struct sk_buff *skb = pd->tx_buffers[i].skb;
  451. if (skb) {
  452. BUG_ON(!pd->tx_buffers[i].mapping);
  453. pci_unmap_single(pd->pdev, pd->tx_buffers[i].mapping,
  454. skb->len, PCI_DMA_TODEVICE);
  455. dev_kfree_skb_any(skb);
  456. }
  457. pd->tx_ring[i].status = 0;
  458. pd->tx_ring[i].length = 0;
  459. pd->tx_ring[i].buffer1 = 0;
  460. pd->tx_ring[i].buffer2 = 0;
  461. }
  462. wmb();
  463. kfree(pd->tx_buffers);
  464. pd->tx_buffers = NULL;
  465. pd->tx_ring_head = 0;
  466. pd->tx_ring_tail = 0;
  467. }
  468. static void smsc9420_free_rx_ring(struct smsc9420_pdata *pd)
  469. {
  470. int i;
  471. BUG_ON(!pd->rx_ring);
  472. if (!pd->rx_buffers)
  473. return;
  474. for (i = 0; i < RX_RING_SIZE; i++) {
  475. if (pd->rx_buffers[i].skb)
  476. dev_kfree_skb_any(pd->rx_buffers[i].skb);
  477. if (pd->rx_buffers[i].mapping)
  478. pci_unmap_single(pd->pdev, pd->rx_buffers[i].mapping,
  479. PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
  480. pd->rx_ring[i].status = 0;
  481. pd->rx_ring[i].length = 0;
  482. pd->rx_ring[i].buffer1 = 0;
  483. pd->rx_ring[i].buffer2 = 0;
  484. }
  485. wmb();
  486. kfree(pd->rx_buffers);
  487. pd->rx_buffers = NULL;
  488. pd->rx_ring_head = 0;
  489. pd->rx_ring_tail = 0;
  490. }
  491. static void smsc9420_stop_rx(struct smsc9420_pdata *pd)
  492. {
  493. int timeout = 1000;
  494. u32 mac_cr, dmac_control, dma_intr_ena;
  495. /* mask RX DMAC interrupts */
  496. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  497. dma_intr_ena &= (~DMAC_INTR_ENA_RX_);
  498. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  499. smsc9420_pci_flush_write(pd);
  500. /* stop RX MAC prior to stoping DMA */
  501. mac_cr = smsc9420_reg_read(pd, MAC_CR) & (~MAC_CR_RXEN_);
  502. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  503. smsc9420_pci_flush_write(pd);
  504. /* stop RX DMAC */
  505. dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
  506. dmac_control &= (~DMAC_CONTROL_SR_);
  507. smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
  508. smsc9420_pci_flush_write(pd);
  509. /* wait up to 10ms for receive to stop */
  510. while (--timeout) {
  511. if (smsc9420_reg_read(pd, DMAC_STATUS) & DMAC_STS_RS_)
  512. break;
  513. udelay(10);
  514. }
  515. if (!timeout)
  516. netif_warn(pd, ifdown, pd->dev,
  517. "RX DMAC did not stop! timeout\n");
  518. /* ACK the Rx DMAC stop bit */
  519. smsc9420_reg_write(pd, DMAC_STATUS, DMAC_STS_RXPS_);
  520. }
  521. static irqreturn_t smsc9420_isr(int irq, void *dev_id)
  522. {
  523. struct smsc9420_pdata *pd = dev_id;
  524. u32 int_cfg, int_sts, int_ctl;
  525. irqreturn_t ret = IRQ_NONE;
  526. ulong flags;
  527. BUG_ON(!pd);
  528. BUG_ON(!pd->ioaddr);
  529. int_cfg = smsc9420_reg_read(pd, INT_CFG);
  530. /* check if it's our interrupt */
  531. if ((int_cfg & (INT_CFG_IRQ_EN_ | INT_CFG_IRQ_INT_)) !=
  532. (INT_CFG_IRQ_EN_ | INT_CFG_IRQ_INT_))
  533. return IRQ_NONE;
  534. int_sts = smsc9420_reg_read(pd, INT_STAT);
  535. if (likely(INT_STAT_DMAC_INT_ & int_sts)) {
  536. u32 status = smsc9420_reg_read(pd, DMAC_STATUS);
  537. u32 ints_to_clear = 0;
  538. if (status & DMAC_STS_TX_) {
  539. ints_to_clear |= (DMAC_STS_TX_ | DMAC_STS_NIS_);
  540. netif_wake_queue(pd->dev);
  541. }
  542. if (status & DMAC_STS_RX_) {
  543. /* mask RX DMAC interrupts */
  544. u32 dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  545. dma_intr_ena &= (~DMAC_INTR_ENA_RX_);
  546. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  547. smsc9420_pci_flush_write(pd);
  548. ints_to_clear |= (DMAC_STS_RX_ | DMAC_STS_NIS_);
  549. napi_schedule(&pd->napi);
  550. }
  551. if (ints_to_clear)
  552. smsc9420_reg_write(pd, DMAC_STATUS, ints_to_clear);
  553. ret = IRQ_HANDLED;
  554. }
  555. if (unlikely(INT_STAT_SW_INT_ & int_sts)) {
  556. /* mask software interrupt */
  557. spin_lock_irqsave(&pd->int_lock, flags);
  558. int_ctl = smsc9420_reg_read(pd, INT_CTL);
  559. int_ctl &= (~INT_CTL_SW_INT_EN_);
  560. smsc9420_reg_write(pd, INT_CTL, int_ctl);
  561. spin_unlock_irqrestore(&pd->int_lock, flags);
  562. smsc9420_reg_write(pd, INT_STAT, INT_STAT_SW_INT_);
  563. pd->software_irq_signal = true;
  564. smp_wmb();
  565. ret = IRQ_HANDLED;
  566. }
  567. /* to ensure PCI write completion, we must perform a PCI read */
  568. smsc9420_pci_flush_write(pd);
  569. return ret;
  570. }
  571. #ifdef CONFIG_NET_POLL_CONTROLLER
  572. static void smsc9420_poll_controller(struct net_device *dev)
  573. {
