intel_display.c 269 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. int min, max;
  47. } intel_range_t;
  48. typedef struct {
  49. int dot_limit;
  50. int p2_slow, p2_fast;
  51. } intel_p2_t;
  52. #define INTEL_P2_NUM 2
  53. typedef struct intel_limit intel_limit_t;
  54. struct intel_limit {
  55. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  56. intel_p2_t p2;
  57. /**
  58. * find_pll() - Find the best values for the PLL
  59. * @limit: limits for the PLL
  60. * @crtc: current CRTC
  61. * @target: target frequency in kHz
  62. * @refclk: reference clock frequency in kHz
  63. * @match_clock: if provided, @best_clock P divider must
  64. * match the P divider from @match_clock
  65. * used for LVDS downclocking
  66. * @best_clock: best PLL values found
  67. *
  68. * Returns true on success, false on failure.
  69. */
  70. bool (*find_pll)(const intel_limit_t *limit,
  71. struct drm_crtc *crtc,
  72. int target, int refclk,
  73. intel_clock_t *match_clock,
  74. intel_clock_t *best_clock);
  75. };
  76. /* FDI */
  77. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  78. int
  79. intel_pch_rawclk(struct drm_device *dev)
  80. {
  81. struct drm_i915_private *dev_priv = dev->dev_private;
  82. WARN_ON(!HAS_PCH_SPLIT(dev));
  83. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  84. }
  85. static bool
  86. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  87. int target, int refclk, intel_clock_t *match_clock,
  88. intel_clock_t *best_clock);
  89. static bool
  90. intel_pnv_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  91. int target, int refclk, intel_clock_t *match_clock,
  92. intel_clock_t *best_clock);
  93. static bool
  94. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  95. int target, int refclk, intel_clock_t *match_clock,
  96. intel_clock_t *best_clock);
  97. static bool
  98. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  99. int target, int refclk, intel_clock_t *match_clock,
  100. intel_clock_t *best_clock);
  101. static inline u32 /* units of 100MHz */
  102. intel_fdi_link_freq(struct drm_device *dev)
  103. {
  104. if (IS_GEN5(dev)) {
  105. struct drm_i915_private *dev_priv = dev->dev_private;
  106. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  107. } else
  108. return 27;
  109. }
  110. static const intel_limit_t intel_limits_i8xx_dvo = {
  111. .dot = { .min = 25000, .max = 350000 },
  112. .vco = { .min = 930000, .max = 1400000 },
  113. .n = { .min = 3, .max = 16 },
  114. .m = { .min = 96, .max = 140 },
  115. .m1 = { .min = 18, .max = 26 },
  116. .m2 = { .min = 6, .max = 16 },
  117. .p = { .min = 4, .max = 128 },
  118. .p1 = { .min = 2, .max = 33 },
  119. .p2 = { .dot_limit = 165000,
  120. .p2_slow = 4, .p2_fast = 2 },
  121. .find_pll = intel_find_best_PLL,
  122. };
  123. static const intel_limit_t intel_limits_i8xx_lvds = {
  124. .dot = { .min = 25000, .max = 350000 },
  125. .vco = { .min = 930000, .max = 1400000 },
  126. .n = { .min = 3, .max = 16 },
  127. .m = { .min = 96, .max = 140 },
  128. .m1 = { .min = 18, .max = 26 },
  129. .m2 = { .min = 6, .max = 16 },
  130. .p = { .min = 4, .max = 128 },
  131. .p1 = { .min = 1, .max = 6 },
  132. .p2 = { .dot_limit = 165000,
  133. .p2_slow = 14, .p2_fast = 7 },
  134. .find_pll = intel_find_best_PLL,
  135. };
  136. static const intel_limit_t intel_limits_i9xx_sdvo = {
  137. .dot = { .min = 20000, .max = 400000 },
  138. .vco = { .min = 1400000, .max = 2800000 },
  139. .n = { .min = 1, .max = 6 },
  140. .m = { .min = 70, .max = 120 },
  141. .m1 = { .min = 8, .max = 18 },
  142. .m2 = { .min = 3, .max = 7 },
  143. .p = { .min = 5, .max = 80 },
  144. .p1 = { .min = 1, .max = 8 },
  145. .p2 = { .dot_limit = 200000,
  146. .p2_slow = 10, .p2_fast = 5 },
  147. .find_pll = intel_find_best_PLL,
  148. };
  149. static const intel_limit_t intel_limits_i9xx_lvds = {
  150. .dot = { .min = 20000, .max = 400000 },
  151. .vco = { .min = 1400000, .max = 2800000 },
  152. .n = { .min = 1, .max = 6 },
  153. .m = { .min = 70, .max = 120 },
  154. .m1 = { .min = 8, .max = 18 },
  155. .m2 = { .min = 3, .max = 7 },
  156. .p = { .min = 7, .max = 98 },
  157. .p1 = { .min = 1, .max = 8 },
  158. .p2 = { .dot_limit = 112000,
  159. .p2_slow = 14, .p2_fast = 7 },
  160. .find_pll = intel_find_best_PLL,
  161. };
  162. static const intel_limit_t intel_limits_g4x_sdvo = {
  163. .dot = { .min = 25000, .max = 270000 },
  164. .vco = { .min = 1750000, .max = 3500000},
  165. .n = { .min = 1, .max = 4 },
  166. .m = { .min = 104, .max = 138 },
  167. .m1 = { .min = 17, .max = 23 },
  168. .m2 = { .min = 5, .max = 11 },
  169. .p = { .min = 10, .max = 30 },
  170. .p1 = { .min = 1, .max = 3},
  171. .p2 = { .dot_limit = 270000,
  172. .p2_slow = 10,
  173. .p2_fast = 10
  174. },
  175. .find_pll = intel_g4x_find_best_PLL,
  176. };
  177. static const intel_limit_t intel_limits_g4x_hdmi = {
  178. .dot = { .min = 22000, .max = 400000 },
  179. .vco = { .min = 1750000, .max = 3500000},
  180. .n = { .min = 1, .max = 4 },
  181. .m = { .min = 104, .max = 138 },
  182. .m1 = { .min = 16, .max = 23 },
  183. .m2 = { .min = 5, .max = 11 },
  184. .p = { .min = 5, .max = 80 },
  185. .p1 = { .min = 1, .max = 8},
  186. .p2 = { .dot_limit = 165000,
  187. .p2_slow = 10, .p2_fast = 5 },
  188. .find_pll = intel_g4x_find_best_PLL,
  189. };
  190. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  191. .dot = { .min = 20000, .max = 115000 },
  192. .vco = { .min = 1750000, .max = 3500000 },
  193. .n = { .min = 1, .max = 3 },
  194. .m = { .min = 104, .max = 138 },
  195. .m1 = { .min = 17, .max = 23 },
  196. .m2 = { .min = 5, .max = 11 },
  197. .p = { .min = 28, .max = 112 },
  198. .p1 = { .min = 2, .max = 8 },
  199. .p2 = { .dot_limit = 0,
  200. .p2_slow = 14, .p2_fast = 14
  201. },
  202. .find_pll = intel_g4x_find_best_PLL,
  203. };
  204. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  205. .dot = { .min = 80000, .max = 224000 },
  206. .vco = { .min = 1750000, .max = 3500000 },
  207. .n = { .min = 1, .max = 3 },
  208. .m = { .min = 104, .max = 138 },
  209. .m1 = { .min = 17, .max = 23 },
  210. .m2 = { .min = 5, .max = 11 },
  211. .p = { .min = 14, .max = 42 },
  212. .p1 = { .min = 2, .max = 6 },
  213. .p2 = { .dot_limit = 0,
  214. .p2_slow = 7, .p2_fast = 7
  215. },
  216. .find_pll = intel_g4x_find_best_PLL,
  217. };
  218. static const intel_limit_t intel_limits_pineview_sdvo = {
  219. .dot = { .min = 20000, .max = 400000},
  220. .vco = { .min = 1700000, .max = 3500000 },
  221. /* Pineview's Ncounter is a ring counter */
  222. .n = { .min = 3, .max = 6 },
  223. .m = { .min = 2, .max = 256 },
  224. /* Pineview only has one combined m divider, which we treat as m2. */
  225. .m1 = { .min = 0, .max = 0 },
  226. .m2 = { .min = 0, .max = 254 },
  227. .p = { .min = 5, .max = 80 },
  228. .p1 = { .min = 1, .max = 8 },
  229. .p2 = { .dot_limit = 200000,
  230. .p2_slow = 10, .p2_fast = 5 },
  231. .find_pll = intel_pnv_find_best_PLL,
  232. };
  233. static const intel_limit_t intel_limits_pineview_lvds = {
  234. .dot = { .min = 20000, .max = 400000 },
  235. .vco = { .min = 1700000, .max = 3500000 },
  236. .n = { .min = 3, .max = 6 },
  237. .m = { .min = 2, .max = 256 },
  238. .m1 = { .min = 0, .max = 0 },
  239. .m2 = { .min = 0, .max = 254 },
  240. .p = { .min = 7, .max = 112 },
  241. .p1 = { .min = 1, .max = 8 },
  242. .p2 = { .dot_limit = 112000,
  243. .p2_slow = 14, .p2_fast = 14 },
  244. .find_pll = intel_pnv_find_best_PLL,
  245. };
  246. /* Ironlake / Sandybridge
  247. *
  248. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  249. * the range value for them is (actual_value - 2).
  250. */
  251. static const intel_limit_t intel_limits_ironlake_dac = {
  252. .dot = { .min = 25000, .max = 350000 },
  253. .vco = { .min = 1760000, .max = 3510000 },
  254. .n = { .min = 1, .max = 5 },
  255. .m = { .min = 79, .max = 127 },
  256. .m1 = { .min = 12, .max = 22 },
  257. .m2 = { .min = 5, .max = 9 },
  258. .p = { .min = 5, .max = 80 },
  259. .p1 = { .min = 1, .max = 8 },
  260. .p2 = { .dot_limit = 225000,
  261. .p2_slow = 10, .p2_fast = 5 },
  262. .find_pll = intel_g4x_find_best_PLL,
  263. };
  264. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  265. .dot = { .min = 25000, .max = 350000 },
  266. .vco = { .min = 1760000, .max = 3510000 },
  267. .n = { .min = 1, .max = 3 },
  268. .m = { .min = 79, .max = 118 },
  269. .m1 = { .min = 12, .max = 22 },
  270. .m2 = { .min = 5, .max = 9 },
  271. .p = { .min = 28, .max = 112 },
  272. .p1 = { .min = 2, .max = 8 },
  273. .p2 = { .dot_limit = 225000,
  274. .p2_slow = 14, .p2_fast = 14 },
  275. .find_pll = intel_g4x_find_best_PLL,
  276. };
  277. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  278. .dot = { .min = 25000, .max = 350000 },
  279. .vco = { .min = 1760000, .max = 3510000 },
  280. .n = { .min = 1, .max = 3 },
  281. .m = { .min = 79, .max = 127 },
  282. .m1 = { .min = 12, .max = 22 },
  283. .m2 = { .min = 5, .max = 9 },
  284. .p = { .min = 14, .max = 56 },
  285. .p1 = { .min = 2, .max = 8 },
  286. .p2 = { .dot_limit = 225000,
  287. .p2_slow = 7, .p2_fast = 7 },
  288. .find_pll = intel_g4x_find_best_PLL,
  289. };
  290. /* LVDS 100mhz refclk limits. */
  291. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  292. .dot = { .min = 25000, .max = 350000 },
  293. .vco = { .min = 1760000, .max = 3510000 },
  294. .n = { .min = 1, .max = 2 },
  295. .m = { .min = 79, .max = 126 },
  296. .m1 = { .min = 12, .max = 22 },
  297. .m2 = { .min = 5, .max = 9 },
  298. .p = { .min = 28, .max = 112 },
  299. .p1 = { .min = 2, .max = 8 },
  300. .p2 = { .dot_limit = 225000,
  301. .p2_slow = 14, .p2_fast = 14 },
  302. .find_pll = intel_g4x_find_best_PLL,
  303. };
  304. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  305. .dot = { .min = 25000, .max = 350000 },
  306. .vco = { .min = 1760000, .max = 3510000 },
  307. .n = { .min = 1, .max = 3 },
  308. .m = { .min = 79, .max = 126 },
  309. .m1 = { .min = 12, .max = 22 },
  310. .m2 = { .min = 5, .max = 9 },
  311. .p = { .min = 14, .max = 42 },
  312. .p1 = { .min = 2, .max = 6 },
  313. .p2 = { .dot_limit = 225000,
  314. .p2_slow = 7, .p2_fast = 7 },
  315. .find_pll = intel_g4x_find_best_PLL,
  316. };
  317. static const intel_limit_t intel_limits_vlv_dac = {
  318. .dot = { .min = 25000, .max = 270000 },
  319. .vco = { .min = 4000000, .max = 6000000 },
  320. .n = { .min = 1, .max = 7 },
  321. .m = { .min = 22, .max = 450 }, /* guess */
  322. .m1 = { .min = 2, .max = 3 },
  323. .m2 = { .min = 11, .max = 156 },
  324. .p = { .min = 10, .max = 30 },
  325. .p1 = { .min = 1, .max = 3 },
  326. .p2 = { .dot_limit = 270000,
  327. .p2_slow = 2, .p2_fast = 20 },
  328. .find_pll = intel_vlv_find_best_pll,
  329. };
  330. static const intel_limit_t intel_limits_vlv_hdmi = {
  331. .dot = { .min = 25000, .max = 270000 },
  332. .vco = { .min = 4000000, .max = 6000000 },
  333. .n = { .min = 1, .max = 7 },
  334. .m = { .min = 60, .max = 300 }, /* guess */
  335. .m1 = { .min = 2, .max = 3 },
  336. .m2 = { .min = 11, .max = 156 },
  337. .p = { .min = 10, .max = 30 },
  338. .p1 = { .min = 2, .max = 3 },
  339. .p2 = { .dot_limit = 270000,
  340. .p2_slow = 2, .p2_fast = 20 },
  341. .find_pll = intel_vlv_find_best_pll,
  342. };
  343. static const intel_limit_t intel_limits_vlv_dp = {
  344. .dot = { .min = 25000, .max = 270000 },
  345. .vco = { .min = 4000000, .max = 6000000 },
  346. .n = { .min = 1, .max = 7 },
  347. .m = { .min = 22, .max = 450 },
  348. .m1 = { .min = 2, .max = 3 },
  349. .m2 = { .min = 11, .max = 156 },
  350. .p = { .min = 10, .max = 30 },
  351. .p1 = { .min = 1, .max = 3 },
  352. .p2 = { .dot_limit = 270000,
  353. .p2_slow = 2, .p2_fast = 20 },
  354. .find_pll = intel_vlv_find_best_pll,
  355. };
  356. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  357. int refclk)
  358. {
  359. struct drm_device *dev = crtc->dev;
  360. const intel_limit_t *limit;
  361. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  362. if (intel_is_dual_link_lvds(dev)) {
  363. if (refclk == 100000)
  364. limit = &intel_limits_ironlake_dual_lvds_100m;
  365. else
  366. limit = &intel_limits_ironlake_dual_lvds;
  367. } else {
  368. if (refclk == 100000)
  369. limit = &intel_limits_ironlake_single_lvds_100m;
  370. else
  371. limit = &intel_limits_ironlake_single_lvds;
  372. }
  373. } else
  374. limit = &intel_limits_ironlake_dac;
  375. return limit;
  376. }
  377. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  378. {
  379. struct drm_device *dev = crtc->dev;
  380. const intel_limit_t *limit;
  381. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  382. if (intel_is_dual_link_lvds(dev))
  383. limit = &intel_limits_g4x_dual_channel_lvds;
  384. else
  385. limit = &intel_limits_g4x_single_channel_lvds;
  386. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  387. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  388. limit = &intel_limits_g4x_hdmi;
  389. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  390. limit = &intel_limits_g4x_sdvo;
  391. } else /* The option is for other outputs */
  392. limit = &intel_limits_i9xx_sdvo;
  393. return limit;
  394. }
  395. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  396. {
  397. struct drm_device *dev = crtc->dev;
  398. const intel_limit_t *limit;
  399. if (HAS_PCH_SPLIT(dev))
  400. limit = intel_ironlake_limit(crtc, refclk);
  401. else if (IS_G4X(dev)) {
  402. limit = intel_g4x_limit(crtc);
  403. } else if (IS_PINEVIEW(dev)) {
  404. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  405. limit = &intel_limits_pineview_lvds;
  406. else
  407. limit = &intel_limits_pineview_sdvo;
  408. } else if (IS_VALLEYVIEW(dev)) {
  409. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  410. limit = &intel_limits_vlv_dac;
  411. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  412. limit = &intel_limits_vlv_hdmi;
  413. else
  414. limit = &intel_limits_vlv_dp;
  415. } else if (!IS_GEN2(dev)) {
  416. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  417. limit = &intel_limits_i9xx_lvds;
  418. else
  419. limit = &intel_limits_i9xx_sdvo;
  420. } else {
  421. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  422. limit = &intel_limits_i8xx_lvds;
  423. else
  424. limit = &intel_limits_i8xx_dvo;
  425. }
  426. return limit;
  427. }
  428. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  429. static void pineview_clock(int refclk, intel_clock_t *clock)
  430. {
  431. clock->m = clock->m2 + 2;
  432. clock->p = clock->p1 * clock->p2;
  433. clock->vco = refclk * clock->m / clock->n;
  434. clock->dot = clock->vco / clock->p;
  435. }
  436. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  437. {
  438. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  439. }
  440. static void i9xx_clock(int refclk, intel_clock_t *clock)
  441. {
  442. clock->m = i9xx_dpll_compute_m(clock);
  443. clock->p = clock->p1 * clock->p2;
  444. clock->vco = refclk * clock->m / (clock->n + 2);
  445. clock->dot = clock->vco / clock->p;
  446. }
  447. /**
  448. * Returns whether any output on the specified pipe is of the specified type
  449. */
  450. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  451. {
  452. struct drm_device *dev = crtc->dev;
  453. struct intel_encoder *encoder;
  454. for_each_encoder_on_crtc(dev, crtc, encoder)
  455. if (encoder->type == type)
  456. return true;
  457. return false;
  458. }
  459. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  460. /**
  461. * Returns whether the given set of divisors are valid for a given refclk with
  462. * the given connectors.
  463. */
  464. static bool intel_PLL_is_valid(struct drm_device *dev,
  465. const intel_limit_t *limit,
  466. const intel_clock_t *clock)
  467. {
  468. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  469. INTELPllInvalid("p1 out of range\n");
  470. if (clock->p < limit->p.min || limit->p.max < clock->p)
  471. INTELPllInvalid("p out of range\n");
  472. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  473. INTELPllInvalid("m2 out of range\n");
  474. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  475. INTELPllInvalid("m1 out of range\n");
  476. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  477. INTELPllInvalid("m1 <= m2\n");
  478. if (clock->m < limit->m.min || limit->m.max < clock->m)
  479. INTELPllInvalid("m out of range\n");
  480. if (clock->n < limit->n.min || limit->n.max < clock->n)
  481. INTELPllInvalid("n out of range\n");
  482. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  483. INTELPllInvalid("vco out of range\n");
  484. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  485. * connector, etc., rather than just a single range.
  486. */
  487. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  488. INTELPllInvalid("dot out of range\n");
  489. return true;
  490. }
  491. static bool
  492. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  493. int target, int refclk, intel_clock_t *match_clock,
  494. intel_clock_t *best_clock)
  495. {
  496. struct drm_device *dev = crtc->dev;
  497. intel_clock_t clock;
  498. int err = target;
  499. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  500. /*
  501. * For LVDS just rely on its current settings for dual-channel.
  502. * We haven't figured out how to reliably set up different
  503. * single/dual channel state, if we even can.
  504. */
  505. if (intel_is_dual_link_lvds(dev))
  506. clock.p2 = limit->p2.p2_fast;
  507. else
  508. clock.p2 = limit->p2.p2_slow;
  509. } else {
  510. if (target < limit->p2.dot_limit)
  511. clock.p2 = limit->p2.p2_slow;
  512. else
  513. clock.p2 = limit->p2.p2_fast;
  514. }
  515. memset(best_clock, 0, sizeof(*best_clock));
  516. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  517. clock.m1++) {
  518. for (clock.m2 = limit->m2.min;
  519. clock.m2 <= limit->m2.max; clock.m2++) {
  520. /* m1 is always 0 in Pineview */
  521. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  522. break;
  523. for (clock.n = limit->n.min;
  524. clock.n <= limit->n.max; clock.n++) {
  525. for (clock.p1 = limit->p1.min;
  526. clock.p1 <= limit->p1.max; clock.p1++) {
  527. int this_err;
  528. i9xx_clock(refclk, &clock);
  529. if (!intel_PLL_is_valid(dev, limit,
  530. &clock))
  531. continue;
  532. if (match_clock &&
  533. clock.p != match_clock->p)
  534. continue;
  535. this_err = abs(clock.dot - target);
  536. if (this_err < err) {
  537. *best_clock = clock;
  538. err = this_err;
  539. }
  540. }
  541. }
  542. }
  543. }
  544. return (err != target);
  545. }
  546. static bool
  547. intel_pnv_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  548. int target, int refclk, intel_clock_t *match_clock,
  549. intel_clock_t *best_clock)
  550. {
  551. struct drm_device *dev = crtc->dev;
  552. intel_clock_t clock;
  553. int err = target;
  554. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  555. /*
  556. * For LVDS just rely on its current settings for dual-channel.
  557. * We haven't figured out how to reliably set up different
  558. * single/dual channel state, if we even can.
