slub.c 112 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/swap.h> /* struct reclaim_state */
  12. #include <linux/module.h>
  13. #include <linux/bit_spinlock.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/bitops.h>
  16. #include <linux/slab.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/kmemtrace.h>
  20. #include <linux/kmemcheck.h>
  21. #include <linux/cpu.h>
  22. #include <linux/cpuset.h>
  23. #include <linux/kmemleak.h>
  24. #include <linux/mempolicy.h>
  25. #include <linux/ctype.h>
  26. #include <linux/debugobjects.h>
  27. #include <linux/kallsyms.h>
  28. #include <linux/memory.h>
  29. #include <linux/math64.h>
  30. #include <linux/fault-inject.h>
  31. /*
  32. * Lock order:
  33. * 1. slab_lock(page)
  34. * 2. slab->list_lock
  35. *
  36. * The slab_lock protects operations on the object of a particular
  37. * slab and its metadata in the page struct. If the slab lock
  38. * has been taken then no allocations nor frees can be performed
  39. * on the objects in the slab nor can the slab be added or removed
  40. * from the partial or full lists since this would mean modifying
  41. * the page_struct of the slab.
  42. *
  43. * The list_lock protects the partial and full list on each node and
  44. * the partial slab counter. If taken then no new slabs may be added or
  45. * removed from the lists nor make the number of partial slabs be modified.
  46. * (Note that the total number of slabs is an atomic value that may be
  47. * modified without taking the list lock).
  48. *
  49. * The list_lock is a centralized lock and thus we avoid taking it as
  50. * much as possible. As long as SLUB does not have to handle partial
  51. * slabs, operations can continue without any centralized lock. F.e.
  52. * allocating a long series of objects that fill up slabs does not require
  53. * the list lock.
  54. *
  55. * The lock order is sometimes inverted when we are trying to get a slab
  56. * off a list. We take the list_lock and then look for a page on the list
  57. * to use. While we do that objects in the slabs may be freed. We can
  58. * only operate on the slab if we have also taken the slab_lock. So we use
  59. * a slab_trylock() on the slab. If trylock was successful then no frees
  60. * can occur anymore and we can use the slab for allocations etc. If the
  61. * slab_trylock() does not succeed then frees are in progress in the slab and
  62. * we must stay away from it for a while since we may cause a bouncing
  63. * cacheline if we try to acquire the lock. So go onto the next slab.
  64. * If all pages are busy then we may allocate a new slab instead of reusing
  65. * a partial slab. A new slab has noone operating on it and thus there is
  66. * no danger of cacheline contention.
  67. *
  68. * Interrupts are disabled during allocation and deallocation in order to
  69. * make the slab allocator safe to use in the context of an irq. In addition
  70. * interrupts are disabled to ensure that the processor does not change
  71. * while handling per_cpu slabs, due to kernel preemption.
  72. *
  73. * SLUB assigns one slab for allocation to each processor.
  74. * Allocations only occur from these slabs called cpu slabs.
  75. *
  76. * Slabs with free elements are kept on a partial list and during regular
  77. * operations no list for full slabs is used. If an object in a full slab is
  78. * freed then the slab will show up again on the partial lists.
  79. * We track full slabs for debugging purposes though because otherwise we
  80. * cannot scan all objects.
  81. *
  82. * Slabs are freed when they become empty. Teardown and setup is
  83. * minimal so we rely on the page allocators per cpu caches for
  84. * fast frees and allocs.
  85. *
  86. * Overloading of page flags that are otherwise used for LRU management.
  87. *
  88. * PageActive The slab is frozen and exempt from list processing.
  89. * This means that the slab is dedicated to a purpose
  90. * such as satisfying allocations for a specific
  91. * processor. Objects may be freed in the slab while
  92. * it is frozen but slab_free will then skip the usual
  93. * list operations. It is up to the processor holding
  94. * the slab to integrate the slab into the slab lists
  95. * when the slab is no longer needed.
  96. *
  97. * One use of this flag is to mark slabs that are
  98. * used for allocations. Then such a slab becomes a cpu
  99. * slab. The cpu slab may be equipped with an additional
  100. * freelist that allows lockless access to
  101. * free objects in addition to the regular freelist
  102. * that requires the slab lock.
  103. *
  104. * PageError Slab requires special handling due to debug
  105. * options set. This moves slab handling out of
  106. * the fast path and disables lockless freelists.
  107. */
  108. #ifdef CONFIG_SLUB_DEBUG
  109. #define SLABDEBUG 1
  110. #else
  111. #define SLABDEBUG 0
  112. #endif
  113. /*
  114. * Issues still to be resolved:
  115. *
  116. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  117. *
  118. * - Variable sizing of the per node arrays
  119. */
  120. /* Enable to test recovery from slab corruption on boot */
  121. #undef SLUB_RESILIENCY_TEST
  122. /*
  123. * Mininum number of partial slabs. These will be left on the partial
  124. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  125. */
  126. #define MIN_PARTIAL 5
  127. /*
  128. * Maximum number of desirable partial slabs.
  129. * The existence of more partial slabs makes kmem_cache_shrink
  130. * sort the partial list by the number of objects in the.
  131. */
  132. #define MAX_PARTIAL 10
  133. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  134. SLAB_POISON | SLAB_STORE_USER)
  135. /*
  136. * Debugging flags that require metadata to be stored in the slab. These get
  137. * disabled when slub_debug=O is used and a cache's min order increases with
  138. * metadata.
  139. */
  140. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  141. /*
  142. * Set of flags that will prevent slab merging
  143. */
  144. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  145. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
  146. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  147. SLAB_CACHE_DMA | SLAB_NOTRACK)
  148. #ifndef ARCH_KMALLOC_MINALIGN
  149. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  150. #endif
  151. #ifndef ARCH_SLAB_MINALIGN
  152. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  153. #endif
  154. #define OO_SHIFT 16
  155. #define OO_MASK ((1 << OO_SHIFT) - 1)
  156. #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
  157. /* Internal SLUB flags */
  158. #define __OBJECT_POISON 0x80000000 /* Poison object */
  159. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  160. static int kmem_size = sizeof(struct kmem_cache);
  161. #ifdef CONFIG_SMP
  162. static struct notifier_block slab_notifier;
  163. #endif
  164. static enum {
  165. DOWN, /* No slab functionality available */
  166. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  167. UP, /* Everything works but does not show up in sysfs */
  168. SYSFS /* Sysfs up */
  169. } slab_state = DOWN;
  170. /* A list of all slab caches on the system */
  171. static DECLARE_RWSEM(slub_lock);
  172. static LIST_HEAD(slab_caches);
  173. /*
  174. * Tracking user of a slab.
  175. */
  176. struct track {
  177. unsigned long addr; /* Called from address */
  178. int cpu; /* Was running on cpu */
  179. int pid; /* Pid context */
  180. unsigned long when; /* When did the operation occur */
  181. };
  182. enum track_item { TRACK_ALLOC, TRACK_FREE };
  183. #ifdef CONFIG_SLUB_DEBUG
  184. static int sysfs_slab_add(struct kmem_cache *);
  185. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  186. static void sysfs_slab_remove(struct kmem_cache *);
  187. #else
  188. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  189. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  190. { return 0; }
  191. static inline void sysfs_slab_remove(struct kmem_cache *s)
  192. {
  193. kfree(s);
  194. }
  195. #endif
  196. static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
  197. {
  198. #ifdef CONFIG_SLUB_STATS
  199. c->stat[si]++;
  200. #endif
  201. }
  202. /********************************************************************
  203. * Core slab cache functions
  204. *******************************************************************/
  205. int slab_is_available(void)
  206. {
  207. return slab_state >= UP;
  208. }
  209. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  210. {
  211. #ifdef CONFIG_NUMA
  212. return s->node[node];
  213. #else
  214. return &s->local_node;
  215. #endif
  216. }
  217. static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
  218. {
  219. #ifdef CONFIG_SMP
  220. return s->cpu_slab[cpu];
  221. #else
  222. return &s->cpu_slab;
  223. #endif
  224. }
  225. /* Verify that a pointer has an address that is valid within a slab page */
  226. static inline int check_valid_pointer(struct kmem_cache *s,
  227. struct page *page, const void *object)
  228. {
  229. void *base;
  230. if (!object)
  231. return 1;
  232. base = page_address(page);
  233. if (object < base || object >= base + page->objects * s->size ||
  234. (object - base) % s->size) {
  235. return 0;
  236. }
  237. return 1;
  238. }
  239. /*
  240. * Slow version of get and set free pointer.
  241. *
  242. * This version requires touching the cache lines of kmem_cache which
  243. * we avoid to do in the fast alloc free paths. There we obtain the offset
  244. * from the page struct.
  245. */
  246. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  247. {
  248. return *(void **)(object + s->offset);
  249. }
  250. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  251. {
  252. *(void **)(object + s->offset) = fp;
  253. }
  254. /* Loop over all objects in a slab */
  255. #define for_each_object(__p, __s, __addr, __objects) \
  256. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  257. __p += (__s)->size)
  258. /* Scan freelist */
  259. #define for_each_free_object(__p, __s, __free) \
  260. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  261. /* Determine object index from a given position */
  262. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  263. {
  264. return (p - addr) / s->size;
  265. }
  266. static inline struct kmem_cache_order_objects oo_make(int order,
  267. unsigned long size)
  268. {
  269. struct kmem_cache_order_objects x = {
  270. (order << OO_SHIFT) + (PAGE_SIZE << order) / size
  271. };
  272. return x;
  273. }
  274. static inline int oo_order(struct kmem_cache_order_objects x)
  275. {
  276. return x.x >> OO_SHIFT;
  277. }
  278. static inline int oo_objects(struct kmem_cache_order_objects x)
  279. {
  280. return x.x & OO_MASK;
  281. }
  282. #ifdef CONFIG_SLUB_DEBUG
  283. /*
  284. * Debug settings:
  285. */
  286. #ifdef CONFIG_SLUB_DEBUG_ON
  287. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  288. #else
  289. static int slub_debug;
  290. #endif
  291. static char *slub_debug_slabs;
  292. static int disable_higher_order_debug;
  293. /*
  294. * Object debugging
  295. */
  296. static void print_section(char *text, u8 *addr, unsigned int length)
  297. {
  298. int i, offset;
  299. int newline = 1;
  300. char ascii[17];
  301. ascii[16] = 0;
  302. for (i = 0; i < length; i++) {
  303. if (newline) {
  304. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  305. newline = 0;
  306. }
  307. printk(KERN_CONT " %02x", addr[i]);
  308. offset = i % 16;
  309. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  310. if (offset == 15) {
  311. printk(KERN_CONT " %s\n", ascii);
  312. newline = 1;
  313. }
  314. }
  315. if (!newline) {
  316. i %= 16;
  317. while (i < 16) {
  318. printk(KERN_CONT " ");
  319. ascii[i] = ' ';
  320. i++;
  321. }
  322. printk(KERN_CONT " %s\n", ascii);
  323. }
  324. }
  325. static struct track *get_track(struct kmem_cache *s, void *object,
  326. enum track_item alloc)
  327. {
  328. struct track *p;
  329. if (s->offset)
  330. p = object + s->offset + sizeof(void *);
  331. else
  332. p = object + s->inuse;
  333. return p + alloc;
  334. }
  335. static void set_track(struct kmem_cache *s, void *object,
  336. enum track_item alloc, unsigned long addr)
  337. {
  338. struct track *p = get_track(s, object, alloc);
  339. if (addr) {
  340. p->addr = addr;
  341. p->cpu = smp_processor_id();
  342. p->pid = current->pid;
  343. p->when = jiffies;
  344. } else
  345. memset(p, 0, sizeof(struct track));
  346. }
  347. static void init_tracking(struct kmem_cache *s, void *object)
  348. {
  349. if (!(s->flags & SLAB_STORE_USER))
  350. return;
  351. set_track(s, object, TRACK_FREE, 0UL);
  352. set_track(s, object, TRACK_ALLOC, 0UL);
  353. }
  354. static void print_track(const char *s, struct track *t)
  355. {
  356. if (!t->addr)
  357. return;
  358. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  359. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  360. }
  361. static void print_tracking(struct kmem_cache *s, void *object)
  362. {
  363. if (!(s->flags & SLAB_STORE_USER))
  364. return;
  365. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  366. print_track("Freed", get_track(s, object, TRACK_FREE));
  367. }
  368. static void print_page_info(struct page *page)
  369. {
  370. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  371. page, page->objects, page->inuse, page->freelist, page->flags);
  372. }
  373. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  374. {
  375. va_list args;
  376. char buf[100];
  377. va_start(args, fmt);
  378. vsnprintf(buf, sizeof(buf), fmt, args);
  379. va_end(args);
  380. printk(KERN_ERR "========================================"
  381. "=====================================\n");
  382. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  383. printk(KERN_ERR "----------------------------------------"
  384. "-------------------------------------\n\n");
  385. }
  386. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  387. {
  388. va_list args;
  389. char buf[100];
  390. va_start(args, fmt);
  391. vsnprintf(buf, sizeof(buf), fmt, args);
  392. va_end(args);
  393. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  394. }
  395. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  396. {
  397. unsigned int off; /* Offset of last byte */
  398. u8 *addr = page_address(page);
  399. print_tracking(s, p);
  400. print_page_info(page);
  401. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  402. p, p - addr, get_freepointer(s, p));
  403. if (p > addr + 16)
  404. print_section("Bytes b4", p - 16, 16);
  405. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  406. if (s->flags & SLAB_RED_ZONE)
  407. print_section("Redzone", p + s->objsize,
  408. s->inuse - s->objsize);
  409. if (s->offset)
  410. off = s->offset + sizeof(void *);
  411. else
  412. off = s->inuse;
  413. if (s->flags & SLAB_STORE_USER)
  414. off += 2 * sizeof(struct track);
  415. if (off != s->size)
  416. /* Beginning of the filler is the free pointer */
  417. print_section("Padding", p + off, s->size - off);
  418. dump_stack();
  419. }
  420. static void object_err(struct kmem_cache *s, struct page *page,
  421. u8 *object, char *reason)
  422. {
  423. slab_bug(s, "%s", reason);
  424. print_trailer(s, page, object);
  425. }
  426. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  427. {
  428. va_list args;
  429. char buf[100];
  430. va_start(args, fmt);
  431. vsnprintf(buf, sizeof(buf), fmt, args);
  432. va_end(args);
  433. slab_bug(s, "%s", buf);
  434. print_page_info(page);
  435. dump_stack();
  436. }
  437. static void init_object(struct kmem_cache *s, void *object, int active)
  438. {
  439. u8 *p = object;
  440. if (s->flags & __OBJECT_POISON) {
  441. memset(p, POISON_FREE, s->objsize - 1);
  442. p[s->objsize - 1] = POISON_END;
  443. }
  444. if (s->flags & SLAB_RED_ZONE)
  445. memset(p + s->objsize,
  446. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  447. s->inuse - s->objsize);
  448. }
  449. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  450. {
  451. while (bytes) {
  452. if (*start != (u8)value)
  453. return start;
  454. start++;
  455. bytes--;
  456. }
  457. return NULL;
  458. }
  459. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  460. void *from, void *to)
  461. {
  462. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  463. memset(from, data, to - from);
  464. }
  465. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  466. u8 *object, char *what,
  467. u8 *start, unsigned int value, unsigned int bytes)
  468. {
  469. u8 *fault;
  470. u8 *end;
  471. fault = check_bytes(start, value, bytes);
  472. if (!fault)
  473. return 1;
  474. end = start + bytes;
  475. while (end > fault && end[-1] == value)
  476. end--;
  477. slab_bug(s, "%s overwritten", what);
  478. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  479. fault, end - 1, fault[0], value);
  480. print_trailer(s, page, object);
  481. restore_bytes(s, what, value, fault, end);
  482. return 0;
  483. }
  484. /*
  485. * Object layout:
  486. *
  487. * object address
  488. * Bytes of the object to be managed.
  489. * If the freepointer may overlay the object then the free
  490. * pointer is the first word of the object.
  491. *
  492. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  493. * 0xa5 (POISON_END)
  494. *
  495. * object + s->objsize
  496. * Padding to reach word boundary. This is also used for Redzoning.
  497. * Padding is extended by another word if Redzoning is enabled and
  498. * objsize == inuse.
  499. *
  500. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  501. * 0xcc (RED_ACTIVE) for objects in use.
  502. *
  503. * object + s->inuse
  504. * Meta data starts here.
  505. *
  506. * A. Free pointer (if we cannot overwrite object on free)
  507. * B. Tracking data for SLAB_STORE_USER
  508. * C. Padding to reach required alignment boundary or at mininum
  509. * one word if debugging is on to be able to detect writes
  510. * before the word boundary.
  511. *
  512. * Padding is done using 0x5a (POISON_INUSE)
  513. *
  514. * object + s->size
  515. * Nothing is used beyond s->size.
  516. *
  517. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  518. * ignored. And therefore no slab options that rely on these boundaries
  519. * may be used with merged slabcaches.