  574. struct smsc9420_pdata *pd = netdev_priv(dev);
  575. const int irq = pd->pdev->irq;
  576. disable_irq(irq);
  577. smsc9420_isr(0, dev);
  578. enable_irq(irq);
  579. }
  580. #endif /* CONFIG_NET_POLL_CONTROLLER */
  581. static void smsc9420_dmac_soft_reset(struct smsc9420_pdata *pd)
  582. {
  583. smsc9420_reg_write(pd, BUS_MODE, BUS_MODE_SWR_);
  584. smsc9420_reg_read(pd, BUS_MODE);
  585. udelay(2);
  586. if (smsc9420_reg_read(pd, BUS_MODE) & BUS_MODE_SWR_)
  587. netif_warn(pd, drv, pd->dev, "Software reset not cleared\n");
  588. }
  589. static int smsc9420_stop(struct net_device *dev)
  590. {
  591. struct smsc9420_pdata *pd = netdev_priv(dev);
  592. u32 int_cfg;
  593. ulong flags;
  594. BUG_ON(!pd);
  595. BUG_ON(!pd->phy_dev);
  596. /* disable master interrupt */
  597. spin_lock_irqsave(&pd->int_lock, flags);
  598. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  599. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  600. spin_unlock_irqrestore(&pd->int_lock, flags);
  601. netif_tx_disable(dev);
  602. napi_disable(&pd->napi);
  603. smsc9420_stop_tx(pd);
  604. smsc9420_free_tx_ring(pd);
  605. smsc9420_stop_rx(pd);
  606. smsc9420_free_rx_ring(pd);
  607. free_irq(pd->pdev->irq, pd);
  608. smsc9420_dmac_soft_reset(pd);
  609. phy_stop(pd->phy_dev);
  610. phy_disconnect(pd->phy_dev);
  611. pd->phy_dev = NULL;
  612. mdiobus_unregister(pd->mii_bus);
  613. mdiobus_free(pd->mii_bus);
  614. return 0;
  615. }
  616. static void smsc9420_rx_count_stats(struct net_device *dev, u32 desc_status)
  617. {
  618. if (unlikely(desc_status & RDES0_ERROR_SUMMARY_)) {
  619. dev->stats.rx_errors++;
  620. if (desc_status & RDES0_DESCRIPTOR_ERROR_)
  621. dev->stats.rx_over_errors++;
  622. else if (desc_status & (RDES0_FRAME_TOO_LONG_ |
  623. RDES0_RUNT_FRAME_ | RDES0_COLLISION_SEEN_))
  624. dev->stats.rx_frame_errors++;
  625. else if (desc_status & RDES0_CRC_ERROR_)
  626. dev->stats.rx_crc_errors++;
  627. }
  628. if (unlikely(desc_status & RDES0_LENGTH_ERROR_))
  629. dev->stats.rx_length_errors++;
  630. if (unlikely(!((desc_status & RDES0_LAST_DESCRIPTOR_) &&
  631. (desc_status & RDES0_FIRST_DESCRIPTOR_))))
  632. dev->stats.rx_length_errors++;
  633. if (desc_status & RDES0_MULTICAST_FRAME_)
  634. dev->stats.multicast++;
  635. }
  636. static void smsc9420_rx_handoff(struct smsc9420_pdata *pd, const int index,
  637. const u32 status)
  638. {
  639. struct net_device *dev = pd->dev;
  640. struct sk_buff *skb;
  641. u16 packet_length = (status & RDES0_FRAME_LENGTH_MASK_)
  642. >> RDES0_FRAME_LENGTH_SHFT_;
  643. /* remove crc from packet lendth */
  644. packet_length -= 4;
  645. if (pd->rx_csum)
  646. packet_length -= 2;
  647. dev->stats.rx_packets++;
  648. dev->stats.rx_bytes += packet_length;
  649. pci_unmap_single(pd->pdev, pd->rx_buffers[index].mapping,
  650. PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
  651. pd->rx_buffers[index].mapping = 0;
  652. skb = pd->rx_buffers[index].skb;
  653. pd->rx_buffers[index].skb = NULL;
  654. if (pd->rx_csum) {
  655. u16 hw_csum = get_unaligned_le16(skb_tail_pointer(skb) +
  656. NET_IP_ALIGN + packet_length + 4);
  657. put_unaligned_le16(hw_csum, &skb->csum);
  658. skb->ip_summed = CHECKSUM_COMPLETE;
  659. }
  660. skb_reserve(skb, NET_IP_ALIGN);
  661. skb_put(skb, packet_length);
  662. skb->protocol = eth_type_trans(skb, dev);
  663. netif_receive_skb(skb);
  664. }
  665. static int smsc9420_alloc_rx_buffer(struct smsc9420_pdata *pd, int index)
  666. {
  667. struct sk_buff *skb = netdev_alloc_skb(pd->dev, PKT_BUF_SZ);
  668. dma_addr_t mapping;
  669. BUG_ON(pd->rx_buffers[index].skb);
  670. BUG_ON(pd->rx_buffers[index].mapping);
  671. if (unlikely(!skb))
  672. return -ENOMEM;
  673. mapping = pci_map_single(pd->pdev, skb_tail_pointer(skb),
  674. PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
  675. if (pci_dma_mapping_error(pd->pdev, mapping)) {
  676. dev_kfree_skb_any(skb);
  677. netif_warn(pd, rx_err, pd->dev, "pci_map_single failed!\n");
  678. return -ENOMEM;
  679. }
  680. pd->rx_buffers[index].skb = skb;
  681. pd->rx_buffers[index].mapping = mapping;
  682. pd->rx_ring[index].buffer1 = mapping + NET_IP_ALIGN;
  683. pd->rx_ring[index].status = RDES0_OWN_;
  684. wmb();
  685. return 0;
  686. }
  687. static void smsc9420_alloc_new_rx_buffers(struct smsc9420_pdata *pd)
  688. {
  689. while (pd->rx_ring_tail != pd->rx_ring_head) {
  690. if (smsc9420_alloc_rx_buffer(pd, pd->rx_ring_tail))
