intel_display.c 299 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. static void intel_increase_pllclock(struct drm_crtc *crtc);
  43. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  44. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  45. struct intel_crtc_config *pipe_config);
  46. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  47. struct intel_crtc_config *pipe_config);
  48. static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
  49. int x, int y, struct drm_framebuffer *old_fb);
  50. typedef struct {
  51. int min, max;
  52. } intel_range_t;
  53. typedef struct {
  54. int dot_limit;
  55. int p2_slow, p2_fast;
  56. } intel_p2_t;
  57. typedef struct intel_limit intel_limit_t;
  58. struct intel_limit {
  59. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  60. intel_p2_t p2;
  61. };
  62. int
  63. intel_pch_rawclk(struct drm_device *dev)
  64. {
  65. struct drm_i915_private *dev_priv = dev->dev_private;
  66. WARN_ON(!HAS_PCH_SPLIT(dev));
  67. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  68. }
  69. static inline u32 /* units of 100MHz */
  70. intel_fdi_link_freq(struct drm_device *dev)
  71. {
  72. if (IS_GEN5(dev)) {
  73. struct drm_i915_private *dev_priv = dev->dev_private;
  74. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  75. } else
  76. return 27;
  77. }
  78. static const intel_limit_t intel_limits_i8xx_dac = {
  79. .dot = { .min = 25000, .max = 350000 },
  80. .vco = { .min = 930000, .max = 1400000 },
  81. .n = { .min = 3, .max = 16 },
  82. .m = { .min = 96, .max = 140 },
  83. .m1 = { .min = 18, .max = 26 },
  84. .m2 = { .min = 6, .max = 16 },
  85. .p = { .min = 4, .max = 128 },
  86. .p1 = { .min = 2, .max = 33 },
  87. .p2 = { .dot_limit = 165000,
  88. .p2_slow = 4, .p2_fast = 2 },
  89. };
  90. static const intel_limit_t intel_limits_i8xx_dvo = {
  91. .dot = { .min = 25000, .max = 350000 },
  92. .vco = { .min = 930000, .max = 1400000 },
  93. .n = { .min = 3, .max = 16 },
  94. .m = { .min = 96, .max = 140 },
  95. .m1 = { .min = 18, .max = 26 },
  96. .m2 = { .min = 6, .max = 16 },
  97. .p = { .min = 4, .max = 128 },
  98. .p1 = { .min = 2, .max = 33 },
  99. .p2 = { .dot_limit = 165000,
  100. .p2_slow = 4, .p2_fast = 4 },
  101. };
  102. static const intel_limit_t intel_limits_i8xx_lvds = {
  103. .dot = { .min = 25000, .max = 350000 },
  104. .vco = { .min = 930000, .max = 1400000 },
  105. .n = { .min = 3, .max = 16 },
  106. .m = { .min = 96, .max = 140 },
  107. .m1 = { .min = 18, .max = 26 },
  108. .m2 = { .min = 6, .max = 16 },
  109. .p = { .min = 4, .max = 128 },
  110. .p1 = { .min = 1, .max = 6 },
  111. .p2 = { .dot_limit = 165000,
  112. .p2_slow = 14, .p2_fast = 7 },
  113. };
  114. static const intel_limit_t intel_limits_i9xx_sdvo = {
  115. .dot = { .min = 20000, .max = 400000 },
  116. .vco = { .min = 1400000, .max = 2800000 },
  117. .n = { .min = 1, .max = 6 },
  118. .m = { .min = 70, .max = 120 },
  119. .m1 = { .min = 8, .max = 18 },
  120. .m2 = { .min = 3, .max = 7 },
  121. .p = { .min = 5, .max = 80 },
  122. .p1 = { .min = 1, .max = 8 },
  123. .p2 = { .dot_limit = 200000,
  124. .p2_slow = 10, .p2_fast = 5 },
  125. };
  126. static const intel_limit_t intel_limits_i9xx_lvds = {
  127. .dot = { .min = 20000, .max = 400000 },
  128. .vco = { .min = 1400000, .max = 2800000 },
  129. .n = { .min = 1, .max = 6 },
  130. .m = { .min = 70, .max = 120 },
  131. .m1 = { .min = 8, .max = 18 },
  132. .m2 = { .min = 3, .max = 7 },
  133. .p = { .min = 7, .max = 98 },
  134. .p1 = { .min = 1, .max = 8 },
  135. .p2 = { .dot_limit = 112000,
  136. .p2_slow = 14, .p2_fast = 7 },
  137. };
  138. static const intel_limit_t intel_limits_g4x_sdvo = {
  139. .dot = { .min = 25000, .max = 270000 },
  140. .vco = { .min = 1750000, .max = 3500000},
  141. .n = { .min = 1, .max = 4 },
  142. .m = { .min = 104, .max = 138 },
  143. .m1 = { .min = 17, .max = 23 },
  144. .m2 = { .min = 5, .max = 11 },
  145. .p = { .min = 10, .max = 30 },
  146. .p1 = { .min = 1, .max = 3},
  147. .p2 = { .dot_limit = 270000,
  148. .p2_slow = 10,
  149. .p2_fast = 10
  150. },
  151. };
  152. static const intel_limit_t intel_limits_g4x_hdmi = {
  153. .dot = { .min = 22000, .max = 400000 },
  154. .vco = { .min = 1750000, .max = 3500000},
  155. .n = { .min = 1, .max = 4 },
  156. .m = { .min = 104, .max = 138 },
  157. .m1 = { .min = 16, .max = 23 },
  158. .m2 = { .min = 5, .max = 11 },
  159. .p = { .min = 5, .max = 80 },
  160. .p1 = { .min = 1, .max = 8},
  161. .p2 = { .dot_limit = 165000,
  162. .p2_slow = 10, .p2_fast = 5 },
  163. };
  164. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  165. .dot = { .min = 20000, .max = 115000 },
  166. .vco = { .min = 1750000, .max = 3500000 },
  167. .n = { .min = 1, .max = 3 },
  168. .m = { .min = 104, .max = 138 },
  169. .m1 = { .min = 17, .max = 23 },
  170. .m2 = { .min = 5, .max = 11 },
  171. .p = { .min = 28, .max = 112 },
  172. .p1 = { .min = 2, .max = 8 },
  173. .p2 = { .dot_limit = 0,
  174. .p2_slow = 14, .p2_fast = 14
  175. },
  176. };
  177. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  178. .dot = { .min = 80000, .max = 224000 },
  179. .vco = { .min = 1750000, .max = 3500000 },
  180. .n = { .min = 1, .max = 3 },
  181. .m = { .min = 104, .max = 138 },
  182. .m1 = { .min = 17, .max = 23 },
  183. .m2 = { .min = 5, .max = 11 },
  184. .p = { .min = 14, .max = 42 },
  185. .p1 = { .min = 2, .max = 6 },
  186. .p2 = { .dot_limit = 0,
  187. .p2_slow = 7, .p2_fast = 7
  188. },
  189. };
  190. static const intel_limit_t intel_limits_pineview_sdvo = {
  191. .dot = { .min = 20000, .max = 400000},
  192. .vco = { .min = 1700000, .max = 3500000 },
  193. /* Pineview's Ncounter is a ring counter */
  194. .n = { .min = 3, .max = 6 },
  195. .m = { .min = 2, .max = 256 },
  196. /* Pineview only has one combined m divider, which we treat as m2. */
  197. .m1 = { .min = 0, .max = 0 },
  198. .m2 = { .min = 0, .max = 254 },
  199. .p = { .min = 5, .max = 80 },
  200. .p1 = { .min = 1, .max = 8 },
  201. .p2 = { .dot_limit = 200000,
  202. .p2_slow = 10, .p2_fast = 5 },
  203. };
  204. static const intel_limit_t intel_limits_pineview_lvds = {
  205. .dot = { .min = 20000, .max = 400000 },
  206. .vco = { .min = 1700000, .max = 3500000 },
  207. .n = { .min = 3, .max = 6 },
  208. .m = { .min = 2, .max = 256 },
  209. .m1 = { .min = 0, .max = 0 },
  210. .m2 = { .min = 0, .max = 254 },
  211. .p = { .min = 7, .max = 112 },
  212. .p1 = { .min = 1, .max = 8 },
  213. .p2 = { .dot_limit = 112000,
  214. .p2_slow = 14, .p2_fast = 14 },
  215. };
  216. /* Ironlake / Sandybridge
  217. *
  218. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  219. * the range value for them is (actual_value - 2).
  220. */
  221. static const intel_limit_t intel_limits_ironlake_dac = {
  222. .dot = { .min = 25000, .max = 350000 },
  223. .vco = { .min = 1760000, .max = 3510000 },
  224. .n = { .min = 1, .max = 5 },
  225. .m = { .min = 79, .max = 127 },
  226. .m1 = { .min = 12, .max = 22 },
  227. .m2 = { .min = 5, .max = 9 },
  228. .p = { .min = 5, .max = 80 },
  229. .p1 = { .min = 1, .max = 8 },
  230. .p2 = { .dot_limit = 225000,
  231. .p2_slow = 10, .p2_fast = 5 },
  232. };
  233. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  234. .dot = { .min = 25000, .max = 350000 },
  235. .vco = { .min = 1760000, .max = 3510000 },
  236. .n = { .min = 1, .max = 3 },
  237. .m = { .min = 79, .max = 118 },
  238. .m1 = { .min = 12, .max = 22 },
  239. .m2 = { .min = 5, .max = 9 },
  240. .p = { .min = 28, .max = 112 },
  241. .p1 = { .min = 2, .max = 8 },
  242. .p2 = { .dot_limit = 225000,
  243. .p2_slow = 14, .p2_fast = 14 },
  244. };
  245. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  246. .dot = { .min = 25000, .max = 350000 },
  247. .vco = { .min = 1760000, .max = 3510000 },
  248. .n = { .min = 1, .max = 3 },
  249. .m = { .min = 79, .max = 127 },
  250. .m1 = { .min = 12, .max = 22 },
  251. .m2 = { .min = 5, .max = 9 },
  252. .p = { .min = 14, .max = 56 },
  253. .p1 = { .min = 2, .max = 8 },
  254. .p2 = { .dot_limit = 225000,
  255. .p2_slow = 7, .p2_fast = 7 },
  256. };
  257. /* LVDS 100mhz refclk limits. */
  258. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  259. .dot = { .min = 25000, .max = 350000 },
  260. .vco = { .min = 1760000, .max = 3510000 },
  261. .n = { .min = 1, .max = 2 },
  262. .m = { .min = 79, .max = 126 },
  263. .m1 = { .min = 12, .max = 22 },
  264. .m2 = { .min = 5, .max = 9 },
  265. .p = { .min = 28, .max = 112 },
  266. .p1 = { .min = 2, .max = 8 },
  267. .p2 = { .dot_limit = 225000,
  268. .p2_slow = 14, .p2_fast = 14 },
  269. };
  270. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  271. .dot = { .min = 25000, .max = 350000 },
  272. .vco = { .min = 1760000, .max = 3510000 },
  273. .n = { .min = 1, .max = 3 },
  274. .m = { .min = 79, .max = 126 },
  275. .m1 = { .min = 12, .max = 22 },
  276. .m2 = { .min = 5, .max = 9 },
  277. .p = { .min = 14, .max = 42 },
  278. .p1 = { .min = 2, .max = 6 },
  279. .p2 = { .dot_limit = 225000,
  280. .p2_slow = 7, .p2_fast = 7 },
  281. };
  282. static const intel_limit_t intel_limits_vlv_dac = {
  283. .dot = { .min = 25000, .max = 270000 },
  284. .vco = { .min = 4000000, .max = 6000000 },
  285. .n = { .min = 1, .max = 7 },
  286. .m = { .min = 22, .max = 450 }, /* guess */
  287. .m1 = { .min = 2, .max = 3 },
  288. .m2 = { .min = 11, .max = 156 },
  289. .p = { .min = 10, .max = 30 },
  290. .p1 = { .min = 1, .max = 3 },
  291. .p2 = { .dot_limit = 270000,
  292. .p2_slow = 2, .p2_fast = 20 },
  293. };
  294. static const intel_limit_t intel_limits_vlv_hdmi = {
  295. .dot = { .min = 25000, .max = 270000 },
  296. .vco = { .min = 4000000, .max = 6000000 },
  297. .n = { .min = 1, .max = 7 },
  298. .m = { .min = 60, .max = 300 }, /* guess */
  299. .m1 = { .min = 2, .max = 3 },
  300. .m2 = { .min = 11, .max = 156 },
  301. .p = { .min = 10, .max = 30 },
  302. .p1 = { .min = 2, .max = 3 },
  303. .p2 = { .dot_limit = 270000,
  304. .p2_slow = 2, .p2_fast = 20 },
  305. };
  306. /**
  307. * Returns whether any output on the specified pipe is of the specified type
  308. */
  309. static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  310. {
  311. struct drm_device *dev = crtc->dev;
  312. struct intel_encoder *encoder;
  313. for_each_encoder_on_crtc(dev, crtc, encoder)
  314. if (encoder->type == type)
  315. return true;
  316. return false;
  317. }
  318. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  319. int refclk)
  320. {
  321. struct drm_device *dev = crtc->dev;
  322. const intel_limit_t *limit;
  323. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  324. if (intel_is_dual_link_lvds(dev)) {
  325. if (refclk == 100000)
  326. limit = &intel_limits_ironlake_dual_lvds_100m;
  327. else
  328. limit = &intel_limits_ironlake_dual_lvds;
  329. } else {
  330. if (refclk == 100000)
  331. limit = &intel_limits_ironlake_single_lvds_100m;
  332. else
  333. limit = &intel_limits_ironlake_single_lvds;
  334. }
  335. } else
  336. limit = &intel_limits_ironlake_dac;
  337. return limit;
  338. }
  339. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  340. {
  341. struct drm_device *dev = crtc->dev;
  342. const intel_limit_t *limit;
  343. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  344. if (intel_is_dual_link_lvds(dev))
  345. limit = &intel_limits_g4x_dual_channel_lvds;
  346. else
  347. limit = &intel_limits_g4x_single_channel_lvds;
  348. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  349. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  350. limit = &intel_limits_g4x_hdmi;
  351. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  352. limit = &intel_limits_g4x_sdvo;
  353. } else /* The option is for other outputs */
  354. limit = &intel_limits_i9xx_sdvo;
  355. return limit;
  356. }
  357. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  358. {
  359. struct drm_device *dev = crtc->dev;
  360. const intel_limit_t *limit;
  361. if (HAS_PCH_SPLIT(dev))
  362. limit = intel_ironlake_limit(crtc, refclk);
  363. else if (IS_G4X(dev)) {
  364. limit = intel_g4x_limit(crtc);
  365. } else if (IS_PINEVIEW(dev)) {
  366. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  367. limit = &intel_limits_pineview_lvds;
  368. else
  369. limit = &intel_limits_pineview_sdvo;
  370. } else if (IS_VALLEYVIEW(dev)) {
  371. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  372. limit = &intel_limits_vlv_dac;
  373. else
  374. limit = &intel_limits_vlv_hdmi;
  375. } else if (!IS_GEN2(dev)) {
  376. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  377. limit = &intel_limits_i9xx_lvds;
  378. else
  379. limit = &intel_limits_i9xx_sdvo;
  380. } else {
  381. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  382. limit = &intel_limits_i8xx_lvds;
  383. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
  384. limit = &intel_limits_i8xx_dvo;
  385. else
  386. limit = &intel_limits_i8xx_dac;
  387. }
  388. return limit;
  389. }
  390. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  391. static void pineview_clock(int refclk, intel_clock_t *clock)
  392. {
  393. clock->m = clock->m2 + 2;
  394. clock->p = clock->p1 * clock->p2;
  395. clock->vco = refclk * clock->m / clock->n;
  396. clock->dot = clock->vco / clock->p;
  397. }
  398. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  399. {
  400. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  401. }
  402. static void i9xx_clock(int refclk, intel_clock_t *clock)
  403. {
  404. clock->m = i9xx_dpll_compute_m(clock);
  405. clock->p = clock->p1 * clock->p2;
  406. clock->vco = refclk * clock->m / (clock->n + 2);
  407. clock->dot = clock->vco / clock->p;
  408. }
  409. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  410. /**
  411. * Returns whether the given set of divisors are valid for a given refclk with
  412. * the given connectors.
  413. */
  414. static bool intel_PLL_is_valid(struct drm_device *dev,
  415. const intel_limit_t *limit,
  416. const intel_clock_t *clock)
  417. {
  418. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  419. INTELPllInvalid("p1 out of range\n");
  420. if (clock->p < limit->p.min || limit->p.max < clock->p)
  421. INTELPllInvalid("p out of range\n");
  422. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  423. INTELPllInvalid("m2 out of range\n");
  424. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  425. INTELPllInvalid("m1 out of range\n");
  426. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  427. INTELPllInvalid("m1 <= m2\n");
  428. if (clock->m < limit->m.min || limit->m.max < clock->m)
  429. INTELPllInvalid("m out of range\n");
  430. if (clock->n < limit->n.min || limit->n.max < clock->n)
  431. INTELPllInvalid("n out of range\n");
  432. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  433. INTELPllInvalid("vco out of range\n");
  434. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  435. * connector, etc., rather than just a single range.
  436. */
  437. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  438. INTELPllInvalid("dot out of range\n");
  439. return true;
  440. }
  441. static bool
  442. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  443. int target, int refclk, intel_clock_t *match_clock,
  444. intel_clock_t *best_clock)
  445. {
  446. struct drm_device *dev = crtc->dev;
  447. intel_clock_t clock;
  448. int err = target;
  449. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  450. /*
  451. * For LVDS just rely on its current settings for dual-channel.
  452. * We haven't figured out how to reliably set up different
  453. * single/dual channel state, if we even can.
  454. */
  455. if (intel_is_dual_link_lvds(dev))
  456. clock.p2 = limit->p2.p2_fast;
  457. else
  458. clock.p2 = limit->p2.p2_slow;
  459. } else {
  460. if (target < limit->p2.dot_limit)
  461. clock.p2 = limit->p2.p2_slow;
  462. else
  463. clock.p2 = limit->p2.p2_fast;
  464. }
  465. memset(best_clock, 0, sizeof(*best_clock));
  466. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  467. clock.m1++) {
  468. for (clock.m2 = limit->m2.min;
  469. clock.m2 <= limit->m2.max; clock.m2++) {
  470. if (clock.m2 >= clock.m1)
  471. break;
  472. for (clock.n = limit->n.min;
  473. clock.n <= limit->n.max; clock.n++) {
  474. for (clock.p1 = limit->p1.min;
  475. clock.p1 <= limit->p1.max; clock.p1++) {
  476. int this_err;
  477. i9xx_clock(refclk, &clock);
  478. if (!intel_PLL_is_valid(dev, limit,
  479. &clock))
  480. continue;
  481. if (match_clock &&
  482. clock.p != match_clock->p)
  483. continue;
  484. this_err = abs(clock.dot - target);
  485. if (this_err < err) {
  486. *best_clock = clock;
  487. err = this_err;
  488. }
  489. }
  490. }
  491. }
  492. }
  493. return (err != target);
  494. }
  495. static bool
  496. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  497. int target, int refclk, intel_clock_t *match_clock,
  498. intel_clock_t *best_clock)
  499. {
  500. struct drm_device *dev = crtc->dev;
  501. intel_clock_t clock;
  502. int err = target;
  503. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  504. /*
  505. * For LVDS just rely on its current settings for dual-channel.
  506. * We haven't figured out how to reliably set up different
  507. * single/dual channel state, if we even can.
  508. */
  509. if (intel_is_dual_link_lvds(dev))
  510. clock.p2 = limit->p2.p2_fast;
  511. else
  512. clock.p2 = limit->p2.p2_slow;
  513. } else {
  514. if (target < limit->p2.dot_limit)
  515. clock.p2 = limit->p2.p2_slow;
  516. else
  517. clock.p2 = limit->p2.p2_fast;
  518. }
  519. memset(best_clock, 0, sizeof(*best_clock));
  520. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  521. clock.m1++) {
  522. for (clock.m2 = limit->m2.min;
  523. clock.m2 <= limit->m2.max; clock.m2++) {
  524. for (clock.n = limit->n.min;
  525. clock.n <= limit->n.max; clock.n++) {
  526. for (clock.p1 = limit->p1.min;
  527. clock.p1 <= limit->p1.max; clock.p1++) {
  528. int this_err;
  529. pineview_clock(refclk, &clock);
  530. if (!intel_PLL_is_valid(dev, limit,
  531. &clock))
  532. continue;
  533. if (match_clock &&
  534. clock.p != match_clock->p)
  535. continue;
  536. this_err = abs(clock.dot - target);
  537. if (this_err < err) {
  538. *best_clock = clock;
  539. err = this_err;
  540. }
  541. }
  542. }
  543. }
  544. }
  545. return (err != target);
  546. }
  547. static bool
  548. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  549. int target, int refclk, intel_clock_t *match_clock,
  550. intel_clock_t *best_clock)
  551. {
  552. struct drm_device *dev = crtc->dev;
  553. intel_clock_t clock;
  554. int max_n;
  555. bool found;
  556. /* approximately equals target * 0.00585 */
  557. int err_most = (target >> 8) + (target >> 9);
  558. found = false;
  559. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  560. if (intel_is_dual_link_lvds(dev))
  561. clock.p2 = limit->p2.p2_fast;
  562. else
  563. clock.p2 = limit->p2.p2_slow;
  564. } else {
  565. if (target < limit->p2.dot_limit)
  566. clock.p2 = limit->p2.p2_slow;
  567. else
  568. clock.p2 = limit->p2.p2_fast;
  569. }
  570. memset(best_clock, 0, sizeof(*best_clock));
  571. max_n = limit->n.max;
  572. /* based on hardware requirement, prefer smaller n to precision */
  573. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  574. /* based on hardware requirement, prefere larger m1,m2 */
  575. for (clock.m1 = limit->m1.max;
  576. clock.m1 >= limit->m1.min; clock.m1--) {
  577. for (clock.m2 = limit->m2.max;
  578. clock.m2 >= limit->m2.min; clock.m2--) {
  579. for (clock.p1 = limit->p1.max;
  580. clock.p1 >= limit->p1.min; clock.p1--) {
  581. int this_err;
  582. i9xx_clock(refclk, &clock);
  583. if (!intel_PLL_is_valid(dev, limit,
  584. &clock))
  585. continue;
  586. this_err = abs(clock.dot - target);
  587. if (this_err < err_most) {
  588. *best_clock = clock;
  589. err_most = this_err;
  590. max_n = clock.n;
  591. found = true;
  592. }
  593. }
  594. }
  595. }
  596. }
  597. return found;
  598. }
  599. static bool
  600. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  601. int target, int refclk, intel_clock_t *match_clock,
  602. intel_clock_t *best_clock)
  603. {
  604. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  605. u32 m, n, fastclk;
  606. u32 updrate, minupdate, p;
  607. unsigned long bestppm, ppm, absppm;
  608. int dotclk, flag;
  609. flag = 0;
  610. dotclk = target * 1000;
  611. bestppm = 1000000;
  612. ppm = absppm = 0;
  613. fastclk = dotclk / (2*100);
  614. updrate = 0;
  615. minupdate = 19200;
  616. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  617. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  618. /* based on hardware requirement, prefer smaller n to precision */
  619. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  620. updrate = refclk / n;
  621. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  622. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  623. if (p2 > 10)
  624. p2 = p2 - 1;
  625. p = p1 * p2;
  626. /* based on hardware requirement, prefer bigger m1,m2 values */
  627. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  628. m2 = (((2*(fastclk * p * n / m1 )) +
  629. refclk) / (2*refclk));
  630. m = m1 * m2;
  631. vco = updrate * m;
  632. if (vco >= limit->vco.min && vco < limit->vco.max) {
  633. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  634. absppm = (ppm > 0) ? ppm : (-ppm);
  635. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  636. bestppm = 0;
  637. flag = 1;
  638. }
  639. if (absppm < bestppm - 10) {
  640. bestppm = absppm;
  641. flag = 1;
  642. }
  643. if (flag) {
  644. bestn = n;
  645. bestm1 = m1;
  646. bestm2 = m2;
  647. bestp1 = p1;
  648. bestp2 = p2;
  649. flag = 0;
  650. }
  651. }
  652. }
  653. }
  654. }
  655. }
  656. best_clock->n = bestn;
  657. best_clock->m1 = bestm1;
  658. best_clock->m2 = bestm2;
  659. best_clock->p1 = bestp1;
  660. best_clock->p2 = bestp2;
  661. return true;
  662. }
  663. bool intel_crtc_active(struct drm_crtc *crtc)
  664. {
  665. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  666. /* Be paranoid as we can arrive here with only partial
  667. * state retrieved from the hardware during setup.
  668. *
  669. * We can ditch the adjusted_mode.clock check as soon
  670. * as Haswell has gained clock readout/fastboot support.
  671. *
  672. * We can ditch the crtc->fb check as soon as we can
  673. * properly reconstruct framebuffers.
  674. */
  675. return intel_crtc->active && crtc->fb &&
  676. intel_crtc->config.adjusted_mode.clock;
  677. }
  678. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  679. enum pipe pipe)
  680. {
  681. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  682. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  683. return intel_crtc->config.cpu_transcoder;
  684. }
  685. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  686. {
  687. struct drm_i915_private *dev_priv = dev->dev_private;
  688. u32 frame, frame_reg = PIPEFRAME(pipe);
  689. frame = I915_READ(frame_reg);
  690. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  691. DRM_DEBUG_KMS("vblank wait timed out\n");
  692. }
  693. /**
  694. * intel_wait_for_vblank - wait for vblank on a given pipe
  695. * @dev: drm device
  696. * @pipe: pipe to wait for
  697. *
  698. * Wait for vblank to occur on a given pipe. Needed for various bits of
  699. * mode setting code.
  700. */
  701. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  702. {
  703. struct drm_i915_private *dev_priv = dev->dev_private;
  704. int pipestat_reg = PIPESTAT(pipe);
  705. if (INTEL_INFO(dev)->gen >= 5) {
  706. ironlake_wait_for_vblank(dev, pipe);
  707. return;
  708. }
  709. /* Clear existing vblank status. Note this will clear any other
  710. * sticky status fields as well.
  711. *
  712. * This races with i915_driver_irq_handler() with the result
  713. * that either function could miss a vblank event. Here it is not
  714. * fatal, as we will either wait upon the next vblank interrupt or
  715. * timeout. Generally speaking intel_wait_for_vblank() is only
  716. * called during modeset at which time the GPU should be idle and
  717. * should *not* be performing page flips and thus not waiting on
  718. * vblanks...
  719. * Currently, the result of us stealing a vblank from the irq
  720. * handler is that a single frame will be skipped during swapbuffers.
  721. */
  722. I915_WRITE(pipestat_reg,
  723. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  724. /* Wait for vblank interrupt bit to set */
  725. if (wait_for(I915_READ(pipestat_reg) &
  726. PIPE_VBLANK_INTERRUPT_STATUS,
  727. 50))
  728. DRM_DEBUG_KMS("vblank wait timed out\n");
  729. }
  730. /*
  731. * intel_wait_for_pipe_off - wait for pipe to turn off
  732. * @dev: drm device
  733. * @pipe: pipe to wait for
  734. *
  735. * After disabling a pipe, we can't wait for vblank in the usual way,
  736. * spinning on the vblank interrupt status bit, since we won't actually
  737. * see an interrupt when the pipe is disabled.
  738. *
  739. * On Gen4 and above:
  740. * wait for the pipe register state bit to turn off
  741. *
  742. * Otherwise:
  743. * wait for the display line value to settle (it usually
  744. * ends up stopping at the start of the next frame).
  745. *
  746. */
  747. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  748. {
  749. struct drm_i915_private *dev_priv = dev->dev_private;
  750. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  751. pipe);
  752. if (INTEL_INFO(dev)->gen >= 4) {
  753. int reg = PIPECONF(cpu_transcoder);
  754. /* Wait for the Pipe State to go off */
  755. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  756. 100))
  757. WARN(1, "pipe_off wait timed out\n");
  758. } else {
  759. u32 last_line, line_mask;
  760. int reg = PIPEDSL(pipe);
  761. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  762. if (IS_GEN2(dev))
  763. line_mask = DSL_LINEMASK_GEN2;
  764. else
  765. line_mask = DSL_LINEMASK_GEN3;
  766. /* Wait for the display line to settle */
  767. do {
  768. last_line = I915_READ(reg) & line_mask;
  769. mdelay(5);
  770. } while (((I915_READ(reg) & line_mask) != last_line) &&
  771. time_after(timeout, jiffies));
  772. if (time_after(jiffies, timeout))
  773. WARN(1, "pipe_off wait timed out\n");
  774. }
  775. }
  776. /*
  777. * ibx_digital_port_connected - is the specified port connected?
  778. * @dev_priv: i915 private structure
  779. * @port: the port to test
  780. *
  781. * Returns true if @port is connected, false otherwise.
  782. */
  783. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  784. struct intel_digital_port *port)
  785. {
  786. u32 bit;
  787. if (HAS_PCH_IBX(dev_priv->dev)) {
  788. switch(port->port) {
  789. case PORT_B:
  790. bit = SDE_PORTB_HOTPLUG;
  791. break;
  792. case PORT_C:
  793. bit = SDE_PORTC_HOTPLUG;
  794. break;
  795. case PORT_D:
  796. bit = SDE_PORTD_HOTPLUG;
  797. break;
  798. default:
  799. return true;
  800. }
  801. } else {
  802. switch(port->port) {
  803. case PORT_B:
  804. bit = SDE_PORTB_HOTPLUG_CPT;
  805. break;
  806. case PORT_C:
  807. bit = SDE_PORTC_HOTPLUG_CPT;
  808. break;
  809. case PORT_D:
  810. bit = SDE_PORTD_HOTPLUG_CPT;
  811. break;
  812. default:
  813. return true;
  814. }
  815. }
  816. return I915_READ(SDEISR) & bit;
  817. }
  818. static const char *state_string(bool enabled)
  819. {
  820. return enabled ? "on" : "off";
  821. }
  822. /* Only for pre-ILK configs */
  823. void assert_pll(struct drm_i915_private *dev_priv,
  824. enum pipe pipe, bool state)
  825. {
  826. int reg;
  827. u32 val;
  828. bool cur_state;
  829. reg = DPLL(pipe);
  830. val = I915_READ(reg);
  831. cur_state = !!(val & DPLL_VCO_ENABLE);
  832. WARN(cur_state != state,
  833. "PLL state assertion failure (expected %s, current %s)\n",
  834. state_string(state), state_string(cur_state));
  835. }
  836. /* XXX: the dsi pll is shared between MIPI DSI ports */
  837. static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
  838. {
  839. u32 val;
  840. bool cur_state;
  841. mutex_lock(&dev_priv->dpio_lock);
  842. val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
  843. mutex_unlock(&dev_priv->dpio_lock);
  844. cur_state = val & DSI_PLL_VCO_EN;
  845. WARN(cur_state != state,
  846. "DSI PLL state assertion failure (expected %s, current %s)\n",
  847. state_string(state), state_string(cur_state));
  848. }
  849. #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
  850. #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
  851. struct intel_shared_dpll *
  852. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  853. {
  854. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  855. if (crtc->config.shared_dpll < 0)
  856. return NULL;
  857. return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  858. }
  859. /* For ILK+ */
  860. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  861. struct intel_shared_dpll *pll,
  862. bool state)
  863. {
  864. bool cur_state;
  865. struct intel_dpll_hw_state hw_state;
  866. if (HAS_PCH_LPT(dev_priv->dev)) {
  867. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  868. return;
  869. }
  870. if (WARN (!pll,
  871. "asserting DPLL %s with no DPLL\n", state_string(state)))
  872. return;
  873. cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  874. WARN(cur_state != state,
  875. "%s assertion failure (expected %s, current %s)\n",
  876. pll->name, state_string(state), state_string(cur_state));
  877. }
  878. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  879. enum pipe pipe, bool state)
  880. {
  881. int reg;
  882. u32 val;
  883. bool cur_state;
  884. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  885. pipe);
  886. if (HAS_DDI(dev_priv->dev)) {
  887. /* DDI does not have a specific FDI_TX register */
  888. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  889. val = I915_READ(reg);
  890. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  891. } else {
  892. reg = FDI_TX_CTL(pipe);
  893. val = I915_READ(reg);
  894. cur_state = !!(val & FDI_TX_ENABLE);
  895. }
  896. WARN(cur_state != state,
  897. "FDI TX state assertion failure (expected %s, current %s)\n",
  898. state_string(state), state_string(cur_state));
  899. }
  900. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  901. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  902. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  903. enum pipe pipe, bool state)
  904. {
  905. int reg;
  906. u32 val;
  907. bool cur_state;
  908. reg = FDI_RX_CTL(pipe);
  909. val = I915_READ(reg);
  910. cur_state = !!(val & FDI_RX_ENABLE);
  911. WARN(cur_state != state,
  912. "FDI RX state assertion failure (expected %s, current %s)\n",
  913. state_string(state), state_string(cur_state));
  914. }
  915. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  916. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  917. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  918. enum pipe pipe)
  919. {
  920. int reg;
  921. u32 val;
  922. /* ILK FDI PLL is always enabled */
  923. if (dev_priv->info->gen == 5)
  924. return;
  925. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  926. if (HAS_DDI(dev_priv->dev))
  927. return;
  928. reg = FDI_TX_CTL(pipe);
  929. val = I915_READ(reg);
  930. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  931. }
  932. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  933. enum pipe pipe, bool state)
  934. {
  935. int reg;
  936. u32 val;
  937. bool cur_state;
  938. reg = FDI_RX_CTL(pipe);
  939. val = I915_READ(reg);
  940. cur_state = !!(val & FDI_RX_PLL_ENABLE);
  941. WARN(cur_state != state,
  942. "FDI RX PLL assertion failure (expected %s, current %s)\n",
  943. state_string(state), state_string(cur_state));
  944. }
  945. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  946. enum pipe pipe)
  947. {
  948. int pp_reg, lvds_reg;
  949. u32 val;
  950. enum pipe panel_pipe = PIPE_A;
  951. bool locked = true;
  952. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  953. pp_reg = PCH_PP_CONTROL;
  954. lvds_reg = PCH_LVDS;
  955. } else {
  956. pp_reg = PP_CONTROL;
  957. lvds_reg = LVDS;
  958. }
  959. val = I915_READ(pp_reg);
  960. if (!(val & PANEL_POWER_ON) ||
  961. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  962. locked = false;
  963. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  964. panel_pipe = PIPE_B;
  965. WARN(panel_pipe == pipe && locked,
  966. "panel assertion failure, pipe %c regs locked\n",
  967. pipe_name(pipe));
  968. }
  969. static void assert_cursor(struct drm_i915_private *dev_priv,
  970. enum pipe pipe, bool state)
  971. {
  972. struct drm_device *dev = dev_priv->dev;
  973. bool cur_state;
  974. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  975. cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
  976. else if (IS_845G(dev) || IS_I865G(dev))
  977. cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
  978. else
  979. cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  980. WARN(cur_state != state,
  981. "cursor on pipe %c assertion failure (expected %s, current %s)\n",
  982. pipe_name(pipe), state_string(state), state_string(cur_state));
  983. }
  984. #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
  985. #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
  986. void assert_pipe(struct drm_i915_private *dev_priv,
  987. enum pipe pipe, bool state)
  988. {
  989. int reg;
  990. u32 val;
  991. bool cur_state;
  992. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  993. pipe);
  994. /* if we need the pipe A quirk it must be always on */
  995. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  996. state = true;
  997. if (!intel_display_power_enabled(dev_priv->dev,
  998. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  999. cur_state = false;
  1000. } else {
  1001. reg = PIPECONF(cpu_transcoder);
  1002. val = I915_READ(reg);
  1003. cur_state = !!(val & PIPECONF_ENABLE);
  1004. }
  1005. WARN(cur_state != state,
  1006. "pipe %c assertion failure (expected %s, current %s)\n",
  1007. pipe_name(pipe), state_string(state), state_string(cur_state));
  1008. }
  1009. static void assert_plane(struct drm_i915_private *dev_priv,
  1010. enum plane plane, bool state)
  1011. {
  1012. int reg;
  1013. u32 val;
  1014. bool cur_state;
  1015. reg = DSPCNTR(plane);
  1016. val = I915_READ(reg);
  1017. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1018. WARN(cur_state != state,
  1019. "plane %c assertion failure (expected %s, current %s)\n",
  1020. plane_name(plane), state_string(state), state_string(cur_state));
  1021. }
  1022. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1023. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1024. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1025. enum pipe pipe)
  1026. {
  1027. struct drm_device *dev = dev_priv->dev;
  1028. int reg, i;
  1029. u32 val;
  1030. int cur_pipe;
  1031. /* Primary planes are fixed to pipes on gen4+ */
  1032. if (INTEL_INFO(dev)->gen >= 4) {
  1033. reg = DSPCNTR(pipe);
  1034. val = I915_READ(reg);
  1035. WARN((val & DISPLAY_PLANE_ENABLE),
  1036. "plane %c assertion failure, should be disabled but not\n",
  1037. plane_name(pipe));
  1038. return;
  1039. }
  1040. /* Need to check both planes against the pipe */
  1041. for_each_pipe(i) {
  1042. reg = DSPCNTR(i);
  1043. val = I915_READ(reg);
  1044. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1045. DISPPLANE_SEL_PIPE_SHIFT;
  1046. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1047. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1048. plane_name(i), pipe_name(pipe));
  1049. }
  1050. }
  1051. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1052. enum pipe pipe)
  1053. {
  1054. struct drm_device *dev = dev_priv->dev;
  1055. int reg, i;
  1056. u32 val;
  1057. if (IS_VALLEYVIEW(dev)) {
  1058. for (i = 0; i < dev_priv->num_plane; i++) {
  1059. reg = SPCNTR(pipe, i);
  1060. val = I915_READ(reg);
  1061. WARN((val & SP_ENABLE),
  1062. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1063. sprite_name(pipe, i), pipe_name(pipe));
  1064. }
  1065. } else if (INTEL_INFO(dev)->gen >= 7) {
  1066. reg = SPRCTL(pipe);
  1067. val = I915_READ(reg);
  1068. WARN((val & SPRITE_ENABLE),
  1069. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1070. plane_name(pipe), pipe_name(pipe));
  1071. } else if (INTEL_INFO(dev)->gen >= 5) {
  1072. reg = DVSCNTR(pipe);
  1073. val = I915_READ(reg);
  1074. WARN((val & DVS_ENABLE),
  1075. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1076. plane_name(pipe), pipe_name(pipe));
  1077. }
  1078. }
  1079. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1080. {
  1081. u32 val;
  1082. bool enabled;
  1083. if (HAS_PCH_LPT(dev_priv->dev)) {
  1084. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1085. return;
  1086. }
  1087. val = I915_READ(PCH_DREF_CONTROL);
  1088. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1089. DREF_SUPERSPREAD_SOURCE_MASK));
  1090. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1091. }
  1092. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1093. enum pipe pipe)
  1094. {
  1095. int reg;
  1096. u32 val;
  1097. bool enabled;
  1098. reg = PCH_TRANSCONF(pipe);
  1099. val = I915_READ(reg);
  1100. enabled = !!(val & TRANS_ENABLE);
  1101. WARN(enabled,
  1102. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1103. pipe_name(pipe));
  1104. }
  1105. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1106. enum pipe pipe, u32 port_sel, u32 val)
  1107. {
  1108. if ((val & DP_PORT_EN) == 0)
  1109. return false;
  1110. if (HAS_PCH_CPT(dev_priv->dev)) {
  1111. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1112. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1113. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1114. return false;
  1115. } else {
  1116. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1117. return false;
  1118. }
  1119. return true;
  1120. }
  1121. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1122. enum pipe pipe, u32 val)
  1123. {
  1124. if ((val & SDVO_ENABLE) == 0)
  1125. return false;
  1126. if (HAS_PCH_CPT(dev_priv->dev)) {
  1127. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1128. return false;
  1129. } else {
  1130. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1131. return false;
  1132. }
  1133. return true;
  1134. }
  1135. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1136. enum pipe pipe, u32 val)
  1137. {
  1138. if ((val & LVDS_PORT_EN) == 0)
  1139. return false;
  1140. if (HAS_PCH_CPT(dev_priv->dev)) {
  1141. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1142. return false;
  1143. } else {
  1144. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1145. return false;
  1146. }
  1147. return true;
  1148. }
  1149. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1150. enum pipe pipe, u32 val)
  1151. {
  1152. if ((val & ADPA_DAC_ENABLE) == 0)
  1153. return false;
  1154. if (HAS_PCH_CPT(dev_priv->dev)) {
  1155. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1156. return false;
  1157. } else {
  1158. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1159. return false;
  1160. }
  1161. return true;
  1162. }
  1163. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1164. enum pipe pipe, int reg, u32 port_sel)
  1165. {
  1166. u32 val = I915_READ(reg);
  1167. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1168. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1169. reg, pipe_name(pipe));
  1170. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1171. && (val & DP_PIPEB_SELECT),
  1172. "IBX PCH dp port still using transcoder B\n");
  1173. }
  1174. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1175. enum pipe pipe, int reg)
  1176. {
  1177. u32 val = I915_READ(reg);
  1178. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1179. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1180. reg, pipe_name(pipe));
  1181. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1182. && (val & SDVO_PIPE_B_SELECT),
  1183. "IBX PCH hdmi port still using transcoder B\n");
  1184. }
  1185. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1186. enum pipe pipe)
  1187. {
  1188. int reg;
  1189. u32 val;
  1190. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1191. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1192. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1193. reg = PCH_ADPA;
  1194. val = I915_READ(reg);
  1195. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1196. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1197. pipe_name(pipe));
  1198. reg = PCH_LVDS;
  1199. val = I915_READ(reg);
  1200. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1201. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1202. pipe_name(pipe));
  1203. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1204. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1205. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1206. }
  1207. static void vlv_enable_pll(struct intel_crtc *crtc)
  1208. {
  1209. struct drm_device *dev = crtc->base.dev;
  1210. struct drm_i915_private *dev_priv = dev->dev_private;
  1211. int reg = DPLL(crtc->pipe);
  1212. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1213. assert_pipe_disabled(dev_priv, crtc->pipe);
  1214. /* No really, not for ILK+ */
  1215. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1216. /* PLL is protected by panel, make sure we can write it */
  1217. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1218. assert_panel_unlocked(dev_priv, crtc->pipe);
  1219. I915_WRITE(reg, dpll);
  1220. POSTING_READ(reg);
  1221. udelay(150);
  1222. if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1223. DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
  1224. I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
  1225. POSTING_READ(DPLL_MD(crtc->pipe));
  1226. /* We do this three times for luck */
  1227. I915_WRITE(reg, dpll);
  1228. POSTING_READ(reg);
  1229. udelay(150); /* wait for warmup */
  1230. I915_WRITE(reg, dpll);
  1231. POSTING_READ(reg);
  1232. udelay(150); /* wait for warmup */
  1233. I915_WRITE(reg, dpll);
  1234. POSTING_READ(reg);
  1235. udelay(150); /* wait for warmup */
  1236. }
  1237. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1238. {
  1239. struct drm_device *dev = crtc->base.dev;
  1240. struct drm_i915_private *dev_priv = dev->dev_private;
  1241. int reg = DPLL(crtc->pipe);
  1242. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1243. assert_pipe_disabled(dev_priv, crtc->pipe);
  1244. /* No really, not for ILK+ */
  1245. BUG_ON(dev_priv->info->gen >= 5);
  1246. /* PLL is protected by panel, make sure we can write it */
  1247. if (IS_MOBILE(dev) && !IS_I830(dev))
  1248. assert_panel_unlocked(dev_priv, crtc->pipe);
  1249. I915_WRITE(reg, dpll);
  1250. /* Wait for the clocks to stabilize. */
  1251. POSTING_READ(reg);
  1252. udelay(150);
  1253. if (INTEL_INFO(dev)->gen >= 4) {
  1254. I915_WRITE(DPLL_MD(crtc->pipe),
  1255. crtc->config.dpll_hw_state.dpll_md);
  1256. } else {
  1257. /* The pixel multiplier can only be updated once the
  1258. * DPLL is enabled and the clocks are stable.