  559. */
  560. if (intel_is_dual_link_lvds(dev))
  561. clock.p2 = limit->p2.p2_fast;
  562. else
  563. clock.p2 = limit->p2.p2_slow;
  564. } else {
  565. if (target < limit->p2.dot_limit)
  566. clock.p2 = limit->p2.p2_slow;
  567. else
  568. clock.p2 = limit->p2.p2_fast;
  569. }
  570. memset(best_clock, 0, sizeof(*best_clock));
  571. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  572. clock.m1++) {
  573. for (clock.m2 = limit->m2.min;
  574. clock.m2 <= limit->m2.max; clock.m2++) {
  575. /* m1 is always 0 in Pineview */
  576. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  577. break;
  578. for (clock.n = limit->n.min;
  579. clock.n <= limit->n.max; clock.n++) {
  580. for (clock.p1 = limit->p1.min;
  581. clock.p1 <= limit->p1.max; clock.p1++) {
  582. int this_err;
  583. pineview_clock(refclk, &clock);
  584. if (!intel_PLL_is_valid(dev, limit,
  585. &clock))
  586. continue;
  587. if (match_clock &&
  588. clock.p != match_clock->p)
  589. continue;
  590. this_err = abs(clock.dot - target);
  591. if (this_err < err) {
  592. *best_clock = clock;
  593. err = this_err;
  594. }
  595. }
  596. }
  597. }
  598. }
  599. return (err != target);
  600. }
  601. static bool
  602. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  603. int target, int refclk, intel_clock_t *match_clock,
  604. intel_clock_t *best_clock)
  605. {
  606. struct drm_device *dev = crtc->dev;
  607. intel_clock_t clock;
  608. int max_n;
  609. bool found;
  610. /* approximately equals target * 0.00585 */
  611. int err_most = (target >> 8) + (target >> 9);
  612. found = false;
  613. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  614. if (intel_is_dual_link_lvds(dev))
  615. clock.p2 = limit->p2.p2_fast;
  616. else
  617. clock.p2 = limit->p2.p2_slow;
  618. } else {
  619. if (target < limit->p2.dot_limit)
  620. clock.p2 = limit->p2.p2_slow;
  621. else
  622. clock.p2 = limit->p2.p2_fast;
  623. }
  624. memset(best_clock, 0, sizeof(*best_clock));
  625. max_n = limit->n.max;
  626. /* based on hardware requirement, prefer smaller n to precision */
  627. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  628. /* based on hardware requirement, prefere larger m1,m2 */
  629. for (clock.m1 = limit->m1.max;
  630. clock.m1 >= limit->m1.min; clock.m1--) {
  631. for (clock.m2 = limit->m2.max;
  632. clock.m2 >= limit->m2.min; clock.m2--) {
  633. for (clock.p1 = limit->p1.max;
  634. clock.p1 >= limit->p1.min; clock.p1--) {
  635. int this_err;
  636. i9xx_clock(refclk, &clock);
  637. if (!intel_PLL_is_valid(dev, limit,
  638. &clock))
  639. continue;
  640. this_err = abs(clock.dot - target);
  641. if (this_err < err_most) {
  642. *best_clock = clock;
  643. err_most = this_err;
  644. max_n = clock.n;
  645. found = true;
  646. }
  647. }
  648. }
  649. }
  650. }
  651. return found;
  652. }
  653. static bool
  654. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  655. int target, int refclk, intel_clock_t *match_clock,
  656. intel_clock_t *best_clock)
  657. {
  658. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  659. u32 m, n, fastclk;
  660. u32 updrate, minupdate, fracbits, p;
  661. unsigned long bestppm, ppm, absppm;
  662. int dotclk, flag;
  663. flag = 0;
  664. dotclk = target * 1000;
  665. bestppm = 1000000;
  666. ppm = absppm = 0;
  667. fastclk = dotclk / (2*100);
  668. updrate = 0;
  669. minupdate = 19200;
  670. fracbits = 1;
  671. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  672. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  673. /* based on hardware requirement, prefer smaller n to precision */
  674. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  675. updrate = refclk / n;
  676. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  677. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  678. if (p2 > 10)
  679. p2 = p2 - 1;
  680. p = p1 * p2;
  681. /* based on hardware requirement, prefer bigger m1,m2 values */
  682. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  683. m2 = (((2*(fastclk * p * n / m1 )) +
  684. refclk) / (2*refclk));
  685. m = m1 * m2;
  686. vco = updrate * m;
  687. if (vco >= limit->vco.min && vco < limit->vco.max) {
  688. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  689. absppm = (ppm > 0) ? ppm : (-ppm);
  690. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  691. bestppm = 0;
  692. flag = 1;
  693. }
  694. if (absppm < bestppm - 10) {
  695. bestppm = absppm;
  696. flag = 1;
  697. }
  698. if (flag) {
  699. bestn = n;
  700. bestm1 = m1;
  701. bestm2 = m2;
  702. bestp1 = p1;
  703. bestp2 = p2;
  704. flag = 0;
  705. }
  706. }
  707. }
  708. }
  709. }
  710. }
  711. best_clock->n = bestn;
  712. best_clock->m1 = bestm1;
  713. best_clock->m2 = bestm2;
  714. best_clock->p1 = bestp1;
  715. best_clock->p2 = bestp2;
  716. return true;
  717. }
  718. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  719. enum pipe pipe)
  720. {
  721. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  722. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  723. return intel_crtc->config.cpu_transcoder;
  724. }
  725. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  726. {
  727. struct drm_i915_private *dev_priv = dev->dev_private;
  728. u32 frame, frame_reg = PIPEFRAME(pipe);
  729. frame = I915_READ(frame_reg);
  730. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  731. DRM_DEBUG_KMS("vblank wait timed out\n");
  732. }
  733. /**
  734. * intel_wait_for_vblank - wait for vblank on a given pipe
  735. * @dev: drm device
  736. * @pipe: pipe to wait for
  737. *
  738. * Wait for vblank to occur on a given pipe. Needed for various bits of
  739. * mode setting code.
  740. */
  741. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  742. {
  743. struct drm_i915_private *dev_priv = dev->dev_private;
  744. int pipestat_reg = PIPESTAT(pipe);
  745. if (INTEL_INFO(dev)->gen >= 5) {
  746. ironlake_wait_for_vblank(dev, pipe);
  747. return;
  748. }
  749. /* Clear existing vblank status. Note this will clear any other
  750. * sticky status fields as well.
  751. *
  752. * This races with i915_driver_irq_handler() with the result
  753. * that either function could miss a vblank event. Here it is not
  754. * fatal, as we will either wait upon the next vblank interrupt or
  755. * timeout. Generally speaking intel_wait_for_vblank() is only
  756. * called during modeset at which time the GPU should be idle and
  757. * should *not* be performing page flips and thus not waiting on
  758. * vblanks...
  759. * Currently, the result of us stealing a vblank from the irq
  760. * handler is that a single frame will be skipped during swapbuffers.
  761. */
  762. I915_WRITE(pipestat_reg,
  763. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  764. /* Wait for vblank interrupt bit to set */
  765. if (wait_for(I915_READ(pipestat_reg) &
  766. PIPE_VBLANK_INTERRUPT_STATUS,
  767. 50))
  768. DRM_DEBUG_KMS("vblank wait timed out\n");
  769. }
  770. /*
  771. * intel_wait_for_pipe_off - wait for pipe to turn off
  772. * @dev: drm device
  773. * @pipe: pipe to wait for
  774. *
  775. * After disabling a pipe, we can't wait for vblank in the usual way,
  776. * spinning on the vblank interrupt status bit, since we won't actually
  777. * see an interrupt when the pipe is disabled.
  778. *
  779. * On Gen4 and above:
  780. * wait for the pipe register state bit to turn off
  781. *
  782. * Otherwise:
  783. * wait for the display line value to settle (it usually
  784. * ends up stopping at the start of the next frame).
  785. *
  786. */
  787. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  788. {
  789. struct drm_i915_private *dev_priv = dev->dev_private;
  790. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  791. pipe);
  792. if (INTEL_INFO(dev)->gen >= 4) {
  793. int reg = PIPECONF(cpu_transcoder);
  794. /* Wait for the Pipe State to go off */
  795. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  796. 100))
  797. WARN(1, "pipe_off wait timed out\n");
  798. } else {
  799. u32 last_line, line_mask;
  800. int reg = PIPEDSL(pipe);
  801. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  802. if (IS_GEN2(dev))
  803. line_mask = DSL_LINEMASK_GEN2;
  804. else
  805. line_mask = DSL_LINEMASK_GEN3;
  806. /* Wait for the display line to settle */
  807. do {
  808. last_line = I915_READ(reg) & line_mask;
  809. mdelay(5);
  810. } while (((I915_READ(reg) & line_mask) != last_line) &&
  811. time_after(timeout, jiffies));
  812. if (time_after(jiffies, timeout))
  813. WARN(1, "pipe_off wait timed out\n");
  814. }
  815. }
  816. /*
  817. * ibx_digital_port_connected - is the specified port connected?
  818. * @dev_priv: i915 private structure
  819. * @port: the port to test
  820. *
  821. * Returns true if @port is connected, false otherwise.
  822. */
  823. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  824. struct intel_digital_port *port)
  825. {
  826. u32 bit;
  827. if (HAS_PCH_IBX(dev_priv->dev)) {
  828. switch(port->port) {
  829. case PORT_B:
  830. bit = SDE_PORTB_HOTPLUG;
  831. break;
  832. case PORT_C:
  833. bit = SDE_PORTC_HOTPLUG;
  834. break;
  835. case PORT_D:
  836. bit = SDE_PORTD_HOTPLUG;
  837. break;
  838. default:
  839. return true;
  840. }
  841. } else {
  842. switch(port->port) {
  843. case PORT_B:
  844. bit = SDE_PORTB_HOTPLUG_CPT;
  845. break;
  846. case PORT_C:
  847. bit = SDE_PORTC_HOTPLUG_CPT;
  848. break;
  849. case PORT_D:
  850. bit = SDE_PORTD_HOTPLUG_CPT;
  851. break;
  852. default:
  853. return true;
  854. }
  855. }
  856. return I915_READ(SDEISR) & bit;
  857. }
  858. static const char *state_string(bool enabled)
  859. {
  860. return enabled ? "on" : "off";
  861. }
  862. /* Only for pre-ILK configs */
  863. static void assert_pll(struct drm_i915_private *dev_priv,
  864. enum pipe pipe, bool state)
  865. {
  866. int reg;
  867. u32 val;
  868. bool cur_state;
  869. reg = DPLL(pipe);
  870. val = I915_READ(reg);
  871. cur_state = !!(val & DPLL_VCO_ENABLE);
  872. WARN(cur_state != state,
  873. "PLL state assertion failure (expected %s, current %s)\n",
  874. state_string(state), state_string(cur_state));
  875. }
  876. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  877. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  878. /* For ILK+ */
  879. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  880. struct intel_pch_pll *pll,
  881. struct intel_crtc *crtc,
  882. bool state)
  883. {
  884. u32 val;
  885. bool cur_state;
  886. if (HAS_PCH_LPT(dev_priv->dev)) {
  887. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  888. return;
  889. }
  890. if (WARN (!pll,
  891. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  892. return;
  893. val = I915_READ(pll->pll_reg);
  894. cur_state = !!(val & DPLL_VCO_ENABLE);
  895. WARN(cur_state != state,
  896. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  897. pll->pll_reg, state_string(state), state_string(cur_state), val);
  898. /* Make sure the selected PLL is correctly attached to the transcoder */
  899. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  900. u32 pch_dpll;
  901. pch_dpll = I915_READ(PCH_DPLL_SEL);
  902. cur_state = pll->pll_reg == _PCH_DPLL_B;
  903. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  904. "PLL[%d] not attached to this transcoder %c: %08x\n",
  905. cur_state, pipe_name(crtc->pipe), pch_dpll)) {
  906. cur_state = !!(val >> (4*crtc->pipe + 3));
  907. WARN(cur_state != state,
  908. "PLL[%d] not %s on this transcoder %c: %08x\n",
  909. pll->pll_reg == _PCH_DPLL_B,
  910. state_string(state),
  911. pipe_name(crtc->pipe),
  912. val);
  913. }
  914. }
  915. }
  916. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  917. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  918. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  919. enum pipe pipe, bool state)
  920. {
  921. int reg;
  922. u32 val;
  923. bool cur_state;
  924. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  925. pipe);
  926. if (HAS_DDI(dev_priv->dev)) {
  927. /* DDI does not have a specific FDI_TX register */
  928. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  929. val = I915_READ(reg);
  930. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  931. } else {
  932. reg = FDI_TX_CTL(pipe);
  933. val = I915_READ(reg);
  934. cur_state = !!(val & FDI_TX_ENABLE);
  935. }
  936. WARN(cur_state != state,
  937. "FDI TX state assertion failure (expected %s, current %s)\n",
  938. state_string(state), state_string(cur_state));
  939. }
  940. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  941. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  942. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  943. enum pipe pipe, bool state)
  944. {
  945. int reg;
  946. u32 val;
  947. bool cur_state;
  948. reg = FDI_RX_CTL(pipe);
  949. val = I915_READ(reg);
  950. cur_state = !!(val & FDI_RX_ENABLE);
  951. WARN(cur_state != state,
  952. "FDI RX state assertion failure (expected %s, current %s)\n",
  953. state_string(state), state_string(cur_state));
  954. }
  955. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  956. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  957. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  958. enum pipe pipe)
  959. {
  960. int reg;
  961. u32 val;
  962. /* ILK FDI PLL is always enabled */
  963. if (dev_priv->info->gen == 5)
  964. return;
  965. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  966. if (HAS_DDI(dev_priv->dev))
  967. return;
  968. reg = FDI_TX_CTL(pipe);
  969. val = I915_READ(reg);
  970. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  971. }
  972. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  973. enum pipe pipe)
  974. {
  975. int reg;
  976. u32 val;
  977. reg = FDI_RX_CTL(pipe);
  978. val = I915_READ(reg);
  979. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  980. }
  981. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  982. enum pipe pipe)
  983. {
  984. int pp_reg, lvds_reg;
  985. u32 val;
  986. enum pipe panel_pipe = PIPE_A;
  987. bool locked = true;
  988. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  989. pp_reg = PCH_PP_CONTROL;
  990. lvds_reg = PCH_LVDS;
  991. } else {
  992. pp_reg = PP_CONTROL;
  993. lvds_reg = LVDS;
  994. }
  995. val = I915_READ(pp_reg);
  996. if (!(val & PANEL_POWER_ON) ||
  997. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  998. locked = false;
  999. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  1000. panel_pipe = PIPE_B;
  1001. WARN(panel_pipe == pipe && locked,
  1002. "panel assertion failure, pipe %c regs locked\n",
  1003. pipe_name(pipe));
  1004. }
  1005. void assert_pipe(struct drm_i915_private *dev_priv,
  1006. enum pipe pipe, bool state)
  1007. {
  1008. int reg;
  1009. u32 val;
  1010. bool cur_state;
  1011. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1012. pipe);
  1013. /* if we need the pipe A quirk it must be always on */
  1014. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  1015. state = true;
  1016. if (!intel_display_power_enabled(dev_priv->dev,
  1017. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  1018. cur_state = false;
  1019. } else {
  1020. reg = PIPECONF(cpu_transcoder);
  1021. val = I915_READ(reg);
  1022. cur_state = !!(val & PIPECONF_ENABLE);
  1023. }
  1024. WARN(cur_state != state,
  1025. "pipe %c assertion failure (expected %s, current %s)\n",
  1026. pipe_name(pipe), state_string(state), state_string(cur_state));
  1027. }
  1028. static void assert_plane(struct drm_i915_private *dev_priv,
  1029. enum plane plane, bool state)
  1030. {
  1031. int reg;
  1032. u32 val;
  1033. bool cur_state;
  1034. reg = DSPCNTR(plane);
  1035. val = I915_READ(reg);
  1036. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1037. WARN(cur_state != state,
  1038. "plane %c assertion failure (expected %s, current %s)\n",
  1039. plane_name(plane), state_string(state), state_string(cur_state));
  1040. }
  1041. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1042. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1043. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1044. enum pipe pipe)
  1045. {
  1046. int reg, i;
  1047. u32 val;
  1048. int cur_pipe;
  1049. /* Planes are fixed to pipes on ILK+ */
  1050. if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
  1051. reg = DSPCNTR(pipe);
  1052. val = I915_READ(reg);
  1053. WARN((val & DISPLAY_PLANE_ENABLE),
  1054. "plane %c assertion failure, should be disabled but not\n",
  1055. plane_name(pipe));
  1056. return;
  1057. }
  1058. /* Need to check both planes against the pipe */
  1059. for (i = 0; i < 2; i++) {
  1060. reg = DSPCNTR(i);
  1061. val = I915_READ(reg);
  1062. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1063. DISPPLANE_SEL_PIPE_SHIFT;
  1064. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1065. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1066. plane_name(i), pipe_name(pipe));
  1067. }
  1068. }
  1069. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1070. enum pipe pipe)
  1071. {
  1072. int reg, i;
  1073. u32 val;
  1074. if (!IS_VALLEYVIEW(dev_priv->dev))
  1075. return;
  1076. /* Need to check both planes against the pipe */
  1077. for (i = 0; i < dev_priv->num_plane; i++) {
  1078. reg = SPCNTR(pipe, i);
  1079. val = I915_READ(reg);
  1080. WARN((val & SP_ENABLE),
  1081. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1082. sprite_name(pipe, i), pipe_name(pipe));
  1083. }
  1084. }
  1085. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1086. {
  1087. u32 val;
  1088. bool enabled;
  1089. if (HAS_PCH_LPT(dev_priv->dev)) {
  1090. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1091. return;
  1092. }
  1093. val = I915_READ(PCH_DREF_CONTROL);
  1094. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1095. DREF_SUPERSPREAD_SOURCE_MASK));
  1096. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1097. }
  1098. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1099. enum pipe pipe)
  1100. {
  1101. int reg;
  1102. u32 val;
  1103. bool enabled;
  1104. reg = PCH_TRANSCONF(pipe);
  1105. val = I915_READ(reg);
  1106. enabled = !!(val & TRANS_ENABLE);
  1107. WARN(enabled,
  1108. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1109. pipe_name(pipe));
  1110. }
  1111. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1112. enum pipe pipe, u32 port_sel, u32 val)
  1113. {
  1114. if ((val & DP_PORT_EN) == 0)
  1115. return false;
  1116. if (HAS_PCH_CPT(dev_priv->dev)) {
  1117. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1118. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1119. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1120. return false;
  1121. } else {
  1122. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1123. return false;
  1124. }
  1125. return true;
  1126. }
  1127. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1128. enum pipe pipe, u32 val)
  1129. {
  1130. if ((val & SDVO_ENABLE) == 0)
  1131. return false;
  1132. if (HAS_PCH_CPT(dev_priv->dev)) {
  1133. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1134. return false;
  1135. } else {
  1136. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1137. return false;
  1138. }
  1139. return true;
  1140. }
  1141. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1142. enum pipe pipe, u32 val)
  1143. {
  1144. if ((val & LVDS_PORT_EN) == 0)
  1145. return false;
  1146. if (HAS_PCH_CPT(dev_priv->dev)) {
  1147. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1148. return false;
  1149. } else {
  1150. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1151. return false;
  1152. }
  1153. return true;
  1154. }
  1155. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1156. enum pipe pipe, u32 val)
  1157. {
  1158. if ((val & ADPA_DAC_ENABLE) == 0)
  1159. return false;
  1160. if (HAS_PCH_CPT(dev_priv->dev)) {
  1161. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1162. return false;
  1163. } else {
  1164. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1165. return false;
  1166. }
  1167. return true;
  1168. }
  1169. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1170. enum pipe pipe, int reg, u32 port_sel)
  1171. {
  1172. u32 val = I915_READ(reg);
  1173. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1174. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1175. reg, pipe_name(pipe));
  1176. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1177. && (val & DP_PIPEB_SELECT),
  1178. "IBX PCH dp port still using transcoder B\n");
  1179. }
  1180. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1181. enum pipe pipe, int reg)
  1182. {
  1183. u32 val = I915_READ(reg);
  1184. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1185. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1186. reg, pipe_name(pipe));
  1187. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1188. && (val & SDVO_PIPE_B_SELECT),
  1189. "IBX PCH hdmi port still using transcoder B\n");
  1190. }
  1191. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1192. enum pipe pipe)
  1193. {
  1194. int reg;
  1195. u32 val;
  1196. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1197. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1198. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1199. reg = PCH_ADPA;
  1200. val = I915_READ(reg);
  1201. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1202. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1203. pipe_name(pipe));
  1204. reg = PCH_LVDS;
  1205. val = I915_READ(reg);
  1206. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1207. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1208. pipe_name(pipe));
  1209. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1210. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1211. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1212. }
  1213. /**
  1214. * intel_enable_pll - enable a PLL
  1215. * @dev_priv: i915 private structure
  1216. * @pipe: pipe PLL to enable
  1217. *
  1218. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1219. * make sure the PLL reg is writable first though, since the panel write
  1220. * protect mechanism may be enabled.
  1221. *
  1222. * Note! This is for pre-ILK only.
  1223. *
  1224. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1225. */
  1226. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1227. {
  1228. int reg;
  1229. u32 val;
  1230. assert_pipe_disabled(dev_priv, pipe);
  1231. /* No really, not for ILK+ */
  1232. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1233. /* PLL is protected by panel, make sure we can write it */
  1234. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1235. assert_panel_unlocked(dev_priv, pipe);
  1236. reg = DPLL(pipe);
  1237. val = I915_READ(reg);
  1238. val |= DPLL_VCO_ENABLE;
  1239. /* We do this three times for luck */
  1240. I915_WRITE(reg, val);
  1241. POSTING_READ(reg);
  1242. udelay(150); /* wait for warmup */
  1243. I915_WRITE(reg, val);
  1244. POSTING_READ(reg);
  1245. udelay(150); /* wait for warmup */
  1246. I915_WRITE(reg, val);
  1247. POSTING_READ(reg);
  1248. udelay(150); /* wait for warmup */
  1249. }
  1250. /**
  1251. * intel_disable_pll - disable a PLL
  1252. * @dev_priv: i915 private structure
  1253. * @pipe: pipe PLL to disable
  1254. *
  1255. * Disable the PLL for @pipe, making sure the pipe is off first.
  1256. *
  1257. * Note! This is for pre-ILK only.
  1258. */
  1259. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1260. {
  1261. int reg;
  1262. u32 val;
  1263. /* Don't disable pipe A or pipe A PLLs if needed */
  1264. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1265. return;
  1266. /* Make sure the pipe isn't still relying on us */
  1267. assert_pipe_disabled(dev_priv, pipe);
  1268. reg = DPLL(pipe);
  1269. val = I915_READ(reg);
  1270. val &= ~DPLL_VCO_ENABLE;
  1271. I915_WRITE(reg, val);
  1272. POSTING_READ(reg);
  1273. }
  1274. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1275. {
  1276. u32 port_mask;
  1277. if (!port)
  1278. port_mask = DPLL_PORTB_READY_MASK;
  1279. else
  1280. port_mask = DPLL_PORTC_READY_MASK;
  1281. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1282. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1283. 'B' + port, I915_READ(DPLL(0)));
  1284. }
  1285. /**
  1286. * ironlake_enable_pch_pll - enable PCH PLL
  1287. * @dev_priv: i915 private structure
  1288. * @pipe: pipe PLL to enable
  1289. *
  1290. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1291. * drives the transcoder clock.
  1292. */
  1293. static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
  1294. {
  1295. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1296. struct intel_pch_pll *pll;
  1297. int reg;
  1298. u32 val;
  1299. /* PCH PLLs only available on ILK, SNB and IVB */
  1300. BUG_ON(dev_priv->info->gen < 5);
  1301. pll = intel_crtc->pch_pll;
  1302. if (pll == NULL)
  1303. return;
  1304. if (WARN_ON(pll->refcount == 0))
  1305. return;
  1306. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1307. pll->pll_reg, pll->active, pll->on,
  1308. intel_crtc->base.base.id);
  1309. /* PCH refclock must be enabled first */
  1310. assert_pch_refclk_enabled(dev_priv);
  1311. if (pll->active++ && pll->on) {
  1312. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1313. return;
  1314. }
  1315. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1316. reg = pll->pll_reg;
  1317. val = I915_READ(reg);
  1318. val |= DPLL_VCO_ENABLE;
  1319. I915_WRITE(reg, val);
  1320. POSTING_READ(reg);
  1321. udelay(200);
  1322. pll->on = true;
  1323. }
  1324. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1325. {
  1326. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1327. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1328. int reg;
  1329. u32 val;
  1330. /* PCH only available on ILK+ */
  1331. BUG_ON(dev_priv->info->gen < 5);
  1332. if (pll == NULL)
  1333. return;
  1334. if (WARN_ON(pll->refcount == 0))
  1335. return;
  1336. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1337. pll->pll_reg, pll->active, pll->on,
  1338. intel_crtc->base.base.id);
  1339. if (WARN_ON(pll->active == 0)) {
  1340. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1341. return;
  1342. }
  1343. if (--pll->active) {
  1344. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1345. return;
  1346. }
  1347. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1348. /* Make sure transcoder isn't still depending on us */
  1349. assert_pch_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1350. reg = pll->pll_reg;
  1351. val = I915_READ(reg);
  1352. val &= ~DPLL_VCO_ENABLE;
  1353. I915_WRITE(reg, val);
  1354. POSTING_READ(reg);
  1355. udelay(200);
  1356. pll->on = false;
  1357. }
  1358. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1359. enum pipe pipe)
  1360. {
  1361. struct drm_device *dev = dev_priv->dev;
  1362. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1363. uint32_t reg, val, pipeconf_val;
  1364. /* PCH only available on ILK+ */
  1365. BUG_ON(dev_priv->info->gen < 5);
  1366. /* Make sure PCH DPLL is enabled */
  1367. assert_pch_pll_enabled(dev_priv,
  1368. to_intel_crtc(crtc)->pch_pll,
  1369. to_intel_crtc(crtc));
  1370. /* FDI must be feeding us bits for PCH ports */
  1371. assert_fdi_tx_enabled(dev_priv, pipe);
  1372. assert_fdi_rx_enabled(dev_priv, pipe);
  1373. if (HAS_PCH_CPT(dev)) {
  1374. /* Workaround: Set the timing override bit before enabling the
  1375. * pch transcoder. */
  1376. reg = TRANS_CHICKEN2(pipe);
  1377. val = I915_READ(reg);
  1378. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1379. I915_WRITE(reg, val);
  1380. }
  1381. reg = PCH_TRANSCONF(pipe);
  1382. val = I915_READ(reg);
  1383. pipeconf_val = I915_READ(PIPECONF(pipe));
  1384. if (HAS_PCH_IBX(dev_priv->dev)) {
  1385. /*
  1386. * make the BPC in transcoder be consistent with
  1387. * that in pipeconf reg.
