fs_enet-main.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269
  1. /*
  2. * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
  3. *
  4. * Copyright (c) 2003 Intracom S.A.
  5. * by Pantelis Antoniou <panto@intracom.gr>
  6. *
  7. * 2005 (c) MontaVista Software, Inc.
  8. * Vitaly Bordug <vbordug@ru.mvista.com>
  9. *
  10. * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11. * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12. *
  13. * This file is licensed under the terms of the GNU General Public License
  14. * version 2. This program is licensed "as is" without any warranty of any
  15. * kind, whether express or implied.
  16. */
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/types.h>
  20. #include <linux/string.h>
  21. #include <linux/ptrace.h>
  22. #include <linux/errno.h>
  23. #include <linux/ioport.h>
  24. #include <linux/slab.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/init.h>
  27. #include <linux/delay.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/etherdevice.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/spinlock.h>
  32. #include <linux/mii.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/bitops.h>
  35. #include <linux/fs.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/phy.h>
  38. #include <linux/vmalloc.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/irq.h>
  41. #include <asm/uaccess.h>
  42. #include "fs_enet.h"
  43. /*************************************************/
  44. static char version[] __devinitdata =
  45. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
  46. MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  47. MODULE_DESCRIPTION("Freescale Ethernet Driver");
  48. MODULE_LICENSE("GPL");
  49. MODULE_VERSION(DRV_MODULE_VERSION);
  50. int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  51. module_param(fs_enet_debug, int, 0);
  52. MODULE_PARM_DESC(fs_enet_debug,
  53. "Freescale bitmapped debugging message enable value");
  54. static void fs_set_multicast_list(struct net_device *dev)
  55. {
  56. struct fs_enet_private *fep = netdev_priv(dev);
  57. (*fep->ops->set_multicast_list)(dev);
  58. }
  59. /* NAPI receive function */
  60. static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
  61. {
  62. struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
  63. struct net_device *dev = to_net_dev(fep->dev);
  64. const struct fs_platform_info *fpi = fep->fpi;
  65. cbd_t *bdp;
  66. struct sk_buff *skb, *skbn, *skbt;
  67. int received = 0;
  68. u16 pkt_len, sc;
  69. int curidx;
  70. if (!netif_running(dev))
  71. return 0;
  72. /*
  73. * First, grab all of the stats for the incoming packet.
  74. * These get messed up if we get called due to a busy condition.
  75. */
  76. bdp = fep->cur_rx;
  77. /* clear RX status bits for napi*/
  78. (*fep->ops->napi_clear_rx_event)(dev);
  79. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  80. curidx = bdp - fep->rx_bd_base;
  81. /*
  82. * Since we have allocated space to hold a complete frame,
  83. * the last indicator should be set.
  84. */
  85. if ((sc & BD_ENET_RX_LAST) == 0)
  86. printk(KERN_WARNING DRV_MODULE_NAME
  87. ": %s rcv is not +last\n",
  88. dev->name);
  89. /*
  90. * Check for errors.
  91. */
  92. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  93. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  94. fep->stats.rx_errors++;
  95. /* Frame too long or too short. */
  96. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  97. fep->stats.rx_length_errors++;
  98. /* Frame alignment */
  99. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  100. fep->stats.rx_frame_errors++;
  101. /* CRC Error */
  102. if (sc & BD_ENET_RX_CR)
  103. fep->stats.rx_crc_errors++;
  104. /* FIFO overrun */
  105. if (sc & BD_ENET_RX_OV)
  106. fep->stats.rx_crc_errors++;
  107. skb = fep->rx_skbuff[curidx];
  108. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  109. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  110. DMA_FROM_DEVICE);
  111. skbn = skb;
  112. } else {
  113. skb = fep->rx_skbuff[curidx];
  114. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  115. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  116. DMA_FROM_DEVICE);
  117. /*
  118. * Process the incoming frame.
  119. */
  120. fep->stats.rx_packets++;
  121. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  122. fep->stats.rx_bytes += pkt_len + 4;
  123. if (pkt_len <= fpi->rx_copybreak) {
  124. /* +2 to make IP header L1 cache aligned */
  125. skbn = dev_alloc_skb(pkt_len + 2);
  126. if (skbn != NULL) {
  127. skb_reserve(skbn, 2); /* align IP header */
  128. skb_copy_from_linear_data(skb,
  129. skbn->data, pkt_len);
  130. /* swap */
  131. skbt = skb;
  132. skb = skbn;
  133. skbn = skbt;
  134. }
  135. } else
  136. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  137. if (skbn != NULL) {
  138. skb_put(skb, pkt_len); /* Make room */
  139. skb->protocol = eth_type_trans(skb, dev);
  140. received++;
  141. netif_receive_skb(skb);
  142. } else {
  143. printk(KERN_WARNING DRV_MODULE_NAME
  144. ": %s Memory squeeze, dropping packet.\n",
  145. dev->name);
  146. fep->stats.rx_dropped++;
  147. skbn = skb;
  148. }
  149. }
  150. fep->rx_skbuff[curidx] = skbn;
  151. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  152. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  153. DMA_FROM_DEVICE));
  154. CBDW_DATLEN(bdp, 0);
  155. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  156. /*
  157. * Update BD pointer to next entry.
