host.c 98 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161
  1. /*
  2. * This file is provided under a dual BSD/GPLv2 license. When using or
  3. * redistributing this file, you may do so under either license.
  4. *
  5. * GPL LICENSE SUMMARY
  6. *
  7. * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of version 2 of the GNU General Public License as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  21. * The full GNU General Public License is included in this distribution
  22. * in the file called LICENSE.GPL.
  23. *
  24. * BSD LICENSE
  25. *
  26. * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
  27. * All rights reserved.
  28. *
  29. * Redistribution and use in source and binary forms, with or without
  30. * modification, are permitted provided that the following conditions
  31. * are met:
  32. *
  33. * * Redistributions of source code must retain the above copyright
  34. * notice, this list of conditions and the following disclaimer.
  35. * * Redistributions in binary form must reproduce the above copyright
  36. * notice, this list of conditions and the following disclaimer in
  37. * the documentation and/or other materials provided with the
  38. * distribution.
  39. * * Neither the name of Intel Corporation nor the names of its
  40. * contributors may be used to endorse or promote products derived
  41. * from this software without specific prior written permission.
  42. *
  43. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  44. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  45. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  46. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  47. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  48. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  49. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  50. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  51. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  52. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  53. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  54. */
  55. #include <linux/circ_buf.h>
  56. #include <linux/device.h>
  57. #include <scsi/sas.h>
  58. #include "host.h"
  59. #include "isci.h"
  60. #include "port.h"
  61. #include "host.h"
  62. #include "probe_roms.h"
  63. #include "remote_device.h"
  64. #include "request.h"
  65. #include "scu_completion_codes.h"
  66. #include "scu_event_codes.h"
  67. #include "registers.h"
  68. #include "scu_remote_node_context.h"
  69. #include "scu_task_context.h"
  70. #include "scu_unsolicited_frame.h"
  71. #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200
  72. #define smu_max_ports(dcc_value) \
  73. (\
  74. (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
  75. >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
  76. )
  77. #define smu_max_task_contexts(dcc_value) \
  78. (\
  79. (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
  80. >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
  81. )
  82. #define smu_max_rncs(dcc_value) \
  83. (\
  84. (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
  85. >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
  86. )
  87. #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100
  88. /**
  89. *
  90. *
  91. * The number of milliseconds to wait while a given phy is consuming power
  92. * before allowing another set of phys to consume power. Ultimately, this will
  93. * be specified by OEM parameter.
  94. */
  95. #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
  96. /**
  97. * NORMALIZE_PUT_POINTER() -
  98. *
  99. * This macro will normalize the completion queue put pointer so its value can
  100. * be used as an array inde
  101. */
  102. #define NORMALIZE_PUT_POINTER(x) \
  103. ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
  104. /**
  105. * NORMALIZE_EVENT_POINTER() -
  106. *
  107. * This macro will normalize the completion queue event entry so its value can
  108. * be used as an index.
  109. */
  110. #define NORMALIZE_EVENT_POINTER(x) \
  111. (\
  112. ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
  113. >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
  114. )
  115. /**
  116. * INCREMENT_COMPLETION_QUEUE_GET() -
  117. *
  118. * This macro will increment the controllers completion queue index value and
  119. * possibly toggle the cycle bit if the completion queue index wraps back to 0.
  120. */
  121. #define INCREMENT_COMPLETION_QUEUE_GET(controller, index, cycle) \
  122. INCREMENT_QUEUE_GET(\
  123. (index), \
  124. (cycle), \
  125. SCU_MAX_COMPLETION_QUEUE_ENTRIES, \
  126. SMU_CQGR_CYCLE_BIT)
  127. /**
  128. * INCREMENT_EVENT_QUEUE_GET() -
  129. *
  130. * This macro will increment the controllers event queue index value and
  131. * possibly toggle the event cycle bit if the event queue index wraps back to 0.
  132. */
  133. #define INCREMENT_EVENT_QUEUE_GET(controller, index, cycle) \
  134. INCREMENT_QUEUE_GET(\
  135. (index), \
  136. (cycle), \
  137. SCU_MAX_EVENTS, \
  138. SMU_CQGR_EVENT_CYCLE_BIT \
  139. )
  140. /**
  141. * NORMALIZE_GET_POINTER() -
  142. *
  143. * This macro will normalize the completion queue get pointer so its value can
  144. * be used as an index into an array
  145. */
  146. #define NORMALIZE_GET_POINTER(x) \
  147. ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
  148. /**
  149. * NORMALIZE_GET_POINTER_CYCLE_BIT() -
  150. *
  151. * This macro will normalize the completion queue cycle pointer so it matches
  152. * the completion queue cycle bit
  153. */
  154. #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
  155. ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
  156. /**
  157. * COMPLETION_QUEUE_CYCLE_BIT() -
  158. *
  159. * This macro will return the cycle bit of the completion queue entry
  160. */
  161. #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
  162. /* Init the state machine and call the state entry function (if any) */
  163. void sci_init_sm(struct sci_base_state_machine *sm,
  164. const struct sci_base_state *state_table, u32 initial_state)
  165. {
  166. sci_state_transition_t handler;
  167. sm->initial_state_id = initial_state;
  168. sm->previous_state_id = initial_state;
  169. sm->current_state_id = initial_state;
  170. sm->state_table = state_table;
  171. handler = sm->state_table[initial_state].enter_state;
  172. if (handler)
  173. handler(sm);
  174. }
  175. /* Call the state exit fn, update the current state, call the state entry fn */
  176. void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
  177. {
  178. sci_state_transition_t handler;
  179. handler = sm->state_table[sm->current_state_id].exit_state;
  180. if (handler)
  181. handler(sm);
  182. sm->previous_state_id = sm->current_state_id;
  183. sm->current_state_id = next_state;
  184. handler = sm->state_table[sm->current_state_id].enter_state;
  185. if (handler)
  186. handler(sm);
  187. }
  188. static bool scic_sds_controller_completion_queue_has_entries(
  189. struct scic_sds_controller *scic)
  190. {
  191. u32 get_value = scic->completion_queue_get;
  192. u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
  193. if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
  194. COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index]))
  195. return true;
  196. return false;
  197. }
  198. static bool scic_sds_controller_isr(struct scic_sds_controller *scic)
  199. {
  200. if (scic_sds_controller_completion_queue_has_entries(scic)) {
  201. return true;
  202. } else {
  203. /*
  204. * we have a spurious interrupt it could be that we have already
  205. * emptied the completion queue from a previous interrupt */
  206. writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
  207. /*
  208. * There is a race in the hardware that could cause us not to be notified
  209. * of an interrupt completion if we do not take this step. We will mask
  210. * then unmask the interrupts so if there is another interrupt pending
  211. * the clearing of the interrupt source we get the next interrupt message. */
  212. writel(0xFF000000, &scic->smu_registers->interrupt_mask);
  213. writel(0, &scic->smu_registers->interrupt_mask);
  214. }
  215. return false;
  216. }
  217. irqreturn_t isci_msix_isr(int vec, void *data)
  218. {
  219. struct isci_host *ihost = data;
  220. if (scic_sds_controller_isr(&ihost->sci))
  221. tasklet_schedule(&ihost->completion_tasklet);
  222. return IRQ_HANDLED;
  223. }
  224. static bool scic_sds_controller_error_isr(struct scic_sds_controller *scic)
  225. {
  226. u32 interrupt_status;
  227. interrupt_status =
  228. readl(&scic->smu_registers->interrupt_status);
  229. interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
  230. if (interrupt_status != 0) {
  231. /*
  232. * There is an error interrupt pending so let it through and handle
  233. * in the callback */
  234. return true;
  235. }
  236. /*
  237. * There is a race in the hardware that could cause us not to be notified
  238. * of an interrupt completion if we do not take this step. We will mask
  239. * then unmask the error interrupts so if there was another interrupt
  240. * pending we will be notified.
  241. * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
  242. writel(0xff, &scic->smu_registers->interrupt_mask);
  243. writel(0, &scic->smu_registers->interrupt_mask);
  244. return false;
  245. }
  246. static void scic_sds_controller_task_completion(struct scic_sds_controller *scic,
  247. u32 completion_entry)
  248. {
  249. u32 index;
  250. struct scic_sds_request *io_request;
  251. index = SCU_GET_COMPLETION_INDEX(completion_entry);
  252. io_request = scic->io_request_table[index];
  253. /* Make sure that we really want to process this IO request */
  254. if (
  255. (io_request != NULL)
  256. && (io_request->io_tag != SCI_CONTROLLER_INVALID_IO_TAG)
  257. && (
  258. scic_sds_io_tag_get_sequence(io_request->io_tag)
  259. == scic->io_request_sequence[index]
  260. )
  261. ) {
  262. /* Yep this is a valid io request pass it along to the io request handler */
  263. scic_sds_io_request_tc_completion(io_request, completion_entry);
  264. }
  265. }
  266. static void scic_sds_controller_sdma_completion(struct scic_sds_controller *scic,
  267. u32 completion_entry)
  268. {
  269. u32 index;
  270. struct scic_sds_request *io_request;
  271. struct scic_sds_remote_device *device;
  272. index = SCU_GET_COMPLETION_INDEX(completion_entry);
  273. switch (scu_get_command_request_type(completion_entry)) {
  274. case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
  275. case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
  276. io_request = scic->io_request_table[index];
  277. dev_warn(scic_to_dev(scic),
  278. "%s: SCIC SDS Completion type SDMA %x for io request "
  279. "%p\n",
  280. __func__,
  281. completion_entry,
  282. io_request);
  283. /* @todo For a post TC operation we need to fail the IO
  284. * request
  285. */
  286. break;
  287. case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
  288. case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
  289. case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
  290. device = scic->device_table[index];
  291. dev_warn(scic_to_dev(scic),
  292. "%s: SCIC SDS Completion type SDMA %x for remote "
  293. "device %p\n",
  294. __func__,
  295. completion_entry,
  296. device);
  297. /* @todo For a port RNC operation we need to fail the
  298. * device
  299. */
  300. break;
  301. default:
  302. dev_warn(scic_to_dev(scic),
  303. "%s: SCIC SDS Completion unknown SDMA completion "
  304. "type %x\n",
  305. __func__,
  306. completion_entry);
  307. break;
  308. }
  309. }
  310. static void scic_sds_controller_unsolicited_frame(struct scic_sds_controller *scic,
  311. u32 completion_entry)
  312. {
  313. u32 index;
  314. u32 frame_index;
  315. struct isci_host *ihost = scic_to_ihost(scic);
  316. struct scu_unsolicited_frame_header *frame_header;
  317. struct scic_sds_phy *phy;
  318. struct scic_sds_remote_device *device;
  319. enum sci_status result = SCI_FAILURE;
  320. frame_index = SCU_GET_FRAME_INDEX(completion_entry);
  321. frame_header = scic->uf_control.buffers.array[frame_index].header;
  322. scic->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
  323. if (SCU_GET_FRAME_ERROR(completion_entry)) {
  324. /*
  325. * / @todo If the IAF frame or SIGNATURE FIS frame has an error will
  326. * / this cause a problem? We expect the phy initialization will
  327. * / fail if there is an error in the frame. */
  328. scic_sds_controller_release_frame(scic, frame_index);
  329. return;
  330. }
  331. if (frame_header->is_address_frame) {
  332. index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
  333. phy = &ihost->phys[index].sci;
  334. result = scic_sds_phy_frame_handler(phy, frame_index);
  335. } else {
  336. index = SCU_GET_COMPLETION_INDEX(completion_entry);
  337. if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
  338. /*
  339. * This is a signature fis or a frame from a direct attached SATA
  340. * device that has not yet been created. In either case forwared
  341. * the frame to the PE and let it take care of the frame data. */
  342. index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
  343. phy = &ihost->phys[index].sci;
  344. result = scic_sds_phy_frame_handler(phy, frame_index);
  345. } else {
  346. if (index < scic->remote_node_entries)
  347. device = scic->device_table[index];
  348. else
  349. device = NULL;
  350. if (device != NULL)
  351. result = scic_sds_remote_device_frame_handler(device, frame_index);
  352. else
  353. scic_sds_controller_release_frame(scic, frame_index);
  354. }
  355. }
  356. if (result != SCI_SUCCESS) {
  357. /*
  358. * / @todo Is there any reason to report some additional error message
  359. * / when we get this failure notifiction? */
  360. }
  361. }
  362. static void scic_sds_controller_event_completion(struct scic_sds_controller *scic,
  363. u32 completion_entry)
  364. {
  365. struct isci_host *ihost = scic_to_ihost(scic);
  366. struct scic_sds_request *io_request;
  367. struct scic_sds_remote_device *device;
  368. struct scic_sds_phy *phy;
  369. u32 index;
  370. index = SCU_GET_COMPLETION_INDEX(completion_entry);
  371. switch (scu_get_event_type(completion_entry)) {
  372. case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
  373. /* / @todo The driver did something wrong and we need to fix the condtion. */
  374. dev_err(scic_to_dev(scic),
  375. "%s: SCIC Controller 0x%p received SMU command error "
  376. "0x%x\n",
  377. __func__,
  378. scic,
  379. completion_entry);
  380. break;
  381. case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
  382. case SCU_EVENT_TYPE_SMU_ERROR:
  383. case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
  384. /*
  385. * / @todo This is a hardware failure and its likely that we want to
  386. * / reset the controller. */
  387. dev_err(scic_to_dev(scic),
  388. "%s: SCIC Controller 0x%p received fatal controller "
  389. "event 0x%x\n",
  390. __func__,
  391. scic,
  392. completion_entry);
  393. break;