  1388. */
  1389. val &= ~PIPECONF_BPC_MASK;
  1390. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1391. }
  1392. val &= ~TRANS_INTERLACE_MASK;
  1393. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1394. if (HAS_PCH_IBX(dev_priv->dev) &&
  1395. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1396. val |= TRANS_LEGACY_INTERLACED_ILK;
  1397. else
  1398. val |= TRANS_INTERLACED;
  1399. else
  1400. val |= TRANS_PROGRESSIVE;
  1401. I915_WRITE(reg, val | TRANS_ENABLE);
  1402. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1403. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1404. }
  1405. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1406. enum transcoder cpu_transcoder)
  1407. {
  1408. u32 val, pipeconf_val;
  1409. /* PCH only available on ILK+ */
  1410. BUG_ON(dev_priv->info->gen < 5);
  1411. /* FDI must be feeding us bits for PCH ports */
  1412. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1413. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1414. /* Workaround: set timing override bit. */
  1415. val = I915_READ(_TRANSA_CHICKEN2);
  1416. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1417. I915_WRITE(_TRANSA_CHICKEN2, val);
  1418. val = TRANS_ENABLE;
  1419. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1420. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1421. PIPECONF_INTERLACED_ILK)
  1422. val |= TRANS_INTERLACED;
  1423. else
  1424. val |= TRANS_PROGRESSIVE;
  1425. I915_WRITE(LPT_TRANSCONF, val);
  1426. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1427. DRM_ERROR("Failed to enable PCH transcoder\n");
  1428. }
  1429. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1430. enum pipe pipe)
  1431. {
  1432. struct drm_device *dev = dev_priv->dev;
  1433. uint32_t reg, val;
  1434. /* FDI relies on the transcoder */
  1435. assert_fdi_tx_disabled(dev_priv, pipe);
  1436. assert_fdi_rx_disabled(dev_priv, pipe);
  1437. /* Ports must be off as well */
  1438. assert_pch_ports_disabled(dev_priv, pipe);
  1439. reg = PCH_TRANSCONF(pipe);
  1440. val = I915_READ(reg);
  1441. val &= ~TRANS_ENABLE;
  1442. I915_WRITE(reg, val);
  1443. /* wait for PCH transcoder off, transcoder state */
  1444. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1445. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1446. if (!HAS_PCH_IBX(dev)) {
  1447. /* Workaround: Clear the timing override chicken bit again. */
  1448. reg = TRANS_CHICKEN2(pipe);
  1449. val = I915_READ(reg);
  1450. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1451. I915_WRITE(reg, val);
  1452. }
  1453. }
  1454. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1455. {
  1456. u32 val;
  1457. val = I915_READ(LPT_TRANSCONF);
  1458. val &= ~TRANS_ENABLE;
  1459. I915_WRITE(LPT_TRANSCONF, val);
  1460. /* wait for PCH transcoder off, transcoder state */
  1461. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1462. DRM_ERROR("Failed to disable PCH transcoder\n");
  1463. /* Workaround: clear timing override bit. */
  1464. val = I915_READ(_TRANSA_CHICKEN2);
  1465. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1466. I915_WRITE(_TRANSA_CHICKEN2, val);
  1467. }
  1468. /**
  1469. * intel_enable_pipe - enable a pipe, asserting requirements
  1470. * @dev_priv: i915 private structure
  1471. * @pipe: pipe to enable
  1472. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1473. *
  1474. * Enable @pipe, making sure that various hardware specific requirements
  1475. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1476. *
  1477. * @pipe should be %PIPE_A or %PIPE_B.
  1478. *
  1479. * Will wait until the pipe is actually running (i.e. first vblank) before
  1480. * returning.
  1481. */
  1482. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1483. bool pch_port)
  1484. {
  1485. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1486. pipe);
  1487. enum pipe pch_transcoder;
  1488. int reg;
  1489. u32 val;
  1490. assert_planes_disabled(dev_priv, pipe);
  1491. assert_sprites_disabled(dev_priv, pipe);
  1492. if (HAS_PCH_LPT(dev_priv->dev))
  1493. pch_transcoder = TRANSCODER_A;
  1494. else
  1495. pch_transcoder = pipe;
  1496. /*
  1497. * A pipe without a PLL won't actually be able to drive bits from
  1498. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1499. * need the check.
  1500. */
  1501. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1502. assert_pll_enabled(dev_priv, pipe);
  1503. else {
  1504. if (pch_port) {
  1505. /* if driving the PCH, we need FDI enabled */
  1506. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1507. assert_fdi_tx_pll_enabled(dev_priv,
  1508. (enum pipe) cpu_transcoder);
  1509. }
  1510. /* FIXME: assert CPU port conditions for SNB+ */
  1511. }
  1512. reg = PIPECONF(cpu_transcoder);
  1513. val = I915_READ(reg);
  1514. if (val & PIPECONF_ENABLE)
  1515. return;
  1516. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1517. intel_wait_for_vblank(dev_priv->dev, pipe);
  1518. }
  1519. /**
  1520. * intel_disable_pipe - disable a pipe, asserting requirements
  1521. * @dev_priv: i915 private structure
  1522. * @pipe: pipe to disable
  1523. *
  1524. * Disable @pipe, making sure that various hardware specific requirements
  1525. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1526. *
  1527. * @pipe should be %PIPE_A or %PIPE_B.
  1528. *
  1529. * Will wait until the pipe has shut down before returning.
  1530. */
  1531. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1532. enum pipe pipe)
  1533. {
  1534. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1535. pipe);
  1536. int reg;
  1537. u32 val;
  1538. /*
  1539. * Make sure planes won't keep trying to pump pixels to us,
  1540. * or we might hang the display.
  1541. */
  1542. assert_planes_disabled(dev_priv, pipe);
  1543. assert_sprites_disabled(dev_priv, pipe);
  1544. /* Don't disable pipe A or pipe A PLLs if needed */
  1545. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1546. return;
  1547. reg = PIPECONF(cpu_transcoder);
  1548. val = I915_READ(reg);
  1549. if ((val & PIPECONF_ENABLE) == 0)
  1550. return;
  1551. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1552. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1553. }
  1554. /*
  1555. * Plane regs are double buffered, going from enabled->disabled needs a
  1556. * trigger in order to latch. The display address reg provides this.
  1557. */
  1558. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1559. enum plane plane)
  1560. {
  1561. if (dev_priv->info->gen >= 4)
  1562. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1563. else
  1564. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1565. }
  1566. /**
  1567. * intel_enable_plane - enable a display plane on a given pipe
  1568. * @dev_priv: i915 private structure
  1569. * @plane: plane to enable
  1570. * @pipe: pipe being fed
  1571. *
  1572. * Enable @plane on @pipe, making sure that @pipe is running first.
  1573. */
  1574. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1575. enum plane plane, enum pipe pipe)
  1576. {
  1577. int reg;
  1578. u32 val;
  1579. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1580. assert_pipe_enabled(dev_priv, pipe);
  1581. reg = DSPCNTR(plane);
  1582. val = I915_READ(reg);
  1583. if (val & DISPLAY_PLANE_ENABLE)
  1584. return;
  1585. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1586. intel_flush_display_plane(dev_priv, plane);
  1587. intel_wait_for_vblank(dev_priv->dev, pipe);
  1588. }
  1589. /**
  1590. * intel_disable_plane - disable a display plane
  1591. * @dev_priv: i915 private structure
  1592. * @plane: plane to disable
  1593. * @pipe: pipe consuming the data
  1594. *
  1595. * Disable @plane; should be an independent operation.
  1596. */
  1597. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1598. enum plane plane, enum pipe pipe)
  1599. {
  1600. int reg;
  1601. u32 val;
  1602. reg = DSPCNTR(plane);
  1603. val = I915_READ(reg);
  1604. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1605. return;
  1606. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1607. intel_flush_display_plane(dev_priv, plane);
  1608. intel_wait_for_vblank(dev_priv->dev, pipe);
  1609. }
  1610. static bool need_vtd_wa(struct drm_device *dev)
  1611. {
  1612. #ifdef CONFIG_INTEL_IOMMU
  1613. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1614. return true;
  1615. #endif
  1616. return false;
  1617. }
  1618. int
  1619. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1620. struct drm_i915_gem_object *obj,
  1621. struct intel_ring_buffer *pipelined)
  1622. {
  1623. struct drm_i915_private *dev_priv = dev->dev_private;
  1624. u32 alignment;
  1625. int ret;
  1626. switch (obj->tiling_mode) {
  1627. case I915_TILING_NONE:
  1628. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1629. alignment = 128 * 1024;
  1630. else if (INTEL_INFO(dev)->gen >= 4)
  1631. alignment = 4 * 1024;
  1632. else
  1633. alignment = 64 * 1024;
  1634. break;
  1635. case I915_TILING_X:
  1636. /* pin() will align the object as required by fence */
  1637. alignment = 0;
  1638. break;
  1639. case I915_TILING_Y:
  1640. /* Despite that we check this in framebuffer_init userspace can
  1641. * screw us over and change the tiling after the fact. Only
  1642. * pinned buffers can't change their tiling. */
  1643. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1644. return -EINVAL;
  1645. default:
  1646. BUG();
  1647. }
  1648. /* Note that the w/a also requires 64 PTE of padding following the
  1649. * bo. We currently fill all unused PTE with the shadow page and so
  1650. * we should always have valid PTE following the scanout preventing
  1651. * the VT-d warning.
  1652. */
  1653. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1654. alignment = 256 * 1024;
  1655. dev_priv->mm.interruptible = false;
  1656. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1657. if (ret)
  1658. goto err_interruptible;
  1659. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1660. * fence, whereas 965+ only requires a fence if using
  1661. * framebuffer compression. For simplicity, we always install
  1662. * a fence as the cost is not that onerous.
  1663. */
  1664. ret = i915_gem_object_get_fence(obj);
  1665. if (ret)
  1666. goto err_unpin;
  1667. i915_gem_object_pin_fence(obj);
  1668. dev_priv->mm.interruptible = true;
  1669. return 0;
  1670. err_unpin:
  1671. i915_gem_object_unpin(obj);
  1672. err_interruptible:
  1673. dev_priv->mm.interruptible = true;
  1674. return ret;
  1675. }
  1676. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1677. {
  1678. i915_gem_object_unpin_fence(obj);
  1679. i915_gem_object_unpin(obj);
  1680. }
  1681. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1682. * is assumed to be a power-of-two. */
  1683. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1684. unsigned int tiling_mode,
  1685. unsigned int cpp,
  1686. unsigned int pitch)
  1687. {
  1688. if (tiling_mode != I915_TILING_NONE) {
  1689. unsigned int tile_rows, tiles;
  1690. tile_rows = *y / 8;
  1691. *y %= 8;
  1692. tiles = *x / (512/cpp);
  1693. *x %= 512/cpp;
  1694. return tile_rows * pitch * 8 + tiles * 4096;
  1695. } else {
  1696. unsigned int offset;
  1697. offset = *y * pitch + *x * cpp;
  1698. *y = 0;
  1699. *x = (offset & 4095) / cpp;
  1700. return offset & -4096;
  1701. }
  1702. }
  1703. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1704. int x, int y)
  1705. {
  1706. struct drm_device *dev = crtc->dev;
  1707. struct drm_i915_private *dev_priv = dev->dev_private;
  1708. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1709. struct intel_framebuffer *intel_fb;
  1710. struct drm_i915_gem_object *obj;
  1711. int plane = intel_crtc->plane;
  1712. unsigned long linear_offset;
  1713. u32 dspcntr;
  1714. u32 reg;
  1715. switch (plane) {
  1716. case 0:
  1717. case 1:
  1718. break;
  1719. default:
  1720. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1721. return -EINVAL;
  1722. }
  1723. intel_fb = to_intel_framebuffer(fb);
  1724. obj = intel_fb->obj;
  1725. reg = DSPCNTR(plane);
  1726. dspcntr = I915_READ(reg);
  1727. /* Mask out pixel format bits in case we change it */
  1728. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1729. switch (fb->pixel_format) {
  1730. case DRM_FORMAT_C8:
  1731. dspcntr |= DISPPLANE_8BPP;
  1732. break;
  1733. case DRM_FORMAT_XRGB1555:
  1734. case DRM_FORMAT_ARGB1555:
  1735. dspcntr |= DISPPLANE_BGRX555;
  1736. break;
  1737. case DRM_FORMAT_RGB565:
  1738. dspcntr |= DISPPLANE_BGRX565;
  1739. break;
  1740. case DRM_FORMAT_XRGB8888:
  1741. case DRM_FORMAT_ARGB8888:
  1742. dspcntr |= DISPPLANE_BGRX888;
  1743. break;
  1744. case DRM_FORMAT_XBGR8888:
  1745. case DRM_FORMAT_ABGR8888:
  1746. dspcntr |= DISPPLANE_RGBX888;
  1747. break;
  1748. case DRM_FORMAT_XRGB2101010:
  1749. case DRM_FORMAT_ARGB2101010:
  1750. dspcntr |= DISPPLANE_BGRX101010;
  1751. break;
  1752. case DRM_FORMAT_XBGR2101010:
  1753. case DRM_FORMAT_ABGR2101010:
  1754. dspcntr |= DISPPLANE_RGBX101010;
  1755. break;
  1756. default:
  1757. BUG();
  1758. }
  1759. if (INTEL_INFO(dev)->gen >= 4) {
  1760. if (obj->tiling_mode != I915_TILING_NONE)
  1761. dspcntr |= DISPPLANE_TILED;
  1762. else
  1763. dspcntr &= ~DISPPLANE_TILED;
  1764. }
  1765. I915_WRITE(reg, dspcntr);
  1766. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1767. if (INTEL_INFO(dev)->gen >= 4) {
  1768. intel_crtc->dspaddr_offset =
  1769. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1770. fb->bits_per_pixel / 8,
  1771. fb->pitches[0]);
  1772. linear_offset -= intel_crtc->dspaddr_offset;
  1773. } else {
  1774. intel_crtc->dspaddr_offset = linear_offset;
  1775. }
  1776. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1777. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1778. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1779. if (INTEL_INFO(dev)->gen >= 4) {
  1780. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1781. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1782. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1783. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1784. } else
  1785. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1786. POSTING_READ(reg);
  1787. return 0;
  1788. }
  1789. static int ironlake_update_plane(struct drm_crtc *crtc,
  1790. struct drm_framebuffer *fb, int x, int y)
  1791. {
  1792. struct drm_device *dev = crtc->dev;
  1793. struct drm_i915_private *dev_priv = dev->dev_private;
  1794. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1795. struct intel_framebuffer *intel_fb;
  1796. struct drm_i915_gem_object *obj;
  1797. int plane = intel_crtc->plane;
  1798. unsigned long linear_offset;
  1799. u32 dspcntr;
  1800. u32 reg;
  1801. switch (plane) {
  1802. case 0:
  1803. case 1:
  1804. case 2:
  1805. break;
  1806. default:
  1807. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1808. return -EINVAL;
  1809. }
  1810. intel_fb = to_intel_framebuffer(fb);
  1811. obj = intel_fb->obj;
  1812. reg = DSPCNTR(plane);
  1813. dspcntr = I915_READ(reg);
  1814. /* Mask out pixel format bits in case we change it */
  1815. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1816. switch (fb->pixel_format) {
  1817. case DRM_FORMAT_C8:
  1818. dspcntr |= DISPPLANE_8BPP;
  1819. break;
  1820. case DRM_FORMAT_RGB565:
  1821. dspcntr |= DISPPLANE_BGRX565;
  1822. break;
  1823. case DRM_FORMAT_XRGB8888:
  1824. case DRM_FORMAT_ARGB8888:
  1825. dspcntr |= DISPPLANE_BGRX888;
  1826. break;
  1827. case DRM_FORMAT_XBGR8888:
  1828. case DRM_FORMAT_ABGR8888:
  1829. dspcntr |= DISPPLANE_RGBX888;
  1830. break;
  1831. case DRM_FORMAT_XRGB2101010:
  1832. case DRM_FORMAT_ARGB2101010:
  1833. dspcntr |= DISPPLANE_BGRX101010;
  1834. break;
  1835. case DRM_FORMAT_XBGR2101010:
  1836. case DRM_FORMAT_ABGR2101010:
  1837. dspcntr |= DISPPLANE_RGBX101010;
  1838. break;
  1839. default:
  1840. BUG();
  1841. }
  1842. if (obj->tiling_mode != I915_TILING_NONE)
  1843. dspcntr |= DISPPLANE_TILED;
  1844. else
  1845. dspcntr &= ~DISPPLANE_TILED;
  1846. /* must disable */
  1847. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1848. I915_WRITE(reg, dspcntr);
  1849. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1850. intel_crtc->dspaddr_offset =
  1851. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1852. fb->bits_per_pixel / 8,
  1853. fb->pitches[0]);
  1854. linear_offset -= intel_crtc->dspaddr_offset;
  1855. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1856. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1857. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1858. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1859. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1860. if (IS_HASWELL(dev)) {
  1861. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1862. } else {
  1863. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1864. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1865. }
  1866. POSTING_READ(reg);
  1867. return 0;
  1868. }
  1869. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1870. static int
  1871. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1872. int x, int y, enum mode_set_atomic state)
  1873. {
  1874. struct drm_device *dev = crtc->dev;
  1875. struct drm_i915_private *dev_priv = dev->dev_private;
  1876. if (dev_priv->display.disable_fbc)
  1877. dev_priv->display.disable_fbc(dev);
  1878. intel_increase_pllclock(crtc);
  1879. return dev_priv->display.update_plane(crtc, fb, x, y);
  1880. }
  1881. void intel_display_handle_reset(struct drm_device *dev)
  1882. {
  1883. struct drm_i915_private *dev_priv = dev->dev_private;
  1884. struct drm_crtc *crtc;
  1885. /*
  1886. * Flips in the rings have been nuked by the reset,
  1887. * so complete all pending flips so that user space
  1888. * will get its events and not get stuck.
  1889. *
  1890. * Also update the base address of all primary
  1891. * planes to the the last fb to make sure we're
  1892. * showing the correct fb after a reset.
  1893. *
  1894. * Need to make two loops over the crtcs so that we
  1895. * don't try to grab a crtc mutex before the
  1896. * pending_flip_queue really got woken up.
  1897. */
  1898. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1899. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1900. enum plane plane = intel_crtc->plane;
  1901. intel_prepare_page_flip(dev, plane);
  1902. intel_finish_page_flip_plane(dev, plane);
  1903. }
  1904. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1905. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1906. mutex_lock(&crtc->mutex);
  1907. if (intel_crtc->active)
  1908. dev_priv->display.update_plane(crtc, crtc->fb,
  1909. crtc->x, crtc->y);
  1910. mutex_unlock(&crtc->mutex);
  1911. }
  1912. }
  1913. static int
  1914. intel_finish_fb(struct drm_framebuffer *old_fb)
  1915. {
  1916. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1917. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1918. bool was_interruptible = dev_priv->mm.interruptible;
  1919. int ret;
  1920. /* Big Hammer, we also need to ensure that any pending
  1921. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1922. * current scanout is retired before unpinning the old
  1923. * framebuffer.
  1924. *
  1925. * This should only fail upon a hung GPU, in which case we
  1926. * can safely continue.
  1927. */
  1928. dev_priv->mm.interruptible = false;
  1929. ret = i915_gem_object_finish_gpu(obj);
  1930. dev_priv->mm.interruptible = was_interruptible;
  1931. return ret;
  1932. }
  1933. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1934. {
  1935. struct drm_device *dev = crtc->dev;
  1936. struct drm_i915_master_private *master_priv;
  1937. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1938. if (!dev->primary->master)
  1939. return;
  1940. master_priv = dev->primary->master->driver_priv;
  1941. if (!master_priv->sarea_priv)
  1942. return;
  1943. switch (intel_crtc->pipe) {
  1944. case 0:
  1945. master_priv->sarea_priv->pipeA_x = x;
  1946. master_priv->sarea_priv->pipeA_y = y;
  1947. break;
  1948. case 1:
  1949. master_priv->sarea_priv->pipeB_x = x;
  1950. master_priv->sarea_priv->pipeB_y = y;
  1951. break;
  1952. default:
  1953. break;
  1954. }
  1955. }
  1956. static int
  1957. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1958. struct drm_framebuffer *fb)
  1959. {
  1960. struct drm_device *dev = crtc->dev;
  1961. struct drm_i915_private *dev_priv = dev->dev_private;
  1962. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1963. struct drm_framebuffer *old_fb;
  1964. int ret;
  1965. /* no fb bound */
  1966. if (!fb) {
  1967. DRM_ERROR("No FB bound\n");
  1968. return 0;
  1969. }
  1970. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1971. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1972. plane_name(intel_crtc->plane),
  1973. INTEL_INFO(dev)->num_pipes);
  1974. return -EINVAL;
  1975. }
  1976. mutex_lock(&dev->struct_mutex);
  1977. ret = intel_pin_and_fence_fb_obj(dev,
  1978. to_intel_framebuffer(fb)->obj,
  1979. NULL);
  1980. if (ret != 0) {
  1981. mutex_unlock(&dev->struct_mutex);
  1982. DRM_ERROR("pin & fence failed\n");
  1983. return ret;
  1984. }
  1985. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1986. if (ret) {
  1987. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1988. mutex_unlock(&dev->struct_mutex);
  1989. DRM_ERROR("failed to update base address\n");
  1990. return ret;
  1991. }
  1992. old_fb = crtc->fb;
  1993. crtc->fb = fb;
  1994. crtc->x = x;
  1995. crtc->y = y;
  1996. if (old_fb) {
  1997. if (intel_crtc->active && old_fb != fb)
  1998. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1999. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2000. }
  2001. intel_update_fbc(dev);
  2002. mutex_unlock(&dev->struct_mutex);
  2003. intel_crtc_update_sarea_pos(crtc, x, y);
  2004. return 0;
  2005. }
  2006. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2007. {
  2008. struct drm_device *dev = crtc->dev;
  2009. struct drm_i915_private *dev_priv = dev->dev_private;
  2010. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2011. int pipe = intel_crtc->pipe;
  2012. u32 reg, temp;
  2013. /* enable normal train */
  2014. reg = FDI_TX_CTL(pipe);
  2015. temp = I915_READ(reg);
  2016. if (IS_IVYBRIDGE(dev)) {
  2017. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2018. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2019. } else {
  2020. temp &= ~FDI_LINK_TRAIN_NONE;
  2021. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2022. }
  2023. I915_WRITE(reg, temp);
  2024. reg = FDI_RX_CTL(pipe);
  2025. temp = I915_READ(reg);
  2026. if (HAS_PCH_CPT(dev)) {
  2027. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2028. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2029. } else {
  2030. temp &= ~FDI_LINK_TRAIN_NONE;
  2031. temp |= FDI_LINK_TRAIN_NONE;
  2032. }
  2033. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2034. /* wait one idle pattern time */
  2035. POSTING_READ(reg);
  2036. udelay(1000);
  2037. /* IVB wants error correction enabled */
  2038. if (IS_IVYBRIDGE(dev))
  2039. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2040. FDI_FE_ERRC_ENABLE);
  2041. }
  2042. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  2043. {
  2044. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  2045. }
  2046. static void ivb_modeset_global_resources(struct drm_device *dev)
  2047. {
  2048. struct drm_i915_private *dev_priv = dev->dev_private;
  2049. struct intel_crtc *pipe_B_crtc =
  2050. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2051. struct intel_crtc *pipe_C_crtc =
  2052. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2053. uint32_t temp;
  2054. /*
  2055. * When everything is off disable fdi C so that we could enable fdi B
  2056. * with all lanes. Note that we don't care about enabled pipes without
  2057. * an enabled pch encoder.
