core.c 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310
  1. /*P:400 This contains run_guest() which actually calls into the Host<->Guest
  2. * Switcher and analyzes the return, such as determining if the Guest wants the
  3. * Host to do something. This file also contains useful helper routines, and a
  4. * couple of non-obvious setup and teardown pieces which were implemented after
  5. * days of debugging pain. :*/
  6. #include <linux/module.h>
  7. #include <linux/stringify.h>
  8. #include <linux/stddef.h>
  9. #include <linux/io.h>
  10. #include <linux/mm.h>
  11. #include <linux/vmalloc.h>
  12. #include <linux/cpu.h>
  13. #include <linux/freezer.h>
  14. #include <linux/highmem.h>
  15. #include <asm/paravirt.h>
  16. #include <asm/pgtable.h>
  17. #include <asm/uaccess.h>
  18. #include <asm/poll.h>
  19. #include <asm/asm-offsets.h>
  20. #include "lg.h"
  21. static struct vm_struct *switcher_vma;
  22. static struct page **switcher_page;
  23. /* This One Big lock protects all inter-guest data structures. */
  24. DEFINE_MUTEX(lguest_lock);
  25. /*H:010 We need to set up the Switcher at a high virtual address. Remember the
  26. * Switcher is a few hundred bytes of assembler code which actually changes the
  27. * CPU to run the Guest, and then changes back to the Host when a trap or
  28. * interrupt happens.
  29. *
  30. * The Switcher code must be at the same virtual address in the Guest as the
  31. * Host since it will be running as the switchover occurs.
  32. *
  33. * Trying to map memory at a particular address is an unusual thing to do, so
  34. * it's not a simple one-liner. */
  35. static __init int map_switcher(void)
  36. {
  37. int i, err;
  38. struct page **pagep;
  39. /*
  40. * Map the Switcher in to high memory.
  41. *
  42. * It turns out that if we choose the address 0xFFC00000 (4MB under the
  43. * top virtual address), it makes setting up the page tables really
  44. * easy.
  45. */
  46. /* We allocate an array of "struct page"s. map_vm_area() wants the
  47. * pages in this form, rather than just an array of pointers. */
  48. switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES,
  49. GFP_KERNEL);
  50. if (!switcher_page) {
  51. err = -ENOMEM;
  52. goto out;
  53. }
  54. /* Now we actually allocate the pages. The Guest will see these pages,
  55. * so we make sure they're zeroed. */
  56. for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
  57. unsigned long addr = get_zeroed_page(GFP_KERNEL);
  58. if (!addr) {
  59. err = -ENOMEM;
  60. goto free_some_pages;
  61. }
  62. switcher_page[i] = virt_to_page(addr);
  63. }
  64. /* Now we reserve the "virtual memory area" we want: 0xFFC00000
  65. * (SWITCHER_ADDR). We might not get it in theory, but in practice
  66. * it's worked so far. */
  67. switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
  68. VM_ALLOC, SWITCHER_ADDR, VMALLOC_END);
  69. if (!switcher_vma) {
  70. err = -ENOMEM;
  71. printk("lguest: could not map switcher pages high\n");
  72. goto free_pages;
  73. }
  74. /* This code actually sets up the pages we've allocated to appear at
  75. * SWITCHER_ADDR. map_vm_area() takes the vma we allocated above, the
  76. * kind of pages we're mapping (kernel pages), and a pointer to our
  77. * array of struct pages. It increments that pointer, but we don't
  78. * care. */
  79. pagep = switcher_page;
  80. err = map_vm_area(switcher_vma, PAGE_KERNEL, &pagep);
  81. if (err) {
  82. printk("lguest: map_vm_area failed: %i\n", err);
  83. goto free_vma;
  84. }
  85. /* Now the Switcher is mapped at the right address, we can't fail!
  86. * Copy in the compiled-in Switcher code (from <arch>_switcher.S). */
  87. memcpy(switcher_vma->addr, start_switcher_text,
  88. end_switcher_text - start_switcher_text);
  89. printk(KERN_INFO "lguest: mapped switcher at %p\n",
  90. switcher_vma->addr);
  91. /* And we succeeded... */
  92. return 0;
  93. free_vma:
  94. vunmap(switcher_vma->addr);
  95. free_pages:
  96. i = TOTAL_SWITCHER_PAGES;
  97. free_some_pages:
  98. for (--i; i >= 0; i--)
  99. __free_pages(switcher_page[i], 0);
  100. kfree(switcher_page);
  101. out:
  102. return err;
  103. }
  104. /*:*/
  105. /* Cleaning up the mapping when the module is unloaded is almost...
  106. * too easy. */
  107. static void unmap_switcher(void)
  108. {
  109. unsigned int i;
  110. /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
  111. vunmap(switcher_vma->addr);
  112. /* Now we just need to free the pages we copied the switcher into */
  113. for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
  114. __free_pages(switcher_page[i], 0);
  115. }
  116. /*L:305
  117. * Dealing With Guest Memory.
  118. *
  119. * When the Guest gives us (what it thinks is) a physical address, we can use
  120. * the normal copy_from_user() & copy_to_user() on the corresponding place in
  121. * the memory region allocated by the Launcher.