  691. break;
  692. pd->rx_ring_tail = (pd->rx_ring_tail + 1) % RX_RING_SIZE;
  693. }
  694. }
  695. static int smsc9420_rx_poll(struct napi_struct *napi, int budget)
  696. {
  697. struct smsc9420_pdata *pd =
  698. container_of(napi, struct smsc9420_pdata, napi);
  699. struct net_device *dev = pd->dev;
  700. u32 drop_frame_cnt, dma_intr_ena, status;
  701. int work_done;
  702. for (work_done = 0; work_done < budget; work_done++) {
  703. rmb();
  704. status = pd->rx_ring[pd->rx_ring_head].status;
  705. /* stop if DMAC owns this dma descriptor */
  706. if (status & RDES0_OWN_)
  707. break;
  708. smsc9420_rx_count_stats(dev, status);
  709. smsc9420_rx_handoff(pd, pd->rx_ring_head, status);
  710. pd->rx_ring_head = (pd->rx_ring_head + 1) % RX_RING_SIZE;
  711. smsc9420_alloc_new_rx_buffers(pd);
  712. }
  713. drop_frame_cnt = smsc9420_reg_read(pd, MISS_FRAME_CNTR);
  714. dev->stats.rx_dropped +=
  715. (drop_frame_cnt & 0xFFFF) + ((drop_frame_cnt >> 17) & 0x3FF);
  716. /* Kick RXDMA */
  717. smsc9420_reg_write(pd, RX_POLL_DEMAND, 1);
  718. smsc9420_pci_flush_write(pd);
  719. if (work_done < budget) {
  720. napi_complete(&pd->napi);
  721. /* re-enable RX DMA interrupts */
  722. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  723. dma_intr_ena |= (DMAC_INTR_ENA_RX_ | DMAC_INTR_ENA_NIS_);
  724. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  725. smsc9420_pci_flush_write(pd);
  726. }
  727. return work_done;
  728. }
  729. static void
  730. smsc9420_tx_update_stats(struct net_device *dev, u32 status, u32 length)
  731. {
  732. if (unlikely(status & TDES0_ERROR_SUMMARY_)) {
  733. dev->stats.tx_errors++;
  734. if (status & (TDES0_EXCESSIVE_DEFERRAL_ |
  735. TDES0_EXCESSIVE_COLLISIONS_))
  736. dev->stats.tx_aborted_errors++;
  737. if (status & (TDES0_LOSS_OF_CARRIER_ | TDES0_NO_CARRIER_))
  738. dev->stats.tx_carrier_errors++;
  739. } else {
  740. dev->stats.tx_packets++;
  741. dev->stats.tx_bytes += (length & 0x7FF);
  742. }
  743. if (unlikely(status & TDES0_EXCESSIVE_COLLISIONS_)) {
  744. dev->stats.collisions += 16;
  745. } else {
  746. dev->stats.collisions +=
  747. (status & TDES0_COLLISION_COUNT_MASK_) >>
  748. TDES0_COLLISION_COUNT_SHFT_;
  749. }
  750. if (unlikely(status & TDES0_HEARTBEAT_FAIL_))
  751. dev->stats.tx_heartbeat_errors++;
  752. }
  753. /* Check for completed dma transfers, update stats and free skbs */
  754. static void smsc9420_complete_tx(struct net_device *dev)
  755. {
  756. struct smsc9420_pdata *pd = netdev_priv(dev);
  757. while (pd->tx_ring_tail != pd->tx_ring_head) {
  758. int index = pd->tx_ring_tail;
  759. u32 status, length;
  760. rmb();
  761. status = pd->tx_ring[index].status;
  762. length = pd->tx_ring[index].length;
  763. /* Check if DMA still owns this descriptor */
  764. if (unlikely(TDES0_OWN_ & status))
  765. break;
  766. smsc9420_tx_update_stats(dev, status, length);
  767. BUG_ON(!pd->tx_buffers[index].skb);
  768. BUG_ON(!pd->tx_buffers[index].mapping);
  769. pci_unmap_single(pd->pdev, pd->tx_buffers[index].mapping,
  770. pd->tx_buffers[index].skb->len, PCI_DMA_TODEVICE);
  771. pd->tx_buffers[index].mapping = 0;
  772. dev_kfree_skb_any(pd->tx_buffers[index].skb);
  773. pd->tx_buffers[index].skb = NULL;
  774. pd->tx_ring[index].buffer1 = 0;
  775. wmb();
  776. pd->tx_ring_tail = (pd->tx_ring_tail + 1) % TX_RING_SIZE;
  777. }
  778. }
  779. static netdev_tx_t smsc9420_hard_start_xmit(struct sk_buff *skb,
  780. struct net_device *dev)
  781. {
  782. struct smsc9420_pdata *pd = netdev_priv(dev);
  783. dma_addr_t mapping;
  784. int index = pd->tx_ring_head;
  785. u32 tmp_desc1;
  786. bool about_to_take_last_desc =
  787. (((pd->tx_ring_head + 2) % TX_RING_SIZE) == pd->tx_ring_tail);
  788. smsc9420_complete_tx(dev);
  789. rmb();
  790. BUG_ON(pd->tx_ring[index].status & TDES0_OWN_);
  791. BUG_ON(pd->tx_buffers[index].skb);
  792. BUG_ON(pd->tx_buffers[index].mapping);
  793. mapping = pci_map_single(pd->pdev, skb->data,
  794. skb->len, PCI_DMA_TODEVICE);
  795. if (pci_dma_mapping_error(pd->pdev, mapping)) {
  796. netif_warn(pd, tx_err, pd->dev,
  797. "pci_map_single failed, dropping packet\n");
  798. return NETDEV_TX_BUSY;
  799. }
  800. pd->tx_buffers[index].skb = skb;
  801. pd->tx_buffers[index].mapping = mapping;
  802. tmp_desc1 = (TDES1_LS_ | ((u32)skb->len & 0x7FF));
  803. if (unlikely(about_to_take_last_desc)) {
  804. tmp_desc1 |= TDES1_IC_;
  805. netif_stop_queue(pd->dev);
  806. }