  520. */
  521. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  522. {
  523. unsigned long off = s->inuse; /* The end of info */
  524. if (s->offset)
  525. /* Freepointer is placed after the object. */
  526. off += sizeof(void *);
  527. if (s->flags & SLAB_STORE_USER)
  528. /* We also have user information there */
  529. off += 2 * sizeof(struct track);
  530. if (s->size == off)
  531. return 1;
  532. return check_bytes_and_report(s, page, p, "Object padding",
  533. p + off, POISON_INUSE, s->size - off);
  534. }
  535. /* Check the pad bytes at the end of a slab page */
  536. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  537. {
  538. u8 *start;
  539. u8 *fault;
  540. u8 *end;
  541. int length;
  542. int remainder;
  543. if (!(s->flags & SLAB_POISON))
  544. return 1;
  545. start = page_address(page);
  546. length = (PAGE_SIZE << compound_order(page));
  547. end = start + length;
  548. remainder = length % s->size;
  549. if (!remainder)
  550. return 1;
  551. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  552. if (!fault)
  553. return 1;
  554. while (end > fault && end[-1] == POISON_INUSE)
  555. end--;
  556. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  557. print_section("Padding", end - remainder, remainder);
  558. restore_bytes(s, "slab padding", POISON_INUSE, start, end);
  559. return 0;
  560. }
  561. static int check_object(struct kmem_cache *s, struct page *page,
  562. void *object, int active)
  563. {
  564. u8 *p = object;
  565. u8 *endobject = object + s->objsize;
  566. if (s->flags & SLAB_RED_ZONE) {
  567. unsigned int red =
  568. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  569. if (!check_bytes_and_report(s, page, object, "Redzone",
  570. endobject, red, s->inuse - s->objsize))
  571. return 0;
  572. } else {
  573. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  574. check_bytes_and_report(s, page, p, "Alignment padding",
  575. endobject, POISON_INUSE, s->inuse - s->objsize);
  576. }
  577. }
  578. if (s->flags & SLAB_POISON) {
  579. if (!active && (s->flags & __OBJECT_POISON) &&
  580. (!check_bytes_and_report(s, page, p, "Poison", p,
  581. POISON_FREE, s->objsize - 1) ||
  582. !check_bytes_and_report(s, page, p, "Poison",
  583. p + s->objsize - 1, POISON_END, 1)))
  584. return 0;
  585. /*
  586. * check_pad_bytes cleans up on its own.
  587. */
  588. check_pad_bytes(s, page, p);
  589. }
  590. if (!s->offset && active)
  591. /*
  592. * Object and freepointer overlap. Cannot check
  593. * freepointer while object is allocated.
  594. */
  595. return 1;
  596. /* Check free pointer validity */
  597. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  598. object_err(s, page, p, "Freepointer corrupt");
  599. /*
  600. * No choice but to zap it and thus lose the remainder
  601. * of the free objects in this slab. May cause
  602. * another error because the object count is now wrong.
  603. */
  604. set_freepointer(s, p, NULL);
  605. return 0;
  606. }
  607. return 1;
  608. }
  609. static int check_slab(struct kmem_cache *s, struct page *page)
  610. {
  611. int maxobj;
  612. VM_BUG_ON(!irqs_disabled());
  613. if (!PageSlab(page)) {
  614. slab_err(s, page, "Not a valid slab page");
  615. return 0;
  616. }
  617. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  618. if (page->objects > maxobj) {
  619. slab_err(s, page, "objects %u > max %u",
  620. s->name, page->objects, maxobj);
  621. return 0;
  622. }
  623. if (page->inuse > page->objects) {
  624. slab_err(s, page, "inuse %u > max %u",
  625. s->name, page->inuse, page->objects);
  626. return 0;
  627. }
  628. /* Slab_pad_check fixes things up after itself */
  629. slab_pad_check(s, page);
  630. return 1;
  631. }
  632. /*
  633. * Determine if a certain object on a page is on the freelist. Must hold the
  634. * slab lock to guarantee that the chains are in a consistent state.
  635. */
  636. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  637. {
  638. int nr = 0;
  639. void *fp = page->freelist;
  640. void *object = NULL;
  641. unsigned long max_objects;
  642. while (fp && nr <= page->objects) {
  643. if (fp == search)
  644. return 1;
  645. if (!check_valid_pointer(s, page, fp)) {
  646. if (object) {
  647. object_err(s, page, object,
  648. "Freechain corrupt");
  649. set_freepointer(s, object, NULL);
  650. break;
  651. } else {
  652. slab_err(s, page, "Freepointer corrupt");
  653. page->freelist = NULL;
  654. page->inuse = page->objects;
  655. slab_fix(s, "Freelist cleared");
  656. return 0;
  657. }
  658. break;
  659. }
  660. object = fp;
  661. fp = get_freepointer(s, object);
  662. nr++;
  663. }
  664. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  665. if (max_objects > MAX_OBJS_PER_PAGE)
  666. max_objects = MAX_OBJS_PER_PAGE;
  667. if (page->objects != max_objects) {
  668. slab_err(s, page, "Wrong number of objects. Found %d but "
  669. "should be %d", page->objects, max_objects);
  670. page->objects = max_objects;
  671. slab_fix(s, "Number of objects adjusted.");
  672. }
  673. if (page->inuse != page->objects - nr) {
  674. slab_err(s, page, "Wrong object count. Counter is %d but "
  675. "counted were %d", page->inuse, page->objects - nr);
  676. page->inuse = page->objects - nr;
  677. slab_fix(s, "Object count adjusted.");
  678. }
  679. return search == NULL;
  680. }
  681. static void trace(struct kmem_cache *s, struct page *page, void *object,
  682. int alloc)
  683. {
  684. if (s->flags & SLAB_TRACE) {
  685. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  686. s->name,
  687. alloc ? "alloc" : "free",
  688. object, page->inuse,
  689. page->freelist);
  690. if (!alloc)
  691. print_section("Object", (void *)object, s->objsize);
  692. dump_stack();
  693. }
  694. }
  695. /*
  696. * Tracking of fully allocated slabs for debugging purposes.
  697. */
  698. static void add_full(struct kmem_cache_node *n, struct page *page)
  699. {
  700. spin_lock(&n->list_lock);
  701. list_add(&page->lru, &n->full);
  702. spin_unlock(&n->list_lock);
  703. }
  704. static void remove_full(struct kmem_cache *s, struct page *page)
  705. {
  706. struct kmem_cache_node *n;
  707. if (!(s->flags & SLAB_STORE_USER))
  708. return;
  709. n = get_node(s, page_to_nid(page));
  710. spin_lock(&n->list_lock);
  711. list_del(&page->lru);
  712. spin_unlock(&n->list_lock);
  713. }
  714. /* Tracking of the number of slabs for debugging purposes */
  715. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  716. {
  717. struct kmem_cache_node *n = get_node(s, node);
  718. return atomic_long_read(&n->nr_slabs);
  719. }
  720. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  721. {
  722. return atomic_long_read(&n->nr_slabs);
  723. }
  724. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  725. {
  726. struct kmem_cache_node *n = get_node(s, node);
  727. /*
  728. * May be called early in order to allocate a slab for the
  729. * kmem_cache_node structure. Solve the chicken-egg
  730. * dilemma by deferring the increment of the count during
  731. * bootstrap (see early_kmem_cache_node_alloc).
  732. */
  733. if (!NUMA_BUILD || n) {
  734. atomic_long_inc(&n->nr_slabs);
  735. atomic_long_add(objects, &n->total_objects);
  736. }
  737. }
  738. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  739. {
  740. struct kmem_cache_node *n = get_node(s, node);
  741. atomic_long_dec(&n->nr_slabs);
  742. atomic_long_sub(objects, &n->total_objects);
  743. }
  744. /* Object debug checks for alloc/free paths */
  745. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  746. void *object)
  747. {
  748. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  749. return;
  750. init_object(s, object, 0);
  751. init_tracking(s, object);
  752. }
  753. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  754. void *object, unsigned long addr)
  755. {
  756. if (!check_slab(s, page))
  757. goto bad;
  758. if (!on_freelist(s, page, object)) {
  759. object_err(s, page, object, "Object already allocated");
  760. goto bad;
  761. }
  762. if (!check_valid_pointer(s, page, object)) {
  763. object_err(s, page, object, "Freelist Pointer check fails");
  764. goto bad;
  765. }
  766. if (!check_object(s, page, object, 0))
  767. goto bad;
  768. /* Success perform special debug activities for allocs */
  769. if (s->flags & SLAB_STORE_USER)
  770. set_track(s, object, TRACK_ALLOC, addr);
  771. trace(s, page, object, 1);
  772. init_object(s, object, 1);
  773. return 1;
  774. bad:
  775. if (PageSlab(page)) {
  776. /*
  777. * If this is a slab page then lets do the best we can
  778. * to avoid issues in the future. Marking all objects
  779. * as used avoids touching the remaining objects.
  780. */
  781. slab_fix(s, "Marking all objects used");
  782. page->inuse = page->objects;
  783. page->freelist = NULL;
  784. }
  785. return 0;
  786. }
  787. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  788. void *object, unsigned long addr)
  789. {
  790. if (!check_slab(s, page))
  791. goto fail;
  792. if (!check_valid_pointer(s, page, object)) {
  793. slab_err(s, page, "Invalid object pointer 0x%p", object);
  794. goto fail;
  795. }
  796. if (on_freelist(s, page, object)) {
  797. object_err(s, page, object, "Object already free");
  798. goto fail;
  799. }
  800. if (!check_object(s, page, object, 1))
  801. return 0;
  802. if (unlikely(s != page->slab)) {
  803. if (!PageSlab(page)) {
  804. slab_err(s, page, "Attempt to free object(0x%p) "
  805. "outside of slab", object);
  806. } else if (!page->slab) {
  807. printk(KERN_ERR
  808. "SLUB <none>: no slab for object 0x%p.\n",
  809. object);
  810. dump_stack();
  811. } else
  812. object_err(s, page, object,
  813. "page slab pointer corrupt.");
  814. goto fail;
  815. }
  816. /* Special debug activities for freeing objects */
  817. if (!PageSlubFrozen(page) && !page->freelist)
  818. remove_full(s, page);
  819. if (s->flags & SLAB_STORE_USER)
  820. set_track(s, object, TRACK_FREE, addr);
  821. trace(s, page, object, 0);
  822. init_object(s, object, 0);
  823. return 1;
  824. fail:
  825. slab_fix(s, "Object at 0x%p not freed", object);
  826. return 0;
  827. }
  828. static int __init setup_slub_debug(char *str)
  829. {
  830. slub_debug = DEBUG_DEFAULT_FLAGS;
  831. if (*str++ != '=' || !*str)
  832. /*
  833. * No options specified. Switch on full debugging.
  834. */
  835. goto out;
  836. if (*str == ',')
  837. /*
  838. * No options but restriction on slabs. This means full
  839. * debugging for slabs matching a pattern.
  840. */
  841. goto check_slabs;
  842. if (tolower(*str) == 'o') {
  843. /*
  844. * Avoid enabling debugging on caches if its minimum order
  845. * would increase as a result.
  846. */
  847. disable_higher_order_debug = 1;
  848. goto out;
  849. }
  850. slub_debug = 0;
  851. if (*str == '-')
  852. /*
  853. * Switch off all debugging measures.
  854. */
  855. goto out;
  856. /*
  857. * Determine which debug features should be switched on
  858. */
  859. for (; *str && *str != ','; str++) {
  860. switch (tolower(*str)) {
  861. case 'f':
  862. slub_debug |= SLAB_DEBUG_FREE;
  863. break;
  864. case 'z':
  865. slub_debug |= SLAB_RED_ZONE;
  866. break;
  867. case 'p':
  868. slub_debug |= SLAB_POISON;
  869. break;
  870. case 'u':
  871. slub_debug |= SLAB_STORE_USER;
  872. break;
  873. case 't':
  874. slub_debug |= SLAB_TRACE;
  875. break;
  876. default:
  877. printk(KERN_ERR "slub_debug option '%c' "
  878. "unknown. skipped\n", *str);
  879. }
  880. }
  881. check_slabs:
  882. if (*str == ',')
  883. slub_debug_slabs = str + 1;
  884. out:
  885. return 1;
  886. }
  887. __setup("slub_debug", setup_slub_debug);
  888. static unsigned long kmem_cache_flags(unsigned long objsize,
  889. unsigned long flags, const char *name,
  890. void (*ctor)(void *))
  891. {
  892. /*
  893. * Enable debugging if selected on the kernel commandline.
  894. */
  895. if (slub_debug && (!slub_debug_slabs ||
  896. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  897. flags |= slub_debug;
  898. return flags;
  899. }
  900. #else
  901. static inline void setup_object_debug(struct kmem_cache *s,
  902. struct page *page, void *object) {}
  903. static inline int alloc_debug_processing(struct kmem_cache *s,
  904. struct page *page, void *object, unsigned long addr) { return 0; }
  905. static inline int free_debug_processing(struct kmem_cache *s,
  906. struct page *page, void *object, unsigned long addr) { return 0; }
  907. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  908. { return 1; }
  909. static inline int check_object(struct kmem_cache *s, struct page *page,
  910. void *object, int active) { return 1; }
  911. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  912. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  913. unsigned long flags, const char *name,
  914. void (*ctor)(void *))
  915. {
  916. return flags;
  917. }
  918. #define slub_debug 0
  919. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  920. { return 0; }
  921. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  922. { return 0; }
  923. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  924. int objects) {}
  925. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  926. int objects) {}
  927. #endif
  928. /*
  929. * Slab allocation and freeing
  930. */
  931. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  932. struct kmem_cache_order_objects oo)
  933. {
  934. int order = oo_order(oo);
  935. flags |= __GFP_NOTRACK;
  936. if (node == -1)
  937. return alloc_pages(flags, order);
  938. else
  939. return alloc_pages_node(node, flags, order);
  940. }
  941. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  942. {
  943. struct page *page;
  944. struct kmem_cache_order_objects oo = s->oo;
  945. gfp_t alloc_gfp;
  946. flags |= s->allocflags;
  947. /*
  948. * Let the initial higher-order allocation fail under memory pressure
  949. * so we fall-back to the minimum order allocation.
  950. */
  951. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  952. page = alloc_slab_page(alloc_gfp, node, oo);
  953. if (unlikely(!page)) {
  954. oo = s->min;
  955. /*
  956. * Allocation may have failed due to fragmentation.
  957. * Try a lower order alloc if possible
  958. */
  959. page = alloc_slab_page(flags, node, oo);
  960. if (!page)
  961. return NULL;
  962. stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
  963. }
  964. if (kmemcheck_enabled
  965. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS)))
  966. {
  967. int pages = 1 << oo_order(oo);
  968. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  969. /*
  970. * Objects from caches that have a constructor don't get
  971. * cleared when they're allocated, so we need to do it here.
  972. */
  973. if (s->ctor)
  974. kmemcheck_mark_uninitialized_pages(page, pages);
  975. else
  976. kmemcheck_mark_unallocated_pages(page, pages);
  977. }
  978. page->objects = oo_objects(oo);
  979. mod_zone_page_state(page_zone(page),
  980. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  981. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  982. 1 << oo_order(oo));
  983. return page;
  984. }
  985. static void setup_object(struct kmem_cache *s, struct page *page,
  986. void *object)
  987. {
  988. setup_object_debug(s, page, object);
  989. if (unlikely(s->ctor))
  990. s->ctor(object);
  991. }
  992. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  993. {
  994. struct page *page;
  995. void *start;
  996. void *last;
  997. void *p;
  998. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  999. page = allocate_slab(s,
  1000. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1001. if (!page)
  1002. goto out;
  1003. inc_slabs_node(s, page_to_nid(page), page->objects);
  1004. page->slab = s;
  1005. page->flags |= 1 << PG_slab;
  1006. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  1007. SLAB_STORE_USER | SLAB_TRACE))
  1008. __SetPageSlubDebug(page);
  1009. start = page_address(page);
  1010. if (unlikely(s->flags & SLAB_POISON))
  1011. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1012. last = start;
  1013. for_each_object(p, s, start, page->objects) {
  1014. setup_object(s, page, last);
  1015. set_freepointer(s, last, p);
  1016. last = p;
  1017. }
  1018. setup_object(s, page, last);
  1019. set_freepointer(s, last, NULL);
  1020. page->freelist = start;
  1021. page->inuse = 0;
  1022. out:
  1023. return page;
  1024. }
  1025. static void __free_slab(struct kmem_cache *s, struct page *page)
  1026. {
  1027. int order = compound_order(page);
  1028. int pages = 1 << order;
  1029. if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
  1030. void *p;
  1031. slab_pad_check(s, page);
  1032. for_each_object(p, s, page_address(page),
  1033. page->objects)
  1034. check_object(s, page, p, 0);
  1035. __ClearPageSlubDebug(page);
  1036. }
  1037. kmemcheck_free_shadow(page, compound_order(page));
  1038. mod_zone_page_state(page_zone(page),
  1039. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1040. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1041. -pages);
  1042. __ClearPageSlab(page);
  1043. reset_page_mapcount(page);
  1044. if (current->reclaim_state)
  1045. current->reclaim_state->reclaimed_slab += pages;
  1046. __free_pages(page, order);
  1047. }
  1048. static void rcu_free_slab(struct rcu_head *h)
  1049. {
  1050. struct page *page;
  1051. page = container_of((struct list_head *)h, struct page, lru);
  1052. __free_slab(page->slab, page);
  1053. }
  1054. static void free_slab(struct kmem_cache *s, struct page *page)
  1055. {
  1056. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1057. /*
  1058. * RCU free overloads the RCU head over the LRU
  1059. */
  1060. struct rcu_head *head = (void *)&page->lru;
  1061. call_rcu(head, rcu_free_slab);
  1062. } else
  1063. __free_slab(s, page);
  1064. }
  1065. static void discard_slab(struct kmem_cache *s, struct page *page)
  1066. {
  1067. dec_slabs_node(s, page_to_nid(page), page->objects);
  1068. free_slab(s, page);
  1069. }
  1070. /*
  1071. * Per slab locking using the pagelock
  1072. */
  1073. static __always_inline void slab_lock(struct page *page)
  1074. {
  1075. bit_spin_lock(PG_locked, &page->flags);
  1076. }
  1077. static __always_inline void slab_unlock(struct page *page)
  1078. {
  1079. __bit_spin_unlock(PG_locked, &page->flags);
  1080. }
  1081. static __always_inline int slab_trylock(struct page *page)
  1082. {
  1083. int rc = 1;
  1084. rc = bit_spin_trylock(PG_locked, &page->flags);
  1085. return rc;
  1086. }
  1087. /*
  1088. * Management of partially allocated slabs
  1089. */
  1090. static void add_partial(struct kmem_cache_node *n,
  1091. struct page *page, int tail)
  1092. {
  1093. spin_lock(&n->list_lock);
  1094. n->nr_partial++;
  1095. if (tail)
  1096. list_add_tail(&page->lru, &n->partial);
  1097. else
  1098. list_add(&page->lru, &n->partial);
  1099. spin_unlock(&n->list_lock);
  1100. }
  1101. static void remove_partial(struct kmem_cache *s, struct page *page)
  1102. {
  1103. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1104. spin_lock(&n->list_lock);
  1105. list_del(&page->lru);
  1106. n->nr_partial--;
  1107. spin_unlock(&n->list_lock);
  1108. }
  1109. /*
  1110. * Lock slab and remove from the partial list.