  158. */
  159. if ((sc & BD_ENET_RX_WRAP) == 0)
  160. bdp++;
  161. else
  162. bdp = fep->rx_bd_base;
  163. (*fep->ops->rx_bd_done)(dev);
  164. if (received >= budget)
  165. break;
  166. }
  167. fep->cur_rx = bdp;
  168. if (received >= budget) {
  169. /* done */
  170. netif_rx_complete(dev, napi);
  171. (*fep->ops->napi_enable_rx)(dev);
  172. }
  173. return received;
  174. }
  175. /* non NAPI receive function */
  176. static int fs_enet_rx_non_napi(struct net_device *dev)
  177. {
  178. struct fs_enet_private *fep = netdev_priv(dev);
  179. const struct fs_platform_info *fpi = fep->fpi;
  180. cbd_t *bdp;
  181. struct sk_buff *skb, *skbn, *skbt;
  182. int received = 0;
  183. u16 pkt_len, sc;
  184. int curidx;
  185. /*
  186. * First, grab all of the stats for the incoming packet.
  187. * These get messed up if we get called due to a busy condition.
  188. */
  189. bdp = fep->cur_rx;
  190. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  191. curidx = bdp - fep->rx_bd_base;
  192. /*
  193. * Since we have allocated space to hold a complete frame,
  194. * the last indicator should be set.
  195. */
  196. if ((sc & BD_ENET_RX_LAST) == 0)
  197. printk(KERN_WARNING DRV_MODULE_NAME
  198. ": %s rcv is not +last\n",
  199. dev->name);
  200. /*
  201. * Check for errors.
  202. */
  203. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  204. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  205. fep->stats.rx_errors++;
  206. /* Frame too long or too short. */
  207. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  208. fep->stats.rx_length_errors++;
  209. /* Frame alignment */
  210. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  211. fep->stats.rx_frame_errors++;
  212. /* CRC Error */
  213. if (sc & BD_ENET_RX_CR)
  214. fep->stats.rx_crc_errors++;
  215. /* FIFO overrun */
  216. if (sc & BD_ENET_RX_OV)
  217. fep->stats.rx_crc_errors++;
  218. skb = fep->rx_skbuff[curidx];
  219. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  220. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  221. DMA_FROM_DEVICE);
  222. skbn = skb;
  223. } else {
  224. skb = fep->rx_skbuff[curidx];
  225. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  226. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  227. DMA_FROM_DEVICE);
  228. /*
  229. * Process the incoming frame.
  230. */
  231. fep->stats.rx_packets++;
  232. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  233. fep->stats.rx_bytes += pkt_len + 4;
  234. if (pkt_len <= fpi->rx_copybreak) {
  235. /* +2 to make IP header L1 cache aligned */
  236. skbn = dev_alloc_skb(pkt_len + 2);
  237. if (skbn != NULL) {
  238. skb_reserve(skbn, 2); /* align IP header */
  239. skb_copy_from_linear_data(skb,
  240. skbn->data, pkt_len);
  241. /* swap */
  242. skbt = skb;
  243. skb = skbn;
  244. skbn = skbt;
  245. }
  246. } else
  247. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  248. if (skbn != NULL) {
  249. skb_put(skb, pkt_len); /* Make room */
  250. skb->protocol = eth_type_trans(skb, dev);
  251. received++;
  252. netif_rx(skb);
  253. } else {
  254. printk(KERN_WARNING DRV_MODULE_NAME
  255. ": %s Memory squeeze, dropping packet.\n",
  256. dev->name);
  257. fep->stats.rx_dropped++;
  258. skbn = skb;
  259. }
  260. }
  261. fep->rx_skbuff[curidx] = skbn;
  262. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  263. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  264. DMA_FROM_DEVICE));
  265. CBDW_DATLEN(bdp, 0);
  266. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  267. /*
  268. * Update BD pointer to next entry.