  2058. */
  2059. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2060. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2061. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2062. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2063. temp = I915_READ(SOUTH_CHICKEN1);
  2064. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2065. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2066. I915_WRITE(SOUTH_CHICKEN1, temp);
  2067. }
  2068. }
  2069. /* The FDI link training functions for ILK/Ibexpeak. */
  2070. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2071. {
  2072. struct drm_device *dev = crtc->dev;
  2073. struct drm_i915_private *dev_priv = dev->dev_private;
  2074. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2075. int pipe = intel_crtc->pipe;
  2076. int plane = intel_crtc->plane;
  2077. u32 reg, temp, tries;
  2078. /* FDI needs bits from pipe & plane first */
  2079. assert_pipe_enabled(dev_priv, pipe);
  2080. assert_plane_enabled(dev_priv, plane);
  2081. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2082. for train result */
  2083. reg = FDI_RX_IMR(pipe);
  2084. temp = I915_READ(reg);
  2085. temp &= ~FDI_RX_SYMBOL_LOCK;
  2086. temp &= ~FDI_RX_BIT_LOCK;
  2087. I915_WRITE(reg, temp);
  2088. I915_READ(reg);
  2089. udelay(150);
  2090. /* enable CPU FDI TX and PCH FDI RX */
  2091. reg = FDI_TX_CTL(pipe);
  2092. temp = I915_READ(reg);
  2093. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2094. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2095. temp &= ~FDI_LINK_TRAIN_NONE;
  2096. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2097. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2098. reg = FDI_RX_CTL(pipe);
  2099. temp = I915_READ(reg);
  2100. temp &= ~FDI_LINK_TRAIN_NONE;
  2101. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2102. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2103. POSTING_READ(reg);
  2104. udelay(150);
  2105. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2106. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2107. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2108. FDI_RX_PHASE_SYNC_POINTER_EN);
  2109. reg = FDI_RX_IIR(pipe);
  2110. for (tries = 0; tries < 5; tries++) {
  2111. temp = I915_READ(reg);
  2112. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2113. if ((temp & FDI_RX_BIT_LOCK)) {
  2114. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2115. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2116. break;
  2117. }
  2118. }
  2119. if (tries == 5)
  2120. DRM_ERROR("FDI train 1 fail!\n");
  2121. /* Train 2 */
  2122. reg = FDI_TX_CTL(pipe);
  2123. temp = I915_READ(reg);
  2124. temp &= ~FDI_LINK_TRAIN_NONE;
  2125. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2126. I915_WRITE(reg, temp);
  2127. reg = FDI_RX_CTL(pipe);
  2128. temp = I915_READ(reg);
  2129. temp &= ~FDI_LINK_TRAIN_NONE;
  2130. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2131. I915_WRITE(reg, temp);
  2132. POSTING_READ(reg);
  2133. udelay(150);
  2134. reg = FDI_RX_IIR(pipe);
  2135. for (tries = 0; tries < 5; tries++) {
  2136. temp = I915_READ(reg);
  2137. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2138. if (temp & FDI_RX_SYMBOL_LOCK) {
  2139. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2140. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2141. break;
  2142. }
  2143. }
  2144. if (tries == 5)
  2145. DRM_ERROR("FDI train 2 fail!\n");
  2146. DRM_DEBUG_KMS("FDI train done\n");
  2147. }
  2148. static const int snb_b_fdi_train_param[] = {
  2149. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2150. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2151. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2152. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2153. };
  2154. /* The FDI link training functions for SNB/Cougarpoint. */
  2155. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2156. {
  2157. struct drm_device *dev = crtc->dev;
  2158. struct drm_i915_private *dev_priv = dev->dev_private;
  2159. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2160. int pipe = intel_crtc->pipe;
  2161. u32 reg, temp, i, retry;
  2162. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2163. for train result */
  2164. reg = FDI_RX_IMR(pipe);
  2165. temp = I915_READ(reg);
  2166. temp &= ~FDI_RX_SYMBOL_LOCK;
  2167. temp &= ~FDI_RX_BIT_LOCK;
  2168. I915_WRITE(reg, temp);
  2169. POSTING_READ(reg);
  2170. udelay(150);
  2171. /* enable CPU FDI TX and PCH FDI RX */
  2172. reg = FDI_TX_CTL(pipe);
  2173. temp = I915_READ(reg);
  2174. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2175. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2176. temp &= ~FDI_LINK_TRAIN_NONE;
  2177. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2178. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2179. /* SNB-B */
  2180. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2181. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2182. I915_WRITE(FDI_RX_MISC(pipe),
  2183. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2184. reg = FDI_RX_CTL(pipe);
  2185. temp = I915_READ(reg);
  2186. if (HAS_PCH_CPT(dev)) {
  2187. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2188. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2189. } else {
  2190. temp &= ~FDI_LINK_TRAIN_NONE;
  2191. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2192. }
  2193. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2194. POSTING_READ(reg);
  2195. udelay(150);
  2196. for (i = 0; i < 4; i++) {
  2197. reg = FDI_TX_CTL(pipe);
  2198. temp = I915_READ(reg);
  2199. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2200. temp |= snb_b_fdi_train_param[i];
  2201. I915_WRITE(reg, temp);
  2202. POSTING_READ(reg);
  2203. udelay(500);
  2204. for (retry = 0; retry < 5; retry++) {
  2205. reg = FDI_RX_IIR(pipe);
  2206. temp = I915_READ(reg);
  2207. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2208. if (temp & FDI_RX_BIT_LOCK) {
  2209. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2210. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2211. break;
  2212. }
  2213. udelay(50);
  2214. }
  2215. if (retry < 5)
  2216. break;
  2217. }
  2218. if (i == 4)
  2219. DRM_ERROR("FDI train 1 fail!\n");
  2220. /* Train 2 */
  2221. reg = FDI_TX_CTL(pipe);
  2222. temp = I915_READ(reg);
  2223. temp &= ~FDI_LINK_TRAIN_NONE;
  2224. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2225. if (IS_GEN6(dev)) {
  2226. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2227. /* SNB-B */
  2228. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2229. }
  2230. I915_WRITE(reg, temp);
  2231. reg = FDI_RX_CTL(pipe);
  2232. temp = I915_READ(reg);
  2233. if (HAS_PCH_CPT(dev)) {
  2234. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2235. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2236. } else {
  2237. temp &= ~FDI_LINK_TRAIN_NONE;
  2238. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2239. }
  2240. I915_WRITE(reg, temp);
  2241. POSTING_READ(reg);
  2242. udelay(150);
  2243. for (i = 0; i < 4; i++) {
  2244. reg = FDI_TX_CTL(pipe);
  2245. temp = I915_READ(reg);
  2246. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2247. temp |= snb_b_fdi_train_param[i];
  2248. I915_WRITE(reg, temp);
  2249. POSTING_READ(reg);
  2250. udelay(500);
  2251. for (retry = 0; retry < 5; retry++) {
  2252. reg = FDI_RX_IIR(pipe);
  2253. temp = I915_READ(reg);
  2254. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2255. if (temp & FDI_RX_SYMBOL_LOCK) {
  2256. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2257. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2258. break;
  2259. }
  2260. udelay(50);
  2261. }
  2262. if (retry < 5)
  2263. break;
  2264. }
  2265. if (i == 4)
  2266. DRM_ERROR("FDI train 2 fail!\n");
  2267. DRM_DEBUG_KMS("FDI train done.\n");
  2268. }
  2269. /* Manual link training for Ivy Bridge A0 parts */
  2270. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2271. {
  2272. struct drm_device *dev = crtc->dev;
  2273. struct drm_i915_private *dev_priv = dev->dev_private;
  2274. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2275. int pipe = intel_crtc->pipe;
  2276. u32 reg, temp, i;
  2277. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2278. for train result */
  2279. reg = FDI_RX_IMR(pipe);
  2280. temp = I915_READ(reg);
  2281. temp &= ~FDI_RX_SYMBOL_LOCK;
  2282. temp &= ~FDI_RX_BIT_LOCK;
  2283. I915_WRITE(reg, temp);
  2284. POSTING_READ(reg);
  2285. udelay(150);
  2286. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2287. I915_READ(FDI_RX_IIR(pipe)));
  2288. /* enable CPU FDI TX and PCH FDI RX */
  2289. reg = FDI_TX_CTL(pipe);
  2290. temp = I915_READ(reg);
  2291. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2292. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2293. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2294. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2295. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2296. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2297. temp |= FDI_COMPOSITE_SYNC;
  2298. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2299. I915_WRITE(FDI_RX_MISC(pipe),
  2300. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2301. reg = FDI_RX_CTL(pipe);
  2302. temp = I915_READ(reg);
  2303. temp &= ~FDI_LINK_TRAIN_AUTO;
  2304. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2305. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2306. temp |= FDI_COMPOSITE_SYNC;
  2307. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2308. POSTING_READ(reg);
  2309. udelay(150);
  2310. for (i = 0; i < 4; i++) {
  2311. reg = FDI_TX_CTL(pipe);
  2312. temp = I915_READ(reg);
  2313. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2314. temp |= snb_b_fdi_train_param[i];
  2315. I915_WRITE(reg, temp);
  2316. POSTING_READ(reg);
  2317. udelay(500);
  2318. reg = FDI_RX_IIR(pipe);
  2319. temp = I915_READ(reg);
  2320. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2321. if (temp & FDI_RX_BIT_LOCK ||
  2322. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2323. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2324. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2325. break;
  2326. }
  2327. }
  2328. if (i == 4)
  2329. DRM_ERROR("FDI train 1 fail!\n");
  2330. /* Train 2 */
  2331. reg = FDI_TX_CTL(pipe);
  2332. temp = I915_READ(reg);
  2333. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2334. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2335. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2336. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2337. I915_WRITE(reg, temp);
  2338. reg = FDI_RX_CTL(pipe);
  2339. temp = I915_READ(reg);
  2340. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2341. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2342. I915_WRITE(reg, temp);
  2343. POSTING_READ(reg);
  2344. udelay(150);
  2345. for (i = 0; i < 4; i++) {
  2346. reg = FDI_TX_CTL(pipe);
  2347. temp = I915_READ(reg);
  2348. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2349. temp |= snb_b_fdi_train_param[i];
  2350. I915_WRITE(reg, temp);
  2351. POSTING_READ(reg);
  2352. udelay(500);
  2353. reg = FDI_RX_IIR(pipe);
  2354. temp = I915_READ(reg);
  2355. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2356. if (temp & FDI_RX_SYMBOL_LOCK) {
  2357. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2358. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2359. break;
  2360. }
  2361. }
  2362. if (i == 4)
  2363. DRM_ERROR("FDI train 2 fail!\n");
  2364. DRM_DEBUG_KMS("FDI train done.\n");
  2365. }
  2366. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2367. {
  2368. struct drm_device *dev = intel_crtc->base.dev;
  2369. struct drm_i915_private *dev_priv = dev->dev_private;
  2370. int pipe = intel_crtc->pipe;
  2371. u32 reg, temp;
  2372. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2373. reg = FDI_RX_CTL(pipe);
  2374. temp = I915_READ(reg);
  2375. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2376. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2377. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2378. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2379. POSTING_READ(reg);
  2380. udelay(200);
  2381. /* Switch from Rawclk to PCDclk */
  2382. temp = I915_READ(reg);
  2383. I915_WRITE(reg, temp | FDI_PCDCLK);
  2384. POSTING_READ(reg);
  2385. udelay(200);
  2386. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2387. reg = FDI_TX_CTL(pipe);
  2388. temp = I915_READ(reg);
  2389. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2390. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2391. POSTING_READ(reg);
  2392. udelay(100);
  2393. }
  2394. }
  2395. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2396. {
  2397. struct drm_device *dev = intel_crtc->base.dev;
  2398. struct drm_i915_private *dev_priv = dev->dev_private;
  2399. int pipe = intel_crtc->pipe;
  2400. u32 reg, temp;
  2401. /* Switch from PCDclk to Rawclk */
  2402. reg = FDI_RX_CTL(pipe);
  2403. temp = I915_READ(reg);
  2404. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2405. /* Disable CPU FDI TX PLL */
  2406. reg = FDI_TX_CTL(pipe);
  2407. temp = I915_READ(reg);
  2408. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2409. POSTING_READ(reg);
  2410. udelay(100);
  2411. reg = FDI_RX_CTL(pipe);
  2412. temp = I915_READ(reg);
  2413. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2414. /* Wait for the clocks to turn off. */
  2415. POSTING_READ(reg);
  2416. udelay(100);
  2417. }
  2418. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2419. {
  2420. struct drm_device *dev = crtc->dev;
  2421. struct drm_i915_private *dev_priv = dev->dev_private;
  2422. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2423. int pipe = intel_crtc->pipe;
  2424. u32 reg, temp;
  2425. /* disable CPU FDI tx and PCH FDI rx */
  2426. reg = FDI_TX_CTL(pipe);
  2427. temp = I915_READ(reg);
  2428. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2429. POSTING_READ(reg);
  2430. reg = FDI_RX_CTL(pipe);
  2431. temp = I915_READ(reg);
  2432. temp &= ~(0x7 << 16);
  2433. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2434. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2435. POSTING_READ(reg);
  2436. udelay(100);
  2437. /* Ironlake workaround, disable clock pointer after downing FDI */
  2438. if (HAS_PCH_IBX(dev)) {
  2439. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2440. }
  2441. /* still set train pattern 1 */
  2442. reg = FDI_TX_CTL(pipe);
  2443. temp = I915_READ(reg);
  2444. temp &= ~FDI_LINK_TRAIN_NONE;
  2445. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2446. I915_WRITE(reg, temp);
  2447. reg = FDI_RX_CTL(pipe);
  2448. temp = I915_READ(reg);
  2449. if (HAS_PCH_CPT(dev)) {
  2450. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2451. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2452. } else {
  2453. temp &= ~FDI_LINK_TRAIN_NONE;
  2454. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2455. }
  2456. /* BPC in FDI rx is consistent with that in PIPECONF */
  2457. temp &= ~(0x07 << 16);
  2458. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2459. I915_WRITE(reg, temp);
  2460. POSTING_READ(reg);
  2461. udelay(100);
  2462. }
  2463. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2464. {
  2465. struct drm_device *dev = crtc->dev;
  2466. struct drm_i915_private *dev_priv = dev->dev_private;
  2467. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2468. unsigned long flags;
  2469. bool pending;
  2470. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2471. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2472. return false;
  2473. spin_lock_irqsave(&dev->event_lock, flags);
  2474. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2475. spin_unlock_irqrestore(&dev->event_lock, flags);
  2476. return pending;
  2477. }
  2478. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2479. {
  2480. struct drm_device *dev = crtc->dev;
  2481. struct drm_i915_private *dev_priv = dev->dev_private;
  2482. if (crtc->fb == NULL)
  2483. return;
  2484. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2485. wait_event(dev_priv->pending_flip_queue,
  2486. !intel_crtc_has_pending_flip(crtc));
  2487. mutex_lock(&dev->struct_mutex);
  2488. intel_finish_fb(crtc->fb);
  2489. mutex_unlock(&dev->struct_mutex);
  2490. }
  2491. /* Program iCLKIP clock to the desired frequency */
  2492. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2493. {
  2494. struct drm_device *dev = crtc->dev;
  2495. struct drm_i915_private *dev_priv = dev->dev_private;
  2496. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2497. u32 temp;
  2498. mutex_lock(&dev_priv->dpio_lock);
  2499. /* It is necessary to ungate the pixclk gate prior to programming
  2500. * the divisors, and gate it back when it is done.
  2501. */
  2502. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2503. /* Disable SSCCTL */
  2504. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2505. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2506. SBI_SSCCTL_DISABLE,
  2507. SBI_ICLK);
  2508. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2509. if (crtc->mode.clock == 20000) {
  2510. auxdiv = 1;
  2511. divsel = 0x41;
  2512. phaseinc = 0x20;
  2513. } else {
  2514. /* The iCLK virtual clock root frequency is in MHz,
  2515. * but the crtc->mode.clock in in KHz. To get the divisors,
  2516. * it is necessary to divide one by another, so we
  2517. * convert the virtual clock precision to KHz here for higher
  2518. * precision.
  2519. */
  2520. u32 iclk_virtual_root_freq = 172800 * 1000;
  2521. u32 iclk_pi_range = 64;
  2522. u32 desired_divisor, msb_divisor_value, pi_value;
  2523. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2524. msb_divisor_value = desired_divisor / iclk_pi_range;
  2525. pi_value = desired_divisor % iclk_pi_range;
  2526. auxdiv = 0;
  2527. divsel = msb_divisor_value - 2;
  2528. phaseinc = pi_value;
  2529. }
  2530. /* This should not happen with any sane values */
  2531. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2532. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2533. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2534. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2535. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2536. crtc->mode.clock,
  2537. auxdiv,
  2538. divsel,
  2539. phasedir,
  2540. phaseinc);
  2541. /* Program SSCDIVINTPHASE6 */
  2542. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2543. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2544. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2545. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2546. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2547. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2548. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2549. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2550. /* Program SSCAUXDIV */
  2551. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2552. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2553. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2554. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2555. /* Enable modulator and associated divider */
  2556. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2557. temp &= ~SBI_SSCCTL_DISABLE;
  2558. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2559. /* Wait for initialization time */
  2560. udelay(24);
  2561. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2562. mutex_unlock(&dev_priv->dpio_lock);
  2563. }
  2564. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2565. enum pipe pch_transcoder)
  2566. {
  2567. struct drm_device *dev = crtc->base.dev;
  2568. struct drm_i915_private *dev_priv = dev->dev_private;
  2569. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2570. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2571. I915_READ(HTOTAL(cpu_transcoder)));
  2572. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2573. I915_READ(HBLANK(cpu_transcoder)));
  2574. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2575. I915_READ(HSYNC(cpu_transcoder)));
  2576. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2577. I915_READ(VTOTAL(cpu_transcoder)));
  2578. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2579. I915_READ(VBLANK(cpu_transcoder)));
  2580. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2581. I915_READ(VSYNC(cpu_transcoder)));
  2582. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2583. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2584. }
  2585. /*
  2586. * Enable PCH resources required for PCH ports:
  2587. * - PCH PLLs
  2588. * - FDI training & RX/TX
  2589. * - update transcoder timings
  2590. * - DP transcoding bits
  2591. * - transcoder
  2592. */
  2593. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2594. {
  2595. struct drm_device *dev = crtc->dev;
  2596. struct drm_i915_private *dev_priv = dev->dev_private;
  2597. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2598. int pipe = intel_crtc->pipe;
  2599. u32 reg, temp;
  2600. assert_pch_transcoder_disabled(dev_priv, pipe);
  2601. /* Write the TU size bits before fdi link training, so that error
  2602. * detection works. */
  2603. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2604. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2605. /* For PCH output, training FDI link */
  2606. dev_priv->display.fdi_link_train(crtc);
  2607. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2608. * transcoder, and we actually should do this to not upset any PCH
  2609. * transcoder that already use the clock when we share it.