  1111. *
  1112. * Must hold list_lock.
  1113. */
  1114. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1115. struct page *page)
  1116. {
  1117. if (slab_trylock(page)) {
  1118. list_del(&page->lru);
  1119. n->nr_partial--;
  1120. __SetPageSlubFrozen(page);
  1121. return 1;
  1122. }
  1123. return 0;
  1124. }
  1125. /*
  1126. * Try to allocate a partial slab from a specific node.
  1127. */
  1128. static struct page *get_partial_node(struct kmem_cache_node *n)
  1129. {
  1130. struct page *page;
  1131. /*
  1132. * Racy check. If we mistakenly see no partial slabs then we
  1133. * just allocate an empty slab. If we mistakenly try to get a
  1134. * partial slab and there is none available then get_partials()
  1135. * will return NULL.
  1136. */
  1137. if (!n || !n->nr_partial)
  1138. return NULL;
  1139. spin_lock(&n->list_lock);
  1140. list_for_each_entry(page, &n->partial, lru)
  1141. if (lock_and_freeze_slab(n, page))
  1142. goto out;
  1143. page = NULL;
  1144. out:
  1145. spin_unlock(&n->list_lock);
  1146. return page;
  1147. }
  1148. /*
  1149. * Get a page from somewhere. Search in increasing NUMA distances.
  1150. */
  1151. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1152. {
  1153. #ifdef CONFIG_NUMA
  1154. struct zonelist *zonelist;
  1155. struct zoneref *z;
  1156. struct zone *zone;
  1157. enum zone_type high_zoneidx = gfp_zone(flags);
  1158. struct page *page;
  1159. /*
  1160. * The defrag ratio allows a configuration of the tradeoffs between
  1161. * inter node defragmentation and node local allocations. A lower
  1162. * defrag_ratio increases the tendency to do local allocations
  1163. * instead of attempting to obtain partial slabs from other nodes.
  1164. *
  1165. * If the defrag_ratio is set to 0 then kmalloc() always
  1166. * returns node local objects. If the ratio is higher then kmalloc()
  1167. * may return off node objects because partial slabs are obtained
  1168. * from other nodes and filled up.
  1169. *
  1170. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1171. * defrag_ratio = 1000) then every (well almost) allocation will
  1172. * first attempt to defrag slab caches on other nodes. This means
  1173. * scanning over all nodes to look for partial slabs which may be
  1174. * expensive if we do it every time we are trying to find a slab
  1175. * with available objects.
  1176. */
  1177. if (!s->remote_node_defrag_ratio ||
  1178. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1179. return NULL;
  1180. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1181. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1182. struct kmem_cache_node *n;
  1183. n = get_node(s, zone_to_nid(zone));
  1184. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1185. n->nr_partial > s->min_partial) {
  1186. page = get_partial_node(n);
  1187. if (page)
  1188. return page;
  1189. }
  1190. }
  1191. #endif
  1192. return NULL;
  1193. }
  1194. /*
  1195. * Get a partial page, lock it and return it.
  1196. */
  1197. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1198. {
  1199. struct page *page;
  1200. int searchnode = (node == -1) ? numa_node_id() : node;
  1201. page = get_partial_node(get_node(s, searchnode));
  1202. if (page || (flags & __GFP_THISNODE))
  1203. return page;
  1204. return get_any_partial(s, flags);
  1205. }
  1206. /*
  1207. * Move a page back to the lists.
  1208. *
  1209. * Must be called with the slab lock held.
  1210. *
  1211. * On exit the slab lock will have been dropped.
  1212. */
  1213. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1214. {
  1215. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1216. struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
  1217. __ClearPageSlubFrozen(page);
  1218. if (page->inuse) {
  1219. if (page->freelist) {
  1220. add_partial(n, page, tail);
  1221. stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1222. } else {
  1223. stat(c, DEACTIVATE_FULL);
  1224. if (SLABDEBUG && PageSlubDebug(page) &&
  1225. (s->flags & SLAB_STORE_USER))
  1226. add_full(n, page);
  1227. }
  1228. slab_unlock(page);
  1229. } else {
  1230. stat(c, DEACTIVATE_EMPTY);
  1231. if (n->nr_partial < s->min_partial) {
  1232. /*
  1233. * Adding an empty slab to the partial slabs in order
  1234. * to avoid page allocator overhead. This slab needs
  1235. * to come after the other slabs with objects in
  1236. * so that the others get filled first. That way the
  1237. * size of the partial list stays small.
  1238. *
  1239. * kmem_cache_shrink can reclaim any empty slabs from
  1240. * the partial list.
  1241. */
  1242. add_partial(n, page, 1);
  1243. slab_unlock(page);
  1244. } else {
  1245. slab_unlock(page);
  1246. stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
  1247. discard_slab(s, page);
  1248. }
  1249. }
  1250. }
  1251. /*
  1252. * Remove the cpu slab
  1253. */
  1254. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1255. {
  1256. struct page *page = c->page;
  1257. int tail = 1;
  1258. if (page->freelist)
  1259. stat(c, DEACTIVATE_REMOTE_FREES);
  1260. /*
  1261. * Merge cpu freelist into slab freelist. Typically we get here
  1262. * because both freelists are empty. So this is unlikely
  1263. * to occur.
  1264. */
  1265. while (unlikely(c->freelist)) {
  1266. void **object;
  1267. tail = 0; /* Hot objects. Put the slab first */
  1268. /* Retrieve object from cpu_freelist */
  1269. object = c->freelist;
  1270. c->freelist = c->freelist[c->offset];
  1271. /* And put onto the regular freelist */
  1272. object[c->offset] = page->freelist;
  1273. page->freelist = object;
  1274. page->inuse--;
  1275. }
  1276. c->page = NULL;
  1277. unfreeze_slab(s, page, tail);
  1278. }
  1279. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1280. {
  1281. stat(c, CPUSLAB_FLUSH);
  1282. slab_lock(c->page);
  1283. deactivate_slab(s, c);
  1284. }
  1285. /*
  1286. * Flush cpu slab.
  1287. *
  1288. * Called from IPI handler with interrupts disabled.
  1289. */
  1290. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1291. {
  1292. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1293. if (likely(c && c->page))
  1294. flush_slab(s, c);
  1295. }
  1296. static void flush_cpu_slab(void *d)
  1297. {
  1298. struct kmem_cache *s = d;
  1299. __flush_cpu_slab(s, smp_processor_id());
  1300. }
  1301. static void flush_all(struct kmem_cache *s)
  1302. {
  1303. on_each_cpu(flush_cpu_slab, s, 1);
  1304. }
  1305. /*
  1306. * Check if the objects in a per cpu structure fit numa
  1307. * locality expectations.
  1308. */
  1309. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1310. {
  1311. #ifdef CONFIG_NUMA
  1312. if (node != -1 && c->node != node)
  1313. return 0;
  1314. #endif
  1315. return 1;
  1316. }
  1317. static int count_free(struct page *page)
  1318. {
  1319. return page->objects - page->inuse;
  1320. }
  1321. static unsigned long count_partial(struct kmem_cache_node *n,
  1322. int (*get_count)(struct page *))
  1323. {
  1324. unsigned long flags;
  1325. unsigned long x = 0;
  1326. struct page *page;
  1327. spin_lock_irqsave(&n->list_lock, flags);
  1328. list_for_each_entry(page, &n->partial, lru)
  1329. x += get_count(page);
  1330. spin_unlock_irqrestore(&n->list_lock, flags);
  1331. return x;
  1332. }
  1333. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1334. {
  1335. #ifdef CONFIG_SLUB_DEBUG
  1336. return atomic_long_read(&n->total_objects);
  1337. #else
  1338. return 0;
  1339. #endif
  1340. }
  1341. static noinline void
  1342. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1343. {
  1344. int node;
  1345. printk(KERN_WARNING
  1346. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1347. nid, gfpflags);
  1348. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1349. "default order: %d, min order: %d\n", s->name, s->objsize,
  1350. s->size, oo_order(s->oo), oo_order(s->min));
  1351. if (oo_order(s->min) > get_order(s->objsize))
  1352. printk(KERN_WARNING " %s debugging increased min order, use "
  1353. "slub_debug=O to disable.\n", s->name);
  1354. for_each_online_node(node) {
  1355. struct kmem_cache_node *n = get_node(s, node);
  1356. unsigned long nr_slabs;
  1357. unsigned long nr_objs;
  1358. unsigned long nr_free;
  1359. if (!n)
  1360. continue;
  1361. nr_free = count_partial(n, count_free);
  1362. nr_slabs = node_nr_slabs(n);
  1363. nr_objs = node_nr_objs(n);
  1364. printk(KERN_WARNING
  1365. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1366. node, nr_slabs, nr_objs, nr_free);
  1367. }
  1368. }
  1369. /*
  1370. * Slow path. The lockless freelist is empty or we need to perform
  1371. * debugging duties.
  1372. *
  1373. * Interrupts are disabled.
  1374. *
  1375. * Processing is still very fast if new objects have been freed to the
  1376. * regular freelist. In that case we simply take over the regular freelist
  1377. * as the lockless freelist and zap the regular freelist.
  1378. *
  1379. * If that is not working then we fall back to the partial lists. We take the
  1380. * first element of the freelist as the object to allocate now and move the
  1381. * rest of the freelist to the lockless freelist.
  1382. *
  1383. * And if we were unable to get a new slab from the partial slab lists then
  1384. * we need to allocate a new slab. This is the slowest path since it involves
  1385. * a call to the page allocator and the setup of a new slab.
  1386. */
  1387. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1388. unsigned long addr, struct kmem_cache_cpu *c)
  1389. {
  1390. void **object;
  1391. struct page *new;
  1392. /* We handle __GFP_ZERO in the caller */
  1393. gfpflags &= ~__GFP_ZERO;
  1394. if (!c->page)
  1395. goto new_slab;
  1396. slab_lock(c->page);
  1397. if (unlikely(!node_match(c, node)))
  1398. goto another_slab;
  1399. stat(c, ALLOC_REFILL);
  1400. load_freelist:
  1401. object = c->page->freelist;
  1402. if (unlikely(!object))
  1403. goto another_slab;
  1404. if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
  1405. goto debug;
  1406. c->freelist = object[c->offset];
  1407. c->page->inuse = c->page->objects;
  1408. c->page->freelist = NULL;
  1409. c->node = page_to_nid(c->page);
  1410. unlock_out:
  1411. slab_unlock(c->page);
  1412. stat(c, ALLOC_SLOWPATH);
  1413. return object;
  1414. another_slab:
  1415. deactivate_slab(s, c);
  1416. new_slab:
  1417. new = get_partial(s, gfpflags, node);
  1418. if (new) {
  1419. c->page = new;
  1420. stat(c, ALLOC_FROM_PARTIAL);
  1421. goto load_freelist;
  1422. }
  1423. if (gfpflags & __GFP_WAIT)
  1424. local_irq_enable();
  1425. new = new_slab(s, gfpflags, node);
  1426. if (gfpflags & __GFP_WAIT)
  1427. local_irq_disable();
  1428. if (new) {
  1429. c = get_cpu_slab(s, smp_processor_id());
  1430. stat(c, ALLOC_SLAB);
  1431. if (c->page)
  1432. flush_slab(s, c);
  1433. slab_lock(new);
  1434. __SetPageSlubFrozen(new);
  1435. c->page = new;
  1436. goto load_freelist;
  1437. }
  1438. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1439. slab_out_of_memory(s, gfpflags, node);
  1440. return NULL;
  1441. debug:
  1442. if (!alloc_debug_processing(s, c->page, object, addr))
  1443. goto another_slab;
  1444. c->page->inuse++;
  1445. c->page->freelist = object[c->offset];
  1446. c->node = -1;
  1447. goto unlock_out;
  1448. }
  1449. /*
  1450. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1451. * have the fastpath folded into their functions. So no function call
  1452. * overhead for requests that can be satisfied on the fastpath.
  1453. *
  1454. * The fastpath works by first checking if the lockless freelist can be used.
  1455. * If not then __slab_alloc is called for slow processing.
  1456. *
  1457. * Otherwise we can simply pick the next object from the lockless free list.
  1458. */
  1459. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1460. gfp_t gfpflags, int node, unsigned long addr)
  1461. {
  1462. void **object;
  1463. struct kmem_cache_cpu *c;
  1464. unsigned long flags;
  1465. unsigned int objsize;
  1466. gfpflags &= gfp_allowed_mask;
  1467. lockdep_trace_alloc(gfpflags);
  1468. might_sleep_if(gfpflags & __GFP_WAIT);
  1469. if (should_failslab(s->objsize, gfpflags))
  1470. return NULL;
  1471. local_irq_save(flags);
  1472. c = get_cpu_slab(s, smp_processor_id());
  1473. objsize = c->objsize;
  1474. if (unlikely(!c->freelist || !node_match(c, node)))
  1475. object = __slab_alloc(s, gfpflags, node, addr, c);
  1476. else {
  1477. object = c->freelist;
  1478. c->freelist = object[c->offset];
  1479. stat(c, ALLOC_FASTPATH);
  1480. }
  1481. local_irq_restore(flags);
  1482. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1483. memset(object, 0, objsize);
  1484. kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
  1485. kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
  1486. return object;
  1487. }
  1488. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1489. {
  1490. void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
  1491. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1492. return ret;
  1493. }
  1494. EXPORT_SYMBOL(kmem_cache_alloc);
  1495. #ifdef CONFIG_KMEMTRACE
  1496. void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
  1497. {
  1498. return slab_alloc(s, gfpflags, -1, _RET_IP_);
  1499. }
  1500. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  1501. #endif
  1502. #ifdef CONFIG_NUMA
  1503. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1504. {
  1505. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1506. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  1507. s->objsize, s->size, gfpflags, node);
  1508. return ret;
  1509. }
  1510. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1511. #endif
  1512. #ifdef CONFIG_KMEMTRACE
  1513. void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
  1514. gfp_t gfpflags,
  1515. int node)
  1516. {
  1517. return slab_alloc(s, gfpflags, node, _RET_IP_);
  1518. }
  1519. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  1520. #endif
  1521. /*
  1522. * Slow patch handling. This may still be called frequently since objects
  1523. * have a longer lifetime than the cpu slabs in most processing loads.
  1524. *
  1525. * So we still attempt to reduce cache line usage. Just take the slab
  1526. * lock and free the item. If there is no additional partial page
  1527. * handling required then we can return immediately.
  1528. */
  1529. static void __slab_free(struct kmem_cache *s, struct page *page,
  1530. void *x, unsigned long addr, unsigned int offset)
  1531. {
  1532. void *prior;
  1533. void **object = (void *)x;
  1534. struct kmem_cache_cpu *c;
  1535. c = get_cpu_slab(s, raw_smp_processor_id());
  1536. stat(c, FREE_SLOWPATH);
  1537. slab_lock(page);
  1538. if (unlikely(SLABDEBUG && PageSlubDebug(page)))
  1539. goto debug;
  1540. checks_ok:
  1541. prior = object[offset] = page->freelist;
  1542. page->freelist = object;
  1543. page->inuse--;
  1544. if (unlikely(PageSlubFrozen(page))) {
  1545. stat(c, FREE_FROZEN);
  1546. goto out_unlock;
  1547. }
  1548. if (unlikely(!page->inuse))
  1549. goto slab_empty;
  1550. /*
  1551. * Objects left in the slab. If it was not on the partial list before
  1552. * then add it.