  269. */
  270. if ((sc & BD_ENET_RX_WRAP) == 0)
  271. bdp++;
  272. else
  273. bdp = fep->rx_bd_base;
  274. (*fep->ops->rx_bd_done)(dev);
  275. }
  276. fep->cur_rx = bdp;
  277. return 0;
  278. }
  279. static void fs_enet_tx(struct net_device *dev)
  280. {
  281. struct fs_enet_private *fep = netdev_priv(dev);
  282. cbd_t *bdp;
  283. struct sk_buff *skb;
  284. int dirtyidx, do_wake, do_restart;
  285. u16 sc;
  286. spin_lock(&fep->lock);
  287. bdp = fep->dirty_tx;
  288. do_wake = do_restart = 0;
  289. while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
  290. dirtyidx = bdp - fep->tx_bd_base;
  291. if (fep->tx_free == fep->tx_ring)
  292. break;
  293. skb = fep->tx_skbuff[dirtyidx];
  294. /*
  295. * Check for errors.
  296. */
  297. if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
  298. BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
  299. if (sc & BD_ENET_TX_HB) /* No heartbeat */
  300. fep->stats.tx_heartbeat_errors++;
  301. if (sc & BD_ENET_TX_LC) /* Late collision */
  302. fep->stats.tx_window_errors++;
  303. if (sc & BD_ENET_TX_RL) /* Retrans limit */
  304. fep->stats.tx_aborted_errors++;
  305. if (sc & BD_ENET_TX_UN) /* Underrun */
  306. fep->stats.tx_fifo_errors++;
  307. if (sc & BD_ENET_TX_CSL) /* Carrier lost */
  308. fep->stats.tx_carrier_errors++;
  309. if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
  310. fep->stats.tx_errors++;
  311. do_restart = 1;
  312. }
  313. } else
  314. fep->stats.tx_packets++;
  315. if (sc & BD_ENET_TX_READY)
  316. printk(KERN_WARNING DRV_MODULE_NAME
  317. ": %s HEY! Enet xmit interrupt and TX_READY.\n",
  318. dev->name);
  319. /*
  320. * Deferred means some collisions occurred during transmit,
  321. * but we eventually sent the packet OK.
  322. */
  323. if (sc & BD_ENET_TX_DEF)
  324. fep->stats.collisions++;
  325. /* unmap */
  326. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  327. skb->len, DMA_TO_DEVICE);
  328. /*
  329. * Free the sk buffer associated with this last transmit.
  330. */
  331. dev_kfree_skb_irq(skb);
  332. fep->tx_skbuff[dirtyidx] = NULL;
  333. /*
  334. * Update pointer to next buffer descriptor to be transmitted.
  335. */
  336. if ((sc & BD_ENET_TX_WRAP) == 0)
  337. bdp++;
  338. else
  339. bdp = fep->tx_bd_base;
  340. /*
  341. * Since we have freed up a buffer, the ring is no longer
  342. * full.
  343. */
  344. if (!fep->tx_free++)
  345. do_wake = 1;
  346. }
  347. fep->dirty_tx = bdp;
  348. if (do_restart)
  349. (*fep->ops->tx_restart)(dev);
  350. spin_unlock(&fep->lock);
  351. if (do_wake)
  352. netif_wake_queue(dev);
  353. }
  354. /*
  355. * The interrupt handler.
  356. * This is called from the MPC core interrupt.
  357. */
  358. static irqreturn_t
  359. fs_enet_interrupt(int irq, void *dev_id)
  360. {
  361. struct net_device *dev = dev_id;
  362. struct fs_enet_private *fep;
  363. const struct fs_platform_info *fpi;
  364. u32 int_events;
  365. u32 int_clr_events;
  366. int nr, napi_ok;
  367. int handled;
  368. fep = netdev_priv(dev);
  369. fpi = fep->fpi;
  370. nr = 0;
  371. while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
  372. nr++;
  373. int_clr_events = int_events;
  374. if (fpi->use_napi)
  375. int_clr_events &= ~fep->ev_napi_rx;
  376. (*fep->ops->clear_int_events)(dev, int_clr_events);
  377. if (int_events & fep->ev_err)
  378. (*fep->ops->ev_error)(dev, int_events);
  379. if (int_events & fep->ev_rx) {
  380. if (!fpi->use_napi)
  381. fs_enet_rx_non_napi(dev);
  382. else {
  383. napi_ok = napi_schedule_prep(&fep->napi);
  384. (*fep->ops->napi_disable_rx)(dev);
  385. (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
  386. /* NOTE: it is possible for FCCs in NAPI mode */
  387. /* to submit a spurious interrupt while in poll */
  388. if (napi_ok)
  389. __netif_rx_schedule(dev, &fep->napi);
  390. }
  391. }
  392. if (int_events & fep->ev_tx)
  393. fs_enet_tx(dev);
  394. }
  395. handled = nr > 0;
  396. return IRQ_RETVAL(handled);
  397. }
  398. void fs_init_bds(struct net_device *dev)
  399. {
  400. struct fs_enet_private *fep = netdev_priv(dev);
  401. cbd_t *bdp;
  402. struct sk_buff *skb;
  403. int i;
  404. fs_cleanup_bds(dev);
  405. fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
  406. fep->tx_free = fep->tx_ring;
  407. fep->cur_rx = fep->rx_bd_base;
  408. /*
  409. * Initialize the receive buffer descriptors.