  394. case SCU_EVENT_TYPE_TRANSPORT_ERROR:
  395. io_request = scic->io_request_table[index];
  396. scic_sds_io_request_event_handler(io_request, completion_entry);
  397. break;
  398. case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
  399. switch (scu_get_event_specifier(completion_entry)) {
  400. case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
  401. case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
  402. io_request = scic->io_request_table[index];
  403. if (io_request != NULL)
  404. scic_sds_io_request_event_handler(io_request, completion_entry);
  405. else
  406. dev_warn(scic_to_dev(scic),
  407. "%s: SCIC Controller 0x%p received "
  408. "event 0x%x for io request object "
  409. "that doesnt exist.\n",
  410. __func__,
  411. scic,
  412. completion_entry);
  413. break;
  414. case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
  415. device = scic->device_table[index];
  416. if (device != NULL)
  417. scic_sds_remote_device_event_handler(device, completion_entry);
  418. else
  419. dev_warn(scic_to_dev(scic),
  420. "%s: SCIC Controller 0x%p received "
  421. "event 0x%x for remote device object "
  422. "that doesnt exist.\n",
  423. __func__,
  424. scic,
  425. completion_entry);
  426. break;
  427. }
  428. break;
  429. case SCU_EVENT_TYPE_BROADCAST_CHANGE:
  430. /*
  431. * direct the broadcast change event to the phy first and then let
  432. * the phy redirect the broadcast change to the port object */
  433. case SCU_EVENT_TYPE_ERR_CNT_EVENT:
  434. /*
  435. * direct error counter event to the phy object since that is where
  436. * we get the event notification. This is a type 4 event. */
  437. case SCU_EVENT_TYPE_OSSP_EVENT:
  438. index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
  439. phy = &ihost->phys[index].sci;
  440. scic_sds_phy_event_handler(phy, completion_entry);
  441. break;
  442. case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
  443. case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
  444. case SCU_EVENT_TYPE_RNC_OPS_MISC:
  445. if (index < scic->remote_node_entries) {
  446. device = scic->device_table[index];
  447. if (device != NULL)
  448. scic_sds_remote_device_event_handler(device, completion_entry);
  449. } else
  450. dev_err(scic_to_dev(scic),
  451. "%s: SCIC Controller 0x%p received event 0x%x "
  452. "for remote device object 0x%0x that doesnt "
  453. "exist.\n",
  454. __func__,
  455. scic,
  456. completion_entry,
  457. index);
  458. break;
  459. default:
  460. dev_warn(scic_to_dev(scic),
  461. "%s: SCIC Controller received unknown event code %x\n",
  462. __func__,
  463. completion_entry);
  464. break;
  465. }
  466. }
  467. static void scic_sds_controller_process_completions(struct scic_sds_controller *scic)
  468. {
  469. u32 completion_count = 0;
  470. u32 completion_entry;
  471. u32 get_index;
  472. u32 get_cycle;
  473. u32 event_index;
  474. u32 event_cycle;
  475. dev_dbg(scic_to_dev(scic),
  476. "%s: completion queue begining get:0x%08x\n",
  477. __func__,
  478. scic->completion_queue_get);
  479. /* Get the component parts of the completion queue */
  480. get_index = NORMALIZE_GET_POINTER(scic->completion_queue_get);
  481. get_cycle = SMU_CQGR_CYCLE_BIT & scic->completion_queue_get;
  482. event_index = NORMALIZE_EVENT_POINTER(scic->completion_queue_get);
  483. event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & scic->completion_queue_get;
  484. while (
  485. NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
  486. == COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index])
  487. ) {
  488. completion_count++;
  489. completion_entry = scic->completion_queue[get_index];
  490. INCREMENT_COMPLETION_QUEUE_GET(scic, get_index, get_cycle);
  491. dev_dbg(scic_to_dev(scic),
  492. "%s: completion queue entry:0x%08x\n",
  493. __func__,
  494. completion_entry);
  495. switch (SCU_GET_COMPLETION_TYPE(completion_entry)) {
  496. case SCU_COMPLETION_TYPE_TASK:
  497. scic_sds_controller_task_completion(scic, completion_entry);
  498. break;
  499. case SCU_COMPLETION_TYPE_SDMA:
  500. scic_sds_controller_sdma_completion(scic, completion_entry);
  501. break;
  502. case SCU_COMPLETION_TYPE_UFI:
  503. scic_sds_controller_unsolicited_frame(scic, completion_entry);
  504. break;
  505. case SCU_COMPLETION_TYPE_EVENT:
  506. INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle);
  507. scic_sds_controller_event_completion(scic, completion_entry);
  508. break;
  509. case SCU_COMPLETION_TYPE_NOTIFY:
  510. /*
  511. * Presently we do the same thing with a notify event that we do with the
  512. * other event codes. */
  513. INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle);
  514. scic_sds_controller_event_completion(scic, completion_entry);
  515. break;
  516. default:
  517. dev_warn(scic_to_dev(scic),
  518. "%s: SCIC Controller received unknown "
  519. "completion type %x\n",
  520. __func__,
  521. completion_entry);
  522. break;
  523. }
  524. }
  525. /* Update the get register if we completed one or more entries */
  526. if (completion_count > 0) {
  527. scic->completion_queue_get =
  528. SMU_CQGR_GEN_BIT(ENABLE) |
  529. SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
  530. event_cycle |
  531. SMU_CQGR_GEN_VAL(EVENT_POINTER, event_index) |
  532. get_cycle |
  533. SMU_CQGR_GEN_VAL(POINTER, get_index);
  534. writel(scic->completion_queue_get,
  535. &scic->smu_registers->completion_queue_get);
  536. }
  537. dev_dbg(scic_to_dev(scic),
  538. "%s: completion queue ending get:0x%08x\n",
  539. __func__,
  540. scic->completion_queue_get);
  541. }
  542. static void scic_sds_controller_error_handler(struct scic_sds_controller *scic)
  543. {
  544. u32 interrupt_status;
  545. interrupt_status =
  546. readl(&scic->smu_registers->interrupt_status);
  547. if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
  548. scic_sds_controller_completion_queue_has_entries(scic)) {
  549. scic_sds_controller_process_completions(scic);
  550. writel(SMU_ISR_QUEUE_SUSPEND, &scic->smu_registers->interrupt_status);
  551. } else {
  552. dev_err(scic_to_dev(scic), "%s: status: %#x\n", __func__,
  553. interrupt_status);
  554. sci_change_state(&scic->sm, SCIC_FAILED);
  555. return;
  556. }
  557. /* If we dont process any completions I am not sure that we want to do this.
  558. * We are in the middle of a hardware fault and should probably be reset.
  559. */
  560. writel(0, &scic->smu_registers->interrupt_mask);
  561. }
  562. irqreturn_t isci_intx_isr(int vec, void *data)
  563. {
  564. irqreturn_t ret = IRQ_NONE;
  565. struct isci_host *ihost = data;
  566. struct scic_sds_controller *scic = &ihost->sci;
  567. if (scic_sds_controller_isr(scic)) {
  568. writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
  569. tasklet_schedule(&ihost->completion_tasklet);
  570. ret = IRQ_HANDLED;
  571. } else if (scic_sds_controller_error_isr(scic)) {
  572. spin_lock(&ihost->scic_lock);
  573. scic_sds_controller_error_handler(scic);
  574. spin_unlock(&ihost->scic_lock);
  575. ret = IRQ_HANDLED;
  576. }
  577. return ret;
  578. }
  579. irqreturn_t isci_error_isr(int vec, void *data)
  580. {
  581. struct isci_host *ihost = data;
  582. if (scic_sds_controller_error_isr(&ihost->sci))
  583. scic_sds_controller_error_handler(&ihost->sci);
  584. return IRQ_HANDLED;
  585. }
  586. /**
  587. * isci_host_start_complete() - This function is called by the core library,
  588. * through the ISCI Module, to indicate controller start status.
  589. * @isci_host: This parameter specifies the ISCI host object
  590. * @completion_status: This parameter specifies the completion status from the
  591. * core library.
  592. *
  593. */
  594. static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
  595. {
  596. if (completion_status != SCI_SUCCESS)
  597. dev_info(&ihost->pdev->dev,
  598. "controller start timed out, continuing...\n");
  599. isci_host_change_state(ihost, isci_ready);
  600. clear_bit(IHOST_START_PENDING, &ihost->flags);
  601. wake_up(&ihost->eventq);
  602. }
  603. int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
  604. {
  605. struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
  606. if (test_bit(IHOST_START_PENDING, &ihost->flags))
  607. return 0;
  608. /* todo: use sas_flush_discovery once it is upstream */
  609. scsi_flush_work(shost);
  610. scsi_flush_work(shost);
  611. dev_dbg(&ihost->pdev->dev,
  612. "%s: ihost->status = %d, time = %ld\n",
  613. __func__, isci_host_get_state(ihost), time);
  614. return 1;
  615. }
  616. /**
  617. * scic_controller_get_suggested_start_timeout() - This method returns the
  618. * suggested scic_controller_start() timeout amount. The user is free to
  619. * use any timeout value, but this method provides the suggested minimum
  620. * start timeout value. The returned value is based upon empirical
  621. * information determined as a result of interoperability testing.
  622. * @controller: the handle to the controller object for which to return the
  623. * suggested start timeout.
  624. *
  625. * This method returns the number of milliseconds for the suggested start
  626. * operation timeout.
  627. */
  628. static u32 scic_controller_get_suggested_start_timeout(
  629. struct scic_sds_controller *sc)
  630. {
  631. /* Validate the user supplied parameters. */
  632. if (sc == NULL)
  633. return 0;
  634. /*
  635. * The suggested minimum timeout value for a controller start operation:
  636. *
  637. * Signature FIS Timeout
  638. * + Phy Start Timeout
  639. * + Number of Phy Spin Up Intervals
  640. * ---------------------------------
  641. * Number of milliseconds for the controller start operation.
  642. *
  643. * NOTE: The number of phy spin up intervals will be equivalent
  644. * to the number of phys divided by the number phys allowed
  645. * per interval - 1 (once OEM parameters are supported).
  646. * Currently we assume only 1 phy per interval. */
  647. return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
  648. + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
  649. + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
  650. }
  651. static void scic_controller_enable_interrupts(
  652. struct scic_sds_controller *scic)
  653. {
  654. BUG_ON(scic->smu_registers == NULL);
  655. writel(0, &scic->smu_registers->interrupt_mask);
  656. }
  657. void scic_controller_disable_interrupts(
  658. struct scic_sds_controller *scic)
  659. {
  660. BUG_ON(scic->smu_registers == NULL);
  661. writel(0xffffffff, &scic->smu_registers->interrupt_mask);
  662. }
  663. static void scic_sds_controller_enable_port_task_scheduler(
  664. struct scic_sds_controller *scic)
  665. {
  666. u32 port_task_scheduler_value;
  667. port_task_scheduler_value =
  668. readl(&scic->scu_registers->peg0.ptsg.control);
  669. port_task_scheduler_value |=
  670. (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
  671. SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
  672. writel(port_task_scheduler_value,
  673. &scic->scu_registers->peg0.ptsg.control);
  674. }
  675. static void scic_sds_controller_assign_task_entries(struct scic_sds_controller *scic)
  676. {
  677. u32 task_assignment;
  678. /*
  679. * Assign all the TCs to function 0
  680. * TODO: Do we actually need to read this register to write it back?
  681. */
  682. task_assignment =
  683. readl(&scic->smu_registers->task_context_assignment[0]);
  684. task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
  685. (SMU_TCA_GEN_VAL(ENDING, scic->task_context_entries - 1)) |
  686. (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
  687. writel(task_assignment,
  688. &scic->smu_registers->task_context_assignment[0]);
  689. }
  690. static void scic_sds_controller_initialize_completion_queue(struct scic_sds_controller *scic)
  691. {
  692. u32 index;
  693. u32 completion_queue_control_value;
  694. u32 completion_queue_get_value;
  695. u32 completion_queue_put_value;
  696. scic->completion_queue_get = 0;
  697. completion_queue_control_value =
  698. (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
  699. SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
  700. writel(completion_queue_control_value,
  701. &scic->smu_registers->completion_queue_control);
  702. /* Set the completion queue get pointer and enable the queue */
  703. completion_queue_get_value = (
  704. (SMU_CQGR_GEN_VAL(POINTER, 0))
  705. | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
  706. | (SMU_CQGR_GEN_BIT(ENABLE))
  707. | (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
  708. );
  709. writel(completion_queue_get_value,
  710. &scic->smu_registers->completion_queue_get);
  711. /* Set the completion queue put pointer */
  712. completion_queue_put_value = (
  713. (SMU_CQPR_GEN_VAL(POINTER, 0))
  714. | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
  715. );
  716. writel(completion_queue_put_value,
  717. &scic->smu_registers->completion_queue_put);
  718. /* Initialize the cycle bit of the completion queue entries */
  719. for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
  720. /*
  721. * If get.cycle_bit != completion_queue.cycle_bit
  722. * its not a valid completion queue entry
  723. * so at system start all entries are invalid */
  724. scic->completion_queue[index] = 0x80000000;
  725. }
  726. }
  727. static void scic_sds_controller_initialize_unsolicited_frame_queue(struct scic_sds_controller *scic)
  728. {
  729. u32 frame_queue_control_value;
  730. u32 frame_queue_get_value;
  731. u32 frame_queue_put_value;
  732. /* Write the queue size */
  733. frame_queue_control_value =
  734. SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
  735. writel(frame_queue_control_value,
  736. &scic->scu_registers->sdma.unsolicited_frame_queue_control);
  737. /* Setup the get pointer for the unsolicited frame queue */
  738. frame_queue_get_value = (
  739. SCU_UFQGP_GEN_VAL(POINTER, 0)
  740. | SCU_UFQGP_GEN_BIT(ENABLE_BIT)
  741. );
  742. writel(frame_queue_get_value,
  743. &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
  744. /* Setup the put pointer for the unsolicited frame queue */
  745. frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
  746. writel(frame_queue_put_value,
  747. &scic->scu_registers->sdma.unsolicited_frame_put_pointer);
  748. }
  749. /**
  750. * This method will attempt to transition into the ready state for the
  751. * controller and indicate that the controller start operation has completed
  752. * if all criteria are met.
  753. * @scic: This parameter indicates the controller object for which
  754. * to transition to ready.
  755. * @status: This parameter indicates the status value to be pass into the call
  756. * to scic_cb_controller_start_complete().
  757. *
  758. * none.
  759. */
  760. static void scic_sds_controller_transition_to_ready(
  761. struct scic_sds_controller *scic,
  762. enum sci_status status)
  763. {
  764. struct isci_host *ihost = scic_to_ihost(scic);
  765. if (scic->sm.current_state_id == SCIC_STARTING) {
  766. /*
  767. * We move into the ready state, because some of the phys/ports
  768. * may be up and operational.