  1553. */
  1554. if (unlikely(!prior)) {
  1555. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1556. stat(c, FREE_ADD_PARTIAL);
  1557. }
  1558. out_unlock:
  1559. slab_unlock(page);
  1560. return;
  1561. slab_empty:
  1562. if (prior) {
  1563. /*
  1564. * Slab still on the partial list.
  1565. */
  1566. remove_partial(s, page);
  1567. stat(c, FREE_REMOVE_PARTIAL);
  1568. }
  1569. slab_unlock(page);
  1570. stat(c, FREE_SLAB);
  1571. discard_slab(s, page);
  1572. return;
  1573. debug:
  1574. if (!free_debug_processing(s, page, x, addr))
  1575. goto out_unlock;
  1576. goto checks_ok;
  1577. }
  1578. /*
  1579. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1580. * can perform fastpath freeing without additional function calls.
  1581. *
  1582. * The fastpath is only possible if we are freeing to the current cpu slab
  1583. * of this processor. This typically the case if we have just allocated
  1584. * the item before.
  1585. *
  1586. * If fastpath is not possible then fall back to __slab_free where we deal
  1587. * with all sorts of special processing.
  1588. */
  1589. static __always_inline void slab_free(struct kmem_cache *s,
  1590. struct page *page, void *x, unsigned long addr)
  1591. {
  1592. void **object = (void *)x;
  1593. struct kmem_cache_cpu *c;
  1594. unsigned long flags;
  1595. kmemleak_free_recursive(x, s->flags);
  1596. local_irq_save(flags);
  1597. c = get_cpu_slab(s, smp_processor_id());
  1598. kmemcheck_slab_free(s, object, c->objsize);
  1599. debug_check_no_locks_freed(object, c->objsize);
  1600. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1601. debug_check_no_obj_freed(object, c->objsize);
  1602. if (likely(page == c->page && c->node >= 0)) {
  1603. object[c->offset] = c->freelist;
  1604. c->freelist = object;
  1605. stat(c, FREE_FASTPATH);
  1606. } else
  1607. __slab_free(s, page, x, addr, c->offset);
  1608. local_irq_restore(flags);
  1609. }
  1610. void kmem_cache_free(struct kmem_cache *s, void *x)
  1611. {
  1612. struct page *page;
  1613. page = virt_to_head_page(x);
  1614. slab_free(s, page, x, _RET_IP_);
  1615. trace_kmem_cache_free(_RET_IP_, x);
  1616. }
  1617. EXPORT_SYMBOL(kmem_cache_free);
  1618. /* Figure out on which slab page the object resides */
  1619. static struct page *get_object_page(const void *x)
  1620. {
  1621. struct page *page = virt_to_head_page(x);
  1622. if (!PageSlab(page))
  1623. return NULL;
  1624. return page;
  1625. }
  1626. /*
  1627. * Object placement in a slab is made very easy because we always start at
  1628. * offset 0. If we tune the size of the object to the alignment then we can
  1629. * get the required alignment by putting one properly sized object after
  1630. * another.
  1631. *
  1632. * Notice that the allocation order determines the sizes of the per cpu
  1633. * caches. Each processor has always one slab available for allocations.
  1634. * Increasing the allocation order reduces the number of times that slabs
  1635. * must be moved on and off the partial lists and is therefore a factor in
  1636. * locking overhead.
  1637. */
  1638. /*
  1639. * Mininum / Maximum order of slab pages. This influences locking overhead
  1640. * and slab fragmentation. A higher order reduces the number of partial slabs
  1641. * and increases the number of allocations possible without having to
  1642. * take the list_lock.
  1643. */
  1644. static int slub_min_order;
  1645. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1646. static int slub_min_objects;
  1647. /*
  1648. * Merge control. If this is set then no merging of slab caches will occur.
  1649. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1650. */
  1651. static int slub_nomerge;
  1652. /*
  1653. * Calculate the order of allocation given an slab object size.
  1654. *
  1655. * The order of allocation has significant impact on performance and other
  1656. * system components. Generally order 0 allocations should be preferred since
  1657. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1658. * be problematic to put into order 0 slabs because there may be too much
  1659. * unused space left. We go to a higher order if more than 1/16th of the slab
  1660. * would be wasted.
  1661. *
  1662. * In order to reach satisfactory performance we must ensure that a minimum
  1663. * number of objects is in one slab. Otherwise we may generate too much
  1664. * activity on the partial lists which requires taking the list_lock. This is
  1665. * less a concern for large slabs though which are rarely used.
  1666. *
  1667. * slub_max_order specifies the order where we begin to stop considering the
  1668. * number of objects in a slab as critical. If we reach slub_max_order then
  1669. * we try to keep the page order as low as possible. So we accept more waste
  1670. * of space in favor of a small page order.
  1671. *
  1672. * Higher order allocations also allow the placement of more objects in a
  1673. * slab and thereby reduce object handling overhead. If the user has
  1674. * requested a higher mininum order then we start with that one instead of
  1675. * the smallest order which will fit the object.
  1676. */
  1677. static inline int slab_order(int size, int min_objects,
  1678. int max_order, int fract_leftover)
  1679. {
  1680. int order;
  1681. int rem;
  1682. int min_order = slub_min_order;
  1683. if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
  1684. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  1685. for (order = max(min_order,
  1686. fls(min_objects * size - 1) - PAGE_SHIFT);
  1687. order <= max_order; order++) {
  1688. unsigned long slab_size = PAGE_SIZE << order;
  1689. if (slab_size < min_objects * size)
  1690. continue;
  1691. rem = slab_size % size;
  1692. if (rem <= slab_size / fract_leftover)
  1693. break;
  1694. }
  1695. return order;
  1696. }
  1697. static inline int calculate_order(int size)
  1698. {
  1699. int order;
  1700. int min_objects;
  1701. int fraction;
  1702. int max_objects;
  1703. /*
  1704. * Attempt to find best configuration for a slab. This
  1705. * works by first attempting to generate a layout with
  1706. * the best configuration and backing off gradually.
  1707. *
  1708. * First we reduce the acceptable waste in a slab. Then
  1709. * we reduce the minimum objects required in a slab.
  1710. */
  1711. min_objects = slub_min_objects;
  1712. if (!min_objects)
  1713. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1714. max_objects = (PAGE_SIZE << slub_max_order)/size;
  1715. min_objects = min(min_objects, max_objects);
  1716. while (min_objects > 1) {
  1717. fraction = 16;
  1718. while (fraction >= 4) {
  1719. order = slab_order(size, min_objects,
  1720. slub_max_order, fraction);
  1721. if (order <= slub_max_order)
  1722. return order;
  1723. fraction /= 2;
  1724. }
  1725. min_objects --;
  1726. }
  1727. /*
  1728. * We were unable to place multiple objects in a slab. Now
  1729. * lets see if we can place a single object there.
  1730. */
  1731. order = slab_order(size, 1, slub_max_order, 1);
  1732. if (order <= slub_max_order)
  1733. return order;
  1734. /*
  1735. * Doh this slab cannot be placed using slub_max_order.
  1736. */
  1737. order = slab_order(size, 1, MAX_ORDER, 1);
  1738. if (order < MAX_ORDER)
  1739. return order;
  1740. return -ENOSYS;
  1741. }
  1742. /*
  1743. * Figure out what the alignment of the objects will be.
  1744. */
  1745. static unsigned long calculate_alignment(unsigned long flags,
  1746. unsigned long align, unsigned long size)
  1747. {
  1748. /*
  1749. * If the user wants hardware cache aligned objects then follow that
  1750. * suggestion if the object is sufficiently large.
  1751. *
  1752. * The hardware cache alignment cannot override the specified
  1753. * alignment though. If that is greater then use it.
  1754. */
  1755. if (flags & SLAB_HWCACHE_ALIGN) {
  1756. unsigned long ralign = cache_line_size();
  1757. while (size <= ralign / 2)
  1758. ralign /= 2;
  1759. align = max(align, ralign);
  1760. }
  1761. if (align < ARCH_SLAB_MINALIGN)
  1762. align = ARCH_SLAB_MINALIGN;
  1763. return ALIGN(align, sizeof(void *));
  1764. }
  1765. static void init_kmem_cache_cpu(struct kmem_cache *s,
  1766. struct kmem_cache_cpu *c)
  1767. {
  1768. c->page = NULL;
  1769. c->freelist = NULL;
  1770. c->node = 0;
  1771. c->offset = s->offset / sizeof(void *);
  1772. c->objsize = s->objsize;
  1773. #ifdef CONFIG_SLUB_STATS
  1774. memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
  1775. #endif
  1776. }
  1777. static void
  1778. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1779. {
  1780. n->nr_partial = 0;
  1781. spin_lock_init(&n->list_lock);
  1782. INIT_LIST_HEAD(&n->partial);
  1783. #ifdef CONFIG_SLUB_DEBUG
  1784. atomic_long_set(&n->nr_slabs, 0);
  1785. atomic_long_set(&n->total_objects, 0);
  1786. INIT_LIST_HEAD(&n->full);
  1787. #endif
  1788. }
  1789. #ifdef CONFIG_SMP
  1790. /*
  1791. * Per cpu array for per cpu structures.
  1792. *
  1793. * The per cpu array places all kmem_cache_cpu structures from one processor
  1794. * close together meaning that it becomes possible that multiple per cpu
  1795. * structures are contained in one cacheline. This may be particularly
  1796. * beneficial for the kmalloc caches.
  1797. *
  1798. * A desktop system typically has around 60-80 slabs. With 100 here we are
  1799. * likely able to get per cpu structures for all caches from the array defined
  1800. * here. We must be able to cover all kmalloc caches during bootstrap.
  1801. *
  1802. * If the per cpu array is exhausted then fall back to kmalloc
  1803. * of individual cachelines. No sharing is possible then.
  1804. */
  1805. #define NR_KMEM_CACHE_CPU 100
  1806. static DEFINE_PER_CPU(struct kmem_cache_cpu,
  1807. kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
  1808. static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
  1809. static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
  1810. static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
  1811. int cpu, gfp_t flags)
  1812. {
  1813. struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
  1814. if (c)
  1815. per_cpu(kmem_cache_cpu_free, cpu) =
  1816. (void *)c->freelist;
  1817. else {
  1818. /* Table overflow: So allocate ourselves */
  1819. c = kmalloc_node(
  1820. ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
  1821. flags, cpu_to_node(cpu));
  1822. if (!c)
  1823. return NULL;
  1824. }
  1825. init_kmem_cache_cpu(s, c);
  1826. return c;
  1827. }
  1828. static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
  1829. {
  1830. if (c < per_cpu(kmem_cache_cpu, cpu) ||
  1831. c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
  1832. kfree(c);
  1833. return;
  1834. }
  1835. c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
  1836. per_cpu(kmem_cache_cpu_free, cpu) = c;
  1837. }
  1838. static void free_kmem_cache_cpus(struct kmem_cache *s)
  1839. {
  1840. int cpu;
  1841. for_each_online_cpu(cpu) {
  1842. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1843. if (c) {
  1844. s->cpu_slab[cpu] = NULL;
  1845. free_kmem_cache_cpu(c, cpu);
  1846. }
  1847. }
  1848. }
  1849. static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1850. {
  1851. int cpu;
  1852. for_each_online_cpu(cpu) {
  1853. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1854. if (c)
  1855. continue;
  1856. c = alloc_kmem_cache_cpu(s, cpu, flags);
  1857. if (!c) {
  1858. free_kmem_cache_cpus(s);
  1859. return 0;
  1860. }
  1861. s->cpu_slab[cpu] = c;
  1862. }
  1863. return 1;
  1864. }
  1865. /*
  1866. * Initialize the per cpu array.
  1867. */
  1868. static void init_alloc_cpu_cpu(int cpu)
  1869. {
  1870. int i;
  1871. if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
  1872. return;
  1873. for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
  1874. free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
  1875. cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
  1876. }
  1877. static void __init init_alloc_cpu(void)
  1878. {
  1879. int cpu;
  1880. for_each_online_cpu(cpu)
  1881. init_alloc_cpu_cpu(cpu);
  1882. }
  1883. #else
  1884. static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
  1885. static inline void init_alloc_cpu(void) {}
  1886. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1887. {
  1888. init_kmem_cache_cpu(s, &s->cpu_slab);
  1889. return 1;
  1890. }
  1891. #endif
  1892. #ifdef CONFIG_NUMA
  1893. /*
  1894. * No kmalloc_node yet so do it by hand. We know that this is the first
  1895. * slab on the node for this slabcache. There are no concurrent accesses
  1896. * possible.
  1897. *
  1898. * Note that this function only works on the kmalloc_node_cache
  1899. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1900. * memory on a fresh node that has no slab structures yet.
  1901. */
  1902. static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
  1903. {
  1904. struct page *page;
  1905. struct kmem_cache_node *n;
  1906. unsigned long flags;
  1907. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1908. page = new_slab(kmalloc_caches, gfpflags, node);
  1909. BUG_ON(!page);
  1910. if (page_to_nid(page) != node) {
  1911. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1912. "node %d\n", node);
  1913. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1914. "in order to be able to continue\n");
  1915. }
  1916. n = page->freelist;
  1917. BUG_ON(!n);
  1918. page->freelist = get_freepointer(kmalloc_caches, n);
  1919. page->inuse++;
  1920. kmalloc_caches->node[node] = n;
  1921. #ifdef CONFIG_SLUB_DEBUG
  1922. init_object(kmalloc_caches, n, 1);
  1923. init_tracking(kmalloc_caches, n);
  1924. #endif
  1925. init_kmem_cache_node(n, kmalloc_caches);
  1926. inc_slabs_node(kmalloc_caches, node, page->objects);
  1927. /*
  1928. * lockdep requires consistent irq usage for each lock
  1929. * so even though there cannot be a race this early in
  1930. * the boot sequence, we still disable irqs.
  1931. */
  1932. local_irq_save(flags);
  1933. add_partial(n, page, 0);
  1934. local_irq_restore(flags);
  1935. }
  1936. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1937. {
  1938. int node;
  1939. for_each_node_state(node, N_NORMAL_MEMORY) {
  1940. struct kmem_cache_node *n = s->node[node];
  1941. if (n && n != &s->local_node)
  1942. kmem_cache_free(kmalloc_caches, n);
  1943. s->node[node] = NULL;
  1944. }
  1945. }
  1946. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1947. {
  1948. int node;
  1949. int local_node;
  1950. if (slab_state >= UP)
  1951. local_node = page_to_nid(virt_to_page(s));
  1952. else
  1953. local_node = 0;
  1954. for_each_node_state(node, N_NORMAL_MEMORY) {
  1955. struct kmem_cache_node *n;
  1956. if (local_node == node)
  1957. n = &s->local_node;
  1958. else {
  1959. if (slab_state == DOWN) {
  1960. early_kmem_cache_node_alloc(gfpflags, node);
  1961. continue;
  1962. }
  1963. n = kmem_cache_alloc_node(kmalloc_caches,
  1964. gfpflags, node);
  1965. if (!n) {
  1966. free_kmem_cache_nodes(s);
  1967. return 0;
  1968. }
  1969. }
  1970. s->node[node] = n;
  1971. init_kmem_cache_node(n, s);
  1972. }
  1973. return 1;
  1974. }
  1975. #else
  1976. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1977. {
  1978. }
  1979. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1980. {
  1981. init_kmem_cache_node(&s->local_node, s);
  1982. return 1;
  1983. }
  1984. #endif
  1985. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  1986. {
  1987. if (min < MIN_PARTIAL)
  1988. min = MIN_PARTIAL;
  1989. else if (min > MAX_PARTIAL)
  1990. min = MAX_PARTIAL;
  1991. s->min_partial = min;
  1992. }
  1993. /*
  1994. * calculate_sizes() determines the order and the distribution of data within
  1995. * a slab object.
  1996. */
  1997. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1998. {
  1999. unsigned long flags = s->flags;
  2000. unsigned long size = s->objsize;
  2001. unsigned long align = s->align;
  2002. int order;
  2003. /*
  2004. * Round up object size to the next word boundary. We can only
  2005. * place the free pointer at word boundaries and this determines
  2006. * the possible location of the free pointer.
  2007. */
  2008. size = ALIGN(size, sizeof(void *));
  2009. #ifdef CONFIG_SLUB_DEBUG
  2010. /*
  2011. * Determine if we can poison the object itself. If the user of
  2012. * the slab may touch the object after free or before allocation
  2013. * then we should never poison the object itself.
  2014. */
  2015. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2016. !s->ctor)
  2017. s->flags |= __OBJECT_POISON;
  2018. else
  2019. s->flags &= ~__OBJECT_POISON;
  2020. /*
  2021. * If we are Redzoning then check if there is some space between the
  2022. * end of the object and the free pointer. If not then add an
  2023. * additional word to have some bytes to store Redzone information.
  2024. */
  2025. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  2026. size += sizeof(void *);
  2027. #endif
  2028. /*
  2029. * With that we have determined the number of bytes in actual use
  2030. * by the object. This is the potential offset to the free pointer.