  1259. *
  1260. * So write it again.
  1261. */
  1262. I915_WRITE(reg, dpll);
  1263. }
  1264. /* We do this three times for luck */
  1265. I915_WRITE(reg, dpll);
  1266. POSTING_READ(reg);
  1267. udelay(150); /* wait for warmup */
  1268. I915_WRITE(reg, dpll);
  1269. POSTING_READ(reg);
  1270. udelay(150); /* wait for warmup */
  1271. I915_WRITE(reg, dpll);
  1272. POSTING_READ(reg);
  1273. udelay(150); /* wait for warmup */
  1274. }
  1275. /**
  1276. * i9xx_disable_pll - disable a PLL
  1277. * @dev_priv: i915 private structure
  1278. * @pipe: pipe PLL to disable
  1279. *
  1280. * Disable the PLL for @pipe, making sure the pipe is off first.
  1281. *
  1282. * Note! This is for pre-ILK only.
  1283. */
  1284. static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1285. {
  1286. /* Don't disable pipe A or pipe A PLLs if needed */
  1287. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1288. return;
  1289. /* Make sure the pipe isn't still relying on us */
  1290. assert_pipe_disabled(dev_priv, pipe);
  1291. I915_WRITE(DPLL(pipe), 0);
  1292. POSTING_READ(DPLL(pipe));
  1293. }
  1294. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1295. {
  1296. u32 port_mask;
  1297. if (!port)
  1298. port_mask = DPLL_PORTB_READY_MASK;
  1299. else
  1300. port_mask = DPLL_PORTC_READY_MASK;
  1301. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1302. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1303. 'B' + port, I915_READ(DPLL(0)));
  1304. }
  1305. /**
  1306. * ironlake_enable_shared_dpll - enable PCH PLL
  1307. * @dev_priv: i915 private structure
  1308. * @pipe: pipe PLL to enable
  1309. *
  1310. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1311. * drives the transcoder clock.
  1312. */
  1313. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1314. {
  1315. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1316. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1317. /* PCH PLLs only available on ILK, SNB and IVB */
  1318. BUG_ON(dev_priv->info->gen < 5);
  1319. if (WARN_ON(pll == NULL))
  1320. return;
  1321. if (WARN_ON(pll->refcount == 0))
  1322. return;
  1323. DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1324. pll->name, pll->active, pll->on,
  1325. crtc->base.base.id);
  1326. if (pll->active++) {
  1327. WARN_ON(!pll->on);
  1328. assert_shared_dpll_enabled(dev_priv, pll);
  1329. return;
  1330. }
  1331. WARN_ON(pll->on);
  1332. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1333. pll->enable(dev_priv, pll);
  1334. pll->on = true;
  1335. }
  1336. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1337. {
  1338. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1339. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1340. /* PCH only available on ILK+ */
  1341. BUG_ON(dev_priv->info->gen < 5);
  1342. if (WARN_ON(pll == NULL))
  1343. return;
  1344. if (WARN_ON(pll->refcount == 0))
  1345. return;
  1346. DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1347. pll->name, pll->active, pll->on,
  1348. crtc->base.base.id);
  1349. if (WARN_ON(pll->active == 0)) {
  1350. assert_shared_dpll_disabled(dev_priv, pll);
  1351. return;
  1352. }
  1353. assert_shared_dpll_enabled(dev_priv, pll);
  1354. WARN_ON(!pll->on);
  1355. if (--pll->active)
  1356. return;
  1357. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1358. pll->disable(dev_priv, pll);
  1359. pll->on = false;
  1360. }
  1361. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1362. enum pipe pipe)
  1363. {
  1364. struct drm_device *dev = dev_priv->dev;
  1365. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1366. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1367. uint32_t reg, val, pipeconf_val;
  1368. /* PCH only available on ILK+ */
  1369. BUG_ON(dev_priv->info->gen < 5);
  1370. /* Make sure PCH DPLL is enabled */
  1371. assert_shared_dpll_enabled(dev_priv,
  1372. intel_crtc_to_shared_dpll(intel_crtc));
  1373. /* FDI must be feeding us bits for PCH ports */
  1374. assert_fdi_tx_enabled(dev_priv, pipe);
  1375. assert_fdi_rx_enabled(dev_priv, pipe);
  1376. if (HAS_PCH_CPT(dev)) {
  1377. /* Workaround: Set the timing override bit before enabling the
  1378. * pch transcoder. */
  1379. reg = TRANS_CHICKEN2(pipe);
  1380. val = I915_READ(reg);
  1381. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1382. I915_WRITE(reg, val);
  1383. }
  1384. reg = PCH_TRANSCONF(pipe);
  1385. val = I915_READ(reg);
  1386. pipeconf_val = I915_READ(PIPECONF(pipe));
  1387. if (HAS_PCH_IBX(dev_priv->dev)) {
  1388. /*
  1389. * make the BPC in transcoder be consistent with
  1390. * that in pipeconf reg.
  1391. */
  1392. val &= ~PIPECONF_BPC_MASK;
  1393. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1394. }
  1395. val &= ~TRANS_INTERLACE_MASK;
  1396. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1397. if (HAS_PCH_IBX(dev_priv->dev) &&
  1398. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1399. val |= TRANS_LEGACY_INTERLACED_ILK;
  1400. else
  1401. val |= TRANS_INTERLACED;
  1402. else
  1403. val |= TRANS_PROGRESSIVE;
  1404. I915_WRITE(reg, val | TRANS_ENABLE);
  1405. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1406. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1407. }
  1408. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1409. enum transcoder cpu_transcoder)
  1410. {
  1411. u32 val, pipeconf_val;
  1412. /* PCH only available on ILK+ */
  1413. BUG_ON(dev_priv->info->gen < 5);
  1414. /* FDI must be feeding us bits for PCH ports */
  1415. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1416. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1417. /* Workaround: set timing override bit. */
  1418. val = I915_READ(_TRANSA_CHICKEN2);
  1419. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1420. I915_WRITE(_TRANSA_CHICKEN2, val);
  1421. val = TRANS_ENABLE;
  1422. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1423. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1424. PIPECONF_INTERLACED_ILK)
  1425. val |= TRANS_INTERLACED;
  1426. else
  1427. val |= TRANS_PROGRESSIVE;
  1428. I915_WRITE(LPT_TRANSCONF, val);
  1429. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1430. DRM_ERROR("Failed to enable PCH transcoder\n");
  1431. }
  1432. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1433. enum pipe pipe)
  1434. {
  1435. struct drm_device *dev = dev_priv->dev;
  1436. uint32_t reg, val;
  1437. /* FDI relies on the transcoder */
  1438. assert_fdi_tx_disabled(dev_priv, pipe);
  1439. assert_fdi_rx_disabled(dev_priv, pipe);
  1440. /* Ports must be off as well */
  1441. assert_pch_ports_disabled(dev_priv, pipe);
  1442. reg = PCH_TRANSCONF(pipe);
  1443. val = I915_READ(reg);
  1444. val &= ~TRANS_ENABLE;
  1445. I915_WRITE(reg, val);
  1446. /* wait for PCH transcoder off, transcoder state */
  1447. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1448. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1449. if (!HAS_PCH_IBX(dev)) {
  1450. /* Workaround: Clear the timing override chicken bit again. */
  1451. reg = TRANS_CHICKEN2(pipe);
  1452. val = I915_READ(reg);
  1453. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1454. I915_WRITE(reg, val);
  1455. }
  1456. }
  1457. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1458. {
  1459. u32 val;
  1460. val = I915_READ(LPT_TRANSCONF);
  1461. val &= ~TRANS_ENABLE;
  1462. I915_WRITE(LPT_TRANSCONF, val);
  1463. /* wait for PCH transcoder off, transcoder state */
  1464. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1465. DRM_ERROR("Failed to disable PCH transcoder\n");
  1466. /* Workaround: clear timing override bit. */
  1467. val = I915_READ(_TRANSA_CHICKEN2);
  1468. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1469. I915_WRITE(_TRANSA_CHICKEN2, val);
  1470. }
  1471. /**
  1472. * intel_enable_pipe - enable a pipe, asserting requirements
  1473. * @dev_priv: i915 private structure
  1474. * @pipe: pipe to enable
  1475. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1476. *
  1477. * Enable @pipe, making sure that various hardware specific requirements
  1478. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1479. *
  1480. * @pipe should be %PIPE_A or %PIPE_B.
  1481. *
  1482. * Will wait until the pipe is actually running (i.e. first vblank) before
  1483. * returning.
  1484. */
  1485. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1486. bool pch_port, bool dsi)
  1487. {
  1488. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1489. pipe);
  1490. enum pipe pch_transcoder;
  1491. int reg;
  1492. u32 val;
  1493. assert_planes_disabled(dev_priv, pipe);
  1494. assert_cursor_disabled(dev_priv, pipe);
  1495. assert_sprites_disabled(dev_priv, pipe);
  1496. if (HAS_PCH_LPT(dev_priv->dev))
  1497. pch_transcoder = TRANSCODER_A;
  1498. else
  1499. pch_transcoder = pipe;
  1500. /*
  1501. * A pipe without a PLL won't actually be able to drive bits from
  1502. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1503. * need the check.
  1504. */
  1505. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1506. if (dsi)
  1507. assert_dsi_pll_enabled(dev_priv);
  1508. else
  1509. assert_pll_enabled(dev_priv, pipe);
  1510. else {
  1511. if (pch_port) {
  1512. /* if driving the PCH, we need FDI enabled */
  1513. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1514. assert_fdi_tx_pll_enabled(dev_priv,
  1515. (enum pipe) cpu_transcoder);
  1516. }
  1517. /* FIXME: assert CPU port conditions for SNB+ */
  1518. }
  1519. reg = PIPECONF(cpu_transcoder);
  1520. val = I915_READ(reg);
  1521. if (val & PIPECONF_ENABLE)
  1522. return;
  1523. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1524. intel_wait_for_vblank(dev_priv->dev, pipe);
  1525. }
  1526. /**
  1527. * intel_disable_pipe - disable a pipe, asserting requirements
  1528. * @dev_priv: i915 private structure
  1529. * @pipe: pipe to disable
  1530. *
  1531. * Disable @pipe, making sure that various hardware specific requirements
  1532. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1533. *
  1534. * @pipe should be %PIPE_A or %PIPE_B.
  1535. *
  1536. * Will wait until the pipe has shut down before returning.
  1537. */
  1538. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1539. enum pipe pipe)
  1540. {
  1541. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1542. pipe);
  1543. int reg;
  1544. u32 val;
  1545. /*
  1546. * Make sure planes won't keep trying to pump pixels to us,
  1547. * or we might hang the display.
  1548. */
  1549. assert_planes_disabled(dev_priv, pipe);
  1550. assert_cursor_disabled(dev_priv, pipe);
  1551. assert_sprites_disabled(dev_priv, pipe);
  1552. /* Don't disable pipe A or pipe A PLLs if needed */
  1553. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1554. return;
  1555. reg = PIPECONF(cpu_transcoder);
  1556. val = I915_READ(reg);
  1557. if ((val & PIPECONF_ENABLE) == 0)
  1558. return;
  1559. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1560. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1561. }
  1562. /*
  1563. * Plane regs are double buffered, going from enabled->disabled needs a
  1564. * trigger in order to latch. The display address reg provides this.
  1565. */
  1566. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1567. enum plane plane)
  1568. {
  1569. if (dev_priv->info->gen >= 4)
  1570. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1571. else
  1572. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1573. }
  1574. /**
  1575. * intel_enable_plane - enable a display plane on a given pipe
  1576. * @dev_priv: i915 private structure
  1577. * @plane: plane to enable
  1578. * @pipe: pipe being fed
  1579. *
  1580. * Enable @plane on @pipe, making sure that @pipe is running first.
  1581. */
  1582. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1583. enum plane plane, enum pipe pipe)
  1584. {
  1585. int reg;
  1586. u32 val;
  1587. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1588. assert_pipe_enabled(dev_priv, pipe);
  1589. reg = DSPCNTR(plane);
  1590. val = I915_READ(reg);
  1591. if (val & DISPLAY_PLANE_ENABLE)
  1592. return;
  1593. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1594. intel_flush_display_plane(dev_priv, plane);
  1595. intel_wait_for_vblank(dev_priv->dev, pipe);
  1596. }
  1597. /**
  1598. * intel_disable_plane - disable a display plane
  1599. * @dev_priv: i915 private structure
  1600. * @plane: plane to disable
  1601. * @pipe: pipe consuming the data
  1602. *
  1603. * Disable @plane; should be an independent operation.
  1604. */
  1605. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1606. enum plane plane, enum pipe pipe)
  1607. {
  1608. int reg;
  1609. u32 val;
  1610. reg = DSPCNTR(plane);
  1611. val = I915_READ(reg);
  1612. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1613. return;
  1614. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1615. intel_flush_display_plane(dev_priv, plane);
  1616. intel_wait_for_vblank(dev_priv->dev, pipe);
  1617. }
  1618. static bool need_vtd_wa(struct drm_device *dev)
  1619. {
  1620. #ifdef CONFIG_INTEL_IOMMU
  1621. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1622. return true;
  1623. #endif
  1624. return false;
  1625. }
  1626. int
  1627. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1628. struct drm_i915_gem_object *obj,
  1629. struct intel_ring_buffer *pipelined)
  1630. {
  1631. struct drm_i915_private *dev_priv = dev->dev_private;
  1632. u32 alignment;
  1633. int ret;
  1634. switch (obj->tiling_mode) {
  1635. case I915_TILING_NONE:
  1636. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1637. alignment = 128 * 1024;
  1638. else if (INTEL_INFO(dev)->gen >= 4)
  1639. alignment = 4 * 1024;
  1640. else
  1641. alignment = 64 * 1024;
  1642. break;
  1643. case I915_TILING_X:
  1644. /* pin() will align the object as required by fence */
  1645. alignment = 0;
  1646. break;
  1647. case I915_TILING_Y:
  1648. /* Despite that we check this in framebuffer_init userspace can
  1649. * screw us over and change the tiling after the fact. Only
  1650. * pinned buffers can't change their tiling. */
  1651. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1652. return -EINVAL;
  1653. default:
  1654. BUG();
  1655. }
  1656. /* Note that the w/a also requires 64 PTE of padding following the
  1657. * bo. We currently fill all unused PTE with the shadow page and so
  1658. * we should always have valid PTE following the scanout preventing
  1659. * the VT-d warning.
  1660. */
  1661. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1662. alignment = 256 * 1024;
  1663. dev_priv->mm.interruptible = false;
  1664. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1665. if (ret)
  1666. goto err_interruptible;
  1667. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1668. * fence, whereas 965+ only requires a fence if using
  1669. * framebuffer compression. For simplicity, we always install
  1670. * a fence as the cost is not that onerous.
  1671. */
  1672. ret = i915_gem_object_get_fence(obj);
  1673. if (ret)
  1674. goto err_unpin;
  1675. i915_gem_object_pin_fence(obj);
  1676. dev_priv->mm.interruptible = true;
  1677. return 0;
  1678. err_unpin:
  1679. i915_gem_object_unpin_from_display_plane(obj);
  1680. err_interruptible:
  1681. dev_priv->mm.interruptible = true;
  1682. return ret;
  1683. }
  1684. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1685. {
  1686. i915_gem_object_unpin_fence(obj);
  1687. i915_gem_object_unpin_from_display_plane(obj);
  1688. }
  1689. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1690. * is assumed to be a power-of-two. */
  1691. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1692. unsigned int tiling_mode,
  1693. unsigned int cpp,
  1694. unsigned int pitch)
  1695. {
  1696. if (tiling_mode != I915_TILING_NONE) {
  1697. unsigned int tile_rows, tiles;
  1698. tile_rows = *y / 8;
  1699. *y %= 8;
  1700. tiles = *x / (512/cpp);
  1701. *x %= 512/cpp;
  1702. return tile_rows * pitch * 8 + tiles * 4096;
  1703. } else {
  1704. unsigned int offset;
  1705. offset = *y * pitch + *x * cpp;
  1706. *y = 0;
  1707. *x = (offset & 4095) / cpp;
  1708. return offset & -4096;
  1709. }
  1710. }
  1711. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1712. int x, int y)
  1713. {
  1714. struct drm_device *dev = crtc->dev;
  1715. struct drm_i915_private *dev_priv = dev->dev_private;
  1716. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1717. struct intel_framebuffer *intel_fb;
  1718. struct drm_i915_gem_object *obj;
  1719. int plane = intel_crtc->plane;
  1720. unsigned long linear_offset;
  1721. u32 dspcntr;
  1722. u32 reg;
  1723. switch (plane) {
  1724. case 0:
  1725. case 1:
  1726. break;
  1727. default:
  1728. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1729. return -EINVAL;
  1730. }
  1731. intel_fb = to_intel_framebuffer(fb);
  1732. obj = intel_fb->obj;
  1733. reg = DSPCNTR(plane);
  1734. dspcntr = I915_READ(reg);
  1735. /* Mask out pixel format bits in case we change it */
  1736. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1737. switch (fb->pixel_format) {
  1738. case DRM_FORMAT_C8:
  1739. dspcntr |= DISPPLANE_8BPP;
  1740. break;
  1741. case DRM_FORMAT_XRGB1555:
  1742. case DRM_FORMAT_ARGB1555:
  1743. dspcntr |= DISPPLANE_BGRX555;
  1744. break;
  1745. case DRM_FORMAT_RGB565:
  1746. dspcntr |= DISPPLANE_BGRX565;
  1747. break;
  1748. case DRM_FORMAT_XRGB8888:
  1749. case DRM_FORMAT_ARGB8888:
  1750. dspcntr |= DISPPLANE_BGRX888;
  1751. break;
  1752. case DRM_FORMAT_XBGR8888:
  1753. case DRM_FORMAT_ABGR8888:
  1754. dspcntr |= DISPPLANE_RGBX888;
  1755. break;
  1756. case DRM_FORMAT_XRGB2101010:
  1757. case DRM_FORMAT_ARGB2101010:
  1758. dspcntr |= DISPPLANE_BGRX101010;
  1759. break;
  1760. case DRM_FORMAT_XBGR2101010:
  1761. case DRM_FORMAT_ABGR2101010:
  1762. dspcntr |= DISPPLANE_RGBX101010;
  1763. break;
  1764. default:
  1765. BUG();
  1766. }
  1767. if (INTEL_INFO(dev)->gen >= 4) {
  1768. if (obj->tiling_mode != I915_TILING_NONE)
  1769. dspcntr |= DISPPLANE_TILED;
  1770. else
  1771. dspcntr &= ~DISPPLANE_TILED;
  1772. }
  1773. if (IS_G4X(dev))
  1774. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1775. I915_WRITE(reg, dspcntr);
  1776. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1777. if (INTEL_INFO(dev)->gen >= 4) {
  1778. intel_crtc->dspaddr_offset =
  1779. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1780. fb->bits_per_pixel / 8,
  1781. fb->pitches[0]);
  1782. linear_offset -= intel_crtc->dspaddr_offset;
  1783. } else {
  1784. intel_crtc->dspaddr_offset = linear_offset;
  1785. }
  1786. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1787. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1788. fb->pitches[0]);
  1789. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1790. if (INTEL_INFO(dev)->gen >= 4) {
  1791. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1792. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1793. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1794. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1795. } else
  1796. I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
  1797. POSTING_READ(reg);
  1798. return 0;
  1799. }
  1800. static int ironlake_update_plane(struct drm_crtc *crtc,
  1801. struct drm_framebuffer *fb, int x, int y)
  1802. {
  1803. struct drm_device *dev = crtc->dev;
  1804. struct drm_i915_private *dev_priv = dev->dev_private;
  1805. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1806. struct intel_framebuffer *intel_fb;
  1807. struct drm_i915_gem_object *obj;
  1808. int plane = intel_crtc->plane;
  1809. unsigned long linear_offset;
  1810. u32 dspcntr;
  1811. u32 reg;
  1812. switch (plane) {
  1813. case 0:
  1814. case 1:
  1815. case 2:
  1816. break;
  1817. default:
  1818. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1819. return -EINVAL;
  1820. }
  1821. intel_fb = to_intel_framebuffer(fb);
  1822. obj = intel_fb->obj;
  1823. reg = DSPCNTR(plane);
  1824. dspcntr = I915_READ(reg);
  1825. /* Mask out pixel format bits in case we change it */
  1826. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1827. switch (fb->pixel_format) {
  1828. case DRM_FORMAT_C8:
  1829. dspcntr |= DISPPLANE_8BPP;
  1830. break;
  1831. case DRM_FORMAT_RGB565:
  1832. dspcntr |= DISPPLANE_BGRX565;
  1833. break;
  1834. case DRM_FORMAT_XRGB8888:
  1835. case DRM_FORMAT_ARGB8888:
  1836. dspcntr |= DISPPLANE_BGRX888;
  1837. break;
  1838. case DRM_FORMAT_XBGR8888:
  1839. case DRM_FORMAT_ABGR8888:
  1840. dspcntr |= DISPPLANE_RGBX888;
  1841. break;
  1842. case DRM_FORMAT_XRGB2101010:
  1843. case DRM_FORMAT_ARGB2101010:
  1844. dspcntr |= DISPPLANE_BGRX101010;
  1845. break;
  1846. case DRM_FORMAT_XBGR2101010:
  1847. case DRM_FORMAT_ABGR2101010:
  1848. dspcntr |= DISPPLANE_RGBX101010;
  1849. break;
  1850. default:
  1851. BUG();
  1852. }
  1853. if (obj->tiling_mode != I915_TILING_NONE)
  1854. dspcntr |= DISPPLANE_TILED;
  1855. else
  1856. dspcntr &= ~DISPPLANE_TILED;
  1857. if (IS_HASWELL(dev))
  1858. dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
  1859. else
  1860. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1861. I915_WRITE(reg, dspcntr);
  1862. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1863. intel_crtc->dspaddr_offset =
  1864. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1865. fb->bits_per_pixel / 8,
  1866. fb->pitches[0]);
  1867. linear_offset -= intel_crtc->dspaddr_offset;
  1868. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1869. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1870. fb->pitches[0]);
  1871. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1872. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1873. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1874. if (IS_HASWELL(dev)) {
  1875. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1876. } else {
  1877. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1878. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1879. }
  1880. POSTING_READ(reg);
  1881. return 0;
  1882. }
  1883. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1884. static int
  1885. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1886. int x, int y, enum mode_set_atomic state)
  1887. {
  1888. struct drm_device *dev = crtc->dev;
  1889. struct drm_i915_private *dev_priv = dev->dev_private;
  1890. if (dev_priv->display.disable_fbc)
  1891. dev_priv->display.disable_fbc(dev);
  1892. intel_increase_pllclock(crtc);
  1893. return dev_priv->display.update_plane(crtc, fb, x, y);
  1894. }
  1895. void intel_display_handle_reset(struct drm_device *dev)
  1896. {
  1897. struct drm_i915_private *dev_priv = dev->dev_private;
  1898. struct drm_crtc *crtc;
  1899. /*
  1900. * Flips in the rings have been nuked by the reset,
  1901. * so complete all pending flips so that user space
  1902. * will get its events and not get stuck.
  1903. *
  1904. * Also update the base address of all primary
  1905. * planes to the the last fb to make sure we're
  1906. * showing the correct fb after a reset.
  1907. *
  1908. * Need to make two loops over the crtcs so that we
  1909. * don't try to grab a crtc mutex before the
  1910. * pending_flip_queue really got woken up.
  1911. */
  1912. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1913. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1914. enum plane plane = intel_crtc->plane;
  1915. intel_prepare_page_flip(dev, plane);
  1916. intel_finish_page_flip_plane(dev, plane);
  1917. }
  1918. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1919. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1920. mutex_lock(&crtc->mutex);
  1921. if (intel_crtc->active)
  1922. dev_priv->display.update_plane(crtc, crtc->fb,
  1923. crtc->x, crtc->y);
  1924. mutex_unlock(&crtc->mutex);
  1925. }
  1926. }
  1927. static int
  1928. intel_finish_fb(struct drm_framebuffer *old_fb)
  1929. {
  1930. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1931. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1932. bool was_interruptible = dev_priv->mm.interruptible;
  1933. int ret;
  1934. /* Big Hammer, we also need to ensure that any pending
  1935. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1936. * current scanout is retired before unpinning the old
  1937. * framebuffer.
  1938. *
  1939. * This should only fail upon a hung GPU, in which case we
  1940. * can safely continue.
  1941. */
  1942. dev_priv->mm.interruptible = false;
  1943. ret = i915_gem_object_finish_gpu(obj);
  1944. dev_priv->mm.interruptible = was_interruptible;
  1945. return ret;
  1946. }
  1947. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1948. {
  1949. struct drm_device *dev = crtc->dev;
  1950. struct drm_i915_master_private *master_priv;
  1951. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1952. if (!dev->primary->master)
  1953. return;
  1954. master_priv = dev->primary->master->driver_priv;
  1955. if (!master_priv->sarea_priv)
  1956. return;
  1957. switch (intel_crtc->pipe) {
  1958. case 0:
  1959. master_priv->sarea_priv->pipeA_x = x;
  1960. master_priv->sarea_priv->pipeA_y = y;
  1961. break;
  1962. case 1:
  1963. master_priv->sarea_priv->pipeB_x = x;
  1964. master_priv->sarea_priv->pipeB_y = y;
  1965. break;
  1966. default:
  1967. break;
  1968. }
  1969. }
  1970. static int
  1971. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1972. struct drm_framebuffer *fb)
  1973. {
  1974. struct drm_device *dev = crtc->dev;
  1975. struct drm_i915_private *dev_priv = dev->dev_private;
  1976. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1977. struct drm_framebuffer *old_fb;
  1978. int ret;
  1979. /* no fb bound */
  1980. if (!fb) {
  1981. DRM_ERROR("No FB bound\n");
  1982. return 0;
  1983. }
  1984. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1985. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1986. plane_name(intel_crtc->plane),
  1987. INTEL_INFO(dev)->num_pipes);
  1988. return -EINVAL;
  1989. }
  1990. mutex_lock(&dev->struct_mutex);
  1991. ret = intel_pin_and_fence_fb_obj(dev,
  1992. to_intel_framebuffer(fb)->obj,
  1993. NULL);
  1994. if (ret != 0) {
  1995. mutex_unlock(&dev->struct_mutex);
  1996. DRM_ERROR("pin & fence failed\n");
  1997. return ret;
  1998. }
  1999. /* Update pipe size and adjust fitter if needed */
  2000. if (i915_fastboot) {
  2001. I915_WRITE(PIPESRC(intel_crtc->pipe),
  2002. ((crtc->mode.hdisplay - 1) << 16) |
  2003. (crtc->mode.vdisplay - 1));
  2004. if (!intel_crtc->config.pch_pfit.enabled &&
  2005. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  2006. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2007. I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
  2008. I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
  2009. I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
  2010. }
  2011. }
  2012. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  2013. if (ret) {
  2014. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  2015. mutex_unlock(&dev->struct_mutex);
  2016. DRM_ERROR("failed to update base address\n");
  2017. return ret;
  2018. }
  2019. old_fb = crtc->fb;
  2020. crtc->fb = fb;
  2021. crtc->x = x;
  2022. crtc->y = y;
  2023. if (old_fb) {
  2024. if (intel_crtc->active && old_fb != fb)
  2025. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2026. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2027. }
  2028. intel_update_fbc(dev);
  2029. intel_edp_psr_update(dev);
  2030. mutex_unlock(&dev->struct_mutex);
  2031. intel_crtc_update_sarea_pos(crtc, x, y);
  2032. return 0;
  2033. }
  2034. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2035. {
  2036. struct drm_device *dev = crtc->dev;
  2037. struct drm_i915_private *dev_priv = dev->dev_private;
  2038. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2039. int pipe = intel_crtc->pipe;
  2040. u32 reg, temp;
  2041. /* enable normal train */
  2042. reg = FDI_TX_CTL(pipe);
  2043. temp = I915_READ(reg);
  2044. if (IS_IVYBRIDGE(dev)) {
  2045. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2046. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2047. } else {
  2048. temp &= ~FDI_LINK_TRAIN_NONE;
  2049. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2050. }
  2051. I915_WRITE(reg, temp);
  2052. reg = FDI_RX_CTL(pipe);
  2053. temp = I915_READ(reg);
  2054. if (HAS_PCH_CPT(dev)) {
  2055. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2056. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2057. } else {
  2058. temp &= ~FDI_LINK_TRAIN_NONE;
  2059. temp |= FDI_LINK_TRAIN_NONE;
  2060. }
  2061. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2062. /* wait one idle pattern time */
  2063. POSTING_READ(reg);
  2064. udelay(1000);
  2065. /* IVB wants error correction enabled */
  2066. if (IS_IVYBRIDGE(dev))
  2067. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2068. FDI_FE_ERRC_ENABLE);
  2069. }
  2070. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  2071. {
  2072. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  2073. }
  2074. static void ivb_modeset_global_resources(struct drm_device *dev)
  2075. {
  2076. struct drm_i915_private *dev_priv = dev->dev_private;
  2077. struct intel_crtc *pipe_B_crtc =
  2078. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2079. struct intel_crtc *pipe_C_crtc =
  2080. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2081. uint32_t temp;
  2082. /*
  2083. * When everything is off disable fdi C so that we could enable fdi B
  2084. * with all lanes. Note that we don't care about enabled pipes without
  2085. * an enabled pch encoder.
  2086. */
  2087. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2088. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2089. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2090. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2091. temp = I915_READ(SOUTH_CHICKEN1);
  2092. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2093. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2094. I915_WRITE(SOUTH_CHICKEN1, temp);
  2095. }
  2096. }
  2097. /* The FDI link training functions for ILK/Ibexpeak. */
  2098. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2099. {
  2100. struct drm_device *dev = crtc->dev;
  2101. struct drm_i915_private *dev_priv = dev->dev_private;
  2102. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2103. int pipe = intel_crtc->pipe;
  2104. int plane = intel_crtc->plane;
  2105. u32 reg, temp, tries;
  2106. /* FDI needs bits from pipe & plane first */
  2107. assert_pipe_enabled(dev_priv, pipe);
  2108. assert_plane_enabled(dev_priv, plane);
  2109. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2110. for train result */
  2111. reg = FDI_RX_IMR(pipe);
  2112. temp = I915_READ(reg);
  2113. temp &= ~FDI_RX_SYMBOL_LOCK;
  2114. temp &= ~FDI_RX_BIT_LOCK;
  2115. I915_WRITE(reg, temp);
  2116. I915_READ(reg);
  2117. udelay(150);
  2118. /* enable CPU FDI TX and PCH FDI RX */
  2119. reg = FDI_TX_CTL(pipe);
  2120. temp = I915_READ(reg);
  2121. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2122. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2123. temp &= ~FDI_LINK_TRAIN_NONE;
  2124. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2125. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2126. reg = FDI_RX_CTL(pipe);
  2127. temp = I915_READ(reg);
  2128. temp &= ~FDI_LINK_TRAIN_NONE;
  2129. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2130. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2131. POSTING_READ(reg);
  2132. udelay(150);
  2133. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2134. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2135. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2136. FDI_RX_PHASE_SYNC_POINTER_EN);
  2137. reg = FDI_RX_IIR(pipe);
  2138. for (tries = 0; tries < 5; tries++) {
  2139. temp = I915_READ(reg);
  2140. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2141. if ((temp & FDI_RX_BIT_LOCK)) {
  2142. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2143. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2144. break;
  2145. }
  2146. }
  2147. if (tries == 5)
  2148. DRM_ERROR("FDI train 1 fail!\n");
  2149. /* Train 2 */
  2150. reg = FDI_TX_CTL(pipe);
  2151. temp = I915_READ(reg);
  2152. temp &= ~FDI_LINK_TRAIN_NONE;
  2153. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2154. I915_WRITE(reg, temp);
  2155. reg = FDI_RX_CTL(pipe);
  2156. temp = I915_READ(reg);
  2157. temp &= ~FDI_LINK_TRAIN_NONE;
  2158. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2159. I915_WRITE(reg, temp);
  2160. POSTING_READ(reg);
  2161. udelay(150);
  2162. reg = FDI_RX_IIR(pipe);
  2163. for (tries = 0; tries < 5; tries++) {
  2164. temp = I915_READ(reg);
  2165. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2166. if (temp & FDI_RX_SYMBOL_LOCK) {
  2167. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2168. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2169. break;
  2170. }
  2171. }
  2172. if (tries == 5)
  2173. DRM_ERROR("FDI train 2 fail!\n");
  2174. DRM_DEBUG_KMS("FDI train done\n");
  2175. }
  2176. static const int snb_b_fdi_train_param[] = {
  2177. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2178. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2179. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2180. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2181. };
  2182. /* The FDI link training functions for SNB/Cougarpoint. */
  2183. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2184. {
  2185. struct drm_device *dev = crtc->dev;
  2186. struct drm_i915_private *dev_priv = dev->dev_private;
  2187. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2188. int pipe = intel_crtc->pipe;
  2189. u32 reg, temp, i, retry;
  2190. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2191. for train result */
  2192. reg = FDI_RX_IMR(pipe);
  2193. temp = I915_READ(reg);
  2194. temp &= ~FDI_RX_SYMBOL_LOCK;
  2195. temp &= ~FDI_RX_BIT_LOCK;
  2196. I915_WRITE(reg, temp);
  2197. POSTING_READ(reg);
  2198. udelay(150);
  2199. /* enable CPU FDI TX and PCH FDI RX */
  2200. reg = FDI_TX_CTL(pipe);
  2201. temp = I915_READ(reg);
  2202. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2203. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2204. temp &= ~FDI_LINK_TRAIN_NONE;
  2205. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2206. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2207. /* SNB-B */
  2208. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2209. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2210. I915_WRITE(FDI_RX_MISC(pipe),
  2211. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2212. reg = FDI_RX_CTL(pipe);
  2213. temp = I915_READ(reg);
  2214. if (HAS_PCH_CPT(dev)) {
  2215. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2216. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2217. } else {
  2218. temp &= ~FDI_LINK_TRAIN_NONE;
  2219. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2220. }
  2221. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2222. POSTING_READ(reg);
  2223. udelay(150);
  2224. for (i = 0; i < 4; i++) {
  2225. reg = FDI_TX_CTL(pipe);
  2226. temp = I915_READ(reg);
  2227. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2228. temp |= snb_b_fdi_train_param[i];
  2229. I915_WRITE(reg, temp);
  2230. POSTING_READ(reg);
  2231. udelay(500);
  2232. for (retry = 0; retry < 5; retry++) {
  2233. reg = FDI_RX_IIR(pipe);
  2234. temp = I915_READ(reg);
  2235. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2236. if (temp & FDI_RX_BIT_LOCK) {
  2237. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2238. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2239. break;
  2240. }
  2241. udelay(50);
  2242. }
  2243. if (retry < 5)
  2244. break;
  2245. }
  2246. if (i == 4)
  2247. DRM_ERROR("FDI train 1 fail!\n");
  2248. /* Train 2 */
  2249. reg = FDI_TX_CTL(pipe);
  2250. temp = I915_READ(reg);
  2251. temp &= ~FDI_LINK_TRAIN_NONE;
  2252. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2253. if (IS_GEN6(dev)) {
  2254. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2255. /* SNB-B */
  2256. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2257. }
  2258. I915_WRITE(reg, temp);
  2259. reg = FDI_RX_CTL(pipe);
  2260. temp = I915_READ(reg);
  2261. if (HAS_PCH_CPT(dev)) {
  2262. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2263. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2264. } else {
  2265. temp &= ~FDI_LINK_TRAIN_NONE;
  2266. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2267. }
  2268. I915_WRITE(reg, temp);
  2269. POSTING_READ(reg);
  2270. udelay(150);
  2271. for (i = 0; i < 4; i++) {
  2272. reg = FDI_TX_CTL(pipe);
  2273. temp = I915_READ(reg);
  2274. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2275. temp |= snb_b_fdi_train_param[i];
  2276. I915_WRITE(reg, temp);
  2277. POSTING_READ(reg);
  2278. udelay(500);
  2279. for (retry = 0; retry < 5; retry++) {
  2280. reg = FDI_RX_IIR(pipe);
  2281. temp = I915_READ(reg);
  2282. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2283. if (temp & FDI_RX_SYMBOL_LOCK) {
  2284. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2285. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2286. break;
  2287. }
  2288. udelay(50);
  2289. }
  2290. if (retry < 5)
  2291. break;
  2292. }
  2293. if (i == 4)
  2294. DRM_ERROR("FDI train 2 fail!\n");
  2295. DRM_DEBUG_KMS("FDI train done.\n");
  2296. }
  2297. /* Manual link training for Ivy Bridge A0 parts */
  2298. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2299. {
  2300. struct drm_device *dev = crtc->dev;
  2301. struct drm_i915_private *dev_priv = dev->dev_private;
  2302. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2303. int pipe = intel_crtc->pipe;
  2304. u32 reg, temp, i, j;
  2305. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2306. for train result */
  2307. reg = FDI_RX_IMR(pipe);
  2308. temp = I915_READ(reg);
  2309. temp &= ~FDI_RX_SYMBOL_LOCK;
  2310. temp &= ~FDI_RX_BIT_LOCK;
  2311. I915_WRITE(reg, temp);
  2312. POSTING_READ(reg);
  2313. udelay(150);
  2314. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2315. I915_READ(FDI_RX_IIR(pipe)));
  2316. /* Try each vswing and preemphasis setting twice before moving on */
  2317. for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
  2318. /* disable first in case we need to retry */
  2319. reg = FDI_TX_CTL(pipe);
  2320. temp = I915_READ(reg);
  2321. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2322. temp &= ~FDI_TX_ENABLE;
  2323. I915_WRITE(reg, temp);
  2324. reg = FDI_RX_CTL(pipe);
  2325. temp = I915_READ(reg);
  2326. temp &= ~FDI_LINK_TRAIN_AUTO;
  2327. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2328. temp &= ~FDI_RX_ENABLE;
  2329. I915_WRITE(reg, temp);
  2330. /* enable CPU FDI TX and PCH FDI RX */
  2331. reg = FDI_TX_CTL(pipe);
  2332. temp = I915_READ(reg);
  2333. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2334. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2335. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2336. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2337. temp |= snb_b_fdi_train_param[j/2];
  2338. temp |= FDI_COMPOSITE_SYNC;
  2339. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2340. I915_WRITE(FDI_RX_MISC(pipe),
  2341. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2342. reg = FDI_RX_CTL(pipe);
  2343. temp = I915_READ(reg);
  2344. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2345. temp |= FDI_COMPOSITE_SYNC;
  2346. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2347. POSTING_READ(reg);
  2348. udelay(1); /* should be 0.5us */
  2349. for (i = 0; i < 4; i++) {
  2350. reg = FDI_RX_IIR(pipe);
  2351. temp = I915_READ(reg);
  2352. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2353. if (temp & FDI_RX_BIT_LOCK ||
  2354. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2355. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2356. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
  2357. i);
  2358. break;
  2359. }
  2360. udelay(1); /* should be 0.5us */
  2361. }
  2362. if (i == 4) {
  2363. DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
  2364. continue;
  2365. }
  2366. /* Train 2 */
  2367. reg = FDI_TX_CTL(pipe);
  2368. temp = I915_READ(reg);
  2369. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2370. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2371. I915_WRITE(reg, temp);
  2372. reg = FDI_RX_CTL(pipe);
  2373. temp = I915_READ(reg);
  2374. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2375. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2376. I915_WRITE(reg, temp);
  2377. POSTING_READ(reg);
  2378. udelay(2); /* should be 1.5us */
  2379. for (i = 0; i < 4; i++) {
  2380. reg = FDI_RX_IIR(pipe);
  2381. temp = I915_READ(reg);
  2382. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2383. if (temp & FDI_RX_SYMBOL_LOCK ||
  2384. (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
  2385. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2386. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
  2387. i);
  2388. goto train_done;
  2389. }
  2390. udelay(2); /* should be 1.5us */
  2391. }
  2392. if (i == 4)
  2393. DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
  2394. }
  2395. train_done:
  2396. DRM_DEBUG_KMS("FDI train done.\n");
  2397. }
  2398. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2399. {
  2400. struct drm_device *dev = intel_crtc->base.dev;
  2401. struct drm_i915_private *dev_priv = dev->dev_private;
  2402. int pipe = intel_crtc->pipe;
  2403. u32 reg, temp;
  2404. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2405. reg = FDI_RX_CTL(pipe);
  2406. temp = I915_READ(reg);
  2407. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2408. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2409. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2410. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2411. POSTING_READ(reg);
  2412. udelay(200);
  2413. /* Switch from Rawclk to PCDclk */
  2414. temp = I915_READ(reg);
  2415. I915_WRITE(reg, temp | FDI_PCDCLK);
  2416. POSTING_READ(reg);
  2417. udelay(200);
  2418. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2419. reg = FDI_TX_CTL(pipe);
  2420. temp = I915_READ(reg);
  2421. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2422. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2423. POSTING_READ(reg);
  2424. udelay(100);
  2425. }
  2426. }
  2427. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2428. {
  2429. struct drm_device *dev = intel_crtc->base.dev;
  2430. struct drm_i915_private *dev_priv = dev->dev_private;
  2431. int pipe = intel_crtc->pipe;
  2432. u32 reg, temp;
  2433. /* Switch from PCDclk to Rawclk */
  2434. reg = FDI_RX_CTL(pipe);
  2435. temp = I915_READ(reg);
  2436. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2437. /* Disable CPU FDI TX PLL */
  2438. reg = FDI_TX_CTL(pipe);
  2439. temp = I915_READ(reg);
  2440. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2441. POSTING_READ(reg);
  2442. udelay(100);
  2443. reg = FDI_RX_CTL(pipe);
  2444. temp = I915_READ(reg);
  2445. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2446. /* Wait for the clocks to turn off. */
  2447. POSTING_READ(reg);
  2448. udelay(100);
  2449. }
  2450. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2451. {
  2452. struct drm_device *dev = crtc->dev;
  2453. struct drm_i915_private *dev_priv = dev->dev_private;
  2454. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2455. int pipe = intel_crtc->pipe;
  2456. u32 reg, temp;
  2457. /* disable CPU FDI tx and PCH FDI rx */
  2458. reg = FDI_TX_CTL(pipe);
  2459. temp = I915_READ(reg);
  2460. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2461. POSTING_READ(reg);
  2462. reg = FDI_RX_CTL(pipe);
  2463. temp = I915_READ(reg);
  2464. temp &= ~(0x7 << 16);
  2465. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2466. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2467. POSTING_READ(reg);
  2468. udelay(100);
  2469. /* Ironlake workaround, disable clock pointer after downing FDI */
  2470. if (HAS_PCH_IBX(dev)) {
  2471. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2472. }
  2473. /* still set train pattern 1 */
  2474. reg = FDI_TX_CTL(pipe);
  2475. temp = I915_READ(reg);
  2476. temp &= ~FDI_LINK_TRAIN_NONE;
  2477. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2478. I915_WRITE(reg, temp);
  2479. reg = FDI_RX_CTL(pipe);
  2480. temp = I915_READ(reg);
  2481. if (HAS_PCH_CPT(dev)) {
  2482. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2483. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2484. } else {
  2485. temp &= ~FDI_LINK_TRAIN_NONE;
  2486. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2487. }
  2488. /* BPC in FDI rx is consistent with that in PIPECONF */
  2489. temp &= ~(0x07 << 16);
  2490. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2491. I915_WRITE(reg, temp);
  2492. POSTING_READ(reg);
  2493. udelay(100);
  2494. }
  2495. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2496. {
  2497. struct drm_device *dev = crtc->dev;
  2498. struct drm_i915_private *dev_priv = dev->dev_private;
  2499. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2500. unsigned long flags;
  2501. bool pending;
  2502. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2503. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2504. return false;
  2505. spin_lock_irqsave(&dev->event_lock, flags);
  2506. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2507. spin_unlock_irqrestore(&dev->event_lock, flags);
  2508. return pending;
  2509. }
  2510. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2511. {
  2512. struct drm_device *dev = crtc->dev;
  2513. struct drm_i915_private *dev_priv = dev->dev_private;
  2514. if (crtc->fb == NULL)
  2515. return;
  2516. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2517. wait_event(dev_priv->pending_flip_queue,
  2518. !intel_crtc_has_pending_flip(crtc));
  2519. mutex_lock(&dev->struct_mutex);
  2520. intel_finish_fb(crtc->fb);
  2521. mutex_unlock(&dev->struct_mutex);
  2522. }
  2523. /* Program iCLKIP clock to the desired frequency */
  2524. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2525. {
  2526. struct drm_device *dev = crtc->dev;
  2527. struct drm_i915_private *dev_priv = dev->dev_private;
  2528. int clock = to_intel_crtc(crtc)->config.adjusted_mode.clock;
  2529. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2530. u32 temp;
  2531. mutex_lock(&dev_priv->dpio_lock);
  2532. /* It is necessary to ungate the pixclk gate prior to programming
  2533. * the divisors, and gate it back when it is done.