  807. /* check if we are at the last descriptor and need to set EOR */
  808. if (unlikely(index == (TX_RING_SIZE - 1)))
  809. tmp_desc1 |= TDES1_TER_;
  810. pd->tx_ring[index].buffer1 = mapping;
  811. pd->tx_ring[index].length = tmp_desc1;
  812. wmb();
  813. /* increment head */
  814. pd->tx_ring_head = (pd->tx_ring_head + 1) % TX_RING_SIZE;
  815. /* assign ownership to DMAC */
  816. pd->tx_ring[index].status = TDES0_OWN_;
  817. wmb();
  818. skb_tx_timestamp(skb);
  819. /* kick the DMA */
  820. smsc9420_reg_write(pd, TX_POLL_DEMAND, 1);
  821. smsc9420_pci_flush_write(pd);
  822. return NETDEV_TX_OK;
  823. }
  824. static struct net_device_stats *smsc9420_get_stats(struct net_device *dev)
  825. {
  826. struct smsc9420_pdata *pd = netdev_priv(dev);
  827. u32 counter = smsc9420_reg_read(pd, MISS_FRAME_CNTR);
  828. dev->stats.rx_dropped +=
  829. (counter & 0x0000FFFF) + ((counter >> 17) & 0x000003FF);
  830. return &dev->stats;
  831. }
  832. static void smsc9420_set_multicast_list(struct net_device *dev)
  833. {
  834. struct smsc9420_pdata *pd = netdev_priv(dev);
  835. u32 mac_cr = smsc9420_reg_read(pd, MAC_CR);
  836. if (dev->flags & IFF_PROMISC) {
  837. netif_dbg(pd, hw, pd->dev, "Promiscuous Mode Enabled\n");
  838. mac_cr |= MAC_CR_PRMS_;
  839. mac_cr &= (~MAC_CR_MCPAS_);
  840. mac_cr &= (~MAC_CR_HPFILT_);
  841. } else if (dev->flags & IFF_ALLMULTI) {
  842. netif_dbg(pd, hw, pd->dev, "Receive all Multicast Enabled\n");
  843. mac_cr &= (~MAC_CR_PRMS_);
  844. mac_cr |= MAC_CR_MCPAS_;
  845. mac_cr &= (~MAC_CR_HPFILT_);
  846. } else if (!netdev_mc_empty(dev)) {
  847. struct netdev_hw_addr *ha;
  848. u32 hash_lo = 0, hash_hi = 0;
  849. netif_dbg(pd, hw, pd->dev, "Multicast filter enabled\n");
  850. netdev_for_each_mc_addr(ha, dev) {
  851. u32 bit_num = smsc9420_hash(ha->addr);
  852. u32 mask = 1 << (bit_num & 0x1F);
  853. if (bit_num & 0x20)
  854. hash_hi |= mask;
  855. else
  856. hash_lo |= mask;
  857. }
  858. smsc9420_reg_write(pd, HASHH, hash_hi);
  859. smsc9420_reg_write(pd, HASHL, hash_lo);
  860. mac_cr &= (~MAC_CR_PRMS_);
  861. mac_cr &= (~MAC_CR_MCPAS_);
  862. mac_cr |= MAC_CR_HPFILT_;
  863. } else {
  864. netif_dbg(pd, hw, pd->dev, "Receive own packets only\n");
  865. smsc9420_reg_write(pd, HASHH, 0);
  866. smsc9420_reg_write(pd, HASHL, 0);
  867. mac_cr &= (~MAC_CR_PRMS_);
  868. mac_cr &= (~MAC_CR_MCPAS_);
  869. mac_cr &= (~MAC_CR_HPFILT_);
  870. }
  871. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  872. smsc9420_pci_flush_write(pd);
  873. }
  874. static void smsc9420_phy_update_flowcontrol(struct smsc9420_pdata *pd)
  875. {
  876. struct phy_device *phy_dev = pd->phy_dev;
  877. u32 flow;
  878. if (phy_dev->duplex == DUPLEX_FULL) {
  879. u16 lcladv = phy_read(phy_dev, MII_ADVERTISE);
  880. u16 rmtadv = phy_read(phy_dev, MII_LPA);
  881. u8 cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv);
  882. if (cap & FLOW_CTRL_RX)
  883. flow = 0xFFFF0002;
  884. else
  885. flow = 0;
  886. netif_info(pd, link, pd->dev, "rx pause %s, tx pause %s\n",
  887. cap & FLOW_CTRL_RX ? "enabled" : "disabled",
  888. cap & FLOW_CTRL_TX ? "enabled" : "disabled");
  889. } else {
  890. netif_info(pd, link, pd->dev, "half duplex\n");
  891. flow = 0;
  892. }
  893. smsc9420_reg_write(pd, FLOW, flow);
  894. }
  895. /* Update link mode if anything has changed. Called periodically when the
  896. * PHY is in polling mode, even if nothing has changed. */
  897. static void smsc9420_phy_adjust_link(struct net_device *dev)
  898. {
  899. struct smsc9420_pdata *pd = netdev_priv(dev);
  900. struct phy_device *phy_dev = pd->phy_dev;
  901. int carrier;
  902. if (phy_dev->duplex != pd->last_duplex) {
  903. u32 mac_cr = smsc9420_reg_read(pd, MAC_CR);
  904. if (phy_dev->duplex) {
  905. netif_dbg(pd, link, pd->dev, "full duplex mode\n");
  906. mac_cr |= MAC_CR_FDPX_;
  907. } else {
  908. netif_dbg(pd, link, pd->dev, "half duplex mode\n");
  909. mac_cr &= ~MAC_CR_FDPX_;
  910. }
  911. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  912. smsc9420_phy_update_flowcontrol(pd);
  913. pd->last_duplex = phy_dev->duplex;
  914. }
  915. carrier = netif_carrier_ok(dev);
  916. if (carrier != pd->last_carrier) {
  917. if (carrier)
  918. netif_dbg(pd, link, pd->dev, "carrier OK\n");
  919. else
  920. netif_dbg(pd, link, pd->dev, "no carrier\n");
  921. pd->last_carrier = carrier;
  922. }
  923. }
  924. static int smsc9420_mii_probe(struct net_device *dev)
  925. {