  769. */
  770. sci_change_state(&scic->sm, SCIC_READY);
  771. isci_host_start_complete(ihost, status);
  772. }
  773. }
  774. static bool is_phy_starting(struct scic_sds_phy *sci_phy)
  775. {
  776. enum scic_sds_phy_states state;
  777. state = sci_phy->sm.current_state_id;
  778. switch (state) {
  779. case SCI_PHY_STARTING:
  780. case SCI_PHY_SUB_INITIAL:
  781. case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
  782. case SCI_PHY_SUB_AWAIT_IAF_UF:
  783. case SCI_PHY_SUB_AWAIT_SAS_POWER:
  784. case SCI_PHY_SUB_AWAIT_SATA_POWER:
  785. case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
  786. case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
  787. case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
  788. case SCI_PHY_SUB_FINAL:
  789. return true;
  790. default:
  791. return false;
  792. }
  793. }
  794. /**
  795. * scic_sds_controller_start_next_phy - start phy
  796. * @scic: controller
  797. *
  798. * If all the phys have been started, then attempt to transition the
  799. * controller to the READY state and inform the user
  800. * (scic_cb_controller_start_complete()).
  801. */
  802. static enum sci_status scic_sds_controller_start_next_phy(struct scic_sds_controller *scic)
  803. {
  804. struct isci_host *ihost = scic_to_ihost(scic);
  805. struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1;
  806. struct scic_sds_phy *sci_phy;
  807. enum sci_status status;
  808. status = SCI_SUCCESS;
  809. if (scic->phy_startup_timer_pending)
  810. return status;
  811. if (scic->next_phy_to_start >= SCI_MAX_PHYS) {
  812. bool is_controller_start_complete = true;
  813. u32 state;
  814. u8 index;
  815. for (index = 0; index < SCI_MAX_PHYS; index++) {
  816. sci_phy = &ihost->phys[index].sci;
  817. state = sci_phy->sm.current_state_id;
  818. if (!phy_get_non_dummy_port(sci_phy))
  819. continue;
  820. /* The controller start operation is complete iff:
  821. * - all links have been given an opportunity to start
  822. * - have no indication of a connected device
  823. * - have an indication of a connected device and it has
  824. * finished the link training process.
  825. */
  826. if ((sci_phy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
  827. (sci_phy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
  828. (sci_phy->is_in_link_training == true && is_phy_starting(sci_phy))) {
  829. is_controller_start_complete = false;
  830. break;
  831. }
  832. }
  833. /*
  834. * The controller has successfully finished the start process.
  835. * Inform the SCI Core user and transition to the READY state. */
  836. if (is_controller_start_complete == true) {
  837. scic_sds_controller_transition_to_ready(scic, SCI_SUCCESS);
  838. sci_del_timer(&scic->phy_timer);
  839. scic->phy_startup_timer_pending = false;
  840. }
  841. } else {
  842. sci_phy = &ihost->phys[scic->next_phy_to_start].sci;
  843. if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
  844. if (phy_get_non_dummy_port(sci_phy) == NULL) {
  845. scic->next_phy_to_start++;
  846. /* Caution recursion ahead be forwarned
  847. *
  848. * The PHY was never added to a PORT in MPC mode
  849. * so start the next phy in sequence This phy
  850. * will never go link up and will not draw power
  851. * the OEM parameters either configured the phy
  852. * incorrectly for the PORT or it was never
  853. * assigned to a PORT
  854. */
  855. return scic_sds_controller_start_next_phy(scic);
  856. }
  857. }
  858. status = scic_sds_phy_start(sci_phy);
  859. if (status == SCI_SUCCESS) {
  860. sci_mod_timer(&scic->phy_timer,
  861. SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
  862. scic->phy_startup_timer_pending = true;
  863. } else {
  864. dev_warn(scic_to_dev(scic),
  865. "%s: Controller stop operation failed "
  866. "to stop phy %d because of status "
  867. "%d.\n",
  868. __func__,
  869. ihost->phys[scic->next_phy_to_start].sci.phy_index,
  870. status);
  871. }
  872. scic->next_phy_to_start++;
  873. }
  874. return status;
  875. }
  876. static void phy_startup_timeout(unsigned long data)
  877. {
  878. struct sci_timer *tmr = (struct sci_timer *)data;
  879. struct scic_sds_controller *scic = container_of(tmr, typeof(*scic), phy_timer);
  880. struct isci_host *ihost = scic_to_ihost(scic);
  881. unsigned long flags;
  882. enum sci_status status;
  883. spin_lock_irqsave(&ihost->scic_lock, flags);
  884. if (tmr->cancel)
  885. goto done;
  886. scic->phy_startup_timer_pending = false;
  887. do {
  888. status = scic_sds_controller_start_next_phy(scic);
  889. } while (status != SCI_SUCCESS);
  890. done:
  891. spin_unlock_irqrestore(&ihost->scic_lock, flags);
  892. }
  893. static void isci_tci_free(struct isci_host *ihost, u16 tci)
  894. {
  895. u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
  896. ihost->tci_pool[tail] = tci;
  897. ihost->tci_tail = tail + 1;
  898. }
  899. static u16 isci_tci_alloc(struct isci_host *ihost)
  900. {
  901. u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
  902. u16 tci = ihost->tci_pool[head];
  903. ihost->tci_head = head + 1;
  904. return tci;
  905. }
  906. static u16 isci_tci_active(struct isci_host *ihost)
  907. {
  908. return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
  909. }
  910. static u16 isci_tci_space(struct isci_host *ihost)
  911. {
  912. return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
  913. }
  914. static enum sci_status scic_controller_start(struct scic_sds_controller *scic,
  915. u32 timeout)
  916. {
  917. struct isci_host *ihost = scic_to_ihost(scic);
  918. enum sci_status result;
  919. u16 index;
  920. if (scic->sm.current_state_id != SCIC_INITIALIZED) {
  921. dev_warn(scic_to_dev(scic),
  922. "SCIC Controller start operation requested in "
  923. "invalid state\n");
  924. return SCI_FAILURE_INVALID_STATE;
  925. }
  926. /* Build the TCi free pool */
  927. BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
  928. ihost->tci_head = 0;
  929. ihost->tci_tail = 0;
  930. for (index = 0; index < scic->task_context_entries; index++)
  931. isci_tci_free(ihost, index);
  932. /* Build the RNi free pool */
  933. scic_sds_remote_node_table_initialize(
  934. &scic->available_remote_nodes,
  935. scic->remote_node_entries);
  936. /*
  937. * Before anything else lets make sure we will not be
  938. * interrupted by the hardware.
  939. */
  940. scic_controller_disable_interrupts(scic);
  941. /* Enable the port task scheduler */
  942. scic_sds_controller_enable_port_task_scheduler(scic);
  943. /* Assign all the task entries to scic physical function */
  944. scic_sds_controller_assign_task_entries(scic);
  945. /* Now initialize the completion queue */
  946. scic_sds_controller_initialize_completion_queue(scic);
  947. /* Initialize the unsolicited frame queue for use */
  948. scic_sds_controller_initialize_unsolicited_frame_queue(scic);
  949. /* Start all of the ports on this controller */
  950. for (index = 0; index < scic->logical_port_entries; index++) {
  951. struct scic_sds_port *sci_port = &ihost->ports[index].sci;
  952. result = scic_sds_port_start(sci_port);
  953. if (result)
  954. return result;
  955. }
  956. scic_sds_controller_start_next_phy(scic);
  957. sci_mod_timer(&scic->timer, timeout);
  958. sci_change_state(&scic->sm, SCIC_STARTING);
  959. return SCI_SUCCESS;
  960. }
  961. void isci_host_scan_start(struct Scsi_Host *shost)
  962. {
  963. struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
  964. unsigned long tmo = scic_controller_get_suggested_start_timeout(&ihost->sci);
  965. set_bit(IHOST_START_PENDING, &ihost->flags);
  966. spin_lock_irq(&ihost->scic_lock);
  967. scic_controller_start(&ihost->sci, tmo);
  968. scic_controller_enable_interrupts(&ihost->sci);
  969. spin_unlock_irq(&ihost->scic_lock);
  970. }
  971. static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
  972. {
  973. isci_host_change_state(ihost, isci_stopped);
  974. scic_controller_disable_interrupts(&ihost->sci);
  975. clear_bit(IHOST_STOP_PENDING, &ihost->flags);
  976. wake_up(&ihost->eventq);
  977. }
  978. static void scic_sds_controller_completion_handler(struct scic_sds_controller *scic)
  979. {
  980. /* Empty out the completion queue */
  981. if (scic_sds_controller_completion_queue_has_entries(scic))
  982. scic_sds_controller_process_completions(scic);
  983. /* Clear the interrupt and enable all interrupts again */
  984. writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
  985. /* Could we write the value of SMU_ISR_COMPLETION? */
  986. writel(0xFF000000, &scic->smu_registers->interrupt_mask);
  987. writel(0, &scic->smu_registers->interrupt_mask);
  988. }
  989. /**
  990. * isci_host_completion_routine() - This function is the delayed service
  991. * routine that calls the sci core library's completion handler. It's
  992. * scheduled as a tasklet from the interrupt service routine when interrupts
  993. * in use, or set as the timeout function in polled mode.
  994. * @data: This parameter specifies the ISCI host object
  995. *
  996. */
  997. static void isci_host_completion_routine(unsigned long data)
  998. {
  999. struct isci_host *isci_host = (struct isci_host *)data;
  1000. struct list_head completed_request_list;
  1001. struct list_head errored_request_list;
  1002. struct list_head *current_position;
  1003. struct list_head *next_position;
  1004. struct isci_request *request;
  1005. struct isci_request *next_request;
  1006. struct sas_task *task;
  1007. INIT_LIST_HEAD(&completed_request_list);
  1008. INIT_LIST_HEAD(&errored_request_list);
  1009. spin_lock_irq(&isci_host->scic_lock);
  1010. scic_sds_controller_completion_handler(&isci_host->sci);
  1011. /* Take the lists of completed I/Os from the host. */
  1012. list_splice_init(&isci_host->requests_to_complete,
  1013. &completed_request_list);
  1014. /* Take the list of errored I/Os from the host. */
  1015. list_splice_init(&isci_host->requests_to_errorback,
  1016. &errored_request_list);
  1017. spin_unlock_irq(&isci_host->scic_lock);
  1018. /* Process any completions in the lists. */
  1019. list_for_each_safe(current_position, next_position,
  1020. &completed_request_list) {
  1021. request = list_entry(current_position, struct isci_request,
  1022. completed_node);
  1023. task = isci_request_access_task(request);
  1024. /* Normal notification (task_done) */
  1025. dev_dbg(&isci_host->pdev->dev,
  1026. "%s: Normal - request/task = %p/%p\n",
  1027. __func__,
  1028. request,
  1029. task);
  1030. /* Return the task to libsas */
  1031. if (task != NULL) {
  1032. task->lldd_task = NULL;
  1033. if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
  1034. /* If the task is already in the abort path,
  1035. * the task_done callback cannot be called.
  1036. */
  1037. task->task_done(task);
  1038. }
  1039. }
  1040. /* Free the request object. */
  1041. isci_request_free(isci_host, request);
  1042. }
  1043. list_for_each_entry_safe(request, next_request, &errored_request_list,
  1044. completed_node) {
  1045. task = isci_request_access_task(request);
  1046. /* Use sas_task_abort */
  1047. dev_warn(&isci_host->pdev->dev,
  1048. "%s: Error - request/task = %p/%p\n",
  1049. __func__,
  1050. request,
  1051. task);
  1052. if (task != NULL) {
  1053. /* Put the task into the abort path if it's not there
  1054. * already.
  1055. */
  1056. if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
  1057. sas_task_abort(task);
  1058. } else {
  1059. /* This is a case where the request has completed with a
  1060. * status such that it needed further target servicing,
  1061. * but the sas_task reference has already been removed
  1062. * from the request. Since it was errored, it was not
  1063. * being aborted, so there is nothing to do except free
  1064. * it.
  1065. */
  1066. spin_lock_irq(&isci_host->scic_lock);
  1067. /* Remove the request from the remote device's list
  1068. * of pending requests.
  1069. */
  1070. list_del_init(&request->dev_node);
  1071. spin_unlock_irq(&isci_host->scic_lock);
  1072. /* Free the request object. */
  1073. isci_request_free(isci_host, request);
  1074. }
  1075. }
  1076. }
  1077. /**
  1078. * scic_controller_stop() - This method will stop an individual controller
  1079. * object.This method will invoke the associated user callback upon
  1080. * completion. The completion callback is called when the following
  1081. * conditions are met: -# the method return status is SCI_SUCCESS. -# the
  1082. * controller has been quiesced. This method will ensure that all IO
  1083. * requests are quiesced, phys are stopped, and all additional operation by
  1084. * the hardware is halted.
  1085. * @controller: the handle to the controller object to stop.
  1086. * @timeout: This parameter specifies the number of milliseconds in which the
  1087. * stop operation should complete.
  1088. *
  1089. * The controller must be in the STARTED or STOPPED state. Indicate if the
  1090. * controller stop method succeeded or failed in some way. SCI_SUCCESS if the
  1091. * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
  1092. * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
  1093. * controller is not either in the STARTED or STOPPED states.
  1094. */
  1095. static enum sci_status scic_controller_stop(struct scic_sds_controller *scic,
  1096. u32 timeout)
  1097. {
  1098. if (scic->sm.current_state_id != SCIC_READY) {
  1099. dev_warn(scic_to_dev(scic),
  1100. "SCIC Controller stop operation requested in "
  1101. "invalid state\n");
  1102. return SCI_FAILURE_INVALID_STATE;
  1103. }
  1104. sci_mod_timer(&scic->timer, timeout);
  1105. sci_change_state(&scic->sm, SCIC_STOPPING);
  1106. return SCI_SUCCESS;
  1107. }
  1108. /**
  1109. * scic_controller_reset() - This method will reset the supplied core
  1110. * controller regardless of the state of said controller. This operation is
  1111. * considered destructive. In other words, all current operations are wiped
  1112. * out. No IO completions for outstanding devices occur. Outstanding IO
  1113. * requests are not aborted or completed at the actual remote device.
  1114. * @controller: the handle to the controller object to reset.
  1115. *
  1116. * Indicate if the controller reset method succeeded or failed in some way.
  1117. * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
  1118. * the controller reset operation is unable to complete.