  2534. */
  2535. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2536. /* Disable SSCCTL */
  2537. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2538. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2539. SBI_SSCCTL_DISABLE,
  2540. SBI_ICLK);
  2541. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2542. if (clock == 20000) {
  2543. auxdiv = 1;
  2544. divsel = 0x41;
  2545. phaseinc = 0x20;
  2546. } else {
  2547. /* The iCLK virtual clock root frequency is in MHz,
  2548. * but the adjusted_mode->clock in in KHz. To get the divisors,
  2549. * it is necessary to divide one by another, so we
  2550. * convert the virtual clock precision to KHz here for higher
  2551. * precision.
  2552. */
  2553. u32 iclk_virtual_root_freq = 172800 * 1000;
  2554. u32 iclk_pi_range = 64;
  2555. u32 desired_divisor, msb_divisor_value, pi_value;
  2556. desired_divisor = (iclk_virtual_root_freq / clock);
  2557. msb_divisor_value = desired_divisor / iclk_pi_range;
  2558. pi_value = desired_divisor % iclk_pi_range;
  2559. auxdiv = 0;
  2560. divsel = msb_divisor_value - 2;
  2561. phaseinc = pi_value;
  2562. }
  2563. /* This should not happen with any sane values */
  2564. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2565. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2566. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2567. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2568. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2569. clock,
  2570. auxdiv,
  2571. divsel,
  2572. phasedir,
  2573. phaseinc);
  2574. /* Program SSCDIVINTPHASE6 */
  2575. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2576. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2577. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2578. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2579. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2580. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2581. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2582. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2583. /* Program SSCAUXDIV */
  2584. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2585. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2586. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2587. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2588. /* Enable modulator and associated divider */
  2589. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2590. temp &= ~SBI_SSCCTL_DISABLE;
  2591. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2592. /* Wait for initialization time */
  2593. udelay(24);
  2594. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2595. mutex_unlock(&dev_priv->dpio_lock);
  2596. }
  2597. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2598. enum pipe pch_transcoder)
  2599. {
  2600. struct drm_device *dev = crtc->base.dev;
  2601. struct drm_i915_private *dev_priv = dev->dev_private;
  2602. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2603. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2604. I915_READ(HTOTAL(cpu_transcoder)));
  2605. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2606. I915_READ(HBLANK(cpu_transcoder)));
  2607. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2608. I915_READ(HSYNC(cpu_transcoder)));
  2609. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2610. I915_READ(VTOTAL(cpu_transcoder)));
  2611. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2612. I915_READ(VBLANK(cpu_transcoder)));
  2613. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2614. I915_READ(VSYNC(cpu_transcoder)));
  2615. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2616. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2617. }
  2618. /*
  2619. * Enable PCH resources required for PCH ports:
  2620. * - PCH PLLs
  2621. * - FDI training & RX/TX
  2622. * - update transcoder timings
  2623. * - DP transcoding bits
  2624. * - transcoder
  2625. */
  2626. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2627. {
  2628. struct drm_device *dev = crtc->dev;
  2629. struct drm_i915_private *dev_priv = dev->dev_private;
  2630. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2631. int pipe = intel_crtc->pipe;
  2632. u32 reg, temp;
  2633. assert_pch_transcoder_disabled(dev_priv, pipe);
  2634. /* Write the TU size bits before fdi link training, so that error
  2635. * detection works. */
  2636. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2637. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2638. /* For PCH output, training FDI link */
  2639. dev_priv->display.fdi_link_train(crtc);
  2640. /* We need to program the right clock selection before writing the pixel
  2641. * mutliplier into the DPLL. */
  2642. if (HAS_PCH_CPT(dev)) {
  2643. u32 sel;
  2644. temp = I915_READ(PCH_DPLL_SEL);
  2645. temp |= TRANS_DPLL_ENABLE(pipe);
  2646. sel = TRANS_DPLLB_SEL(pipe);
  2647. if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  2648. temp |= sel;
  2649. else
  2650. temp &= ~sel;
  2651. I915_WRITE(PCH_DPLL_SEL, temp);
  2652. }
  2653. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2654. * transcoder, and we actually should do this to not upset any PCH
  2655. * transcoder that already use the clock when we share it.
  2656. *
  2657. * Note that enable_shared_dpll tries to do the right thing, but
  2658. * get_shared_dpll unconditionally resets the pll - we need that to have
  2659. * the right LVDS enable sequence. */
  2660. ironlake_enable_shared_dpll(intel_crtc);
  2661. /* set transcoder timing, panel must allow it */
  2662. assert_panel_unlocked(dev_priv, pipe);
  2663. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2664. intel_fdi_normal_train(crtc);
  2665. /* For PCH DP, enable TRANS_DP_CTL */
  2666. if (HAS_PCH_CPT(dev) &&
  2667. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2668. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2669. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2670. reg = TRANS_DP_CTL(pipe);
  2671. temp = I915_READ(reg);
  2672. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2673. TRANS_DP_SYNC_MASK |
  2674. TRANS_DP_BPC_MASK);
  2675. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2676. TRANS_DP_ENH_FRAMING);
  2677. temp |= bpc << 9; /* same format but at 11:9 */
  2678. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2679. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2680. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2681. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2682. switch (intel_trans_dp_port_sel(crtc)) {
  2683. case PCH_DP_B:
  2684. temp |= TRANS_DP_PORT_SEL_B;
  2685. break;
  2686. case PCH_DP_C:
  2687. temp |= TRANS_DP_PORT_SEL_C;
  2688. break;
  2689. case PCH_DP_D:
  2690. temp |= TRANS_DP_PORT_SEL_D;
  2691. break;
  2692. default:
  2693. BUG();
  2694. }
  2695. I915_WRITE(reg, temp);
  2696. }
  2697. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2698. }
  2699. static void lpt_pch_enable(struct drm_crtc *crtc)
  2700. {
  2701. struct drm_device *dev = crtc->dev;
  2702. struct drm_i915_private *dev_priv = dev->dev_private;
  2703. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2704. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2705. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2706. lpt_program_iclkip(crtc);
  2707. /* Set transcoder timing. */
  2708. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2709. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2710. }
  2711. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  2712. {
  2713. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2714. if (pll == NULL)
  2715. return;
  2716. if (pll->refcount == 0) {
  2717. WARN(1, "bad %s refcount\n", pll->name);
  2718. return;
  2719. }
  2720. if (--pll->refcount == 0) {
  2721. WARN_ON(pll->on);
  2722. WARN_ON(pll->active);
  2723. }
  2724. crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  2725. }
  2726. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
  2727. {
  2728. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2729. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2730. enum intel_dpll_id i;
  2731. if (pll) {
  2732. DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  2733. crtc->base.base.id, pll->name);
  2734. intel_put_shared_dpll(crtc);
  2735. }
  2736. if (HAS_PCH_IBX(dev_priv->dev)) {
  2737. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2738. i = (enum intel_dpll_id) crtc->pipe;
  2739. pll = &dev_priv->shared_dplls[i];
  2740. DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  2741. crtc->base.base.id, pll->name);
  2742. goto found;
  2743. }
  2744. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2745. pll = &dev_priv->shared_dplls[i];
  2746. /* Only want to check enabled timings first */
  2747. if (pll->refcount == 0)
  2748. continue;
  2749. if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
  2750. sizeof(pll->hw_state)) == 0) {
  2751. DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  2752. crtc->base.base.id,
  2753. pll->name, pll->refcount, pll->active);
  2754. goto found;
  2755. }
  2756. }
  2757. /* Ok no matching timings, maybe there's a free one? */
  2758. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2759. pll = &dev_priv->shared_dplls[i];
  2760. if (pll->refcount == 0) {
  2761. DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  2762. crtc->base.base.id, pll->name);
  2763. goto found;
  2764. }
  2765. }
  2766. return NULL;
  2767. found:
  2768. crtc->config.shared_dpll = i;
  2769. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  2770. pipe_name(crtc->pipe));
  2771. if (pll->active == 0) {
  2772. memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  2773. sizeof(pll->hw_state));
  2774. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  2775. WARN_ON(pll->on);
  2776. assert_shared_dpll_disabled(dev_priv, pll);
  2777. pll->mode_set(dev_priv, pll);
  2778. }
  2779. pll->refcount++;
  2780. return pll;
  2781. }
  2782. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2783. {
  2784. struct drm_i915_private *dev_priv = dev->dev_private;
  2785. int dslreg = PIPEDSL(pipe);
  2786. u32 temp;
  2787. temp = I915_READ(dslreg);
  2788. udelay(500);
  2789. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2790. if (wait_for(I915_READ(dslreg) != temp, 5))
  2791. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2792. }
  2793. }
  2794. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2795. {
  2796. struct drm_device *dev = crtc->base.dev;
  2797. struct drm_i915_private *dev_priv = dev->dev_private;
  2798. int pipe = crtc->pipe;
  2799. if (crtc->config.pch_pfit.enabled) {
  2800. /* Force use of hard-coded filter coefficients
  2801. * as some pre-programmed values are broken,
  2802. * e.g. x201.
  2803. */
  2804. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2805. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2806. PF_PIPE_SEL_IVB(pipe));
  2807. else
  2808. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2809. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2810. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2811. }
  2812. }
  2813. static void intel_enable_planes(struct drm_crtc *crtc)
  2814. {
  2815. struct drm_device *dev = crtc->dev;
  2816. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2817. struct intel_plane *intel_plane;
  2818. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2819. if (intel_plane->pipe == pipe)
  2820. intel_plane_restore(&intel_plane->base);
  2821. }
  2822. static void intel_disable_planes(struct drm_crtc *crtc)
  2823. {
  2824. struct drm_device *dev = crtc->dev;
  2825. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2826. struct intel_plane *intel_plane;
  2827. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2828. if (intel_plane->pipe == pipe)
  2829. intel_plane_disable(&intel_plane->base);
  2830. }
  2831. static void hsw_enable_ips(struct intel_crtc *crtc)
  2832. {
  2833. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2834. if (!crtc->config.ips_enabled)
  2835. return;
  2836. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2837. * We guarantee that the plane is enabled by calling intel_enable_ips
  2838. * only after intel_enable_plane. And intel_enable_plane already waits
  2839. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2840. assert_plane_enabled(dev_priv, crtc->plane);
  2841. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2842. }
  2843. static void hsw_disable_ips(struct intel_crtc *crtc)
  2844. {
  2845. struct drm_device *dev = crtc->base.dev;
  2846. struct drm_i915_private *dev_priv = dev->dev_private;
  2847. if (!crtc->config.ips_enabled)
  2848. return;
  2849. assert_plane_enabled(dev_priv, crtc->plane);
  2850. I915_WRITE(IPS_CTL, 0);
  2851. POSTING_READ(IPS_CTL);
  2852. /* We need to wait for a vblank before we can disable the plane. */
  2853. intel_wait_for_vblank(dev, crtc->pipe);
  2854. }
  2855. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  2856. static void intel_crtc_load_lut(struct drm_crtc *crtc)
  2857. {
  2858. struct drm_device *dev = crtc->dev;
  2859. struct drm_i915_private *dev_priv = dev->dev_private;
  2860. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2861. enum pipe pipe = intel_crtc->pipe;
  2862. int palreg = PALETTE(pipe);
  2863. int i;
  2864. bool reenable_ips = false;
  2865. /* The clocks have to be on to load the palette. */
  2866. if (!crtc->enabled || !intel_crtc->active)
  2867. return;
  2868. if (!HAS_PCH_SPLIT(dev_priv->dev)) {
  2869. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  2870. assert_dsi_pll_enabled(dev_priv);
  2871. else
  2872. assert_pll_enabled(dev_priv, pipe);
  2873. }
  2874. /* use legacy palette for Ironlake */
  2875. if (HAS_PCH_SPLIT(dev))
  2876. palreg = LGC_PALETTE(pipe);
  2877. /* Workaround : Do not read or write the pipe palette/gamma data while
  2878. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  2879. */
  2880. if (intel_crtc->config.ips_enabled &&
  2881. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  2882. GAMMA_MODE_MODE_SPLIT)) {
  2883. hsw_disable_ips(intel_crtc);
  2884. reenable_ips = true;
  2885. }
  2886. for (i = 0; i < 256; i++) {
  2887. I915_WRITE(palreg + 4 * i,
  2888. (intel_crtc->lut_r[i] << 16) |
  2889. (intel_crtc->lut_g[i] << 8) |
  2890. intel_crtc->lut_b[i]);
  2891. }
  2892. if (reenable_ips)
  2893. hsw_enable_ips(intel_crtc);
  2894. }
  2895. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2896. {
  2897. struct drm_device *dev = crtc->dev;
  2898. struct drm_i915_private *dev_priv = dev->dev_private;
  2899. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2900. struct intel_encoder *encoder;
  2901. int pipe = intel_crtc->pipe;
  2902. int plane = intel_crtc->plane;
  2903. WARN_ON(!crtc->enabled);
  2904. if (intel_crtc->active)
  2905. return;
  2906. intel_crtc->active = true;
  2907. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2908. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2909. for_each_encoder_on_crtc(dev, crtc, encoder)
  2910. if (encoder->pre_enable)
  2911. encoder->pre_enable(encoder);
  2912. if (intel_crtc->config.has_pch_encoder) {
  2913. /* Note: FDI PLL enabling _must_ be done before we enable the
  2914. * cpu pipes, hence this is separate from all the other fdi/pch
  2915. * enabling. */
  2916. ironlake_fdi_pll_enable(intel_crtc);
  2917. } else {
  2918. assert_fdi_tx_disabled(dev_priv, pipe);
  2919. assert_fdi_rx_disabled(dev_priv, pipe);
  2920. }
  2921. ironlake_pfit_enable(intel_crtc);
  2922. /*
  2923. * On ILK+ LUT must be loaded before the pipe is running but with
  2924. * clocks enabled
  2925. */
  2926. intel_crtc_load_lut(crtc);
  2927. intel_update_watermarks(crtc);
  2928. intel_enable_pipe(dev_priv, pipe,
  2929. intel_crtc->config.has_pch_encoder, false);
  2930. intel_enable_plane(dev_priv, plane, pipe);
  2931. intel_enable_planes(crtc);
  2932. intel_crtc_update_cursor(crtc, true);
  2933. if (intel_crtc->config.has_pch_encoder)
  2934. ironlake_pch_enable(crtc);
  2935. mutex_lock(&dev->struct_mutex);
  2936. intel_update_fbc(dev);
  2937. mutex_unlock(&dev->struct_mutex);
  2938. for_each_encoder_on_crtc(dev, crtc, encoder)
  2939. encoder->enable(encoder);
  2940. if (HAS_PCH_CPT(dev))
  2941. cpt_verify_modeset(dev, intel_crtc->pipe);
  2942. /*
  2943. * There seems to be a race in PCH platform hw (at least on some
  2944. * outputs) where an enabled pipe still completes any pageflip right
  2945. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2946. * as the first vblank happend, everything works as expected. Hence just
  2947. * wait for one vblank before returning to avoid strange things
  2948. * happening.
  2949. */
  2950. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2951. }
  2952. /* IPS only exists on ULT machines and is tied to pipe A. */
  2953. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2954. {
  2955. return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  2956. }
  2957. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2958. {
  2959. struct drm_device *dev = crtc->dev;
  2960. struct drm_i915_private *dev_priv = dev->dev_private;
  2961. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2962. struct intel_encoder *encoder;
  2963. int pipe = intel_crtc->pipe;
  2964. int plane = intel_crtc->plane;
  2965. WARN_ON(!crtc->enabled);
  2966. if (intel_crtc->active)
  2967. return;
  2968. intel_crtc->active = true;
  2969. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2970. if (intel_crtc->config.has_pch_encoder)
  2971. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2972. if (intel_crtc->config.has_pch_encoder)
  2973. dev_priv->display.fdi_link_train(crtc);
  2974. for_each_encoder_on_crtc(dev, crtc, encoder)
  2975. if (encoder->pre_enable)
  2976. encoder->pre_enable(encoder);
  2977. intel_ddi_enable_pipe_clock(intel_crtc);
  2978. ironlake_pfit_enable(intel_crtc);
  2979. /*
  2980. * On ILK+ LUT must be loaded before the pipe is running but with
  2981. * clocks enabled
  2982. */
  2983. intel_crtc_load_lut(crtc);
  2984. intel_ddi_set_pipe_settings(crtc);
  2985. intel_ddi_enable_transcoder_func(crtc);
  2986. intel_update_watermarks(crtc);
  2987. intel_enable_pipe(dev_priv, pipe,
  2988. intel_crtc->config.has_pch_encoder, false);
  2989. intel_enable_plane(dev_priv, plane, pipe);
  2990. intel_enable_planes(crtc);
  2991. intel_crtc_update_cursor(crtc, true);
  2992. hsw_enable_ips(intel_crtc);
  2993. if (intel_crtc->config.has_pch_encoder)
  2994. lpt_pch_enable(crtc);
  2995. mutex_lock(&dev->struct_mutex);
  2996. intel_update_fbc(dev);
  2997. mutex_unlock(&dev->struct_mutex);
  2998. for_each_encoder_on_crtc(dev, crtc, encoder) {
  2999. encoder->enable(encoder);
  3000. intel_opregion_notify_encoder(encoder, true);
  3001. }
  3002. /*
  3003. * There seems to be a race in PCH platform hw (at least on some
  3004. * outputs) where an enabled pipe still completes any pageflip right
  3005. * away (as if the pipe is off) instead of waiting for vblank. As soon
  3006. * as the first vblank happend, everything works as expected. Hence just
  3007. * wait for one vblank before returning to avoid strange things
  3008. * happening.
  3009. */
  3010. intel_wait_for_vblank(dev, intel_crtc->pipe);
  3011. }
  3012. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  3013. {
  3014. struct drm_device *dev = crtc->base.dev;
  3015. struct drm_i915_private *dev_priv = dev->dev_private;
  3016. int pipe = crtc->pipe;
  3017. /* To avoid upsetting the power well on haswell only disable the pfit if
  3018. * it's in use. The hw state code will make sure we get this right. */
  3019. if (crtc->config.pch_pfit.enabled) {
  3020. I915_WRITE(PF_CTL(pipe), 0);
  3021. I915_WRITE(PF_WIN_POS(pipe), 0);
  3022. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3023. }
  3024. }
  3025. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  3026. {
  3027. struct drm_device *dev = crtc->dev;
  3028. struct drm_i915_private *dev_priv = dev->dev_private;
  3029. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3030. struct intel_encoder *encoder;
  3031. int pipe = intel_crtc->pipe;
  3032. int plane = intel_crtc->plane;
  3033. u32 reg, temp;
  3034. if (!intel_crtc->active)
  3035. return;
  3036. for_each_encoder_on_crtc(dev, crtc, encoder)
  3037. encoder->disable(encoder);
  3038. intel_crtc_wait_for_pending_flips(crtc);
  3039. drm_vblank_off(dev, pipe);
  3040. if (dev_priv->fbc.plane == plane)
  3041. intel_disable_fbc(dev);
  3042. intel_crtc_update_cursor(crtc, false);
  3043. intel_disable_planes(crtc);
  3044. intel_disable_plane(dev_priv, plane, pipe);
  3045. if (intel_crtc->config.has_pch_encoder)
  3046. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  3047. intel_disable_pipe(dev_priv, pipe);
  3048. ironlake_pfit_disable(intel_crtc);
  3049. for_each_encoder_on_crtc(dev, crtc, encoder)
  3050. if (encoder->post_disable)
  3051. encoder->post_disable(encoder);
  3052. if (intel_crtc->config.has_pch_encoder) {
  3053. ironlake_fdi_disable(crtc);
  3054. ironlake_disable_pch_transcoder(dev_priv, pipe);
  3055. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  3056. if (HAS_PCH_CPT(dev)) {
  3057. /* disable TRANS_DP_CTL */
  3058. reg = TRANS_DP_CTL(pipe);
  3059. temp = I915_READ(reg);
  3060. temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  3061. TRANS_DP_PORT_SEL_MASK);
  3062. temp |= TRANS_DP_PORT_SEL_NONE;
  3063. I915_WRITE(reg, temp);
  3064. /* disable DPLL_SEL */
  3065. temp = I915_READ(PCH_DPLL_SEL);
  3066. temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  3067. I915_WRITE(PCH_DPLL_SEL, temp);
  3068. }
  3069. /* disable PCH DPLL */
  3070. intel_disable_shared_dpll(intel_crtc);
  3071. ironlake_fdi_pll_disable(intel_crtc);
  3072. }
  3073. intel_crtc->active = false;
  3074. intel_update_watermarks(crtc);
  3075. mutex_lock(&dev->struct_mutex);
  3076. intel_update_fbc(dev);
  3077. mutex_unlock(&dev->struct_mutex);
  3078. }
  3079. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3080. {
  3081. struct drm_device *dev = crtc->dev;
  3082. struct drm_i915_private *dev_priv = dev->dev_private;
  3083. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3084. struct intel_encoder *encoder;
  3085. int pipe = intel_crtc->pipe;
  3086. int plane = intel_crtc->plane;
  3087. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3088. if (!intel_crtc->active)
  3089. return;
  3090. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3091. intel_opregion_notify_encoder(encoder, false);
  3092. encoder->disable(encoder);
  3093. }
  3094. intel_crtc_wait_for_pending_flips(crtc);
  3095. drm_vblank_off(dev, pipe);
  3096. /* FBC must be disabled before disabling the plane on HSW. */
  3097. if (dev_priv->fbc.plane == plane)
  3098. intel_disable_fbc(dev);
  3099. hsw_disable_ips(intel_crtc);
  3100. intel_crtc_update_cursor(crtc, false);
  3101. intel_disable_planes(crtc);
  3102. intel_disable_plane(dev_priv, plane, pipe);
  3103. if (intel_crtc->config.has_pch_encoder)
  3104. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3105. intel_disable_pipe(dev_priv, pipe);
  3106. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3107. ironlake_pfit_disable(intel_crtc);
  3108. intel_ddi_disable_pipe_clock(intel_crtc);
  3109. for_each_encoder_on_crtc(dev, crtc, encoder)
  3110. if (encoder->post_disable)
  3111. encoder->post_disable(encoder);
  3112. if (intel_crtc->config.has_pch_encoder) {
  3113. lpt_disable_pch_transcoder(dev_priv);
  3114. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3115. intel_ddi_fdi_disable(crtc);
  3116. }
  3117. intel_crtc->active = false;
  3118. intel_update_watermarks(crtc);
  3119. mutex_lock(&dev->struct_mutex);
  3120. intel_update_fbc(dev);
  3121. mutex_unlock(&dev->struct_mutex);
  3122. }
  3123. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3124. {
  3125. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3126. intel_put_shared_dpll(intel_crtc);
  3127. }
  3128. static void haswell_crtc_off(struct drm_crtc *crtc)
  3129. {
  3130. intel_ddi_put_crtc_pll(crtc);
  3131. }
  3132. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3133. {
  3134. if (!enable && intel_crtc->overlay) {
  3135. struct drm_device *dev = intel_crtc->base.dev;
  3136. struct drm_i915_private *dev_priv = dev->dev_private;
  3137. mutex_lock(&dev->struct_mutex);
  3138. dev_priv->mm.interruptible = false;
  3139. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3140. dev_priv->mm.interruptible = true;
  3141. mutex_unlock(&dev->struct_mutex);
  3142. }
  3143. /* Let userspace switch the overlay on again. In most cases userspace
  3144. * has to recompute where to put it anyway.
  3145. */
  3146. }
  3147. /**
  3148. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3149. * cursor plane briefly if not already running after enabling the display
  3150. * plane.
  3151. * This workaround avoids occasional blank screens when self refresh is
  3152. * enabled.
  3153. */
  3154. static void
  3155. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3156. {
  3157. u32 cntl = I915_READ(CURCNTR(pipe));
  3158. if ((cntl & CURSOR_MODE) == 0) {
  3159. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3160. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3161. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3162. intel_wait_for_vblank(dev_priv->dev, pipe);
  3163. I915_WRITE(CURCNTR(pipe), cntl);
  3164. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3165. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3166. }
  3167. }
  3168. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3169. {
  3170. struct drm_device *dev = crtc->base.dev;
  3171. struct drm_i915_private *dev_priv = dev->dev_private;
  3172. struct intel_crtc_config *pipe_config = &crtc->config;
  3173. if (!crtc->config.gmch_pfit.control)
  3174. return;
  3175. /*
  3176. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3177. * according to register description and PRM.
  3178. */
  3179. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3180. assert_pipe_disabled(dev_priv, crtc->pipe);
  3181. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3182. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3183. /* Border color in case we don't scale up to the full screen. Black by
  3184. * default, change to something else for debugging. */
  3185. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3186. }
  3187. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3188. {
  3189. struct drm_device *dev = crtc->dev;
  3190. struct drm_i915_private *dev_priv = dev->dev_private;
  3191. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3192. struct intel_encoder *encoder;
  3193. int pipe = intel_crtc->pipe;
  3194. int plane = intel_crtc->plane;
  3195. bool is_dsi;
  3196. WARN_ON(!crtc->enabled);
  3197. if (intel_crtc->active)
  3198. return;
  3199. intel_crtc->active = true;
  3200. for_each_encoder_on_crtc(dev, crtc, encoder)
  3201. if (encoder->pre_pll_enable)
  3202. encoder->pre_pll_enable(encoder);
  3203. is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
  3204. if (!is_dsi)
  3205. vlv_enable_pll(intel_crtc);
  3206. for_each_encoder_on_crtc(dev, crtc, encoder)
  3207. if (encoder->pre_enable)
  3208. encoder->pre_enable(encoder);
  3209. i9xx_pfit_enable(intel_crtc);
  3210. intel_crtc_load_lut(crtc);
  3211. intel_update_watermarks(crtc);
  3212. intel_enable_pipe(dev_priv, pipe, false, is_dsi);
  3213. intel_enable_plane(dev_priv, plane, pipe);
  3214. intel_enable_planes(crtc);
  3215. intel_crtc_update_cursor(crtc, true);
  3216. intel_update_fbc(dev);
  3217. for_each_encoder_on_crtc(dev, crtc, encoder)
  3218. encoder->enable(encoder);
  3219. }
  3220. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3221. {
  3222. struct drm_device *dev = crtc->dev;
  3223. struct drm_i915_private *dev_priv = dev->dev_private;
  3224. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3225. struct intel_encoder *encoder;
  3226. int pipe = intel_crtc->pipe;
  3227. int plane = intel_crtc->plane;
  3228. WARN_ON(!crtc->enabled);
  3229. if (intel_crtc->active)
  3230. return;
  3231. intel_crtc->active = true;
  3232. for_each_encoder_on_crtc(dev, crtc, encoder)
  3233. if (encoder->pre_enable)
  3234. encoder->pre_enable(encoder);
  3235. i9xx_enable_pll(intel_crtc);
  3236. i9xx_pfit_enable(intel_crtc);
  3237. intel_crtc_load_lut(crtc);
  3238. intel_update_watermarks(crtc);
  3239. intel_enable_pipe(dev_priv, pipe, false, false);
  3240. intel_enable_plane(dev_priv, plane, pipe);
  3241. intel_enable_planes(crtc);
  3242. /* The fixup needs to happen before cursor is enabled */
  3243. if (IS_G4X(dev))
  3244. g4x_fixup_plane(dev_priv, pipe);
  3245. intel_crtc_update_cursor(crtc, true);
  3246. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3247. intel_crtc_dpms_overlay(intel_crtc, true);
  3248. intel_update_fbc(dev);
  3249. for_each_encoder_on_crtc(dev, crtc, encoder)
  3250. encoder->enable(encoder);
  3251. }
  3252. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3253. {
  3254. struct drm_device *dev = crtc->base.dev;
  3255. struct drm_i915_private *dev_priv = dev->dev_private;
  3256. if (!crtc->config.gmch_pfit.control)
  3257. return;
  3258. assert_pipe_disabled(dev_priv, crtc->pipe);
  3259. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3260. I915_READ(PFIT_CONTROL));
  3261. I915_WRITE(PFIT_CONTROL, 0);
  3262. }
  3263. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3264. {
  3265. struct drm_device *dev = crtc->dev;
  3266. struct drm_i915_private *dev_priv = dev->dev_private;
  3267. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3268. struct intel_encoder *encoder;
  3269. int pipe = intel_crtc->pipe;
  3270. int plane = intel_crtc->plane;
  3271. if (!intel_crtc->active)
  3272. return;
  3273. for_each_encoder_on_crtc(dev, crtc, encoder)
  3274. encoder->disable(encoder);
  3275. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3276. intel_crtc_wait_for_pending_flips(crtc);
  3277. drm_vblank_off(dev, pipe);
  3278. if (dev_priv->fbc.plane == plane)
  3279. intel_disable_fbc(dev);
  3280. intel_crtc_dpms_overlay(intel_crtc, false);
  3281. intel_crtc_update_cursor(crtc, false);
  3282. intel_disable_planes(crtc);
  3283. intel_disable_plane(dev_priv, plane, pipe);
  3284. intel_disable_pipe(dev_priv, pipe);
  3285. i9xx_pfit_disable(intel_crtc);
  3286. for_each_encoder_on_crtc(dev, crtc, encoder)
  3287. if (encoder->post_disable)
  3288. encoder->post_disable(encoder);
  3289. if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  3290. i9xx_disable_pll(dev_priv, pipe);
  3291. intel_crtc->active = false;
  3292. intel_update_watermarks(crtc);
  3293. intel_update_fbc(dev);
  3294. }
  3295. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3296. {
  3297. }
  3298. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3299. bool enabled)
  3300. {
  3301. struct drm_device *dev = crtc->dev;
  3302. struct drm_i915_master_private *master_priv;
  3303. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3304. int pipe = intel_crtc->pipe;
  3305. if (!dev->primary->master)
  3306. return;
  3307. master_priv = dev->primary->master->driver_priv;
  3308. if (!master_priv->sarea_priv)
  3309. return;
  3310. switch (pipe) {
  3311. case 0:
  3312. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3313. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3314. break;
  3315. case 1:
  3316. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3317. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3318. break;
  3319. default:
  3320. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3321. break;
  3322. }
  3323. }
  3324. /**
  3325. * Sets the power management mode of the pipe and plane.
  3326. */
  3327. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3328. {
  3329. struct drm_device *dev = crtc->dev;
  3330. struct drm_i915_private *dev_priv = dev->dev_private;
  3331. struct intel_encoder *intel_encoder;
  3332. bool enable = false;
  3333. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3334. enable |= intel_encoder->connectors_active;
  3335. if (enable)
  3336. dev_priv->display.crtc_enable(crtc);
  3337. else
  3338. dev_priv->display.crtc_disable(crtc);
  3339. intel_crtc_update_sarea(crtc, enable);
  3340. }
  3341. static void intel_crtc_disable(struct drm_crtc *crtc)
  3342. {
  3343. struct drm_device *dev = crtc->dev;
  3344. struct drm_connector *connector;
  3345. struct drm_i915_private *dev_priv = dev->dev_private;
  3346. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3347. /* crtc should still be enabled when we disable it. */
  3348. WARN_ON(!crtc->enabled);
  3349. dev_priv->display.crtc_disable(crtc);
  3350. intel_crtc->eld_vld = false;
  3351. intel_crtc_update_sarea(crtc, false);
  3352. dev_priv->display.off(crtc);
  3353. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3354. assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
  3355. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3356. if (crtc->fb) {
  3357. mutex_lock(&dev->struct_mutex);
  3358. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3359. mutex_unlock(&dev->struct_mutex);
  3360. crtc->fb = NULL;
  3361. }
  3362. /* Update computed state. */
  3363. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3364. if (!connector->encoder || !connector->encoder->crtc)
  3365. continue;
  3366. if (connector->encoder->crtc != crtc)
  3367. continue;
  3368. connector->dpms = DRM_MODE_DPMS_OFF;
  3369. to_intel_encoder(connector->encoder)->connectors_active = false;
  3370. }
  3371. }
  3372. void intel_encoder_destroy(struct drm_encoder *encoder)
  3373. {
  3374. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3375. drm_encoder_cleanup(encoder);
  3376. kfree(intel_encoder);
  3377. }
  3378. /* Simple dpms helper for encoders with just one connector, no cloning and only
  3379. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3380. * state of the entire output pipe. */
  3381. static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3382. {
  3383. if (mode == DRM_MODE_DPMS_ON) {
  3384. encoder->connectors_active = true;
  3385. intel_crtc_update_dpms(encoder->base.crtc);
  3386. } else {
  3387. encoder->connectors_active = false;
  3388. intel_crtc_update_dpms(encoder->base.crtc);
  3389. }
  3390. }
  3391. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3392. * internal consistency). */
  3393. static void intel_connector_check_state(struct intel_connector *connector)
  3394. {
  3395. if (connector->get_hw_state(connector)) {
  3396. struct intel_encoder *encoder = connector->encoder;
  3397. struct drm_crtc *crtc;
  3398. bool encoder_enabled;
  3399. enum pipe pipe;
  3400. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3401. connector->base.base.id,
  3402. drm_get_connector_name(&connector->base));
  3403. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3404. "wrong connector dpms state\n");
  3405. WARN(connector->base.encoder != &encoder->base,
  3406. "active connector not linked to encoder\n");
  3407. WARN(!encoder->connectors_active,
  3408. "encoder->connectors_active not set\n");
  3409. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3410. WARN(!encoder_enabled, "encoder not enabled\n");
  3411. if (WARN_ON(!encoder->base.crtc))
  3412. return;
  3413. crtc = encoder->base.crtc;
  3414. WARN(!crtc->enabled, "crtc not enabled\n");
  3415. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3416. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3417. "encoder active on the wrong pipe\n");
  3418. }
  3419. }
  3420. /* Even simpler default implementation, if there's really no special case to
  3421. * consider. */
  3422. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3423. {
  3424. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3425. /* All the simple cases only support two dpms states. */
  3426. if (mode != DRM_MODE_DPMS_ON)
  3427. mode = DRM_MODE_DPMS_OFF;
  3428. if (mode == connector->dpms)
  3429. return;
  3430. connector->dpms = mode;
  3431. /* Only need to change hw state when actually enabled */
  3432. if (encoder->base.crtc)
  3433. intel_encoder_dpms(encoder, mode);
  3434. else
  3435. WARN_ON(encoder->connectors_active != false);
  3436. intel_modeset_check_state(connector->dev);
  3437. }
  3438. /* Simple connector->get_hw_state implementation for encoders that support only
  3439. * one connector and no cloning and hence the encoder state determines the state
  3440. * of the connector. */
  3441. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3442. {
  3443. enum pipe pipe = 0;
  3444. struct intel_encoder *encoder = connector->encoder;
  3445. return encoder->get_hw_state(encoder, &pipe);
  3446. }
  3447. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3448. struct intel_crtc_config *pipe_config)
  3449. {
  3450. struct drm_i915_private *dev_priv = dev->dev_private;
  3451. struct intel_crtc *pipe_B_crtc =
  3452. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3453. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3454. pipe_name(pipe), pipe_config->fdi_lanes);
  3455. if (pipe_config->fdi_lanes > 4) {
  3456. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3457. pipe_name(pipe), pipe_config->fdi_lanes);
  3458. return false;
  3459. }
  3460. if (IS_HASWELL(dev)) {
  3461. if (pipe_config->fdi_lanes > 2) {
  3462. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3463. pipe_config->fdi_lanes);
  3464. return false;
  3465. } else {
  3466. return true;
  3467. }
  3468. }
  3469. if (INTEL_INFO(dev)->num_pipes == 2)
  3470. return true;
  3471. /* Ivybridge 3 pipe is really complicated */
  3472. switch (pipe) {
  3473. case PIPE_A:
  3474. return true;
  3475. case PIPE_B:
  3476. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3477. pipe_config->fdi_lanes > 2) {
  3478. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3479. pipe_name(pipe), pipe_config->fdi_lanes);
  3480. return false;
  3481. }
  3482. return true;
  3483. case PIPE_C:
  3484. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3485. pipe_B_crtc->config.fdi_lanes <= 2) {
  3486. if (pipe_config->fdi_lanes > 2) {
  3487. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3488. pipe_name(pipe), pipe_config->fdi_lanes);
  3489. return false;
  3490. }
  3491. } else {
  3492. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3493. return false;
  3494. }
  3495. return true;
  3496. default:
  3497. BUG();
  3498. }
  3499. }
  3500. #define RETRY 1
  3501. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3502. struct intel_crtc_config *pipe_config)
  3503. {
  3504. struct drm_device *dev = intel_crtc->base.dev;
  3505. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3506. int lane, link_bw, fdi_dotclock;
  3507. bool setup_ok, needs_recompute = false;
  3508. retry:
  3509. /* FDI is a binary signal running at ~2.7GHz, encoding
  3510. * each output octet as 10 bits. The actual frequency
  3511. * is stored as a divider into a 100MHz clock, and the
  3512. * mode pixel clock is stored in units of 1KHz.