  410. */
  411. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  412. skb = dev_alloc_skb(ENET_RX_FRSIZE);
  413. if (skb == NULL) {
  414. printk(KERN_WARNING DRV_MODULE_NAME
  415. ": %s Memory squeeze, unable to allocate skb\n",
  416. dev->name);
  417. break;
  418. }
  419. fep->rx_skbuff[i] = skb;
  420. CBDW_BUFADDR(bdp,
  421. dma_map_single(fep->dev, skb->data,
  422. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  423. DMA_FROM_DEVICE));
  424. CBDW_DATLEN(bdp, 0); /* zero */
  425. CBDW_SC(bdp, BD_ENET_RX_EMPTY |
  426. ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
  427. }
  428. /*
  429. * if we failed, fillup remainder
  430. */
  431. for (; i < fep->rx_ring; i++, bdp++) {
  432. fep->rx_skbuff[i] = NULL;
  433. CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
  434. }
  435. /*
  436. * ...and the same for transmit.
  437. */
  438. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  439. fep->tx_skbuff[i] = NULL;
  440. CBDW_BUFADDR(bdp, 0);
  441. CBDW_DATLEN(bdp, 0);
  442. CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
  443. }
  444. }
  445. void fs_cleanup_bds(struct net_device *dev)
  446. {
  447. struct fs_enet_private *fep = netdev_priv(dev);
  448. struct sk_buff *skb;
  449. cbd_t *bdp;
  450. int i;
  451. /*
  452. * Reset SKB transmit buffers.
  453. */
  454. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  455. if ((skb = fep->tx_skbuff[i]) == NULL)
  456. continue;
  457. /* unmap */
  458. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  459. skb->len, DMA_TO_DEVICE);
  460. fep->tx_skbuff[i] = NULL;
  461. dev_kfree_skb(skb);
  462. }
  463. /*
  464. * Reset SKB receive buffers
  465. */
  466. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  467. if ((skb = fep->rx_skbuff[i]) == NULL)
  468. continue;
  469. /* unmap */
  470. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  471. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  472. DMA_FROM_DEVICE);
  473. fep->rx_skbuff[i] = NULL;
  474. dev_kfree_skb(skb);
  475. }
  476. }
  477. /**********************************************************************************/
  478. static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
  479. {
  480. struct fs_enet_private *fep = netdev_priv(dev);
  481. cbd_t *bdp;
  482. int curidx;
  483. u16 sc;
  484. unsigned long flags;
  485. spin_lock_irqsave(&fep->tx_lock, flags);
  486. /*
  487. * Fill in a Tx ring entry
  488. */
  489. bdp = fep->cur_tx;
  490. if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
  491. netif_stop_queue(dev);
  492. spin_unlock_irqrestore(&fep->tx_lock, flags);
  493. /*
  494. * Ooops. All transmit buffers are full. Bail out.
  495. * This should not happen, since the tx queue should be stopped.
  496. */
  497. printk(KERN_WARNING DRV_MODULE_NAME
  498. ": %s tx queue full!.\n", dev->name);
  499. return NETDEV_TX_BUSY;
  500. }
  501. curidx = bdp - fep->tx_bd_base;
  502. /*
  503. * Clear all of the status flags.
  504. */
  505. CBDC_SC(bdp, BD_ENET_TX_STATS);
  506. /*
  507. * Save skb pointer.
  508. */
  509. fep->tx_skbuff[curidx] = skb;
  510. fep->stats.tx_bytes += skb->len;
  511. /*
  512. * Push the data cache so the CPM does not get stale memory data.
  513. */
  514. CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
  515. skb->data, skb->len, DMA_TO_DEVICE));
  516. CBDW_DATLEN(bdp, skb->len);
  517. dev->trans_start = jiffies;
  518. /*
  519. * If this was the last BD in the ring, start at the beginning again.