  1119. */
  1120. static enum sci_status scic_controller_reset(struct scic_sds_controller *scic)
  1121. {
  1122. switch (scic->sm.current_state_id) {
  1123. case SCIC_RESET:
  1124. case SCIC_READY:
  1125. case SCIC_STOPPED:
  1126. case SCIC_FAILED:
  1127. /*
  1128. * The reset operation is not a graceful cleanup, just
  1129. * perform the state transition.
  1130. */
  1131. sci_change_state(&scic->sm, SCIC_RESETTING);
  1132. return SCI_SUCCESS;
  1133. default:
  1134. dev_warn(scic_to_dev(scic),
  1135. "SCIC Controller reset operation requested in "
  1136. "invalid state\n");
  1137. return SCI_FAILURE_INVALID_STATE;
  1138. }
  1139. }
  1140. void isci_host_deinit(struct isci_host *ihost)
  1141. {
  1142. int i;
  1143. isci_host_change_state(ihost, isci_stopping);
  1144. for (i = 0; i < SCI_MAX_PORTS; i++) {
  1145. struct isci_port *iport = &ihost->ports[i];
  1146. struct isci_remote_device *idev, *d;
  1147. list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
  1148. isci_remote_device_change_state(idev, isci_stopping);
  1149. isci_remote_device_stop(ihost, idev);
  1150. }
  1151. }
  1152. set_bit(IHOST_STOP_PENDING, &ihost->flags);
  1153. spin_lock_irq(&ihost->scic_lock);
  1154. scic_controller_stop(&ihost->sci, SCIC_CONTROLLER_STOP_TIMEOUT);
  1155. spin_unlock_irq(&ihost->scic_lock);
  1156. wait_for_stop(ihost);
  1157. scic_controller_reset(&ihost->sci);
  1158. /* Cancel any/all outstanding port timers */
  1159. for (i = 0; i < ihost->sci.logical_port_entries; i++) {
  1160. struct scic_sds_port *sci_port = &ihost->ports[i].sci;
  1161. del_timer_sync(&sci_port->timer.timer);
  1162. }
  1163. /* Cancel any/all outstanding phy timers */
  1164. for (i = 0; i < SCI_MAX_PHYS; i++) {
  1165. struct scic_sds_phy *sci_phy = &ihost->phys[i].sci;
  1166. del_timer_sync(&sci_phy->sata_timer.timer);
  1167. }
  1168. del_timer_sync(&ihost->sci.port_agent.timer.timer);
  1169. del_timer_sync(&ihost->sci.power_control.timer.timer);
  1170. del_timer_sync(&ihost->sci.timer.timer);
  1171. del_timer_sync(&ihost->sci.phy_timer.timer);
  1172. }
  1173. static void __iomem *scu_base(struct isci_host *isci_host)
  1174. {
  1175. struct pci_dev *pdev = isci_host->pdev;
  1176. int id = isci_host->id;
  1177. return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
  1178. }
  1179. static void __iomem *smu_base(struct isci_host *isci_host)
  1180. {
  1181. struct pci_dev *pdev = isci_host->pdev;
  1182. int id = isci_host->id;
  1183. return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
  1184. }
  1185. static void isci_user_parameters_get(
  1186. struct isci_host *isci_host,
  1187. union scic_user_parameters *scic_user_params)
  1188. {
  1189. struct scic_sds_user_parameters *u = &scic_user_params->sds1;
  1190. int i;
  1191. for (i = 0; i < SCI_MAX_PHYS; i++) {
  1192. struct sci_phy_user_params *u_phy = &u->phys[i];
  1193. u_phy->max_speed_generation = phy_gen;
  1194. /* we are not exporting these for now */
  1195. u_phy->align_insertion_frequency = 0x7f;
  1196. u_phy->in_connection_align_insertion_frequency = 0xff;
  1197. u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
  1198. }
  1199. u->stp_inactivity_timeout = stp_inactive_to;
  1200. u->ssp_inactivity_timeout = ssp_inactive_to;
  1201. u->stp_max_occupancy_timeout = stp_max_occ_to;
  1202. u->ssp_max_occupancy_timeout = ssp_max_occ_to;
  1203. u->no_outbound_task_timeout = no_outbound_task_to;
  1204. u->max_number_concurrent_device_spin_up = max_concurr_spinup;
  1205. }
  1206. static void scic_sds_controller_initial_state_enter(struct sci_base_state_machine *sm)
  1207. {
  1208. struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
  1209. sci_change_state(&scic->sm, SCIC_RESET);
  1210. }
  1211. static inline void scic_sds_controller_starting_state_exit(struct sci_base_state_machine *sm)
  1212. {
  1213. struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
  1214. sci_del_timer(&scic->timer);
  1215. }
  1216. #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
  1217. #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
  1218. #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000
  1219. #define INTERRUPT_COALESCE_NUMBER_MAX 256
  1220. #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7
  1221. #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28
  1222. /**
  1223. * scic_controller_set_interrupt_coalescence() - This method allows the user to
  1224. * configure the interrupt coalescence.
  1225. * @controller: This parameter represents the handle to the controller object
  1226. * for which its interrupt coalesce register is overridden.
  1227. * @coalesce_number: Used to control the number of entries in the Completion
  1228. * Queue before an interrupt is generated. If the number of entries exceed
  1229. * this number, an interrupt will be generated. The valid range of the input
  1230. * is [0, 256]. A setting of 0 results in coalescing being disabled.
  1231. * @coalesce_timeout: Timeout value in microseconds. The valid range of the
  1232. * input is [0, 2700000] . A setting of 0 is allowed and results in no
  1233. * interrupt coalescing timeout.
  1234. *
  1235. * Indicate if the user successfully set the interrupt coalesce parameters.
  1236. * SCI_SUCCESS The user successfully updated the interrutp coalescence.
  1237. * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
  1238. */
  1239. static enum sci_status scic_controller_set_interrupt_coalescence(
  1240. struct scic_sds_controller *scic_controller,
  1241. u32 coalesce_number,
  1242. u32 coalesce_timeout)
  1243. {
  1244. u8 timeout_encode = 0;
  1245. u32 min = 0;
  1246. u32 max = 0;
  1247. /* Check if the input parameters fall in the range. */
  1248. if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
  1249. return SCI_FAILURE_INVALID_PARAMETER_VALUE;
  1250. /*
  1251. * Defined encoding for interrupt coalescing timeout:
  1252. * Value Min Max Units
  1253. * ----- --- --- -----
  1254. * 0 - - Disabled
  1255. * 1 13.3 20.0 ns
  1256. * 2 26.7 40.0
  1257. * 3 53.3 80.0
  1258. * 4 106.7 160.0
  1259. * 5 213.3 320.0
  1260. * 6 426.7 640.0
  1261. * 7 853.3 1280.0
  1262. * 8 1.7 2.6 us
  1263. * 9 3.4 5.1
  1264. * 10 6.8 10.2
  1265. * 11 13.7 20.5
  1266. * 12 27.3 41.0
  1267. * 13 54.6 81.9
  1268. * 14 109.2 163.8
  1269. * 15 218.5 327.7
  1270. * 16 436.9 655.4
  1271. * 17 873.8 1310.7
  1272. * 18 1.7 2.6 ms
  1273. * 19 3.5 5.2
  1274. * 20 7.0 10.5
  1275. * 21 14.0 21.0
  1276. * 22 28.0 41.9
  1277. * 23 55.9 83.9
  1278. * 24 111.8 167.8
  1279. * 25 223.7 335.5
  1280. * 26 447.4 671.1
  1281. * 27 894.8 1342.2
  1282. * 28 1.8 2.7 s
  1283. * Others Undefined */
  1284. /*
  1285. * Use the table above to decide the encode of interrupt coalescing timeout
  1286. * value for register writing. */
  1287. if (coalesce_timeout == 0)
  1288. timeout_encode = 0;
  1289. else{
  1290. /* make the timeout value in unit of (10 ns). */
  1291. coalesce_timeout = coalesce_timeout * 100;
  1292. min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
  1293. max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
  1294. /* get the encode of timeout for register writing. */
  1295. for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
  1296. timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
  1297. timeout_encode++) {
  1298. if (min <= coalesce_timeout && max > coalesce_timeout)
  1299. break;
  1300. else if (coalesce_timeout >= max && coalesce_timeout < min * 2
  1301. && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
  1302. if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
  1303. break;
  1304. else{
  1305. timeout_encode++;
  1306. break;
  1307. }
  1308. } else {
  1309. max = max * 2;
  1310. min = min * 2;
  1311. }
  1312. }
  1313. if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
  1314. /* the value is out of range. */
  1315. return SCI_FAILURE_INVALID_PARAMETER_VALUE;
  1316. }
  1317. writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
  1318. SMU_ICC_GEN_VAL(TIMER, timeout_encode),
  1319. &scic_controller->smu_registers->interrupt_coalesce_control);
  1320. scic_controller->interrupt_coalesce_number = (u16)coalesce_number;
  1321. scic_controller->interrupt_coalesce_timeout = coalesce_timeout / 100;
  1322. return SCI_SUCCESS;
  1323. }
  1324. static void scic_sds_controller_ready_state_enter(struct sci_base_state_machine *sm)
  1325. {
  1326. struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
  1327. /* set the default interrupt coalescence number and timeout value. */
  1328. scic_controller_set_interrupt_coalescence(scic, 0x10, 250);
  1329. }
  1330. static void scic_sds_controller_ready_state_exit(struct sci_base_state_machine *sm)
  1331. {
  1332. struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
  1333. /* disable interrupt coalescence. */
  1334. scic_controller_set_interrupt_coalescence(scic, 0, 0);
  1335. }
  1336. static enum sci_status scic_sds_controller_stop_phys(struct scic_sds_controller *scic)
  1337. {
  1338. u32 index;
  1339. enum sci_status status;
  1340. enum sci_status phy_status;
  1341. struct isci_host *ihost = scic_to_ihost(scic);
  1342. status = SCI_SUCCESS;
  1343. for (index = 0; index < SCI_MAX_PHYS; index++) {
  1344. phy_status = scic_sds_phy_stop(&ihost->phys[index].sci);
  1345. if (phy_status != SCI_SUCCESS &&
  1346. phy_status != SCI_FAILURE_INVALID_STATE) {
  1347. status = SCI_FAILURE;
  1348. dev_warn(scic_to_dev(scic),
  1349. "%s: Controller stop operation failed to stop "
  1350. "phy %d because of status %d.\n",
  1351. __func__,
  1352. ihost->phys[index].sci.phy_index, phy_status);
  1353. }
  1354. }
  1355. return status;
  1356. }
  1357. static enum sci_status scic_sds_controller_stop_ports(struct scic_sds_controller *scic)
  1358. {
  1359. u32 index;
  1360. enum sci_status port_status;
  1361. enum sci_status status = SCI_SUCCESS;
  1362. struct isci_host *ihost = scic_to_ihost(scic);
  1363. for (index = 0; index < scic->logical_port_entries; index++) {
  1364. struct scic_sds_port *sci_port = &ihost->ports[index].sci;
  1365. port_status = scic_sds_port_stop(sci_port);
  1366. if ((port_status != SCI_SUCCESS) &&
  1367. (port_status != SCI_FAILURE_INVALID_STATE)) {
  1368. status = SCI_FAILURE;
  1369. dev_warn(scic_to_dev(scic),
  1370. "%s: Controller stop operation failed to "
  1371. "stop port %d because of status %d.\n",
  1372. __func__,
  1373. sci_port->logical_port_index,
  1374. port_status);
  1375. }
  1376. }
  1377. return status;
  1378. }
  1379. static enum sci_status scic_sds_controller_stop_devices(struct scic_sds_controller *scic)
  1380. {
  1381. u32 index;
  1382. enum sci_status status;
  1383. enum sci_status device_status;
  1384. status = SCI_SUCCESS;
  1385. for (index = 0; index < scic->remote_node_entries; index++) {
  1386. if (scic->device_table[index] != NULL) {
  1387. /* / @todo What timeout value do we want to provide to this request? */
  1388. device_status = scic_remote_device_stop(scic->device_table[index], 0);
  1389. if ((device_status != SCI_SUCCESS) &&
  1390. (device_status != SCI_FAILURE_INVALID_STATE)) {
  1391. dev_warn(scic_to_dev(scic),
  1392. "%s: Controller stop operation failed "
  1393. "to stop device 0x%p because of "
  1394. "status %d.\n",
  1395. __func__,
  1396. scic->device_table[index], device_status);
  1397. }
  1398. }
  1399. }
  1400. return status;
  1401. }
  1402. static void scic_sds_controller_stopping_state_enter(struct sci_base_state_machine *sm)
  1403. {
  1404. struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
  1405. /* Stop all of the components for this controller */
  1406. scic_sds_controller_stop_phys(scic);
  1407. scic_sds_controller_stop_ports(scic);
  1408. scic_sds_controller_stop_devices(scic);
  1409. }
  1410. static void scic_sds_controller_stopping_state_exit(struct sci_base_state_machine *sm)
  1411. {
  1412. struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
  1413. sci_del_timer(&scic->timer);
  1414. }
  1415. /**
  1416. * scic_sds_controller_reset_hardware() -
  1417. *
  1418. * This method will reset the controller hardware.