  2031. */
  2032. s->inuse = size;
  2033. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2034. s->ctor)) {
  2035. /*
  2036. * Relocate free pointer after the object if it is not
  2037. * permitted to overwrite the first word of the object on
  2038. * kmem_cache_free.
  2039. *
  2040. * This is the case if we do RCU, have a constructor or
  2041. * destructor or are poisoning the objects.
  2042. */
  2043. s->offset = size;
  2044. size += sizeof(void *);
  2045. }
  2046. #ifdef CONFIG_SLUB_DEBUG
  2047. if (flags & SLAB_STORE_USER)
  2048. /*
  2049. * Need to store information about allocs and frees after
  2050. * the object.
  2051. */
  2052. size += 2 * sizeof(struct track);
  2053. if (flags & SLAB_RED_ZONE)
  2054. /*
  2055. * Add some empty padding so that we can catch
  2056. * overwrites from earlier objects rather than let
  2057. * tracking information or the free pointer be
  2058. * corrupted if a user writes before the start
  2059. * of the object.
  2060. */
  2061. size += sizeof(void *);
  2062. #endif
  2063. /*
  2064. * Determine the alignment based on various parameters that the
  2065. * user specified and the dynamic determination of cache line size
  2066. * on bootup.
  2067. */
  2068. align = calculate_alignment(flags, align, s->objsize);
  2069. s->align = align;
  2070. /*
  2071. * SLUB stores one object immediately after another beginning from
  2072. * offset 0. In order to align the objects we have to simply size
  2073. * each object to conform to the alignment.
  2074. */
  2075. size = ALIGN(size, align);
  2076. s->size = size;
  2077. if (forced_order >= 0)
  2078. order = forced_order;
  2079. else
  2080. order = calculate_order(size);
  2081. if (order < 0)
  2082. return 0;
  2083. s->allocflags = 0;
  2084. if (order)
  2085. s->allocflags |= __GFP_COMP;
  2086. if (s->flags & SLAB_CACHE_DMA)
  2087. s->allocflags |= SLUB_DMA;
  2088. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2089. s->allocflags |= __GFP_RECLAIMABLE;
  2090. /*
  2091. * Determine the number of objects per slab
  2092. */
  2093. s->oo = oo_make(order, size);
  2094. s->min = oo_make(get_order(size), size);
  2095. if (oo_objects(s->oo) > oo_objects(s->max))
  2096. s->max = s->oo;
  2097. return !!oo_objects(s->oo);
  2098. }
  2099. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  2100. const char *name, size_t size,
  2101. size_t align, unsigned long flags,
  2102. void (*ctor)(void *))
  2103. {
  2104. memset(s, 0, kmem_size);
  2105. s->name = name;
  2106. s->ctor = ctor;
  2107. s->objsize = size;
  2108. s->align = align;
  2109. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2110. if (!calculate_sizes(s, -1))
  2111. goto error;
  2112. if (disable_higher_order_debug) {
  2113. /*
  2114. * Disable debugging flags that store metadata if the min slab
  2115. * order increased.
  2116. */
  2117. if (get_order(s->size) > get_order(s->objsize)) {
  2118. s->flags &= ~DEBUG_METADATA_FLAGS;
  2119. s->offset = 0;
  2120. if (!calculate_sizes(s, -1))
  2121. goto error;
  2122. }
  2123. }
  2124. /*
  2125. * The larger the object size is, the more pages we want on the partial
  2126. * list to avoid pounding the page allocator excessively.
  2127. */
  2128. set_min_partial(s, ilog2(s->size));
  2129. s->refcount = 1;
  2130. #ifdef CONFIG_NUMA
  2131. s->remote_node_defrag_ratio = 1000;
  2132. #endif
  2133. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  2134. goto error;
  2135. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  2136. return 1;
  2137. free_kmem_cache_nodes(s);
  2138. error:
  2139. if (flags & SLAB_PANIC)
  2140. panic("Cannot create slab %s size=%lu realsize=%u "
  2141. "order=%u offset=%u flags=%lx\n",
  2142. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2143. s->offset, flags);
  2144. return 0;
  2145. }
  2146. /*
  2147. * Check if a given pointer is valid
  2148. */
  2149. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2150. {
  2151. struct page *page;
  2152. page = get_object_page(object);
  2153. if (!page || s != page->slab)
  2154. /* No slab or wrong slab */
  2155. return 0;
  2156. if (!check_valid_pointer(s, page, object))
  2157. return 0;
  2158. /*
  2159. * We could also check if the object is on the slabs freelist.
  2160. * But this would be too expensive and it seems that the main
  2161. * purpose of kmem_ptr_valid() is to check if the object belongs
  2162. * to a certain slab.
  2163. */
  2164. return 1;
  2165. }
  2166. EXPORT_SYMBOL(kmem_ptr_validate);
  2167. /*
  2168. * Determine the size of a slab object
  2169. */
  2170. unsigned int kmem_cache_size(struct kmem_cache *s)
  2171. {
  2172. return s->objsize;
  2173. }
  2174. EXPORT_SYMBOL(kmem_cache_size);
  2175. const char *kmem_cache_name(struct kmem_cache *s)
  2176. {
  2177. return s->name;
  2178. }
  2179. EXPORT_SYMBOL(kmem_cache_name);
  2180. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2181. const char *text)
  2182. {
  2183. #ifdef CONFIG_SLUB_DEBUG
  2184. void *addr = page_address(page);
  2185. void *p;
  2186. DECLARE_BITMAP(map, page->objects);
  2187. bitmap_zero(map, page->objects);
  2188. slab_err(s, page, "%s", text);
  2189. slab_lock(page);
  2190. for_each_free_object(p, s, page->freelist)
  2191. set_bit(slab_index(p, s, addr), map);
  2192. for_each_object(p, s, addr, page->objects) {
  2193. if (!test_bit(slab_index(p, s, addr), map)) {
  2194. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2195. p, p - addr);
  2196. print_tracking(s, p);
  2197. }
  2198. }
  2199. slab_unlock(page);
  2200. #endif
  2201. }
  2202. /*
  2203. * Attempt to free all partial slabs on a node.
  2204. */
  2205. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2206. {
  2207. unsigned long flags;
  2208. struct page *page, *h;
  2209. spin_lock_irqsave(&n->list_lock, flags);
  2210. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2211. if (!page->inuse) {
  2212. list_del(&page->lru);
  2213. discard_slab(s, page);
  2214. n->nr_partial--;
  2215. } else {
  2216. list_slab_objects(s, page,
  2217. "Objects remaining on kmem_cache_close()");
  2218. }
  2219. }
  2220. spin_unlock_irqrestore(&n->list_lock, flags);
  2221. }
  2222. /*
  2223. * Release all resources used by a slab cache.
  2224. */
  2225. static inline int kmem_cache_close(struct kmem_cache *s)
  2226. {
  2227. int node;
  2228. flush_all(s);
  2229. /* Attempt to free all objects */
  2230. free_kmem_cache_cpus(s);
  2231. for_each_node_state(node, N_NORMAL_MEMORY) {
  2232. struct kmem_cache_node *n = get_node(s, node);
  2233. free_partial(s, n);
  2234. if (n->nr_partial || slabs_node(s, node))
  2235. return 1;
  2236. }
  2237. free_kmem_cache_nodes(s);
  2238. return 0;
  2239. }
  2240. /*
  2241. * Close a cache and release the kmem_cache structure
  2242. * (must be used for caches created using kmem_cache_create)
  2243. */
  2244. void kmem_cache_destroy(struct kmem_cache *s)
  2245. {
  2246. if (s->flags & SLAB_DESTROY_BY_RCU)
  2247. rcu_barrier();
  2248. down_write(&slub_lock);
  2249. s->refcount--;
  2250. if (!s->refcount) {
  2251. list_del(&s->list);
  2252. up_write(&slub_lock);
  2253. if (kmem_cache_close(s)) {
  2254. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2255. "still has objects.\n", s->name, __func__);
  2256. dump_stack();
  2257. }
  2258. sysfs_slab_remove(s);
  2259. } else
  2260. up_write(&slub_lock);
  2261. }
  2262. EXPORT_SYMBOL(kmem_cache_destroy);
  2263. /********************************************************************
  2264. * Kmalloc subsystem
  2265. *******************************************************************/
  2266. struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
  2267. EXPORT_SYMBOL(kmalloc_caches);
  2268. static int __init setup_slub_min_order(char *str)
  2269. {
  2270. get_option(&str, &slub_min_order);
  2271. return 1;
  2272. }
  2273. __setup("slub_min_order=", setup_slub_min_order);
  2274. static int __init setup_slub_max_order(char *str)
  2275. {
  2276. get_option(&str, &slub_max_order);
  2277. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2278. return 1;
  2279. }
  2280. __setup("slub_max_order=", setup_slub_max_order);
  2281. static int __init setup_slub_min_objects(char *str)
  2282. {
  2283. get_option(&str, &slub_min_objects);
  2284. return 1;
  2285. }
  2286. __setup("slub_min_objects=", setup_slub_min_objects);
  2287. static int __init setup_slub_nomerge(char *str)
  2288. {
  2289. slub_nomerge = 1;
  2290. return 1;
  2291. }
  2292. __setup("slub_nomerge", setup_slub_nomerge);
  2293. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2294. const char *name, int size, gfp_t gfp_flags)
  2295. {
  2296. unsigned int flags = 0;
  2297. if (gfp_flags & SLUB_DMA)
  2298. flags = SLAB_CACHE_DMA;
  2299. /*
  2300. * This function is called with IRQs disabled during early-boot on
  2301. * single CPU so there's no need to take slub_lock here.
  2302. */
  2303. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2304. flags, NULL))
  2305. goto panic;
  2306. list_add(&s->list, &slab_caches);
  2307. if (sysfs_slab_add(s))
  2308. goto panic;
  2309. return s;
  2310. panic:
  2311. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2312. }
  2313. #ifdef CONFIG_ZONE_DMA
  2314. static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
  2315. static void sysfs_add_func(struct work_struct *w)
  2316. {
  2317. struct kmem_cache *s;
  2318. down_write(&slub_lock);
  2319. list_for_each_entry(s, &slab_caches, list) {
  2320. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2321. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2322. sysfs_slab_add(s);
  2323. }
  2324. }
  2325. up_write(&slub_lock);
  2326. }
  2327. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2328. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2329. {
  2330. struct kmem_cache *s;
  2331. char *text;
  2332. size_t realsize;
  2333. unsigned long slabflags;
  2334. s = kmalloc_caches_dma[index];
  2335. if (s)
  2336. return s;
  2337. /* Dynamically create dma cache */
  2338. if (flags & __GFP_WAIT)
  2339. down_write(&slub_lock);
  2340. else {
  2341. if (!down_write_trylock(&slub_lock))
  2342. goto out;
  2343. }
  2344. if (kmalloc_caches_dma[index])
  2345. goto unlock_out;
  2346. realsize = kmalloc_caches[index].objsize;
  2347. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
  2348. (unsigned int)realsize);
  2349. s = kmalloc(kmem_size, flags & ~SLUB_DMA);
  2350. /*
  2351. * Must defer sysfs creation to a workqueue because we don't know
  2352. * what context we are called from. Before sysfs comes up, we don't
  2353. * need to do anything because our sysfs initcall will start by
  2354. * adding all existing slabs to sysfs.
  2355. */
  2356. slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
  2357. if (slab_state >= SYSFS)
  2358. slabflags |= __SYSFS_ADD_DEFERRED;
  2359. if (!s || !text || !kmem_cache_open(s, flags, text,
  2360. realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
  2361. kfree(s);
  2362. kfree(text);
  2363. goto unlock_out;
  2364. }
  2365. list_add(&s->list, &slab_caches);
  2366. kmalloc_caches_dma[index] = s;
  2367. if (slab_state >= SYSFS)
  2368. schedule_work(&sysfs_add_work);
  2369. unlock_out:
  2370. up_write(&slub_lock);
  2371. out:
  2372. return kmalloc_caches_dma[index];
  2373. }
  2374. #endif
  2375. /*
  2376. * Conversion table for small slabs sizes / 8 to the index in the
  2377. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2378. * of two cache sizes there. The size of larger slabs can be determined using
  2379. * fls.
  2380. */
  2381. static s8 size_index[24] = {
  2382. 3, /* 8 */
  2383. 4, /* 16 */
  2384. 5, /* 24 */
  2385. 5, /* 32 */
  2386. 6, /* 40 */
  2387. 6, /* 48 */
  2388. 6, /* 56 */
  2389. 6, /* 64 */
  2390. 1, /* 72 */
  2391. 1, /* 80 */
  2392. 1, /* 88 */
  2393. 1, /* 96 */
  2394. 7, /* 104 */
  2395. 7, /* 112 */
  2396. 7, /* 120 */
  2397. 7, /* 128 */
  2398. 2, /* 136 */
  2399. 2, /* 144 */
  2400. 2, /* 152 */
  2401. 2, /* 160 */
  2402. 2, /* 168 */
  2403. 2, /* 176 */
  2404. 2, /* 184 */
  2405. 2 /* 192 */
  2406. };
  2407. static inline int size_index_elem(size_t bytes)
  2408. {
  2409. return (bytes - 1) / 8;
  2410. }
  2411. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2412. {
  2413. int index;
  2414. if (size <= 192) {
  2415. if (!size)
  2416. return ZERO_SIZE_PTR;
  2417. index = size_index[size_index_elem(size)];
  2418. } else
  2419. index = fls(size - 1);
  2420. #ifdef CONFIG_ZONE_DMA
  2421. if (unlikely((flags & SLUB_DMA)))
  2422. return dma_kmalloc_cache(index, flags);
  2423. #endif
  2424. return &kmalloc_caches[index];
  2425. }
  2426. void *__kmalloc(size_t size, gfp_t flags)
  2427. {
  2428. struct kmem_cache *s;
  2429. void *ret;
  2430. if (unlikely(size > SLUB_MAX_SIZE))
  2431. return kmalloc_large(size, flags);
  2432. s = get_slab(size, flags);
  2433. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2434. return s;
  2435. ret = slab_alloc(s, flags, -1, _RET_IP_);
  2436. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2437. return ret;
  2438. }
  2439. EXPORT_SYMBOL(__kmalloc);
  2440. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2441. {
  2442. struct page *page;
  2443. flags |= __GFP_COMP | __GFP_NOTRACK;
  2444. page = alloc_pages_node(node, flags, get_order(size));
  2445. if (page)
  2446. return page_address(page);
  2447. else
  2448. return NULL;
  2449. }
  2450. #ifdef CONFIG_NUMA
  2451. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2452. {
  2453. struct kmem_cache *s;
  2454. void *ret;
  2455. if (unlikely(size > SLUB_MAX_SIZE)) {
  2456. ret = kmalloc_large_node(size, flags, node);
  2457. trace_kmalloc_node(_RET_IP_, ret,
  2458. size, PAGE_SIZE << get_order(size),
  2459. flags, node);
  2460. return ret;
  2461. }
  2462. s = get_slab(size, flags);
  2463. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2464. return s;
  2465. ret = slab_alloc(s, flags, node, _RET_IP_);
  2466. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2467. return ret;
  2468. }
  2469. EXPORT_SYMBOL(__kmalloc_node);
  2470. #endif
  2471. size_t ksize(const void *object)
  2472. {
  2473. struct page *page;
  2474. struct kmem_cache *s;
  2475. if (unlikely(object == ZERO_SIZE_PTR))
  2476. return 0;
  2477. page = virt_to_head_page(object);
  2478. if (unlikely(!PageSlab(page))) {
  2479. WARN_ON(!PageCompound(page));
  2480. return PAGE_SIZE << compound_order(page);
  2481. }
  2482. s = page->slab;
  2483. #ifdef CONFIG_SLUB_DEBUG
  2484. /*
  2485. * Debugging requires use of the padding between object
  2486. * and whatever may come after it.
  2487. */
  2488. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2489. return s->objsize;
  2490. #endif
  2491. /*
  2492. * If we have the need to store the freelist pointer
  2493. * back there or track user information then we can
  2494. * only use the space before that information.
  2495. */
  2496. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2497. return s->inuse;
  2498. /*
  2499. * Else we can use all the padding etc for the allocation
  2500. */
  2501. return s->size;
  2502. }
  2503. EXPORT_SYMBOL(ksize);
  2504. void kfree(const void *x)
  2505. {
  2506. struct page *page;
  2507. void *object = (void *)x;
  2508. trace_kfree(_RET_IP_, x);
  2509. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2510. return;
  2511. page = virt_to_head_page(x);
  2512. if (unlikely(!PageSlab(page))) {
  2513. BUG_ON(!PageCompound(page));
  2514. put_page(page);
  2515. return;
  2516. }
  2517. slab_free(page->slab, page, object, _RET_IP_);
  2518. }
  2519. EXPORT_SYMBOL(kfree);
  2520. /*
  2521. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2522. * the remaining slabs by the number of items in use. The slabs with the
  2523. * most items in use come first. New allocations will then fill those up
  2524. * and thus they can be removed from the partial lists.
  2525. *
  2526. * The slabs with the least items are placed last. This results in them
  2527. * being allocated from last increasing the chance that the last objects
  2528. * are freed in them.