  926. struct smsc9420_pdata *pd = netdev_priv(dev);
  927. struct phy_device *phydev = NULL;
  928. BUG_ON(pd->phy_dev);
  929. /* Device only supports internal PHY at address 1 */
  930. if (!pd->mii_bus->phy_map[1]) {
  931. netdev_err(dev, "no PHY found at address 1\n");
  932. return -ENODEV;
  933. }
  934. phydev = pd->mii_bus->phy_map[1];
  935. netif_info(pd, probe, pd->dev, "PHY addr %d, phy_id 0x%08X\n",
  936. phydev->addr, phydev->phy_id);
  937. phydev = phy_connect(dev, dev_name(&phydev->dev),
  938. smsc9420_phy_adjust_link, PHY_INTERFACE_MODE_MII);
  939. if (IS_ERR(phydev)) {
  940. netdev_err(dev, "Could not attach to PHY\n");
  941. return PTR_ERR(phydev);
  942. }
  943. netdev_info(dev, "attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
  944. phydev->drv->name, dev_name(&phydev->dev), phydev->irq);
  945. /* mask with MAC supported features */
  946. phydev->supported &= (PHY_BASIC_FEATURES | SUPPORTED_Pause |
  947. SUPPORTED_Asym_Pause);
  948. phydev->advertising = phydev->supported;
  949. pd->phy_dev = phydev;
  950. pd->last_duplex = -1;
  951. pd->last_carrier = -1;
  952. return 0;
  953. }
  954. static int smsc9420_mii_init(struct net_device *dev)
  955. {
  956. struct smsc9420_pdata *pd = netdev_priv(dev);
  957. int err = -ENXIO, i;
  958. pd->mii_bus = mdiobus_alloc();
  959. if (!pd->mii_bus) {
  960. err = -ENOMEM;
  961. goto err_out_1;
  962. }
  963. pd->mii_bus->name = DRV_MDIONAME;
  964. snprintf(pd->mii_bus->id, MII_BUS_ID_SIZE, "%x",
  965. (pd->pdev->bus->number << 8) | pd->pdev->devfn);
  966. pd->mii_bus->priv = pd;
  967. pd->mii_bus->read = smsc9420_mii_read;
  968. pd->mii_bus->write = smsc9420_mii_write;
  969. pd->mii_bus->irq = pd->phy_irq;
  970. for (i = 0; i < PHY_MAX_ADDR; ++i)
  971. pd->mii_bus->irq[i] = PHY_POLL;
  972. /* Mask all PHYs except ID 1 (internal) */
  973. pd->mii_bus->phy_mask = ~(1 << 1);
  974. if (mdiobus_register(pd->mii_bus)) {
  975. netif_warn(pd, probe, pd->dev, "Error registering mii bus\n");
  976. goto err_out_free_bus_2;
  977. }
  978. if (smsc9420_mii_probe(dev) < 0) {
  979. netif_warn(pd, probe, pd->dev, "Error probing mii bus\n");
  980. goto err_out_unregister_bus_3;
  981. }
  982. return 0;
  983. err_out_unregister_bus_3:
  984. mdiobus_unregister(pd->mii_bus);
  985. err_out_free_bus_2:
  986. mdiobus_free(pd->mii_bus);
  987. err_out_1:
  988. return err;
  989. }
  990. static int smsc9420_alloc_tx_ring(struct smsc9420_pdata *pd)
  991. {
  992. int i;
  993. BUG_ON(!pd->tx_ring);
  994. pd->tx_buffers = kmalloc_array(TX_RING_SIZE,
  995. sizeof(struct smsc9420_ring_info),
  996. GFP_KERNEL);
  997. if (!pd->tx_buffers)
  998. return -ENOMEM;
  999. /* Initialize the TX Ring */
  1000. for (i = 0; i < TX_RING_SIZE; i++) {
  1001. pd->tx_buffers[i].skb = NULL;
  1002. pd->tx_buffers[i].mapping = 0;
  1003. pd->tx_ring[i].status = 0;
  1004. pd->tx_ring[i].length = 0;
  1005. pd->tx_ring[i].buffer1 = 0;
  1006. pd->tx_ring[i].buffer2 = 0;
  1007. }
  1008. pd->tx_ring[TX_RING_SIZE - 1].length = TDES1_TER_;
  1009. wmb();
  1010. pd->tx_ring_head = 0;
  1011. pd->tx_ring_tail = 0;
  1012. smsc9420_reg_write(pd, TX_BASE_ADDR, pd->tx_dma_addr);
  1013. smsc9420_pci_flush_write(pd);
  1014. return 0;
  1015. }
  1016. static int smsc9420_alloc_rx_ring(struct smsc9420_pdata *pd)
  1017. {
  1018. int i;
  1019. BUG_ON(!pd->rx_ring);
  1020. pd->rx_buffers = kmalloc_array(RX_RING_SIZE,
  1021. sizeof(struct smsc9420_ring_info),
  1022. GFP_KERNEL);
  1023. if (pd->rx_buffers == NULL)
  1024. goto out;
  1025. /* initialize the rx ring */
  1026. for (i = 0; i < RX_RING_SIZE; i++) {
  1027. pd->rx_ring[i].status = 0;
  1028. pd->rx_ring[i].length = PKT_BUF_SZ;
  1029. pd->rx_ring[i].buffer2 = 0;
  1030. pd->rx_buffers[i].skb = NULL;
  1031. pd->rx_buffers[i].mapping = 0;
  1032. }
  1033. pd->rx_ring[RX_RING_SIZE - 1].length = (PKT_BUF_SZ | RDES1_RER_);
  1034. /* now allocate the entire ring of skbs */
  1035. for (i = 0; i < RX_RING_SIZE; i++) {
  1036. if (smsc9420_alloc_rx_buffer(pd, i)) {
  1037. netif_warn(pd, ifup, pd->dev,
  1038. "failed to allocate rx skb %d\n", i);
  1039. goto out_free_rx_skbs;
  1040. }
  1041. }
  1042. pd->rx_ring_head = 0;
  1043. pd->rx_ring_tail = 0;
  1044. smsc9420_reg_write(pd, VLAN1, ETH_P_8021Q);
  1045. netif_dbg(pd, ifup, pd->dev, "VLAN1 = 0x%08x\n",
  1046. smsc9420_reg_read(pd, VLAN1));
  1047. if (pd->rx_csum) {
  1048. /* Enable RX COE */
  1049. u32 coe = smsc9420_reg_read(pd, COE_CR) | RX_COE_EN;