  1419. */
  1420. static void scic_sds_controller_reset_hardware(struct scic_sds_controller *scic)
  1421. {
  1422. /* Disable interrupts so we dont take any spurious interrupts */
  1423. scic_controller_disable_interrupts(scic);
  1424. /* Reset the SCU */
  1425. writel(0xFFFFFFFF, &scic->smu_registers->soft_reset_control);
  1426. /* Delay for 1ms to before clearing the CQP and UFQPR. */
  1427. udelay(1000);
  1428. /* The write to the CQGR clears the CQP */
  1429. writel(0x00000000, &scic->smu_registers->completion_queue_get);
  1430. /* The write to the UFQGP clears the UFQPR */
  1431. writel(0, &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
  1432. }
  1433. static void scic_sds_controller_resetting_state_enter(struct sci_base_state_machine *sm)
  1434. {
  1435. struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
  1436. scic_sds_controller_reset_hardware(scic);
  1437. sci_change_state(&scic->sm, SCIC_RESET);
  1438. }
  1439. static const struct sci_base_state scic_sds_controller_state_table[] = {
  1440. [SCIC_INITIAL] = {
  1441. .enter_state = scic_sds_controller_initial_state_enter,
  1442. },
  1443. [SCIC_RESET] = {},
  1444. [SCIC_INITIALIZING] = {},
  1445. [SCIC_INITIALIZED] = {},
  1446. [SCIC_STARTING] = {
  1447. .exit_state = scic_sds_controller_starting_state_exit,
  1448. },
  1449. [SCIC_READY] = {
  1450. .enter_state = scic_sds_controller_ready_state_enter,
  1451. .exit_state = scic_sds_controller_ready_state_exit,
  1452. },
  1453. [SCIC_RESETTING] = {
  1454. .enter_state = scic_sds_controller_resetting_state_enter,
  1455. },
  1456. [SCIC_STOPPING] = {
  1457. .enter_state = scic_sds_controller_stopping_state_enter,
  1458. .exit_state = scic_sds_controller_stopping_state_exit,
  1459. },
  1460. [SCIC_STOPPED] = {},
  1461. [SCIC_FAILED] = {}
  1462. };
  1463. static void scic_sds_controller_set_default_config_parameters(struct scic_sds_controller *scic)
  1464. {
  1465. /* these defaults are overridden by the platform / firmware */
  1466. struct isci_host *ihost = scic_to_ihost(scic);
  1467. u16 index;
  1468. /* Default to APC mode. */
  1469. scic->oem_parameters.sds1.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
  1470. /* Default to APC mode. */
  1471. scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up = 1;
  1472. /* Default to no SSC operation. */
  1473. scic->oem_parameters.sds1.controller.do_enable_ssc = false;
  1474. /* Initialize all of the port parameter information to narrow ports. */
  1475. for (index = 0; index < SCI_MAX_PORTS; index++) {
  1476. scic->oem_parameters.sds1.ports[index].phy_mask = 0;
  1477. }
  1478. /* Initialize all of the phy parameter information. */
  1479. for (index = 0; index < SCI_MAX_PHYS; index++) {
  1480. /* Default to 6G (i.e. Gen 3) for now. */
  1481. scic->user_parameters.sds1.phys[index].max_speed_generation = 3;
  1482. /* the frequencies cannot be 0 */
  1483. scic->user_parameters.sds1.phys[index].align_insertion_frequency = 0x7f;
  1484. scic->user_parameters.sds1.phys[index].in_connection_align_insertion_frequency = 0xff;
  1485. scic->user_parameters.sds1.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
  1486. /*
  1487. * Previous Vitesse based expanders had a arbitration issue that
  1488. * is worked around by having the upper 32-bits of SAS address
  1489. * with a value greater then the Vitesse company identifier.
  1490. * Hence, usage of 0x5FCFFFFF. */
  1491. scic->oem_parameters.sds1.phys[index].sas_address.low = 0x1 + ihost->id;
  1492. scic->oem_parameters.sds1.phys[index].sas_address.high = 0x5FCFFFFF;
  1493. }
  1494. scic->user_parameters.sds1.stp_inactivity_timeout = 5;
  1495. scic->user_parameters.sds1.ssp_inactivity_timeout = 5;
  1496. scic->user_parameters.sds1.stp_max_occupancy_timeout = 5;
  1497. scic->user_parameters.sds1.ssp_max_occupancy_timeout = 20;
  1498. scic->user_parameters.sds1.no_outbound_task_timeout = 20;
  1499. }
  1500. static void controller_timeout(unsigned long data)
  1501. {
  1502. struct sci_timer *tmr = (struct sci_timer *)data;
  1503. struct scic_sds_controller *scic = container_of(tmr, typeof(*scic), timer);
  1504. struct isci_host *ihost = scic_to_ihost(scic);
  1505. struct sci_base_state_machine *sm = &scic->sm;
  1506. unsigned long flags;
  1507. spin_lock_irqsave(&ihost->scic_lock, flags);
  1508. if (tmr->cancel)
  1509. goto done;
  1510. if (sm->current_state_id == SCIC_STARTING)
  1511. scic_sds_controller_transition_to_ready(scic, SCI_FAILURE_TIMEOUT);
  1512. else if (sm->current_state_id == SCIC_STOPPING) {
  1513. sci_change_state(sm, SCIC_FAILED);
  1514. isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
  1515. } else /* / @todo Now what do we want to do in this case? */
  1516. dev_err(scic_to_dev(scic),
  1517. "%s: Controller timer fired when controller was not "
  1518. "in a state being timed.\n",
  1519. __func__);
  1520. done:
  1521. spin_unlock_irqrestore(&ihost->scic_lock, flags);
  1522. }
  1523. /**
  1524. * scic_controller_construct() - This method will attempt to construct a
  1525. * controller object utilizing the supplied parameter information.
  1526. * @c: This parameter specifies the controller to be constructed.
  1527. * @scu_base: mapped base address of the scu registers
  1528. * @smu_base: mapped base address of the smu registers
  1529. *
  1530. * Indicate if the controller was successfully constructed or if it failed in
  1531. * some way. SCI_SUCCESS This value is returned if the controller was
  1532. * successfully constructed. SCI_WARNING_TIMER_CONFLICT This value is returned
  1533. * if the interrupt coalescence timer may cause SAS compliance issues for SMP
  1534. * Target mode response processing. SCI_FAILURE_UNSUPPORTED_CONTROLLER_TYPE
  1535. * This value is returned if the controller does not support the supplied type.
  1536. * SCI_FAILURE_UNSUPPORTED_INIT_DATA_VERSION This value is returned if the
  1537. * controller does not support the supplied initialization data version.
  1538. */
  1539. static enum sci_status scic_controller_construct(struct scic_sds_controller *scic,
  1540. void __iomem *scu_base,
  1541. void __iomem *smu_base)
  1542. {
  1543. struct isci_host *ihost = scic_to_ihost(scic);
  1544. u8 i;
  1545. sci_init_sm(&scic->sm, scic_sds_controller_state_table, SCIC_INITIAL);
  1546. scic->scu_registers = scu_base;
  1547. scic->smu_registers = smu_base;
  1548. scic_sds_port_configuration_agent_construct(&scic->port_agent);
  1549. /* Construct the ports for this controller */
  1550. for (i = 0; i < SCI_MAX_PORTS; i++)
  1551. scic_sds_port_construct(&ihost->ports[i].sci, i, scic);
  1552. scic_sds_port_construct(&ihost->ports[i].sci, SCIC_SDS_DUMMY_PORT, scic);
  1553. /* Construct the phys for this controller */
  1554. for (i = 0; i < SCI_MAX_PHYS; i++) {
  1555. /* Add all the PHYs to the dummy port */
  1556. scic_sds_phy_construct(&ihost->phys[i].sci,
  1557. &ihost->ports[SCI_MAX_PORTS].sci, i);
  1558. }
  1559. scic->invalid_phy_mask = 0;
  1560. sci_init_timer(&scic->timer, controller_timeout);
  1561. /* Initialize the User and OEM parameters to default values. */
  1562. scic_sds_controller_set_default_config_parameters(scic);
  1563. return scic_controller_reset(scic);
  1564. }
  1565. int scic_oem_parameters_validate(struct scic_sds_oem_params *oem)
  1566. {
  1567. int i;
  1568. for (i = 0; i < SCI_MAX_PORTS; i++)
  1569. if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
  1570. return -EINVAL;
  1571. for (i = 0; i < SCI_MAX_PHYS; i++)
  1572. if (oem->phys[i].sas_address.high == 0 &&
  1573. oem->phys[i].sas_address.low == 0)
  1574. return -EINVAL;
  1575. if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
  1576. for (i = 0; i < SCI_MAX_PHYS; i++)
  1577. if (oem->ports[i].phy_mask != 0)
  1578. return -EINVAL;
  1579. } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
  1580. u8 phy_mask = 0;
  1581. for (i = 0; i < SCI_MAX_PHYS; i++)
  1582. phy_mask |= oem->ports[i].phy_mask;
  1583. if (phy_mask == 0)
  1584. return -EINVAL;
  1585. } else
  1586. return -EINVAL;
  1587. if (oem->controller.max_concurrent_dev_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT)
  1588. return -EINVAL;
  1589. return 0;
  1590. }
  1591. static enum sci_status scic_oem_parameters_set(struct scic_sds_controller *scic,
  1592. union scic_oem_parameters *scic_parms)
  1593. {
  1594. u32 state = scic->sm.current_state_id;
  1595. if (state == SCIC_RESET ||
  1596. state == SCIC_INITIALIZING ||
  1597. state == SCIC_INITIALIZED) {
  1598. if (scic_oem_parameters_validate(&scic_parms->sds1))
  1599. return SCI_FAILURE_INVALID_PARAMETER_VALUE;
  1600. scic->oem_parameters.sds1 = scic_parms->sds1;
  1601. return SCI_SUCCESS;
  1602. }
  1603. return SCI_FAILURE_INVALID_STATE;
  1604. }
  1605. void scic_oem_parameters_get(
  1606. struct scic_sds_controller *scic,
  1607. union scic_oem_parameters *scic_parms)
  1608. {
  1609. memcpy(scic_parms, (&scic->oem_parameters), sizeof(*scic_parms));
  1610. }
  1611. static void power_control_timeout(unsigned long data)
  1612. {
  1613. struct sci_timer *tmr = (struct sci_timer *)data;
  1614. struct scic_sds_controller *scic = container_of(tmr, typeof(*scic), power_control.timer);
  1615. struct isci_host *ihost = scic_to_ihost(scic);
  1616. struct scic_sds_phy *sci_phy;
  1617. unsigned long flags;
  1618. u8 i;
  1619. spin_lock_irqsave(&ihost->scic_lock, flags);
  1620. if (tmr->cancel)
  1621. goto done;
  1622. scic->power_control.phys_granted_power = 0;
  1623. if (scic->power_control.phys_waiting == 0) {
  1624. scic->power_control.timer_started = false;
  1625. goto done;
  1626. }
  1627. for (i = 0; i < SCI_MAX_PHYS; i++) {
  1628. if (scic->power_control.phys_waiting == 0)
  1629. break;
  1630. sci_phy = scic->power_control.requesters[i];
  1631. if (sci_phy == NULL)
  1632. continue;
  1633. if (scic->power_control.phys_granted_power >=
  1634. scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up)
  1635. break;
  1636. scic->power_control.requesters[i] = NULL;
  1637. scic->power_control.phys_waiting--;
  1638. scic->power_control.phys_granted_power++;
  1639. scic_sds_phy_consume_power_handler(sci_phy);
  1640. }
  1641. /*
  1642. * It doesn't matter if the power list is empty, we need to start the
  1643. * timer in case another phy becomes ready.
  1644. */
  1645. sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
  1646. scic->power_control.timer_started = true;
  1647. done:
  1648. spin_unlock_irqrestore(&ihost->scic_lock, flags);
  1649. }
  1650. /**
  1651. * This method inserts the phy in the stagger spinup control queue.
  1652. * @scic:
  1653. *
  1654. *
  1655. */
  1656. void scic_sds_controller_power_control_queue_insert(
  1657. struct scic_sds_controller *scic,
  1658. struct scic_sds_phy *sci_phy)
  1659. {
  1660. BUG_ON(sci_phy == NULL);
  1661. if (scic->power_control.phys_granted_power <
  1662. scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up) {
  1663. scic->power_control.phys_granted_power++;
  1664. scic_sds_phy_consume_power_handler(sci_phy);
  1665. /*
  1666. * stop and start the power_control timer. When the timer fires, the
  1667. * no_of_phys_granted_power will be set to 0
  1668. */
  1669. if (scic->power_control.timer_started)
  1670. sci_del_timer(&scic->power_control.timer);
  1671. sci_mod_timer(&scic->power_control.timer,
  1672. SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
  1673. scic->power_control.timer_started = true;
  1674. } else {
  1675. /* Add the phy in the waiting list */
  1676. scic->power_control.requesters[sci_phy->phy_index] = sci_phy;
  1677. scic->power_control.phys_waiting++;
  1678. }
  1679. }
  1680. /**
  1681. * This method removes the phy from the stagger spinup control queue.