  2529. */
  2530. int kmem_cache_shrink(struct kmem_cache *s)
  2531. {
  2532. int node;
  2533. int i;
  2534. struct kmem_cache_node *n;
  2535. struct page *page;
  2536. struct page *t;
  2537. int objects = oo_objects(s->max);
  2538. struct list_head *slabs_by_inuse =
  2539. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2540. unsigned long flags;
  2541. if (!slabs_by_inuse)
  2542. return -ENOMEM;
  2543. flush_all(s);
  2544. for_each_node_state(node, N_NORMAL_MEMORY) {
  2545. n = get_node(s, node);
  2546. if (!n->nr_partial)
  2547. continue;
  2548. for (i = 0; i < objects; i++)
  2549. INIT_LIST_HEAD(slabs_by_inuse + i);
  2550. spin_lock_irqsave(&n->list_lock, flags);
  2551. /*
  2552. * Build lists indexed by the items in use in each slab.
  2553. *
  2554. * Note that concurrent frees may occur while we hold the
  2555. * list_lock. page->inuse here is the upper limit.
  2556. */
  2557. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2558. if (!page->inuse && slab_trylock(page)) {
  2559. /*
  2560. * Must hold slab lock here because slab_free
  2561. * may have freed the last object and be
  2562. * waiting to release the slab.
  2563. */
  2564. list_del(&page->lru);
  2565. n->nr_partial--;
  2566. slab_unlock(page);
  2567. discard_slab(s, page);
  2568. } else {
  2569. list_move(&page->lru,
  2570. slabs_by_inuse + page->inuse);
  2571. }
  2572. }
  2573. /*
  2574. * Rebuild the partial list with the slabs filled up most
  2575. * first and the least used slabs at the end.
  2576. */
  2577. for (i = objects - 1; i >= 0; i--)
  2578. list_splice(slabs_by_inuse + i, n->partial.prev);
  2579. spin_unlock_irqrestore(&n->list_lock, flags);
  2580. }
  2581. kfree(slabs_by_inuse);
  2582. return 0;
  2583. }
  2584. EXPORT_SYMBOL(kmem_cache_shrink);
  2585. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2586. static int slab_mem_going_offline_callback(void *arg)
  2587. {
  2588. struct kmem_cache *s;
  2589. down_read(&slub_lock);
  2590. list_for_each_entry(s, &slab_caches, list)
  2591. kmem_cache_shrink(s);
  2592. up_read(&slub_lock);
  2593. return 0;
  2594. }
  2595. static void slab_mem_offline_callback(void *arg)
  2596. {
  2597. struct kmem_cache_node *n;
  2598. struct kmem_cache *s;
  2599. struct memory_notify *marg = arg;
  2600. int offline_node;
  2601. offline_node = marg->status_change_nid;
  2602. /*
  2603. * If the node still has available memory. we need kmem_cache_node
  2604. * for it yet.
  2605. */
  2606. if (offline_node < 0)
  2607. return;
  2608. down_read(&slub_lock);
  2609. list_for_each_entry(s, &slab_caches, list) {
  2610. n = get_node(s, offline_node);
  2611. if (n) {
  2612. /*
  2613. * if n->nr_slabs > 0, slabs still exist on the node
  2614. * that is going down. We were unable to free them,
  2615. * and offline_pages() function shoudn't call this
  2616. * callback. So, we must fail.
  2617. */
  2618. BUG_ON(slabs_node(s, offline_node));
  2619. s->node[offline_node] = NULL;
  2620. kmem_cache_free(kmalloc_caches, n);
  2621. }
  2622. }
  2623. up_read(&slub_lock);
  2624. }
  2625. static int slab_mem_going_online_callback(void *arg)
  2626. {
  2627. struct kmem_cache_node *n;
  2628. struct kmem_cache *s;
  2629. struct memory_notify *marg = arg;
  2630. int nid = marg->status_change_nid;
  2631. int ret = 0;
  2632. /*
  2633. * If the node's memory is already available, then kmem_cache_node is
  2634. * already created. Nothing to do.
  2635. */
  2636. if (nid < 0)
  2637. return 0;
  2638. /*
  2639. * We are bringing a node online. No memory is available yet. We must
  2640. * allocate a kmem_cache_node structure in order to bring the node
  2641. * online.
  2642. */
  2643. down_read(&slub_lock);
  2644. list_for_each_entry(s, &slab_caches, list) {
  2645. /*
  2646. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2647. * since memory is not yet available from the node that
  2648. * is brought up.
  2649. */
  2650. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2651. if (!n) {
  2652. ret = -ENOMEM;
  2653. goto out;
  2654. }
  2655. init_kmem_cache_node(n, s);
  2656. s->node[nid] = n;
  2657. }
  2658. out:
  2659. up_read(&slub_lock);
  2660. return ret;
  2661. }
  2662. static int slab_memory_callback(struct notifier_block *self,
  2663. unsigned long action, void *arg)
  2664. {
  2665. int ret = 0;
  2666. switch (action) {
  2667. case MEM_GOING_ONLINE:
  2668. ret = slab_mem_going_online_callback(arg);
  2669. break;
  2670. case MEM_GOING_OFFLINE:
  2671. ret = slab_mem_going_offline_callback(arg);
  2672. break;
  2673. case MEM_OFFLINE:
  2674. case MEM_CANCEL_ONLINE:
  2675. slab_mem_offline_callback(arg);
  2676. break;
  2677. case MEM_ONLINE:
  2678. case MEM_CANCEL_OFFLINE:
  2679. break;
  2680. }
  2681. if (ret)
  2682. ret = notifier_from_errno(ret);
  2683. else
  2684. ret = NOTIFY_OK;
  2685. return ret;
  2686. }
  2687. #endif /* CONFIG_MEMORY_HOTPLUG */
  2688. /********************************************************************
  2689. * Basic setup of slabs
  2690. *******************************************************************/
  2691. void __init kmem_cache_init(void)
  2692. {
  2693. int i;
  2694. int caches = 0;
  2695. init_alloc_cpu();
  2696. #ifdef CONFIG_NUMA
  2697. /*
  2698. * Must first have the slab cache available for the allocations of the
  2699. * struct kmem_cache_node's. There is special bootstrap code in
  2700. * kmem_cache_open for slab_state == DOWN.
  2701. */
  2702. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2703. sizeof(struct kmem_cache_node), GFP_NOWAIT);
  2704. kmalloc_caches[0].refcount = -1;
  2705. caches++;
  2706. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2707. #endif
  2708. /* Able to allocate the per node structures */
  2709. slab_state = PARTIAL;
  2710. /* Caches that are not of the two-to-the-power-of size */
  2711. if (KMALLOC_MIN_SIZE <= 32) {
  2712. create_kmalloc_cache(&kmalloc_caches[1],
  2713. "kmalloc-96", 96, GFP_NOWAIT);
  2714. caches++;
  2715. }
  2716. if (KMALLOC_MIN_SIZE <= 64) {
  2717. create_kmalloc_cache(&kmalloc_caches[2],
  2718. "kmalloc-192", 192, GFP_NOWAIT);
  2719. caches++;
  2720. }
  2721. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2722. create_kmalloc_cache(&kmalloc_caches[i],
  2723. "kmalloc", 1 << i, GFP_NOWAIT);
  2724. caches++;
  2725. }
  2726. /*
  2727. * Patch up the size_index table if we have strange large alignment
  2728. * requirements for the kmalloc array. This is only the case for
  2729. * MIPS it seems. The standard arches will not generate any code here.
  2730. *
  2731. * Largest permitted alignment is 256 bytes due to the way we
  2732. * handle the index determination for the smaller caches.
  2733. *
  2734. * Make sure that nothing crazy happens if someone starts tinkering
  2735. * around with ARCH_KMALLOC_MINALIGN
  2736. */
  2737. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2738. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2739. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  2740. int elem = size_index_elem(i);
  2741. if (elem >= ARRAY_SIZE(size_index))
  2742. break;
  2743. size_index[elem] = KMALLOC_SHIFT_LOW;
  2744. }
  2745. if (KMALLOC_MIN_SIZE == 64) {
  2746. /*
  2747. * The 96 byte size cache is not used if the alignment
  2748. * is 64 byte.
  2749. */
  2750. for (i = 64 + 8; i <= 96; i += 8)
  2751. size_index[size_index_elem(i)] = 7;
  2752. } else if (KMALLOC_MIN_SIZE == 128) {
  2753. /*
  2754. * The 192 byte sized cache is not used if the alignment
  2755. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2756. * instead.
  2757. */
  2758. for (i = 128 + 8; i <= 192; i += 8)
  2759. size_index[size_index_elem(i)] = 8;
  2760. }
  2761. slab_state = UP;
  2762. /* Provide the correct kmalloc names now that the caches are up */
  2763. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
  2764. kmalloc_caches[i]. name =
  2765. kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  2766. #ifdef CONFIG_SMP
  2767. register_cpu_notifier(&slab_notifier);
  2768. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2769. nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
  2770. #else
  2771. kmem_size = sizeof(struct kmem_cache);
  2772. #endif
  2773. printk(KERN_INFO
  2774. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2775. " CPUs=%d, Nodes=%d\n",
  2776. caches, cache_line_size(),
  2777. slub_min_order, slub_max_order, slub_min_objects,
  2778. nr_cpu_ids, nr_node_ids);
  2779. }
  2780. void __init kmem_cache_init_late(void)
  2781. {
  2782. }
  2783. /*
  2784. * Find a mergeable slab cache
  2785. */
  2786. static int slab_unmergeable(struct kmem_cache *s)
  2787. {
  2788. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2789. return 1;
  2790. if (s->ctor)
  2791. return 1;
  2792. /*
  2793. * We may have set a slab to be unmergeable during bootstrap.
  2794. */
  2795. if (s->refcount < 0)
  2796. return 1;
  2797. return 0;
  2798. }
  2799. static struct kmem_cache *find_mergeable(size_t size,
  2800. size_t align, unsigned long flags, const char *name,
  2801. void (*ctor)(void *))
  2802. {
  2803. struct kmem_cache *s;
  2804. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2805. return NULL;
  2806. if (ctor)
  2807. return NULL;
  2808. size = ALIGN(size, sizeof(void *));
  2809. align = calculate_alignment(flags, align, size);
  2810. size = ALIGN(size, align);
  2811. flags = kmem_cache_flags(size, flags, name, NULL);
  2812. list_for_each_entry(s, &slab_caches, list) {
  2813. if (slab_unmergeable(s))
  2814. continue;
  2815. if (size > s->size)
  2816. continue;
  2817. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2818. continue;
  2819. /*
  2820. * Check if alignment is compatible.
  2821. * Courtesy of Adrian Drzewiecki
  2822. */
  2823. if ((s->size & ~(align - 1)) != s->size)
  2824. continue;
  2825. if (s->size - size >= sizeof(void *))
  2826. continue;
  2827. return s;
  2828. }
  2829. return NULL;
  2830. }
  2831. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2832. size_t align, unsigned long flags, void (*ctor)(void *))
  2833. {
  2834. struct kmem_cache *s;
  2835. down_write(&slub_lock);
  2836. s = find_mergeable(size, align, flags, name, ctor);
  2837. if (s) {
  2838. int cpu;
  2839. s->refcount++;
  2840. /*
  2841. * Adjust the object sizes so that we clear
  2842. * the complete object on kzalloc.
  2843. */
  2844. s->objsize = max(s->objsize, (int)size);
  2845. /*
  2846. * And then we need to update the object size in the
  2847. * per cpu structures
  2848. */
  2849. for_each_online_cpu(cpu)
  2850. get_cpu_slab(s, cpu)->objsize = s->objsize;
  2851. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2852. up_write(&slub_lock);
  2853. if (sysfs_slab_alias(s, name)) {
  2854. down_write(&slub_lock);
  2855. s->refcount--;
  2856. up_write(&slub_lock);
  2857. goto err;
  2858. }
  2859. return s;
  2860. }
  2861. s = kmalloc(kmem_size, GFP_KERNEL);
  2862. if (s) {
  2863. if (kmem_cache_open(s, GFP_KERNEL, name,
  2864. size, align, flags, ctor)) {
  2865. list_add(&s->list, &slab_caches);
  2866. up_write(&slub_lock);
  2867. if (sysfs_slab_add(s)) {
  2868. down_write(&slub_lock);
  2869. list_del(&s->list);
  2870. up_write(&slub_lock);
  2871. kfree(s);
  2872. goto err;
  2873. }
  2874. return s;
  2875. }
  2876. kfree(s);
  2877. }
  2878. up_write(&slub_lock);
  2879. err:
  2880. if (flags & SLAB_PANIC)
  2881. panic("Cannot create slabcache %s\n", name);
  2882. else
  2883. s = NULL;
  2884. return s;
  2885. }
  2886. EXPORT_SYMBOL(kmem_cache_create);
  2887. #ifdef CONFIG_SMP
  2888. /*
  2889. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2890. * necessary.
  2891. */
  2892. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2893. unsigned long action, void *hcpu)
  2894. {
  2895. long cpu = (long)hcpu;
  2896. struct kmem_cache *s;
  2897. unsigned long flags;
  2898. switch (action) {
  2899. case CPU_UP_PREPARE:
  2900. case CPU_UP_PREPARE_FROZEN:
  2901. init_alloc_cpu_cpu(cpu);
  2902. down_read(&slub_lock);
  2903. list_for_each_entry(s, &slab_caches, list)
  2904. s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
  2905. GFP_KERNEL);
  2906. up_read(&slub_lock);
  2907. break;
  2908. case CPU_UP_CANCELED:
  2909. case CPU_UP_CANCELED_FROZEN:
  2910. case CPU_DEAD:
  2911. case CPU_DEAD_FROZEN:
  2912. down_read(&slub_lock);
  2913. list_for_each_entry(s, &slab_caches, list) {
  2914. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2915. local_irq_save(flags);
  2916. __flush_cpu_slab(s, cpu);
  2917. local_irq_restore(flags);
  2918. free_kmem_cache_cpu(c, cpu);
  2919. s->cpu_slab[cpu] = NULL;
  2920. }
  2921. up_read(&slub_lock);
  2922. break;
  2923. default:
  2924. break;
  2925. }
  2926. return NOTIFY_OK;
  2927. }
  2928. static struct notifier_block __cpuinitdata slab_notifier = {
  2929. .notifier_call = slab_cpuup_callback
  2930. };
  2931. #endif
  2932. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  2933. {
  2934. struct kmem_cache *s;
  2935. void *ret;
  2936. if (unlikely(size > SLUB_MAX_SIZE))
  2937. return kmalloc_large(size, gfpflags);
  2938. s = get_slab(size, gfpflags);
  2939. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2940. return s;
  2941. ret = slab_alloc(s, gfpflags, -1, caller);
  2942. /* Honor the call site pointer we recieved. */
  2943. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  2944. return ret;
  2945. }
  2946. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2947. int node, unsigned long caller)
  2948. {
  2949. struct kmem_cache *s;
  2950. void *ret;
  2951. if (unlikely(size > SLUB_MAX_SIZE))
  2952. return kmalloc_large_node(size, gfpflags, node);
  2953. s = get_slab(size, gfpflags);
  2954. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2955. return s;
  2956. ret = slab_alloc(s, gfpflags, node, caller);
  2957. /* Honor the call site pointer we recieved. */
  2958. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  2959. return ret;
  2960. }
  2961. #ifdef CONFIG_SLUB_DEBUG
  2962. static int count_inuse(struct page *page)
  2963. {
  2964. return page->inuse;
  2965. }
  2966. static int count_total(struct page *page)
  2967. {
  2968. return page->objects;
  2969. }
  2970. static int validate_slab(struct kmem_cache *s, struct page *page,
  2971. unsigned long *map)
  2972. {
  2973. void *p;
  2974. void *addr = page_address(page);
  2975. if (!check_slab(s, page) ||
  2976. !on_freelist(s, page, NULL))
  2977. return 0;
  2978. /* Now we know that a valid freelist exists */
  2979. bitmap_zero(map, page->objects);
  2980. for_each_free_object(p, s, page->freelist) {
  2981. set_bit(slab_index(p, s, addr), map);
  2982. if (!check_object(s, page, p, 0))
  2983. return 0;
  2984. }
  2985. for_each_object(p, s, addr, page->objects)
  2986. if (!test_bit(slab_index(p, s, addr), map))
  2987. if (!check_object(s, page, p, 1))
  2988. return 0;
  2989. return 1;
  2990. }
  2991. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2992. unsigned long *map)
  2993. {
  2994. if (slab_trylock(page)) {
  2995. validate_slab(s, page, map);
  2996. slab_unlock(page);
  2997. } else
  2998. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2999. s->name, page);
  3000. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  3001. if (!PageSlubDebug(page))
  3002. printk(KERN_ERR "SLUB %s: SlubDebug not set "
  3003. "on slab 0x%p\n", s->name, page);
  3004. } else {
  3005. if (PageSlubDebug(page))
  3006. printk(KERN_ERR "SLUB %s: SlubDebug set on "
  3007. "slab 0x%p\n", s->name, page);
  3008. }
  3009. }
  3010. static int validate_slab_node(struct kmem_cache *s,
  3011. struct kmem_cache_node *n, unsigned long *map)
  3012. {
  3013. unsigned long count = 0;
  3014. struct page *page;
  3015. unsigned long flags;
  3016. spin_lock_irqsave(&n->list_lock, flags);
  3017. list_for_each_entry(page, &n->partial, lru) {
  3018. validate_slab_slab(s, page, map);
  3019. count++;
  3020. }
  3021. if (count != n->nr_partial)
  3022. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3023. "counter=%ld\n", s->name, count, n->nr_partial);
  3024. if (!(s->flags & SLAB_STORE_USER))
  3025. goto out;
  3026. list_for_each_entry(page, &n->full, lru) {
  3027. validate_slab_slab(s, page, map);
  3028. count++;
  3029. }
  3030. if (count != atomic_long_read(&n->nr_slabs))
  3031. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3032. "counter=%ld\n", s->name, count,
  3033. atomic_long_read(&n->nr_slabs));
  3034. out:
  3035. spin_unlock_irqrestore(&n->list_lock, flags);
  3036. return count;
  3037. }
  3038. static long validate_slab_cache(struct kmem_cache *s)
  3039. {
  3040. int node;
  3041. unsigned long count = 0;
  3042. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3043. sizeof(unsigned long), GFP_KERNEL);
  3044. if (!map)
  3045. return -ENOMEM;
  3046. flush_all(s);
  3047. for_each_node_state(node, N_NORMAL_MEMORY) {
  3048. struct kmem_cache_node *n = get_node(s, node);
  3049. count += validate_slab_node(s, n, map);
  3050. }
  3051. kfree(map);
  3052. return count;
  3053. }
  3054. #ifdef SLUB_RESILIENCY_TEST
  3055. static void resiliency_test(void)
  3056. {
  3057. u8 *p;
  3058. printk(KERN_ERR "SLUB resiliency testing\n");
  3059. printk(KERN_ERR "-----------------------\n");
  3060. printk(KERN_ERR "A. Corruption after allocation\n");
  3061. p = kzalloc(16, GFP_KERNEL);
  3062. p[16] = 0x12;
  3063. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3064. " 0x12->0x%p\n\n", p + 16);
  3065. validate_slab_cache(kmalloc_caches + 4);
  3066. /* Hmmm... The next two are dangerous */
  3067. p = kzalloc(32, GFP_KERNEL);
  3068. p[32 + sizeof(void *)] = 0x34;
  3069. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3070. " 0x34 -> -0x%p\n", p);
  3071. printk(KERN_ERR
  3072. "If allocated object is overwritten then not detectable\n\n");
  3073. validate_slab_cache(kmalloc_caches + 5);
  3074. p = kzalloc(64, GFP_KERNEL);
  3075. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3076. *p = 0x56;
  3077. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3078. p);
  3079. printk(KERN_ERR
  3080. "If allocated object is overwritten then not detectable\n\n");
  3081. validate_slab_cache(kmalloc_caches + 6);
  3082. printk(KERN_ERR "\nB. Corruption after free\n");
  3083. p = kzalloc(128, GFP_KERNEL);
  3084. kfree(p);
  3085. *p = 0x78;
  3086. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3087. validate_slab_cache(kmalloc_caches + 7);
  3088. p = kzalloc(256, GFP_KERNEL);
  3089. kfree(p);
  3090. p[50] = 0x9a;
  3091. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3092. p);
  3093. validate_slab_cache(kmalloc_caches + 8);
  3094. p = kzalloc(512, GFP_KERNEL);
  3095. kfree(p);
  3096. p[512] = 0xab;
  3097. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3098. validate_slab_cache(kmalloc_caches + 9);
  3099. }
  3100. #else
  3101. static void resiliency_test(void) {};
  3102. #endif
  3103. /*
  3104. * Generate lists of code addresses where slabcache objects are allocated
  3105. * and freed.