  3513. * Hence the bw of each lane in terms of the mode signal
  3514. * is:
  3515. */
  3516. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3517. fdi_dotclock = adjusted_mode->clock;
  3518. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3519. pipe_config->pipe_bpp);
  3520. pipe_config->fdi_lanes = lane;
  3521. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3522. link_bw, &pipe_config->fdi_m_n);
  3523. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3524. intel_crtc->pipe, pipe_config);
  3525. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3526. pipe_config->pipe_bpp -= 2*3;
  3527. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3528. pipe_config->pipe_bpp);
  3529. needs_recompute = true;
  3530. pipe_config->bw_constrained = true;
  3531. goto retry;
  3532. }
  3533. if (needs_recompute)
  3534. return RETRY;
  3535. return setup_ok ? 0 : -EINVAL;
  3536. }
  3537. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3538. struct intel_crtc_config *pipe_config)
  3539. {
  3540. pipe_config->ips_enabled = i915_enable_ips &&
  3541. hsw_crtc_supports_ips(crtc) &&
  3542. pipe_config->pipe_bpp <= 24;
  3543. }
  3544. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  3545. struct intel_crtc_config *pipe_config)
  3546. {
  3547. struct drm_device *dev = crtc->base.dev;
  3548. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3549. /* FIXME should check pixel clock limits on all platforms */
  3550. if (INTEL_INFO(dev)->gen < 4) {
  3551. struct drm_i915_private *dev_priv = dev->dev_private;
  3552. int clock_limit =
  3553. dev_priv->display.get_display_clock_speed(dev);
  3554. /*
  3555. * Enable pixel doubling when the dot clock
  3556. * is > 90% of the (display) core speed.
  3557. *
  3558. * GDG double wide on either pipe,
  3559. * otherwise pipe A only.
  3560. */
  3561. if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
  3562. adjusted_mode->clock > clock_limit * 9 / 10) {
  3563. clock_limit *= 2;
  3564. pipe_config->double_wide = true;
  3565. }
  3566. if (adjusted_mode->clock > clock_limit * 9 / 10)
  3567. return -EINVAL;
  3568. }
  3569. /*
  3570. * Pipe horizontal size must be even in:
  3571. * - DVO ganged mode
  3572. * - LVDS dual channel mode
  3573. * - Double wide pipe
  3574. */
  3575. if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3576. intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
  3577. pipe_config->pipe_src_w &= ~1;
  3578. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3579. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3580. */
  3581. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3582. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3583. return -EINVAL;
  3584. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3585. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3586. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3587. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3588. * for lvds. */
  3589. pipe_config->pipe_bpp = 8*3;
  3590. }
  3591. if (HAS_IPS(dev))
  3592. hsw_compute_ips_config(crtc, pipe_config);
  3593. /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  3594. * clock survives for now. */
  3595. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  3596. pipe_config->shared_dpll = crtc->config.shared_dpll;
  3597. if (pipe_config->has_pch_encoder)
  3598. return ironlake_fdi_compute_config(crtc, pipe_config);
  3599. return 0;
  3600. }
  3601. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3602. {
  3603. return 400000; /* FIXME */
  3604. }
  3605. static int i945_get_display_clock_speed(struct drm_device *dev)
  3606. {
  3607. return 400000;
  3608. }
  3609. static int i915_get_display_clock_speed(struct drm_device *dev)
  3610. {
  3611. return 333000;
  3612. }
  3613. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3614. {
  3615. return 200000;
  3616. }
  3617. static int pnv_get_display_clock_speed(struct drm_device *dev)
  3618. {
  3619. u16 gcfgc = 0;
  3620. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3621. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3622. case GC_DISPLAY_CLOCK_267_MHZ_PNV:
  3623. return 267000;
  3624. case GC_DISPLAY_CLOCK_333_MHZ_PNV:
  3625. return 333000;
  3626. case GC_DISPLAY_CLOCK_444_MHZ_PNV:
  3627. return 444000;
  3628. case GC_DISPLAY_CLOCK_200_MHZ_PNV:
  3629. return 200000;
  3630. default:
  3631. DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
  3632. case GC_DISPLAY_CLOCK_133_MHZ_PNV:
  3633. return 133000;
  3634. case GC_DISPLAY_CLOCK_167_MHZ_PNV:
  3635. return 167000;
  3636. }
  3637. }
  3638. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3639. {
  3640. u16 gcfgc = 0;
  3641. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3642. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3643. return 133000;
  3644. else {
  3645. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3646. case GC_DISPLAY_CLOCK_333_MHZ:
  3647. return 333000;
  3648. default:
  3649. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3650. return 190000;
  3651. }
  3652. }
  3653. }
  3654. static int i865_get_display_clock_speed(struct drm_device *dev)
  3655. {
  3656. return 266000;
  3657. }
  3658. static int i855_get_display_clock_speed(struct drm_device *dev)
  3659. {
  3660. u16 hpllcc = 0;
  3661. /* Assume that the hardware is in the high speed state. This
  3662. * should be the default.
  3663. */
  3664. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3665. case GC_CLOCK_133_200:
  3666. case GC_CLOCK_100_200:
  3667. return 200000;
  3668. case GC_CLOCK_166_250:
  3669. return 250000;
  3670. case GC_CLOCK_100_133:
  3671. return 133000;
  3672. }
  3673. /* Shouldn't happen */
  3674. return 0;
  3675. }
  3676. static int i830_get_display_clock_speed(struct drm_device *dev)
  3677. {
  3678. return 133000;
  3679. }
  3680. static void
  3681. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3682. {
  3683. while (*num > DATA_LINK_M_N_MASK ||
  3684. *den > DATA_LINK_M_N_MASK) {
  3685. *num >>= 1;
  3686. *den >>= 1;
  3687. }
  3688. }
  3689. static void compute_m_n(unsigned int m, unsigned int n,
  3690. uint32_t *ret_m, uint32_t *ret_n)
  3691. {
  3692. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3693. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3694. intel_reduce_m_n_ratio(ret_m, ret_n);
  3695. }
  3696. void
  3697. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3698. int pixel_clock, int link_clock,
  3699. struct intel_link_m_n *m_n)
  3700. {
  3701. m_n->tu = 64;
  3702. compute_m_n(bits_per_pixel * pixel_clock,
  3703. link_clock * nlanes * 8,
  3704. &m_n->gmch_m, &m_n->gmch_n);
  3705. compute_m_n(pixel_clock, link_clock,
  3706. &m_n->link_m, &m_n->link_n);
  3707. }
  3708. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3709. {
  3710. if (i915_panel_use_ssc >= 0)
  3711. return i915_panel_use_ssc != 0;
  3712. return dev_priv->vbt.lvds_use_ssc
  3713. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3714. }
  3715. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3716. {
  3717. struct drm_device *dev = crtc->dev;
  3718. struct drm_i915_private *dev_priv = dev->dev_private;
  3719. int refclk;
  3720. if (IS_VALLEYVIEW(dev)) {
  3721. refclk = 100000;
  3722. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3723. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3724. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3725. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3726. refclk / 1000);
  3727. } else if (!IS_GEN2(dev)) {
  3728. refclk = 96000;
  3729. } else {
  3730. refclk = 48000;
  3731. }
  3732. return refclk;
  3733. }
  3734. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3735. {
  3736. return (1 << dpll->n) << 16 | dpll->m2;
  3737. }
  3738. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3739. {
  3740. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3741. }
  3742. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3743. intel_clock_t *reduced_clock)
  3744. {
  3745. struct drm_device *dev = crtc->base.dev;
  3746. struct drm_i915_private *dev_priv = dev->dev_private;
  3747. int pipe = crtc->pipe;
  3748. u32 fp, fp2 = 0;
  3749. if (IS_PINEVIEW(dev)) {
  3750. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3751. if (reduced_clock)
  3752. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3753. } else {
  3754. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3755. if (reduced_clock)
  3756. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3757. }
  3758. I915_WRITE(FP0(pipe), fp);
  3759. crtc->config.dpll_hw_state.fp0 = fp;
  3760. crtc->lowfreq_avail = false;
  3761. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3762. reduced_clock && i915_powersave) {
  3763. I915_WRITE(FP1(pipe), fp2);
  3764. crtc->config.dpll_hw_state.fp1 = fp2;
  3765. crtc->lowfreq_avail = true;
  3766. } else {
  3767. I915_WRITE(FP1(pipe), fp);
  3768. crtc->config.dpll_hw_state.fp1 = fp;
  3769. }
  3770. }
  3771. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
  3772. pipe)
  3773. {
  3774. u32 reg_val;
  3775. /*
  3776. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3777. * and set it to a reasonable value instead.
  3778. */
  3779. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3780. reg_val &= 0xffffff00;
  3781. reg_val |= 0x00000030;
  3782. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3783. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3784. reg_val &= 0x8cffffff;
  3785. reg_val = 0x8c000000;
  3786. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3787. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3788. reg_val &= 0xffffff00;
  3789. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3790. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3791. reg_val &= 0x00ffffff;
  3792. reg_val |= 0xb0000000;
  3793. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3794. }
  3795. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3796. struct intel_link_m_n *m_n)
  3797. {
  3798. struct drm_device *dev = crtc->base.dev;
  3799. struct drm_i915_private *dev_priv = dev->dev_private;
  3800. int pipe = crtc->pipe;
  3801. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3802. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3803. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3804. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3805. }
  3806. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3807. struct intel_link_m_n *m_n)
  3808. {
  3809. struct drm_device *dev = crtc->base.dev;
  3810. struct drm_i915_private *dev_priv = dev->dev_private;
  3811. int pipe = crtc->pipe;
  3812. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3813. if (INTEL_INFO(dev)->gen >= 5) {
  3814. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3815. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3816. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3817. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3818. } else {
  3819. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3820. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3821. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3822. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3823. }
  3824. }
  3825. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3826. {
  3827. if (crtc->config.has_pch_encoder)
  3828. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3829. else
  3830. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3831. }
  3832. static void vlv_update_pll(struct intel_crtc *crtc)
  3833. {
  3834. struct drm_device *dev = crtc->base.dev;
  3835. struct drm_i915_private *dev_priv = dev->dev_private;
  3836. int pipe = crtc->pipe;
  3837. u32 dpll, mdiv;
  3838. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3839. u32 coreclk, reg_val, dpll_md;
  3840. mutex_lock(&dev_priv->dpio_lock);
  3841. bestn = crtc->config.dpll.n;
  3842. bestm1 = crtc->config.dpll.m1;
  3843. bestm2 = crtc->config.dpll.m2;
  3844. bestp1 = crtc->config.dpll.p1;
  3845. bestp2 = crtc->config.dpll.p2;
  3846. /* See eDP HDMI DPIO driver vbios notes doc */
  3847. /* PLL B needs special handling */
  3848. if (pipe)
  3849. vlv_pllb_recal_opamp(dev_priv, pipe);
  3850. /* Set up Tx target for periodic Rcomp update */
  3851. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
  3852. /* Disable target IRef on PLL */
  3853. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
  3854. reg_val &= 0x00ffffff;
  3855. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
  3856. /* Disable fast lock */
  3857. vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
  3858. /* Set idtafcrecal before PLL is enabled */
  3859. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3860. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3861. mdiv |= ((bestn << DPIO_N_SHIFT));
  3862. mdiv |= (1 << DPIO_K_SHIFT);
  3863. /*
  3864. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3865. * but we don't support that).
  3866. * Note: don't use the DAC post divider as it seems unstable.
  3867. */
  3868. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3869. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  3870. mdiv |= DPIO_ENABLE_CALIBRATION;
  3871. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  3872. /* Set HBR and RBR LPF coefficients */
  3873. if (crtc->config.port_clock == 162000 ||
  3874. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
  3875. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3876. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  3877. 0x009f0003);
  3878. else
  3879. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  3880. 0x00d0000f);
  3881. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3882. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3883. /* Use SSC source */
  3884. if (!pipe)
  3885. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3886. 0x0df40000);
  3887. else
  3888. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3889. 0x0df70000);
  3890. } else { /* HDMI or VGA */
  3891. /* Use bend source */
  3892. if (!pipe)
  3893. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3894. 0x0df70000);
  3895. else
  3896. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3897. 0x0df40000);
  3898. }
  3899. coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
  3900. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3901. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3902. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3903. coreclk |= 0x01000000;
  3904. vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
  3905. vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
  3906. /* Enable DPIO clock input */
  3907. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3908. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3909. if (pipe)
  3910. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3911. dpll |= DPLL_VCO_ENABLE;
  3912. crtc->config.dpll_hw_state.dpll = dpll;
  3913. dpll_md = (crtc->config.pixel_multiplier - 1)
  3914. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3915. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3916. if (crtc->config.has_dp_encoder)
  3917. intel_dp_set_m_n(crtc);
  3918. mutex_unlock(&dev_priv->dpio_lock);
  3919. }
  3920. static void i9xx_update_pll(struct intel_crtc *crtc,
  3921. intel_clock_t *reduced_clock,
  3922. int num_connectors)
  3923. {
  3924. struct drm_device *dev = crtc->base.dev;
  3925. struct drm_i915_private *dev_priv = dev->dev_private;
  3926. u32 dpll;
  3927. bool is_sdvo;
  3928. struct dpll *clock = &crtc->config.dpll;
  3929. i9xx_update_pll_dividers(crtc, reduced_clock);
  3930. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3931. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3932. dpll = DPLL_VGA_MODE_DIS;
  3933. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3934. dpll |= DPLLB_MODE_LVDS;
  3935. else
  3936. dpll |= DPLLB_MODE_DAC_SERIAL;
  3937. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  3938. dpll |= (crtc->config.pixel_multiplier - 1)
  3939. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3940. }
  3941. if (is_sdvo)
  3942. dpll |= DPLL_SDVO_HIGH_SPEED;
  3943. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3944. dpll |= DPLL_SDVO_HIGH_SPEED;
  3945. /* compute bitmask from p1 value */
  3946. if (IS_PINEVIEW(dev))
  3947. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3948. else {
  3949. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3950. if (IS_G4X(dev) && reduced_clock)
  3951. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3952. }
  3953. switch (clock->p2) {
  3954. case 5:
  3955. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3956. break;
  3957. case 7:
  3958. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3959. break;
  3960. case 10:
  3961. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3962. break;
  3963. case 14:
  3964. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3965. break;
  3966. }
  3967. if (INTEL_INFO(dev)->gen >= 4)
  3968. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3969. if (crtc->config.sdvo_tv_clock)
  3970. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3971. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3972. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3973. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3974. else
  3975. dpll |= PLL_REF_INPUT_DREFCLK;
  3976. dpll |= DPLL_VCO_ENABLE;
  3977. crtc->config.dpll_hw_state.dpll = dpll;
  3978. if (INTEL_INFO(dev)->gen >= 4) {
  3979. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  3980. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3981. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3982. }
  3983. if (crtc->config.has_dp_encoder)
  3984. intel_dp_set_m_n(crtc);
  3985. }
  3986. static void i8xx_update_pll(struct intel_crtc *crtc,
  3987. intel_clock_t *reduced_clock,
  3988. int num_connectors)
  3989. {
  3990. struct drm_device *dev = crtc->base.dev;
  3991. struct drm_i915_private *dev_priv = dev->dev_private;
  3992. u32 dpll;
  3993. struct dpll *clock = &crtc->config.dpll;
  3994. i9xx_update_pll_dividers(crtc, reduced_clock);
  3995. dpll = DPLL_VGA_MODE_DIS;
  3996. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3997. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3998. } else {
  3999. if (clock->p1 == 2)
  4000. dpll |= PLL_P1_DIVIDE_BY_TWO;
  4001. else
  4002. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4003. if (clock->p2 == 4)
  4004. dpll |= PLL_P2_DIVIDE_BY_4;
  4005. }
  4006. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
  4007. dpll |= DPLL_DVO_2X_MODE;
  4008. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  4009. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4010. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4011. else
  4012. dpll |= PLL_REF_INPUT_DREFCLK;
  4013. dpll |= DPLL_VCO_ENABLE;
  4014. crtc->config.dpll_hw_state.dpll = dpll;
  4015. }
  4016. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  4017. {
  4018. struct drm_device *dev = intel_crtc->base.dev;
  4019. struct drm_i915_private *dev_priv = dev->dev_private;
  4020. enum pipe pipe = intel_crtc->pipe;
  4021. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4022. struct drm_display_mode *adjusted_mode =
  4023. &intel_crtc->config.adjusted_mode;
  4024. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  4025. /* We need to be careful not to changed the adjusted mode, for otherwise
  4026. * the hw state checker will get angry at the mismatch. */
  4027. crtc_vtotal = adjusted_mode->crtc_vtotal;
  4028. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  4029. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4030. /* the chip adds 2 halflines automatically */
  4031. crtc_vtotal -= 1;
  4032. crtc_vblank_end -= 1;
  4033. vsyncshift = adjusted_mode->crtc_hsync_start
  4034. - adjusted_mode->crtc_htotal / 2;
  4035. } else {
  4036. vsyncshift = 0;
  4037. }
  4038. if (INTEL_INFO(dev)->gen > 3)
  4039. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  4040. I915_WRITE(HTOTAL(cpu_transcoder),
  4041. (adjusted_mode->crtc_hdisplay - 1) |
  4042. ((adjusted_mode->crtc_htotal - 1) << 16));
  4043. I915_WRITE(HBLANK(cpu_transcoder),
  4044. (adjusted_mode->crtc_hblank_start - 1) |
  4045. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4046. I915_WRITE(HSYNC(cpu_transcoder),
  4047. (adjusted_mode->crtc_hsync_start - 1) |
  4048. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4049. I915_WRITE(VTOTAL(cpu_transcoder),
  4050. (adjusted_mode->crtc_vdisplay - 1) |
  4051. ((crtc_vtotal - 1) << 16));
  4052. I915_WRITE(VBLANK(cpu_transcoder),
  4053. (adjusted_mode->crtc_vblank_start - 1) |
  4054. ((crtc_vblank_end - 1) << 16));
  4055. I915_WRITE(VSYNC(cpu_transcoder),
  4056. (adjusted_mode->crtc_vsync_start - 1) |
  4057. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4058. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  4059. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  4060. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  4061. * bits. */
  4062. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  4063. (pipe == PIPE_B || pipe == PIPE_C))
  4064. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  4065. /* pipesrc controls the size that is scaled from, which should
  4066. * always be the user's requested size.
  4067. */
  4068. I915_WRITE(PIPESRC(pipe),
  4069. ((intel_crtc->config.pipe_src_w - 1) << 16) |
  4070. (intel_crtc->config.pipe_src_h - 1));
  4071. }
  4072. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  4073. struct intel_crtc_config *pipe_config)
  4074. {
  4075. struct drm_device *dev = crtc->base.dev;
  4076. struct drm_i915_private *dev_priv = dev->dev_private;
  4077. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  4078. uint32_t tmp;
  4079. tmp = I915_READ(HTOTAL(cpu_transcoder));
  4080. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  4081. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  4082. tmp = I915_READ(HBLANK(cpu_transcoder));
  4083. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  4084. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  4085. tmp = I915_READ(HSYNC(cpu_transcoder));
  4086. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  4087. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  4088. tmp = I915_READ(VTOTAL(cpu_transcoder));
  4089. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  4090. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  4091. tmp = I915_READ(VBLANK(cpu_transcoder));
  4092. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  4093. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4094. tmp = I915_READ(VSYNC(cpu_transcoder));
  4095. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4096. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4097. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4098. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4099. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4100. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4101. }
  4102. tmp = I915_READ(PIPESRC(crtc->pipe));
  4103. pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
  4104. pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
  4105. pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
  4106. pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
  4107. }
  4108. static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
  4109. struct intel_crtc_config *pipe_config)
  4110. {
  4111. struct drm_crtc *crtc = &intel_crtc->base;
  4112. crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
  4113. crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
  4114. crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
  4115. crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
  4116. crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
  4117. crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
  4118. crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
  4119. crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
  4120. crtc->mode.flags = pipe_config->adjusted_mode.flags;
  4121. crtc->mode.clock = pipe_config->adjusted_mode.clock;
  4122. crtc->mode.flags |= pipe_config->adjusted_mode.flags;
  4123. }
  4124. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4125. {
  4126. struct drm_device *dev = intel_crtc->base.dev;
  4127. struct drm_i915_private *dev_priv = dev->dev_private;
  4128. uint32_t pipeconf;
  4129. pipeconf = 0;
  4130. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  4131. I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
  4132. pipeconf |= PIPECONF_ENABLE;
  4133. if (intel_crtc->config.double_wide)
  4134. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4135. /* only g4x and later have fancy bpc/dither controls */
  4136. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4137. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4138. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4139. pipeconf |= PIPECONF_DITHER_EN |
  4140. PIPECONF_DITHER_TYPE_SP;
  4141. switch (intel_crtc->config.pipe_bpp) {
  4142. case 18:
  4143. pipeconf |= PIPECONF_6BPC;
  4144. break;
  4145. case 24:
  4146. pipeconf |= PIPECONF_8BPC;
  4147. break;
  4148. case 30:
  4149. pipeconf |= PIPECONF_10BPC;
  4150. break;
  4151. default:
  4152. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4153. BUG();
  4154. }
  4155. }
  4156. if (HAS_PIPE_CXSR(dev)) {
  4157. if (intel_crtc->lowfreq_avail) {
  4158. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4159. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4160. } else {
  4161. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4162. }
  4163. }
  4164. if (!IS_GEN2(dev) &&
  4165. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4166. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4167. else
  4168. pipeconf |= PIPECONF_PROGRESSIVE;
  4169. if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
  4170. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4171. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4172. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4173. }
  4174. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4175. int x, int y,
  4176. struct drm_framebuffer *fb)
  4177. {
  4178. struct drm_device *dev = crtc->dev;
  4179. struct drm_i915_private *dev_priv = dev->dev_private;
  4180. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4181. int pipe = intel_crtc->pipe;
  4182. int plane = intel_crtc->plane;
  4183. int refclk, num_connectors = 0;
  4184. intel_clock_t clock, reduced_clock;
  4185. u32 dspcntr;
  4186. bool ok, has_reduced_clock = false;
  4187. bool is_lvds = false, is_dsi = false;
  4188. struct intel_encoder *encoder;
  4189. const intel_limit_t *limit;
  4190. int ret;
  4191. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4192. switch (encoder->type) {
  4193. case INTEL_OUTPUT_LVDS:
  4194. is_lvds = true;
  4195. break;
  4196. case INTEL_OUTPUT_DSI:
  4197. is_dsi = true;
  4198. break;
  4199. }
  4200. num_connectors++;
  4201. }
  4202. if (is_dsi)
  4203. goto skip_dpll;
  4204. if (!intel_crtc->config.clock_set) {
  4205. refclk = i9xx_get_refclk(crtc, num_connectors);
  4206. /*
  4207. * Returns a set of divisors for the desired target clock with
  4208. * the given refclk, or FALSE. The returned values represent
  4209. * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
  4210. * 2) / p1 / p2.
  4211. */
  4212. limit = intel_limit(crtc, refclk);
  4213. ok = dev_priv->display.find_dpll(limit, crtc,
  4214. intel_crtc->config.port_clock,
  4215. refclk, NULL, &clock);
  4216. if (!ok) {
  4217. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4218. return -EINVAL;
  4219. }
  4220. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4221. /*
  4222. * Ensure we match the reduced clock's P to the target
  4223. * clock. If the clocks don't match, we can't switch
  4224. * the display clock by using the FP0/FP1. In such case
  4225. * we will disable the LVDS downclock feature.
  4226. */
  4227. has_reduced_clock =
  4228. dev_priv->display.find_dpll(limit, crtc,
  4229. dev_priv->lvds_downclock,
  4230. refclk, &clock,
  4231. &reduced_clock);
  4232. }
  4233. /* Compat-code for transition, will disappear. */
  4234. intel_crtc->config.dpll.n = clock.n;
  4235. intel_crtc->config.dpll.m1 = clock.m1;
  4236. intel_crtc->config.dpll.m2 = clock.m2;
  4237. intel_crtc->config.dpll.p1 = clock.p1;
  4238. intel_crtc->config.dpll.p2 = clock.p2;
  4239. }
  4240. if (IS_GEN2(dev)) {
  4241. i8xx_update_pll(intel_crtc,
  4242. has_reduced_clock ? &reduced_clock : NULL,
  4243. num_connectors);
  4244. } else if (IS_VALLEYVIEW(dev)) {
  4245. vlv_update_pll(intel_crtc);
  4246. } else {
  4247. i9xx_update_pll(intel_crtc,
  4248. has_reduced_clock ? &reduced_clock : NULL,
  4249. num_connectors);
  4250. }
  4251. skip_dpll:
  4252. /* Set up the display plane register */
  4253. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4254. if (!IS_VALLEYVIEW(dev)) {
  4255. if (pipe == 0)
  4256. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4257. else
  4258. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4259. }
  4260. intel_set_pipe_timings(intel_crtc);
  4261. /* pipesrc and dspsize control the size that is scaled from,
  4262. * which should always be the user's requested size.
  4263. */
  4264. I915_WRITE(DSPSIZE(plane),
  4265. ((intel_crtc->config.pipe_src_h - 1) << 16) |
  4266. (intel_crtc->config.pipe_src_w - 1));
  4267. I915_WRITE(DSPPOS(plane), 0);
  4268. i9xx_set_pipeconf(intel_crtc);
  4269. I915_WRITE(DSPCNTR(plane), dspcntr);
  4270. POSTING_READ(DSPCNTR(plane));
  4271. ret = intel_pipe_set_base(crtc, x, y, fb);
  4272. return ret;
  4273. }
  4274. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4275. struct intel_crtc_config *pipe_config)
  4276. {
  4277. struct drm_device *dev = crtc->base.dev;
  4278. struct drm_i915_private *dev_priv = dev->dev_private;
  4279. uint32_t tmp;
  4280. tmp = I915_READ(PFIT_CONTROL);
  4281. if (!(tmp & PFIT_ENABLE))
  4282. return;
  4283. /* Check whether the pfit is attached to our pipe. */
  4284. if (INTEL_INFO(dev)->gen < 4) {
  4285. if (crtc->pipe != PIPE_B)
  4286. return;
  4287. } else {
  4288. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4289. return;
  4290. }
  4291. pipe_config->gmch_pfit.control = tmp;
  4292. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4293. if (INTEL_INFO(dev)->gen < 5)
  4294. pipe_config->gmch_pfit.lvds_border_bits =
  4295. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4296. }
  4297. static void vlv_crtc_clock_get(struct intel_crtc *crtc,
  4298. struct intel_crtc_config *pipe_config)
  4299. {
  4300. struct drm_device *dev = crtc->base.dev;
  4301. struct drm_i915_private *dev_priv = dev->dev_private;
  4302. int pipe = pipe_config->cpu_transcoder;
  4303. intel_clock_t clock;
  4304. u32 mdiv;
  4305. int refclk = 100000, fastclk, update_rate;
  4306. mutex_lock(&dev_priv->dpio_lock);
  4307. mdiv = vlv_dpio_read(dev_priv, pipe, DPIO_DIV(pipe));
  4308. mutex_unlock(&dev_priv->dpio_lock);
  4309. clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
  4310. clock.m2 = mdiv & DPIO_M2DIV_MASK;
  4311. clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
  4312. clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
  4313. clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
  4314. update_rate = refclk / clock.n;
  4315. clock.vco = update_rate * clock.m1 * clock.m2;
  4316. fastclk = clock.vco / clock.p1 / clock.p2;
  4317. clock.dot = (2 * fastclk);
  4318. pipe_config->port_clock = clock.dot / 10;
  4319. }
  4320. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4321. struct intel_crtc_config *pipe_config)
  4322. {
  4323. struct drm_device *dev = crtc->base.dev;
  4324. struct drm_i915_private *dev_priv = dev->dev_private;
  4325. uint32_t tmp;
  4326. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4327. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4328. tmp = I915_READ(PIPECONF(crtc->pipe));
  4329. if (!(tmp & PIPECONF_ENABLE))
  4330. return false;
  4331. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4332. switch (tmp & PIPECONF_BPC_MASK) {
  4333. case PIPECONF_6BPC:
  4334. pipe_config->pipe_bpp = 18;
  4335. break;
  4336. case PIPECONF_8BPC:
  4337. pipe_config->pipe_bpp = 24;
  4338. break;
  4339. case PIPECONF_10BPC:
  4340. pipe_config->pipe_bpp = 30;
  4341. break;
  4342. default:
  4343. break;
  4344. }
  4345. }
  4346. if (INTEL_INFO(dev)->gen < 4)
  4347. pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
  4348. intel_get_pipe_timings(crtc, pipe_config);
  4349. i9xx_get_pfit_config(crtc, pipe_config);
  4350. if (INTEL_INFO(dev)->gen >= 4) {
  4351. tmp = I915_READ(DPLL_MD(crtc->pipe));
  4352. pipe_config->pixel_multiplier =
  4353. ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  4354. >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  4355. pipe_config->dpll_hw_state.dpll_md = tmp;
  4356. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4357. tmp = I915_READ(DPLL(crtc->pipe));
  4358. pipe_config->pixel_multiplier =
  4359. ((tmp & SDVO_MULTIPLIER_MASK)
  4360. >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  4361. } else {
  4362. /* Note that on i915G/GM the pixel multiplier is in the sdvo
  4363. * port and will be fixed up in the encoder->get_config
  4364. * function. */
  4365. pipe_config->pixel_multiplier = 1;
  4366. }
  4367. pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  4368. if (!IS_VALLEYVIEW(dev)) {
  4369. pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  4370. pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  4371. } else {
  4372. /* Mask out read-only status bits. */
  4373. pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  4374. DPLL_PORTC_READY_MASK |
  4375. DPLL_PORTB_READY_MASK);
  4376. }
  4377. if (IS_VALLEYVIEW(dev))
  4378. vlv_crtc_clock_get(crtc, pipe_config);
  4379. else
  4380. i9xx_crtc_clock_get(crtc, pipe_config);
  4381. return true;
  4382. }
  4383. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4384. {
  4385. struct drm_i915_private *dev_priv = dev->dev_private;
  4386. struct drm_mode_config *mode_config = &dev->mode_config;
  4387. struct intel_encoder *encoder;
  4388. u32 val, final;
  4389. bool has_lvds = false;
  4390. bool has_cpu_edp = false;
  4391. bool has_panel = false;
  4392. bool has_ck505 = false;
  4393. bool can_ssc = false;
  4394. /* We need to take the global config into account */
  4395. list_for_each_entry(encoder, &mode_config->encoder_list,
  4396. base.head) {
  4397. switch (encoder->type) {
  4398. case INTEL_OUTPUT_LVDS:
  4399. has_panel = true;
  4400. has_lvds = true;
  4401. break;
  4402. case INTEL_OUTPUT_EDP:
  4403. has_panel = true;
  4404. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4405. has_cpu_edp = true;
  4406. break;
  4407. }
  4408. }
  4409. if (HAS_PCH_IBX(dev)) {
  4410. has_ck505 = dev_priv->vbt.display_clock_mode;
  4411. can_ssc = has_ck505;
  4412. } else {
  4413. has_ck505 = false;
  4414. can_ssc = true;
  4415. }
  4416. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4417. has_panel, has_lvds, has_ck505);
  4418. /* Ironlake: try to setup display ref clock before DPLL
  4419. * enabling. This is only under driver's control after
  4420. * PCH B stepping, previous chipset stepping should be
  4421. * ignoring this setting.
  4422. */
  4423. val = I915_READ(PCH_DREF_CONTROL);
  4424. /* As we must carefully and slowly disable/enable each source in turn,
  4425. * compute the final state we want first and check if we need to
  4426. * make any changes at all.
  4427. */
  4428. final = val;
  4429. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4430. if (has_ck505)
  4431. final |= DREF_NONSPREAD_CK505_ENABLE;
  4432. else
  4433. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4434. final &= ~DREF_SSC_SOURCE_MASK;
  4435. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4436. final &= ~DREF_SSC1_ENABLE;
  4437. if (has_panel) {
  4438. final |= DREF_SSC_SOURCE_ENABLE;
  4439. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4440. final |= DREF_SSC1_ENABLE;
  4441. if (has_cpu_edp) {
  4442. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4443. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4444. else
  4445. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4446. } else
  4447. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4448. } else {
  4449. final |= DREF_SSC_SOURCE_DISABLE;
  4450. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4451. }
  4452. if (final == val)
  4453. return;
  4454. /* Always enable nonspread source */
  4455. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4456. if (has_ck505)
  4457. val |= DREF_NONSPREAD_CK505_ENABLE;
  4458. else
  4459. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4460. if (has_panel) {
  4461. val &= ~DREF_SSC_SOURCE_MASK;
  4462. val |= DREF_SSC_SOURCE_ENABLE;
  4463. /* SSC must be turned on before enabling the CPU output */
  4464. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4465. DRM_DEBUG_KMS("Using SSC on panel\n");
  4466. val |= DREF_SSC1_ENABLE;
  4467. } else
  4468. val &= ~DREF_SSC1_ENABLE;
  4469. /* Get SSC going before enabling the outputs */
  4470. I915_WRITE(PCH_DREF_CONTROL, val);
  4471. POSTING_READ(PCH_DREF_CONTROL);
  4472. udelay(200);
  4473. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4474. /* Enable CPU source on CPU attached eDP */
  4475. if (has_cpu_edp) {
  4476. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4477. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4478. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4479. }
  4480. else
  4481. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4482. } else
  4483. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4484. I915_WRITE(PCH_DREF_CONTROL, val);
  4485. POSTING_READ(PCH_DREF_CONTROL);
  4486. udelay(200);
  4487. } else {
  4488. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4489. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4490. /* Turn off CPU output */
  4491. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4492. I915_WRITE(PCH_DREF_CONTROL, val);
  4493. POSTING_READ(PCH_DREF_CONTROL);
  4494. udelay(200);
  4495. /* Turn off the SSC source */
  4496. val &= ~DREF_SSC_SOURCE_MASK;
  4497. val |= DREF_SSC_SOURCE_DISABLE;
  4498. /* Turn off SSC1 */
  4499. val &= ~DREF_SSC1_ENABLE;
  4500. I915_WRITE(PCH_DREF_CONTROL, val);
  4501. POSTING_READ(PCH_DREF_CONTROL);
  4502. udelay(200);
  4503. }
  4504. BUG_ON(val != final);
  4505. }
  4506. static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
  4507. {
  4508. uint32_t tmp;
  4509. tmp = I915_READ(SOUTH_CHICKEN2);
  4510. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4511. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4512. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4513. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4514. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4515. tmp = I915_READ(SOUTH_CHICKEN2);
  4516. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4517. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4518. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4519. FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
  4520. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4521. }
  4522. /* WaMPhyProgramming:hsw */
  4523. static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
  4524. {
  4525. uint32_t tmp;
  4526. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4527. tmp &= ~(0xFF << 24);
  4528. tmp |= (0x12 << 24);
  4529. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4530. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4531. tmp |= (1 << 11);
  4532. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4533. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4534. tmp |= (1 << 11);
  4535. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4536. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4537. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4538. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4539. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4540. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4541. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4542. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4543. tmp &= ~(7 << 13);
  4544. tmp |= (5 << 13);
  4545. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4546. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4547. tmp &= ~(7 << 13);
  4548. tmp |= (5 << 13);
  4549. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4550. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4551. tmp &= ~0xFF;
  4552. tmp |= 0x1C;
  4553. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4554. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4555. tmp &= ~0xFF;
  4556. tmp |= 0x1C;
  4557. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4558. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4559. tmp &= ~(0xFF << 16);
  4560. tmp |= (0x1C << 16);
  4561. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4562. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4563. tmp &= ~(0xFF << 16);
  4564. tmp |= (0x1C << 16);
  4565. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4566. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4567. tmp |= (1 << 27);
  4568. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4569. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4570. tmp |= (1 << 27);
  4571. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4572. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4573. tmp &= ~(0xF << 28);
  4574. tmp |= (4 << 28);
  4575. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4576. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4577. tmp &= ~(0xF << 28);
  4578. tmp |= (4 << 28);
  4579. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4580. }
  4581. /* Implements 3 different sequences from BSpec chapter "Display iCLK
  4582. * Programming" based on the parameters passed:
  4583. * - Sequence to enable CLKOUT_DP
  4584. * - Sequence to enable CLKOUT_DP without spread
  4585. * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
  4586. */
  4587. static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
  4588. bool with_fdi)
  4589. {
  4590. struct drm_i915_private *dev_priv = dev->dev_private;
  4591. uint32_t reg, tmp;
  4592. if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
  4593. with_spread = true;
  4594. if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
  4595. with_fdi, "LP PCH doesn't have FDI\n"))
  4596. with_fdi = false;
  4597. mutex_lock(&dev_priv->dpio_lock);
  4598. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4599. tmp &= ~SBI_SSCCTL_DISABLE;
  4600. tmp |= SBI_SSCCTL_PATHALT;
  4601. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4602. udelay(24);
  4603. if (with_spread) {
  4604. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4605. tmp &= ~SBI_SSCCTL_PATHALT;
  4606. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4607. if (with_fdi) {
  4608. lpt_reset_fdi_mphy(dev_priv);
  4609. lpt_program_fdi_mphy(dev_priv);
  4610. }
  4611. }
  4612. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4613. SBI_GEN0 : SBI_DBUFF0;
  4614. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4615. tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4616. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4617. mutex_unlock(&dev_priv->dpio_lock);
  4618. }
  4619. /* Sequence to disable CLKOUT_DP */
  4620. static void lpt_disable_clkout_dp(struct drm_device *dev)
  4621. {
  4622. struct drm_i915_private *dev_priv = dev->dev_private;
  4623. uint32_t reg, tmp;
  4624. mutex_lock(&dev_priv->dpio_lock);
  4625. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4626. SBI_GEN0 : SBI_DBUFF0;
  4627. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4628. tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4629. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4630. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4631. if (!(tmp & SBI_SSCCTL_DISABLE)) {
  4632. if (!(tmp & SBI_SSCCTL_PATHALT)) {
  4633. tmp |= SBI_SSCCTL_PATHALT;
  4634. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4635. udelay(32);
  4636. }
  4637. tmp |= SBI_SSCCTL_DISABLE;
  4638. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4639. }
  4640. mutex_unlock(&dev_priv->dpio_lock);
  4641. }
  4642. static void lpt_init_pch_refclk(struct drm_device *dev)
  4643. {
  4644. struct drm_mode_config *mode_config = &dev->mode_config;
  4645. struct intel_encoder *encoder;
  4646. bool has_vga = false;
  4647. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4648. switch (encoder->type) {
  4649. case INTEL_OUTPUT_ANALOG:
  4650. has_vga = true;
  4651. break;
  4652. }
  4653. }
  4654. if (has_vga)
  4655. lpt_enable_clkout_dp(dev, true, true);
  4656. else
  4657. lpt_disable_clkout_dp(dev);
  4658. }
  4659. /*
  4660. * Initialize reference clocks when the driver loads
  4661. */
  4662. void intel_init_pch_refclk(struct drm_device *dev)
  4663. {
  4664. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4665. ironlake_init_pch_refclk(dev);
  4666. else if (HAS_PCH_LPT(dev))
  4667. lpt_init_pch_refclk(dev);
  4668. }
  4669. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4670. {
  4671. struct drm_device *dev = crtc->dev;
  4672. struct drm_i915_private *dev_priv = dev->dev_private;
  4673. struct intel_encoder *encoder;
  4674. int num_connectors = 0;
  4675. bool is_lvds = false;
  4676. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4677. switch (encoder->type) {
  4678. case INTEL_OUTPUT_LVDS:
  4679. is_lvds = true;
  4680. break;
  4681. }
  4682. num_connectors++;
  4683. }
  4684. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4685. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4686. dev_priv->vbt.lvds_ssc_freq);
  4687. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4688. }
  4689. return 120000;
  4690. }
  4691. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4692. {
  4693. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4694. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4695. int pipe = intel_crtc->pipe;
  4696. uint32_t val;
  4697. val = 0;
  4698. switch (intel_crtc->config.pipe_bpp) {
  4699. case 18:
  4700. val |= PIPECONF_6BPC;
  4701. break;
  4702. case 24:
  4703. val |= PIPECONF_8BPC;
  4704. break;
  4705. case 30:
  4706. val |= PIPECONF_10BPC;
  4707. break;
  4708. case 36:
  4709. val |= PIPECONF_12BPC;
  4710. break;
  4711. default:
  4712. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4713. BUG();
  4714. }
  4715. if (intel_crtc->config.dither)
  4716. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4717. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4718. val |= PIPECONF_INTERLACED_ILK;
  4719. else
  4720. val |= PIPECONF_PROGRESSIVE;
  4721. if (intel_crtc->config.limited_color_range)
  4722. val |= PIPECONF_COLOR_RANGE_SELECT;
  4723. I915_WRITE(PIPECONF(pipe), val);
  4724. POSTING_READ(PIPECONF(pipe));
  4725. }
  4726. /*
  4727. * Set up the pipe CSC unit.