  1682. * @scic:
  1683. *
  1684. *
  1685. */
  1686. void scic_sds_controller_power_control_queue_remove(
  1687. struct scic_sds_controller *scic,
  1688. struct scic_sds_phy *sci_phy)
  1689. {
  1690. BUG_ON(sci_phy == NULL);
  1691. if (scic->power_control.requesters[sci_phy->phy_index] != NULL) {
  1692. scic->power_control.phys_waiting--;
  1693. }
  1694. scic->power_control.requesters[sci_phy->phy_index] = NULL;
  1695. }
  1696. #define AFE_REGISTER_WRITE_DELAY 10
  1697. /* Initialize the AFE for this phy index. We need to read the AFE setup from
  1698. * the OEM parameters
  1699. */
  1700. static void scic_sds_controller_afe_initialization(struct scic_sds_controller *scic)
  1701. {
  1702. const struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1;
  1703. u32 afe_status;
  1704. u32 phy_id;
  1705. /* Clear DFX Status registers */
  1706. writel(0x0081000f, &scic->scu_registers->afe.afe_dfx_master_control0);
  1707. udelay(AFE_REGISTER_WRITE_DELAY);
  1708. if (is_b0()) {
  1709. /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
  1710. * Timer, PM Stagger Timer */
  1711. writel(0x0007BFFF, &scic->scu_registers->afe.afe_pmsn_master_control2);
  1712. udelay(AFE_REGISTER_WRITE_DELAY);
  1713. }
  1714. /* Configure bias currents to normal */
  1715. if (is_a0())
  1716. writel(0x00005500, &scic->scu_registers->afe.afe_bias_control);
  1717. else if (is_a2())
  1718. writel(0x00005A00, &scic->scu_registers->afe.afe_bias_control);
  1719. else if (is_b0() || is_c0())
  1720. writel(0x00005F00, &scic->scu_registers->afe.afe_bias_control);
  1721. udelay(AFE_REGISTER_WRITE_DELAY);
  1722. /* Enable PLL */
  1723. if (is_b0() || is_c0())
  1724. writel(0x80040A08, &scic->scu_registers->afe.afe_pll_control0);
  1725. else
  1726. writel(0x80040908, &scic->scu_registers->afe.afe_pll_control0);
  1727. udelay(AFE_REGISTER_WRITE_DELAY);
  1728. /* Wait for the PLL to lock */
  1729. do {
  1730. afe_status = readl(&scic->scu_registers->afe.afe_common_block_status);
  1731. udelay(AFE_REGISTER_WRITE_DELAY);
  1732. } while ((afe_status & 0x00001000) == 0);
  1733. if (is_a0() || is_a2()) {
  1734. /* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */
  1735. writel(0x7bcc96ad, &scic->scu_registers->afe.afe_pmsn_master_control0);
  1736. udelay(AFE_REGISTER_WRITE_DELAY);
  1737. }
  1738. for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
  1739. const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
  1740. if (is_b0()) {
  1741. /* Configure transmitter SSC parameters */
  1742. writel(0x00030000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
  1743. udelay(AFE_REGISTER_WRITE_DELAY);
  1744. } else if (is_c0()) {
  1745. /* Configure transmitter SSC parameters */
  1746. writel(0x0003000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
  1747. udelay(AFE_REGISTER_WRITE_DELAY);
  1748. /*
  1749. * All defaults, except the Receive Word Alignament/Comma Detect
  1750. * Enable....(0xe800) */
  1751. writel(0x00004500, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
  1752. udelay(AFE_REGISTER_WRITE_DELAY);
  1753. } else {
  1754. /*
  1755. * All defaults, except the Receive Word Alignament/Comma Detect
  1756. * Enable....(0xe800) */
  1757. writel(0x00004512, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
  1758. udelay(AFE_REGISTER_WRITE_DELAY);
  1759. writel(0x0050100F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1);
  1760. udelay(AFE_REGISTER_WRITE_DELAY);
  1761. }
  1762. /*
  1763. * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
  1764. * & increase TX int & ext bias 20%....(0xe85c) */
  1765. if (is_a0())
  1766. writel(0x000003D4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
  1767. else if (is_a2())
  1768. writel(0x000003F0, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
  1769. else if (is_b0()) {
  1770. /* Power down TX and RX (PWRDNTX and PWRDNRX) */
  1771. writel(0x000003D7, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
  1772. udelay(AFE_REGISTER_WRITE_DELAY);
  1773. /*
  1774. * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
  1775. * & increase TX int & ext bias 20%....(0xe85c) */
  1776. writel(0x000003D4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
  1777. } else {
  1778. writel(0x000001E7, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
  1779. udelay(AFE_REGISTER_WRITE_DELAY);
  1780. /*
  1781. * Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
  1782. * & increase TX int & ext bias 20%....(0xe85c) */
  1783. writel(0x000001E4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
  1784. }
  1785. udelay(AFE_REGISTER_WRITE_DELAY);
  1786. if (is_a0() || is_a2()) {
  1787. /* Enable TX equalization (0xe824) */
  1788. writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
  1789. udelay(AFE_REGISTER_WRITE_DELAY);
  1790. }
  1791. /*
  1792. * RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On),
  1793. * RDD=0x0(RX Detect Enabled) ....(0xe800) */
  1794. writel(0x00004100, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
  1795. udelay(AFE_REGISTER_WRITE_DELAY);
  1796. /* Leave DFE/FFE on */
  1797. if (is_a0())
  1798. writel(0x3F09983F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
  1799. else if (is_a2())
  1800. writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
  1801. else if (is_b0()) {
  1802. writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
  1803. udelay(AFE_REGISTER_WRITE_DELAY);
  1804. /* Enable TX equalization (0xe824) */
  1805. writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
  1806. } else {
  1807. writel(0x0140DF0F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control1);
  1808. udelay(AFE_REGISTER_WRITE_DELAY);
  1809. writel(0x3F6F103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
  1810. udelay(AFE_REGISTER_WRITE_DELAY);
  1811. /* Enable TX equalization (0xe824) */
  1812. writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
  1813. }
  1814. udelay(AFE_REGISTER_WRITE_DELAY);
  1815. writel(oem_phy->afe_tx_amp_control0,
  1816. &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0);
  1817. udelay(AFE_REGISTER_WRITE_DELAY);
  1818. writel(oem_phy->afe_tx_amp_control1,
  1819. &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1);
  1820. udelay(AFE_REGISTER_WRITE_DELAY);
  1821. writel(oem_phy->afe_tx_amp_control2,
  1822. &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2);
  1823. udelay(AFE_REGISTER_WRITE_DELAY);
  1824. writel(oem_phy->afe_tx_amp_control3,
  1825. &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3);
  1826. udelay(AFE_REGISTER_WRITE_DELAY);
  1827. }
  1828. /* Transfer control to the PEs */
  1829. writel(0x00010f00, &scic->scu_registers->afe.afe_dfx_master_control0);
  1830. udelay(AFE_REGISTER_WRITE_DELAY);
  1831. }
  1832. static void scic_sds_controller_initialize_power_control(struct scic_sds_controller *scic)
  1833. {
  1834. sci_init_timer(&scic->power_control.timer, power_control_timeout);
  1835. memset(scic->power_control.requesters, 0,
  1836. sizeof(scic->power_control.requesters));
  1837. scic->power_control.phys_waiting = 0;
  1838. scic->power_control.phys_granted_power = 0;
  1839. }
  1840. static enum sci_status scic_controller_initialize(struct scic_sds_controller *scic)
  1841. {
  1842. struct sci_base_state_machine *sm = &scic->sm;
  1843. struct isci_host *ihost = scic_to_ihost(scic);
  1844. enum sci_status result = SCI_FAILURE;
  1845. unsigned long i, state, val;
  1846. if (scic->sm.current_state_id != SCIC_RESET) {
  1847. dev_warn(scic_to_dev(scic),
  1848. "SCIC Controller initialize operation requested "
  1849. "in invalid state\n");
  1850. return SCI_FAILURE_INVALID_STATE;
  1851. }
  1852. sci_change_state(sm, SCIC_INITIALIZING);
  1853. sci_init_timer(&scic->phy_timer, phy_startup_timeout);
  1854. scic->next_phy_to_start = 0;
  1855. scic->phy_startup_timer_pending = false;
  1856. scic_sds_controller_initialize_power_control(scic);
  1857. /*
  1858. * There is nothing to do here for B0 since we do not have to
  1859. * program the AFE registers.
  1860. * / @todo The AFE settings are supposed to be correct for the B0 but
  1861. * / presently they seem to be wrong. */
  1862. scic_sds_controller_afe_initialization(scic);
  1863. /* Take the hardware out of reset */
  1864. writel(0, &scic->smu_registers->soft_reset_control);
  1865. /*
  1866. * / @todo Provide meaningfull error code for hardware failure
  1867. * result = SCI_FAILURE_CONTROLLER_HARDWARE; */
  1868. for (i = 100; i >= 1; i--) {
  1869. u32 status;
  1870. /* Loop until the hardware reports success */
  1871. udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
  1872. status = readl(&scic->smu_registers->control_status);
  1873. if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
  1874. break;
  1875. }
  1876. if (i == 0)
  1877. goto out;
  1878. /*
  1879. * Determine what are the actaul device capacities that the
  1880. * hardware will support */
  1881. val = readl(&scic->smu_registers->device_context_capacity);
  1882. /* Record the smaller of the two capacity values */
  1883. scic->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
  1884. scic->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
  1885. scic->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
  1886. /*
  1887. * Make all PEs that are unassigned match up with the
  1888. * logical ports
  1889. */
  1890. for (i = 0; i < scic->logical_port_entries; i++) {
  1891. struct scu_port_task_scheduler_group_registers __iomem
  1892. *ptsg = &scic->scu_registers->peg0.ptsg;
  1893. writel(i, &ptsg->protocol_engine[i]);
  1894. }
  1895. /* Initialize hardware PCI Relaxed ordering in DMA engines */
  1896. val = readl(&scic->scu_registers->sdma.pdma_configuration);
  1897. val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
  1898. writel(val, &scic->scu_registers->sdma.pdma_configuration);
  1899. val = readl(&scic->scu_registers->sdma.cdma_configuration);
  1900. val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
  1901. writel(val, &scic->scu_registers->sdma.cdma_configuration);
  1902. /*
  1903. * Initialize the PHYs before the PORTs because the PHY registers
  1904. * are accessed during the port initialization.
  1905. */
  1906. for (i = 0; i < SCI_MAX_PHYS; i++) {
  1907. result = scic_sds_phy_initialize(&ihost->phys[i].sci,
  1908. &scic->scu_registers->peg0.pe[i].tl,
  1909. &scic->scu_registers->peg0.pe[i].ll);
  1910. if (result != SCI_SUCCESS)
  1911. goto out;
  1912. }
  1913. for (i = 0; i < scic->logical_port_entries; i++) {
  1914. result = scic_sds_port_initialize(&ihost->ports[i].sci,
  1915. &scic->scu_registers->peg0.ptsg.port[i],
  1916. &scic->scu_registers->peg0.ptsg.protocol_engine,
  1917. &scic->scu_registers->peg0.viit[i]);
  1918. if (result != SCI_SUCCESS)
  1919. goto out;
  1920. }
  1921. result = scic_sds_port_configuration_agent_initialize(scic, &scic->port_agent);
  1922. out:
  1923. /* Advance the controller state machine */
  1924. if (result == SCI_SUCCESS)
  1925. state = SCIC_INITIALIZED;
  1926. else
  1927. state = SCIC_FAILED;
  1928. sci_change_state(sm, state);
  1929. return result;
  1930. }
  1931. static enum sci_status scic_user_parameters_set(
  1932. struct scic_sds_controller *scic,
  1933. union scic_user_parameters *scic_parms)
  1934. {
  1935. u32 state = scic->sm.current_state_id;
  1936. if (state == SCIC_RESET ||
  1937. state == SCIC_INITIALIZING ||
  1938. state == SCIC_INITIALIZED) {
  1939. u16 index;
  1940. /*
  1941. * Validate the user parameters. If they are not legal, then
  1942. * return a failure.
  1943. */
  1944. for (index = 0; index < SCI_MAX_PHYS; index++) {
  1945. struct sci_phy_user_params *user_phy;
  1946. user_phy = &scic_parms->sds1.phys[index];
  1947. if (!((user_phy->max_speed_generation <=
  1948. SCIC_SDS_PARM_MAX_SPEED) &&
  1949. (user_phy->max_speed_generation >
  1950. SCIC_SDS_PARM_NO_SPEED)))
  1951. return SCI_FAILURE_INVALID_PARAMETER_VALUE;
  1952. if (user_phy->in_connection_align_insertion_frequency <
  1953. 3)
  1954. return SCI_FAILURE_INVALID_PARAMETER_VALUE;
  1955. if ((user_phy->in_connection_align_insertion_frequency <
  1956. 3) ||
  1957. (user_phy->align_insertion_frequency == 0) ||
  1958. (user_phy->
  1959. notify_enable_spin_up_insertion_frequency ==
  1960. 0))
  1961. return SCI_FAILURE_INVALID_PARAMETER_VALUE;
  1962. }
  1963. if ((scic_parms->sds1.stp_inactivity_timeout == 0) ||
  1964. (scic_parms->sds1.ssp_inactivity_timeout == 0) ||
  1965. (scic_parms->sds1.stp_max_occupancy_timeout == 0) ||
  1966. (scic_parms->sds1.ssp_max_occupancy_timeout == 0) ||
  1967. (scic_parms->sds1.no_outbound_task_timeout == 0))
  1968. return SCI_FAILURE_INVALID_PARAMETER_VALUE;
  1969. memcpy(&scic->user_parameters, scic_parms, sizeof(*scic_parms));
  1970. return SCI_SUCCESS;
  1971. }
  1972. return SCI_FAILURE_INVALID_STATE;
  1973. }
  1974. static int scic_controller_mem_init(struct scic_sds_controller *scic)
  1975. {
  1976. struct device *dev = scic_to_dev(scic);
  1977. dma_addr_t dma;
  1978. size_t size;
  1979. int err;
  1980. size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
  1981. scic->completion_queue = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
  1982. if (!scic->completion_queue)
  1983. return -ENOMEM;
  1984. writel(lower_32_bits(dma), &scic->smu_registers->completion_queue_lower);
  1985. writel(upper_32_bits(dma), &scic->smu_registers->completion_queue_upper);
  1986. size = scic->remote_node_entries * sizeof(union scu_remote_node_context);
  1987. scic->remote_node_context_table = dmam_alloc_coherent(dev, size, &dma,
  1988. GFP_KERNEL);
  1989. if (!scic->remote_node_context_table)
  1990. return -ENOMEM;
  1991. writel(lower_32_bits(dma), &scic->smu_registers->remote_node_context_lower);
  1992. writel(upper_32_bits(dma), &scic->smu_registers->remote_node_context_upper);
  1993. size = scic->task_context_entries * sizeof(struct scu_task_context),
  1994. scic->task_context_table = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
  1995. if (!scic->task_context_table)
  1996. return -ENOMEM;
  1997. writel(lower_32_bits(dma), &scic->smu_registers->host_task_table_lower);
  1998. writel(upper_32_bits(dma), &scic->smu_registers->host_task_table_upper);
  1999. err = scic_sds_unsolicited_frame_control_construct(scic);
  2000. if (err)
  2001. return err;
  2002. /*
  2003. * Inform the silicon as to the location of the UF headers and
  2004. * address table.