  3106. */
  3107. struct location {
  3108. unsigned long count;
  3109. unsigned long addr;
  3110. long long sum_time;
  3111. long min_time;
  3112. long max_time;
  3113. long min_pid;
  3114. long max_pid;
  3115. DECLARE_BITMAP(cpus, NR_CPUS);
  3116. nodemask_t nodes;
  3117. };
  3118. struct loc_track {
  3119. unsigned long max;
  3120. unsigned long count;
  3121. struct location *loc;
  3122. };
  3123. static void free_loc_track(struct loc_track *t)
  3124. {
  3125. if (t->max)
  3126. free_pages((unsigned long)t->loc,
  3127. get_order(sizeof(struct location) * t->max));
  3128. }
  3129. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3130. {
  3131. struct location *l;
  3132. int order;
  3133. order = get_order(sizeof(struct location) * max);
  3134. l = (void *)__get_free_pages(flags, order);
  3135. if (!l)
  3136. return 0;
  3137. if (t->count) {
  3138. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3139. free_loc_track(t);
  3140. }
  3141. t->max = max;
  3142. t->loc = l;
  3143. return 1;
  3144. }
  3145. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3146. const struct track *track)
  3147. {
  3148. long start, end, pos;
  3149. struct location *l;
  3150. unsigned long caddr;
  3151. unsigned long age = jiffies - track->when;
  3152. start = -1;
  3153. end = t->count;
  3154. for ( ; ; ) {
  3155. pos = start + (end - start + 1) / 2;
  3156. /*
  3157. * There is nothing at "end". If we end up there
  3158. * we need to add something to before end.
  3159. */
  3160. if (pos == end)
  3161. break;
  3162. caddr = t->loc[pos].addr;
  3163. if (track->addr == caddr) {
  3164. l = &t->loc[pos];
  3165. l->count++;
  3166. if (track->when) {
  3167. l->sum_time += age;
  3168. if (age < l->min_time)
  3169. l->min_time = age;
  3170. if (age > l->max_time)
  3171. l->max_time = age;
  3172. if (track->pid < l->min_pid)
  3173. l->min_pid = track->pid;
  3174. if (track->pid > l->max_pid)
  3175. l->max_pid = track->pid;
  3176. cpumask_set_cpu(track->cpu,
  3177. to_cpumask(l->cpus));
  3178. }
  3179. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3180. return 1;
  3181. }
  3182. if (track->addr < caddr)
  3183. end = pos;
  3184. else
  3185. start = pos;
  3186. }
  3187. /*
  3188. * Not found. Insert new tracking element.
  3189. */
  3190. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3191. return 0;
  3192. l = t->loc + pos;
  3193. if (pos < t->count)
  3194. memmove(l + 1, l,
  3195. (t->count - pos) * sizeof(struct location));
  3196. t->count++;
  3197. l->count = 1;
  3198. l->addr = track->addr;
  3199. l->sum_time = age;
  3200. l->min_time = age;
  3201. l->max_time = age;
  3202. l->min_pid = track->pid;
  3203. l->max_pid = track->pid;
  3204. cpumask_clear(to_cpumask(l->cpus));
  3205. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3206. nodes_clear(l->nodes);
  3207. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3208. return 1;
  3209. }
  3210. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3211. struct page *page, enum track_item alloc)
  3212. {
  3213. void *addr = page_address(page);
  3214. DECLARE_BITMAP(map, page->objects);
  3215. void *p;
  3216. bitmap_zero(map, page->objects);
  3217. for_each_free_object(p, s, page->freelist)
  3218. set_bit(slab_index(p, s, addr), map);
  3219. for_each_object(p, s, addr, page->objects)
  3220. if (!test_bit(slab_index(p, s, addr), map))
  3221. add_location(t, s, get_track(s, p, alloc));
  3222. }
  3223. static int list_locations(struct kmem_cache *s, char *buf,
  3224. enum track_item alloc)
  3225. {
  3226. int len = 0;
  3227. unsigned long i;
  3228. struct loc_track t = { 0, 0, NULL };
  3229. int node;
  3230. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3231. GFP_TEMPORARY))
  3232. return sprintf(buf, "Out of memory\n");
  3233. /* Push back cpu slabs */
  3234. flush_all(s);
  3235. for_each_node_state(node, N_NORMAL_MEMORY) {
  3236. struct kmem_cache_node *n = get_node(s, node);
  3237. unsigned long flags;
  3238. struct page *page;
  3239. if (!atomic_long_read(&n->nr_slabs))
  3240. continue;
  3241. spin_lock_irqsave(&n->list_lock, flags);
  3242. list_for_each_entry(page, &n->partial, lru)
  3243. process_slab(&t, s, page, alloc);
  3244. list_for_each_entry(page, &n->full, lru)
  3245. process_slab(&t, s, page, alloc);
  3246. spin_unlock_irqrestore(&n->list_lock, flags);
  3247. }
  3248. for (i = 0; i < t.count; i++) {
  3249. struct location *l = &t.loc[i];
  3250. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3251. break;
  3252. len += sprintf(buf + len, "%7ld ", l->count);
  3253. if (l->addr)
  3254. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3255. else
  3256. len += sprintf(buf + len, "<not-available>");
  3257. if (l->sum_time != l->min_time) {
  3258. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3259. l->min_time,
  3260. (long)div_u64(l->sum_time, l->count),
  3261. l->max_time);
  3262. } else
  3263. len += sprintf(buf + len, " age=%ld",
  3264. l->min_time);
  3265. if (l->min_pid != l->max_pid)
  3266. len += sprintf(buf + len, " pid=%ld-%ld",
  3267. l->min_pid, l->max_pid);
  3268. else
  3269. len += sprintf(buf + len, " pid=%ld",
  3270. l->min_pid);
  3271. if (num_online_cpus() > 1 &&
  3272. !cpumask_empty(to_cpumask(l->cpus)) &&
  3273. len < PAGE_SIZE - 60) {
  3274. len += sprintf(buf + len, " cpus=");
  3275. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3276. to_cpumask(l->cpus));
  3277. }
  3278. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3279. len < PAGE_SIZE - 60) {
  3280. len += sprintf(buf + len, " nodes=");
  3281. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3282. l->nodes);
  3283. }
  3284. len += sprintf(buf + len, "\n");
  3285. }
  3286. free_loc_track(&t);
  3287. if (!t.count)
  3288. len += sprintf(buf, "No data\n");
  3289. return len;
  3290. }
  3291. enum slab_stat_type {
  3292. SL_ALL, /* All slabs */
  3293. SL_PARTIAL, /* Only partially allocated slabs */
  3294. SL_CPU, /* Only slabs used for cpu caches */
  3295. SL_OBJECTS, /* Determine allocated objects not slabs */
  3296. SL_TOTAL /* Determine object capacity not slabs */
  3297. };
  3298. #define SO_ALL (1 << SL_ALL)
  3299. #define SO_PARTIAL (1 << SL_PARTIAL)
  3300. #define SO_CPU (1 << SL_CPU)
  3301. #define SO_OBJECTS (1 << SL_OBJECTS)
  3302. #define SO_TOTAL (1 << SL_TOTAL)
  3303. static ssize_t show_slab_objects(struct kmem_cache *s,
  3304. char *buf, unsigned long flags)
  3305. {
  3306. unsigned long total = 0;
  3307. int node;
  3308. int x;
  3309. unsigned long *nodes;
  3310. unsigned long *per_cpu;
  3311. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3312. if (!nodes)
  3313. return -ENOMEM;
  3314. per_cpu = nodes + nr_node_ids;
  3315. if (flags & SO_CPU) {
  3316. int cpu;
  3317. for_each_possible_cpu(cpu) {
  3318. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3319. if (!c || c->node < 0)
  3320. continue;
  3321. if (c->page) {
  3322. if (flags & SO_TOTAL)
  3323. x = c->page->objects;
  3324. else if (flags & SO_OBJECTS)
  3325. x = c->page->inuse;
  3326. else
  3327. x = 1;
  3328. total += x;
  3329. nodes[c->node] += x;
  3330. }
  3331. per_cpu[c->node]++;
  3332. }
  3333. }
  3334. if (flags & SO_ALL) {
  3335. for_each_node_state(node, N_NORMAL_MEMORY) {
  3336. struct kmem_cache_node *n = get_node(s, node);
  3337. if (flags & SO_TOTAL)
  3338. x = atomic_long_read(&n->total_objects);
  3339. else if (flags & SO_OBJECTS)
  3340. x = atomic_long_read(&n->total_objects) -
  3341. count_partial(n, count_free);
  3342. else
  3343. x = atomic_long_read(&n->nr_slabs);
  3344. total += x;
  3345. nodes[node] += x;
  3346. }
  3347. } else if (flags & SO_PARTIAL) {
  3348. for_each_node_state(node, N_NORMAL_MEMORY) {
  3349. struct kmem_cache_node *n = get_node(s, node);
  3350. if (flags & SO_TOTAL)
  3351. x = count_partial(n, count_total);
  3352. else if (flags & SO_OBJECTS)
  3353. x = count_partial(n, count_inuse);
  3354. else
  3355. x = n->nr_partial;
  3356. total += x;
  3357. nodes[node] += x;
  3358. }
  3359. }
  3360. x = sprintf(buf, "%lu", total);
  3361. #ifdef CONFIG_NUMA
  3362. for_each_node_state(node, N_NORMAL_MEMORY)
  3363. if (nodes[node])
  3364. x += sprintf(buf + x, " N%d=%lu",
  3365. node, nodes[node]);
  3366. #endif
  3367. kfree(nodes);
  3368. return x + sprintf(buf + x, "\n");
  3369. }
  3370. static int any_slab_objects(struct kmem_cache *s)
  3371. {
  3372. int node;
  3373. for_each_online_node(node) {
  3374. struct kmem_cache_node *n = get_node(s, node);
  3375. if (!n)
  3376. continue;
  3377. if (atomic_long_read(&n->total_objects))
  3378. return 1;
  3379. }
  3380. return 0;
  3381. }
  3382. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3383. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3384. struct slab_attribute {
  3385. struct attribute attr;
  3386. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3387. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3388. };
  3389. #define SLAB_ATTR_RO(_name) \
  3390. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3391. #define SLAB_ATTR(_name) \
  3392. static struct slab_attribute _name##_attr = \
  3393. __ATTR(_name, 0644, _name##_show, _name##_store)
  3394. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3395. {
  3396. return sprintf(buf, "%d\n", s->size);
  3397. }
  3398. SLAB_ATTR_RO(slab_size);
  3399. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3400. {
  3401. return sprintf(buf, "%d\n", s->align);
  3402. }
  3403. SLAB_ATTR_RO(align);
  3404. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3405. {
  3406. return sprintf(buf, "%d\n", s->objsize);
  3407. }
  3408. SLAB_ATTR_RO(object_size);
  3409. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3410. {
  3411. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3412. }
  3413. SLAB_ATTR_RO(objs_per_slab);
  3414. static ssize_t order_store(struct kmem_cache *s,
  3415. const char *buf, size_t length)
  3416. {
  3417. unsigned long order;
  3418. int err;
  3419. err = strict_strtoul(buf, 10, &order);
  3420. if (err)
  3421. return err;
  3422. if (order > slub_max_order || order < slub_min_order)
  3423. return -EINVAL;
  3424. calculate_sizes(s, order);
  3425. return length;
  3426. }
  3427. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3428. {
  3429. return sprintf(buf, "%d\n", oo_order(s->oo));
  3430. }
  3431. SLAB_ATTR(order);
  3432. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3433. {
  3434. return sprintf(buf, "%lu\n", s->min_partial);
  3435. }
  3436. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3437. size_t length)
  3438. {
  3439. unsigned long min;
  3440. int err;
  3441. err = strict_strtoul(buf, 10, &min);
  3442. if (err)
  3443. return err;
  3444. set_min_partial(s, min);
  3445. return length;
  3446. }
  3447. SLAB_ATTR(min_partial);
  3448. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3449. {
  3450. if (s->ctor) {
  3451. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3452. return n + sprintf(buf + n, "\n");
  3453. }
  3454. return 0;
  3455. }
  3456. SLAB_ATTR_RO(ctor);
  3457. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3458. {
  3459. return sprintf(buf, "%d\n", s->refcount - 1);
  3460. }
  3461. SLAB_ATTR_RO(aliases);
  3462. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3463. {
  3464. return show_slab_objects(s, buf, SO_ALL);
  3465. }
  3466. SLAB_ATTR_RO(slabs);
  3467. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3468. {
  3469. return show_slab_objects(s, buf, SO_PARTIAL);
  3470. }
  3471. SLAB_ATTR_RO(partial);
  3472. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3473. {
  3474. return show_slab_objects(s, buf, SO_CPU);
  3475. }
  3476. SLAB_ATTR_RO(cpu_slabs);
  3477. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3478. {
  3479. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3480. }
  3481. SLAB_ATTR_RO(objects);
  3482. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3483. {
  3484. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3485. }
  3486. SLAB_ATTR_RO(objects_partial);
  3487. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3488. {
  3489. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3490. }
  3491. SLAB_ATTR_RO(total_objects);
  3492. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3493. {
  3494. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3495. }
  3496. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3497. const char *buf, size_t length)
  3498. {
  3499. s->flags &= ~SLAB_DEBUG_FREE;
  3500. if (buf[0] == '1')
  3501. s->flags |= SLAB_DEBUG_FREE;
  3502. return length;
  3503. }
  3504. SLAB_ATTR(sanity_checks);
  3505. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3506. {
  3507. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3508. }
  3509. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3510. size_t length)
  3511. {
  3512. s->flags &= ~SLAB_TRACE;
  3513. if (buf[0] == '1')
  3514. s->flags |= SLAB_TRACE;
  3515. return length;
  3516. }
  3517. SLAB_ATTR(trace);
  3518. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3519. {
  3520. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3521. }
  3522. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3523. const char *buf, size_t length)
  3524. {
  3525. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3526. if (buf[0] == '1')
  3527. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3528. return length;
  3529. }
  3530. SLAB_ATTR(reclaim_account);
  3531. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3532. {
  3533. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3534. }
  3535. SLAB_ATTR_RO(hwcache_align);
  3536. #ifdef CONFIG_ZONE_DMA
  3537. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3538. {
  3539. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3540. }
  3541. SLAB_ATTR_RO(cache_dma);
  3542. #endif
  3543. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3544. {
  3545. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3546. }
  3547. SLAB_ATTR_RO(destroy_by_rcu);
  3548. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3549. {
  3550. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3551. }
  3552. static ssize_t red_zone_store(struct kmem_cache *s,
  3553. const char *buf, size_t length)
  3554. {
  3555. if (any_slab_objects(s))
  3556. return -EBUSY;
  3557. s->flags &= ~SLAB_RED_ZONE;
  3558. if (buf[0] == '1')
  3559. s->flags |= SLAB_RED_ZONE;
  3560. calculate_sizes(s, -1);
  3561. return length;
  3562. }
  3563. SLAB_ATTR(red_zone);
  3564. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3565. {
  3566. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3567. }
  3568. static ssize_t poison_store(struct kmem_cache *s,
  3569. const char *buf, size_t length)