  2610. *
  2611. * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
  2612. * unconditionally resets the pll - we need that to have the right LVDS
  2613. * enable sequence. */
  2614. ironlake_enable_pch_pll(intel_crtc);
  2615. if (HAS_PCH_CPT(dev)) {
  2616. u32 sel;
  2617. temp = I915_READ(PCH_DPLL_SEL);
  2618. switch (pipe) {
  2619. default:
  2620. case 0:
  2621. temp |= TRANSA_DPLL_ENABLE;
  2622. sel = TRANSA_DPLLB_SEL;
  2623. break;
  2624. case 1:
  2625. temp |= TRANSB_DPLL_ENABLE;
  2626. sel = TRANSB_DPLLB_SEL;
  2627. break;
  2628. case 2:
  2629. temp |= TRANSC_DPLL_ENABLE;
  2630. sel = TRANSC_DPLLB_SEL;
  2631. break;
  2632. }
  2633. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2634. temp |= sel;
  2635. else
  2636. temp &= ~sel;
  2637. I915_WRITE(PCH_DPLL_SEL, temp);
  2638. }
  2639. /* set transcoder timing, panel must allow it */
  2640. assert_panel_unlocked(dev_priv, pipe);
  2641. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2642. intel_fdi_normal_train(crtc);
  2643. /* For PCH DP, enable TRANS_DP_CTL */
  2644. if (HAS_PCH_CPT(dev) &&
  2645. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2646. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2647. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2648. reg = TRANS_DP_CTL(pipe);
  2649. temp = I915_READ(reg);
  2650. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2651. TRANS_DP_SYNC_MASK |
  2652. TRANS_DP_BPC_MASK);
  2653. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2654. TRANS_DP_ENH_FRAMING);
  2655. temp |= bpc << 9; /* same format but at 11:9 */
  2656. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2657. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2658. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2659. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2660. switch (intel_trans_dp_port_sel(crtc)) {
  2661. case PCH_DP_B:
  2662. temp |= TRANS_DP_PORT_SEL_B;
  2663. break;
  2664. case PCH_DP_C:
  2665. temp |= TRANS_DP_PORT_SEL_C;
  2666. break;
  2667. case PCH_DP_D:
  2668. temp |= TRANS_DP_PORT_SEL_D;
  2669. break;
  2670. default:
  2671. BUG();
  2672. }
  2673. I915_WRITE(reg, temp);
  2674. }
  2675. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2676. }
  2677. static void lpt_pch_enable(struct drm_crtc *crtc)
  2678. {
  2679. struct drm_device *dev = crtc->dev;
  2680. struct drm_i915_private *dev_priv = dev->dev_private;
  2681. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2682. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2683. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2684. lpt_program_iclkip(crtc);
  2685. /* Set transcoder timing. */
  2686. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2687. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2688. }
  2689. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2690. {
  2691. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2692. if (pll == NULL)
  2693. return;
  2694. if (pll->refcount == 0) {
  2695. WARN(1, "bad PCH PLL refcount\n");
  2696. return;
  2697. }
  2698. --pll->refcount;
  2699. intel_crtc->pch_pll = NULL;
  2700. }
  2701. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2702. {
  2703. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2704. struct intel_pch_pll *pll;
  2705. int i;
  2706. pll = intel_crtc->pch_pll;
  2707. if (pll) {
  2708. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2709. intel_crtc->base.base.id, pll->pll_reg);
  2710. goto prepare;
  2711. }
  2712. if (HAS_PCH_IBX(dev_priv->dev)) {
  2713. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2714. i = intel_crtc->pipe;
  2715. pll = &dev_priv->pch_plls[i];
  2716. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2717. intel_crtc->base.base.id, pll->pll_reg);
  2718. goto found;
  2719. }
  2720. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2721. pll = &dev_priv->pch_plls[i];
  2722. /* Only want to check enabled timings first */
  2723. if (pll->refcount == 0)
  2724. continue;
  2725. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2726. fp == I915_READ(pll->fp0_reg)) {
  2727. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2728. intel_crtc->base.base.id,
  2729. pll->pll_reg, pll->refcount, pll->active);
  2730. goto found;
  2731. }
  2732. }
  2733. /* Ok no matching timings, maybe there's a free one? */
  2734. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2735. pll = &dev_priv->pch_plls[i];
  2736. if (pll->refcount == 0) {
  2737. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2738. intel_crtc->base.base.id, pll->pll_reg);
  2739. goto found;
  2740. }
  2741. }
  2742. return NULL;
  2743. found:
  2744. intel_crtc->pch_pll = pll;
  2745. pll->refcount++;
  2746. DRM_DEBUG_DRIVER("using pll %d for pipe %c\n", i, pipe_name(intel_crtc->pipe));
  2747. prepare: /* separate function? */
  2748. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2749. /* Wait for the clocks to stabilize before rewriting the regs */
  2750. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2751. POSTING_READ(pll->pll_reg);
  2752. udelay(150);
  2753. I915_WRITE(pll->fp0_reg, fp);
  2754. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2755. pll->on = false;
  2756. return pll;
  2757. }
  2758. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2759. {
  2760. struct drm_i915_private *dev_priv = dev->dev_private;
  2761. int dslreg = PIPEDSL(pipe);
  2762. u32 temp;
  2763. temp = I915_READ(dslreg);
  2764. udelay(500);
  2765. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2766. if (wait_for(I915_READ(dslreg) != temp, 5))
  2767. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2768. }
  2769. }
  2770. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2771. {
  2772. struct drm_device *dev = crtc->base.dev;
  2773. struct drm_i915_private *dev_priv = dev->dev_private;
  2774. int pipe = crtc->pipe;
  2775. if (crtc->config.pch_pfit.size) {
  2776. /* Force use of hard-coded filter coefficients
  2777. * as some pre-programmed values are broken,
  2778. * e.g. x201.
  2779. */
  2780. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2781. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2782. PF_PIPE_SEL_IVB(pipe));
  2783. else
  2784. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2785. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2786. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2787. }
  2788. }
  2789. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2790. {
  2791. struct drm_device *dev = crtc->dev;
  2792. struct drm_i915_private *dev_priv = dev->dev_private;
  2793. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2794. struct intel_encoder *encoder;
  2795. int pipe = intel_crtc->pipe;
  2796. int plane = intel_crtc->plane;
  2797. u32 temp;
  2798. WARN_ON(!crtc->enabled);
  2799. if (intel_crtc->active)
  2800. return;
  2801. intel_crtc->active = true;
  2802. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2803. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2804. intel_update_watermarks(dev);
  2805. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2806. temp = I915_READ(PCH_LVDS);
  2807. if ((temp & LVDS_PORT_EN) == 0)
  2808. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2809. }
  2810. if (intel_crtc->config.has_pch_encoder) {
  2811. /* Note: FDI PLL enabling _must_ be done before we enable the
  2812. * cpu pipes, hence this is separate from all the other fdi/pch
  2813. * enabling. */
  2814. ironlake_fdi_pll_enable(intel_crtc);
  2815. } else {
  2816. assert_fdi_tx_disabled(dev_priv, pipe);
  2817. assert_fdi_rx_disabled(dev_priv, pipe);
  2818. }
  2819. for_each_encoder_on_crtc(dev, crtc, encoder)
  2820. if (encoder->pre_enable)
  2821. encoder->pre_enable(encoder);
  2822. /* Enable panel fitting for LVDS */
  2823. ironlake_pfit_enable(intel_crtc);
  2824. /*
  2825. * On ILK+ LUT must be loaded before the pipe is running but with
  2826. * clocks enabled
  2827. */
  2828. intel_crtc_load_lut(crtc);
  2829. intel_enable_pipe(dev_priv, pipe,
  2830. intel_crtc->config.has_pch_encoder);
  2831. intel_enable_plane(dev_priv, plane, pipe);
  2832. if (intel_crtc->config.has_pch_encoder)
  2833. ironlake_pch_enable(crtc);
  2834. mutex_lock(&dev->struct_mutex);
  2835. intel_update_fbc(dev);
  2836. mutex_unlock(&dev->struct_mutex);
  2837. intel_crtc_update_cursor(crtc, true);
  2838. for_each_encoder_on_crtc(dev, crtc, encoder)
  2839. encoder->enable(encoder);
  2840. if (HAS_PCH_CPT(dev))
  2841. cpt_verify_modeset(dev, intel_crtc->pipe);
  2842. /*
  2843. * There seems to be a race in PCH platform hw (at least on some
  2844. * outputs) where an enabled pipe still completes any pageflip right
  2845. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2846. * as the first vblank happend, everything works as expected. Hence just
  2847. * wait for one vblank before returning to avoid strange things
  2848. * happening.
  2849. */
  2850. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2851. }
  2852. /* IPS only exists on ULT machines and is tied to pipe A. */
  2853. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2854. {
  2855. return IS_ULT(crtc->base.dev) && crtc->pipe == PIPE_A;
  2856. }
  2857. static void hsw_enable_ips(struct intel_crtc *crtc)
  2858. {
  2859. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2860. if (!crtc->config.ips_enabled)
  2861. return;
  2862. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2863. * We guarantee that the plane is enabled by calling intel_enable_ips
  2864. * only after intel_enable_plane. And intel_enable_plane already waits
  2865. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2866. assert_plane_enabled(dev_priv, crtc->plane);
  2867. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2868. }
  2869. static void hsw_disable_ips(struct intel_crtc *crtc)
  2870. {
  2871. struct drm_device *dev = crtc->base.dev;
  2872. struct drm_i915_private *dev_priv = dev->dev_private;
  2873. if (!crtc->config.ips_enabled)
  2874. return;
  2875. assert_plane_enabled(dev_priv, crtc->plane);
  2876. I915_WRITE(IPS_CTL, 0);
  2877. /* We need to wait for a vblank before we can disable the plane. */
  2878. intel_wait_for_vblank(dev, crtc->pipe);
  2879. }
  2880. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2881. {
  2882. struct drm_device *dev = crtc->dev;
  2883. struct drm_i915_private *dev_priv = dev->dev_private;
  2884. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2885. struct intel_encoder *encoder;
  2886. int pipe = intel_crtc->pipe;
  2887. int plane = intel_crtc->plane;
  2888. WARN_ON(!crtc->enabled);
  2889. if (intel_crtc->active)
  2890. return;
  2891. intel_crtc->active = true;
  2892. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2893. if (intel_crtc->config.has_pch_encoder)
  2894. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2895. intel_update_watermarks(dev);
  2896. if (intel_crtc->config.has_pch_encoder)
  2897. dev_priv->display.fdi_link_train(crtc);
  2898. for_each_encoder_on_crtc(dev, crtc, encoder)
  2899. if (encoder->pre_enable)
  2900. encoder->pre_enable(encoder);
  2901. intel_ddi_enable_pipe_clock(intel_crtc);
  2902. /* Enable panel fitting for eDP */
  2903. ironlake_pfit_enable(intel_crtc);
  2904. /*
  2905. * On ILK+ LUT must be loaded before the pipe is running but with
  2906. * clocks enabled
  2907. */
  2908. intel_crtc_load_lut(crtc);
  2909. intel_ddi_set_pipe_settings(crtc);
  2910. intel_ddi_enable_transcoder_func(crtc);
  2911. intel_enable_pipe(dev_priv, pipe,
  2912. intel_crtc->config.has_pch_encoder);
  2913. intel_enable_plane(dev_priv, plane, pipe);
  2914. hsw_enable_ips(intel_crtc);
  2915. if (intel_crtc->config.has_pch_encoder)
  2916. lpt_pch_enable(crtc);
  2917. mutex_lock(&dev->struct_mutex);
  2918. intel_update_fbc(dev);
  2919. mutex_unlock(&dev->struct_mutex);
  2920. intel_crtc_update_cursor(crtc, true);
  2921. for_each_encoder_on_crtc(dev, crtc, encoder)
  2922. encoder->enable(encoder);
  2923. /*
  2924. * There seems to be a race in PCH platform hw (at least on some
  2925. * outputs) where an enabled pipe still completes any pageflip right
  2926. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2927. * as the first vblank happend, everything works as expected. Hence just
  2928. * wait for one vblank before returning to avoid strange things
  2929. * happening.
  2930. */
  2931. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2932. }
  2933. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  2934. {
  2935. struct drm_device *dev = crtc->base.dev;
  2936. struct drm_i915_private *dev_priv = dev->dev_private;
  2937. int pipe = crtc->pipe;
  2938. /* To avoid upsetting the power well on haswell only disable the pfit if
  2939. * it's in use. The hw state code will make sure we get this right. */
  2940. if (crtc->config.pch_pfit.size) {
  2941. I915_WRITE(PF_CTL(pipe), 0);
  2942. I915_WRITE(PF_WIN_POS(pipe), 0);
  2943. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2944. }
  2945. }
  2946. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2947. {
  2948. struct drm_device *dev = crtc->dev;
  2949. struct drm_i915_private *dev_priv = dev->dev_private;
  2950. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2951. struct intel_encoder *encoder;
  2952. int pipe = intel_crtc->pipe;
  2953. int plane = intel_crtc->plane;
  2954. u32 reg, temp;
  2955. if (!intel_crtc->active)
  2956. return;
  2957. for_each_encoder_on_crtc(dev, crtc, encoder)
  2958. encoder->disable(encoder);
  2959. intel_crtc_wait_for_pending_flips(crtc);
  2960. drm_vblank_off(dev, pipe);
  2961. intel_crtc_update_cursor(crtc, false);
  2962. intel_disable_plane(dev_priv, plane, pipe);
  2963. if (dev_priv->cfb_plane == plane)
  2964. intel_disable_fbc(dev);
  2965. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2966. intel_disable_pipe(dev_priv, pipe);
  2967. ironlake_pfit_disable(intel_crtc);
  2968. for_each_encoder_on_crtc(dev, crtc, encoder)
  2969. if (encoder->post_disable)
  2970. encoder->post_disable(encoder);
  2971. ironlake_fdi_disable(crtc);
  2972. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2973. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2974. if (HAS_PCH_CPT(dev)) {
  2975. /* disable TRANS_DP_CTL */
  2976. reg = TRANS_DP_CTL(pipe);
  2977. temp = I915_READ(reg);
  2978. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2979. temp |= TRANS_DP_PORT_SEL_NONE;
  2980. I915_WRITE(reg, temp);
  2981. /* disable DPLL_SEL */
  2982. temp = I915_READ(PCH_DPLL_SEL);
  2983. switch (pipe) {
  2984. case 0:
  2985. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2986. break;
  2987. case 1:
  2988. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2989. break;
  2990. case 2:
  2991. /* C shares PLL A or B */
  2992. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2993. break;
  2994. default:
  2995. BUG(); /* wtf */
  2996. }
  2997. I915_WRITE(PCH_DPLL_SEL, temp);
  2998. }
  2999. /* disable PCH DPLL */
  3000. intel_disable_pch_pll(intel_crtc);
  3001. ironlake_fdi_pll_disable(intel_crtc);
  3002. intel_crtc->active = false;
  3003. intel_update_watermarks(dev);
  3004. mutex_lock(&dev->struct_mutex);
  3005. intel_update_fbc(dev);
  3006. mutex_unlock(&dev->struct_mutex);
  3007. }
  3008. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3009. {
  3010. struct drm_device *dev = crtc->dev;
  3011. struct drm_i915_private *dev_priv = dev->dev_private;
  3012. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3013. struct intel_encoder *encoder;
  3014. int pipe = intel_crtc->pipe;
  3015. int plane = intel_crtc->plane;
  3016. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3017. if (!intel_crtc->active)
  3018. return;
  3019. for_each_encoder_on_crtc(dev, crtc, encoder)
  3020. encoder->disable(encoder);
  3021. intel_crtc_wait_for_pending_flips(crtc);
  3022. drm_vblank_off(dev, pipe);
  3023. intel_crtc_update_cursor(crtc, false);
  3024. /* FBC must be disabled before disabling the plane on HSW. */
  3025. if (dev_priv->cfb_plane == plane)
  3026. intel_disable_fbc(dev);
  3027. hsw_disable_ips(intel_crtc);
  3028. intel_disable_plane(dev_priv, plane, pipe);
  3029. if (intel_crtc->config.has_pch_encoder)
  3030. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3031. intel_disable_pipe(dev_priv, pipe);
  3032. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3033. ironlake_pfit_disable(intel_crtc);
  3034. intel_ddi_disable_pipe_clock(intel_crtc);
  3035. for_each_encoder_on_crtc(dev, crtc, encoder)
  3036. if (encoder->post_disable)
  3037. encoder->post_disable(encoder);
  3038. if (intel_crtc->config.has_pch_encoder) {
  3039. lpt_disable_pch_transcoder(dev_priv);
  3040. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3041. intel_ddi_fdi_disable(crtc);
  3042. }
  3043. intel_crtc->active = false;
  3044. intel_update_watermarks(dev);
  3045. mutex_lock(&dev->struct_mutex);
  3046. intel_update_fbc(dev);
  3047. mutex_unlock(&dev->struct_mutex);
  3048. }
  3049. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3050. {
  3051. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3052. intel_put_pch_pll(intel_crtc);
  3053. }
  3054. static void haswell_crtc_off(struct drm_crtc *crtc)
  3055. {
  3056. intel_ddi_put_crtc_pll(crtc);
  3057. }
  3058. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3059. {
  3060. if (!enable && intel_crtc->overlay) {
  3061. struct drm_device *dev = intel_crtc->base.dev;
  3062. struct drm_i915_private *dev_priv = dev->dev_private;
  3063. mutex_lock(&dev->struct_mutex);
  3064. dev_priv->mm.interruptible = false;
  3065. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3066. dev_priv->mm.interruptible = true;
  3067. mutex_unlock(&dev->struct_mutex);
  3068. }
  3069. /* Let userspace switch the overlay on again. In most cases userspace
  3070. * has to recompute where to put it anyway.
  3071. */
  3072. }
  3073. /**
  3074. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3075. * cursor plane briefly if not already running after enabling the display
  3076. * plane.
  3077. * This workaround avoids occasional blank screens when self refresh is
  3078. * enabled.
  3079. */
  3080. static void
  3081. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3082. {
  3083. u32 cntl = I915_READ(CURCNTR(pipe));
  3084. if ((cntl & CURSOR_MODE) == 0) {
  3085. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3086. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3087. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3088. intel_wait_for_vblank(dev_priv->dev, pipe);
  3089. I915_WRITE(CURCNTR(pipe), cntl);
  3090. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3091. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3092. }
  3093. }
  3094. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3095. {
  3096. struct drm_device *dev = crtc->base.dev;
  3097. struct drm_i915_private *dev_priv = dev->dev_private;
  3098. struct intel_crtc_config *pipe_config = &crtc->config;
  3099. if (!crtc->config.gmch_pfit.control)
  3100. return;
  3101. /*
  3102. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3103. * according to register description and PRM.
  3104. */
  3105. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3106. assert_pipe_disabled(dev_priv, crtc->pipe);
  3107. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3108. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3109. /* Border color in case we don't scale up to the full screen. Black by
  3110. * default, change to something else for debugging. */
  3111. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3112. }
  3113. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3114. {
  3115. struct drm_device *dev = crtc->dev;
  3116. struct drm_i915_private *dev_priv = dev->dev_private;
  3117. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3118. struct intel_encoder *encoder;
  3119. int pipe = intel_crtc->pipe;
  3120. int plane = intel_crtc->plane;
  3121. WARN_ON(!crtc->enabled);
  3122. if (intel_crtc->active)
  3123. return;
  3124. intel_crtc->active = true;
  3125. intel_update_watermarks(dev);
  3126. mutex_lock(&dev_priv->dpio_lock);
  3127. for_each_encoder_on_crtc(dev, crtc, encoder)
  3128. if (encoder->pre_pll_enable)
  3129. encoder->pre_pll_enable(encoder);
  3130. intel_enable_pll(dev_priv, pipe);
  3131. for_each_encoder_on_crtc(dev, crtc, encoder)
  3132. if (encoder->pre_enable)
  3133. encoder->pre_enable(encoder);
  3134. /* VLV wants encoder enabling _before_ the pipe is up. */
  3135. for_each_encoder_on_crtc(dev, crtc, encoder)
  3136. encoder->enable(encoder);
  3137. /* Enable panel fitting for eDP */
  3138. i9xx_pfit_enable(intel_crtc);
  3139. intel_enable_pipe(dev_priv, pipe, false);
  3140. intel_enable_plane(dev_priv, plane, pipe);
  3141. intel_crtc_load_lut(crtc);
  3142. intel_update_fbc(dev);
  3143. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3144. intel_crtc_dpms_overlay(intel_crtc, true);
  3145. intel_crtc_update_cursor(crtc, true);
  3146. mutex_unlock(&dev_priv->dpio_lock);
  3147. }
  3148. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3149. {
  3150. struct drm_device *dev = crtc->dev;
  3151. struct drm_i915_private *dev_priv = dev->dev_private;
  3152. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3153. struct intel_encoder *encoder;
  3154. int pipe = intel_crtc->pipe;
  3155. int plane = intel_crtc->plane;
  3156. WARN_ON(!crtc->enabled);
  3157. if (intel_crtc->active)
  3158. return;
  3159. intel_crtc->active = true;
  3160. intel_update_watermarks(dev);
  3161. intel_enable_pll(dev_priv, pipe);
  3162. for_each_encoder_on_crtc(dev, crtc, encoder)
  3163. if (encoder->pre_enable)
  3164. encoder->pre_enable(encoder);
  3165. /* Enable panel fitting for LVDS */
  3166. i9xx_pfit_enable(intel_crtc);
  3167. intel_enable_pipe(dev_priv, pipe, false);
  3168. intel_enable_plane(dev_priv, plane, pipe);
  3169. if (IS_G4X(dev))
  3170. g4x_fixup_plane(dev_priv, pipe);
  3171. intel_crtc_load_lut(crtc);
  3172. intel_update_fbc(dev);
  3173. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3174. intel_crtc_dpms_overlay(intel_crtc, true);
  3175. intel_crtc_update_cursor(crtc, true);
  3176. for_each_encoder_on_crtc(dev, crtc, encoder)
  3177. encoder->enable(encoder);
  3178. }
  3179. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3180. {
  3181. struct drm_device *dev = crtc->base.dev;
  3182. struct drm_i915_private *dev_priv = dev->dev_private;
  3183. if (!crtc->config.gmch_pfit.control)
  3184. return;
  3185. assert_pipe_disabled(dev_priv, crtc->pipe);
  3186. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3187. I915_READ(PFIT_CONTROL));
  3188. I915_WRITE(PFIT_CONTROL, 0);
  3189. }
  3190. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3191. {
  3192. struct drm_device *dev = crtc->dev;
  3193. struct drm_i915_private *dev_priv = dev->dev_private;
  3194. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3195. struct intel_encoder *encoder;
  3196. int pipe = intel_crtc->pipe;
  3197. int plane = intel_crtc->plane;
  3198. if (!intel_crtc->active)
  3199. return;
  3200. for_each_encoder_on_crtc(dev, crtc, encoder)
  3201. encoder->disable(encoder);
  3202. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3203. intel_crtc_wait_for_pending_flips(crtc);
  3204. drm_vblank_off(dev, pipe);
  3205. intel_crtc_dpms_overlay(intel_crtc, false);
  3206. intel_crtc_update_cursor(crtc, false);
  3207. if (dev_priv->cfb_plane == plane)
  3208. intel_disable_fbc(dev);
  3209. intel_disable_plane(dev_priv, plane, pipe);
  3210. intel_disable_pipe(dev_priv, pipe);
  3211. i9xx_pfit_disable(intel_crtc);
  3212. for_each_encoder_on_crtc(dev, crtc, encoder)
  3213. if (encoder->post_disable)
  3214. encoder->post_disable(encoder);
  3215. intel_disable_pll(dev_priv, pipe);
  3216. intel_crtc->active = false;
  3217. intel_update_fbc(dev);
  3218. intel_update_watermarks(dev);
  3219. }
  3220. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3221. {
  3222. }
  3223. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3224. bool enabled)
  3225. {
  3226. struct drm_device *dev = crtc->dev;
  3227. struct drm_i915_master_private *master_priv;
  3228. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3229. int pipe = intel_crtc->pipe;
  3230. if (!dev->primary->master)
  3231. return;
  3232. master_priv = dev->primary->master->driver_priv;
  3233. if (!master_priv->sarea_priv)
  3234. return;
  3235. switch (pipe) {
  3236. case 0:
  3237. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3238. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3239. break;
  3240. case 1:
  3241. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3242. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3243. break;
  3244. default:
  3245. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3246. break;
  3247. }
  3248. }
  3249. /**
  3250. * Sets the power management mode of the pipe and plane.