  1050. smsc9420_reg_write(pd, COE_CR, coe);
  1051. netif_dbg(pd, ifup, pd->dev, "COE_CR = 0x%08x\n", coe);
  1052. }
  1053. smsc9420_reg_write(pd, RX_BASE_ADDR, pd->rx_dma_addr);
  1054. smsc9420_pci_flush_write(pd);
  1055. return 0;
  1056. out_free_rx_skbs:
  1057. smsc9420_free_rx_ring(pd);
  1058. out:
  1059. return -ENOMEM;
  1060. }
  1061. static int smsc9420_open(struct net_device *dev)
  1062. {
  1063. struct smsc9420_pdata *pd = netdev_priv(dev);
  1064. u32 bus_mode, mac_cr, dmac_control, int_cfg, dma_intr_ena, int_ctl;
  1065. const int irq = pd->pdev->irq;
  1066. unsigned long flags;
  1067. int result = 0, timeout;
  1068. if (!is_valid_ether_addr(dev->dev_addr)) {
  1069. netif_warn(pd, ifup, pd->dev,
  1070. "dev_addr is not a valid MAC address\n");
  1071. result = -EADDRNOTAVAIL;
  1072. goto out_0;
  1073. }
  1074. netif_carrier_off(dev);
  1075. /* disable, mask and acknowledge all interrupts */
  1076. spin_lock_irqsave(&pd->int_lock, flags);
  1077. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  1078. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1079. smsc9420_reg_write(pd, INT_CTL, 0);
  1080. spin_unlock_irqrestore(&pd->int_lock, flags);
  1081. smsc9420_reg_write(pd, DMAC_INTR_ENA, 0);
  1082. smsc9420_reg_write(pd, INT_STAT, 0xFFFFFFFF);
  1083. smsc9420_pci_flush_write(pd);
  1084. result = request_irq(irq, smsc9420_isr, IRQF_SHARED, DRV_NAME, pd);
  1085. if (result) {
  1086. netif_warn(pd, ifup, pd->dev, "Unable to use IRQ = %d\n", irq);
  1087. result = -ENODEV;
  1088. goto out_0;
  1089. }
  1090. smsc9420_dmac_soft_reset(pd);
  1091. /* make sure MAC_CR is sane */
  1092. smsc9420_reg_write(pd, MAC_CR, 0);
  1093. smsc9420_set_mac_address(dev);
  1094. /* Configure GPIO pins to drive LEDs */
  1095. smsc9420_reg_write(pd, GPIO_CFG,
  1096. (GPIO_CFG_LED_3_ | GPIO_CFG_LED_2_ | GPIO_CFG_LED_1_));
  1097. bus_mode = BUS_MODE_DMA_BURST_LENGTH_16;
  1098. #ifdef __BIG_ENDIAN
  1099. bus_mode |= BUS_MODE_DBO_;
  1100. #endif
  1101. smsc9420_reg_write(pd, BUS_MODE, bus_mode);
  1102. smsc9420_pci_flush_write(pd);
  1103. /* set bus master bridge arbitration priority for Rx and TX DMA */
  1104. smsc9420_reg_write(pd, BUS_CFG, BUS_CFG_RXTXWEIGHT_4_1);
  1105. smsc9420_reg_write(pd, DMAC_CONTROL,
  1106. (DMAC_CONTROL_SF_ | DMAC_CONTROL_OSF_));
  1107. smsc9420_pci_flush_write(pd);
  1108. /* test the IRQ connection to the ISR */
  1109. netif_dbg(pd, ifup, pd->dev, "Testing ISR using IRQ %d\n", irq);
  1110. pd->software_irq_signal = false;
  1111. spin_lock_irqsave(&pd->int_lock, flags);
  1112. /* configure interrupt deassertion timer and enable interrupts */
  1113. int_cfg = smsc9420_reg_read(pd, INT_CFG) | INT_CFG_IRQ_EN_;
  1114. int_cfg &= ~(INT_CFG_INT_DEAS_MASK);
  1115. int_cfg |= (INT_DEAS_TIME & INT_CFG_INT_DEAS_MASK);
  1116. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1117. /* unmask software interrupt */
  1118. int_ctl = smsc9420_reg_read(pd, INT_CTL) | INT_CTL_SW_INT_EN_;
  1119. smsc9420_reg_write(pd, INT_CTL, int_ctl);
  1120. spin_unlock_irqrestore(&pd->int_lock, flags);
  1121. smsc9420_pci_flush_write(pd);
  1122. timeout = 1000;
  1123. while (timeout--) {
  1124. if (pd->software_irq_signal)
  1125. break;
  1126. msleep(1);
  1127. }
  1128. /* disable interrupts */
  1129. spin_lock_irqsave(&pd->int_lock, flags);
  1130. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  1131. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1132. spin_unlock_irqrestore(&pd->int_lock, flags);
  1133. if (!pd->software_irq_signal) {
  1134. netif_warn(pd, ifup, pd->dev, "ISR failed signaling test\n");
  1135. result = -ENODEV;
  1136. goto out_free_irq_1;
  1137. }
  1138. netif_dbg(pd, ifup, pd->dev, "ISR passed test using IRQ %d\n", irq);
  1139. result = smsc9420_alloc_tx_ring(pd);
  1140. if (result) {
  1141. netif_warn(pd, ifup, pd->dev,
  1142. "Failed to Initialize tx dma ring\n");
  1143. result = -ENOMEM;
  1144. goto out_free_irq_1;
  1145. }
  1146. result = smsc9420_alloc_rx_ring(pd);
  1147. if (result) {
  1148. netif_warn(pd, ifup, pd->dev,
  1149. "Failed to Initialize rx dma ring\n");
  1150. result = -ENOMEM;
  1151. goto out_free_tx_ring_2;
  1152. }
  1153. result = smsc9420_mii_init(dev);
  1154. if (result) {
  1155. netif_warn(pd, ifup, pd->dev, "Failed to initialize Phy\n");
  1156. result = -ENODEV;
  1157. goto out_free_rx_ring_3;
  1158. }
  1159. /* Bring the PHY up */
  1160. phy_start(pd->phy_dev);
  1161. napi_enable(&pd->napi);