  4728. *
  4729. * Currently only full range RGB to limited range RGB conversion
  4730. * is supported, but eventually this should handle various
  4731. * RGB<->YCbCr scenarios as well.
  4732. */
  4733. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4734. {
  4735. struct drm_device *dev = crtc->dev;
  4736. struct drm_i915_private *dev_priv = dev->dev_private;
  4737. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4738. int pipe = intel_crtc->pipe;
  4739. uint16_t coeff = 0x7800; /* 1.0 */
  4740. /*
  4741. * TODO: Check what kind of values actually come out of the pipe
  4742. * with these coeff/postoff values and adjust to get the best
  4743. * accuracy. Perhaps we even need to take the bpc value into
  4744. * consideration.
  4745. */
  4746. if (intel_crtc->config.limited_color_range)
  4747. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4748. /*
  4749. * GY/GU and RY/RU should be the other way around according
  4750. * to BSpec, but reality doesn't agree. Just set them up in
  4751. * a way that results in the correct picture.
  4752. */
  4753. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4754. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4755. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4756. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4757. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4758. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4759. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4760. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4761. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4762. if (INTEL_INFO(dev)->gen > 6) {
  4763. uint16_t postoff = 0;
  4764. if (intel_crtc->config.limited_color_range)
  4765. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4766. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4767. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4768. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4769. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4770. } else {
  4771. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4772. if (intel_crtc->config.limited_color_range)
  4773. mode |= CSC_BLACK_SCREEN_OFFSET;
  4774. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4775. }
  4776. }
  4777. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4778. {
  4779. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4780. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4781. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4782. uint32_t val;
  4783. val = 0;
  4784. if (intel_crtc->config.dither)
  4785. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4786. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4787. val |= PIPECONF_INTERLACED_ILK;
  4788. else
  4789. val |= PIPECONF_PROGRESSIVE;
  4790. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4791. POSTING_READ(PIPECONF(cpu_transcoder));
  4792. I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  4793. POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  4794. }
  4795. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4796. intel_clock_t *clock,
  4797. bool *has_reduced_clock,
  4798. intel_clock_t *reduced_clock)
  4799. {
  4800. struct drm_device *dev = crtc->dev;
  4801. struct drm_i915_private *dev_priv = dev->dev_private;
  4802. struct intel_encoder *intel_encoder;
  4803. int refclk;
  4804. const intel_limit_t *limit;
  4805. bool ret, is_lvds = false;
  4806. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4807. switch (intel_encoder->type) {
  4808. case INTEL_OUTPUT_LVDS:
  4809. is_lvds = true;
  4810. break;
  4811. }
  4812. }
  4813. refclk = ironlake_get_refclk(crtc);
  4814. /*
  4815. * Returns a set of divisors for the desired target clock with the given
  4816. * refclk, or FALSE. The returned values represent the clock equation:
  4817. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4818. */
  4819. limit = intel_limit(crtc, refclk);
  4820. ret = dev_priv->display.find_dpll(limit, crtc,
  4821. to_intel_crtc(crtc)->config.port_clock,
  4822. refclk, NULL, clock);
  4823. if (!ret)
  4824. return false;
  4825. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4826. /*
  4827. * Ensure we match the reduced clock's P to the target clock.
  4828. * If the clocks don't match, we can't switch the display clock
  4829. * by using the FP0/FP1. In such case we will disable the LVDS
  4830. * downclock feature.
  4831. */
  4832. *has_reduced_clock =
  4833. dev_priv->display.find_dpll(limit, crtc,
  4834. dev_priv->lvds_downclock,
  4835. refclk, clock,
  4836. reduced_clock);
  4837. }
  4838. return true;
  4839. }
  4840. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4841. {
  4842. struct drm_i915_private *dev_priv = dev->dev_private;
  4843. uint32_t temp;
  4844. temp = I915_READ(SOUTH_CHICKEN1);
  4845. if (temp & FDI_BC_BIFURCATION_SELECT)
  4846. return;
  4847. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4848. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4849. temp |= FDI_BC_BIFURCATION_SELECT;
  4850. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4851. I915_WRITE(SOUTH_CHICKEN1, temp);
  4852. POSTING_READ(SOUTH_CHICKEN1);
  4853. }
  4854. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4855. {
  4856. struct drm_device *dev = intel_crtc->base.dev;
  4857. struct drm_i915_private *dev_priv = dev->dev_private;
  4858. switch (intel_crtc->pipe) {
  4859. case PIPE_A:
  4860. break;
  4861. case PIPE_B:
  4862. if (intel_crtc->config.fdi_lanes > 2)
  4863. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4864. else
  4865. cpt_enable_fdi_bc_bifurcation(dev);
  4866. break;
  4867. case PIPE_C:
  4868. cpt_enable_fdi_bc_bifurcation(dev);
  4869. break;
  4870. default:
  4871. BUG();
  4872. }
  4873. }
  4874. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4875. {
  4876. /*
  4877. * Account for spread spectrum to avoid
  4878. * oversubscribing the link. Max center spread
  4879. * is 2.5%; use 5% for safety's sake.
  4880. */
  4881. u32 bps = target_clock * bpp * 21 / 20;
  4882. return bps / (link_bw * 8) + 1;
  4883. }
  4884. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4885. {
  4886. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4887. }
  4888. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4889. u32 *fp,
  4890. intel_clock_t *reduced_clock, u32 *fp2)
  4891. {
  4892. struct drm_crtc *crtc = &intel_crtc->base;
  4893. struct drm_device *dev = crtc->dev;
  4894. struct drm_i915_private *dev_priv = dev->dev_private;
  4895. struct intel_encoder *intel_encoder;
  4896. uint32_t dpll;
  4897. int factor, num_connectors = 0;
  4898. bool is_lvds = false, is_sdvo = false;
  4899. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4900. switch (intel_encoder->type) {
  4901. case INTEL_OUTPUT_LVDS:
  4902. is_lvds = true;
  4903. break;
  4904. case INTEL_OUTPUT_SDVO:
  4905. case INTEL_OUTPUT_HDMI:
  4906. is_sdvo = true;
  4907. break;
  4908. }
  4909. num_connectors++;
  4910. }
  4911. /* Enable autotuning of the PLL clock (if permissible) */
  4912. factor = 21;
  4913. if (is_lvds) {
  4914. if ((intel_panel_use_ssc(dev_priv) &&
  4915. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4916. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4917. factor = 25;
  4918. } else if (intel_crtc->config.sdvo_tv_clock)
  4919. factor = 20;
  4920. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4921. *fp |= FP_CB_TUNE;
  4922. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4923. *fp2 |= FP_CB_TUNE;
  4924. dpll = 0;
  4925. if (is_lvds)
  4926. dpll |= DPLLB_MODE_LVDS;
  4927. else
  4928. dpll |= DPLLB_MODE_DAC_SERIAL;
  4929. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4930. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4931. if (is_sdvo)
  4932. dpll |= DPLL_SDVO_HIGH_SPEED;
  4933. if (intel_crtc->config.has_dp_encoder)
  4934. dpll |= DPLL_SDVO_HIGH_SPEED;
  4935. /* compute bitmask from p1 value */
  4936. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4937. /* also FPA1 */
  4938. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4939. switch (intel_crtc->config.dpll.p2) {
  4940. case 5:
  4941. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4942. break;
  4943. case 7:
  4944. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4945. break;
  4946. case 10:
  4947. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4948. break;
  4949. case 14:
  4950. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4951. break;
  4952. }
  4953. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4954. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4955. else
  4956. dpll |= PLL_REF_INPUT_DREFCLK;
  4957. return dpll | DPLL_VCO_ENABLE;
  4958. }
  4959. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4960. int x, int y,
  4961. struct drm_framebuffer *fb)
  4962. {
  4963. struct drm_device *dev = crtc->dev;
  4964. struct drm_i915_private *dev_priv = dev->dev_private;
  4965. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4966. int pipe = intel_crtc->pipe;
  4967. int plane = intel_crtc->plane;
  4968. int num_connectors = 0;
  4969. intel_clock_t clock, reduced_clock;
  4970. u32 dpll = 0, fp = 0, fp2 = 0;
  4971. bool ok, has_reduced_clock = false;
  4972. bool is_lvds = false;
  4973. struct intel_encoder *encoder;
  4974. struct intel_shared_dpll *pll;
  4975. int ret;
  4976. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4977. switch (encoder->type) {
  4978. case INTEL_OUTPUT_LVDS:
  4979. is_lvds = true;
  4980. break;
  4981. }
  4982. num_connectors++;
  4983. }
  4984. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4985. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4986. ok = ironlake_compute_clocks(crtc, &clock,
  4987. &has_reduced_clock, &reduced_clock);
  4988. if (!ok && !intel_crtc->config.clock_set) {
  4989. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4990. return -EINVAL;
  4991. }
  4992. /* Compat-code for transition, will disappear. */
  4993. if (!intel_crtc->config.clock_set) {
  4994. intel_crtc->config.dpll.n = clock.n;
  4995. intel_crtc->config.dpll.m1 = clock.m1;
  4996. intel_crtc->config.dpll.m2 = clock.m2;
  4997. intel_crtc->config.dpll.p1 = clock.p1;
  4998. intel_crtc->config.dpll.p2 = clock.p2;
  4999. }
  5000. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  5001. if (intel_crtc->config.has_pch_encoder) {
  5002. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  5003. if (has_reduced_clock)
  5004. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  5005. dpll = ironlake_compute_dpll(intel_crtc,
  5006. &fp, &reduced_clock,
  5007. has_reduced_clock ? &fp2 : NULL);
  5008. intel_crtc->config.dpll_hw_state.dpll = dpll;
  5009. intel_crtc->config.dpll_hw_state.fp0 = fp;
  5010. if (has_reduced_clock)
  5011. intel_crtc->config.dpll_hw_state.fp1 = fp2;
  5012. else
  5013. intel_crtc->config.dpll_hw_state.fp1 = fp;
  5014. pll = intel_get_shared_dpll(intel_crtc);
  5015. if (pll == NULL) {
  5016. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  5017. pipe_name(pipe));
  5018. return -EINVAL;
  5019. }
  5020. } else
  5021. intel_put_shared_dpll(intel_crtc);
  5022. if (intel_crtc->config.has_dp_encoder)
  5023. intel_dp_set_m_n(intel_crtc);
  5024. if (is_lvds && has_reduced_clock && i915_powersave)
  5025. intel_crtc->lowfreq_avail = true;
  5026. else
  5027. intel_crtc->lowfreq_avail = false;
  5028. if (intel_crtc->config.has_pch_encoder) {
  5029. pll = intel_crtc_to_shared_dpll(intel_crtc);
  5030. }
  5031. intel_set_pipe_timings(intel_crtc);
  5032. if (intel_crtc->config.has_pch_encoder) {
  5033. intel_cpu_transcoder_set_m_n(intel_crtc,
  5034. &intel_crtc->config.fdi_m_n);
  5035. }
  5036. if (IS_IVYBRIDGE(dev))
  5037. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  5038. ironlake_set_pipeconf(crtc);
  5039. /* Set up the display plane register */
  5040. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  5041. POSTING_READ(DSPCNTR(plane));
  5042. ret = intel_pipe_set_base(crtc, x, y, fb);
  5043. return ret;
  5044. }
  5045. static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
  5046. struct intel_link_m_n *m_n)
  5047. {
  5048. struct drm_device *dev = crtc->base.dev;
  5049. struct drm_i915_private *dev_priv = dev->dev_private;
  5050. enum pipe pipe = crtc->pipe;
  5051. m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
  5052. m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
  5053. m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
  5054. & ~TU_SIZE_MASK;
  5055. m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
  5056. m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
  5057. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  5058. }
  5059. static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
  5060. enum transcoder transcoder,
  5061. struct intel_link_m_n *m_n)
  5062. {
  5063. struct drm_device *dev = crtc->base.dev;
  5064. struct drm_i915_private *dev_priv = dev->dev_private;
  5065. enum pipe pipe = crtc->pipe;
  5066. if (INTEL_INFO(dev)->gen >= 5) {
  5067. m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
  5068. m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
  5069. m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  5070. & ~TU_SIZE_MASK;
  5071. m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  5072. m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  5073. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  5074. } else {
  5075. m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
  5076. m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
  5077. m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
  5078. & ~TU_SIZE_MASK;
  5079. m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
  5080. m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
  5081. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  5082. }
  5083. }
  5084. void intel_dp_get_m_n(struct intel_crtc *crtc,
  5085. struct intel_crtc_config *pipe_config)
  5086. {
  5087. if (crtc->config.has_pch_encoder)
  5088. intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
  5089. else
  5090. intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  5091. &pipe_config->dp_m_n);
  5092. }
  5093. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  5094. struct intel_crtc_config *pipe_config)
  5095. {
  5096. intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  5097. &pipe_config->fdi_m_n);
  5098. }
  5099. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  5100. struct intel_crtc_config *pipe_config)
  5101. {
  5102. struct drm_device *dev = crtc->base.dev;
  5103. struct drm_i915_private *dev_priv = dev->dev_private;
  5104. uint32_t tmp;
  5105. tmp = I915_READ(PF_CTL(crtc->pipe));
  5106. if (tmp & PF_ENABLE) {
  5107. pipe_config->pch_pfit.enabled = true;
  5108. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  5109. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  5110. /* We currently do not free assignements of panel fitters on
  5111. * ivb/hsw (since we don't use the higher upscaling modes which
  5112. * differentiates them) so just WARN about this case for now. */
  5113. if (IS_GEN7(dev)) {
  5114. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  5115. PF_PIPE_SEL_IVB(crtc->pipe));
  5116. }
  5117. }
  5118. }
  5119. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  5120. struct intel_crtc_config *pipe_config)
  5121. {
  5122. struct drm_device *dev = crtc->base.dev;
  5123. struct drm_i915_private *dev_priv = dev->dev_private;
  5124. uint32_t tmp;
  5125. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5126. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5127. tmp = I915_READ(PIPECONF(crtc->pipe));
  5128. if (!(tmp & PIPECONF_ENABLE))
  5129. return false;
  5130. switch (tmp & PIPECONF_BPC_MASK) {
  5131. case PIPECONF_6BPC:
  5132. pipe_config->pipe_bpp = 18;
  5133. break;
  5134. case PIPECONF_8BPC:
  5135. pipe_config->pipe_bpp = 24;
  5136. break;
  5137. case PIPECONF_10BPC:
  5138. pipe_config->pipe_bpp = 30;
  5139. break;
  5140. case PIPECONF_12BPC:
  5141. pipe_config->pipe_bpp = 36;
  5142. break;
  5143. default:
  5144. break;
  5145. }
  5146. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  5147. struct intel_shared_dpll *pll;
  5148. pipe_config->has_pch_encoder = true;
  5149. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  5150. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5151. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5152. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5153. if (HAS_PCH_IBX(dev_priv->dev)) {
  5154. pipe_config->shared_dpll =
  5155. (enum intel_dpll_id) crtc->pipe;
  5156. } else {
  5157. tmp = I915_READ(PCH_DPLL_SEL);
  5158. if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  5159. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  5160. else
  5161. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  5162. }
  5163. pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  5164. WARN_ON(!pll->get_hw_state(dev_priv, pll,
  5165. &pipe_config->dpll_hw_state));
  5166. tmp = pipe_config->dpll_hw_state.dpll;
  5167. pipe_config->pixel_multiplier =
  5168. ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
  5169. >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
  5170. ironlake_pch_clock_get(crtc, pipe_config);
  5171. } else {
  5172. pipe_config->pixel_multiplier = 1;
  5173. }
  5174. intel_get_pipe_timings(crtc, pipe_config);
  5175. ironlake_get_pfit_config(crtc, pipe_config);
  5176. return true;
  5177. }
  5178. static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
  5179. {
  5180. struct drm_device *dev = dev_priv->dev;
  5181. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  5182. struct intel_crtc *crtc;
  5183. unsigned long irqflags;
  5184. uint32_t val;
  5185. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5186. WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
  5187. pipe_name(crtc->pipe));
  5188. WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
  5189. WARN(plls->spll_refcount, "SPLL enabled\n");
  5190. WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
  5191. WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
  5192. WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
  5193. WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
  5194. "CPU PWM1 enabled\n");
  5195. WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
  5196. "CPU PWM2 enabled\n");
  5197. WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
  5198. "PCH PWM1 enabled\n");
  5199. WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
  5200. "Utility pin enabled\n");
  5201. WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
  5202. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  5203. val = I915_READ(DEIMR);
  5204. WARN((val & ~DE_PCH_EVENT_IVB) != val,
  5205. "Unexpected DEIMR bits enabled: 0x%x\n", val);
  5206. val = I915_READ(SDEIMR);
  5207. WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
  5208. "Unexpected SDEIMR bits enabled: 0x%x\n", val);
  5209. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  5210. }
  5211. /*
  5212. * This function implements pieces of two sequences from BSpec:
  5213. * - Sequence for display software to disable LCPLL
  5214. * - Sequence for display software to allow package C8+
  5215. * The steps implemented here are just the steps that actually touch the LCPLL
  5216. * register. Callers should take care of disabling all the display engine
  5217. * functions, doing the mode unset, fixing interrupts, etc.
  5218. */
  5219. static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
  5220. bool switch_to_fclk, bool allow_power_down)
  5221. {
  5222. uint32_t val;
  5223. assert_can_disable_lcpll(dev_priv);
  5224. val = I915_READ(LCPLL_CTL);
  5225. if (switch_to_fclk) {
  5226. val |= LCPLL_CD_SOURCE_FCLK;
  5227. I915_WRITE(LCPLL_CTL, val);
  5228. if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  5229. LCPLL_CD_SOURCE_FCLK_DONE, 1))
  5230. DRM_ERROR("Switching to FCLK failed\n");
  5231. val = I915_READ(LCPLL_CTL);
  5232. }
  5233. val |= LCPLL_PLL_DISABLE;
  5234. I915_WRITE(LCPLL_CTL, val);
  5235. POSTING_READ(LCPLL_CTL);
  5236. if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
  5237. DRM_ERROR("LCPLL still locked\n");
  5238. val = I915_READ(D_COMP);
  5239. val |= D_COMP_COMP_DISABLE;
  5240. mutex_lock(&dev_priv->rps.hw_lock);
  5241. if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
  5242. DRM_ERROR("Failed to disable D_COMP\n");
  5243. mutex_unlock(&dev_priv->rps.hw_lock);
  5244. POSTING_READ(D_COMP);
  5245. ndelay(100);
  5246. if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
  5247. DRM_ERROR("D_COMP RCOMP still in progress\n");
  5248. if (allow_power_down) {
  5249. val = I915_READ(LCPLL_CTL);
  5250. val |= LCPLL_POWER_DOWN_ALLOW;
  5251. I915_WRITE(LCPLL_CTL, val);
  5252. POSTING_READ(LCPLL_CTL);
  5253. }
  5254. }
  5255. /*
  5256. * Fully restores LCPLL, disallowing power down and switching back to LCPLL
  5257. * source.
  5258. */
  5259. static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
  5260. {
  5261. uint32_t val;
  5262. val = I915_READ(LCPLL_CTL);
  5263. if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
  5264. LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
  5265. return;
  5266. /* Make sure we're not on PC8 state before disabling PC8, otherwise
  5267. * we'll hang the machine! */
  5268. dev_priv->uncore.funcs.force_wake_get(dev_priv);
  5269. if (val & LCPLL_POWER_DOWN_ALLOW) {
  5270. val &= ~LCPLL_POWER_DOWN_ALLOW;
  5271. I915_WRITE(LCPLL_CTL, val);
  5272. POSTING_READ(LCPLL_CTL);
  5273. }
  5274. val = I915_READ(D_COMP);
  5275. val |= D_COMP_COMP_FORCE;
  5276. val &= ~D_COMP_COMP_DISABLE;
  5277. mutex_lock(&dev_priv->rps.hw_lock);
  5278. if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
  5279. DRM_ERROR("Failed to enable D_COMP\n");
  5280. mutex_unlock(&dev_priv->rps.hw_lock);
  5281. POSTING_READ(D_COMP);
  5282. val = I915_READ(LCPLL_CTL);
  5283. val &= ~LCPLL_PLL_DISABLE;
  5284. I915_WRITE(LCPLL_CTL, val);
  5285. if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
  5286. DRM_ERROR("LCPLL not locked yet\n");
  5287. if (val & LCPLL_CD_SOURCE_FCLK) {
  5288. val = I915_READ(LCPLL_CTL);
  5289. val &= ~LCPLL_CD_SOURCE_FCLK;
  5290. I915_WRITE(LCPLL_CTL, val);
  5291. if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  5292. LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  5293. DRM_ERROR("Switching back to LCPLL failed\n");
  5294. }
  5295. dev_priv->uncore.funcs.force_wake_put(dev_priv);
  5296. }
  5297. void hsw_enable_pc8_work(struct work_struct *__work)
  5298. {
  5299. struct drm_i915_private *dev_priv =
  5300. container_of(to_delayed_work(__work), struct drm_i915_private,
  5301. pc8.enable_work);
  5302. struct drm_device *dev = dev_priv->dev;
  5303. uint32_t val;
  5304. if (dev_priv->pc8.enabled)
  5305. return;
  5306. DRM_DEBUG_KMS("Enabling package C8+\n");
  5307. dev_priv->pc8.enabled = true;
  5308. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5309. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5310. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5311. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5312. }
  5313. lpt_disable_clkout_dp(dev);
  5314. hsw_pc8_disable_interrupts(dev);
  5315. hsw_disable_lcpll(dev_priv, true, true);
  5316. }
  5317. static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5318. {
  5319. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5320. WARN(dev_priv->pc8.disable_count < 1,
  5321. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5322. dev_priv->pc8.disable_count--;
  5323. if (dev_priv->pc8.disable_count != 0)
  5324. return;
  5325. schedule_delayed_work(&dev_priv->pc8.enable_work,
  5326. msecs_to_jiffies(i915_pc8_timeout));
  5327. }
  5328. static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5329. {
  5330. struct drm_device *dev = dev_priv->dev;
  5331. uint32_t val;
  5332. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5333. WARN(dev_priv->pc8.disable_count < 0,
  5334. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5335. dev_priv->pc8.disable_count++;
  5336. if (dev_priv->pc8.disable_count != 1)
  5337. return;
  5338. cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
  5339. if (!dev_priv->pc8.enabled)
  5340. return;
  5341. DRM_DEBUG_KMS("Disabling package C8+\n");
  5342. hsw_restore_lcpll(dev_priv);
  5343. hsw_pc8_restore_interrupts(dev);
  5344. lpt_init_pch_refclk(dev);
  5345. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5346. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5347. val |= PCH_LP_PARTITION_LEVEL_DISABLE;
  5348. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5349. }
  5350. intel_prepare_ddi(dev);
  5351. i915_gem_init_swizzling(dev);
  5352. mutex_lock(&dev_priv->rps.hw_lock);
  5353. gen6_update_ring_freq(dev);
  5354. mutex_unlock(&dev_priv->rps.hw_lock);
  5355. dev_priv->pc8.enabled = false;
  5356. }
  5357. void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5358. {
  5359. mutex_lock(&dev_priv->pc8.lock);
  5360. __hsw_enable_package_c8(dev_priv);
  5361. mutex_unlock(&dev_priv->pc8.lock);
  5362. }
  5363. void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5364. {
  5365. mutex_lock(&dev_priv->pc8.lock);
  5366. __hsw_disable_package_c8(dev_priv);
  5367. mutex_unlock(&dev_priv->pc8.lock);
  5368. }
  5369. static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
  5370. {
  5371. struct drm_device *dev = dev_priv->dev;
  5372. struct intel_crtc *crtc;
  5373. uint32_t val;
  5374. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5375. if (crtc->base.enabled)
  5376. return false;
  5377. /* This case is still possible since we have the i915.disable_power_well
  5378. * parameter and also the KVMr or something else might be requesting the
  5379. * power well. */
  5380. val = I915_READ(HSW_PWR_WELL_DRIVER);
  5381. if (val != 0) {
  5382. DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
  5383. return false;
  5384. }
  5385. return true;
  5386. }
  5387. /* Since we're called from modeset_global_resources there's no way to
  5388. * symmetrically increase and decrease the refcount, so we use
  5389. * dev_priv->pc8.requirements_met to track whether we already have the refcount
  5390. * or not.
  5391. */
  5392. static void hsw_update_package_c8(struct drm_device *dev)
  5393. {
  5394. struct drm_i915_private *dev_priv = dev->dev_private;
  5395. bool allow;
  5396. if (!i915_enable_pc8)
  5397. return;
  5398. mutex_lock(&dev_priv->pc8.lock);
  5399. allow = hsw_can_enable_package_c8(dev_priv);
  5400. if (allow == dev_priv->pc8.requirements_met)
  5401. goto done;
  5402. dev_priv->pc8.requirements_met = allow;
  5403. if (allow)
  5404. __hsw_enable_package_c8(dev_priv);
  5405. else
  5406. __hsw_disable_package_c8(dev_priv);
  5407. done:
  5408. mutex_unlock(&dev_priv->pc8.lock);
  5409. }
  5410. static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
  5411. {
  5412. if (!dev_priv->pc8.gpu_idle) {
  5413. dev_priv->pc8.gpu_idle = true;
  5414. hsw_enable_package_c8(dev_priv);
  5415. }
  5416. }
  5417. static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
  5418. {
  5419. if (dev_priv->pc8.gpu_idle) {
  5420. dev_priv->pc8.gpu_idle = false;
  5421. hsw_disable_package_c8(dev_priv);
  5422. }
  5423. }
  5424. static void haswell_modeset_global_resources(struct drm_device *dev)
  5425. {
  5426. bool enable = false;
  5427. struct intel_crtc *crtc;
  5428. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  5429. if (!crtc->base.enabled)
  5430. continue;
  5431. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.enabled ||
  5432. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  5433. enable = true;
  5434. }
  5435. intel_set_power_well(dev, enable);
  5436. hsw_update_package_c8(dev);
  5437. }
  5438. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  5439. int x, int y,
  5440. struct drm_framebuffer *fb)
  5441. {
  5442. struct drm_device *dev = crtc->dev;
  5443. struct drm_i915_private *dev_priv = dev->dev_private;
  5444. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5445. int plane = intel_crtc->plane;
  5446. int ret;
  5447. if (!intel_ddi_pll_mode_set(crtc))
  5448. return -EINVAL;
  5449. if (intel_crtc->config.has_dp_encoder)
  5450. intel_dp_set_m_n(intel_crtc);
  5451. intel_crtc->lowfreq_avail = false;
  5452. intel_set_pipe_timings(intel_crtc);
  5453. if (intel_crtc->config.has_pch_encoder) {
  5454. intel_cpu_transcoder_set_m_n(intel_crtc,
  5455. &intel_crtc->config.fdi_m_n);
  5456. }
  5457. haswell_set_pipeconf(crtc);
  5458. intel_set_pipe_csc(crtc);
  5459. /* Set up the display plane register */
  5460. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  5461. POSTING_READ(DSPCNTR(plane));
  5462. ret = intel_pipe_set_base(crtc, x, y, fb);
  5463. return ret;
  5464. }
  5465. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  5466. struct intel_crtc_config *pipe_config)
  5467. {
  5468. struct drm_device *dev = crtc->base.dev;
  5469. struct drm_i915_private *dev_priv = dev->dev_private;
  5470. enum intel_display_power_domain pfit_domain;
  5471. uint32_t tmp;
  5472. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5473. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5474. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  5475. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  5476. enum pipe trans_edp_pipe;
  5477. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  5478. default:
  5479. WARN(1, "unknown pipe linked to edp transcoder\n");
  5480. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  5481. case TRANS_DDI_EDP_INPUT_A_ON:
  5482. trans_edp_pipe = PIPE_A;
  5483. break;
  5484. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5485. trans_edp_pipe = PIPE_B;
  5486. break;
  5487. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5488. trans_edp_pipe = PIPE_C;
  5489. break;
  5490. }
  5491. if (trans_edp_pipe == crtc->pipe)
  5492. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5493. }
  5494. if (!intel_display_power_enabled(dev,
  5495. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5496. return false;
  5497. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5498. if (!(tmp & PIPECONF_ENABLE))
  5499. return false;
  5500. /*
  5501. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5502. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5503. * the PCH transcoder is on.
  5504. */
  5505. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5506. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5507. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5508. pipe_config->has_pch_encoder = true;
  5509. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5510. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5511. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5512. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5513. }
  5514. intel_get_pipe_timings(crtc, pipe_config);
  5515. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5516. if (intel_display_power_enabled(dev, pfit_domain))
  5517. ironlake_get_pfit_config(crtc, pipe_config);
  5518. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5519. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5520. pipe_config->pixel_multiplier = 1;
  5521. return true;
  5522. }
  5523. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5524. int x, int y,
  5525. struct drm_framebuffer *fb)
  5526. {
  5527. struct drm_device *dev = crtc->dev;
  5528. struct drm_i915_private *dev_priv = dev->dev_private;
  5529. struct intel_encoder *encoder;
  5530. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5531. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5532. int pipe = intel_crtc->pipe;
  5533. int ret;
  5534. drm_vblank_pre_modeset(dev, pipe);
  5535. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5536. drm_vblank_post_modeset(dev, pipe);
  5537. if (ret != 0)
  5538. return ret;
  5539. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5540. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5541. encoder->base.base.id,
  5542. drm_get_encoder_name(&encoder->base),
  5543. mode->base.id, mode->name);
  5544. encoder->mode_set(encoder);
  5545. }
  5546. return 0;
  5547. }
  5548. static bool intel_eld_uptodate(struct drm_connector *connector,
  5549. int reg_eldv, uint32_t bits_eldv,
  5550. int reg_elda, uint32_t bits_elda,
  5551. int reg_edid)
  5552. {
  5553. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5554. uint8_t *eld = connector->eld;
  5555. uint32_t i;
  5556. i = I915_READ(reg_eldv);
  5557. i &= bits_eldv;
  5558. if (!eld[0])
  5559. return !i;
  5560. if (!i)
  5561. return false;
  5562. i = I915_READ(reg_elda);
  5563. i &= ~bits_elda;
  5564. I915_WRITE(reg_elda, i);
  5565. for (i = 0; i < eld[2]; i++)
  5566. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5567. return false;
  5568. return true;
  5569. }
  5570. static void g4x_write_eld(struct drm_connector *connector,
  5571. struct drm_crtc *crtc)
  5572. {
  5573. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5574. uint8_t *eld = connector->eld;
  5575. uint32_t eldv;
  5576. uint32_t len;
  5577. uint32_t i;
  5578. i = I915_READ(G4X_AUD_VID_DID);
  5579. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5580. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5581. else
  5582. eldv = G4X_ELDV_DEVCTG;
  5583. if (intel_eld_uptodate(connector,
  5584. G4X_AUD_CNTL_ST, eldv,
  5585. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5586. G4X_HDMIW_HDMIEDID))
  5587. return;
  5588. i = I915_READ(G4X_AUD_CNTL_ST);
  5589. i &= ~(eldv | G4X_ELD_ADDR);
  5590. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5591. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5592. if (!eld[0])
  5593. return;
  5594. len = min_t(uint8_t, eld[2], len);
  5595. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5596. for (i = 0; i < len; i++)
  5597. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5598. i = I915_READ(G4X_AUD_CNTL_ST);
  5599. i |= eldv;
  5600. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5601. }
  5602. static void haswell_write_eld(struct drm_connector *connector,
  5603. struct drm_crtc *crtc)
  5604. {
  5605. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5606. uint8_t *eld = connector->eld;
  5607. struct drm_device *dev = crtc->dev;
  5608. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5609. uint32_t eldv;
  5610. uint32_t i;
  5611. int len;
  5612. int pipe = to_intel_crtc(crtc)->pipe;
  5613. int tmp;
  5614. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5615. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5616. int aud_config = HSW_AUD_CFG(pipe);
  5617. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5618. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5619. /* Audio output enable */
  5620. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5621. tmp = I915_READ(aud_cntrl_st2);
  5622. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5623. I915_WRITE(aud_cntrl_st2, tmp);
  5624. /* Wait for 1 vertical blank */
  5625. intel_wait_for_vblank(dev, pipe);
  5626. /* Set ELD valid state */
  5627. tmp = I915_READ(aud_cntrl_st2);
  5628. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
  5629. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5630. I915_WRITE(aud_cntrl_st2, tmp);
  5631. tmp = I915_READ(aud_cntrl_st2);
  5632. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
  5633. /* Enable HDMI mode */
  5634. tmp = I915_READ(aud_config);
  5635. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
  5636. /* clear N_programing_enable and N_value_index */
  5637. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5638. I915_WRITE(aud_config, tmp);
  5639. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5640. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5641. intel_crtc->eld_vld = true;
  5642. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5643. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5644. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5645. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5646. } else
  5647. I915_WRITE(aud_config, 0);
  5648. if (intel_eld_uptodate(connector,
  5649. aud_cntrl_st2, eldv,
  5650. aud_cntl_st, IBX_ELD_ADDRESS,
  5651. hdmiw_hdmiedid))
  5652. return;
  5653. i = I915_READ(aud_cntrl_st2);
  5654. i &= ~eldv;
  5655. I915_WRITE(aud_cntrl_st2, i);
  5656. if (!eld[0])
  5657. return;
  5658. i = I915_READ(aud_cntl_st);
  5659. i &= ~IBX_ELD_ADDRESS;
  5660. I915_WRITE(aud_cntl_st, i);
  5661. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5662. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5663. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5664. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5665. for (i = 0; i < len; i++)
  5666. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5667. i = I915_READ(aud_cntrl_st2);
  5668. i |= eldv;
  5669. I915_WRITE(aud_cntrl_st2, i);
  5670. }
  5671. static void ironlake_write_eld(struct drm_connector *connector,
  5672. struct drm_crtc *crtc)
  5673. {
  5674. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5675. uint8_t *eld = connector->eld;
  5676. uint32_t eldv;
  5677. uint32_t i;
  5678. int len;
  5679. int hdmiw_hdmiedid;
  5680. int aud_config;
  5681. int aud_cntl_st;
  5682. int aud_cntrl_st2;
  5683. int pipe = to_intel_crtc(crtc)->pipe;
  5684. if (HAS_PCH_IBX(connector->dev)) {
  5685. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5686. aud_config = IBX_AUD_CFG(pipe);
  5687. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5688. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5689. } else {
  5690. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5691. aud_config = CPT_AUD_CFG(pipe);
  5692. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5693. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5694. }
  5695. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5696. i = I915_READ(aud_cntl_st);
  5697. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5698. if (!i) {
  5699. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5700. /* operate blindly on all ports */
  5701. eldv = IBX_ELD_VALIDB;
  5702. eldv |= IBX_ELD_VALIDB << 4;
  5703. eldv |= IBX_ELD_VALIDB << 8;
  5704. } else {
  5705. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5706. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5707. }
  5708. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5709. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5710. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5711. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5712. } else
  5713. I915_WRITE(aud_config, 0);
  5714. if (intel_eld_uptodate(connector,
  5715. aud_cntrl_st2, eldv,
  5716. aud_cntl_st, IBX_ELD_ADDRESS,
  5717. hdmiw_hdmiedid))
  5718. return;
  5719. i = I915_READ(aud_cntrl_st2);
  5720. i &= ~eldv;
  5721. I915_WRITE(aud_cntrl_st2, i);
  5722. if (!eld[0])
  5723. return;
  5724. i = I915_READ(aud_cntl_st);
  5725. i &= ~IBX_ELD_ADDRESS;
  5726. I915_WRITE(aud_cntl_st, i);
  5727. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5728. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5729. for (i = 0; i < len; i++)
  5730. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5731. i = I915_READ(aud_cntrl_st2);
  5732. i |= eldv;
  5733. I915_WRITE(aud_cntrl_st2, i);
  5734. }
  5735. void intel_write_eld(struct drm_encoder *encoder,
  5736. struct drm_display_mode *mode)
  5737. {
  5738. struct drm_crtc *crtc = encoder->crtc;
  5739. struct drm_connector *connector;
  5740. struct drm_device *dev = encoder->dev;
  5741. struct drm_i915_private *dev_priv = dev->dev_private;
  5742. connector = drm_select_eld(encoder, mode);
  5743. if (!connector)
  5744. return;
  5745. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5746. connector->base.id,
  5747. drm_get_connector_name(connector),
  5748. connector->encoder->base.id,
  5749. drm_get_encoder_name(connector->encoder));
  5750. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5751. if (dev_priv->display.write_eld)
  5752. dev_priv->display.write_eld(connector, crtc);
  5753. }
  5754. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5755. {
  5756. struct drm_device *dev = crtc->dev;
  5757. struct drm_i915_private *dev_priv = dev->dev_private;
  5758. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5759. bool visible = base != 0;
  5760. u32 cntl;
  5761. if (intel_crtc->cursor_visible == visible)
  5762. return;
  5763. cntl = I915_READ(_CURACNTR);
  5764. if (visible) {
  5765. /* On these chipsets we can only modify the base whilst
  5766. * the cursor is disabled.