  3251. */
  3252. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3253. {
  3254. struct drm_device *dev = crtc->dev;
  3255. struct drm_i915_private *dev_priv = dev->dev_private;
  3256. struct intel_encoder *intel_encoder;
  3257. bool enable = false;
  3258. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3259. enable |= intel_encoder->connectors_active;
  3260. if (enable)
  3261. dev_priv->display.crtc_enable(crtc);
  3262. else
  3263. dev_priv->display.crtc_disable(crtc);
  3264. intel_crtc_update_sarea(crtc, enable);
  3265. }
  3266. static void intel_crtc_disable(struct drm_crtc *crtc)
  3267. {
  3268. struct drm_device *dev = crtc->dev;
  3269. struct drm_connector *connector;
  3270. struct drm_i915_private *dev_priv = dev->dev_private;
  3271. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3272. /* crtc should still be enabled when we disable it. */
  3273. WARN_ON(!crtc->enabled);
  3274. dev_priv->display.crtc_disable(crtc);
  3275. intel_crtc->eld_vld = false;
  3276. intel_crtc_update_sarea(crtc, false);
  3277. dev_priv->display.off(crtc);
  3278. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3279. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3280. if (crtc->fb) {
  3281. mutex_lock(&dev->struct_mutex);
  3282. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3283. mutex_unlock(&dev->struct_mutex);
  3284. crtc->fb = NULL;
  3285. }
  3286. /* Update computed state. */
  3287. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3288. if (!connector->encoder || !connector->encoder->crtc)
  3289. continue;
  3290. if (connector->encoder->crtc != crtc)
  3291. continue;
  3292. connector->dpms = DRM_MODE_DPMS_OFF;
  3293. to_intel_encoder(connector->encoder)->connectors_active = false;
  3294. }
  3295. }
  3296. void intel_modeset_disable(struct drm_device *dev)
  3297. {
  3298. struct drm_crtc *crtc;
  3299. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3300. if (crtc->enabled)
  3301. intel_crtc_disable(crtc);
  3302. }
  3303. }
  3304. void intel_encoder_destroy(struct drm_encoder *encoder)
  3305. {
  3306. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3307. drm_encoder_cleanup(encoder);
  3308. kfree(intel_encoder);
  3309. }
  3310. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3311. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3312. * state of the entire output pipe. */
  3313. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3314. {
  3315. if (mode == DRM_MODE_DPMS_ON) {
  3316. encoder->connectors_active = true;
  3317. intel_crtc_update_dpms(encoder->base.crtc);
  3318. } else {
  3319. encoder->connectors_active = false;
  3320. intel_crtc_update_dpms(encoder->base.crtc);
  3321. }
  3322. }
  3323. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3324. * internal consistency). */
  3325. static void intel_connector_check_state(struct intel_connector *connector)
  3326. {
  3327. if (connector->get_hw_state(connector)) {
  3328. struct intel_encoder *encoder = connector->encoder;
  3329. struct drm_crtc *crtc;
  3330. bool encoder_enabled;
  3331. enum pipe pipe;
  3332. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3333. connector->base.base.id,
  3334. drm_get_connector_name(&connector->base));
  3335. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3336. "wrong connector dpms state\n");
  3337. WARN(connector->base.encoder != &encoder->base,
  3338. "active connector not linked to encoder\n");
  3339. WARN(!encoder->connectors_active,
  3340. "encoder->connectors_active not set\n");
  3341. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3342. WARN(!encoder_enabled, "encoder not enabled\n");
  3343. if (WARN_ON(!encoder->base.crtc))
  3344. return;
  3345. crtc = encoder->base.crtc;
  3346. WARN(!crtc->enabled, "crtc not enabled\n");
  3347. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3348. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3349. "encoder active on the wrong pipe\n");
  3350. }
  3351. }
  3352. /* Even simpler default implementation, if there's really no special case to
  3353. * consider. */
  3354. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3355. {
  3356. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3357. /* All the simple cases only support two dpms states. */
  3358. if (mode != DRM_MODE_DPMS_ON)
  3359. mode = DRM_MODE_DPMS_OFF;
  3360. if (mode == connector->dpms)
  3361. return;
  3362. connector->dpms = mode;
  3363. /* Only need to change hw state when actually enabled */
  3364. if (encoder->base.crtc)
  3365. intel_encoder_dpms(encoder, mode);
  3366. else
  3367. WARN_ON(encoder->connectors_active != false);
  3368. intel_modeset_check_state(connector->dev);
  3369. }
  3370. /* Simple connector->get_hw_state implementation for encoders that support only
  3371. * one connector and no cloning and hence the encoder state determines the state
  3372. * of the connector. */
  3373. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3374. {
  3375. enum pipe pipe = 0;
  3376. struct intel_encoder *encoder = connector->encoder;
  3377. return encoder->get_hw_state(encoder, &pipe);
  3378. }
  3379. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3380. struct intel_crtc_config *pipe_config)
  3381. {
  3382. struct drm_i915_private *dev_priv = dev->dev_private;
  3383. struct intel_crtc *pipe_B_crtc =
  3384. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3385. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3386. pipe_name(pipe), pipe_config->fdi_lanes);
  3387. if (pipe_config->fdi_lanes > 4) {
  3388. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3389. pipe_name(pipe), pipe_config->fdi_lanes);
  3390. return false;
  3391. }
  3392. if (IS_HASWELL(dev)) {
  3393. if (pipe_config->fdi_lanes > 2) {
  3394. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3395. pipe_config->fdi_lanes);
  3396. return false;
  3397. } else {
  3398. return true;
  3399. }
  3400. }
  3401. if (INTEL_INFO(dev)->num_pipes == 2)
  3402. return true;
  3403. /* Ivybridge 3 pipe is really complicated */
  3404. switch (pipe) {
  3405. case PIPE_A:
  3406. return true;
  3407. case PIPE_B:
  3408. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3409. pipe_config->fdi_lanes > 2) {
  3410. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3411. pipe_name(pipe), pipe_config->fdi_lanes);
  3412. return false;
  3413. }
  3414. return true;
  3415. case PIPE_C:
  3416. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3417. pipe_B_crtc->config.fdi_lanes <= 2) {
  3418. if (pipe_config->fdi_lanes > 2) {
  3419. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3420. pipe_name(pipe), pipe_config->fdi_lanes);
  3421. return false;
  3422. }
  3423. } else {
  3424. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3425. return false;
  3426. }
  3427. return true;
  3428. default:
  3429. BUG();
  3430. }
  3431. }
  3432. #define RETRY 1
  3433. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3434. struct intel_crtc_config *pipe_config)
  3435. {
  3436. struct drm_device *dev = intel_crtc->base.dev;
  3437. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3438. int target_clock, lane, link_bw;
  3439. bool setup_ok, needs_recompute = false;
  3440. retry:
  3441. /* FDI is a binary signal running at ~2.7GHz, encoding
  3442. * each output octet as 10 bits. The actual frequency
  3443. * is stored as a divider into a 100MHz clock, and the
  3444. * mode pixel clock is stored in units of 1KHz.
  3445. * Hence the bw of each lane in terms of the mode signal
  3446. * is:
  3447. */
  3448. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3449. if (pipe_config->pixel_target_clock)
  3450. target_clock = pipe_config->pixel_target_clock;
  3451. else
  3452. target_clock = adjusted_mode->clock;
  3453. lane = ironlake_get_lanes_required(target_clock, link_bw,
  3454. pipe_config->pipe_bpp);
  3455. pipe_config->fdi_lanes = lane;
  3456. if (pipe_config->pixel_multiplier > 1)
  3457. link_bw *= pipe_config->pixel_multiplier;
  3458. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, target_clock,
  3459. link_bw, &pipe_config->fdi_m_n);
  3460. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3461. intel_crtc->pipe, pipe_config);
  3462. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3463. pipe_config->pipe_bpp -= 2*3;
  3464. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3465. pipe_config->pipe_bpp);
  3466. needs_recompute = true;
  3467. pipe_config->bw_constrained = true;
  3468. goto retry;
  3469. }
  3470. if (needs_recompute)
  3471. return RETRY;
  3472. return setup_ok ? 0 : -EINVAL;
  3473. }
  3474. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3475. struct intel_crtc_config *pipe_config)
  3476. {
  3477. pipe_config->ips_enabled = i915_enable_ips &&
  3478. hsw_crtc_supports_ips(crtc) &&
  3479. pipe_config->pipe_bpp == 24;
  3480. }
  3481. static int intel_crtc_compute_config(struct drm_crtc *crtc,
  3482. struct intel_crtc_config *pipe_config)
  3483. {
  3484. struct drm_device *dev = crtc->dev;
  3485. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3486. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3487. if (HAS_PCH_SPLIT(dev)) {
  3488. /* FDI link clock is fixed at 2.7G */
  3489. if (pipe_config->requested_mode.clock * 3
  3490. > IRONLAKE_FDI_FREQ * 4)
  3491. return -EINVAL;
  3492. }
  3493. /* All interlaced capable intel hw wants timings in frames. Note though
  3494. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3495. * timings, so we need to be careful not to clobber these.*/
  3496. if (!pipe_config->timings_set)
  3497. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3498. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3499. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3500. */
  3501. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3502. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3503. return -EINVAL;
  3504. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3505. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3506. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3507. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3508. * for lvds. */
  3509. pipe_config->pipe_bpp = 8*3;
  3510. }
  3511. if (IS_HASWELL(dev))
  3512. hsw_compute_ips_config(intel_crtc, pipe_config);
  3513. if (pipe_config->has_pch_encoder)
  3514. return ironlake_fdi_compute_config(intel_crtc, pipe_config);
  3515. return 0;
  3516. }
  3517. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3518. {
  3519. return 400000; /* FIXME */
  3520. }
  3521. static int i945_get_display_clock_speed(struct drm_device *dev)
  3522. {
  3523. return 400000;
  3524. }
  3525. static int i915_get_display_clock_speed(struct drm_device *dev)
  3526. {
  3527. return 333000;
  3528. }
  3529. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3530. {
  3531. return 200000;
  3532. }
  3533. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3534. {
  3535. u16 gcfgc = 0;
  3536. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3537. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3538. return 133000;
  3539. else {
  3540. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3541. case GC_DISPLAY_CLOCK_333_MHZ:
  3542. return 333000;
  3543. default:
  3544. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3545. return 190000;
  3546. }
  3547. }
  3548. }
  3549. static int i865_get_display_clock_speed(struct drm_device *dev)
  3550. {
  3551. return 266000;
  3552. }
  3553. static int i855_get_display_clock_speed(struct drm_device *dev)
  3554. {
  3555. u16 hpllcc = 0;
  3556. /* Assume that the hardware is in the high speed state. This
  3557. * should be the default.
  3558. */
  3559. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3560. case GC_CLOCK_133_200:
  3561. case GC_CLOCK_100_200:
  3562. return 200000;
  3563. case GC_CLOCK_166_250:
  3564. return 250000;
  3565. case GC_CLOCK_100_133:
  3566. return 133000;
  3567. }
  3568. /* Shouldn't happen */
  3569. return 0;
  3570. }
  3571. static int i830_get_display_clock_speed(struct drm_device *dev)
  3572. {
  3573. return 133000;
  3574. }
  3575. static void
  3576. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3577. {
  3578. while (*num > DATA_LINK_M_N_MASK ||
  3579. *den > DATA_LINK_M_N_MASK) {
  3580. *num >>= 1;
  3581. *den >>= 1;
  3582. }
  3583. }
  3584. static void compute_m_n(unsigned int m, unsigned int n,
  3585. uint32_t *ret_m, uint32_t *ret_n)
  3586. {
  3587. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3588. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3589. intel_reduce_m_n_ratio(ret_m, ret_n);
  3590. }
  3591. void
  3592. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3593. int pixel_clock, int link_clock,
  3594. struct intel_link_m_n *m_n)
  3595. {
  3596. m_n->tu = 64;
  3597. compute_m_n(bits_per_pixel * pixel_clock,
  3598. link_clock * nlanes * 8,
  3599. &m_n->gmch_m, &m_n->gmch_n);
  3600. compute_m_n(pixel_clock, link_clock,
  3601. &m_n->link_m, &m_n->link_n);
  3602. }
  3603. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3604. {
  3605. if (i915_panel_use_ssc >= 0)
  3606. return i915_panel_use_ssc != 0;
  3607. return dev_priv->vbt.lvds_use_ssc
  3608. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3609. }
  3610. static int vlv_get_refclk(struct drm_crtc *crtc)
  3611. {
  3612. struct drm_device *dev = crtc->dev;
  3613. struct drm_i915_private *dev_priv = dev->dev_private;
  3614. int refclk = 27000; /* for DP & HDMI */
  3615. return 100000; /* only one validated so far */
  3616. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3617. refclk = 96000;
  3618. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3619. if (intel_panel_use_ssc(dev_priv))
  3620. refclk = 100000;
  3621. else
  3622. refclk = 96000;
  3623. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3624. refclk = 100000;
  3625. }
  3626. return refclk;
  3627. }
  3628. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3629. {
  3630. struct drm_device *dev = crtc->dev;
  3631. struct drm_i915_private *dev_priv = dev->dev_private;
  3632. int refclk;
  3633. if (IS_VALLEYVIEW(dev)) {
  3634. refclk = vlv_get_refclk(crtc);
  3635. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3636. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3637. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3638. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3639. refclk / 1000);
  3640. } else if (!IS_GEN2(dev)) {
  3641. refclk = 96000;
  3642. } else {
  3643. refclk = 48000;
  3644. }
  3645. return refclk;
  3646. }
  3647. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3648. {
  3649. return (1 << dpll->n) << 16 | dpll->m1 << 8 | dpll->m2;
  3650. }
  3651. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3652. {
  3653. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3654. }
  3655. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3656. intel_clock_t *reduced_clock)
  3657. {
  3658. struct drm_device *dev = crtc->base.dev;
  3659. struct drm_i915_private *dev_priv = dev->dev_private;
  3660. int pipe = crtc->pipe;
  3661. u32 fp, fp2 = 0;
  3662. if (IS_PINEVIEW(dev)) {
  3663. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3664. if (reduced_clock)
  3665. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3666. } else {
  3667. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3668. if (reduced_clock)
  3669. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3670. }
  3671. I915_WRITE(FP0(pipe), fp);
  3672. crtc->lowfreq_avail = false;
  3673. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3674. reduced_clock && i915_powersave) {
  3675. I915_WRITE(FP1(pipe), fp2);
  3676. crtc->lowfreq_avail = true;
  3677. } else {
  3678. I915_WRITE(FP1(pipe), fp);
  3679. }
  3680. }
  3681. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
  3682. {
  3683. u32 reg_val;
  3684. /*
  3685. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3686. * and set it to a reasonable value instead.
  3687. */
  3688. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3689. reg_val &= 0xffffff00;
  3690. reg_val |= 0x00000030;
  3691. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3692. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3693. reg_val &= 0x8cffffff;
  3694. reg_val = 0x8c000000;
  3695. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3696. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3697. reg_val &= 0xffffff00;
  3698. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3699. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3700. reg_val &= 0x00ffffff;
  3701. reg_val |= 0xb0000000;
  3702. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3703. }
  3704. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3705. struct intel_link_m_n *m_n)
  3706. {
  3707. struct drm_device *dev = crtc->base.dev;
  3708. struct drm_i915_private *dev_priv = dev->dev_private;
  3709. int pipe = crtc->pipe;
  3710. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3711. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3712. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3713. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3714. }
  3715. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3716. struct intel_link_m_n *m_n)
  3717. {
  3718. struct drm_device *dev = crtc->base.dev;
  3719. struct drm_i915_private *dev_priv = dev->dev_private;
  3720. int pipe = crtc->pipe;
  3721. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3722. if (INTEL_INFO(dev)->gen >= 5) {
  3723. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3724. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3725. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3726. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3727. } else {
  3728. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3729. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3730. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3731. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3732. }
  3733. }
  3734. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3735. {
  3736. if (crtc->config.has_pch_encoder)
  3737. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3738. else
  3739. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3740. }
  3741. static void vlv_update_pll(struct intel_crtc *crtc)
  3742. {
  3743. struct drm_device *dev = crtc->base.dev;
  3744. struct drm_i915_private *dev_priv = dev->dev_private;
  3745. struct drm_display_mode *adjusted_mode =
  3746. &crtc->config.adjusted_mode;
  3747. struct intel_encoder *encoder;
  3748. int pipe = crtc->pipe;
  3749. u32 dpll, mdiv;
  3750. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3751. bool is_hdmi;
  3752. u32 coreclk, reg_val, dpll_md;
  3753. mutex_lock(&dev_priv->dpio_lock);
  3754. is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3755. bestn = crtc->config.dpll.n;
  3756. bestm1 = crtc->config.dpll.m1;
  3757. bestm2 = crtc->config.dpll.m2;
  3758. bestp1 = crtc->config.dpll.p1;
  3759. bestp2 = crtc->config.dpll.p2;
  3760. /* See eDP HDMI DPIO driver vbios notes doc */
  3761. /* PLL B needs special handling */
  3762. if (pipe)
  3763. vlv_pllb_recal_opamp(dev_priv);
  3764. /* Set up Tx target for periodic Rcomp update */
  3765. vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
  3766. /* Disable target IRef on PLL */
  3767. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
  3768. reg_val &= 0x00ffffff;
  3769. vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
  3770. /* Disable fast lock */
  3771. vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
  3772. /* Set idtafcrecal before PLL is enabled */
  3773. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3774. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3775. mdiv |= ((bestn << DPIO_N_SHIFT));
  3776. mdiv |= (1 << DPIO_K_SHIFT);
  3777. /*
  3778. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3779. * but we don't support that).
  3780. * Note: don't use the DAC post divider as it seems unstable.
  3781. */
  3782. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3783. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3784. mdiv |= DPIO_ENABLE_CALIBRATION;
  3785. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3786. /* Set HBR and RBR LPF coefficients */
  3787. if (adjusted_mode->clock == 162000 ||
  3788. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3789. vlv_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3790. 0x005f0021);
  3791. else
  3792. vlv_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3793. 0x00d0000f);
  3794. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3795. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3796. /* Use SSC source */
  3797. if (!pipe)
  3798. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3799. 0x0df40000);
  3800. else
  3801. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3802. 0x0df70000);
  3803. } else { /* HDMI or VGA */
  3804. /* Use bend source */
  3805. if (!pipe)
  3806. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3807. 0x0df70000);
  3808. else
  3809. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3810. 0x0df40000);
  3811. }
  3812. coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
  3813. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3814. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3815. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3816. coreclk |= 0x01000000;
  3817. vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
  3818. vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
  3819. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3820. if (encoder->pre_pll_enable)
  3821. encoder->pre_pll_enable(encoder);
  3822. /* Enable DPIO clock input */
  3823. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3824. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3825. if (pipe)
  3826. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3827. dpll |= DPLL_VCO_ENABLE;
  3828. I915_WRITE(DPLL(pipe), dpll);
  3829. POSTING_READ(DPLL(pipe));
  3830. udelay(150);
  3831. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3832. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3833. dpll_md = 0;
  3834. if (crtc->config.pixel_multiplier > 1) {
  3835. dpll_md = (crtc->config.pixel_multiplier - 1)
  3836. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3837. }
  3838. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3839. POSTING_READ(DPLL_MD(pipe));
  3840. if (crtc->config.has_dp_encoder)
  3841. intel_dp_set_m_n(crtc);
  3842. mutex_unlock(&dev_priv->dpio_lock);
  3843. }
  3844. static void i9xx_update_pll(struct intel_crtc *crtc,
  3845. intel_clock_t *reduced_clock,
  3846. int num_connectors)
  3847. {
  3848. struct drm_device *dev = crtc->base.dev;
  3849. struct drm_i915_private *dev_priv = dev->dev_private;
  3850. struct intel_encoder *encoder;
  3851. int pipe = crtc->pipe;
  3852. u32 dpll;
  3853. bool is_sdvo;
  3854. struct dpll *clock = &crtc->config.dpll;
  3855. i9xx_update_pll_dividers(crtc, reduced_clock);
  3856. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3857. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3858. dpll = DPLL_VGA_MODE_DIS;
  3859. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3860. dpll |= DPLLB_MODE_LVDS;
  3861. else
  3862. dpll |= DPLLB_MODE_DAC_SERIAL;
  3863. if ((crtc->config.pixel_multiplier > 1) &&
  3864. (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
  3865. dpll |= (crtc->config.pixel_multiplier - 1)
  3866. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3867. }
  3868. if (is_sdvo)
  3869. dpll |= DPLL_DVO_HIGH_SPEED;
  3870. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3871. dpll |= DPLL_DVO_HIGH_SPEED;
  3872. /* compute bitmask from p1 value */
  3873. if (IS_PINEVIEW(dev))
  3874. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3875. else {
  3876. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3877. if (IS_G4X(dev) && reduced_clock)
  3878. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3879. }
  3880. switch (clock->p2) {
  3881. case 5:
  3882. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3883. break;
  3884. case 7:
  3885. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3886. break;
  3887. case 10:
  3888. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3889. break;
  3890. case 14:
  3891. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3892. break;
  3893. }
  3894. if (INTEL_INFO(dev)->gen >= 4)
  3895. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3896. if (crtc->config.sdvo_tv_clock)
  3897. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3898. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3899. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3900. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3901. else
  3902. dpll |= PLL_REF_INPUT_DREFCLK;
  3903. dpll |= DPLL_VCO_ENABLE;
  3904. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3905. POSTING_READ(DPLL(pipe));
  3906. udelay(150);
  3907. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3908. if (encoder->pre_pll_enable)
  3909. encoder->pre_pll_enable(encoder);
  3910. if (crtc->config.has_dp_encoder)
  3911. intel_dp_set_m_n(crtc);
  3912. I915_WRITE(DPLL(pipe), dpll);
  3913. /* Wait for the clocks to stabilize. */
  3914. POSTING_READ(DPLL(pipe));
  3915. udelay(150);
  3916. if (INTEL_INFO(dev)->gen >= 4) {
  3917. u32 dpll_md = 0;
  3918. if (crtc->config.pixel_multiplier > 1) {
  3919. dpll_md = (crtc->config.pixel_multiplier - 1)
  3920. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3921. }
  3922. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3923. } else {
  3924. /* The pixel multiplier can only be updated once the
  3925. * DPLL is enabled and the clocks are stable.
  3926. *
  3927. * So write it again.
  3928. */
  3929. I915_WRITE(DPLL(pipe), dpll);
  3930. }
  3931. }
  3932. static void i8xx_update_pll(struct intel_crtc *crtc,
  3933. struct drm_display_mode *adjusted_mode,
  3934. intel_clock_t *reduced_clock,
  3935. int num_connectors)
  3936. {
  3937. struct drm_device *dev = crtc->base.dev;
  3938. struct drm_i915_private *dev_priv = dev->dev_private;
  3939. struct intel_encoder *encoder;
  3940. int pipe = crtc->pipe;
  3941. u32 dpll;
  3942. struct dpll *clock = &crtc->config.dpll;
  3943. i9xx_update_pll_dividers(crtc, reduced_clock);
  3944. dpll = DPLL_VGA_MODE_DIS;
  3945. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3946. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3947. } else {
  3948. if (clock->p1 == 2)
  3949. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3950. else
  3951. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3952. if (clock->p2 == 4)
  3953. dpll |= PLL_P2_DIVIDE_BY_4;
  3954. }
  3955. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3956. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3957. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3958. else
  3959. dpll |= PLL_REF_INPUT_DREFCLK;
  3960. dpll |= DPLL_VCO_ENABLE;
  3961. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3962. POSTING_READ(DPLL(pipe));
  3963. udelay(150);
  3964. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3965. if (encoder->pre_pll_enable)
  3966. encoder->pre_pll_enable(encoder);
  3967. I915_WRITE(DPLL(pipe), dpll);
  3968. /* Wait for the clocks to stabilize. */
  3969. POSTING_READ(DPLL(pipe));
  3970. udelay(150);
  3971. /* The pixel multiplier can only be updated once the
  3972. * DPLL is enabled and the clocks are stable.
  3973. *
  3974. * So write it again.