  1162. /* start tx and rx */
  1163. mac_cr = smsc9420_reg_read(pd, MAC_CR) | MAC_CR_TXEN_ | MAC_CR_RXEN_;
  1164. smsc9420_reg_write(pd, MAC_CR, mac_cr);
  1165. dmac_control = smsc9420_reg_read(pd, DMAC_CONTROL);
  1166. dmac_control |= DMAC_CONTROL_ST_ | DMAC_CONTROL_SR_;
  1167. smsc9420_reg_write(pd, DMAC_CONTROL, dmac_control);
  1168. smsc9420_pci_flush_write(pd);
  1169. dma_intr_ena = smsc9420_reg_read(pd, DMAC_INTR_ENA);
  1170. dma_intr_ena |=
  1171. (DMAC_INTR_ENA_TX_ | DMAC_INTR_ENA_RX_ | DMAC_INTR_ENA_NIS_);
  1172. smsc9420_reg_write(pd, DMAC_INTR_ENA, dma_intr_ena);
  1173. smsc9420_pci_flush_write(pd);
  1174. netif_wake_queue(dev);
  1175. smsc9420_reg_write(pd, RX_POLL_DEMAND, 1);
  1176. /* enable interrupts */
  1177. spin_lock_irqsave(&pd->int_lock, flags);
  1178. int_cfg = smsc9420_reg_read(pd, INT_CFG) | INT_CFG_IRQ_EN_;
  1179. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1180. spin_unlock_irqrestore(&pd->int_lock, flags);
  1181. return 0;
  1182. out_free_rx_ring_3:
  1183. smsc9420_free_rx_ring(pd);
  1184. out_free_tx_ring_2:
  1185. smsc9420_free_tx_ring(pd);
  1186. out_free_irq_1:
  1187. free_irq(irq, pd);
  1188. out_0:
  1189. return result;
  1190. }
  1191. #ifdef CONFIG_PM
  1192. static int smsc9420_suspend(struct pci_dev *pdev, pm_message_t state)
  1193. {
  1194. struct net_device *dev = pci_get_drvdata(pdev);
  1195. struct smsc9420_pdata *pd = netdev_priv(dev);
  1196. u32 int_cfg;
  1197. ulong flags;
  1198. /* disable interrupts */
  1199. spin_lock_irqsave(&pd->int_lock, flags);
  1200. int_cfg = smsc9420_reg_read(pd, INT_CFG) & (~INT_CFG_IRQ_EN_);
  1201. smsc9420_reg_write(pd, INT_CFG, int_cfg);
  1202. spin_unlock_irqrestore(&pd->int_lock, flags);
  1203. if (netif_running(dev)) {
  1204. netif_tx_disable(dev);
  1205. smsc9420_stop_tx(pd);
  1206. smsc9420_free_tx_ring(pd);
  1207. napi_disable(&pd->napi);
  1208. smsc9420_stop_rx(pd);
  1209. smsc9420_free_rx_ring(pd);
  1210. free_irq(pd->pdev->irq, pd);
  1211. netif_device_detach(dev);
  1212. }
  1213. pci_save_state(pdev);
  1214. pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
  1215. pci_disable_device(pdev);
  1216. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  1217. return 0;
  1218. }
  1219. static int smsc9420_resume(struct pci_dev *pdev)
  1220. {
  1221. struct net_device *dev = pci_get_drvdata(pdev);
  1222. struct smsc9420_pdata *pd = netdev_priv(dev);
  1223. int err;
  1224. pci_set_power_state(pdev, PCI_D0);
  1225. pci_restore_state(pdev);
  1226. err = pci_enable_device(pdev);
  1227. if (err)
  1228. return err;
  1229. pci_set_master(pdev);
  1230. err = pci_enable_wake(pdev, 0, 0);
  1231. if (err)
  1232. netif_warn(pd, ifup, pd->dev, "pci_enable_wake failed: %d\n",
  1233. err);
  1234. if (netif_running(dev)) {
  1235. /* FIXME: gross. It looks like ancient PM relic.*/
  1236. err = smsc9420_open(dev);
  1237. netif_device_attach(dev);
  1238. }
  1239. return err;
  1240. }
  1241. #endif /* CONFIG_PM */
  1242. static const struct net_device_ops smsc9420_netdev_ops = {
  1243. .ndo_open = smsc9420_open,
  1244. .ndo_stop = smsc9420_stop,
  1245. .ndo_start_xmit = smsc9420_hard_start_xmit,
  1246. .ndo_get_stats = smsc9420_get_stats,
  1247. .ndo_set_rx_mode = smsc9420_set_multicast_list,
  1248. .ndo_do_ioctl = smsc9420_do_ioctl,
  1249. .ndo_validate_addr = eth_validate_addr,
  1250. .ndo_set_mac_address = eth_mac_addr,
  1251. #ifdef CONFIG_NET_POLL_CONTROLLER
  1252. .ndo_poll_controller = smsc9420_poll_controller,
  1253. #endif /* CONFIG_NET_POLL_CONTROLLER */
  1254. };
  1255. static int
  1256. smsc9420_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1257. {
  1258. struct net_device *dev;
  1259. struct smsc9420_pdata *pd;
  1260. void __iomem *virt_addr;
  1261. int result = 0;
  1262. u32 id_rev;
  1263. pr_info("%s version %s\n", DRV_DESCRIPTION, DRV_VERSION);
  1264. /* First do the PCI initialisation */
  1265. result = pci_enable_device(pdev);
  1266. if (unlikely(result)) {
  1267. pr_err("Cannot enable smsc9420\n");
  1268. goto out_0;
  1269. }
  1270. pci_set_master(pdev);
  1271. dev = alloc_etherdev(sizeof(*pd));
  1272. if (!dev)
  1273. goto out_disable_pci_device_1;
  1274. SET_NETDEV_DEV(dev, &pdev->dev);
  1275. if (!(pci_resource_flags(pdev, SMSC_BAR) & IORESOURCE_MEM)) {
  1276. netdev_err(dev, "Cannot find PCI device base address\n");
  1277. goto out_free_netdev_2;
  1278. }
  1279. if ((pci_request_regions(pdev, DRV_NAME))) {