  5767. */
  5768. I915_WRITE(_CURABASE, base);
  5769. cntl &= ~(CURSOR_FORMAT_MASK);
  5770. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5771. cntl |= CURSOR_ENABLE |
  5772. CURSOR_GAMMA_ENABLE |
  5773. CURSOR_FORMAT_ARGB;
  5774. } else
  5775. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5776. I915_WRITE(_CURACNTR, cntl);
  5777. intel_crtc->cursor_visible = visible;
  5778. }
  5779. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5780. {
  5781. struct drm_device *dev = crtc->dev;
  5782. struct drm_i915_private *dev_priv = dev->dev_private;
  5783. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5784. int pipe = intel_crtc->pipe;
  5785. bool visible = base != 0;
  5786. if (intel_crtc->cursor_visible != visible) {
  5787. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5788. if (base) {
  5789. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5790. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5791. cntl |= pipe << 28; /* Connect to correct pipe */
  5792. } else {
  5793. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5794. cntl |= CURSOR_MODE_DISABLE;
  5795. }
  5796. I915_WRITE(CURCNTR(pipe), cntl);
  5797. intel_crtc->cursor_visible = visible;
  5798. }
  5799. /* and commit changes on next vblank */
  5800. I915_WRITE(CURBASE(pipe), base);
  5801. }
  5802. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5803. {
  5804. struct drm_device *dev = crtc->dev;
  5805. struct drm_i915_private *dev_priv = dev->dev_private;
  5806. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5807. int pipe = intel_crtc->pipe;
  5808. bool visible = base != 0;
  5809. if (intel_crtc->cursor_visible != visible) {
  5810. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5811. if (base) {
  5812. cntl &= ~CURSOR_MODE;
  5813. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5814. } else {
  5815. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5816. cntl |= CURSOR_MODE_DISABLE;
  5817. }
  5818. if (IS_HASWELL(dev)) {
  5819. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5820. cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
  5821. }
  5822. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5823. intel_crtc->cursor_visible = visible;
  5824. }
  5825. /* and commit changes on next vblank */
  5826. I915_WRITE(CURBASE_IVB(pipe), base);
  5827. }
  5828. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5829. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5830. bool on)
  5831. {
  5832. struct drm_device *dev = crtc->dev;
  5833. struct drm_i915_private *dev_priv = dev->dev_private;
  5834. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5835. int pipe = intel_crtc->pipe;
  5836. int x = intel_crtc->cursor_x;
  5837. int y = intel_crtc->cursor_y;
  5838. u32 base = 0, pos = 0;
  5839. bool visible;
  5840. if (on)
  5841. base = intel_crtc->cursor_addr;
  5842. if (x >= intel_crtc->config.pipe_src_w)
  5843. base = 0;
  5844. if (y >= intel_crtc->config.pipe_src_h)
  5845. base = 0;
  5846. if (x < 0) {
  5847. if (x + intel_crtc->cursor_width <= 0)
  5848. base = 0;
  5849. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5850. x = -x;
  5851. }
  5852. pos |= x << CURSOR_X_SHIFT;
  5853. if (y < 0) {
  5854. if (y + intel_crtc->cursor_height <= 0)
  5855. base = 0;
  5856. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5857. y = -y;
  5858. }
  5859. pos |= y << CURSOR_Y_SHIFT;
  5860. visible = base != 0;
  5861. if (!visible && !intel_crtc->cursor_visible)
  5862. return;
  5863. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5864. I915_WRITE(CURPOS_IVB(pipe), pos);
  5865. ivb_update_cursor(crtc, base);
  5866. } else {
  5867. I915_WRITE(CURPOS(pipe), pos);
  5868. if (IS_845G(dev) || IS_I865G(dev))
  5869. i845_update_cursor(crtc, base);
  5870. else
  5871. i9xx_update_cursor(crtc, base);
  5872. }
  5873. }
  5874. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5875. struct drm_file *file,
  5876. uint32_t handle,
  5877. uint32_t width, uint32_t height)
  5878. {
  5879. struct drm_device *dev = crtc->dev;
  5880. struct drm_i915_private *dev_priv = dev->dev_private;
  5881. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5882. struct drm_i915_gem_object *obj;
  5883. uint32_t addr;
  5884. int ret;
  5885. /* if we want to turn off the cursor ignore width and height */
  5886. if (!handle) {
  5887. DRM_DEBUG_KMS("cursor off\n");
  5888. addr = 0;
  5889. obj = NULL;
  5890. mutex_lock(&dev->struct_mutex);
  5891. goto finish;
  5892. }
  5893. /* Currently we only support 64x64 cursors */
  5894. if (width != 64 || height != 64) {
  5895. DRM_ERROR("we currently only support 64x64 cursors\n");
  5896. return -EINVAL;
  5897. }
  5898. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5899. if (&obj->base == NULL)
  5900. return -ENOENT;
  5901. if (obj->base.size < width * height * 4) {
  5902. DRM_ERROR("buffer is to small\n");
  5903. ret = -ENOMEM;
  5904. goto fail;
  5905. }
  5906. /* we only need to pin inside GTT if cursor is non-phy */
  5907. mutex_lock(&dev->struct_mutex);
  5908. if (!dev_priv->info->cursor_needs_physical) {
  5909. unsigned alignment;
  5910. if (obj->tiling_mode) {
  5911. DRM_ERROR("cursor cannot be tiled\n");
  5912. ret = -EINVAL;
  5913. goto fail_locked;
  5914. }
  5915. /* Note that the w/a also requires 2 PTE of padding following
  5916. * the bo. We currently fill all unused PTE with the shadow
  5917. * page and so we should always have valid PTE following the
  5918. * cursor preventing the VT-d warning.
  5919. */
  5920. alignment = 0;
  5921. if (need_vtd_wa(dev))
  5922. alignment = 64*1024;
  5923. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5924. if (ret) {
  5925. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5926. goto fail_locked;
  5927. }
  5928. ret = i915_gem_object_put_fence(obj);
  5929. if (ret) {
  5930. DRM_ERROR("failed to release fence for cursor");
  5931. goto fail_unpin;
  5932. }
  5933. addr = i915_gem_obj_ggtt_offset(obj);
  5934. } else {
  5935. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5936. ret = i915_gem_attach_phys_object(dev, obj,
  5937. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5938. align);
  5939. if (ret) {
  5940. DRM_ERROR("failed to attach phys object\n");
  5941. goto fail_locked;
  5942. }
  5943. addr = obj->phys_obj->handle->busaddr;
  5944. }
  5945. if (IS_GEN2(dev))
  5946. I915_WRITE(CURSIZE, (height << 12) | width);
  5947. finish:
  5948. if (intel_crtc->cursor_bo) {
  5949. if (dev_priv->info->cursor_needs_physical) {
  5950. if (intel_crtc->cursor_bo != obj)
  5951. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5952. } else
  5953. i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
  5954. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5955. }
  5956. mutex_unlock(&dev->struct_mutex);
  5957. intel_crtc->cursor_addr = addr;
  5958. intel_crtc->cursor_bo = obj;
  5959. intel_crtc->cursor_width = width;
  5960. intel_crtc->cursor_height = height;
  5961. if (intel_crtc->active)
  5962. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5963. return 0;
  5964. fail_unpin:
  5965. i915_gem_object_unpin_from_display_plane(obj);
  5966. fail_locked:
  5967. mutex_unlock(&dev->struct_mutex);
  5968. fail:
  5969. drm_gem_object_unreference_unlocked(&obj->base);
  5970. return ret;
  5971. }
  5972. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5973. {
  5974. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5975. intel_crtc->cursor_x = x;
  5976. intel_crtc->cursor_y = y;
  5977. if (intel_crtc->active)
  5978. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5979. return 0;
  5980. }
  5981. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5982. u16 *blue, uint32_t start, uint32_t size)
  5983. {
  5984. int end = (start + size > 256) ? 256 : start + size, i;
  5985. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5986. for (i = start; i < end; i++) {
  5987. intel_crtc->lut_r[i] = red[i] >> 8;
  5988. intel_crtc->lut_g[i] = green[i] >> 8;
  5989. intel_crtc->lut_b[i] = blue[i] >> 8;
  5990. }
  5991. intel_crtc_load_lut(crtc);
  5992. }
  5993. /* VESA 640x480x72Hz mode to set on the pipe */
  5994. static struct drm_display_mode load_detect_mode = {
  5995. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5996. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5997. };
  5998. static struct drm_framebuffer *
  5999. intel_framebuffer_create(struct drm_device *dev,
  6000. struct drm_mode_fb_cmd2 *mode_cmd,
  6001. struct drm_i915_gem_object *obj)
  6002. {
  6003. struct intel_framebuffer *intel_fb;
  6004. int ret;
  6005. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  6006. if (!intel_fb) {
  6007. drm_gem_object_unreference_unlocked(&obj->base);
  6008. return ERR_PTR(-ENOMEM);
  6009. }
  6010. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  6011. if (ret) {
  6012. drm_gem_object_unreference_unlocked(&obj->base);
  6013. kfree(intel_fb);
  6014. return ERR_PTR(ret);
  6015. }
  6016. return &intel_fb->base;
  6017. }
  6018. static u32
  6019. intel_framebuffer_pitch_for_width(int width, int bpp)
  6020. {
  6021. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  6022. return ALIGN(pitch, 64);
  6023. }
  6024. static u32
  6025. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  6026. {
  6027. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  6028. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  6029. }
  6030. static struct drm_framebuffer *
  6031. intel_framebuffer_create_for_mode(struct drm_device *dev,
  6032. struct drm_display_mode *mode,
  6033. int depth, int bpp)
  6034. {
  6035. struct drm_i915_gem_object *obj;
  6036. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  6037. obj = i915_gem_alloc_object(dev,
  6038. intel_framebuffer_size_for_mode(mode, bpp));
  6039. if (obj == NULL)
  6040. return ERR_PTR(-ENOMEM);
  6041. mode_cmd.width = mode->hdisplay;
  6042. mode_cmd.height = mode->vdisplay;
  6043. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  6044. bpp);
  6045. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  6046. return intel_framebuffer_create(dev, &mode_cmd, obj);
  6047. }
  6048. static struct drm_framebuffer *
  6049. mode_fits_in_fbdev(struct drm_device *dev,
  6050. struct drm_display_mode *mode)
  6051. {
  6052. struct drm_i915_private *dev_priv = dev->dev_private;
  6053. struct drm_i915_gem_object *obj;
  6054. struct drm_framebuffer *fb;
  6055. if (dev_priv->fbdev == NULL)
  6056. return NULL;
  6057. obj = dev_priv->fbdev->ifb.obj;
  6058. if (obj == NULL)
  6059. return NULL;
  6060. fb = &dev_priv->fbdev->ifb.base;
  6061. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  6062. fb->bits_per_pixel))
  6063. return NULL;
  6064. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  6065. return NULL;
  6066. return fb;
  6067. }
  6068. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  6069. struct drm_display_mode *mode,
  6070. struct intel_load_detect_pipe *old)
  6071. {
  6072. struct intel_crtc *intel_crtc;
  6073. struct intel_encoder *intel_encoder =
  6074. intel_attached_encoder(connector);
  6075. struct drm_crtc *possible_crtc;
  6076. struct drm_encoder *encoder = &intel_encoder->base;
  6077. struct drm_crtc *crtc = NULL;
  6078. struct drm_device *dev = encoder->dev;
  6079. struct drm_framebuffer *fb;
  6080. int i = -1;
  6081. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6082. connector->base.id, drm_get_connector_name(connector),
  6083. encoder->base.id, drm_get_encoder_name(encoder));
  6084. /*
  6085. * Algorithm gets a little messy:
  6086. *
  6087. * - if the connector already has an assigned crtc, use it (but make
  6088. * sure it's on first)
  6089. *
  6090. * - try to find the first unused crtc that can drive this connector,
  6091. * and use that if we find one
  6092. */
  6093. /* See if we already have a CRTC for this connector */
  6094. if (encoder->crtc) {
  6095. crtc = encoder->crtc;
  6096. mutex_lock(&crtc->mutex);
  6097. old->dpms_mode = connector->dpms;
  6098. old->load_detect_temp = false;
  6099. /* Make sure the crtc and connector are running */
  6100. if (connector->dpms != DRM_MODE_DPMS_ON)
  6101. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  6102. return true;
  6103. }
  6104. /* Find an unused one (if possible) */
  6105. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  6106. i++;
  6107. if (!(encoder->possible_crtcs & (1 << i)))
  6108. continue;
  6109. if (!possible_crtc->enabled) {
  6110. crtc = possible_crtc;
  6111. break;
  6112. }
  6113. }
  6114. /*
  6115. * If we didn't find an unused CRTC, don't use any.
  6116. */
  6117. if (!crtc) {
  6118. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  6119. return false;
  6120. }
  6121. mutex_lock(&crtc->mutex);
  6122. intel_encoder->new_crtc = to_intel_crtc(crtc);
  6123. to_intel_connector(connector)->new_encoder = intel_encoder;
  6124. intel_crtc = to_intel_crtc(crtc);
  6125. old->dpms_mode = connector->dpms;
  6126. old->load_detect_temp = true;
  6127. old->release_fb = NULL;
  6128. if (!mode)
  6129. mode = &load_detect_mode;
  6130. /* We need a framebuffer large enough to accommodate all accesses
  6131. * that the plane may generate whilst we perform load detection.
  6132. * We can not rely on the fbcon either being present (we get called
  6133. * during its initialisation to detect all boot displays, or it may
  6134. * not even exist) or that it is large enough to satisfy the
  6135. * requested mode.
  6136. */
  6137. fb = mode_fits_in_fbdev(dev, mode);
  6138. if (fb == NULL) {
  6139. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  6140. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  6141. old->release_fb = fb;
  6142. } else
  6143. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  6144. if (IS_ERR(fb)) {
  6145. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  6146. mutex_unlock(&crtc->mutex);
  6147. return false;
  6148. }
  6149. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  6150. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  6151. if (old->release_fb)
  6152. old->release_fb->funcs->destroy(old->release_fb);
  6153. mutex_unlock(&crtc->mutex);
  6154. return false;
  6155. }
  6156. /* let the connector get through one full cycle before testing */
  6157. intel_wait_for_vblank(dev, intel_crtc->pipe);
  6158. return true;
  6159. }
  6160. void intel_release_load_detect_pipe(struct drm_connector *connector,
  6161. struct intel_load_detect_pipe *old)
  6162. {
  6163. struct intel_encoder *intel_encoder =
  6164. intel_attached_encoder(connector);
  6165. struct drm_encoder *encoder = &intel_encoder->base;
  6166. struct drm_crtc *crtc = encoder->crtc;
  6167. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6168. connector->base.id, drm_get_connector_name(connector),
  6169. encoder->base.id, drm_get_encoder_name(encoder));
  6170. if (old->load_detect_temp) {
  6171. to_intel_connector(connector)->new_encoder = NULL;
  6172. intel_encoder->new_crtc = NULL;
  6173. intel_set_mode(crtc, NULL, 0, 0, NULL);
  6174. if (old->release_fb) {
  6175. drm_framebuffer_unregister_private(old->release_fb);
  6176. drm_framebuffer_unreference(old->release_fb);
  6177. }
  6178. mutex_unlock(&crtc->mutex);
  6179. return;
  6180. }
  6181. /* Switch crtc and encoder back off if necessary */
  6182. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  6183. connector->funcs->dpms(connector, old->dpms_mode);
  6184. mutex_unlock(&crtc->mutex);
  6185. }
  6186. static int i9xx_pll_refclk(struct drm_device *dev,
  6187. const struct intel_crtc_config *pipe_config)
  6188. {
  6189. struct drm_i915_private *dev_priv = dev->dev_private;
  6190. u32 dpll = pipe_config->dpll_hw_state.dpll;
  6191. if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
  6192. return dev_priv->vbt.lvds_ssc_freq * 1000;
  6193. else if (HAS_PCH_SPLIT(dev))
  6194. return 120000;
  6195. else if (!IS_GEN2(dev))
  6196. return 96000;
  6197. else
  6198. return 48000;
  6199. }
  6200. /* Returns the clock of the currently programmed mode of the given pipe. */
  6201. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  6202. struct intel_crtc_config *pipe_config)
  6203. {
  6204. struct drm_device *dev = crtc->base.dev;
  6205. struct drm_i915_private *dev_priv = dev->dev_private;
  6206. int pipe = pipe_config->cpu_transcoder;
  6207. u32 dpll = pipe_config->dpll_hw_state.dpll;
  6208. u32 fp;
  6209. intel_clock_t clock;
  6210. int refclk = i9xx_pll_refclk(dev, pipe_config);
  6211. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  6212. fp = pipe_config->dpll_hw_state.fp0;
  6213. else
  6214. fp = pipe_config->dpll_hw_state.fp1;
  6215. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  6216. if (IS_PINEVIEW(dev)) {
  6217. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  6218. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6219. } else {
  6220. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  6221. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6222. }
  6223. if (!IS_GEN2(dev)) {
  6224. if (IS_PINEVIEW(dev))
  6225. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  6226. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  6227. else
  6228. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  6229. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6230. switch (dpll & DPLL_MODE_MASK) {
  6231. case DPLLB_MODE_DAC_SERIAL:
  6232. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  6233. 5 : 10;
  6234. break;
  6235. case DPLLB_MODE_LVDS:
  6236. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  6237. 7 : 14;
  6238. break;
  6239. default:
  6240. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  6241. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  6242. return;
  6243. }
  6244. if (IS_PINEVIEW(dev))
  6245. pineview_clock(refclk, &clock);
  6246. else
  6247. i9xx_clock(refclk, &clock);
  6248. } else {
  6249. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  6250. if (is_lvds) {
  6251. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  6252. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6253. clock.p2 = 14;
  6254. } else {
  6255. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  6256. clock.p1 = 2;
  6257. else {
  6258. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  6259. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  6260. }
  6261. if (dpll & PLL_P2_DIVIDE_BY_4)
  6262. clock.p2 = 4;
  6263. else
  6264. clock.p2 = 2;
  6265. }
  6266. i9xx_clock(refclk, &clock);
  6267. }
  6268. /*
  6269. * This value includes pixel_multiplier. We will use
  6270. * port_clock to compute adjusted_mode.clock in the
  6271. * encoder's get_config() function.
  6272. */
  6273. pipe_config->port_clock = clock.dot;
  6274. }
  6275. int intel_dotclock_calculate(int link_freq,
  6276. const struct intel_link_m_n *m_n)
  6277. {
  6278. /*
  6279. * The calculation for the data clock is:
  6280. * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
  6281. * But we want to avoid losing precison if possible, so:
  6282. * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
  6283. *
  6284. * and the link clock is simpler:
  6285. * link_clock = (m * link_clock) / n
  6286. */
  6287. if (!m_n->link_n)
  6288. return 0;
  6289. return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
  6290. }
  6291. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  6292. struct intel_crtc_config *pipe_config)
  6293. {
  6294. struct drm_device *dev = crtc->base.dev;
  6295. /* read out port_clock from the DPLL */
  6296. i9xx_crtc_clock_get(crtc, pipe_config);
  6297. /*
  6298. * This value does not include pixel_multiplier.
  6299. * We will check that port_clock and adjusted_mode.clock
  6300. * agree once we know their relationship in the encoder's
  6301. * get_config() function.
  6302. */
  6303. pipe_config->adjusted_mode.clock =
  6304. intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
  6305. &pipe_config->fdi_m_n);
  6306. }
  6307. /** Returns the currently programmed mode of the given pipe. */
  6308. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  6309. struct drm_crtc *crtc)
  6310. {
  6311. struct drm_i915_private *dev_priv = dev->dev_private;
  6312. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6313. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  6314. struct drm_display_mode *mode;
  6315. struct intel_crtc_config pipe_config;
  6316. int htot = I915_READ(HTOTAL(cpu_transcoder));
  6317. int hsync = I915_READ(HSYNC(cpu_transcoder));
  6318. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  6319. int vsync = I915_READ(VSYNC(cpu_transcoder));
  6320. enum pipe pipe = intel_crtc->pipe;
  6321. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  6322. if (!mode)
  6323. return NULL;
  6324. /*
  6325. * Construct a pipe_config sufficient for getting the clock info
  6326. * back out of crtc_clock_get.
  6327. *
  6328. * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
  6329. * to use a real value here instead.
  6330. */
  6331. pipe_config.cpu_transcoder = (enum transcoder) pipe;
  6332. pipe_config.pixel_multiplier = 1;
  6333. pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
  6334. pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
  6335. pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
  6336. i9xx_crtc_clock_get(intel_crtc, &pipe_config);
  6337. mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
  6338. mode->hdisplay = (htot & 0xffff) + 1;
  6339. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  6340. mode->hsync_start = (hsync & 0xffff) + 1;
  6341. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  6342. mode->vdisplay = (vtot & 0xffff) + 1;
  6343. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  6344. mode->vsync_start = (vsync & 0xffff) + 1;
  6345. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  6346. drm_mode_set_name(mode);
  6347. return mode;
  6348. }
  6349. static void intel_increase_pllclock(struct drm_crtc *crtc)
  6350. {
  6351. struct drm_device *dev = crtc->dev;
  6352. drm_i915_private_t *dev_priv = dev->dev_private;
  6353. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6354. int pipe = intel_crtc->pipe;
  6355. int dpll_reg = DPLL(pipe);
  6356. int dpll;
  6357. if (HAS_PCH_SPLIT(dev))
  6358. return;
  6359. if (!dev_priv->lvds_downclock_avail)
  6360. return;
  6361. dpll = I915_READ(dpll_reg);
  6362. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  6363. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  6364. assert_panel_unlocked(dev_priv, pipe);
  6365. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  6366. I915_WRITE(dpll_reg, dpll);
  6367. intel_wait_for_vblank(dev, pipe);
  6368. dpll = I915_READ(dpll_reg);
  6369. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  6370. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  6371. }
  6372. }
  6373. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  6374. {
  6375. struct drm_device *dev = crtc->dev;
  6376. drm_i915_private_t *dev_priv = dev->dev_private;
  6377. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6378. if (HAS_PCH_SPLIT(dev))
  6379. return;
  6380. if (!dev_priv->lvds_downclock_avail)
  6381. return;
  6382. /*
  6383. * Since this is called by a timer, we should never get here in
  6384. * the manual case.
  6385. */
  6386. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6387. int pipe = intel_crtc->pipe;
  6388. int dpll_reg = DPLL(pipe);
  6389. int dpll;
  6390. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6391. assert_panel_unlocked(dev_priv, pipe);
  6392. dpll = I915_READ(dpll_reg);
  6393. dpll |= DISPLAY_RATE_SELECT_FPA1;
  6394. I915_WRITE(dpll_reg, dpll);
  6395. intel_wait_for_vblank(dev, pipe);
  6396. dpll = I915_READ(dpll_reg);
  6397. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6398. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6399. }
  6400. }
  6401. void intel_mark_busy(struct drm_device *dev)
  6402. {
  6403. struct drm_i915_private *dev_priv = dev->dev_private;
  6404. hsw_package_c8_gpu_busy(dev_priv);
  6405. i915_update_gfx_val(dev_priv);
  6406. }
  6407. void intel_mark_idle(struct drm_device *dev)
  6408. {
  6409. struct drm_i915_private *dev_priv = dev->dev_private;
  6410. struct drm_crtc *crtc;
  6411. hsw_package_c8_gpu_idle(dev_priv);
  6412. if (!i915_powersave)
  6413. return;
  6414. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6415. if (!crtc->fb)
  6416. continue;
  6417. intel_decrease_pllclock(crtc);
  6418. }
  6419. }
  6420. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  6421. struct intel_ring_buffer *ring)
  6422. {
  6423. struct drm_device *dev = obj->base.dev;
  6424. struct drm_crtc *crtc;
  6425. if (!i915_powersave)
  6426. return;
  6427. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6428. if (!crtc->fb)
  6429. continue;
  6430. if (to_intel_framebuffer(crtc->fb)->obj != obj)
  6431. continue;
  6432. intel_increase_pllclock(crtc);
  6433. if (ring && intel_fbc_enabled(dev))
  6434. ring->fbc_dirty = true;
  6435. }
  6436. }
  6437. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6438. {
  6439. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6440. struct drm_device *dev = crtc->dev;
  6441. struct intel_unpin_work *work;
  6442. unsigned long flags;
  6443. spin_lock_irqsave(&dev->event_lock, flags);
  6444. work = intel_crtc->unpin_work;
  6445. intel_crtc->unpin_work = NULL;
  6446. spin_unlock_irqrestore(&dev->event_lock, flags);
  6447. if (work) {
  6448. cancel_work_sync(&work->work);
  6449. kfree(work);
  6450. }
  6451. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  6452. drm_crtc_cleanup(crtc);
  6453. kfree(intel_crtc);
  6454. }
  6455. static void intel_unpin_work_fn(struct work_struct *__work)
  6456. {
  6457. struct intel_unpin_work *work =
  6458. container_of(__work, struct intel_unpin_work, work);
  6459. struct drm_device *dev = work->crtc->dev;
  6460. mutex_lock(&dev->struct_mutex);
  6461. intel_unpin_fb_obj(work->old_fb_obj);
  6462. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6463. drm_gem_object_unreference(&work->old_fb_obj->base);
  6464. intel_update_fbc(dev);
  6465. mutex_unlock(&dev->struct_mutex);
  6466. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  6467. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  6468. kfree(work);
  6469. }
  6470. static void do_intel_finish_page_flip(struct drm_device *dev,
  6471. struct drm_crtc *crtc)
  6472. {
  6473. drm_i915_private_t *dev_priv = dev->dev_private;
  6474. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6475. struct intel_unpin_work *work;
  6476. unsigned long flags;
  6477. /* Ignore early vblank irqs */
  6478. if (intel_crtc == NULL)
  6479. return;
  6480. spin_lock_irqsave(&dev->event_lock, flags);
  6481. work = intel_crtc->unpin_work;
  6482. /* Ensure we don't miss a work->pending update ... */
  6483. smp_rmb();
  6484. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6485. spin_unlock_irqrestore(&dev->event_lock, flags);
  6486. return;
  6487. }
  6488. /* and that the unpin work is consistent wrt ->pending. */
  6489. smp_rmb();
  6490. intel_crtc->unpin_work = NULL;
  6491. if (work->event)
  6492. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6493. drm_vblank_put(dev, intel_crtc->pipe);
  6494. spin_unlock_irqrestore(&dev->event_lock, flags);
  6495. wake_up_all(&dev_priv->pending_flip_queue);
  6496. queue_work(dev_priv->wq, &work->work);
  6497. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6498. }
  6499. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6500. {
  6501. drm_i915_private_t *dev_priv = dev->dev_private;
  6502. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6503. do_intel_finish_page_flip(dev, crtc);
  6504. }
  6505. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6506. {
  6507. drm_i915_private_t *dev_priv = dev->dev_private;
  6508. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6509. do_intel_finish_page_flip(dev, crtc);
  6510. }
  6511. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6512. {
  6513. drm_i915_private_t *dev_priv = dev->dev_private;
  6514. struct intel_crtc *intel_crtc =
  6515. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6516. unsigned long flags;
  6517. /* NB: An MMIO update of the plane base pointer will also
  6518. * generate a page-flip completion irq, i.e. every modeset
  6519. * is also accompanied by a spurious intel_prepare_page_flip().
  6520. */
  6521. spin_lock_irqsave(&dev->event_lock, flags);
  6522. if (intel_crtc->unpin_work)
  6523. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6524. spin_unlock_irqrestore(&dev->event_lock, flags);
  6525. }
  6526. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6527. {
  6528. /* Ensure that the work item is consistent when activating it ... */
  6529. smp_wmb();
  6530. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6531. /* and that it is marked active as soon as the irq could fire. */
  6532. smp_wmb();
  6533. }
  6534. static int intel_gen2_queue_flip(struct drm_device *dev,
  6535. struct drm_crtc *crtc,
  6536. struct drm_framebuffer *fb,
  6537. struct drm_i915_gem_object *obj,
  6538. uint32_t flags)
  6539. {
  6540. struct drm_i915_private *dev_priv = dev->dev_private;
  6541. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6542. u32 flip_mask;
  6543. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6544. int ret;
  6545. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6546. if (ret)
  6547. goto err;
  6548. ret = intel_ring_begin(ring, 6);
  6549. if (ret)
  6550. goto err_unpin;
  6551. /* Can't queue multiple flips, so wait for the previous
  6552. * one to finish before executing the next.
  6553. */
  6554. if (intel_crtc->plane)
  6555. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6556. else
  6557. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6558. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6559. intel_ring_emit(ring, MI_NOOP);
  6560. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6561. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6562. intel_ring_emit(ring, fb->pitches[0]);
  6563. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6564. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6565. intel_mark_page_flip_active(intel_crtc);
  6566. __intel_ring_advance(ring);
  6567. return 0;
  6568. err_unpin:
  6569. intel_unpin_fb_obj(obj);
  6570. err:
  6571. return ret;
  6572. }
  6573. static int intel_gen3_queue_flip(struct drm_device *dev,
  6574. struct drm_crtc *crtc,
  6575. struct drm_framebuffer *fb,
  6576. struct drm_i915_gem_object *obj,
  6577. uint32_t flags)
  6578. {
  6579. struct drm_i915_private *dev_priv = dev->dev_private;
  6580. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6581. u32 flip_mask;
  6582. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6583. int ret;
  6584. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6585. if (ret)
  6586. goto err;
  6587. ret = intel_ring_begin(ring, 6);
  6588. if (ret)
  6589. goto err_unpin;
  6590. if (intel_crtc->plane)
  6591. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6592. else
  6593. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6594. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6595. intel_ring_emit(ring, MI_NOOP);
  6596. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6597. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6598. intel_ring_emit(ring, fb->pitches[0]);
  6599. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6600. intel_ring_emit(ring, MI_NOOP);
  6601. intel_mark_page_flip_active(intel_crtc);
  6602. __intel_ring_advance(ring);
  6603. return 0;
  6604. err_unpin:
  6605. intel_unpin_fb_obj(obj);
  6606. err:
  6607. return ret;
  6608. }
  6609. static int intel_gen4_queue_flip(struct drm_device *dev,
  6610. struct drm_crtc *crtc,
  6611. struct drm_framebuffer *fb,
  6612. struct drm_i915_gem_object *obj,
  6613. uint32_t flags)
  6614. {
  6615. struct drm_i915_private *dev_priv = dev->dev_private;
  6616. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6617. uint32_t pf, pipesrc;
  6618. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6619. int ret;
  6620. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6621. if (ret)
  6622. goto err;
  6623. ret = intel_ring_begin(ring, 4);
  6624. if (ret)
  6625. goto err_unpin;
  6626. /* i965+ uses the linear or tiled offsets from the
  6627. * Display Registers (which do not change across a page-flip)
  6628. * so we need only reprogram the base address.
  6629. */
  6630. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6631. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6632. intel_ring_emit(ring, fb->pitches[0]);
  6633. intel_ring_emit(ring,
  6634. (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
  6635. obj->tiling_mode);
  6636. /* XXX Enabling the panel-fitter across page-flip is so far
  6637. * untested on non-native modes, so ignore it for now.
  6638. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6639. */
  6640. pf = 0;
  6641. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6642. intel_ring_emit(ring, pf | pipesrc);
  6643. intel_mark_page_flip_active(intel_crtc);
  6644. __intel_ring_advance(ring);
  6645. return 0;
  6646. err_unpin:
  6647. intel_unpin_fb_obj(obj);
  6648. err:
  6649. return ret;
  6650. }
  6651. static int intel_gen6_queue_flip(struct drm_device *dev,
  6652. struct drm_crtc *crtc,
  6653. struct drm_framebuffer *fb,
  6654. struct drm_i915_gem_object *obj,
  6655. uint32_t flags)
  6656. {
  6657. struct drm_i915_private *dev_priv = dev->dev_private;
  6658. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6659. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6660. uint32_t pf, pipesrc;
  6661. int ret;
  6662. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6663. if (ret)
  6664. goto err;
  6665. ret = intel_ring_begin(ring, 4);
  6666. if (ret)
  6667. goto err_unpin;
  6668. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6669. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6670. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6671. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6672. /* Contrary to the suggestions in the documentation,
  6673. * "Enable Panel Fitter" does not seem to be required when page
  6674. * flipping with a non-native mode, and worse causes a normal
  6675. * modeset to fail.
  6676. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6677. */
  6678. pf = 0;
  6679. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6680. intel_ring_emit(ring, pf | pipesrc);
  6681. intel_mark_page_flip_active(intel_crtc);
  6682. __intel_ring_advance(ring);
  6683. return 0;
  6684. err_unpin:
  6685. intel_unpin_fb_obj(obj);
  6686. err:
  6687. return ret;
  6688. }
  6689. static int intel_gen7_queue_flip(struct drm_device *dev,
  6690. struct drm_crtc *crtc,
  6691. struct drm_framebuffer *fb,
  6692. struct drm_i915_gem_object *obj,
  6693. uint32_t flags)
  6694. {
  6695. struct drm_i915_private *dev_priv = dev->dev_private;
  6696. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6697. struct intel_ring_buffer *ring;
  6698. uint32_t plane_bit = 0;
  6699. int len, ret;
  6700. ring = obj->ring;
  6701. if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
  6702. ring = &dev_priv->ring[BCS];
  6703. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6704. if (ret)
  6705. goto err;
  6706. switch(intel_crtc->plane) {
  6707. case PLANE_A:
  6708. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6709. break;
  6710. case PLANE_B:
  6711. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6712. break;
  6713. case PLANE_C:
  6714. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6715. break;
  6716. default:
  6717. WARN_ONCE(1, "unknown plane in flip command\n");
  6718. ret = -ENODEV;
  6719. goto err_unpin;
  6720. }
  6721. len = 4;
  6722. if (ring->id == RCS)
  6723. len += 6;
  6724. ret = intel_ring_begin(ring, len);
  6725. if (ret)
  6726. goto err_unpin;
  6727. /* Unmask the flip-done completion message. Note that the bspec says that
  6728. * we should do this for both the BCS and RCS, and that we must not unmask
  6729. * more than one flip event at any time (or ensure that one flip message
  6730. * can be sent by waiting for flip-done prior to queueing new flips).
  6731. * Experimentation says that BCS works despite DERRMR masking all
  6732. * flip-done completion events and that unmasking all planes at once
  6733. * for the RCS also doesn't appear to drop events. Setting the DERRMR
  6734. * to zero does lead to lockups within MI_DISPLAY_FLIP.
  6735. */
  6736. if (ring->id == RCS) {
  6737. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  6738. intel_ring_emit(ring, DERRMR);
  6739. intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
  6740. DERRMR_PIPEB_PRI_FLIP_DONE |
  6741. DERRMR_PIPEC_PRI_FLIP_DONE));
  6742. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
  6743. intel_ring_emit(ring, DERRMR);
  6744. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  6745. }
  6746. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6747. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6748. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6749. intel_ring_emit(ring, (MI_NOOP));
  6750. intel_mark_page_flip_active(intel_crtc);
  6751. __intel_ring_advance(ring);
  6752. return 0;
  6753. err_unpin:
  6754. intel_unpin_fb_obj(obj);
  6755. err:
  6756. return ret;
  6757. }
  6758. static int intel_default_queue_flip(struct drm_device *dev,
  6759. struct drm_crtc *crtc,
  6760. struct drm_framebuffer *fb,
  6761. struct drm_i915_gem_object *obj,
  6762. uint32_t flags)
  6763. {
  6764. return -ENODEV;
  6765. }
  6766. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6767. struct drm_framebuffer *fb,
  6768. struct drm_pending_vblank_event *event,
  6769. uint32_t page_flip_flags)
  6770. {
  6771. struct drm_device *dev = crtc->dev;
  6772. struct drm_i915_private *dev_priv = dev->dev_private;
  6773. struct drm_framebuffer *old_fb = crtc->fb;
  6774. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6775. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6776. struct intel_unpin_work *work;
  6777. unsigned long flags;
  6778. int ret;
  6779. /* Can't change pixel format via MI display flips. */
  6780. if (fb->pixel_format != crtc->fb->pixel_format)
  6781. return -EINVAL;
  6782. /*
  6783. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6784. * Note that pitch changes could also affect these register.
  6785. */
  6786. if (INTEL_INFO(dev)->gen > 3 &&
  6787. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6788. fb->pitches[0] != crtc->fb->pitches[0]))
  6789. return -EINVAL;
  6790. work = kzalloc(sizeof(*work), GFP_KERNEL);
  6791. if (work == NULL)
  6792. return -ENOMEM;
  6793. work->event = event;
  6794. work->crtc = crtc;
  6795. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6796. INIT_WORK(&work->work, intel_unpin_work_fn);
  6797. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6798. if (ret)
  6799. goto free_work;
  6800. /* We borrow the event spin lock for protecting unpin_work */
  6801. spin_lock_irqsave(&dev->event_lock, flags);
  6802. if (intel_crtc->unpin_work) {
  6803. spin_unlock_irqrestore(&dev->event_lock, flags);
  6804. kfree(work);
  6805. drm_vblank_put(dev, intel_crtc->pipe);
  6806. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6807. return -EBUSY;
  6808. }
  6809. intel_crtc->unpin_work = work;
  6810. spin_unlock_irqrestore(&dev->event_lock, flags);
  6811. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6812. flush_workqueue(dev_priv->wq);
  6813. ret = i915_mutex_lock_interruptible(dev);
  6814. if (ret)
  6815. goto cleanup;
  6816. /* Reference the objects for the scheduled work. */
  6817. drm_gem_object_reference(&work->old_fb_obj->base);
  6818. drm_gem_object_reference(&obj->base);
  6819. crtc->fb = fb;
  6820. work->pending_flip_obj = obj;
  6821. work->enable_stall_check = true;
  6822. atomic_inc(&intel_crtc->unpin_work_count);
  6823. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6824. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
  6825. if (ret)
  6826. goto cleanup_pending;
  6827. intel_disable_fbc(dev);
  6828. intel_mark_fb_busy(obj, NULL);
  6829. mutex_unlock(&dev->struct_mutex);
  6830. trace_i915_flip_request(intel_crtc->plane, obj);
  6831. return 0;
  6832. cleanup_pending:
  6833. atomic_dec(&intel_crtc->unpin_work_count);
  6834. crtc->fb = old_fb;
  6835. drm_gem_object_unreference(&work->old_fb_obj->base);
  6836. drm_gem_object_unreference(&obj->base);
  6837. mutex_unlock(&dev->struct_mutex);
  6838. cleanup:
  6839. spin_lock_irqsave(&dev->event_lock, flags);
  6840. intel_crtc->unpin_work = NULL;
  6841. spin_unlock_irqrestore(&dev->event_lock, flags);
  6842. drm_vblank_put(dev, intel_crtc->pipe);
  6843. free_work:
  6844. kfree(work);
  6845. return ret;
  6846. }
  6847. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6848. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6849. .load_lut = intel_crtc_load_lut,
  6850. };
  6851. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6852. struct drm_crtc *crtc)
  6853. {
  6854. struct drm_device *dev;
  6855. struct drm_crtc *tmp;
  6856. int crtc_mask = 1;
  6857. WARN(!crtc, "checking null crtc?\n");
  6858. dev = crtc->dev;
  6859. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6860. if (tmp == crtc)
  6861. break;
  6862. crtc_mask <<= 1;
  6863. }
  6864. if (encoder->possible_crtcs & crtc_mask)
  6865. return true;
  6866. return false;
  6867. }
  6868. /**
  6869. * intel_modeset_update_staged_output_state
  6870. *
  6871. * Updates the staged output configuration state, e.g. after we've read out the
  6872. * current hw state.
  6873. */
  6874. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6875. {
  6876. struct intel_encoder *encoder;
  6877. struct intel_connector *connector;
  6878. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6879. base.head) {
  6880. connector->new_encoder =
  6881. to_intel_encoder(connector->base.encoder);
  6882. }
  6883. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6884. base.head) {
  6885. encoder->new_crtc =
  6886. to_intel_crtc(encoder->base.crtc);
  6887. }
  6888. }
  6889. /**
  6890. * intel_modeset_commit_output_state
  6891. *
  6892. * This function copies the stage display pipe configuration to the real one.