  520. */
  521. if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
  522. fep->cur_tx++;
  523. else
  524. fep->cur_tx = fep->tx_bd_base;
  525. if (!--fep->tx_free)
  526. netif_stop_queue(dev);
  527. /* Trigger transmission start */
  528. sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
  529. BD_ENET_TX_LAST | BD_ENET_TX_TC;
  530. /* note that while FEC does not have this bit
  531. * it marks it as available for software use
  532. * yay for hw reuse :) */
  533. if (skb->len <= 60)
  534. sc |= BD_ENET_TX_PAD;
  535. CBDS_SC(bdp, sc);
  536. (*fep->ops->tx_kickstart)(dev);
  537. spin_unlock_irqrestore(&fep->tx_lock, flags);
  538. return NETDEV_TX_OK;
  539. }
  540. static int fs_request_irq(struct net_device *dev, int irq, const char *name,
  541. irq_handler_t irqf)
  542. {
  543. struct fs_enet_private *fep = netdev_priv(dev);
  544. (*fep->ops->pre_request_irq)(dev, irq);
  545. return request_irq(irq, irqf, IRQF_SHARED, name, dev);
  546. }
  547. static void fs_free_irq(struct net_device *dev, int irq)
  548. {
  549. struct fs_enet_private *fep = netdev_priv(dev);
  550. free_irq(irq, dev);
  551. (*fep->ops->post_free_irq)(dev, irq);
  552. }
  553. static void fs_timeout(struct net_device *dev)
  554. {
  555. struct fs_enet_private *fep = netdev_priv(dev);
  556. unsigned long flags;
  557. int wake = 0;
  558. fep->stats.tx_errors++;
  559. spin_lock_irqsave(&fep->lock, flags);
  560. if (dev->flags & IFF_UP) {
  561. phy_stop(fep->phydev);
  562. (*fep->ops->stop)(dev);
  563. (*fep->ops->restart)(dev);
  564. phy_start(fep->phydev);
  565. }
  566. phy_start(fep->phydev);
  567. wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
  568. spin_unlock_irqrestore(&fep->lock, flags);
  569. if (wake)
  570. netif_wake_queue(dev);
  571. }
  572. /*-----------------------------------------------------------------------------
  573. * generic link-change handler - should be sufficient for most cases
  574. *-----------------------------------------------------------------------------*/
  575. static void generic_adjust_link(struct net_device *dev)
  576. {
  577. struct fs_enet_private *fep = netdev_priv(dev);
  578. struct phy_device *phydev = fep->phydev;
  579. int new_state = 0;
  580. if (phydev->link) {
  581. /* adjust to duplex mode */
  582. if (phydev->duplex != fep->oldduplex){
  583. new_state = 1;
  584. fep->oldduplex = phydev->duplex;
  585. }
  586. if (phydev->speed != fep->oldspeed) {
  587. new_state = 1;
  588. fep->oldspeed = phydev->speed;
  589. }
  590. if (!fep->oldlink) {
  591. new_state = 1;
  592. fep->oldlink = 1;
  593. netif_schedule(dev);
  594. netif_carrier_on(dev);
  595. netif_start_queue(dev);
  596. }
  597. if (new_state)
  598. fep->ops->restart(dev);
  599. } else if (fep->oldlink) {
  600. new_state = 1;
  601. fep->oldlink = 0;
  602. fep->oldspeed = 0;
  603. fep->oldduplex = -1;
  604. netif_carrier_off(dev);
  605. netif_stop_queue(dev);
  606. }
  607. if (new_state && netif_msg_link(fep))
  608. phy_print_status(phydev);
  609. }
  610. static void fs_adjust_link(struct net_device *dev)
  611. {
  612. struct fs_enet_private *fep = netdev_priv(dev);
  613. unsigned long flags;
  614. spin_lock_irqsave(&fep->lock, flags);
  615. if(fep->ops->adjust_link)
  616. fep->ops->adjust_link(dev);
  617. else
  618. generic_adjust_link(dev);
  619. spin_unlock_irqrestore(&fep->lock, flags);
  620. }
  621. static int fs_init_phy(struct net_device *dev)
  622. {
  623. struct fs_enet_private *fep = netdev_priv(dev);
  624. struct phy_device *phydev;
  625. fep->oldlink = 0;
  626. fep->oldspeed = 0;
  627. fep->oldduplex = -1;
  628. if(fep->fpi->bus_id)
  629. phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
  630. PHY_INTERFACE_MODE_MII);
  631. else {
  632. printk("No phy bus ID specified in BSP code\n");
  633. return -EINVAL;
  634. }
  635. if (IS_ERR(phydev)) {
  636. printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
  637. return PTR_ERR(phydev);
  638. }
  639. fep->phydev = phydev;
  640. return 0;
  641. }
  642. static int fs_enet_open(struct net_device *dev)
  643. {