  2005. */
  2006. writel(lower_32_bits(scic->uf_control.headers.physical_address),
  2007. &scic->scu_registers->sdma.uf_header_base_address_lower);
  2008. writel(upper_32_bits(scic->uf_control.headers.physical_address),
  2009. &scic->scu_registers->sdma.uf_header_base_address_upper);
  2010. writel(lower_32_bits(scic->uf_control.address_table.physical_address),
  2011. &scic->scu_registers->sdma.uf_address_table_lower);
  2012. writel(upper_32_bits(scic->uf_control.address_table.physical_address),
  2013. &scic->scu_registers->sdma.uf_address_table_upper);
  2014. return 0;
  2015. }
  2016. int isci_host_init(struct isci_host *isci_host)
  2017. {
  2018. int err = 0, i;
  2019. enum sci_status status;
  2020. union scic_oem_parameters oem;
  2021. union scic_user_parameters scic_user_params;
  2022. struct isci_pci_info *pci_info = to_pci_info(isci_host->pdev);
  2023. spin_lock_init(&isci_host->state_lock);
  2024. spin_lock_init(&isci_host->scic_lock);
  2025. spin_lock_init(&isci_host->queue_lock);
  2026. init_waitqueue_head(&isci_host->eventq);
  2027. isci_host_change_state(isci_host, isci_starting);
  2028. isci_host->can_queue = ISCI_CAN_QUEUE_VAL;
  2029. status = scic_controller_construct(&isci_host->sci, scu_base(isci_host),
  2030. smu_base(isci_host));
  2031. if (status != SCI_SUCCESS) {
  2032. dev_err(&isci_host->pdev->dev,
  2033. "%s: scic_controller_construct failed - status = %x\n",
  2034. __func__,
  2035. status);
  2036. return -ENODEV;
  2037. }
  2038. isci_host->sas_ha.dev = &isci_host->pdev->dev;
  2039. isci_host->sas_ha.lldd_ha = isci_host;
  2040. /*
  2041. * grab initial values stored in the controller object for OEM and USER
  2042. * parameters
  2043. */
  2044. isci_user_parameters_get(isci_host, &scic_user_params);
  2045. status = scic_user_parameters_set(&isci_host->sci,
  2046. &scic_user_params);
  2047. if (status != SCI_SUCCESS) {
  2048. dev_warn(&isci_host->pdev->dev,
  2049. "%s: scic_user_parameters_set failed\n",
  2050. __func__);
  2051. return -ENODEV;
  2052. }
  2053. scic_oem_parameters_get(&isci_host->sci, &oem);
  2054. /* grab any OEM parameters specified in orom */
  2055. if (pci_info->orom) {
  2056. status = isci_parse_oem_parameters(&oem,
  2057. pci_info->orom,
  2058. isci_host->id);
  2059. if (status != SCI_SUCCESS) {
  2060. dev_warn(&isci_host->pdev->dev,
  2061. "parsing firmware oem parameters failed\n");
  2062. return -EINVAL;
  2063. }
  2064. }
  2065. status = scic_oem_parameters_set(&isci_host->sci, &oem);
  2066. if (status != SCI_SUCCESS) {
  2067. dev_warn(&isci_host->pdev->dev,
  2068. "%s: scic_oem_parameters_set failed\n",
  2069. __func__);
  2070. return -ENODEV;
  2071. }
  2072. tasklet_init(&isci_host->completion_tasklet,
  2073. isci_host_completion_routine, (unsigned long)isci_host);
  2074. INIT_LIST_HEAD(&isci_host->requests_to_complete);
  2075. INIT_LIST_HEAD(&isci_host->requests_to_errorback);
  2076. spin_lock_irq(&isci_host->scic_lock);
  2077. status = scic_controller_initialize(&isci_host->sci);
  2078. spin_unlock_irq(&isci_host->scic_lock);
  2079. if (status != SCI_SUCCESS) {
  2080. dev_warn(&isci_host->pdev->dev,
  2081. "%s: scic_controller_initialize failed -"
  2082. " status = 0x%x\n",
  2083. __func__, status);
  2084. return -ENODEV;
  2085. }
  2086. err = scic_controller_mem_init(&isci_host->sci);
  2087. if (err)
  2088. return err;
  2089. isci_host->dma_pool = dmam_pool_create(DRV_NAME, &isci_host->pdev->dev,
  2090. sizeof(struct isci_request),
  2091. SLAB_HWCACHE_ALIGN, 0);
  2092. if (!isci_host->dma_pool)
  2093. return -ENOMEM;
  2094. for (i = 0; i < SCI_MAX_PORTS; i++)
  2095. isci_port_init(&isci_host->ports[i], isci_host, i);
  2096. for (i = 0; i < SCI_MAX_PHYS; i++)
  2097. isci_phy_init(&isci_host->phys[i], isci_host, i);
  2098. for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
  2099. struct isci_remote_device *idev = &isci_host->devices[i];
  2100. INIT_LIST_HEAD(&idev->reqs_in_process);
  2101. INIT_LIST_HEAD(&idev->node);
  2102. spin_lock_init(&idev->state_lock);
  2103. }
  2104. return 0;
  2105. }
  2106. void scic_sds_controller_link_up(struct scic_sds_controller *scic,
  2107. struct scic_sds_port *port, struct scic_sds_phy *phy)
  2108. {
  2109. switch (scic->sm.current_state_id) {
  2110. case SCIC_STARTING:
  2111. sci_del_timer(&scic->phy_timer);
  2112. scic->phy_startup_timer_pending = false;
  2113. scic->port_agent.link_up_handler(scic, &scic->port_agent,
  2114. port, phy);
  2115. scic_sds_controller_start_next_phy(scic);
  2116. break;
  2117. case SCIC_READY:
  2118. scic->port_agent.link_up_handler(scic, &scic->port_agent,
  2119. port, phy);
  2120. break;
  2121. default:
  2122. dev_dbg(scic_to_dev(scic),
  2123. "%s: SCIC Controller linkup event from phy %d in "
  2124. "unexpected state %d\n", __func__, phy->phy_index,
  2125. scic->sm.current_state_id);
  2126. }
  2127. }
  2128. void scic_sds_controller_link_down(struct scic_sds_controller *scic,
  2129. struct scic_sds_port *port, struct scic_sds_phy *phy)
  2130. {
  2131. switch (scic->sm.current_state_id) {
  2132. case SCIC_STARTING:
  2133. case SCIC_READY:
  2134. scic->port_agent.link_down_handler(scic, &scic->port_agent,
  2135. port, phy);
  2136. break;
  2137. default:
  2138. dev_dbg(scic_to_dev(scic),
  2139. "%s: SCIC Controller linkdown event from phy %d in "
  2140. "unexpected state %d\n",
  2141. __func__,
  2142. phy->phy_index,
  2143. scic->sm.current_state_id);
  2144. }
  2145. }
  2146. /**
  2147. * This is a helper method to determine if any remote devices on this
  2148. * controller are still in the stopping state.
  2149. *
  2150. */
  2151. static bool scic_sds_controller_has_remote_devices_stopping(
  2152. struct scic_sds_controller *controller)
  2153. {
  2154. u32 index;
  2155. for (index = 0; index < controller->remote_node_entries; index++) {
  2156. if ((controller->device_table[index] != NULL) &&
  2157. (controller->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
  2158. return true;
  2159. }
  2160. return false;
  2161. }
  2162. /**
  2163. * This method is called by the remote device to inform the controller
  2164. * object that the remote device has stopped.
  2165. */
  2166. void scic_sds_controller_remote_device_stopped(struct scic_sds_controller *scic,
  2167. struct scic_sds_remote_device *sci_dev)
  2168. {
  2169. if (scic->sm.current_state_id != SCIC_STOPPING) {
  2170. dev_dbg(scic_to_dev(scic),
  2171. "SCIC Controller 0x%p remote device stopped event "
  2172. "from device 0x%p in unexpected state %d\n",
  2173. scic, sci_dev,
  2174. scic->sm.current_state_id);
  2175. return;
  2176. }
  2177. if (!scic_sds_controller_has_remote_devices_stopping(scic)) {
  2178. sci_change_state(&scic->sm, SCIC_STOPPED);
  2179. }
  2180. }
  2181. /**
  2182. * This method will write to the SCU PCP register the request value. The method
  2183. * is used to suspend/resume ports, devices, and phys.
  2184. * @scic:
  2185. *
  2186. *
  2187. */
  2188. void scic_sds_controller_post_request(
  2189. struct scic_sds_controller *scic,
  2190. u32 request)
  2191. {
  2192. dev_dbg(scic_to_dev(scic),
  2193. "%s: SCIC Controller 0x%p post request 0x%08x\n",
  2194. __func__,
  2195. scic,
  2196. request);
  2197. writel(request, &scic->smu_registers->post_context_port);
  2198. }
  2199. /**
  2200. * This method will copy the soft copy of the task context into the physical
  2201. * memory accessible by the controller.
  2202. * @scic: This parameter specifies the controller for which to copy
  2203. * the task context.
  2204. * @sci_req: This parameter specifies the request for which the task
  2205. * context is being copied.
  2206. *
  2207. * After this call is made the SCIC_SDS_IO_REQUEST object will always point to
  2208. * the physical memory version of the task context. Thus, all subsequent
  2209. * updates to the task context are performed in the TC table (i.e. DMAable
  2210. * memory). none
  2211. */
  2212. void scic_sds_controller_copy_task_context(
  2213. struct scic_sds_controller *scic,
  2214. struct scic_sds_request *sci_req)
  2215. {
  2216. struct scu_task_context *task_context_buffer;
  2217. task_context_buffer = scic_sds_controller_get_task_context_buffer(
  2218. scic, sci_req->io_tag);
  2219. memcpy(task_context_buffer,
  2220. sci_req->task_context_buffer,
  2221. offsetof(struct scu_task_context, sgl_snapshot_ac));
  2222. /*
  2223. * Now that the soft copy of the TC has been copied into the TC
  2224. * table accessible by the silicon. Thus, any further changes to
  2225. * the TC (e.g. TC termination) occur in the appropriate location. */
  2226. sci_req->task_context_buffer = task_context_buffer;
  2227. }
  2228. /**
  2229. * This method returns the task context buffer for the given io tag.
  2230. * @scic:
  2231. * @io_tag:
  2232. *
  2233. * struct scu_task_context*
  2234. */
  2235. struct scu_task_context *scic_sds_controller_get_task_context_buffer(
  2236. struct scic_sds_controller *scic,
  2237. u16 io_tag
  2238. ) {
  2239. u16 task_index = scic_sds_io_tag_get_index(io_tag);
  2240. if (task_index < scic->task_context_entries) {
  2241. return &scic->task_context_table[task_index];
  2242. }
  2243. return NULL;
  2244. }
  2245. struct scic_sds_request *scic_request_by_tag(struct scic_sds_controller *scic,
  2246. u16 io_tag)
  2247. {
  2248. u16 task_index;
  2249. u16 task_sequence;
  2250. task_index = scic_sds_io_tag_get_index(io_tag);
  2251. if (task_index < scic->task_context_entries) {
  2252. if (scic->io_request_table[task_index] != NULL) {
  2253. task_sequence = scic_sds_io_tag_get_sequence(io_tag);
  2254. if (task_sequence == scic->io_request_sequence[task_index]) {
  2255. return scic->io_request_table[task_index];
  2256. }
  2257. }
  2258. }
  2259. return NULL;
  2260. }
  2261. /**
  2262. * This method allocates remote node index and the reserves the remote node
  2263. * context space for use. This method can fail if there are no more remote
  2264. * node index available.
  2265. * @scic: This is the controller object which contains the set of
  2266. * free remote node ids
  2267. * @sci_dev: This is the device object which is requesting the a remote node
  2268. * id
  2269. * @node_id: This is the remote node id that is assinged to the device if one
  2270. * is available
  2271. *
  2272. * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
  2273. * node index available.
  2274. */
  2275. enum sci_status scic_sds_controller_allocate_remote_node_context(
  2276. struct scic_sds_controller *scic,
  2277. struct scic_sds_remote_device *sci_dev,
  2278. u16 *node_id)
  2279. {
  2280. u16 node_index;
  2281. u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev);
  2282. node_index = scic_sds_remote_node_table_allocate_remote_node(
  2283. &scic->available_remote_nodes, remote_node_count
  2284. );
  2285. if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
  2286. scic->device_table[node_index] = sci_dev;
  2287. *node_id = node_index;
  2288. return SCI_SUCCESS;
  2289. }
  2290. return SCI_FAILURE_INSUFFICIENT_RESOURCES;
  2291. }
  2292. /**
  2293. * This method frees the remote node index back to the available pool. Once
  2294. * this is done the remote node context buffer is no longer valid and can
  2295. * not be used.
  2296. * @scic:
  2297. * @sci_dev:
  2298. * @node_id:
  2299. *
  2300. */
  2301. void scic_sds_controller_free_remote_node_context(
  2302. struct scic_sds_controller *scic,
  2303. struct scic_sds_remote_device *sci_dev,
  2304. u16 node_id)
  2305. {
  2306. u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev);
  2307. if (scic->device_table[node_id] == sci_dev) {
  2308. scic->device_table[node_id] = NULL;
  2309. scic_sds_remote_node_table_release_remote_node_index(
  2310. &scic->available_remote_nodes, remote_node_count, node_id
  2311. );
  2312. }
  2313. }
  2314. /**
  2315. * This method returns the union scu_remote_node_context for the specified remote
  2316. * node id.
  2317. * @scic:
  2318. * @node_id:
  2319. *
  2320. * union scu_remote_node_context*
  2321. */
  2322. union scu_remote_node_context *scic_sds_controller_get_remote_node_context_buffer(
  2323. struct scic_sds_controller *scic,
  2324. u16 node_id
  2325. ) {
  2326. if (
  2327. (node_id < scic->remote_node_entries)
  2328. && (scic->device_table[node_id] != NULL)
  2329. ) {
  2330. return &scic->remote_node_context_table[node_id];
  2331. }
  2332. return NULL;
  2333. }
  2334. /**
  2335. *
  2336. * @resposne_buffer: This is the buffer into which the D2H register FIS will be
  2337. * constructed.
  2338. * @frame_header: This is the frame header returned by the hardware.
  2339. * @frame_buffer: This is the frame buffer returned by the hardware.
  2340. *
  2341. * This method will combind the frame header and frame buffer to create a SATA
  2342. * D2H register FIS none
  2343. */
  2344. void scic_sds_controller_copy_sata_response(
  2345. void *response_buffer,
  2346. void *frame_header,
  2347. void *frame_buffer)
  2348. {
  2349. memcpy(response_buffer, frame_header, sizeof(u32));
  2350. memcpy(response_buffer + sizeof(u32),
  2351. frame_buffer,
  2352. sizeof(struct dev_to_host_fis) - sizeof(u32));
  2353. }
  2354. /**
  2355. * This method releases the frame once this is done the frame is available for
  2356. * re-use by the hardware. The data contained in the frame header and frame
  2357. * buffer is no longer valid. The UF queue get pointer is only updated if UF
  2358. * control indicates this is appropriate.