  6893. */
  6894. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6895. {
  6896. struct intel_encoder *encoder;
  6897. struct intel_connector *connector;
  6898. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6899. base.head) {
  6900. connector->base.encoder = &connector->new_encoder->base;
  6901. }
  6902. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6903. base.head) {
  6904. encoder->base.crtc = &encoder->new_crtc->base;
  6905. }
  6906. }
  6907. static void
  6908. connected_sink_compute_bpp(struct intel_connector * connector,
  6909. struct intel_crtc_config *pipe_config)
  6910. {
  6911. int bpp = pipe_config->pipe_bpp;
  6912. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6913. connector->base.base.id,
  6914. drm_get_connector_name(&connector->base));
  6915. /* Don't use an invalid EDID bpc value */
  6916. if (connector->base.display_info.bpc &&
  6917. connector->base.display_info.bpc * 3 < bpp) {
  6918. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6919. bpp, connector->base.display_info.bpc*3);
  6920. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6921. }
  6922. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6923. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6924. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6925. bpp);
  6926. pipe_config->pipe_bpp = 24;
  6927. }
  6928. }
  6929. static int
  6930. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6931. struct drm_framebuffer *fb,
  6932. struct intel_crtc_config *pipe_config)
  6933. {
  6934. struct drm_device *dev = crtc->base.dev;
  6935. struct intel_connector *connector;
  6936. int bpp;
  6937. switch (fb->pixel_format) {
  6938. case DRM_FORMAT_C8:
  6939. bpp = 8*3; /* since we go through a colormap */
  6940. break;
  6941. case DRM_FORMAT_XRGB1555:
  6942. case DRM_FORMAT_ARGB1555:
  6943. /* checked in intel_framebuffer_init already */
  6944. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6945. return -EINVAL;
  6946. case DRM_FORMAT_RGB565:
  6947. bpp = 6*3; /* min is 18bpp */
  6948. break;
  6949. case DRM_FORMAT_XBGR8888:
  6950. case DRM_FORMAT_ABGR8888:
  6951. /* checked in intel_framebuffer_init already */
  6952. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6953. return -EINVAL;
  6954. case DRM_FORMAT_XRGB8888:
  6955. case DRM_FORMAT_ARGB8888:
  6956. bpp = 8*3;
  6957. break;
  6958. case DRM_FORMAT_XRGB2101010:
  6959. case DRM_FORMAT_ARGB2101010:
  6960. case DRM_FORMAT_XBGR2101010:
  6961. case DRM_FORMAT_ABGR2101010:
  6962. /* checked in intel_framebuffer_init already */
  6963. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6964. return -EINVAL;
  6965. bpp = 10*3;
  6966. break;
  6967. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6968. default:
  6969. DRM_DEBUG_KMS("unsupported depth\n");
  6970. return -EINVAL;
  6971. }
  6972. pipe_config->pipe_bpp = bpp;
  6973. /* Clamp display bpp to EDID value */
  6974. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6975. base.head) {
  6976. if (!connector->new_encoder ||
  6977. connector->new_encoder->new_crtc != crtc)
  6978. continue;
  6979. connected_sink_compute_bpp(connector, pipe_config);
  6980. }
  6981. return bpp;
  6982. }
  6983. static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
  6984. {
  6985. DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
  6986. "type: 0x%x flags: 0x%x\n",
  6987. mode->clock,
  6988. mode->crtc_hdisplay, mode->crtc_hsync_start,
  6989. mode->crtc_hsync_end, mode->crtc_htotal,
  6990. mode->crtc_vdisplay, mode->crtc_vsync_start,
  6991. mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
  6992. }
  6993. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6994. struct intel_crtc_config *pipe_config,
  6995. const char *context)
  6996. {
  6997. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6998. context, pipe_name(crtc->pipe));
  6999. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  7000. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  7001. pipe_config->pipe_bpp, pipe_config->dither);
  7002. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  7003. pipe_config->has_pch_encoder,
  7004. pipe_config->fdi_lanes,
  7005. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  7006. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  7007. pipe_config->fdi_m_n.tu);
  7008. DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  7009. pipe_config->has_dp_encoder,
  7010. pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
  7011. pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
  7012. pipe_config->dp_m_n.tu);
  7013. DRM_DEBUG_KMS("requested mode:\n");
  7014. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  7015. DRM_DEBUG_KMS("adjusted mode:\n");
  7016. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  7017. intel_dump_crtc_timings(&pipe_config->adjusted_mode);
  7018. DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
  7019. DRM_DEBUG_KMS("pipe src size: %dx%d\n",
  7020. pipe_config->pipe_src_w, pipe_config->pipe_src_h);
  7021. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  7022. pipe_config->gmch_pfit.control,
  7023. pipe_config->gmch_pfit.pgm_ratios,
  7024. pipe_config->gmch_pfit.lvds_border_bits);
  7025. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
  7026. pipe_config->pch_pfit.pos,
  7027. pipe_config->pch_pfit.size,
  7028. pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
  7029. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  7030. DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
  7031. }
  7032. static bool check_encoder_cloning(struct drm_crtc *crtc)
  7033. {
  7034. int num_encoders = 0;
  7035. bool uncloneable_encoders = false;
  7036. struct intel_encoder *encoder;
  7037. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  7038. base.head) {
  7039. if (&encoder->new_crtc->base != crtc)
  7040. continue;
  7041. num_encoders++;
  7042. if (!encoder->cloneable)
  7043. uncloneable_encoders = true;
  7044. }
  7045. return !(num_encoders > 1 && uncloneable_encoders);
  7046. }
  7047. static struct intel_crtc_config *
  7048. intel_modeset_pipe_config(struct drm_crtc *crtc,
  7049. struct drm_framebuffer *fb,
  7050. struct drm_display_mode *mode)
  7051. {
  7052. struct drm_device *dev = crtc->dev;
  7053. struct intel_encoder *encoder;
  7054. struct intel_crtc_config *pipe_config;
  7055. int plane_bpp, ret = -EINVAL;
  7056. bool retry = true;
  7057. if (!check_encoder_cloning(crtc)) {
  7058. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  7059. return ERR_PTR(-EINVAL);
  7060. }
  7061. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  7062. if (!pipe_config)
  7063. return ERR_PTR(-ENOMEM);
  7064. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  7065. drm_mode_copy(&pipe_config->requested_mode, mode);
  7066. pipe_config->pipe_src_w = mode->hdisplay;
  7067. pipe_config->pipe_src_h = mode->vdisplay;
  7068. pipe_config->cpu_transcoder =
  7069. (enum transcoder) to_intel_crtc(crtc)->pipe;
  7070. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  7071. /*
  7072. * Sanitize sync polarity flags based on requested ones. If neither
  7073. * positive or negative polarity is requested, treat this as meaning
  7074. * negative polarity.
  7075. */
  7076. if (!(pipe_config->adjusted_mode.flags &
  7077. (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
  7078. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
  7079. if (!(pipe_config->adjusted_mode.flags &
  7080. (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
  7081. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
  7082. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  7083. * plane pixel format and any sink constraints into account. Returns the
  7084. * source plane bpp so that dithering can be selected on mismatches
  7085. * after encoders and crtc also have had their say. */
  7086. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  7087. fb, pipe_config);
  7088. if (plane_bpp < 0)
  7089. goto fail;
  7090. encoder_retry:
  7091. /* Ensure the port clock defaults are reset when retrying. */
  7092. pipe_config->port_clock = 0;
  7093. pipe_config->pixel_multiplier = 1;
  7094. /* Fill in default crtc timings, allow encoders to overwrite them. */
  7095. drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
  7096. /* Pass our mode to the connectors and the CRTC to give them a chance to
  7097. * adjust it according to limitations or connector properties, and also
  7098. * a chance to reject the mode entirely.
  7099. */
  7100. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7101. base.head) {
  7102. if (&encoder->new_crtc->base != crtc)
  7103. continue;
  7104. if (!(encoder->compute_config(encoder, pipe_config))) {
  7105. DRM_DEBUG_KMS("Encoder config failure\n");
  7106. goto fail;
  7107. }
  7108. }
  7109. /* Set default port clock if not overwritten by the encoder. Needs to be
  7110. * done afterwards in case the encoder adjusts the mode. */
  7111. if (!pipe_config->port_clock)
  7112. pipe_config->port_clock = pipe_config->adjusted_mode.clock *
  7113. pipe_config->pixel_multiplier;
  7114. ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  7115. if (ret < 0) {
  7116. DRM_DEBUG_KMS("CRTC fixup failed\n");
  7117. goto fail;
  7118. }
  7119. if (ret == RETRY) {
  7120. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  7121. ret = -EINVAL;
  7122. goto fail;
  7123. }
  7124. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  7125. retry = false;
  7126. goto encoder_retry;
  7127. }
  7128. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  7129. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  7130. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  7131. return pipe_config;
  7132. fail:
  7133. kfree(pipe_config);
  7134. return ERR_PTR(ret);
  7135. }
  7136. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  7137. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  7138. static void
  7139. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  7140. unsigned *prepare_pipes, unsigned *disable_pipes)
  7141. {
  7142. struct intel_crtc *intel_crtc;
  7143. struct drm_device *dev = crtc->dev;
  7144. struct intel_encoder *encoder;
  7145. struct intel_connector *connector;
  7146. struct drm_crtc *tmp_crtc;
  7147. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  7148. /* Check which crtcs have changed outputs connected to them, these need
  7149. * to be part of the prepare_pipes mask. We don't (yet) support global
  7150. * modeset across multiple crtcs, so modeset_pipes will only have one
  7151. * bit set at most. */
  7152. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7153. base.head) {
  7154. if (connector->base.encoder == &connector->new_encoder->base)
  7155. continue;
  7156. if (connector->base.encoder) {
  7157. tmp_crtc = connector->base.encoder->crtc;
  7158. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7159. }
  7160. if (connector->new_encoder)
  7161. *prepare_pipes |=
  7162. 1 << connector->new_encoder->new_crtc->pipe;
  7163. }
  7164. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7165. base.head) {
  7166. if (encoder->base.crtc == &encoder->new_crtc->base)
  7167. continue;
  7168. if (encoder->base.crtc) {
  7169. tmp_crtc = encoder->base.crtc;
  7170. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7171. }
  7172. if (encoder->new_crtc)
  7173. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  7174. }
  7175. /* Check for any pipes that will be fully disabled ... */
  7176. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7177. base.head) {
  7178. bool used = false;
  7179. /* Don't try to disable disabled crtcs. */
  7180. if (!intel_crtc->base.enabled)
  7181. continue;
  7182. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7183. base.head) {
  7184. if (encoder->new_crtc == intel_crtc)
  7185. used = true;
  7186. }
  7187. if (!used)
  7188. *disable_pipes |= 1 << intel_crtc->pipe;
  7189. }
  7190. /* set_mode is also used to update properties on life display pipes. */
  7191. intel_crtc = to_intel_crtc(crtc);
  7192. if (crtc->enabled)
  7193. *prepare_pipes |= 1 << intel_crtc->pipe;
  7194. /*
  7195. * For simplicity do a full modeset on any pipe where the output routing
  7196. * changed. We could be more clever, but that would require us to be
  7197. * more careful with calling the relevant encoder->mode_set functions.
  7198. */
  7199. if (*prepare_pipes)
  7200. *modeset_pipes = *prepare_pipes;
  7201. /* ... and mask these out. */
  7202. *modeset_pipes &= ~(*disable_pipes);
  7203. *prepare_pipes &= ~(*disable_pipes);
  7204. /*
  7205. * HACK: We don't (yet) fully support global modesets. intel_set_config
  7206. * obies this rule, but the modeset restore mode of
  7207. * intel_modeset_setup_hw_state does not.
  7208. */
  7209. *modeset_pipes &= 1 << intel_crtc->pipe;
  7210. *prepare_pipes &= 1 << intel_crtc->pipe;
  7211. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  7212. *modeset_pipes, *prepare_pipes, *disable_pipes);
  7213. }
  7214. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  7215. {
  7216. struct drm_encoder *encoder;
  7217. struct drm_device *dev = crtc->dev;
  7218. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  7219. if (encoder->crtc == crtc)
  7220. return true;
  7221. return false;
  7222. }
  7223. static void
  7224. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  7225. {
  7226. struct intel_encoder *intel_encoder;
  7227. struct intel_crtc *intel_crtc;
  7228. struct drm_connector *connector;
  7229. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  7230. base.head) {
  7231. if (!intel_encoder->base.crtc)
  7232. continue;
  7233. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  7234. if (prepare_pipes & (1 << intel_crtc->pipe))
  7235. intel_encoder->connectors_active = false;
  7236. }
  7237. intel_modeset_commit_output_state(dev);
  7238. /* Update computed state. */
  7239. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7240. base.head) {
  7241. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  7242. }
  7243. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7244. if (!connector->encoder || !connector->encoder->crtc)
  7245. continue;
  7246. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  7247. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  7248. struct drm_property *dpms_property =
  7249. dev->mode_config.dpms_property;
  7250. connector->dpms = DRM_MODE_DPMS_ON;
  7251. drm_object_property_set_value(&connector->base,
  7252. dpms_property,
  7253. DRM_MODE_DPMS_ON);
  7254. intel_encoder = to_intel_encoder(connector->encoder);
  7255. intel_encoder->connectors_active = true;
  7256. }
  7257. }
  7258. }
  7259. static bool intel_fuzzy_clock_check(int clock1, int clock2)
  7260. {
  7261. int diff;
  7262. if (clock1 == clock2)
  7263. return true;
  7264. if (!clock1 || !clock2)
  7265. return false;
  7266. diff = abs(clock1 - clock2);
  7267. if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
  7268. return true;
  7269. return false;
  7270. }
  7271. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  7272. list_for_each_entry((intel_crtc), \
  7273. &(dev)->mode_config.crtc_list, \
  7274. base.head) \
  7275. if (mask & (1 <<(intel_crtc)->pipe))
  7276. static bool
  7277. intel_pipe_config_compare(struct drm_device *dev,
  7278. struct intel_crtc_config *current_config,
  7279. struct intel_crtc_config *pipe_config)
  7280. {
  7281. #define PIPE_CONF_CHECK_X(name) \
  7282. if (current_config->name != pipe_config->name) { \
  7283. DRM_ERROR("mismatch in " #name " " \
  7284. "(expected 0x%08x, found 0x%08x)\n", \
  7285. current_config->name, \
  7286. pipe_config->name); \
  7287. return false; \
  7288. }
  7289. #define PIPE_CONF_CHECK_I(name) \
  7290. if (current_config->name != pipe_config->name) { \
  7291. DRM_ERROR("mismatch in " #name " " \
  7292. "(expected %i, found %i)\n", \
  7293. current_config->name, \
  7294. pipe_config->name); \
  7295. return false; \
  7296. }
  7297. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  7298. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  7299. DRM_ERROR("mismatch in " #name "(" #mask ") " \
  7300. "(expected %i, found %i)\n", \
  7301. current_config->name & (mask), \
  7302. pipe_config->name & (mask)); \
  7303. return false; \
  7304. }
  7305. #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
  7306. if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
  7307. DRM_ERROR("mismatch in " #name " " \
  7308. "(expected %i, found %i)\n", \
  7309. current_config->name, \
  7310. pipe_config->name); \
  7311. return false; \
  7312. }
  7313. #define PIPE_CONF_QUIRK(quirk) \
  7314. ((current_config->quirks | pipe_config->quirks) & (quirk))
  7315. PIPE_CONF_CHECK_I(cpu_transcoder);
  7316. PIPE_CONF_CHECK_I(has_pch_encoder);
  7317. PIPE_CONF_CHECK_I(fdi_lanes);
  7318. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  7319. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  7320. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  7321. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  7322. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  7323. PIPE_CONF_CHECK_I(has_dp_encoder);
  7324. PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
  7325. PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
  7326. PIPE_CONF_CHECK_I(dp_m_n.link_m);
  7327. PIPE_CONF_CHECK_I(dp_m_n.link_n);
  7328. PIPE_CONF_CHECK_I(dp_m_n.tu);
  7329. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  7330. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  7331. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  7332. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  7333. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  7334. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  7335. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  7336. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  7337. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  7338. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  7339. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  7340. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  7341. PIPE_CONF_CHECK_I(pixel_multiplier);
  7342. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7343. DRM_MODE_FLAG_INTERLACE);
  7344. if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  7345. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7346. DRM_MODE_FLAG_PHSYNC);
  7347. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7348. DRM_MODE_FLAG_NHSYNC);
  7349. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7350. DRM_MODE_FLAG_PVSYNC);
  7351. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7352. DRM_MODE_FLAG_NVSYNC);
  7353. }
  7354. PIPE_CONF_CHECK_I(pipe_src_w);
  7355. PIPE_CONF_CHECK_I(pipe_src_h);
  7356. PIPE_CONF_CHECK_I(gmch_pfit.control);
  7357. /* pfit ratios are autocomputed by the hw on gen4+ */
  7358. if (INTEL_INFO(dev)->gen < 4)
  7359. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  7360. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  7361. PIPE_CONF_CHECK_I(pch_pfit.enabled);
  7362. if (current_config->pch_pfit.enabled) {
  7363. PIPE_CONF_CHECK_I(pch_pfit.pos);
  7364. PIPE_CONF_CHECK_I(pch_pfit.size);
  7365. }
  7366. PIPE_CONF_CHECK_I(ips_enabled);
  7367. PIPE_CONF_CHECK_I(double_wide);
  7368. PIPE_CONF_CHECK_I(shared_dpll);
  7369. PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  7370. PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  7371. PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  7372. PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  7373. if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
  7374. PIPE_CONF_CHECK_I(pipe_bpp);
  7375. if (!IS_HASWELL(dev)) {
  7376. PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.clock);
  7377. PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
  7378. }
  7379. #undef PIPE_CONF_CHECK_X
  7380. #undef PIPE_CONF_CHECK_I
  7381. #undef PIPE_CONF_CHECK_FLAGS
  7382. #undef PIPE_CONF_CHECK_CLOCK_FUZZY
  7383. #undef PIPE_CONF_QUIRK
  7384. return true;
  7385. }
  7386. static void
  7387. check_connector_state(struct drm_device *dev)
  7388. {
  7389. struct intel_connector *connector;
  7390. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7391. base.head) {
  7392. /* This also checks the encoder/connector hw state with the
  7393. * ->get_hw_state callbacks. */
  7394. intel_connector_check_state(connector);
  7395. WARN(&connector->new_encoder->base != connector->base.encoder,
  7396. "connector's staged encoder doesn't match current encoder\n");
  7397. }
  7398. }
  7399. static void
  7400. check_encoder_state(struct drm_device *dev)
  7401. {
  7402. struct intel_encoder *encoder;
  7403. struct intel_connector *connector;
  7404. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7405. base.head) {
  7406. bool enabled = false;
  7407. bool active = false;
  7408. enum pipe pipe, tracked_pipe;
  7409. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  7410. encoder->base.base.id,
  7411. drm_get_encoder_name(&encoder->base));
  7412. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  7413. "encoder's stage crtc doesn't match current crtc\n");
  7414. WARN(encoder->connectors_active && !encoder->base.crtc,
  7415. "encoder's active_connectors set, but no crtc\n");
  7416. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7417. base.head) {
  7418. if (connector->base.encoder != &encoder->base)
  7419. continue;
  7420. enabled = true;
  7421. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  7422. active = true;
  7423. }
  7424. WARN(!!encoder->base.crtc != enabled,
  7425. "encoder's enabled state mismatch "
  7426. "(expected %i, found %i)\n",
  7427. !!encoder->base.crtc, enabled);
  7428. WARN(active && !encoder->base.crtc,
  7429. "active encoder with no crtc\n");
  7430. WARN(encoder->connectors_active != active,
  7431. "encoder's computed active state doesn't match tracked active state "
  7432. "(expected %i, found %i)\n", active, encoder->connectors_active);
  7433. active = encoder->get_hw_state(encoder, &pipe);
  7434. WARN(active != encoder->connectors_active,
  7435. "encoder's hw state doesn't match sw tracking "
  7436. "(expected %i, found %i)\n",
  7437. encoder->connectors_active, active);
  7438. if (!encoder->base.crtc)
  7439. continue;
  7440. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  7441. WARN(active && pipe != tracked_pipe,
  7442. "active encoder's pipe doesn't match"
  7443. "(expected %i, found %i)\n",
  7444. tracked_pipe, pipe);
  7445. }
  7446. }
  7447. static void
  7448. check_crtc_state(struct drm_device *dev)
  7449. {
  7450. drm_i915_private_t *dev_priv = dev->dev_private;
  7451. struct intel_crtc *crtc;
  7452. struct intel_encoder *encoder;
  7453. struct intel_crtc_config pipe_config;
  7454. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7455. base.head) {
  7456. bool enabled = false;
  7457. bool active = false;
  7458. memset(&pipe_config, 0, sizeof(pipe_config));
  7459. DRM_DEBUG_KMS("[CRTC:%d]\n",
  7460. crtc->base.base.id);
  7461. WARN(crtc->active && !crtc->base.enabled,
  7462. "active crtc, but not enabled in sw tracking\n");
  7463. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7464. base.head) {
  7465. if (encoder->base.crtc != &crtc->base)
  7466. continue;
  7467. enabled = true;
  7468. if (encoder->connectors_active)
  7469. active = true;
  7470. }
  7471. WARN(active != crtc->active,
  7472. "crtc's computed active state doesn't match tracked active state "
  7473. "(expected %i, found %i)\n", active, crtc->active);
  7474. WARN(enabled != crtc->base.enabled,
  7475. "crtc's computed enabled state doesn't match tracked enabled state "
  7476. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  7477. active = dev_priv->display.get_pipe_config(crtc,
  7478. &pipe_config);
  7479. /* hw state is inconsistent with the pipe A quirk */
  7480. if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  7481. active = crtc->active;
  7482. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7483. base.head) {
  7484. enum pipe pipe;
  7485. if (encoder->base.crtc != &crtc->base)
  7486. continue;
  7487. if (encoder->get_config &&
  7488. encoder->get_hw_state(encoder, &pipe))
  7489. encoder->get_config(encoder, &pipe_config);
  7490. }
  7491. WARN(crtc->active != active,
  7492. "crtc active state doesn't match with hw state "
  7493. "(expected %i, found %i)\n", crtc->active, active);
  7494. if (active &&
  7495. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  7496. WARN(1, "pipe state doesn't match!\n");
  7497. intel_dump_pipe_config(crtc, &pipe_config,
  7498. "[hw state]");
  7499. intel_dump_pipe_config(crtc, &crtc->config,
  7500. "[sw state]");
  7501. }
  7502. }
  7503. }
  7504. static void
  7505. check_shared_dpll_state(struct drm_device *dev)
  7506. {
  7507. drm_i915_private_t *dev_priv = dev->dev_private;
  7508. struct intel_crtc *crtc;
  7509. struct intel_dpll_hw_state dpll_hw_state;
  7510. int i;
  7511. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7512. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  7513. int enabled_crtcs = 0, active_crtcs = 0;
  7514. bool active;
  7515. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  7516. DRM_DEBUG_KMS("%s\n", pll->name);
  7517. active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  7518. WARN(pll->active > pll->refcount,
  7519. "more active pll users than references: %i vs %i\n",
  7520. pll->active, pll->refcount);
  7521. WARN(pll->active && !pll->on,
  7522. "pll in active use but not on in sw tracking\n");
  7523. WARN(pll->on && !pll->active,
  7524. "pll in on but not on in use in sw tracking\n");
  7525. WARN(pll->on != active,
  7526. "pll on state mismatch (expected %i, found %i)\n",
  7527. pll->on, active);
  7528. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7529. base.head) {
  7530. if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  7531. enabled_crtcs++;
  7532. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  7533. active_crtcs++;
  7534. }
  7535. WARN(pll->active != active_crtcs,
  7536. "pll active crtcs mismatch (expected %i, found %i)\n",
  7537. pll->active, active_crtcs);
  7538. WARN(pll->refcount != enabled_crtcs,
  7539. "pll enabled crtcs mismatch (expected %i, found %i)\n",
  7540. pll->refcount, enabled_crtcs);
  7541. WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  7542. sizeof(dpll_hw_state)),
  7543. "pll hw state mismatch\n");
  7544. }
  7545. }
  7546. void
  7547. intel_modeset_check_state(struct drm_device *dev)
  7548. {
  7549. check_connector_state(dev);
  7550. check_encoder_state(dev);
  7551. check_crtc_state(dev);
  7552. check_shared_dpll_state(dev);
  7553. }
  7554. void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
  7555. int dotclock)
  7556. {
  7557. /*
  7558. * FDI already provided one idea for the dotclock.
  7559. * Yell if the encoder disagrees.
  7560. */
  7561. WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.clock, dotclock),
  7562. "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
  7563. pipe_config->adjusted_mode.clock, dotclock);
  7564. }
  7565. static int __intel_set_mode(struct drm_crtc *crtc,
  7566. struct drm_display_mode *mode,
  7567. int x, int y, struct drm_framebuffer *fb)
  7568. {
  7569. struct drm_device *dev = crtc->dev;
  7570. drm_i915_private_t *dev_priv = dev->dev_private;
  7571. struct drm_display_mode *saved_mode, *saved_hwmode;
  7572. struct intel_crtc_config *pipe_config = NULL;
  7573. struct intel_crtc *intel_crtc;
  7574. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  7575. int ret = 0;
  7576. saved_mode = kcalloc(2, sizeof(*saved_mode), GFP_KERNEL);
  7577. if (!saved_mode)
  7578. return -ENOMEM;
  7579. saved_hwmode = saved_mode + 1;
  7580. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  7581. &prepare_pipes, &disable_pipes);
  7582. *saved_hwmode = crtc->hwmode;
  7583. *saved_mode = crtc->mode;
  7584. /* Hack: Because we don't (yet) support global modeset on multiple
  7585. * crtcs, we don't keep track of the new mode for more than one crtc.
  7586. * Hence simply check whether any bit is set in modeset_pipes in all the
  7587. * pieces of code that are not yet converted to deal with mutliple crtcs
  7588. * changing their mode at the same time. */
  7589. if (modeset_pipes) {
  7590. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  7591. if (IS_ERR(pipe_config)) {
  7592. ret = PTR_ERR(pipe_config);
  7593. pipe_config = NULL;
  7594. goto out;
  7595. }
  7596. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  7597. "[modeset]");
  7598. }
  7599. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  7600. intel_crtc_disable(&intel_crtc->base);
  7601. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  7602. if (intel_crtc->base.enabled)
  7603. dev_priv->display.crtc_disable(&intel_crtc->base);
  7604. }
  7605. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  7606. * to set it here already despite that we pass it down the callchain.
  7607. */
  7608. if (modeset_pipes) {
  7609. crtc->mode = *mode;
  7610. /* mode_set/enable/disable functions rely on a correct pipe
  7611. * config. */
  7612. to_intel_crtc(crtc)->config = *pipe_config;
  7613. }
  7614. /* Only after disabling all output pipelines that will be changed can we
  7615. * update the the output configuration. */
  7616. intel_modeset_update_state(dev, prepare_pipes);
  7617. if (dev_priv->display.modeset_global_resources)
  7618. dev_priv->display.modeset_global_resources(dev);
  7619. /* Set up the DPLL and any encoders state that needs to adjust or depend
  7620. * on the DPLL.
  7621. */
  7622. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  7623. ret = intel_crtc_mode_set(&intel_crtc->base,
  7624. x, y, fb);
  7625. if (ret)
  7626. goto done;
  7627. }
  7628. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7629. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7630. dev_priv->display.crtc_enable(&intel_crtc->base);
  7631. if (modeset_pipes) {
  7632. /* Store real post-adjustment hardware mode. */
  7633. crtc->hwmode = pipe_config->adjusted_mode;
  7634. /* Calculate and store various constants which
  7635. * are later needed by vblank and swap-completion
  7636. * timestamping. They are derived from true hwmode.
  7637. */
  7638. drm_calc_timestamping_constants(crtc);
  7639. }
  7640. /* FIXME: add subpixel order */
  7641. done:
  7642. if (ret && crtc->enabled) {
  7643. crtc->hwmode = *saved_hwmode;
  7644. crtc->mode = *saved_mode;
  7645. }
  7646. out:
  7647. kfree(pipe_config);
  7648. kfree(saved_mode);
  7649. return ret;
  7650. }
  7651. static int intel_set_mode(struct drm_crtc *crtc,
  7652. struct drm_display_mode *mode,
  7653. int x, int y, struct drm_framebuffer *fb)
  7654. {
  7655. int ret;
  7656. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7657. if (ret == 0)
  7658. intel_modeset_check_state(crtc->dev);
  7659. return ret;
  7660. }
  7661. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7662. {
  7663. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7664. }
  7665. #undef for_each_intel_crtc_masked
  7666. static void intel_set_config_free(struct intel_set_config *config)
  7667. {
  7668. if (!config)
  7669. return;
  7670. kfree(config->save_connector_encoders);
  7671. kfree(config->save_encoder_crtcs);
  7672. kfree(config);
  7673. }
  7674. static int intel_set_config_save_state(struct drm_device *dev,
  7675. struct intel_set_config *config)
  7676. {
  7677. struct drm_encoder *encoder;
  7678. struct drm_connector *connector;
  7679. int count;
  7680. config->save_encoder_crtcs =
  7681. kcalloc(dev->mode_config.num_encoder,
  7682. sizeof(struct drm_crtc *), GFP_KERNEL);
  7683. if (!config->save_encoder_crtcs)
  7684. return -ENOMEM;
  7685. config->save_connector_encoders =
  7686. kcalloc(dev->mode_config.num_connector,
  7687. sizeof(struct drm_encoder *), GFP_KERNEL);
  7688. if (!config->save_connector_encoders)
  7689. return -ENOMEM;
  7690. /* Copy data. Note that driver private data is not affected.
  7691. * Should anything bad happen only the expected state is
  7692. * restored, not the drivers personal bookkeeping.
  7693. */
  7694. count = 0;
  7695. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7696. config->save_encoder_crtcs[count++] = encoder->crtc;
  7697. }
  7698. count = 0;
  7699. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7700. config->save_connector_encoders[count++] = connector->encoder;
  7701. }
  7702. return 0;
  7703. }
  7704. static void intel_set_config_restore_state(struct drm_device *dev,
  7705. struct intel_set_config *config)
  7706. {
  7707. struct intel_encoder *encoder;
  7708. struct intel_connector *connector;
  7709. int count;
  7710. count = 0;
  7711. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7712. encoder->new_crtc =
  7713. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7714. }
  7715. count = 0;
  7716. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7717. connector->new_encoder =
  7718. to_intel_encoder(config->save_connector_encoders[count++]);
  7719. }
  7720. }
  7721. static bool
  7722. is_crtc_connector_off(struct drm_mode_set *set)
  7723. {
  7724. int i;
  7725. if (set->num_connectors == 0)
  7726. return false;
  7727. if (WARN_ON(set->connectors == NULL))
  7728. return false;
  7729. for (i = 0; i < set->num_connectors; i++)
  7730. if (set->connectors[i]->encoder &&
  7731. set->connectors[i]->encoder->crtc == set->crtc &&
  7732. set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
  7733. return true;
  7734. return false;
  7735. }
  7736. static void
  7737. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7738. struct intel_set_config *config)
  7739. {
  7740. /* We should be able to check here if the fb has the same properties
  7741. * and then just flip_or_move it */
  7742. if (is_crtc_connector_off(set)) {
  7743. config->mode_changed = true;
  7744. } else if (set->crtc->fb != set->fb) {
  7745. /* If we have no fb then treat it as a full mode set */
  7746. if (set->crtc->fb == NULL) {
  7747. struct intel_crtc *intel_crtc =
  7748. to_intel_crtc(set->crtc);
  7749. if (intel_crtc->active && i915_fastboot) {
  7750. DRM_DEBUG_KMS("crtc has no fb, will flip\n");
  7751. config->fb_changed = true;
  7752. } else {
  7753. DRM_DEBUG_KMS("inactive crtc, full mode set\n");
  7754. config->mode_changed = true;
  7755. }
  7756. } else if (set->fb == NULL) {
  7757. config->mode_changed = true;
  7758. } else if (set->fb->pixel_format !=
  7759. set->crtc->fb->pixel_format) {
  7760. config->mode_changed = true;
  7761. } else {
  7762. config->fb_changed = true;
  7763. }
  7764. }
  7765. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7766. config->fb_changed = true;
  7767. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7768. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7769. drm_mode_debug_printmodeline(&set->crtc->mode);
  7770. drm_mode_debug_printmodeline(set->mode);
  7771. config->mode_changed = true;
  7772. }
  7773. DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
  7774. set->crtc->base.id, config->mode_changed, config->fb_changed);
  7775. }
  7776. static int
  7777. intel_modeset_stage_output_state(struct drm_device *dev,
  7778. struct drm_mode_set *set,
  7779. struct intel_set_config *config)
  7780. {
  7781. struct drm_crtc *new_crtc;
  7782. struct intel_connector *connector;
  7783. struct intel_encoder *encoder;
  7784. int ro;
  7785. /* The upper layers ensure that we either disable a crtc or have a list
  7786. * of connectors. For paranoia, double-check this. */
  7787. WARN_ON(!set->fb && (set->num_connectors != 0));
  7788. WARN_ON(set->fb && (set->num_connectors == 0));
  7789. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7790. base.head) {
  7791. /* Otherwise traverse passed in connector list and get encoders
  7792. * for them. */
  7793. for (ro = 0; ro < set->num_connectors; ro++) {
  7794. if (set->connectors[ro] == &connector->base) {
  7795. connector->new_encoder = connector->encoder;
  7796. break;
  7797. }
  7798. }
  7799. /* If we disable the crtc, disable all its connectors. Also, if
  7800. * the connector is on the changing crtc but not on the new
  7801. * connector list, disable it. */
  7802. if ((!set->fb || ro == set->num_connectors) &&
  7803. connector->base.encoder &&
  7804. connector->base.encoder->crtc == set->crtc) {
  7805. connector->new_encoder = NULL;
  7806. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7807. connector->base.base.id,
  7808. drm_get_connector_name(&connector->base));
  7809. }
  7810. if (&connector->new_encoder->base != connector->base.encoder) {
  7811. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7812. config->mode_changed = true;
  7813. }
  7814. }
  7815. /* connector->new_encoder is now updated for all connectors. */
  7816. /* Update crtc of enabled connectors. */
  7817. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7818. base.head) {
  7819. if (!connector->new_encoder)
  7820. continue;
  7821. new_crtc = connector->new_encoder->base.crtc;
  7822. for (ro = 0; ro < set->num_connectors; ro++) {
  7823. if (set->connectors[ro] == &connector->base)
  7824. new_crtc = set->crtc;
  7825. }
  7826. /* Make sure the new CRTC will work with the encoder */
  7827. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7828. new_crtc)) {
  7829. return -EINVAL;
  7830. }
  7831. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7832. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7833. connector->base.base.id,
  7834. drm_get_connector_name(&connector->base),
  7835. new_crtc->base.id);
  7836. }
  7837. /* Check for any encoders that needs to be disabled. */
  7838. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7839. base.head) {
  7840. list_for_each_entry(connector,
  7841. &dev->mode_config.connector_list,
  7842. base.head) {
  7843. if (connector->new_encoder == encoder) {
  7844. WARN_ON(!connector->new_encoder->new_crtc);
  7845. goto next_encoder;
  7846. }
  7847. }
  7848. encoder->new_crtc = NULL;
  7849. next_encoder:
  7850. /* Only now check for crtc changes so we don't miss encoders
  7851. * that will be disabled. */
  7852. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7853. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7854. config->mode_changed = true;
  7855. }
  7856. }
  7857. /* Now we've also updated encoder->new_crtc for all encoders. */
  7858. return 0;
  7859. }
  7860. static int intel_crtc_set_config(struct drm_mode_set *set)
  7861. {
  7862. struct drm_device *dev;
  7863. struct drm_mode_set save_set;
  7864. struct intel_set_config *config;
  7865. int ret;
  7866. BUG_ON(!set);
  7867. BUG_ON(!set->crtc);
  7868. BUG_ON(!set->crtc->helper_private);
  7869. /* Enforce sane interface api - has been abused by the fb helper. */
  7870. BUG_ON(!set->mode && set->fb);
  7871. BUG_ON(set->fb && set->num_connectors == 0);
  7872. if (set->fb) {
  7873. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7874. set->crtc->base.id, set->fb->base.id,
  7875. (int)set->num_connectors, set->x, set->y);
  7876. } else {
  7877. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7878. }
  7879. dev = set->crtc->dev;
  7880. ret = -ENOMEM;
  7881. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7882. if (!config)
  7883. goto out_config;
  7884. ret = intel_set_config_save_state(dev, config);
  7885. if (ret)
  7886. goto out_config;
  7887. save_set.crtc = set->crtc;
  7888. save_set.mode = &set->crtc->mode;
  7889. save_set.x = set->crtc->x;
  7890. save_set.y = set->crtc->y;
  7891. save_set.fb = set->crtc->fb;
  7892. /* Compute whether we need a full modeset, only an fb base update or no
  7893. * change at all. In the future we might also check whether only the
  7894. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7895. * such cases. */
  7896. intel_set_config_compute_mode_changes(set, config);
  7897. ret = intel_modeset_stage_output_state(dev, set, config);
  7898. if (ret)
  7899. goto fail;
  7900. if (config->mode_changed) {
  7901. ret = intel_set_mode(set->crtc, set->mode,
  7902. set->x, set->y, set->fb);
  7903. } else if (config->fb_changed) {
  7904. intel_crtc_wait_for_pending_flips(set->crtc);
  7905. ret = intel_pipe_set_base(set->crtc,
  7906. set->x, set->y, set->fb);
  7907. }
  7908. if (ret) {
  7909. DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
  7910. set->crtc->base.id, ret);
  7911. fail:
  7912. intel_set_config_restore_state(dev, config);
  7913. /* Try to restore the config */
  7914. if (config->mode_changed &&
  7915. intel_set_mode(save_set.crtc, save_set.mode,
  7916. save_set.x, save_set.y, save_set.fb))
  7917. DRM_ERROR("failed to restore config after modeset failure\n");
  7918. }
  7919. out_config:
  7920. intel_set_config_free(config);
  7921. return ret;
  7922. }
  7923. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7924. .cursor_set = intel_crtc_cursor_set,
  7925. .cursor_move = intel_crtc_cursor_move,
  7926. .gamma_set = intel_crtc_gamma_set,
  7927. .set_config = intel_crtc_set_config,
  7928. .destroy = intel_crtc_destroy,
  7929. .page_flip = intel_crtc_page_flip,
  7930. };
  7931. static void intel_cpu_pll_init(struct drm_device *dev)
  7932. {
  7933. if (HAS_DDI(dev))
  7934. intel_ddi_pll_init(dev);
  7935. }
  7936. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  7937. struct intel_shared_dpll *pll,
  7938. struct intel_dpll_hw_state *hw_state)
  7939. {
  7940. uint32_t val;
  7941. val = I915_READ(PCH_DPLL(pll->id));
  7942. hw_state->dpll = val;
  7943. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  7944. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  7945. return val & DPLL_VCO_ENABLE;
  7946. }
  7947. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  7948. struct intel_shared_dpll *pll)
  7949. {
  7950. I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
  7951. I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
  7952. }
  7953. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  7954. struct intel_shared_dpll *pll)
  7955. {
  7956. /* PCH refclock must be enabled first */
  7957. assert_pch_refclk_enabled(dev_priv);
  7958. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7959. /* Wait for the clocks to stabilize. */
  7960. POSTING_READ(PCH_DPLL(pll->id));
  7961. udelay(150);
  7962. /* The pixel multiplier can only be updated once the
  7963. * DPLL is enabled and the clocks are stable.
  7964. *
  7965. * So write it again.