  644. struct fs_enet_private *fep = netdev_priv(dev);
  645. int r;
  646. int err;
  647. napi_enable(&fep->napi);
  648. /* Install our interrupt handler. */
  649. r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
  650. if (r != 0) {
  651. printk(KERN_ERR DRV_MODULE_NAME
  652. ": %s Could not allocate FS_ENET IRQ!", dev->name);
  653. napi_disable(&fep->napi);
  654. return -EINVAL;
  655. }
  656. err = fs_init_phy(dev);
  657. if(err) {
  658. napi_disable(&fep->napi);
  659. return err;
  660. }
  661. phy_start(fep->phydev);
  662. return 0;
  663. }
  664. static int fs_enet_close(struct net_device *dev)
  665. {
  666. struct fs_enet_private *fep = netdev_priv(dev);
  667. unsigned long flags;
  668. netif_stop_queue(dev);
  669. netif_carrier_off(dev);
  670. napi_disable(&fep->napi);
  671. phy_stop(fep->phydev);
  672. spin_lock_irqsave(&fep->lock, flags);
  673. (*fep->ops->stop)(dev);
  674. spin_unlock_irqrestore(&fep->lock, flags);
  675. /* release any irqs */
  676. phy_disconnect(fep->phydev);
  677. fep->phydev = NULL;
  678. fs_free_irq(dev, fep->interrupt);
  679. return 0;
  680. }
  681. static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
  682. {
  683. struct fs_enet_private *fep = netdev_priv(dev);
  684. return &fep->stats;
  685. }
  686. /*************************************************************************/
  687. static void fs_get_drvinfo(struct net_device *dev,
  688. struct ethtool_drvinfo *info)
  689. {
  690. strcpy(info->driver, DRV_MODULE_NAME);
  691. strcpy(info->version, DRV_MODULE_VERSION);
  692. }
  693. static int fs_get_regs_len(struct net_device *dev)
  694. {
  695. struct fs_enet_private *fep = netdev_priv(dev);
  696. return (*fep->ops->get_regs_len)(dev);
  697. }
  698. static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  699. void *p)
  700. {
  701. struct fs_enet_private *fep = netdev_priv(dev);
  702. unsigned long flags;
  703. int r, len;
  704. len = regs->len;
  705. spin_lock_irqsave(&fep->lock, flags);
  706. r = (*fep->ops->get_regs)(dev, p, &len);
  707. spin_unlock_irqrestore(&fep->lock, flags);
  708. if (r == 0)
  709. regs->version = 0;
  710. }
  711. static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  712. {
  713. struct fs_enet_private *fep = netdev_priv(dev);
  714. return phy_ethtool_gset(fep->phydev, cmd);
  715. }
  716. static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  717. {
  718. struct fs_enet_private *fep = netdev_priv(dev);
  719. phy_ethtool_sset(fep->phydev, cmd);
  720. return 0;
  721. }
  722. static int fs_nway_reset(struct net_device *dev)
  723. {
  724. return 0;
  725. }
  726. static u32 fs_get_msglevel(struct net_device *dev)
  727. {
  728. struct fs_enet_private *fep = netdev_priv(dev);
  729. return fep->msg_enable;
  730. }
  731. static void fs_set_msglevel(struct net_device *dev, u32 value)
  732. {
  733. struct fs_enet_private *fep = netdev_priv(dev);
  734. fep->msg_enable = value;
  735. }
  736. static const struct ethtool_ops fs_ethtool_ops = {
  737. .get_drvinfo = fs_get_drvinfo,
  738. .get_regs_len = fs_get_regs_len,
  739. .get_settings = fs_get_settings,
  740. .set_settings = fs_set_settings,
  741. .nway_reset = fs_nway_reset,
  742. .get_link = ethtool_op_get_link,
  743. .get_msglevel = fs_get_msglevel,
  744. .set_msglevel = fs_set_msglevel,
  745. .get_tx_csum = ethtool_op_get_tx_csum,
  746. .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
  747. .get_sg = ethtool_op_get_sg,
  748. .set_sg = ethtool_op_set_sg,
  749. .get_regs = fs_get_regs,
  750. };
  751. static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  752. {
  753. struct fs_enet_private *fep = netdev_priv(dev);
  754. struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
  755. unsigned long flags;
  756. int rc;
  757. if (!netif_running(dev))
  758. return -EINVAL;
  759. spin_lock_irqsave(&fep->lock, flags);
  760. rc = phy_mii_ioctl(fep->phydev, mii, cmd);
  761. spin_unlock_irqrestore(&fep->lock, flags);
  762. return rc;
  763. }
  764. extern int fs_mii_connect(struct net_device *dev);