  1280. netdev_err(dev, "Cannot obtain PCI resources, aborting\n");
  1281. goto out_free_netdev_2;
  1282. }
  1283. if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
  1284. netdev_err(dev, "No usable DMA configuration, aborting\n");
  1285. goto out_free_regions_3;
  1286. }
  1287. virt_addr = ioremap(pci_resource_start(pdev, SMSC_BAR),
  1288. pci_resource_len(pdev, SMSC_BAR));
  1289. if (!virt_addr) {
  1290. netdev_err(dev, "Cannot map device registers, aborting\n");
  1291. goto out_free_regions_3;
  1292. }
  1293. /* registers are double mapped with 0 offset for LE and 0x200 for BE */
  1294. virt_addr += LAN9420_CPSR_ENDIAN_OFFSET;
  1295. pd = netdev_priv(dev);
  1296. /* pci descriptors are created in the PCI consistent area */
  1297. pd->rx_ring = pci_alloc_consistent(pdev,
  1298. sizeof(struct smsc9420_dma_desc) * RX_RING_SIZE +
  1299. sizeof(struct smsc9420_dma_desc) * TX_RING_SIZE,
  1300. &pd->rx_dma_addr);
  1301. if (!pd->rx_ring)
  1302. goto out_free_io_4;
  1303. /* descriptors are aligned due to the nature of pci_alloc_consistent */
  1304. pd->tx_ring = (pd->rx_ring + RX_RING_SIZE);
  1305. pd->tx_dma_addr = pd->rx_dma_addr +
  1306. sizeof(struct smsc9420_dma_desc) * RX_RING_SIZE;
  1307. pd->pdev = pdev;
  1308. pd->dev = dev;
  1309. pd->ioaddr = virt_addr;
  1310. pd->msg_enable = smsc_debug;
  1311. pd->rx_csum = true;
  1312. netif_dbg(pd, probe, pd->dev, "lan_base=0x%08lx\n", (ulong)virt_addr);
  1313. id_rev = smsc9420_reg_read(pd, ID_REV);
  1314. switch (id_rev & 0xFFFF0000) {
  1315. case 0x94200000:
  1316. netif_info(pd, probe, pd->dev,
  1317. "LAN9420 identified, ID_REV=0x%08X\n", id_rev);
  1318. break;
  1319. default:
  1320. netif_warn(pd, probe, pd->dev, "LAN9420 NOT identified\n");
  1321. netif_warn(pd, probe, pd->dev, "ID_REV=0x%08X\n", id_rev);
  1322. goto out_free_dmadesc_5;
  1323. }
  1324. smsc9420_dmac_soft_reset(pd);
  1325. smsc9420_eeprom_reload(pd);
  1326. smsc9420_check_mac_address(dev);
  1327. dev->netdev_ops = &smsc9420_netdev_ops;
  1328. dev->ethtool_ops = &smsc9420_ethtool_ops;
  1329. netif_napi_add(dev, &pd->napi, smsc9420_rx_poll, NAPI_WEIGHT);
  1330. result = register_netdev(dev);
  1331. if (result) {
  1332. netif_warn(pd, probe, pd->dev, "error %i registering device\n",
  1333. result);
  1334. goto out_free_dmadesc_5;
  1335. }
  1336. pci_set_drvdata(pdev, dev);
  1337. spin_lock_init(&pd->int_lock);
  1338. spin_lock_init(&pd->phy_lock);
  1339. dev_info(&dev->dev, "MAC Address: %pM\n", dev->dev_addr);
  1340. return 0;
  1341. out_free_dmadesc_5:
  1342. pci_free_consistent(pdev, sizeof(struct smsc9420_dma_desc) *
  1343. (RX_RING_SIZE + TX_RING_SIZE), pd->rx_ring, pd->rx_dma_addr);
  1344. out_free_io_4:
  1345. iounmap(virt_addr - LAN9420_CPSR_ENDIAN_OFFSET);
  1346. out_free_regions_3:
  1347. pci_release_regions(pdev);
  1348. out_free_netdev_2:
  1349. free_netdev(dev);
  1350. out_disable_pci_device_1:
  1351. pci_disable_device(pdev);
  1352. out_0:
  1353. return -ENODEV;
  1354. }
  1355. static void smsc9420_remove(struct pci_dev *pdev)
  1356. {
  1357. struct net_device *dev;
  1358. struct smsc9420_pdata *pd;
  1359. dev = pci_get_drvdata(pdev);
  1360. if (!dev)
  1361. return;
  1362. pd = netdev_priv(dev);
  1363. unregister_netdev(dev);
  1364. /* tx_buffers and rx_buffers are freed in stop */
  1365. BUG_ON(pd->tx_buffers);
  1366. BUG_ON(pd->rx_buffers);
  1367. BUG_ON(!pd->tx_ring);
  1368. BUG_ON(!pd->rx_ring);
  1369. pci_free_consistent(pdev, sizeof(struct smsc9420_dma_desc) *
  1370. (RX_RING_SIZE + TX_RING_SIZE), pd->rx_ring, pd->rx_dma_addr);
  1371. iounmap(pd->ioaddr - LAN9420_CPSR_ENDIAN_OFFSET);
  1372. pci_release_regions(pdev);
  1373. free_netdev(dev);
  1374. pci_disable_device(pdev);
  1375. }
  1376. static struct pci_driver smsc9420_driver = {
  1377. .name = DRV_NAME,
  1378. .id_table = smsc9420_id_table,
  1379. .probe = smsc9420_probe,
  1380. .remove = smsc9420_remove,
  1381. #ifdef CONFIG_PM
  1382. .suspend = smsc9420_suspend,
  1383. .resume = smsc9420_resume,
  1384. #endif /* CONFIG_PM */
  1385. };
  1386. static int __init smsc9420_init_module(void)
  1387. {
  1388. smsc_debug = netif_msg_init(debug, SMSC_MSG_DEFAULT);
  1389. return pci_register_driver(&smsc9420_driver);
  1390. }
  1391. static void __exit smsc9420_exit_module(void)
  1392. {
  1393. pci_unregister_driver(&smsc9420_driver);
  1394. }
  1395. module_init(smsc9420_init_module);
  1396. module_exit(smsc9420_exit_module);