  7966. */
  7967. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7968. POSTING_READ(PCH_DPLL(pll->id));
  7969. udelay(200);
  7970. }
  7971. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  7972. struct intel_shared_dpll *pll)
  7973. {
  7974. struct drm_device *dev = dev_priv->dev;
  7975. struct intel_crtc *crtc;
  7976. /* Make sure no transcoder isn't still depending on us. */
  7977. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  7978. if (intel_crtc_to_shared_dpll(crtc) == pll)
  7979. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  7980. }
  7981. I915_WRITE(PCH_DPLL(pll->id), 0);
  7982. POSTING_READ(PCH_DPLL(pll->id));
  7983. udelay(200);
  7984. }
  7985. static char *ibx_pch_dpll_names[] = {
  7986. "PCH DPLL A",
  7987. "PCH DPLL B",
  7988. };
  7989. static void ibx_pch_dpll_init(struct drm_device *dev)
  7990. {
  7991. struct drm_i915_private *dev_priv = dev->dev_private;
  7992. int i;
  7993. dev_priv->num_shared_dpll = 2;
  7994. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7995. dev_priv->shared_dplls[i].id = i;
  7996. dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  7997. dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  7998. dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  7999. dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  8000. dev_priv->shared_dplls[i].get_hw_state =
  8001. ibx_pch_dpll_get_hw_state;
  8002. }
  8003. }
  8004. static void intel_shared_dpll_init(struct drm_device *dev)
  8005. {
  8006. struct drm_i915_private *dev_priv = dev->dev_private;
  8007. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  8008. ibx_pch_dpll_init(dev);
  8009. else
  8010. dev_priv->num_shared_dpll = 0;
  8011. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  8012. DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  8013. dev_priv->num_shared_dpll);
  8014. }
  8015. static void intel_crtc_init(struct drm_device *dev, int pipe)
  8016. {
  8017. drm_i915_private_t *dev_priv = dev->dev_private;
  8018. struct intel_crtc *intel_crtc;
  8019. int i;
  8020. intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
  8021. if (intel_crtc == NULL)
  8022. return;
  8023. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  8024. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  8025. for (i = 0; i < 256; i++) {
  8026. intel_crtc->lut_r[i] = i;
  8027. intel_crtc->lut_g[i] = i;
  8028. intel_crtc->lut_b[i] = i;
  8029. }
  8030. /* Swap pipes & planes for FBC on pre-965 */
  8031. intel_crtc->pipe = pipe;
  8032. intel_crtc->plane = pipe;
  8033. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  8034. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  8035. intel_crtc->plane = !pipe;
  8036. }
  8037. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  8038. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  8039. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  8040. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  8041. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  8042. }
  8043. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  8044. struct drm_file *file)
  8045. {
  8046. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  8047. struct drm_mode_object *drmmode_obj;
  8048. struct intel_crtc *crtc;
  8049. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  8050. return -ENODEV;
  8051. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  8052. DRM_MODE_OBJECT_CRTC);
  8053. if (!drmmode_obj) {
  8054. DRM_ERROR("no such CRTC id\n");
  8055. return -EINVAL;
  8056. }
  8057. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  8058. pipe_from_crtc_id->pipe = crtc->pipe;
  8059. return 0;
  8060. }
  8061. static int intel_encoder_clones(struct intel_encoder *encoder)
  8062. {
  8063. struct drm_device *dev = encoder->base.dev;
  8064. struct intel_encoder *source_encoder;
  8065. int index_mask = 0;
  8066. int entry = 0;
  8067. list_for_each_entry(source_encoder,
  8068. &dev->mode_config.encoder_list, base.head) {
  8069. if (encoder == source_encoder)
  8070. index_mask |= (1 << entry);
  8071. /* Intel hw has only one MUX where enocoders could be cloned. */
  8072. if (encoder->cloneable && source_encoder->cloneable)
  8073. index_mask |= (1 << entry);
  8074. entry++;
  8075. }
  8076. return index_mask;
  8077. }
  8078. static bool has_edp_a(struct drm_device *dev)
  8079. {
  8080. struct drm_i915_private *dev_priv = dev->dev_private;
  8081. if (!IS_MOBILE(dev))
  8082. return false;
  8083. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  8084. return false;
  8085. if (IS_GEN5(dev) &&
  8086. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  8087. return false;
  8088. return true;
  8089. }
  8090. static void intel_setup_outputs(struct drm_device *dev)
  8091. {
  8092. struct drm_i915_private *dev_priv = dev->dev_private;
  8093. struct intel_encoder *encoder;
  8094. bool dpd_is_edp = false;
  8095. intel_lvds_init(dev);
  8096. if (!IS_ULT(dev))
  8097. intel_crt_init(dev);
  8098. if (HAS_DDI(dev)) {
  8099. int found;
  8100. /* Haswell uses DDI functions to detect digital outputs */
  8101. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  8102. /* DDI A only supports eDP */
  8103. if (found)
  8104. intel_ddi_init(dev, PORT_A);
  8105. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  8106. * register */
  8107. found = I915_READ(SFUSE_STRAP);
  8108. if (found & SFUSE_STRAP_DDIB_DETECTED)
  8109. intel_ddi_init(dev, PORT_B);
  8110. if (found & SFUSE_STRAP_DDIC_DETECTED)
  8111. intel_ddi_init(dev, PORT_C);
  8112. if (found & SFUSE_STRAP_DDID_DETECTED)
  8113. intel_ddi_init(dev, PORT_D);
  8114. } else if (HAS_PCH_SPLIT(dev)) {
  8115. int found;
  8116. dpd_is_edp = intel_dpd_is_edp(dev);
  8117. if (has_edp_a(dev))
  8118. intel_dp_init(dev, DP_A, PORT_A);
  8119. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  8120. /* PCH SDVOB multiplex with HDMIB */
  8121. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  8122. if (!found)
  8123. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  8124. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  8125. intel_dp_init(dev, PCH_DP_B, PORT_B);
  8126. }
  8127. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  8128. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  8129. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  8130. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  8131. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  8132. intel_dp_init(dev, PCH_DP_C, PORT_C);
  8133. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  8134. intel_dp_init(dev, PCH_DP_D, PORT_D);
  8135. } else if (IS_VALLEYVIEW(dev)) {
  8136. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  8137. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
  8138. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
  8139. PORT_C);
  8140. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  8141. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
  8142. PORT_C);
  8143. }
  8144. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  8145. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  8146. PORT_B);
  8147. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  8148. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  8149. }
  8150. intel_dsi_init(dev);
  8151. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  8152. bool found = false;
  8153. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  8154. DRM_DEBUG_KMS("probing SDVOB\n");
  8155. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  8156. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  8157. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  8158. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  8159. }
  8160. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  8161. intel_dp_init(dev, DP_B, PORT_B);
  8162. }
  8163. /* Before G4X SDVOC doesn't have its own detect register */
  8164. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  8165. DRM_DEBUG_KMS("probing SDVOC\n");
  8166. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  8167. }
  8168. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  8169. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  8170. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  8171. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  8172. }
  8173. if (SUPPORTS_INTEGRATED_DP(dev))
  8174. intel_dp_init(dev, DP_C, PORT_C);
  8175. }
  8176. if (SUPPORTS_INTEGRATED_DP(dev) &&
  8177. (I915_READ(DP_D) & DP_DETECTED))
  8178. intel_dp_init(dev, DP_D, PORT_D);
  8179. } else if (IS_GEN2(dev))
  8180. intel_dvo_init(dev);
  8181. if (SUPPORTS_TV(dev))
  8182. intel_tv_init(dev);
  8183. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  8184. encoder->base.possible_crtcs = encoder->crtc_mask;
  8185. encoder->base.possible_clones =
  8186. intel_encoder_clones(encoder);
  8187. }
  8188. intel_init_pch_refclk(dev);
  8189. drm_helper_move_panel_connectors_to_head(dev);
  8190. }
  8191. void intel_framebuffer_fini(struct intel_framebuffer *fb)
  8192. {
  8193. drm_framebuffer_cleanup(&fb->base);
  8194. drm_gem_object_unreference_unlocked(&fb->obj->base);
  8195. }
  8196. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  8197. {
  8198. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8199. intel_framebuffer_fini(intel_fb);
  8200. kfree(intel_fb);
  8201. }
  8202. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  8203. struct drm_file *file,
  8204. unsigned int *handle)
  8205. {
  8206. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8207. struct drm_i915_gem_object *obj = intel_fb->obj;
  8208. return drm_gem_handle_create(file, &obj->base, handle);
  8209. }
  8210. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  8211. .destroy = intel_user_framebuffer_destroy,
  8212. .create_handle = intel_user_framebuffer_create_handle,
  8213. };
  8214. int intel_framebuffer_init(struct drm_device *dev,
  8215. struct intel_framebuffer *intel_fb,
  8216. struct drm_mode_fb_cmd2 *mode_cmd,
  8217. struct drm_i915_gem_object *obj)
  8218. {
  8219. int pitch_limit;
  8220. int ret;
  8221. if (obj->tiling_mode == I915_TILING_Y) {
  8222. DRM_DEBUG("hardware does not support tiling Y\n");
  8223. return -EINVAL;
  8224. }
  8225. if (mode_cmd->pitches[0] & 63) {
  8226. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  8227. mode_cmd->pitches[0]);
  8228. return -EINVAL;
  8229. }
  8230. if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
  8231. pitch_limit = 32*1024;
  8232. } else if (INTEL_INFO(dev)->gen >= 4) {
  8233. if (obj->tiling_mode)
  8234. pitch_limit = 16*1024;
  8235. else
  8236. pitch_limit = 32*1024;
  8237. } else if (INTEL_INFO(dev)->gen >= 3) {
  8238. if (obj->tiling_mode)
  8239. pitch_limit = 8*1024;
  8240. else
  8241. pitch_limit = 16*1024;
  8242. } else
  8243. /* XXX DSPC is limited to 4k tiled */
  8244. pitch_limit = 8*1024;
  8245. if (mode_cmd->pitches[0] > pitch_limit) {
  8246. DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
  8247. obj->tiling_mode ? "tiled" : "linear",
  8248. mode_cmd->pitches[0], pitch_limit);
  8249. return -EINVAL;
  8250. }
  8251. if (obj->tiling_mode != I915_TILING_NONE &&
  8252. mode_cmd->pitches[0] != obj->stride) {
  8253. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  8254. mode_cmd->pitches[0], obj->stride);
  8255. return -EINVAL;
  8256. }
  8257. /* Reject formats not supported by any plane early. */
  8258. switch (mode_cmd->pixel_format) {
  8259. case DRM_FORMAT_C8:
  8260. case DRM_FORMAT_RGB565:
  8261. case DRM_FORMAT_XRGB8888:
  8262. case DRM_FORMAT_ARGB8888:
  8263. break;
  8264. case DRM_FORMAT_XRGB1555:
  8265. case DRM_FORMAT_ARGB1555:
  8266. if (INTEL_INFO(dev)->gen > 3) {
  8267. DRM_DEBUG("unsupported pixel format: %s\n",
  8268. drm_get_format_name(mode_cmd->pixel_format));
  8269. return -EINVAL;
  8270. }
  8271. break;
  8272. case DRM_FORMAT_XBGR8888:
  8273. case DRM_FORMAT_ABGR8888:
  8274. case DRM_FORMAT_XRGB2101010:
  8275. case DRM_FORMAT_ARGB2101010:
  8276. case DRM_FORMAT_XBGR2101010:
  8277. case DRM_FORMAT_ABGR2101010:
  8278. if (INTEL_INFO(dev)->gen < 4) {
  8279. DRM_DEBUG("unsupported pixel format: %s\n",
  8280. drm_get_format_name(mode_cmd->pixel_format));
  8281. return -EINVAL;
  8282. }
  8283. break;
  8284. case DRM_FORMAT_YUYV:
  8285. case DRM_FORMAT_UYVY:
  8286. case DRM_FORMAT_YVYU:
  8287. case DRM_FORMAT_VYUY:
  8288. if (INTEL_INFO(dev)->gen < 5) {
  8289. DRM_DEBUG("unsupported pixel format: %s\n",
  8290. drm_get_format_name(mode_cmd->pixel_format));
  8291. return -EINVAL;
  8292. }
  8293. break;
  8294. default:
  8295. DRM_DEBUG("unsupported pixel format: %s\n",
  8296. drm_get_format_name(mode_cmd->pixel_format));
  8297. return -EINVAL;
  8298. }
  8299. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  8300. if (mode_cmd->offsets[0] != 0)
  8301. return -EINVAL;
  8302. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  8303. intel_fb->obj = obj;
  8304. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  8305. if (ret) {
  8306. DRM_ERROR("framebuffer init failed %d\n", ret);
  8307. return ret;
  8308. }
  8309. return 0;
  8310. }
  8311. static struct drm_framebuffer *
  8312. intel_user_framebuffer_create(struct drm_device *dev,
  8313. struct drm_file *filp,
  8314. struct drm_mode_fb_cmd2 *mode_cmd)
  8315. {
  8316. struct drm_i915_gem_object *obj;
  8317. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  8318. mode_cmd->handles[0]));
  8319. if (&obj->base == NULL)
  8320. return ERR_PTR(-ENOENT);
  8321. return intel_framebuffer_create(dev, mode_cmd, obj);
  8322. }
  8323. static const struct drm_mode_config_funcs intel_mode_funcs = {
  8324. .fb_create = intel_user_framebuffer_create,
  8325. .output_poll_changed = intel_fb_output_poll_changed,
  8326. };
  8327. /* Set up chip specific display functions */
  8328. static void intel_init_display(struct drm_device *dev)
  8329. {
  8330. struct drm_i915_private *dev_priv = dev->dev_private;
  8331. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  8332. dev_priv->display.find_dpll = g4x_find_best_dpll;
  8333. else if (IS_VALLEYVIEW(dev))
  8334. dev_priv->display.find_dpll = vlv_find_best_dpll;
  8335. else if (IS_PINEVIEW(dev))
  8336. dev_priv->display.find_dpll = pnv_find_best_dpll;
  8337. else
  8338. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  8339. if (HAS_DDI(dev)) {
  8340. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  8341. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  8342. dev_priv->display.crtc_enable = haswell_crtc_enable;
  8343. dev_priv->display.crtc_disable = haswell_crtc_disable;
  8344. dev_priv->display.off = haswell_crtc_off;
  8345. dev_priv->display.update_plane = ironlake_update_plane;
  8346. } else if (HAS_PCH_SPLIT(dev)) {
  8347. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  8348. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  8349. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  8350. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  8351. dev_priv->display.off = ironlake_crtc_off;
  8352. dev_priv->display.update_plane = ironlake_update_plane;
  8353. } else if (IS_VALLEYVIEW(dev)) {
  8354. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8355. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8356. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  8357. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8358. dev_priv->display.off = i9xx_crtc_off;
  8359. dev_priv->display.update_plane = i9xx_update_plane;
  8360. } else {
  8361. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8362. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8363. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  8364. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8365. dev_priv->display.off = i9xx_crtc_off;
  8366. dev_priv->display.update_plane = i9xx_update_plane;
  8367. }
  8368. /* Returns the core display clock speed */
  8369. if (IS_VALLEYVIEW(dev))
  8370. dev_priv->display.get_display_clock_speed =
  8371. valleyview_get_display_clock_speed;
  8372. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  8373. dev_priv->display.get_display_clock_speed =
  8374. i945_get_display_clock_speed;
  8375. else if (IS_I915G(dev))
  8376. dev_priv->display.get_display_clock_speed =
  8377. i915_get_display_clock_speed;
  8378. else if (IS_I945GM(dev) || IS_845G(dev))
  8379. dev_priv->display.get_display_clock_speed =
  8380. i9xx_misc_get_display_clock_speed;
  8381. else if (IS_PINEVIEW(dev))
  8382. dev_priv->display.get_display_clock_speed =
  8383. pnv_get_display_clock_speed;
  8384. else if (IS_I915GM(dev))
  8385. dev_priv->display.get_display_clock_speed =
  8386. i915gm_get_display_clock_speed;
  8387. else if (IS_I865G(dev))
  8388. dev_priv->display.get_display_clock_speed =
  8389. i865_get_display_clock_speed;
  8390. else if (IS_I85X(dev))
  8391. dev_priv->display.get_display_clock_speed =
  8392. i855_get_display_clock_speed;
  8393. else /* 852, 830 */
  8394. dev_priv->display.get_display_clock_speed =
  8395. i830_get_display_clock_speed;
  8396. if (HAS_PCH_SPLIT(dev)) {
  8397. if (IS_GEN5(dev)) {
  8398. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  8399. dev_priv->display.write_eld = ironlake_write_eld;
  8400. } else if (IS_GEN6(dev)) {
  8401. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  8402. dev_priv->display.write_eld = ironlake_write_eld;
  8403. } else if (IS_IVYBRIDGE(dev)) {
  8404. /* FIXME: detect B0+ stepping and use auto training */
  8405. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  8406. dev_priv->display.write_eld = ironlake_write_eld;
  8407. dev_priv->display.modeset_global_resources =
  8408. ivb_modeset_global_resources;
  8409. } else if (IS_HASWELL(dev)) {
  8410. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  8411. dev_priv->display.write_eld = haswell_write_eld;
  8412. dev_priv->display.modeset_global_resources =
  8413. haswell_modeset_global_resources;
  8414. }
  8415. } else if (IS_G4X(dev)) {
  8416. dev_priv->display.write_eld = g4x_write_eld;
  8417. }
  8418. /* Default just returns -ENODEV to indicate unsupported */
  8419. dev_priv->display.queue_flip = intel_default_queue_flip;
  8420. switch (INTEL_INFO(dev)->gen) {
  8421. case 2:
  8422. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  8423. break;
  8424. case 3:
  8425. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  8426. break;
  8427. case 4:
  8428. case 5:
  8429. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  8430. break;
  8431. case 6:
  8432. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  8433. break;
  8434. case 7:
  8435. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  8436. break;
  8437. }
  8438. }
  8439. /*
  8440. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  8441. * resume, or other times. This quirk makes sure that's the case for
  8442. * affected systems.
  8443. */
  8444. static void quirk_pipea_force(struct drm_device *dev)
  8445. {
  8446. struct drm_i915_private *dev_priv = dev->dev_private;
  8447. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  8448. DRM_INFO("applying pipe a force quirk\n");
  8449. }
  8450. /*
  8451. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  8452. */
  8453. static void quirk_ssc_force_disable(struct drm_device *dev)
  8454. {
  8455. struct drm_i915_private *dev_priv = dev->dev_private;
  8456. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  8457. DRM_INFO("applying lvds SSC disable quirk\n");
  8458. }
  8459. /*
  8460. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  8461. * brightness value
  8462. */
  8463. static void quirk_invert_brightness(struct drm_device *dev)
  8464. {
  8465. struct drm_i915_private *dev_priv = dev->dev_private;
  8466. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  8467. DRM_INFO("applying inverted panel brightness quirk\n");
  8468. }
  8469. /*
  8470. * Some machines (Dell XPS13) suffer broken backlight controls if
  8471. * BLM_PCH_PWM_ENABLE is set.
  8472. */
  8473. static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
  8474. {
  8475. struct drm_i915_private *dev_priv = dev->dev_private;
  8476. dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
  8477. DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
  8478. }
  8479. struct intel_quirk {
  8480. int device;
  8481. int subsystem_vendor;
  8482. int subsystem_device;
  8483. void (*hook)(struct drm_device *dev);
  8484. };
  8485. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  8486. struct intel_dmi_quirk {
  8487. void (*hook)(struct drm_device *dev);
  8488. const struct dmi_system_id (*dmi_id_list)[];
  8489. };
  8490. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  8491. {
  8492. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  8493. return 1;
  8494. }
  8495. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  8496. {
  8497. .dmi_id_list = &(const struct dmi_system_id[]) {
  8498. {
  8499. .callback = intel_dmi_reverse_brightness,
  8500. .ident = "NCR Corporation",
  8501. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  8502. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  8503. },
  8504. },
  8505. { } /* terminating entry */
  8506. },
  8507. .hook = quirk_invert_brightness,
  8508. },
  8509. };
  8510. static struct intel_quirk intel_quirks[] = {
  8511. /* HP Mini needs pipe A force quirk (LP: #322104) */
  8512. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  8513. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  8514. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  8515. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  8516. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  8517. /* 830/845 need to leave pipe A & dpll A up */
  8518. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8519. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8520. /* Lenovo U160 cannot use SSC on LVDS */
  8521. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  8522. /* Sony Vaio Y cannot use SSC on LVDS */
  8523. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  8524. /*
  8525. * All GM45 Acer (and its brands eMachines and Packard Bell) laptops
  8526. * seem to use inverted backlight PWM.
  8527. */
  8528. { 0x2a42, 0x1025, PCI_ANY_ID, quirk_invert_brightness },
  8529. /* Dell XPS13 HD Sandy Bridge */
  8530. { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
  8531. /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
  8532. { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
  8533. };
  8534. static void intel_init_quirks(struct drm_device *dev)
  8535. {
  8536. struct pci_dev *d = dev->pdev;
  8537. int i;
  8538. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  8539. struct intel_quirk *q = &intel_quirks[i];
  8540. if (d->device == q->device &&
  8541. (d->subsystem_vendor == q->subsystem_vendor ||
  8542. q->subsystem_vendor == PCI_ANY_ID) &&
  8543. (d->subsystem_device == q->subsystem_device ||
  8544. q->subsystem_device == PCI_ANY_ID))
  8545. q->hook(dev);
  8546. }
  8547. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  8548. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  8549. intel_dmi_quirks[i].hook(dev);
  8550. }
  8551. }
  8552. /* Disable the VGA plane that we never use */
  8553. static void i915_disable_vga(struct drm_device *dev)
  8554. {
  8555. struct drm_i915_private *dev_priv = dev->dev_private;
  8556. u8 sr1;
  8557. u32 vga_reg = i915_vgacntrl_reg(dev);
  8558. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8559. outb(SR01, VGA_SR_INDEX);
  8560. sr1 = inb(VGA_SR_DATA);
  8561. outb(sr1 | 1<<5, VGA_SR_DATA);
  8562. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8563. udelay(300);
  8564. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  8565. POSTING_READ(vga_reg);
  8566. }
  8567. static void i915_enable_vga_mem(struct drm_device *dev)
  8568. {
  8569. /* Enable VGA memory on Intel HD */
  8570. if (HAS_PCH_SPLIT(dev)) {
  8571. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8572. outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8573. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8574. VGA_RSRC_LEGACY_MEM |
  8575. VGA_RSRC_NORMAL_IO |
  8576. VGA_RSRC_NORMAL_MEM);
  8577. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8578. }
  8579. }
  8580. void i915_disable_vga_mem(struct drm_device *dev)
  8581. {
  8582. /* Disable VGA memory on Intel HD */
  8583. if (HAS_PCH_SPLIT(dev)) {
  8584. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8585. outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8586. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8587. VGA_RSRC_NORMAL_IO |
  8588. VGA_RSRC_NORMAL_MEM);
  8589. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8590. }
  8591. }
  8592. void intel_modeset_init_hw(struct drm_device *dev)
  8593. {
  8594. intel_prepare_ddi(dev);
  8595. intel_init_clock_gating(dev);
  8596. mutex_lock(&dev->struct_mutex);
  8597. intel_enable_gt_powersave(dev);
  8598. mutex_unlock(&dev->struct_mutex);
  8599. }
  8600. void intel_modeset_suspend_hw(struct drm_device *dev)
  8601. {
  8602. intel_suspend_hw(dev);
  8603. }
  8604. void intel_modeset_init(struct drm_device *dev)
  8605. {
  8606. struct drm_i915_private *dev_priv = dev->dev_private;
  8607. int i, j, ret;
  8608. drm_mode_config_init(dev);
  8609. dev->mode_config.min_width = 0;
  8610. dev->mode_config.min_height = 0;
  8611. dev->mode_config.preferred_depth = 24;
  8612. dev->mode_config.prefer_shadow = 1;
  8613. dev->mode_config.funcs = &intel_mode_funcs;
  8614. intel_init_quirks(dev);
  8615. intel_init_pm(dev);
  8616. if (INTEL_INFO(dev)->num_pipes == 0)
  8617. return;
  8618. intel_init_display(dev);
  8619. if (IS_GEN2(dev)) {
  8620. dev->mode_config.max_width = 2048;
  8621. dev->mode_config.max_height = 2048;
  8622. } else if (IS_GEN3(dev)) {
  8623. dev->mode_config.max_width = 4096;
  8624. dev->mode_config.max_height = 4096;
  8625. } else {
  8626. dev->mode_config.max_width = 8192;
  8627. dev->mode_config.max_height = 8192;
  8628. }
  8629. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  8630. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  8631. INTEL_INFO(dev)->num_pipes,
  8632. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  8633. for_each_pipe(i) {
  8634. intel_crtc_init(dev, i);
  8635. for (j = 0; j < dev_priv->num_plane; j++) {
  8636. ret = intel_plane_init(dev, i, j);
  8637. if (ret)
  8638. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  8639. pipe_name(i), sprite_name(i, j), ret);
  8640. }
  8641. }
  8642. intel_cpu_pll_init(dev);
  8643. intel_shared_dpll_init(dev);
  8644. /* Just disable it once at startup */
  8645. i915_disable_vga(dev);
  8646. intel_setup_outputs(dev);
  8647. /* Just in case the BIOS is doing something questionable. */
  8648. intel_disable_fbc(dev);
  8649. }
  8650. static void
  8651. intel_connector_break_all_links(struct intel_connector *connector)
  8652. {
  8653. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8654. connector->base.encoder = NULL;
  8655. connector->encoder->connectors_active = false;
  8656. connector->encoder->base.crtc = NULL;
  8657. }
  8658. static void intel_enable_pipe_a(struct drm_device *dev)
  8659. {
  8660. struct intel_connector *connector;
  8661. struct drm_connector *crt = NULL;
  8662. struct intel_load_detect_pipe load_detect_temp;
  8663. /* We can't just switch on the pipe A, we need to set things up with a
  8664. * proper mode and output configuration. As a gross hack, enable pipe A
  8665. * by enabling the load detect pipe once. */
  8666. list_for_each_entry(connector,
  8667. &dev->mode_config.connector_list,
  8668. base.head) {
  8669. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  8670. crt = &connector->base;
  8671. break;
  8672. }
  8673. }
  8674. if (!crt)
  8675. return;
  8676. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  8677. intel_release_load_detect_pipe(crt, &load_detect_temp);
  8678. }
  8679. static bool
  8680. intel_check_plane_mapping(struct intel_crtc *crtc)
  8681. {
  8682. struct drm_device *dev = crtc->base.dev;
  8683. struct drm_i915_private *dev_priv = dev->dev_private;
  8684. u32 reg, val;
  8685. if (INTEL_INFO(dev)->num_pipes == 1)
  8686. return true;
  8687. reg = DSPCNTR(!crtc->plane);
  8688. val = I915_READ(reg);
  8689. if ((val & DISPLAY_PLANE_ENABLE) &&
  8690. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8691. return false;
  8692. return true;
  8693. }
  8694. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8695. {
  8696. struct drm_device *dev = crtc->base.dev;
  8697. struct drm_i915_private *dev_priv = dev->dev_private;
  8698. u32 reg;
  8699. /* Clear any frame start delays used for debugging left by the BIOS */
  8700. reg = PIPECONF(crtc->config.cpu_transcoder);
  8701. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8702. /* We need to sanitize the plane -> pipe mapping first because this will
  8703. * disable the crtc (and hence change the state) if it is wrong. Note
  8704. * that gen4+ has a fixed plane -> pipe mapping. */
  8705. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8706. struct intel_connector *connector;
  8707. bool plane;
  8708. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8709. crtc->base.base.id);
  8710. /* Pipe has the wrong plane attached and the plane is active.
  8711. * Temporarily change the plane mapping and disable everything
  8712. * ... */
  8713. plane = crtc->plane;
  8714. crtc->plane = !plane;
  8715. dev_priv->display.crtc_disable(&crtc->base);
  8716. crtc->plane = plane;
  8717. /* ... and break all links. */
  8718. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8719. base.head) {
  8720. if (connector->encoder->base.crtc != &crtc->base)
  8721. continue;
  8722. intel_connector_break_all_links(connector);
  8723. }
  8724. WARN_ON(crtc->active);
  8725. crtc->base.enabled = false;
  8726. }
  8727. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8728. crtc->pipe == PIPE_A && !crtc->active) {
  8729. /* BIOS forgot to enable pipe A, this mostly happens after
  8730. * resume. Force-enable the pipe to fix this, the update_dpms
  8731. * call below we restore the pipe to the right state, but leave
  8732. * the required bits on. */
  8733. intel_enable_pipe_a(dev);
  8734. }
  8735. /* Adjust the state of the output pipe according to whether we
  8736. * have active connectors/encoders. */
  8737. intel_crtc_update_dpms(&crtc->base);
  8738. if (crtc->active != crtc->base.enabled) {
  8739. struct intel_encoder *encoder;
  8740. /* This can happen either due to bugs in the get_hw_state
  8741. * functions or because the pipe is force-enabled due to the
  8742. * pipe A quirk. */
  8743. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8744. crtc->base.base.id,
  8745. crtc->base.enabled ? "enabled" : "disabled",
  8746. crtc->active ? "enabled" : "disabled");
  8747. crtc->base.enabled = crtc->active;
  8748. /* Because we only establish the connector -> encoder ->
  8749. * crtc links if something is active, this means the
  8750. * crtc is now deactivated. Break the links. connector
  8751. * -> encoder links are only establish when things are
  8752. * actually up, hence no need to break them. */
  8753. WARN_ON(crtc->active);
  8754. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8755. WARN_ON(encoder->connectors_active);
  8756. encoder->base.crtc = NULL;
  8757. }
  8758. }
  8759. }
  8760. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8761. {
  8762. struct intel_connector *connector;
  8763. struct drm_device *dev = encoder->base.dev;
  8764. /* We need to check both for a crtc link (meaning that the
  8765. * encoder is active and trying to read from a pipe) and the
  8766. * pipe itself being active. */
  8767. bool has_active_crtc = encoder->base.crtc &&
  8768. to_intel_crtc(encoder->base.crtc)->active;
  8769. if (encoder->connectors_active && !has_active_crtc) {
  8770. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  8771. encoder->base.base.id,
  8772. drm_get_encoder_name(&encoder->base));
  8773. /* Connector is active, but has no active pipe. This is
  8774. * fallout from our resume register restoring. Disable
  8775. * the encoder manually again. */
  8776. if (encoder->base.crtc) {
  8777. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  8778. encoder->base.base.id,
  8779. drm_get_encoder_name(&encoder->base));
  8780. encoder->disable(encoder);
  8781. }
  8782. /* Inconsistent output/port/pipe state happens presumably due to
  8783. * a bug in one of the get_hw_state functions. Or someplace else
  8784. * in our code, like the register restore mess on resume. Clamp
  8785. * things to off as a safer default. */
  8786. list_for_each_entry(connector,
  8787. &dev->mode_config.connector_list,
  8788. base.head) {
  8789. if (connector->encoder != encoder)
  8790. continue;
  8791. intel_connector_break_all_links(connector);
  8792. }
  8793. }
  8794. /* Enabled encoders without active connectors will be fixed in
  8795. * the crtc fixup. */
  8796. }
  8797. void i915_redisable_vga(struct drm_device *dev)
  8798. {
  8799. struct drm_i915_private *dev_priv = dev->dev_private;
  8800. u32 vga_reg = i915_vgacntrl_reg(dev);
  8801. /* This function can be called both from intel_modeset_setup_hw_state or
  8802. * at a very early point in our resume sequence, where the power well
  8803. * structures are not yet restored. Since this function is at a very
  8804. * paranoid "someone might have enabled VGA while we were not looking"
  8805. * level, just check if the power well is enabled instead of trying to
  8806. * follow the "don't touch the power well if we don't need it" policy
  8807. * the rest of the driver uses. */
  8808. if (HAS_POWER_WELL(dev) &&
  8809. (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
  8810. return;
  8811. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  8812. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  8813. i915_disable_vga(dev);
  8814. i915_disable_vga_mem(dev);
  8815. }
  8816. }
  8817. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  8818. {
  8819. struct drm_i915_private *dev_priv = dev->dev_private;
  8820. enum pipe pipe;
  8821. struct intel_crtc *crtc;
  8822. struct intel_encoder *encoder;
  8823. struct intel_connector *connector;
  8824. int i;
  8825. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8826. base.head) {
  8827. memset(&crtc->config, 0, sizeof(crtc->config));
  8828. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8829. &crtc->config);
  8830. crtc->base.enabled = crtc->active;
  8831. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8832. crtc->base.base.id,
  8833. crtc->active ? "enabled" : "disabled");
  8834. }
  8835. /* FIXME: Smash this into the new shared dpll infrastructure. */
  8836. if (HAS_DDI(dev))
  8837. intel_ddi_setup_hw_pll_state(dev);
  8838. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8839. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8840. pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  8841. pll->active = 0;
  8842. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8843. base.head) {
  8844. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  8845. pll->active++;
  8846. }
  8847. pll->refcount = pll->active;
  8848. DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
  8849. pll->name, pll->refcount, pll->on);
  8850. }
  8851. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8852. base.head) {
  8853. pipe = 0;
  8854. if (encoder->get_hw_state(encoder, &pipe)) {
  8855. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8856. encoder->base.crtc = &crtc->base;
  8857. if (encoder->get_config)
  8858. encoder->get_config(encoder, &crtc->config);
  8859. } else {
  8860. encoder->base.crtc = NULL;
  8861. }
  8862. encoder->connectors_active = false;
  8863. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8864. encoder->base.base.id,
  8865. drm_get_encoder_name(&encoder->base),
  8866. encoder->base.crtc ? "enabled" : "disabled",
  8867. pipe);
  8868. }
  8869. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8870. base.head) {
  8871. if (connector->get_hw_state(connector)) {
  8872. connector->base.dpms = DRM_MODE_DPMS_ON;
  8873. connector->encoder->connectors_active = true;
  8874. connector->base.encoder = &connector->encoder->base;
  8875. } else {
  8876. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8877. connector->base.encoder = NULL;
  8878. }
  8879. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8880. connector->base.base.id,
  8881. drm_get_connector_name(&connector->base),
  8882. connector->base.encoder ? "enabled" : "disabled");
  8883. }
  8884. }
  8885. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  8886. * and i915 state tracking structures. */
  8887. void intel_modeset_setup_hw_state(struct drm_device *dev,
  8888. bool force_restore)
  8889. {
  8890. struct drm_i915_private *dev_priv = dev->dev_private;
  8891. enum pipe pipe;
  8892. struct intel_crtc *crtc;
  8893. struct intel_encoder *encoder;
  8894. int i;
  8895. intel_modeset_readout_hw_state(dev);
  8896. /*
  8897. * Now that we have the config, copy it to each CRTC struct
  8898. * Note that this could go away if we move to using crtc_config
  8899. * checking everywhere.
  8900. */
  8901. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8902. base.head) {
  8903. if (crtc->active && i915_fastboot) {
  8904. intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
  8905. DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
  8906. crtc->base.base.id);
  8907. drm_mode_debug_printmodeline(&crtc->base.mode);
  8908. }
  8909. }
  8910. /* HW state is read out, now we need to sanitize this mess. */
  8911. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8912. base.head) {
  8913. intel_sanitize_encoder(encoder);
  8914. }
  8915. for_each_pipe(pipe) {
  8916. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8917. intel_sanitize_crtc(crtc);
  8918. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8919. }
  8920. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8921. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8922. if (!pll->on || pll->active)
  8923. continue;
  8924. DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
  8925. pll->disable(dev_priv, pll);
  8926. pll->on = false;
  8927. }
  8928. if (force_restore) {
  8929. i915_redisable_vga(dev);
  8930. /*
  8931. * We need to use raw interfaces for restoring state to avoid
  8932. * checking (bogus) intermediate states.
  8933. */
  8934. for_each_pipe(pipe) {
  8935. struct drm_crtc *crtc =
  8936. dev_priv->pipe_to_crtc_mapping[pipe];
  8937. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8938. crtc->fb);
  8939. }
  8940. } else {
  8941. intel_modeset_update_staged_output_state(dev);
  8942. }
  8943. intel_modeset_check_state(dev);
  8944. drm_mode_config_reset(dev);
  8945. }
  8946. void intel_modeset_gem_init(struct drm_device *dev)
  8947. {
  8948. intel_modeset_init_hw(dev);
  8949. intel_setup_overlay(dev);
  8950. intel_modeset_setup_hw_state(dev, false);
  8951. }
  8952. void intel_modeset_cleanup(struct drm_device *dev)
  8953. {
  8954. struct drm_i915_private *dev_priv = dev->dev_private;
  8955. struct drm_crtc *crtc;
  8956. /*
  8957. * Interrupts and polling as the first thing to avoid creating havoc.
  8958. * Too much stuff here (turning of rps, connectors, ...) would
  8959. * experience fancy races otherwise.
  8960. */
  8961. drm_irq_uninstall(dev);
  8962. cancel_work_sync(&dev_priv->hotplug_work);
  8963. /*
  8964. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8965. * poll handlers. Hence disable polling after hpd handling is shut down.
  8966. */
  8967. drm_kms_helper_poll_fini(dev);
  8968. mutex_lock(&dev->struct_mutex);
  8969. intel_unregister_dsm_handler();
  8970. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8971. /* Skip inactive CRTCs */
  8972. if (!crtc->fb)
  8973. continue;
  8974. intel_increase_pllclock(crtc);
  8975. }
  8976. intel_disable_fbc(dev);
  8977. i915_enable_vga_mem(dev);
  8978. intel_disable_gt_powersave(dev);
  8979. ironlake_teardown_rc6(dev);
  8980. mutex_unlock(&dev->struct_mutex);
  8981. /* flush any delayed tasks or pending work */
  8982. flush_scheduled_work();
  8983. /* destroy backlight, if any, before the connectors */
  8984. intel_panel_destroy_backlight(dev);
  8985. drm_mode_config_cleanup(dev);
  8986. intel_cleanup_overlay(dev);
  8987. }
  8988. /*
  8989. * Return which encoder is currently attached for connector.
  8990. */
  8991. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8992. {
  8993. return &intel_attached_encoder(connector)->base;
  8994. }
  8995. void intel_connector_attach_encoder(struct intel_connector *connector,
  8996. struct intel_encoder *encoder)
  8997. {
  8998. connector->encoder = encoder;
  8999. drm_mode_connector_attach_encoder(&connector->base,
  9000. &encoder->base);
  9001. }
  9002. /*
  9003. * set vga decode state - true == enable VGA decode
  9004. */
  9005. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  9006. {
  9007. struct drm_i915_private *dev_priv = dev->dev_private;
  9008. u16 gmch_ctrl;
  9009. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  9010. if (state)
  9011. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  9012. else
  9013. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  9014. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  9015. return 0;
  9016. }
  9017. struct intel_display_error_state {
  9018. u32 power_well_driver;
  9019. int num_transcoders;
  9020. struct intel_cursor_error_state {
  9021. u32 control;
  9022. u32 position;
  9023. u32 base;
  9024. u32 size;
  9025. } cursor[I915_MAX_PIPES];
  9026. struct intel_pipe_error_state {
  9027. u32 source;
  9028. } pipe[I915_MAX_PIPES];
  9029. struct intel_plane_error_state {
  9030. u32 control;
  9031. u32 stride;
  9032. u32 size;
  9033. u32 pos;
  9034. u32 addr;
  9035. u32 surface;
  9036. u32 tile_offset;
  9037. } plane[I915_MAX_PIPES];
  9038. struct intel_transcoder_error_state {
  9039. enum transcoder cpu_transcoder;
  9040. u32 conf;
  9041. u32 htotal;
  9042. u32 hblank;
  9043. u32 hsync;
  9044. u32 vtotal;
  9045. u32 vblank;
  9046. u32 vsync;
  9047. } transcoder[4];
  9048. };
  9049. struct intel_display_error_state *
  9050. intel_display_capture_error_state(struct drm_device *dev)
  9051. {
  9052. drm_i915_private_t *dev_priv = dev->dev_private;
  9053. struct intel_display_error_state *error;
  9054. int transcoders[] = {
  9055. TRANSCODER_A,
  9056. TRANSCODER_B,
  9057. TRANSCODER_C,
  9058. TRANSCODER_EDP,
  9059. };
  9060. int i;
  9061. if (INTEL_INFO(dev)->num_pipes == 0)
  9062. return NULL;
  9063. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  9064. if (error == NULL)
  9065. return NULL;
  9066. if (HAS_POWER_WELL(dev))
  9067. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  9068. for_each_pipe(i) {
  9069. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  9070. error->cursor[i].control = I915_READ(CURCNTR(i));
  9071. error->cursor[i].position = I915_READ(CURPOS(i));
  9072. error->cursor[i].base = I915_READ(CURBASE(i));
  9073. } else {
  9074. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  9075. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  9076. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  9077. }
  9078. error->plane[i].control = I915_READ(DSPCNTR(i));
  9079. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  9080. if (INTEL_INFO(dev)->gen <= 3) {
  9081. error->plane[i].size = I915_READ(DSPSIZE(i));
  9082. error->plane[i].pos = I915_READ(DSPPOS(i));
  9083. }
  9084. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  9085. error->plane[i].addr = I915_READ(DSPADDR(i));
  9086. if (INTEL_INFO(dev)->gen >= 4) {
  9087. error->plane[i].surface = I915_READ(DSPSURF(i));
  9088. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  9089. }
  9090. error->pipe[i].source = I915_READ(PIPESRC(i));
  9091. }
  9092. error->num_transcoders = INTEL_INFO(dev)->num_pipes;
  9093. if (HAS_DDI(dev_priv->dev))
  9094. error->num_transcoders++; /* Account for eDP. */
  9095. for (i = 0; i < error->num_transcoders; i++) {
  9096. enum transcoder cpu_transcoder = transcoders[i];
  9097. error->transcoder[i].cpu_transcoder = cpu_transcoder;
  9098. error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  9099. error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  9100. error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  9101. error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  9102. error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  9103. error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  9104. error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  9105. }
  9106. /* In the code above we read the registers without checking if the power
  9107. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  9108. * prevent the next I915_WRITE from detecting it and printing an error
  9109. * message. */
  9110. intel_uncore_clear_errors(dev);
  9111. return error;
  9112. }
  9113. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  9114. void
  9115. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  9116. struct drm_device *dev,
  9117. struct intel_display_error_state *error)
  9118. {
  9119. int i;
  9120. if (!error)
  9121. return;
  9122. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  9123. if (HAS_POWER_WELL(dev))
  9124. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  9125. error->power_well_driver);
  9126. for_each_pipe(i) {
  9127. err_printf(m, "Pipe [%d]:\n", i);
  9128. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  9129. err_printf(m, "Plane [%d]:\n", i);
  9130. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  9131. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  9132. if (INTEL_INFO(dev)->gen <= 3) {
  9133. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  9134. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  9135. }
  9136. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  9137. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  9138. if (INTEL_INFO(dev)->gen >= 4) {
  9139. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  9140. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  9141. }
  9142. err_printf(m, "Cursor [%d]:\n", i);
  9143. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  9144. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  9145. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  9146. }
  9147. for (i = 0; i < error->num_transcoders; i++) {
  9148. err_printf(m, " CPU transcoder: %c\n",
  9149. transcoder_name(error->transcoder[i].cpu_transcoder));
  9150. err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
  9151. err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
  9152. err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
  9153. err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
  9154. err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
  9155. err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
  9156. err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
  9157. }
  9158. }