  765. extern void fs_mii_disconnect(struct net_device *dev);
  766. static struct net_device *fs_init_instance(struct device *dev,
  767. struct fs_platform_info *fpi)
  768. {
  769. struct net_device *ndev = NULL;
  770. struct fs_enet_private *fep = NULL;
  771. int privsize, i, r, err = 0, registered = 0;
  772. fpi->fs_no = fs_get_id(fpi);
  773. /* guard */
  774. if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
  775. return ERR_PTR(-EINVAL);
  776. privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
  777. (fpi->rx_ring + fpi->tx_ring));
  778. ndev = alloc_etherdev(privsize);
  779. if (!ndev) {
  780. err = -ENOMEM;
  781. goto err;
  782. }
  783. SET_MODULE_OWNER(ndev);
  784. fep = netdev_priv(ndev);
  785. fep->dev = dev;
  786. dev_set_drvdata(dev, ndev);
  787. fep->fpi = fpi;
  788. if (fpi->init_ioports)
  789. fpi->init_ioports((struct fs_platform_info *)fpi);
  790. #ifdef CONFIG_FS_ENET_HAS_FEC
  791. if (fs_get_fec_index(fpi->fs_no) >= 0)
  792. fep->ops = &fs_fec_ops;
  793. #endif
  794. #ifdef CONFIG_FS_ENET_HAS_SCC
  795. if (fs_get_scc_index(fpi->fs_no) >=0 )
  796. fep->ops = &fs_scc_ops;
  797. #endif
  798. #ifdef CONFIG_FS_ENET_HAS_FCC
  799. if (fs_get_fcc_index(fpi->fs_no) >= 0)
  800. fep->ops = &fs_fcc_ops;
  801. #endif
  802. if (fep->ops == NULL) {
  803. printk(KERN_ERR DRV_MODULE_NAME
  804. ": %s No matching ops found (%d).\n",
  805. ndev->name, fpi->fs_no);
  806. err = -EINVAL;
  807. goto err;
  808. }
  809. r = (*fep->ops->setup_data)(ndev);
  810. if (r != 0) {
  811. printk(KERN_ERR DRV_MODULE_NAME
  812. ": %s setup_data failed\n",
  813. ndev->name);
  814. err = r;
  815. goto err;
  816. }
  817. /* point rx_skbuff, tx_skbuff */
  818. fep->rx_skbuff = (struct sk_buff **)&fep[1];
  819. fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
  820. /* init locks */
  821. spin_lock_init(&fep->lock);
  822. spin_lock_init(&fep->tx_lock);
  823. /*
  824. * Set the Ethernet address.
  825. */
  826. for (i = 0; i < 6; i++)
  827. ndev->dev_addr[i] = fpi->macaddr[i];
  828. r = (*fep->ops->allocate_bd)(ndev);
  829. if (fep->ring_base == NULL) {
  830. printk(KERN_ERR DRV_MODULE_NAME
  831. ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
  832. err = r;
  833. goto err;
  834. }
  835. /*
  836. * Set receive and transmit descriptor base.
  837. */
  838. fep->rx_bd_base = fep->ring_base;
  839. fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
  840. /* initialize ring size variables */
  841. fep->tx_ring = fpi->tx_ring;
  842. fep->rx_ring = fpi->rx_ring;
  843. /*
  844. * The FEC Ethernet specific entries in the device structure.
  845. */
  846. ndev->open = fs_enet_open;
  847. ndev->hard_start_xmit = fs_enet_start_xmit;
  848. ndev->tx_timeout = fs_timeout;
  849. ndev->watchdog_timeo = 2 * HZ;
  850. ndev->stop = fs_enet_close;
  851. ndev->get_stats = fs_enet_get_stats;
  852. ndev->set_multicast_list = fs_set_multicast_list;
  853. netif_napi_add(ndev, &fep->napi,
  854. fs_enet_rx_napi, fpi->napi_weight);
  855. ndev->ethtool_ops = &fs_ethtool_ops;
  856. ndev->do_ioctl = fs_ioctl;
  857. init_timer(&fep->phy_timer_list);
  858. netif_carrier_off(ndev);
  859. err = register_netdev(ndev);
  860. if (err != 0) {
  861. printk(KERN_ERR DRV_MODULE_NAME
  862. ": %s register_netdev failed.\n", ndev->name);
  863. goto err;
  864. }
  865. registered = 1;
  866. return ndev;
  867. err:
  868. if (ndev != NULL) {
  869. if (registered)
  870. unregister_netdev(ndev);
  871. if (fep != NULL) {
  872. (*fep->ops->free_bd)(ndev);
  873. (*fep->ops->cleanup_data)(ndev);
  874. }
  875. free_netdev(ndev);
  876. }
  877. dev_set_drvdata(dev, NULL);
  878. return ERR_PTR(err);
  879. }
  880. static int fs_cleanup_instance(struct net_device *ndev)
  881. {
  882. struct fs_enet_private *fep;
  883. const struct fs_platform_info *fpi;
  884. struct device *dev;
  885. if (ndev == NULL)
  886. return -EINVAL;
  887. fep = netdev_priv(ndev);
  888. if (fep == NULL)
  889. return -EINVAL;
  890. fpi = fep->fpi;
  891. unregister_netdev(ndev);
  892. dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