  3570. {
  3571. if (any_slab_objects(s))
  3572. return -EBUSY;
  3573. s->flags &= ~SLAB_POISON;
  3574. if (buf[0] == '1')
  3575. s->flags |= SLAB_POISON;
  3576. calculate_sizes(s, -1);
  3577. return length;
  3578. }
  3579. SLAB_ATTR(poison);
  3580. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3581. {
  3582. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3583. }
  3584. static ssize_t store_user_store(struct kmem_cache *s,
  3585. const char *buf, size_t length)
  3586. {
  3587. if (any_slab_objects(s))
  3588. return -EBUSY;
  3589. s->flags &= ~SLAB_STORE_USER;
  3590. if (buf[0] == '1')
  3591. s->flags |= SLAB_STORE_USER;
  3592. calculate_sizes(s, -1);
  3593. return length;
  3594. }
  3595. SLAB_ATTR(store_user);
  3596. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3597. {
  3598. return 0;
  3599. }
  3600. static ssize_t validate_store(struct kmem_cache *s,
  3601. const char *buf, size_t length)
  3602. {
  3603. int ret = -EINVAL;
  3604. if (buf[0] == '1') {
  3605. ret = validate_slab_cache(s);
  3606. if (ret >= 0)
  3607. ret = length;
  3608. }
  3609. return ret;
  3610. }
  3611. SLAB_ATTR(validate);
  3612. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3613. {
  3614. return 0;
  3615. }
  3616. static ssize_t shrink_store(struct kmem_cache *s,
  3617. const char *buf, size_t length)
  3618. {
  3619. if (buf[0] == '1') {
  3620. int rc = kmem_cache_shrink(s);
  3621. if (rc)
  3622. return rc;
  3623. } else
  3624. return -EINVAL;
  3625. return length;
  3626. }
  3627. SLAB_ATTR(shrink);
  3628. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3629. {
  3630. if (!(s->flags & SLAB_STORE_USER))
  3631. return -ENOSYS;
  3632. return list_locations(s, buf, TRACK_ALLOC);
  3633. }
  3634. SLAB_ATTR_RO(alloc_calls);
  3635. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3636. {
  3637. if (!(s->flags & SLAB_STORE_USER))
  3638. return -ENOSYS;
  3639. return list_locations(s, buf, TRACK_FREE);
  3640. }
  3641. SLAB_ATTR_RO(free_calls);
  3642. #ifdef CONFIG_NUMA
  3643. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3644. {
  3645. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3646. }
  3647. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3648. const char *buf, size_t length)
  3649. {
  3650. unsigned long ratio;
  3651. int err;
  3652. err = strict_strtoul(buf, 10, &ratio);
  3653. if (err)
  3654. return err;
  3655. if (ratio <= 100)
  3656. s->remote_node_defrag_ratio = ratio * 10;
  3657. return length;
  3658. }
  3659. SLAB_ATTR(remote_node_defrag_ratio);
  3660. #endif
  3661. #ifdef CONFIG_SLUB_STATS
  3662. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3663. {
  3664. unsigned long sum = 0;
  3665. int cpu;
  3666. int len;
  3667. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3668. if (!data)
  3669. return -ENOMEM;
  3670. for_each_online_cpu(cpu) {
  3671. unsigned x = get_cpu_slab(s, cpu)->stat[si];
  3672. data[cpu] = x;
  3673. sum += x;
  3674. }
  3675. len = sprintf(buf, "%lu", sum);
  3676. #ifdef CONFIG_SMP
  3677. for_each_online_cpu(cpu) {
  3678. if (data[cpu] && len < PAGE_SIZE - 20)
  3679. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3680. }
  3681. #endif
  3682. kfree(data);
  3683. return len + sprintf(buf + len, "\n");
  3684. }
  3685. #define STAT_ATTR(si, text) \
  3686. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3687. { \
  3688. return show_stat(s, buf, si); \
  3689. } \
  3690. SLAB_ATTR_RO(text); \
  3691. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3692. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3693. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3694. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3695. STAT_ATTR(FREE_FROZEN, free_frozen);
  3696. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3697. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3698. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3699. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3700. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3701. STAT_ATTR(FREE_SLAB, free_slab);
  3702. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3703. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3704. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3705. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3706. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3707. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3708. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3709. #endif
  3710. static struct attribute *slab_attrs[] = {
  3711. &slab_size_attr.attr,
  3712. &object_size_attr.attr,
  3713. &objs_per_slab_attr.attr,
  3714. &order_attr.attr,
  3715. &min_partial_attr.attr,
  3716. &objects_attr.attr,
  3717. &objects_partial_attr.attr,
  3718. &total_objects_attr.attr,
  3719. &slabs_attr.attr,
  3720. &partial_attr.attr,
  3721. &cpu_slabs_attr.attr,
  3722. &ctor_attr.attr,
  3723. &aliases_attr.attr,
  3724. &align_attr.attr,
  3725. &sanity_checks_attr.attr,
  3726. &trace_attr.attr,
  3727. &hwcache_align_attr.attr,
  3728. &reclaim_account_attr.attr,
  3729. &destroy_by_rcu_attr.attr,
  3730. &red_zone_attr.attr,
  3731. &poison_attr.attr,
  3732. &store_user_attr.attr,
  3733. &validate_attr.attr,
  3734. &shrink_attr.attr,
  3735. &alloc_calls_attr.attr,
  3736. &free_calls_attr.attr,
  3737. #ifdef CONFIG_ZONE_DMA
  3738. &cache_dma_attr.attr,
  3739. #endif
  3740. #ifdef CONFIG_NUMA
  3741. &remote_node_defrag_ratio_attr.attr,
  3742. #endif
  3743. #ifdef CONFIG_SLUB_STATS
  3744. &alloc_fastpath_attr.attr,
  3745. &alloc_slowpath_attr.attr,
  3746. &free_fastpath_attr.attr,
  3747. &free_slowpath_attr.attr,
  3748. &free_frozen_attr.attr,
  3749. &free_add_partial_attr.attr,
  3750. &free_remove_partial_attr.attr,
  3751. &alloc_from_partial_attr.attr,
  3752. &alloc_slab_attr.attr,
  3753. &alloc_refill_attr.attr,
  3754. &free_slab_attr.attr,
  3755. &cpuslab_flush_attr.attr,
  3756. &deactivate_full_attr.attr,
  3757. &deactivate_empty_attr.attr,
  3758. &deactivate_to_head_attr.attr,
  3759. &deactivate_to_tail_attr.attr,
  3760. &deactivate_remote_frees_attr.attr,
  3761. &order_fallback_attr.attr,
  3762. #endif
  3763. NULL
  3764. };
  3765. static struct attribute_group slab_attr_group = {
  3766. .attrs = slab_attrs,
  3767. };
  3768. static ssize_t slab_attr_show(struct kobject *kobj,
  3769. struct attribute *attr,
  3770. char *buf)
  3771. {
  3772. struct slab_attribute *attribute;
  3773. struct kmem_cache *s;
  3774. int err;
  3775. attribute = to_slab_attr(attr);
  3776. s = to_slab(kobj);
  3777. if (!attribute->show)
  3778. return -EIO;
  3779. err = attribute->show(s, buf);
  3780. return err;
  3781. }
  3782. static ssize_t slab_attr_store(struct kobject *kobj,
  3783. struct attribute *attr,
  3784. const char *buf, size_t len)
  3785. {
  3786. struct slab_attribute *attribute;
  3787. struct kmem_cache *s;
  3788. int err;
  3789. attribute = to_slab_attr(attr);
  3790. s = to_slab(kobj);
  3791. if (!attribute->store)
  3792. return -EIO;
  3793. err = attribute->store(s, buf, len);
  3794. return err;
  3795. }
  3796. static void kmem_cache_release(struct kobject *kobj)
  3797. {
  3798. struct kmem_cache *s = to_slab(kobj);
  3799. kfree(s);
  3800. }
  3801. static struct sysfs_ops slab_sysfs_ops = {
  3802. .show = slab_attr_show,
  3803. .store = slab_attr_store,
  3804. };
  3805. static struct kobj_type slab_ktype = {
  3806. .sysfs_ops = &slab_sysfs_ops,
  3807. .release = kmem_cache_release
  3808. };
  3809. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3810. {
  3811. struct kobj_type *ktype = get_ktype(kobj);
  3812. if (ktype == &slab_ktype)
  3813. return 1;
  3814. return 0;
  3815. }
  3816. static struct kset_uevent_ops slab_uevent_ops = {
  3817. .filter = uevent_filter,
  3818. };
  3819. static struct kset *slab_kset;
  3820. #define ID_STR_LENGTH 64
  3821. /* Create a unique string id for a slab cache:
  3822. *
  3823. * Format :[flags-]size
  3824. */
  3825. static char *create_unique_id(struct kmem_cache *s)
  3826. {
  3827. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3828. char *p = name;
  3829. BUG_ON(!name);
  3830. *p++ = ':';
  3831. /*
  3832. * First flags affecting slabcache operations. We will only
  3833. * get here for aliasable slabs so we do not need to support
  3834. * too many flags. The flags here must cover all flags that
  3835. * are matched during merging to guarantee that the id is
  3836. * unique.
  3837. */
  3838. if (s->flags & SLAB_CACHE_DMA)
  3839. *p++ = 'd';
  3840. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3841. *p++ = 'a';
  3842. if (s->flags & SLAB_DEBUG_FREE)
  3843. *p++ = 'F';
  3844. if (!(s->flags & SLAB_NOTRACK))
  3845. *p++ = 't';
  3846. if (p != name + 1)
  3847. *p++ = '-';
  3848. p += sprintf(p, "%07d", s->size);
  3849. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3850. return name;
  3851. }
  3852. static int sysfs_slab_add(struct kmem_cache *s)
  3853. {
  3854. int err;
  3855. const char *name;
  3856. int unmergeable;
  3857. if (slab_state < SYSFS)
  3858. /* Defer until later */
  3859. return 0;
  3860. unmergeable = slab_unmergeable(s);
  3861. if (unmergeable) {
  3862. /*
  3863. * Slabcache can never be merged so we can use the name proper.
  3864. * This is typically the case for debug situations. In that
  3865. * case we can catch duplicate names easily.
  3866. */
  3867. sysfs_remove_link(&slab_kset->kobj, s->name);
  3868. name = s->name;
  3869. } else {
  3870. /*
  3871. * Create a unique name for the slab as a target
  3872. * for the symlinks.
  3873. */
  3874. name = create_unique_id(s);
  3875. }
  3876. s->kobj.kset = slab_kset;
  3877. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3878. if (err) {
  3879. kobject_put(&s->kobj);
  3880. return err;
  3881. }
  3882. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3883. if (err)
  3884. return err;
  3885. kobject_uevent(&s->kobj, KOBJ_ADD);
  3886. if (!unmergeable) {
  3887. /* Setup first alias */
  3888. sysfs_slab_alias(s, s->name);
  3889. kfree(name);
  3890. }
  3891. return 0;
  3892. }
  3893. static void sysfs_slab_remove(struct kmem_cache *s)
  3894. {
  3895. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3896. kobject_del(&s->kobj);
  3897. kobject_put(&s->kobj);
  3898. }
  3899. /*
  3900. * Need to buffer aliases during bootup until sysfs becomes
  3901. * available lest we lose that information.
  3902. */
  3903. struct saved_alias {
  3904. struct kmem_cache *s;
  3905. const char *name;
  3906. struct saved_alias *next;
  3907. };
  3908. static struct saved_alias *alias_list;
  3909. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3910. {
  3911. struct saved_alias *al;
  3912. if (slab_state == SYSFS) {
  3913. /*
  3914. * If we have a leftover link then remove it.
  3915. */
  3916. sysfs_remove_link(&slab_kset->kobj, name);
  3917. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3918. }
  3919. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3920. if (!al)
  3921. return -ENOMEM;
  3922. al->s = s;
  3923. al->name = name;
  3924. al->next = alias_list;
  3925. alias_list = al;
  3926. return 0;
  3927. }
  3928. static int __init slab_sysfs_init(void)
  3929. {
  3930. struct kmem_cache *s;
  3931. int err;
  3932. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3933. if (!slab_kset) {
  3934. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3935. return -ENOSYS;
  3936. }
  3937. slab_state = SYSFS;
  3938. list_for_each_entry(s, &slab_caches, list) {
  3939. err = sysfs_slab_add(s);
  3940. if (err)
  3941. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3942. " to sysfs\n", s->name);
  3943. }
  3944. while (alias_list) {
  3945. struct saved_alias *al = alias_list;
  3946. alias_list = alias_list->next;
  3947. err = sysfs_slab_alias(al->s, al->name);
  3948. if (err)
  3949. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3950. " %s to sysfs\n", s->name);
  3951. kfree(al);
  3952. }
  3953. resiliency_test();
  3954. return 0;
  3955. }
  3956. __initcall(slab_sysfs_init);
  3957. #endif
  3958. /*
  3959. * The /proc/slabinfo ABI
  3960. */
  3961. #ifdef CONFIG_SLABINFO
  3962. static void print_slabinfo_header(struct seq_file *m)
  3963. {
  3964. seq_puts(m, "slabinfo - version: 2.1\n");
  3965. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3966. "<objperslab> <pagesperslab>");
  3967. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3968. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3969. seq_putc(m, '\n');
  3970. }
  3971. static void *s_start(struct seq_file *m, loff_t *pos)
  3972. {
  3973. loff_t n = *pos;
  3974. down_read(&slub_lock);
  3975. if (!n)
  3976. print_slabinfo_header(m);
  3977. return seq_list_start(&slab_caches, *pos);
  3978. }
  3979. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3980. {
  3981. return seq_list_next(p, &slab_caches, pos);
  3982. }
  3983. static void s_stop(struct seq_file *m, void *p)
  3984. {
  3985. up_read(&slub_lock);
  3986. }
  3987. static int s_show(struct seq_file *m, void *p)
  3988. {
  3989. unsigned long nr_partials = 0;
  3990. unsigned long nr_slabs = 0;
  3991. unsigned long nr_inuse = 0;
  3992. unsigned long nr_objs = 0;
  3993. unsigned long nr_free = 0;
  3994. struct kmem_cache *s;
  3995. int node;
  3996. s = list_entry(p, struct kmem_cache, list);
  3997. for_each_online_node(node) {
  3998. struct kmem_cache_node *n = get_node(s, node);
  3999. if (!n)
  4000. continue;
  4001. nr_partials += n->nr_partial;
  4002. nr_slabs += atomic_long_read(&n->nr_slabs);
  4003. nr_objs += atomic_long_read(&n->total_objects);
  4004. nr_free += count_partial(n, count_free);
  4005. }
  4006. nr_inuse = nr_objs - nr_free;
  4007. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  4008. nr_objs, s->size, oo_objects(s->oo),
  4009. (1 << oo_order(s->oo)));
  4010. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  4011. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  4012. 0UL);
  4013. seq_putc(m, '\n');
  4014. return 0;
  4015. }
  4016. static const struct seq_operations slabinfo_op = {
  4017. .start = s_start,
  4018. .next = s_next,
  4019. .stop = s_stop,
  4020. .show = s_show,
  4021. };
  4022. static int slabinfo_open(struct inode *inode, struct file *file)
  4023. {
  4024. return seq_open(file, &slabinfo_op);
  4025. }
  4026. static const struct file_operations proc_slabinfo_operations = {
  4027. .open = slabinfo_open,
  4028. .read = seq_read,
  4029. .llseek = seq_lseek,
  4030. .release = seq_release,
  4031. };
  4032. static int __init slab_proc_init(void)
  4033. {
  4034. proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
  4035. return 0;
  4036. }
  4037. module_init(slab_proc_init);
  4038. #endif /* CONFIG_SLABINFO */