  122. *
  123. * But we can't trust the Guest: it might be trying to access the Launcher
  124. * code. We have to check that the range is below the pfn_limit the Launcher
  125. * gave us. We have to make sure that addr + len doesn't give us a false
  126. * positive by overflowing, too. */
  127. int lguest_address_ok(const struct lguest *lg,
  128. unsigned long addr, unsigned long len)
  129. {
  130. return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
  131. }
  132. /* This routine copies memory from the Guest. Here we can see how useful the
  133. * kill_lguest() routine we met in the Launcher can be: we return a random
  134. * value (all zeroes) instead of needing to return an error. */
  135. void __lgread(struct lguest *lg, void *b, unsigned long addr, unsigned bytes)
  136. {
  137. if (!lguest_address_ok(lg, addr, bytes)
  138. || copy_from_user(b, lg->mem_base + addr, bytes) != 0) {
  139. /* copy_from_user should do this, but as we rely on it... */
  140. memset(b, 0, bytes);
  141. kill_guest(lg, "bad read address %#lx len %u", addr, bytes);
  142. }
  143. }
  144. /* This is the write (copy into guest) version. */
  145. void __lgwrite(struct lguest *lg, unsigned long addr, const void *b,
  146. unsigned bytes)
  147. {
  148. if (!lguest_address_ok(lg, addr, bytes)
  149. || copy_to_user(lg->mem_base + addr, b, bytes) != 0)
  150. kill_guest(lg, "bad write address %#lx len %u", addr, bytes);
  151. }
  152. /*:*/
  153. /*H:030 Let's jump straight to the the main loop which runs the Guest.
  154. * Remember, this is called by the Launcher reading /dev/lguest, and we keep
  155. * going around and around until something interesting happens. */
  156. int run_guest(struct lguest *lg, unsigned long __user *user)
  157. {
  158. /* We stop running once the Guest is dead. */
  159. while (!lg->dead) {
  160. /* First we run any hypercalls the Guest wants done. */
  161. if (lg->hcall)
  162. do_hypercalls(lg);
  163. /* It's possible the Guest did a NOTIFY hypercall to the
  164. * Launcher, in which case we return from the read() now. */
  165. if (lg->pending_notify) {
  166. if (put_user(lg->pending_notify, user))
  167. return -EFAULT;
  168. return sizeof(lg->pending_notify);
  169. }
  170. /* Check for signals */
  171. if (signal_pending(current))
  172. return -ERESTARTSYS;
  173. /* If Waker set break_out, return to Launcher. */
  174. if (lg->break_out)
  175. return -EAGAIN;
  176. /* Check if there are any interrupts which can be delivered
  177. * now: if so, this sets up the hander to be executed when we
  178. * next run the Guest. */
  179. maybe_do_interrupt(lg);
  180. /* All long-lived kernel loops need to check with this horrible
  181. * thing called the freezer. If the Host is trying to suspend,
  182. * it stops us. */
  183. try_to_freeze();
  184. /* Just make absolutely sure the Guest is still alive. One of
  185. * those hypercalls could have been fatal, for example. */
  186. if (lg->dead)
  187. break;
  188. /* If the Guest asked to be stopped, we sleep. The Guest's
  189. * clock timer or LHCALL_BREAK from the Waker will wake us. */
  190. if (lg->halted) {
  191. set_current_state(TASK_INTERRUPTIBLE);
  192. schedule();
  193. continue;
  194. }
  195. /* OK, now we're ready to jump into the Guest. First we put up
  196. * the "Do Not Disturb" sign: */
  197. local_irq_disable();
  198. /* Actually run the Guest until something happens. */
  199. lguest_arch_run_guest(lg);
  200. /* Now we're ready to be interrupted or moved to other CPUs */
  201. local_irq_enable();
  202. /* Now we deal with whatever happened to the Guest. */
  203. lguest_arch_handle_trap(lg);
  204. }
  205. /* The Guest is dead => "No such file or directory" */
  206. return -ENOENT;
  207. }
  208. /*H:000
  209. * Welcome to the Host!
  210. *
  211. * By this point your brain has been tickled by the Guest code and numbed by
  212. * the Launcher code; prepare for it to be stretched by the Host code. This is
  213. * the heart. Let's begin at the initialization routine for the Host's lg
  214. * module.
  215. */
  216. static int __init init(void)
  217. {
  218. int err;
  219. /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
  220. if (paravirt_enabled()) {
  221. printk("lguest is afraid of %s\n", pv_info.name);
  222. return -EPERM;
  223. }
  224. /* First we put the Switcher up in very high virtual memory. */
  225. err = map_switcher();
  226. if (err)
  227. goto out;
  228. /* Now we set up the pagetable implementation for the Guests. */
  229. err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES);
  230. if (err)
  231. goto unmap;
  232. /* We might need to reserve an interrupt vector. */
  233. err = init_interrupts();
  234. if (err)
  235. goto free_pgtables;
  236. /* /dev/lguest needs to be registered. */
  237. err = lguest_device_init();
  238. if (err)
  239. goto free_interrupts;
  240. /* Finally we do some architecture-specific setup. */
  241. lguest_arch_host_init();
  242. /* All good! */
  243. return 0;
  244. free_interrupts:
  245. free_interrupts();
  246. free_pgtables:
  247. free_pagetables();
  248. unmap:
  249. unmap_switcher();
  250. out:
  251. return err;
  252. }
  253. /* Cleaning up is just the same code, backwards. With a little French. */
  254. static void __exit fini(void)
  255. {
  256. lguest_device_remove();
  257. free_interrupts();
  258. free_pagetables();
  259. unmap_switcher();
  260. lguest_arch_host_fini();
  261. }
  262. /*:*/
  263. /* The Host side of lguest can be a module. This is a nice way for people to
  264. * play with it. */
  265. module_init(init);
  266. module_exit(fini);
  267. MODULE_LICENSE("GPL");
  268. MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");