  893. fep->ring_base, fep->ring_mem_addr);
  894. /* reset it */
  895. (*fep->ops->cleanup_data)(ndev);
  896. dev = fep->dev;
  897. if (dev != NULL) {
  898. dev_set_drvdata(dev, NULL);
  899. fep->dev = NULL;
  900. }
  901. free_netdev(ndev);
  902. return 0;
  903. }
  904. /**************************************************************************************/
  905. /* handy pointer to the immap */
  906. void *fs_enet_immap = NULL;
  907. static int setup_immap(void)
  908. {
  909. phys_addr_t paddr = 0;
  910. unsigned long size = 0;
  911. #ifdef CONFIG_CPM1
  912. paddr = IMAP_ADDR;
  913. size = 0x10000; /* map 64K */
  914. #endif
  915. #ifdef CONFIG_CPM2
  916. paddr = CPM_MAP_ADDR;
  917. size = 0x40000; /* map 256 K */
  918. #endif
  919. fs_enet_immap = ioremap(paddr, size);
  920. if (fs_enet_immap == NULL)
  921. return -EBADF; /* XXX ahem; maybe just BUG_ON? */
  922. return 0;
  923. }
  924. static void cleanup_immap(void)
  925. {
  926. if (fs_enet_immap != NULL) {
  927. iounmap(fs_enet_immap);
  928. fs_enet_immap = NULL;
  929. }
  930. }
  931. /**************************************************************************************/
  932. static int __devinit fs_enet_probe(struct device *dev)
  933. {
  934. struct net_device *ndev;
  935. /* no fixup - no device */
  936. if (dev->platform_data == NULL) {
  937. printk(KERN_INFO "fs_enet: "
  938. "probe called with no platform data; "
  939. "remove unused devices\n");
  940. return -ENODEV;
  941. }
  942. ndev = fs_init_instance(dev, dev->platform_data);
  943. if (IS_ERR(ndev))
  944. return PTR_ERR(ndev);
  945. return 0;
  946. }
  947. static int fs_enet_remove(struct device *dev)
  948. {
  949. return fs_cleanup_instance(dev_get_drvdata(dev));
  950. }
  951. static struct device_driver fs_enet_fec_driver = {
  952. .name = "fsl-cpm-fec",
  953. .bus = &platform_bus_type,
  954. .probe = fs_enet_probe,
  955. .remove = fs_enet_remove,
  956. #ifdef CONFIG_PM
  957. /* .suspend = fs_enet_suspend, TODO */
  958. /* .resume = fs_enet_resume, TODO */
  959. #endif
  960. };
  961. static struct device_driver fs_enet_scc_driver = {
  962. .name = "fsl-cpm-scc",
  963. .bus = &platform_bus_type,
  964. .probe = fs_enet_probe,
  965. .remove = fs_enet_remove,
  966. #ifdef CONFIG_PM
  967. /* .suspend = fs_enet_suspend, TODO */
  968. /* .resume = fs_enet_resume, TODO */
  969. #endif
  970. };
  971. static struct device_driver fs_enet_fcc_driver = {
  972. .name = "fsl-cpm-fcc",
  973. .bus = &platform_bus_type,
  974. .probe = fs_enet_probe,
  975. .remove = fs_enet_remove,
  976. #ifdef CONFIG_PM
  977. /* .suspend = fs_enet_suspend, TODO */
  978. /* .resume = fs_enet_resume, TODO */
  979. #endif
  980. };
  981. static int __init fs_init(void)
  982. {
  983. int r;
  984. printk(KERN_INFO
  985. "%s", version);
  986. r = setup_immap();
  987. if (r != 0)
  988. return r;
  989. #ifdef CONFIG_FS_ENET_HAS_FCC
  990. /* let's insert mii stuff */
  991. r = fs_enet_mdio_bb_init();
  992. if (r != 0) {
  993. printk(KERN_ERR DRV_MODULE_NAME
  994. "BB PHY init failed.\n");
  995. return r;
  996. }
  997. r = driver_register(&fs_enet_fcc_driver);
  998. if (r != 0)
  999. goto err;
  1000. #endif
  1001. #ifdef CONFIG_FS_ENET_HAS_FEC
  1002. r = fs_enet_mdio_fec_init();
  1003. if (r != 0) {
  1004. printk(KERN_ERR DRV_MODULE_NAME
  1005. "FEC PHY init failed.\n");
  1006. return r;
  1007. }
  1008. r = driver_register(&fs_enet_fec_driver);
  1009. if (r != 0)
  1010. goto err;
  1011. #endif
  1012. #ifdef CONFIG_FS_ENET_HAS_SCC
  1013. r = driver_register(&fs_enet_scc_driver);
  1014. if (r != 0)
  1015. goto err;
  1016. #endif
  1017. return 0;
  1018. err:
  1019. cleanup_immap();
  1020. return r;
  1021. }
  1022. static void __exit fs_cleanup(void)
  1023. {
  1024. driver_unregister(&fs_enet_fec_driver);
  1025. driver_unregister(&fs_enet_fcc_driver);
  1026. driver_unregister(&fs_enet_scc_driver);
  1027. cleanup_immap();
  1028. }
  1029. /**************************************************************************************/
  1030. module_init(fs_init);
  1031. module_exit(fs_cleanup);