  3975. */
  3976. I915_WRITE(DPLL(pipe), dpll);
  3977. }
  3978. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
  3979. struct drm_display_mode *mode,
  3980. struct drm_display_mode *adjusted_mode)
  3981. {
  3982. struct drm_device *dev = intel_crtc->base.dev;
  3983. struct drm_i915_private *dev_priv = dev->dev_private;
  3984. enum pipe pipe = intel_crtc->pipe;
  3985. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3986. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3987. /* We need to be careful not to changed the adjusted mode, for otherwise
  3988. * the hw state checker will get angry at the mismatch. */
  3989. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3990. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3991. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3992. /* the chip adds 2 halflines automatically */
  3993. crtc_vtotal -= 1;
  3994. crtc_vblank_end -= 1;
  3995. vsyncshift = adjusted_mode->crtc_hsync_start
  3996. - adjusted_mode->crtc_htotal / 2;
  3997. } else {
  3998. vsyncshift = 0;
  3999. }
  4000. if (INTEL_INFO(dev)->gen > 3)
  4001. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  4002. I915_WRITE(HTOTAL(cpu_transcoder),
  4003. (adjusted_mode->crtc_hdisplay - 1) |
  4004. ((adjusted_mode->crtc_htotal - 1) << 16));
  4005. I915_WRITE(HBLANK(cpu_transcoder),
  4006. (adjusted_mode->crtc_hblank_start - 1) |
  4007. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4008. I915_WRITE(HSYNC(cpu_transcoder),
  4009. (adjusted_mode->crtc_hsync_start - 1) |
  4010. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4011. I915_WRITE(VTOTAL(cpu_transcoder),
  4012. (adjusted_mode->crtc_vdisplay - 1) |
  4013. ((crtc_vtotal - 1) << 16));
  4014. I915_WRITE(VBLANK(cpu_transcoder),
  4015. (adjusted_mode->crtc_vblank_start - 1) |
  4016. ((crtc_vblank_end - 1) << 16));
  4017. I915_WRITE(VSYNC(cpu_transcoder),
  4018. (adjusted_mode->crtc_vsync_start - 1) |
  4019. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4020. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  4021. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  4022. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  4023. * bits. */
  4024. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  4025. (pipe == PIPE_B || pipe == PIPE_C))
  4026. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  4027. /* pipesrc controls the size that is scaled from, which should
  4028. * always be the user's requested size.
  4029. */
  4030. I915_WRITE(PIPESRC(pipe),
  4031. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4032. }
  4033. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  4034. struct intel_crtc_config *pipe_config)
  4035. {
  4036. struct drm_device *dev = crtc->base.dev;
  4037. struct drm_i915_private *dev_priv = dev->dev_private;
  4038. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  4039. uint32_t tmp;
  4040. tmp = I915_READ(HTOTAL(cpu_transcoder));
  4041. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  4042. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  4043. tmp = I915_READ(HBLANK(cpu_transcoder));
  4044. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  4045. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  4046. tmp = I915_READ(HSYNC(cpu_transcoder));
  4047. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  4048. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  4049. tmp = I915_READ(VTOTAL(cpu_transcoder));
  4050. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  4051. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  4052. tmp = I915_READ(VBLANK(cpu_transcoder));
  4053. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  4054. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4055. tmp = I915_READ(VSYNC(cpu_transcoder));
  4056. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4057. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4058. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4059. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4060. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4061. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4062. }
  4063. tmp = I915_READ(PIPESRC(crtc->pipe));
  4064. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  4065. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  4066. }
  4067. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4068. {
  4069. struct drm_device *dev = intel_crtc->base.dev;
  4070. struct drm_i915_private *dev_priv = dev->dev_private;
  4071. uint32_t pipeconf;
  4072. pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
  4073. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4074. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4075. * core speed.
  4076. *
  4077. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4078. * pipe == 0 check?
  4079. */
  4080. if (intel_crtc->config.requested_mode.clock >
  4081. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4082. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4083. else
  4084. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4085. }
  4086. /* only g4x and later have fancy bpc/dither controls */
  4087. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4088. pipeconf &= ~(PIPECONF_BPC_MASK |
  4089. PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4090. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4091. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4092. pipeconf |= PIPECONF_DITHER_EN |
  4093. PIPECONF_DITHER_TYPE_SP;
  4094. switch (intel_crtc->config.pipe_bpp) {
  4095. case 18:
  4096. pipeconf |= PIPECONF_6BPC;
  4097. break;
  4098. case 24:
  4099. pipeconf |= PIPECONF_8BPC;
  4100. break;
  4101. case 30:
  4102. pipeconf |= PIPECONF_10BPC;
  4103. break;
  4104. default:
  4105. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4106. BUG();
  4107. }
  4108. }
  4109. if (HAS_PIPE_CXSR(dev)) {
  4110. if (intel_crtc->lowfreq_avail) {
  4111. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4112. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4113. } else {
  4114. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4115. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4116. }
  4117. }
  4118. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4119. if (!IS_GEN2(dev) &&
  4120. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4121. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4122. else
  4123. pipeconf |= PIPECONF_PROGRESSIVE;
  4124. if (IS_VALLEYVIEW(dev)) {
  4125. if (intel_crtc->config.limited_color_range)
  4126. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4127. else
  4128. pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
  4129. }
  4130. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4131. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4132. }
  4133. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4134. int x, int y,
  4135. struct drm_framebuffer *fb)
  4136. {
  4137. struct drm_device *dev = crtc->dev;
  4138. struct drm_i915_private *dev_priv = dev->dev_private;
  4139. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4140. struct drm_display_mode *adjusted_mode =
  4141. &intel_crtc->config.adjusted_mode;
  4142. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4143. int pipe = intel_crtc->pipe;
  4144. int plane = intel_crtc->plane;
  4145. int refclk, num_connectors = 0;
  4146. intel_clock_t clock, reduced_clock;
  4147. u32 dspcntr;
  4148. bool ok, has_reduced_clock = false;
  4149. bool is_lvds = false;
  4150. struct intel_encoder *encoder;
  4151. const intel_limit_t *limit;
  4152. int ret;
  4153. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4154. switch (encoder->type) {
  4155. case INTEL_OUTPUT_LVDS:
  4156. is_lvds = true;
  4157. break;
  4158. }
  4159. num_connectors++;
  4160. }
  4161. refclk = i9xx_get_refclk(crtc, num_connectors);
  4162. /*
  4163. * Returns a set of divisors for the desired target clock with the given
  4164. * refclk, or FALSE. The returned values represent the clock equation:
  4165. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4166. */
  4167. limit = intel_limit(crtc, refclk);
  4168. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4169. &clock);
  4170. if (!ok) {
  4171. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4172. return -EINVAL;
  4173. }
  4174. /* Ensure that the cursor is valid for the new mode before changing... */
  4175. intel_crtc_update_cursor(crtc, true);
  4176. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4177. /*
  4178. * Ensure we match the reduced clock's P to the target clock.
  4179. * If the clocks don't match, we can't switch the display clock
  4180. * by using the FP0/FP1. In such case we will disable the LVDS
  4181. * downclock feature.
  4182. */
  4183. has_reduced_clock = limit->find_pll(limit, crtc,
  4184. dev_priv->lvds_downclock,
  4185. refclk,
  4186. &clock,
  4187. &reduced_clock);
  4188. }
  4189. /* Compat-code for transition, will disappear. */
  4190. if (!intel_crtc->config.clock_set) {
  4191. intel_crtc->config.dpll.n = clock.n;
  4192. intel_crtc->config.dpll.m1 = clock.m1;
  4193. intel_crtc->config.dpll.m2 = clock.m2;
  4194. intel_crtc->config.dpll.p1 = clock.p1;
  4195. intel_crtc->config.dpll.p2 = clock.p2;
  4196. }
  4197. if (IS_GEN2(dev))
  4198. i8xx_update_pll(intel_crtc, adjusted_mode,
  4199. has_reduced_clock ? &reduced_clock : NULL,
  4200. num_connectors);
  4201. else if (IS_VALLEYVIEW(dev))
  4202. vlv_update_pll(intel_crtc);
  4203. else
  4204. i9xx_update_pll(intel_crtc,
  4205. has_reduced_clock ? &reduced_clock : NULL,
  4206. num_connectors);
  4207. /* Set up the display plane register */
  4208. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4209. if (!IS_VALLEYVIEW(dev)) {
  4210. if (pipe == 0)
  4211. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4212. else
  4213. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4214. }
  4215. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4216. /* pipesrc and dspsize control the size that is scaled from,
  4217. * which should always be the user's requested size.
  4218. */
  4219. I915_WRITE(DSPSIZE(plane),
  4220. ((mode->vdisplay - 1) << 16) |
  4221. (mode->hdisplay - 1));
  4222. I915_WRITE(DSPPOS(plane), 0);
  4223. i9xx_set_pipeconf(intel_crtc);
  4224. I915_WRITE(DSPCNTR(plane), dspcntr);
  4225. POSTING_READ(DSPCNTR(plane));
  4226. ret = intel_pipe_set_base(crtc, x, y, fb);
  4227. intel_update_watermarks(dev);
  4228. return ret;
  4229. }
  4230. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4231. struct intel_crtc_config *pipe_config)
  4232. {
  4233. struct drm_device *dev = crtc->base.dev;
  4234. struct drm_i915_private *dev_priv = dev->dev_private;
  4235. uint32_t tmp;
  4236. tmp = I915_READ(PFIT_CONTROL);
  4237. if (INTEL_INFO(dev)->gen < 4) {
  4238. if (crtc->pipe != PIPE_B)
  4239. return;
  4240. /* gen2/3 store dither state in pfit control, needs to match */
  4241. pipe_config->gmch_pfit.control = tmp & PANEL_8TO6_DITHER_ENABLE;
  4242. } else {
  4243. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4244. return;
  4245. }
  4246. if (!(tmp & PFIT_ENABLE))
  4247. return;
  4248. pipe_config->gmch_pfit.control = I915_READ(PFIT_CONTROL);
  4249. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4250. if (INTEL_INFO(dev)->gen < 5)
  4251. pipe_config->gmch_pfit.lvds_border_bits =
  4252. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4253. }
  4254. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4255. struct intel_crtc_config *pipe_config)
  4256. {
  4257. struct drm_device *dev = crtc->base.dev;
  4258. struct drm_i915_private *dev_priv = dev->dev_private;
  4259. uint32_t tmp;
  4260. pipe_config->cpu_transcoder = crtc->pipe;
  4261. tmp = I915_READ(PIPECONF(crtc->pipe));
  4262. if (!(tmp & PIPECONF_ENABLE))
  4263. return false;
  4264. intel_get_pipe_timings(crtc, pipe_config);
  4265. i9xx_get_pfit_config(crtc, pipe_config);
  4266. return true;
  4267. }
  4268. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4269. {
  4270. struct drm_i915_private *dev_priv = dev->dev_private;
  4271. struct drm_mode_config *mode_config = &dev->mode_config;
  4272. struct intel_encoder *encoder;
  4273. u32 val, final;
  4274. bool has_lvds = false;
  4275. bool has_cpu_edp = false;
  4276. bool has_panel = false;
  4277. bool has_ck505 = false;
  4278. bool can_ssc = false;
  4279. /* We need to take the global config into account */
  4280. list_for_each_entry(encoder, &mode_config->encoder_list,
  4281. base.head) {
  4282. switch (encoder->type) {
  4283. case INTEL_OUTPUT_LVDS:
  4284. has_panel = true;
  4285. has_lvds = true;
  4286. break;
  4287. case INTEL_OUTPUT_EDP:
  4288. has_panel = true;
  4289. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4290. has_cpu_edp = true;
  4291. break;
  4292. }
  4293. }
  4294. if (HAS_PCH_IBX(dev)) {
  4295. has_ck505 = dev_priv->vbt.display_clock_mode;
  4296. can_ssc = has_ck505;
  4297. } else {
  4298. has_ck505 = false;
  4299. can_ssc = true;
  4300. }
  4301. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4302. has_panel, has_lvds, has_ck505);
  4303. /* Ironlake: try to setup display ref clock before DPLL
  4304. * enabling. This is only under driver's control after
  4305. * PCH B stepping, previous chipset stepping should be
  4306. * ignoring this setting.
  4307. */
  4308. val = I915_READ(PCH_DREF_CONTROL);
  4309. /* As we must carefully and slowly disable/enable each source in turn,
  4310. * compute the final state we want first and check if we need to
  4311. * make any changes at all.
  4312. */
  4313. final = val;
  4314. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4315. if (has_ck505)
  4316. final |= DREF_NONSPREAD_CK505_ENABLE;
  4317. else
  4318. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4319. final &= ~DREF_SSC_SOURCE_MASK;
  4320. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4321. final &= ~DREF_SSC1_ENABLE;
  4322. if (has_panel) {
  4323. final |= DREF_SSC_SOURCE_ENABLE;
  4324. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4325. final |= DREF_SSC1_ENABLE;
  4326. if (has_cpu_edp) {
  4327. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4328. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4329. else
  4330. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4331. } else
  4332. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4333. } else {
  4334. final |= DREF_SSC_SOURCE_DISABLE;
  4335. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4336. }
  4337. if (final == val)
  4338. return;
  4339. /* Always enable nonspread source */
  4340. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4341. if (has_ck505)
  4342. val |= DREF_NONSPREAD_CK505_ENABLE;
  4343. else
  4344. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4345. if (has_panel) {
  4346. val &= ~DREF_SSC_SOURCE_MASK;
  4347. val |= DREF_SSC_SOURCE_ENABLE;
  4348. /* SSC must be turned on before enabling the CPU output */
  4349. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4350. DRM_DEBUG_KMS("Using SSC on panel\n");
  4351. val |= DREF_SSC1_ENABLE;
  4352. } else
  4353. val &= ~DREF_SSC1_ENABLE;
  4354. /* Get SSC going before enabling the outputs */
  4355. I915_WRITE(PCH_DREF_CONTROL, val);
  4356. POSTING_READ(PCH_DREF_CONTROL);
  4357. udelay(200);
  4358. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4359. /* Enable CPU source on CPU attached eDP */
  4360. if (has_cpu_edp) {
  4361. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4362. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4363. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4364. }
  4365. else
  4366. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4367. } else
  4368. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4369. I915_WRITE(PCH_DREF_CONTROL, val);
  4370. POSTING_READ(PCH_DREF_CONTROL);
  4371. udelay(200);
  4372. } else {
  4373. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4374. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4375. /* Turn off CPU output */
  4376. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4377. I915_WRITE(PCH_DREF_CONTROL, val);
  4378. POSTING_READ(PCH_DREF_CONTROL);
  4379. udelay(200);
  4380. /* Turn off the SSC source */
  4381. val &= ~DREF_SSC_SOURCE_MASK;
  4382. val |= DREF_SSC_SOURCE_DISABLE;
  4383. /* Turn off SSC1 */
  4384. val &= ~DREF_SSC1_ENABLE;
  4385. I915_WRITE(PCH_DREF_CONTROL, val);
  4386. POSTING_READ(PCH_DREF_CONTROL);
  4387. udelay(200);
  4388. }
  4389. BUG_ON(val != final);
  4390. }
  4391. /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
  4392. static void lpt_init_pch_refclk(struct drm_device *dev)
  4393. {
  4394. struct drm_i915_private *dev_priv = dev->dev_private;
  4395. struct drm_mode_config *mode_config = &dev->mode_config;
  4396. struct intel_encoder *encoder;
  4397. bool has_vga = false;
  4398. bool is_sdv = false;
  4399. u32 tmp;
  4400. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4401. switch (encoder->type) {
  4402. case INTEL_OUTPUT_ANALOG:
  4403. has_vga = true;
  4404. break;
  4405. }
  4406. }
  4407. if (!has_vga)
  4408. return;
  4409. mutex_lock(&dev_priv->dpio_lock);
  4410. /* XXX: Rip out SDV support once Haswell ships for real. */
  4411. if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
  4412. is_sdv = true;
  4413. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4414. tmp &= ~SBI_SSCCTL_DISABLE;
  4415. tmp |= SBI_SSCCTL_PATHALT;
  4416. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4417. udelay(24);
  4418. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4419. tmp &= ~SBI_SSCCTL_PATHALT;
  4420. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4421. if (!is_sdv) {
  4422. tmp = I915_READ(SOUTH_CHICKEN2);
  4423. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4424. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4425. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4426. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4427. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4428. tmp = I915_READ(SOUTH_CHICKEN2);
  4429. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4430. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4431. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4432. FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
  4433. 100))
  4434. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4435. }
  4436. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4437. tmp &= ~(0xFF << 24);
  4438. tmp |= (0x12 << 24);
  4439. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4440. if (is_sdv) {
  4441. tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
  4442. tmp |= 0x7FFF;
  4443. intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
  4444. }
  4445. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4446. tmp |= (1 << 11);
  4447. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4448. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4449. tmp |= (1 << 11);
  4450. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4451. if (is_sdv) {
  4452. tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
  4453. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4454. intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
  4455. tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
  4456. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4457. intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
  4458. tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
  4459. tmp |= (0x3F << 8);
  4460. intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
  4461. tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
  4462. tmp |= (0x3F << 8);
  4463. intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
  4464. }
  4465. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4466. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4467. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4468. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4469. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4470. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4471. if (!is_sdv) {
  4472. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4473. tmp &= ~(7 << 13);
  4474. tmp |= (5 << 13);
  4475. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4476. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4477. tmp &= ~(7 << 13);
  4478. tmp |= (5 << 13);
  4479. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4480. }
  4481. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4482. tmp &= ~0xFF;
  4483. tmp |= 0x1C;
  4484. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4485. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4486. tmp &= ~0xFF;
  4487. tmp |= 0x1C;
  4488. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4489. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4490. tmp &= ~(0xFF << 16);
  4491. tmp |= (0x1C << 16);
  4492. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4493. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4494. tmp &= ~(0xFF << 16);
  4495. tmp |= (0x1C << 16);
  4496. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4497. if (!is_sdv) {
  4498. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4499. tmp |= (1 << 27);
  4500. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4501. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4502. tmp |= (1 << 27);
  4503. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4504. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4505. tmp &= ~(0xF << 28);
  4506. tmp |= (4 << 28);
  4507. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4508. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4509. tmp &= ~(0xF << 28);
  4510. tmp |= (4 << 28);
  4511. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4512. }
  4513. /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
  4514. tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
  4515. tmp |= SBI_DBUFF0_ENABLE;
  4516. intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
  4517. mutex_unlock(&dev_priv->dpio_lock);
  4518. }
  4519. /*
  4520. * Initialize reference clocks when the driver loads
  4521. */
  4522. void intel_init_pch_refclk(struct drm_device *dev)
  4523. {
  4524. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4525. ironlake_init_pch_refclk(dev);
  4526. else if (HAS_PCH_LPT(dev))
  4527. lpt_init_pch_refclk(dev);
  4528. }
  4529. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4530. {
  4531. struct drm_device *dev = crtc->dev;
  4532. struct drm_i915_private *dev_priv = dev->dev_private;
  4533. struct intel_encoder *encoder;
  4534. int num_connectors = 0;
  4535. bool is_lvds = false;
  4536. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4537. switch (encoder->type) {
  4538. case INTEL_OUTPUT_LVDS:
  4539. is_lvds = true;
  4540. break;
  4541. }
  4542. num_connectors++;
  4543. }
  4544. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4545. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4546. dev_priv->vbt.lvds_ssc_freq);
  4547. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4548. }
  4549. return 120000;
  4550. }
  4551. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4552. {
  4553. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4554. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4555. int pipe = intel_crtc->pipe;
  4556. uint32_t val;
  4557. val = I915_READ(PIPECONF(pipe));
  4558. val &= ~PIPECONF_BPC_MASK;
  4559. switch (intel_crtc->config.pipe_bpp) {
  4560. case 18:
  4561. val |= PIPECONF_6BPC;
  4562. break;
  4563. case 24:
  4564. val |= PIPECONF_8BPC;
  4565. break;
  4566. case 30:
  4567. val |= PIPECONF_10BPC;
  4568. break;
  4569. case 36:
  4570. val |= PIPECONF_12BPC;
  4571. break;
  4572. default:
  4573. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4574. BUG();
  4575. }
  4576. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4577. if (intel_crtc->config.dither)
  4578. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4579. val &= ~PIPECONF_INTERLACE_MASK;
  4580. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4581. val |= PIPECONF_INTERLACED_ILK;
  4582. else
  4583. val |= PIPECONF_PROGRESSIVE;
  4584. if (intel_crtc->config.limited_color_range)
  4585. val |= PIPECONF_COLOR_RANGE_SELECT;
  4586. else
  4587. val &= ~PIPECONF_COLOR_RANGE_SELECT;
  4588. I915_WRITE(PIPECONF(pipe), val);
  4589. POSTING_READ(PIPECONF(pipe));
  4590. }
  4591. /*
  4592. * Set up the pipe CSC unit.
  4593. *
  4594. * Currently only full range RGB to limited range RGB conversion
  4595. * is supported, but eventually this should handle various
  4596. * RGB<->YCbCr scenarios as well.
  4597. */
  4598. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4599. {
  4600. struct drm_device *dev = crtc->dev;
  4601. struct drm_i915_private *dev_priv = dev->dev_private;
  4602. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4603. int pipe = intel_crtc->pipe;
  4604. uint16_t coeff = 0x7800; /* 1.0 */
  4605. /*
  4606. * TODO: Check what kind of values actually come out of the pipe
  4607. * with these coeff/postoff values and adjust to get the best
  4608. * accuracy. Perhaps we even need to take the bpc value into
  4609. * consideration.
  4610. */
  4611. if (intel_crtc->config.limited_color_range)
  4612. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4613. /*
  4614. * GY/GU and RY/RU should be the other way around according
  4615. * to BSpec, but reality doesn't agree. Just set them up in
  4616. * a way that results in the correct picture.
  4617. */
  4618. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4619. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4620. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4621. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4622. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4623. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4624. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4625. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4626. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4627. if (INTEL_INFO(dev)->gen > 6) {
  4628. uint16_t postoff = 0;
  4629. if (intel_crtc->config.limited_color_range)
  4630. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4631. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4632. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4633. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4634. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4635. } else {
  4636. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4637. if (intel_crtc->config.limited_color_range)
  4638. mode |= CSC_BLACK_SCREEN_OFFSET;
  4639. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4640. }
  4641. }
  4642. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4643. {
  4644. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4645. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4646. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4647. uint32_t val;
  4648. val = I915_READ(PIPECONF(cpu_transcoder));
  4649. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4650. if (intel_crtc->config.dither)
  4651. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4652. val &= ~PIPECONF_INTERLACE_MASK_HSW;
  4653. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4654. val |= PIPECONF_INTERLACED_ILK;
  4655. else
  4656. val |= PIPECONF_PROGRESSIVE;
  4657. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4658. POSTING_READ(PIPECONF(cpu_transcoder));
  4659. }
  4660. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4661. struct drm_display_mode *adjusted_mode,
  4662. intel_clock_t *clock,
  4663. bool *has_reduced_clock,
  4664. intel_clock_t *reduced_clock)
  4665. {
  4666. struct drm_device *dev = crtc->dev;
  4667. struct drm_i915_private *dev_priv = dev->dev_private;
  4668. struct intel_encoder *intel_encoder;
  4669. int refclk;
  4670. const intel_limit_t *limit;
  4671. bool ret, is_lvds = false;
  4672. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4673. switch (intel_encoder->type) {
  4674. case INTEL_OUTPUT_LVDS:
  4675. is_lvds = true;
  4676. break;
  4677. }
  4678. }
  4679. refclk = ironlake_get_refclk(crtc);
  4680. /*
  4681. * Returns a set of divisors for the desired target clock with the given
  4682. * refclk, or FALSE. The returned values represent the clock equation:
  4683. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4684. */
  4685. limit = intel_limit(crtc, refclk);
  4686. ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4687. clock);
  4688. if (!ret)
  4689. return false;
  4690. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4691. /*
  4692. * Ensure we match the reduced clock's P to the target clock.
  4693. * If the clocks don't match, we can't switch the display clock
  4694. * by using the FP0/FP1. In such case we will disable the LVDS
  4695. * downclock feature.