  2359. * @scic:
  2360. * @frame_index:
  2361. *
  2362. */
  2363. void scic_sds_controller_release_frame(
  2364. struct scic_sds_controller *scic,
  2365. u32 frame_index)
  2366. {
  2367. if (scic_sds_unsolicited_frame_control_release_frame(
  2368. &scic->uf_control, frame_index) == true)
  2369. writel(scic->uf_control.get,
  2370. &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
  2371. }
  2372. /**
  2373. * scic_controller_start_io() - This method is called by the SCI user to
  2374. * send/start an IO request. If the method invocation is successful, then
  2375. * the IO request has been queued to the hardware for processing.
  2376. * @controller: the handle to the controller object for which to start an IO
  2377. * request.
  2378. * @remote_device: the handle to the remote device object for which to start an
  2379. * IO request.
  2380. * @io_request: the handle to the io request object to start.
  2381. * @io_tag: This parameter specifies a previously allocated IO tag that the
  2382. * user desires to be utilized for this request. This parameter is optional.
  2383. * The user is allowed to supply SCI_CONTROLLER_INVALID_IO_TAG as the value
  2384. * for this parameter.
  2385. *
  2386. * - IO tags are a protected resource. It is incumbent upon the SCI Core user
  2387. * to ensure that each of the methods that may allocate or free available IO
  2388. * tags are handled in a mutually exclusive manner. This method is one of said
  2389. * methods requiring proper critical code section protection (e.g. semaphore,
  2390. * spin-lock, etc.). - For SATA, the user is required to manage NCQ tags. As a
  2391. * result, it is expected the user will have set the NCQ tag field in the host
  2392. * to device register FIS prior to calling this method. There is also a
  2393. * requirement for the user to call scic_stp_io_set_ncq_tag() prior to invoking
  2394. * the scic_controller_start_io() method. scic_controller_allocate_tag() for
  2395. * more information on allocating a tag. Indicate if the controller
  2396. * successfully started the IO request. SCI_SUCCESS if the IO request was
  2397. * successfully started. Determine the failure situations and return values.
  2398. */
  2399. enum sci_status scic_controller_start_io(
  2400. struct scic_sds_controller *scic,
  2401. struct scic_sds_remote_device *rdev,
  2402. struct scic_sds_request *req,
  2403. u16 io_tag)
  2404. {
  2405. enum sci_status status;
  2406. if (scic->sm.current_state_id != SCIC_READY) {
  2407. dev_warn(scic_to_dev(scic), "invalid state to start I/O");
  2408. return SCI_FAILURE_INVALID_STATE;
  2409. }
  2410. status = scic_sds_remote_device_start_io(scic, rdev, req);
  2411. if (status != SCI_SUCCESS)
  2412. return status;
  2413. scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
  2414. scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(req));
  2415. return SCI_SUCCESS;
  2416. }
  2417. /**
  2418. * scic_controller_terminate_request() - This method is called by the SCI Core
  2419. * user to terminate an ongoing (i.e. started) core IO request. This does
  2420. * not abort the IO request at the target, but rather removes the IO request
  2421. * from the host controller.
  2422. * @controller: the handle to the controller object for which to terminate a
  2423. * request.
  2424. * @remote_device: the handle to the remote device object for which to
  2425. * terminate a request.
  2426. * @request: the handle to the io or task management request object to
  2427. * terminate.
  2428. *
  2429. * Indicate if the controller successfully began the terminate process for the
  2430. * IO request. SCI_SUCCESS if the terminate process was successfully started
  2431. * for the request. Determine the failure situations and return values.
  2432. */
  2433. enum sci_status scic_controller_terminate_request(
  2434. struct scic_sds_controller *scic,
  2435. struct scic_sds_remote_device *rdev,
  2436. struct scic_sds_request *req)
  2437. {
  2438. enum sci_status status;
  2439. if (scic->sm.current_state_id != SCIC_READY) {
  2440. dev_warn(scic_to_dev(scic),
  2441. "invalid state to terminate request\n");
  2442. return SCI_FAILURE_INVALID_STATE;
  2443. }
  2444. status = scic_sds_io_request_terminate(req);
  2445. if (status != SCI_SUCCESS)
  2446. return status;
  2447. /*
  2448. * Utilize the original post context command and or in the POST_TC_ABORT
  2449. * request sub-type.
  2450. */
  2451. scic_sds_controller_post_request(scic,
  2452. scic_sds_request_get_post_context(req) |
  2453. SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
  2454. return SCI_SUCCESS;
  2455. }
  2456. /**
  2457. * scic_controller_complete_io() - This method will perform core specific
  2458. * completion operations for an IO request. After this method is invoked,
  2459. * the user should consider the IO request as invalid until it is properly
  2460. * reused (i.e. re-constructed).
  2461. * @controller: The handle to the controller object for which to complete the
  2462. * IO request.
  2463. * @remote_device: The handle to the remote device object for which to complete
  2464. * the IO request.
  2465. * @io_request: the handle to the io request object to complete.
  2466. *
  2467. * - IO tags are a protected resource. It is incumbent upon the SCI Core user
  2468. * to ensure that each of the methods that may allocate or free available IO
  2469. * tags are handled in a mutually exclusive manner. This method is one of said
  2470. * methods requiring proper critical code section protection (e.g. semaphore,
  2471. * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
  2472. * Core user, using the scic_controller_allocate_io_tag() method, then it is
  2473. * the responsibility of the caller to invoke the scic_controller_free_io_tag()
  2474. * method to free the tag (i.e. this method will not free the IO tag). Indicate
  2475. * if the controller successfully completed the IO request. SCI_SUCCESS if the
  2476. * completion process was successful.
  2477. */
  2478. enum sci_status scic_controller_complete_io(
  2479. struct scic_sds_controller *scic,
  2480. struct scic_sds_remote_device *rdev,
  2481. struct scic_sds_request *request)
  2482. {
  2483. enum sci_status status;
  2484. u16 index;
  2485. switch (scic->sm.current_state_id) {
  2486. case SCIC_STOPPING:
  2487. /* XXX: Implement this function */
  2488. return SCI_FAILURE;
  2489. case SCIC_READY:
  2490. status = scic_sds_remote_device_complete_io(scic, rdev, request);
  2491. if (status != SCI_SUCCESS)
  2492. return status;
  2493. index = scic_sds_io_tag_get_index(request->io_tag);
  2494. scic->io_request_table[index] = NULL;
  2495. return SCI_SUCCESS;
  2496. default:
  2497. dev_warn(scic_to_dev(scic), "invalid state to complete I/O");
  2498. return SCI_FAILURE_INVALID_STATE;
  2499. }
  2500. }
  2501. enum sci_status scic_controller_continue_io(struct scic_sds_request *sci_req)
  2502. {
  2503. struct scic_sds_controller *scic = sci_req->owning_controller;
  2504. if (scic->sm.current_state_id != SCIC_READY) {
  2505. dev_warn(scic_to_dev(scic), "invalid state to continue I/O");
  2506. return SCI_FAILURE_INVALID_STATE;
  2507. }
  2508. scic->io_request_table[scic_sds_io_tag_get_index(sci_req->io_tag)] = sci_req;
  2509. scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(sci_req));
  2510. return SCI_SUCCESS;
  2511. }
  2512. /**
  2513. * scic_controller_start_task() - This method is called by the SCIC user to
  2514. * send/start a framework task management request.
  2515. * @controller: the handle to the controller object for which to start the task
  2516. * management request.
  2517. * @remote_device: the handle to the remote device object for which to start
  2518. * the task management request.
  2519. * @task_request: the handle to the task request object to start.
  2520. * @io_tag: This parameter specifies a previously allocated IO tag that the
  2521. * user desires to be utilized for this request. Note this not the io_tag
  2522. * of the request being managed. It is to be utilized for the task request
  2523. * itself. This parameter is optional. The user is allowed to supply
  2524. * SCI_CONTROLLER_INVALID_IO_TAG as the value for this parameter.
  2525. *
  2526. * - IO tags are a protected resource. It is incumbent upon the SCI Core user
  2527. * to ensure that each of the methods that may allocate or free available IO
  2528. * tags are handled in a mutually exclusive manner. This method is one of said
  2529. * methods requiring proper critical code section protection (e.g. semaphore,
  2530. * spin-lock, etc.). - The user must synchronize this task with completion
  2531. * queue processing. If they are not synchronized then it is possible for the
  2532. * io requests that are being managed by the task request can complete before
  2533. * starting the task request. scic_controller_allocate_tag() for more
  2534. * information on allocating a tag. Indicate if the controller successfully
  2535. * started the IO request. SCI_TASK_SUCCESS if the task request was
  2536. * successfully started. SCI_TASK_FAILURE_REQUIRES_SCSI_ABORT This value is
  2537. * returned if there is/are task(s) outstanding that require termination or
  2538. * completion before this request can succeed.
  2539. */
  2540. enum sci_task_status scic_controller_start_task(
  2541. struct scic_sds_controller *scic,
  2542. struct scic_sds_remote_device *rdev,
  2543. struct scic_sds_request *req,
  2544. u16 task_tag)
  2545. {
  2546. enum sci_status status;
  2547. if (scic->sm.current_state_id != SCIC_READY) {
  2548. dev_warn(scic_to_dev(scic),
  2549. "%s: SCIC Controller starting task from invalid "
  2550. "state\n",
  2551. __func__);
  2552. return SCI_TASK_FAILURE_INVALID_STATE;
  2553. }
  2554. status = scic_sds_remote_device_start_task(scic, rdev, req);
  2555. switch (status) {
  2556. case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
  2557. scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
  2558. /*
  2559. * We will let framework know this task request started successfully,
  2560. * although core is still woring on starting the request (to post tc when
  2561. * RNC is resumed.)
  2562. */
  2563. return SCI_SUCCESS;
  2564. case SCI_SUCCESS:
  2565. scic->io_request_table[scic_sds_io_tag_get_index(req->io_tag)] = req;
  2566. scic_sds_controller_post_request(scic,
  2567. scic_sds_request_get_post_context(req));
  2568. break;
  2569. default:
  2570. break;
  2571. }
  2572. return status;
  2573. }
  2574. /**
  2575. * scic_controller_allocate_io_tag() - This method will allocate a tag from the
  2576. * pool of free IO tags. Direct allocation of IO tags by the SCI Core user
  2577. * is optional. The scic_controller_start_io() method will allocate an IO
  2578. * tag if this method is not utilized and the tag is not supplied to the IO
  2579. * construct routine. Direct allocation of IO tags may provide additional
  2580. * performance improvements in environments capable of supporting this usage
  2581. * model. Additionally, direct allocation of IO tags also provides
  2582. * additional flexibility to the SCI Core user. Specifically, the user may
  2583. * retain IO tags across the lives of multiple IO requests.
  2584. * @controller: the handle to the controller object for which to allocate the
  2585. * tag.
  2586. *
  2587. * IO tags are a protected resource. It is incumbent upon the SCI Core user to
  2588. * ensure that each of the methods that may allocate or free available IO tags
  2589. * are handled in a mutually exclusive manner. This method is one of said
  2590. * methods requiring proper critical code section protection (e.g. semaphore,
  2591. * spin-lock, etc.). An unsigned integer representing an available IO tag.
  2592. * SCI_CONTROLLER_INVALID_IO_TAG This value is returned if there are no
  2593. * currently available tags to be allocated. All return other values indicate a
  2594. * legitimate tag.
  2595. */
  2596. u16 scic_controller_allocate_io_tag(struct scic_sds_controller *scic)
  2597. {
  2598. struct isci_host *ihost = scic_to_ihost(scic);
  2599. u16 tci;
  2600. u16 seq;
  2601. if (isci_tci_space(ihost)) {
  2602. tci = isci_tci_alloc(ihost);
  2603. seq = scic->io_request_sequence[tci];
  2604. return scic_sds_io_tag_construct(seq, tci);
  2605. }
  2606. return SCI_CONTROLLER_INVALID_IO_TAG;
  2607. }
  2608. /**
  2609. * scic_controller_free_io_tag() - This method will free an IO tag to the pool
  2610. * of free IO tags. This method provides the SCI Core user more flexibility
  2611. * with regards to IO tags. The user may desire to keep an IO tag after an
  2612. * IO request has completed, because they plan on re-using the tag for a
  2613. * subsequent IO request. This method is only legal if the tag was
  2614. * allocated via scic_controller_allocate_io_tag().
  2615. * @controller: This parameter specifies the handle to the controller object
  2616. * for which to free/return the tag.
  2617. * @io_tag: This parameter represents the tag to be freed to the pool of
  2618. * available tags.
  2619. *
  2620. * - IO tags are a protected resource. It is incumbent upon the SCI Core user
  2621. * to ensure that each of the methods that may allocate or free available IO
  2622. * tags are handled in a mutually exclusive manner. This method is one of said
  2623. * methods requiring proper critical code section protection (e.g. semaphore,
  2624. * spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
  2625. * Core user, using the scic_controller_allocate_io_tag() method, then it is
  2626. * the responsibility of the caller to invoke this method to free the tag. This
  2627. * method returns an indication of whether the tag was successfully put back
  2628. * (freed) to the pool of available tags. SCI_SUCCESS This return value
  2629. * indicates the tag was successfully placed into the pool of available IO
  2630. * tags. SCI_FAILURE_INVALID_IO_TAG This value is returned if the supplied tag
  2631. * is not a valid IO tag value.
  2632. */
  2633. enum sci_status scic_controller_free_io_tag(struct scic_sds_controller *scic,
  2634. u16 io_tag)
  2635. {
  2636. struct isci_host *ihost = scic_to_ihost(scic);
  2637. u16 sequence;
  2638. u16 index;
  2639. BUG_ON(io_tag == SCI_CONTROLLER_INVALID_IO_TAG);
  2640. sequence = scic_sds_io_tag_get_sequence(io_tag);
  2641. index = scic_sds_io_tag_get_index(io_tag);
  2642. /* prevent tail from passing head */
  2643. if (isci_tci_active(ihost) == 0)
  2644. return SCI_FAILURE_INVALID_IO_TAG;
  2645. if (sequence == scic->io_request_sequence[index]) {
  2646. scic_sds_io_sequence_increment(scic->io_request_sequence[index]);
  2647. isci_tci_free(ihost, index);
  2648. return SCI_SUCCESS;
  2649. }
  2650. return SCI_FAILURE_INVALID_IO_TAG;
  2651. }