  4696. */
  4697. *has_reduced_clock = limit->find_pll(limit, crtc,
  4698. dev_priv->lvds_downclock,
  4699. refclk,
  4700. clock,
  4701. reduced_clock);
  4702. }
  4703. return true;
  4704. }
  4705. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4706. {
  4707. struct drm_i915_private *dev_priv = dev->dev_private;
  4708. uint32_t temp;
  4709. temp = I915_READ(SOUTH_CHICKEN1);
  4710. if (temp & FDI_BC_BIFURCATION_SELECT)
  4711. return;
  4712. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4713. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4714. temp |= FDI_BC_BIFURCATION_SELECT;
  4715. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4716. I915_WRITE(SOUTH_CHICKEN1, temp);
  4717. POSTING_READ(SOUTH_CHICKEN1);
  4718. }
  4719. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4720. {
  4721. struct drm_device *dev = intel_crtc->base.dev;
  4722. struct drm_i915_private *dev_priv = dev->dev_private;
  4723. switch (intel_crtc->pipe) {
  4724. case PIPE_A:
  4725. break;
  4726. case PIPE_B:
  4727. if (intel_crtc->config.fdi_lanes > 2)
  4728. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4729. else
  4730. cpt_enable_fdi_bc_bifurcation(dev);
  4731. break;
  4732. case PIPE_C:
  4733. cpt_enable_fdi_bc_bifurcation(dev);
  4734. break;
  4735. default:
  4736. BUG();
  4737. }
  4738. }
  4739. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4740. {
  4741. /*
  4742. * Account for spread spectrum to avoid
  4743. * oversubscribing the link. Max center spread
  4744. * is 2.5%; use 5% for safety's sake.
  4745. */
  4746. u32 bps = target_clock * bpp * 21 / 20;
  4747. return bps / (link_bw * 8) + 1;
  4748. }
  4749. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4750. {
  4751. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4752. }
  4753. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4754. u32 *fp,
  4755. intel_clock_t *reduced_clock, u32 *fp2)
  4756. {
  4757. struct drm_crtc *crtc = &intel_crtc->base;
  4758. struct drm_device *dev = crtc->dev;
  4759. struct drm_i915_private *dev_priv = dev->dev_private;
  4760. struct intel_encoder *intel_encoder;
  4761. uint32_t dpll;
  4762. int factor, num_connectors = 0;
  4763. bool is_lvds = false, is_sdvo = false;
  4764. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4765. switch (intel_encoder->type) {
  4766. case INTEL_OUTPUT_LVDS:
  4767. is_lvds = true;
  4768. break;
  4769. case INTEL_OUTPUT_SDVO:
  4770. case INTEL_OUTPUT_HDMI:
  4771. is_sdvo = true;
  4772. break;
  4773. }
  4774. num_connectors++;
  4775. }
  4776. /* Enable autotuning of the PLL clock (if permissible) */
  4777. factor = 21;
  4778. if (is_lvds) {
  4779. if ((intel_panel_use_ssc(dev_priv) &&
  4780. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4781. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4782. factor = 25;
  4783. } else if (intel_crtc->config.sdvo_tv_clock)
  4784. factor = 20;
  4785. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4786. *fp |= FP_CB_TUNE;
  4787. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4788. *fp2 |= FP_CB_TUNE;
  4789. dpll = 0;
  4790. if (is_lvds)
  4791. dpll |= DPLLB_MODE_LVDS;
  4792. else
  4793. dpll |= DPLLB_MODE_DAC_SERIAL;
  4794. if (intel_crtc->config.pixel_multiplier > 1) {
  4795. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4796. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4797. }
  4798. if (is_sdvo)
  4799. dpll |= DPLL_DVO_HIGH_SPEED;
  4800. if (intel_crtc->config.has_dp_encoder)
  4801. dpll |= DPLL_DVO_HIGH_SPEED;
  4802. /* compute bitmask from p1 value */
  4803. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4804. /* also FPA1 */
  4805. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4806. switch (intel_crtc->config.dpll.p2) {
  4807. case 5:
  4808. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4809. break;
  4810. case 7:
  4811. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4812. break;
  4813. case 10:
  4814. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4815. break;
  4816. case 14:
  4817. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4818. break;
  4819. }
  4820. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4821. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4822. else
  4823. dpll |= PLL_REF_INPUT_DREFCLK;
  4824. return dpll;
  4825. }
  4826. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4827. int x, int y,
  4828. struct drm_framebuffer *fb)
  4829. {
  4830. struct drm_device *dev = crtc->dev;
  4831. struct drm_i915_private *dev_priv = dev->dev_private;
  4832. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4833. struct drm_display_mode *adjusted_mode =
  4834. &intel_crtc->config.adjusted_mode;
  4835. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4836. int pipe = intel_crtc->pipe;
  4837. int plane = intel_crtc->plane;
  4838. int num_connectors = 0;
  4839. intel_clock_t clock, reduced_clock;
  4840. u32 dpll = 0, fp = 0, fp2 = 0;
  4841. bool ok, has_reduced_clock = false;
  4842. bool is_lvds = false;
  4843. struct intel_encoder *encoder;
  4844. int ret;
  4845. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4846. switch (encoder->type) {
  4847. case INTEL_OUTPUT_LVDS:
  4848. is_lvds = true;
  4849. break;
  4850. }
  4851. num_connectors++;
  4852. }
  4853. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4854. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4855. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4856. &has_reduced_clock, &reduced_clock);
  4857. if (!ok) {
  4858. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4859. return -EINVAL;
  4860. }
  4861. /* Compat-code for transition, will disappear. */
  4862. if (!intel_crtc->config.clock_set) {
  4863. intel_crtc->config.dpll.n = clock.n;
  4864. intel_crtc->config.dpll.m1 = clock.m1;
  4865. intel_crtc->config.dpll.m2 = clock.m2;
  4866. intel_crtc->config.dpll.p1 = clock.p1;
  4867. intel_crtc->config.dpll.p2 = clock.p2;
  4868. }
  4869. /* Ensure that the cursor is valid for the new mode before changing... */
  4870. intel_crtc_update_cursor(crtc, true);
  4871. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4872. if (intel_crtc->config.has_pch_encoder) {
  4873. struct intel_pch_pll *pll;
  4874. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4875. if (has_reduced_clock)
  4876. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4877. dpll = ironlake_compute_dpll(intel_crtc,
  4878. &fp, &reduced_clock,
  4879. has_reduced_clock ? &fp2 : NULL);
  4880. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4881. if (pll == NULL) {
  4882. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4883. pipe_name(pipe));
  4884. return -EINVAL;
  4885. }
  4886. } else
  4887. intel_put_pch_pll(intel_crtc);
  4888. if (intel_crtc->config.has_dp_encoder)
  4889. intel_dp_set_m_n(intel_crtc);
  4890. for_each_encoder_on_crtc(dev, crtc, encoder)
  4891. if (encoder->pre_pll_enable)
  4892. encoder->pre_pll_enable(encoder);
  4893. if (intel_crtc->pch_pll) {
  4894. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4895. /* Wait for the clocks to stabilize. */
  4896. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4897. udelay(150);
  4898. /* The pixel multiplier can only be updated once the
  4899. * DPLL is enabled and the clocks are stable.
  4900. *
  4901. * So write it again.
  4902. */
  4903. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4904. }
  4905. intel_crtc->lowfreq_avail = false;
  4906. if (intel_crtc->pch_pll) {
  4907. if (is_lvds && has_reduced_clock && i915_powersave) {
  4908. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4909. intel_crtc->lowfreq_avail = true;
  4910. } else {
  4911. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4912. }
  4913. }
  4914. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4915. if (intel_crtc->config.has_pch_encoder) {
  4916. intel_cpu_transcoder_set_m_n(intel_crtc,
  4917. &intel_crtc->config.fdi_m_n);
  4918. }
  4919. if (IS_IVYBRIDGE(dev))
  4920. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4921. ironlake_set_pipeconf(crtc);
  4922. /* Set up the display plane register */
  4923. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4924. POSTING_READ(DSPCNTR(plane));
  4925. ret = intel_pipe_set_base(crtc, x, y, fb);
  4926. intel_update_watermarks(dev);
  4927. return ret;
  4928. }
  4929. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  4930. struct intel_crtc_config *pipe_config)
  4931. {
  4932. struct drm_device *dev = crtc->base.dev;
  4933. struct drm_i915_private *dev_priv = dev->dev_private;
  4934. enum transcoder transcoder = pipe_config->cpu_transcoder;
  4935. pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4936. pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4937. pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4938. & ~TU_SIZE_MASK;
  4939. pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4940. pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4941. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4942. }
  4943. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  4944. struct intel_crtc_config *pipe_config)
  4945. {
  4946. struct drm_device *dev = crtc->base.dev;
  4947. struct drm_i915_private *dev_priv = dev->dev_private;
  4948. uint32_t tmp;
  4949. tmp = I915_READ(PF_CTL(crtc->pipe));
  4950. if (tmp & PF_ENABLE) {
  4951. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  4952. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  4953. }
  4954. }
  4955. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4956. struct intel_crtc_config *pipe_config)
  4957. {
  4958. struct drm_device *dev = crtc->base.dev;
  4959. struct drm_i915_private *dev_priv = dev->dev_private;
  4960. uint32_t tmp;
  4961. pipe_config->cpu_transcoder = crtc->pipe;
  4962. tmp = I915_READ(PIPECONF(crtc->pipe));
  4963. if (!(tmp & PIPECONF_ENABLE))
  4964. return false;
  4965. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  4966. pipe_config->has_pch_encoder = true;
  4967. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  4968. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  4969. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  4970. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  4971. }
  4972. intel_get_pipe_timings(crtc, pipe_config);
  4973. ironlake_get_pfit_config(crtc, pipe_config);
  4974. return true;
  4975. }
  4976. static void haswell_modeset_global_resources(struct drm_device *dev)
  4977. {
  4978. bool enable = false;
  4979. struct intel_crtc *crtc;
  4980. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  4981. if (!crtc->base.enabled)
  4982. continue;
  4983. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
  4984. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  4985. enable = true;
  4986. }
  4987. intel_set_power_well(dev, enable);
  4988. }
  4989. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4990. int x, int y,
  4991. struct drm_framebuffer *fb)
  4992. {
  4993. struct drm_device *dev = crtc->dev;
  4994. struct drm_i915_private *dev_priv = dev->dev_private;
  4995. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4996. struct drm_display_mode *adjusted_mode =
  4997. &intel_crtc->config.adjusted_mode;
  4998. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4999. int pipe = intel_crtc->pipe;
  5000. int plane = intel_crtc->plane;
  5001. int num_connectors = 0;
  5002. bool is_cpu_edp = false;
  5003. struct intel_encoder *encoder;
  5004. int ret;
  5005. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5006. switch (encoder->type) {
  5007. case INTEL_OUTPUT_EDP:
  5008. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  5009. is_cpu_edp = true;
  5010. break;
  5011. }
  5012. num_connectors++;
  5013. }
  5014. WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
  5015. num_connectors, pipe_name(pipe));
  5016. if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
  5017. return -EINVAL;
  5018. /* Ensure that the cursor is valid for the new mode before changing... */
  5019. intel_crtc_update_cursor(crtc, true);
  5020. if (intel_crtc->config.has_dp_encoder)
  5021. intel_dp_set_m_n(intel_crtc);
  5022. intel_crtc->lowfreq_avail = false;
  5023. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  5024. if (intel_crtc->config.has_pch_encoder) {
  5025. intel_cpu_transcoder_set_m_n(intel_crtc,
  5026. &intel_crtc->config.fdi_m_n);
  5027. }
  5028. haswell_set_pipeconf(crtc);
  5029. intel_set_pipe_csc(crtc);
  5030. /* Set up the display plane register */
  5031. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  5032. POSTING_READ(DSPCNTR(plane));
  5033. ret = intel_pipe_set_base(crtc, x, y, fb);
  5034. intel_update_watermarks(dev);
  5035. return ret;
  5036. }
  5037. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  5038. struct intel_crtc_config *pipe_config)
  5039. {
  5040. struct drm_device *dev = crtc->base.dev;
  5041. struct drm_i915_private *dev_priv = dev->dev_private;
  5042. enum intel_display_power_domain pfit_domain;
  5043. uint32_t tmp;
  5044. pipe_config->cpu_transcoder = crtc->pipe;
  5045. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  5046. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  5047. enum pipe trans_edp_pipe;
  5048. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  5049. default:
  5050. WARN(1, "unknown pipe linked to edp transcoder\n");
  5051. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  5052. case TRANS_DDI_EDP_INPUT_A_ON:
  5053. trans_edp_pipe = PIPE_A;
  5054. break;
  5055. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5056. trans_edp_pipe = PIPE_B;
  5057. break;
  5058. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5059. trans_edp_pipe = PIPE_C;
  5060. break;
  5061. }
  5062. if (trans_edp_pipe == crtc->pipe)
  5063. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5064. }
  5065. if (!intel_display_power_enabled(dev,
  5066. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5067. return false;
  5068. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5069. if (!(tmp & PIPECONF_ENABLE))
  5070. return false;
  5071. /*
  5072. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5073. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5074. * the PCH transcoder is on.
  5075. */
  5076. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5077. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5078. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5079. pipe_config->has_pch_encoder = true;
  5080. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5081. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5082. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5083. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5084. }
  5085. intel_get_pipe_timings(crtc, pipe_config);
  5086. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5087. if (intel_display_power_enabled(dev, pfit_domain))
  5088. ironlake_get_pfit_config(crtc, pipe_config);
  5089. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5090. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5091. return true;
  5092. }
  5093. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5094. int x, int y,
  5095. struct drm_framebuffer *fb)
  5096. {
  5097. struct drm_device *dev = crtc->dev;
  5098. struct drm_i915_private *dev_priv = dev->dev_private;
  5099. struct drm_encoder_helper_funcs *encoder_funcs;
  5100. struct intel_encoder *encoder;
  5101. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5102. struct drm_display_mode *adjusted_mode =
  5103. &intel_crtc->config.adjusted_mode;
  5104. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5105. int pipe = intel_crtc->pipe;
  5106. int ret;
  5107. drm_vblank_pre_modeset(dev, pipe);
  5108. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5109. drm_vblank_post_modeset(dev, pipe);
  5110. if (ret != 0)
  5111. return ret;
  5112. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5113. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5114. encoder->base.base.id,
  5115. drm_get_encoder_name(&encoder->base),
  5116. mode->base.id, mode->name);
  5117. if (encoder->mode_set) {
  5118. encoder->mode_set(encoder);
  5119. } else {
  5120. encoder_funcs = encoder->base.helper_private;
  5121. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  5122. }
  5123. }
  5124. return 0;
  5125. }
  5126. static bool intel_eld_uptodate(struct drm_connector *connector,
  5127. int reg_eldv, uint32_t bits_eldv,
  5128. int reg_elda, uint32_t bits_elda,
  5129. int reg_edid)
  5130. {
  5131. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5132. uint8_t *eld = connector->eld;
  5133. uint32_t i;
  5134. i = I915_READ(reg_eldv);
  5135. i &= bits_eldv;
  5136. if (!eld[0])
  5137. return !i;
  5138. if (!i)
  5139. return false;
  5140. i = I915_READ(reg_elda);
  5141. i &= ~bits_elda;
  5142. I915_WRITE(reg_elda, i);
  5143. for (i = 0; i < eld[2]; i++)
  5144. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5145. return false;
  5146. return true;
  5147. }
  5148. static void g4x_write_eld(struct drm_connector *connector,
  5149. struct drm_crtc *crtc)
  5150. {
  5151. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5152. uint8_t *eld = connector->eld;
  5153. uint32_t eldv;
  5154. uint32_t len;
  5155. uint32_t i;
  5156. i = I915_READ(G4X_AUD_VID_DID);
  5157. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5158. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5159. else
  5160. eldv = G4X_ELDV_DEVCTG;
  5161. if (intel_eld_uptodate(connector,
  5162. G4X_AUD_CNTL_ST, eldv,
  5163. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5164. G4X_HDMIW_HDMIEDID))
  5165. return;
  5166. i = I915_READ(G4X_AUD_CNTL_ST);
  5167. i &= ~(eldv | G4X_ELD_ADDR);
  5168. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5169. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5170. if (!eld[0])
  5171. return;
  5172. len = min_t(uint8_t, eld[2], len);
  5173. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5174. for (i = 0; i < len; i++)
  5175. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5176. i = I915_READ(G4X_AUD_CNTL_ST);
  5177. i |= eldv;
  5178. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5179. }
  5180. static void haswell_write_eld(struct drm_connector *connector,
  5181. struct drm_crtc *crtc)
  5182. {
  5183. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5184. uint8_t *eld = connector->eld;
  5185. struct drm_device *dev = crtc->dev;
  5186. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5187. uint32_t eldv;
  5188. uint32_t i;
  5189. int len;
  5190. int pipe = to_intel_crtc(crtc)->pipe;
  5191. int tmp;
  5192. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5193. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5194. int aud_config = HSW_AUD_CFG(pipe);
  5195. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5196. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5197. /* Audio output enable */
  5198. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5199. tmp = I915_READ(aud_cntrl_st2);
  5200. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5201. I915_WRITE(aud_cntrl_st2, tmp);
  5202. /* Wait for 1 vertical blank */
  5203. intel_wait_for_vblank(dev, pipe);
  5204. /* Set ELD valid state */
  5205. tmp = I915_READ(aud_cntrl_st2);
  5206. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5207. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5208. I915_WRITE(aud_cntrl_st2, tmp);
  5209. tmp = I915_READ(aud_cntrl_st2);
  5210. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5211. /* Enable HDMI mode */
  5212. tmp = I915_READ(aud_config);
  5213. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5214. /* clear N_programing_enable and N_value_index */
  5215. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5216. I915_WRITE(aud_config, tmp);
  5217. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5218. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5219. intel_crtc->eld_vld = true;
  5220. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5221. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5222. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5223. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5224. } else
  5225. I915_WRITE(aud_config, 0);
  5226. if (intel_eld_uptodate(connector,
  5227. aud_cntrl_st2, eldv,
  5228. aud_cntl_st, IBX_ELD_ADDRESS,
  5229. hdmiw_hdmiedid))
  5230. return;
  5231. i = I915_READ(aud_cntrl_st2);
  5232. i &= ~eldv;
  5233. I915_WRITE(aud_cntrl_st2, i);
  5234. if (!eld[0])
  5235. return;
  5236. i = I915_READ(aud_cntl_st);
  5237. i &= ~IBX_ELD_ADDRESS;
  5238. I915_WRITE(aud_cntl_st, i);
  5239. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5240. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5241. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5242. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5243. for (i = 0; i < len; i++)
  5244. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5245. i = I915_READ(aud_cntrl_st2);
  5246. i |= eldv;
  5247. I915_WRITE(aud_cntrl_st2, i);
  5248. }
  5249. static void ironlake_write_eld(struct drm_connector *connector,
  5250. struct drm_crtc *crtc)
  5251. {
  5252. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5253. uint8_t *eld = connector->eld;
  5254. uint32_t eldv;
  5255. uint32_t i;
  5256. int len;
  5257. int hdmiw_hdmiedid;
  5258. int aud_config;
  5259. int aud_cntl_st;
  5260. int aud_cntrl_st2;
  5261. int pipe = to_intel_crtc(crtc)->pipe;
  5262. if (HAS_PCH_IBX(connector->dev)) {
  5263. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5264. aud_config = IBX_AUD_CFG(pipe);
  5265. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5266. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5267. } else {
  5268. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5269. aud_config = CPT_AUD_CFG(pipe);
  5270. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5271. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5272. }
  5273. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5274. i = I915_READ(aud_cntl_st);
  5275. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5276. if (!i) {
  5277. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5278. /* operate blindly on all ports */
  5279. eldv = IBX_ELD_VALIDB;
  5280. eldv |= IBX_ELD_VALIDB << 4;
  5281. eldv |= IBX_ELD_VALIDB << 8;
  5282. } else {
  5283. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5284. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5285. }
  5286. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5287. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5288. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5289. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5290. } else
  5291. I915_WRITE(aud_config, 0);
  5292. if (intel_eld_uptodate(connector,
  5293. aud_cntrl_st2, eldv,
  5294. aud_cntl_st, IBX_ELD_ADDRESS,
  5295. hdmiw_hdmiedid))
  5296. return;
  5297. i = I915_READ(aud_cntrl_st2);
  5298. i &= ~eldv;
  5299. I915_WRITE(aud_cntrl_st2, i);
  5300. if (!eld[0])
  5301. return;
  5302. i = I915_READ(aud_cntl_st);
  5303. i &= ~IBX_ELD_ADDRESS;
  5304. I915_WRITE(aud_cntl_st, i);
  5305. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5306. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5307. for (i = 0; i < len; i++)
  5308. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5309. i = I915_READ(aud_cntrl_st2);
  5310. i |= eldv;
  5311. I915_WRITE(aud_cntrl_st2, i);
  5312. }
  5313. void intel_write_eld(struct drm_encoder *encoder,
  5314. struct drm_display_mode *mode)
  5315. {
  5316. struct drm_crtc *crtc = encoder->crtc;
  5317. struct drm_connector *connector;
  5318. struct drm_device *dev = encoder->dev;
  5319. struct drm_i915_private *dev_priv = dev->dev_private;
  5320. connector = drm_select_eld(encoder, mode);
  5321. if (!connector)
  5322. return;
  5323. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5324. connector->base.id,
  5325. drm_get_connector_name(connector),
  5326. connector->encoder->base.id,
  5327. drm_get_encoder_name(connector->encoder));
  5328. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5329. if (dev_priv->display.write_eld)
  5330. dev_priv->display.write_eld(connector, crtc);
  5331. }
  5332. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5333. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5334. {
  5335. struct drm_device *dev = crtc->dev;
  5336. struct drm_i915_private *dev_priv = dev->dev_private;
  5337. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5338. enum pipe pipe = intel_crtc->pipe;
  5339. int palreg = PALETTE(pipe);
  5340. int i;
  5341. bool reenable_ips = false;
  5342. /* The clocks have to be on to load the palette. */
  5343. if (!crtc->enabled || !intel_crtc->active)
  5344. return;
  5345. /* use legacy palette for Ironlake */
  5346. if (HAS_PCH_SPLIT(dev))
  5347. palreg = LGC_PALETTE(pipe);
  5348. /* Workaround : Do not read or write the pipe palette/gamma data while
  5349. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  5350. */
  5351. if (intel_crtc->config.ips_enabled &&
  5352. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  5353. GAMMA_MODE_MODE_SPLIT)) {
  5354. hsw_disable_ips(intel_crtc);
  5355. reenable_ips = true;
  5356. }
  5357. for (i = 0; i < 256; i++) {
  5358. I915_WRITE(palreg + 4 * i,
  5359. (intel_crtc->lut_r[i] << 16) |
  5360. (intel_crtc->lut_g[i] << 8) |
  5361. intel_crtc->lut_b[i]);
  5362. }
  5363. if (reenable_ips)
  5364. hsw_enable_ips(intel_crtc);
  5365. }
  5366. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5367. {
  5368. struct drm_device *dev = crtc->dev;
  5369. struct drm_i915_private *dev_priv = dev->dev_private;
  5370. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5371. bool visible = base != 0;
  5372. u32 cntl;
  5373. if (intel_crtc->cursor_visible == visible)
  5374. return;
  5375. cntl = I915_READ(_CURACNTR);
  5376. if (visible) {
  5377. /* On these chipsets we can only modify the base whilst
  5378. * the cursor is disabled.
  5379. */
  5380. I915_WRITE(_CURABASE, base);
  5381. cntl &= ~(CURSOR_FORMAT_MASK);
  5382. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5383. cntl |= CURSOR_ENABLE |
  5384. CURSOR_GAMMA_ENABLE |
  5385. CURSOR_FORMAT_ARGB;
  5386. } else
  5387. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5388. I915_WRITE(_CURACNTR, cntl);
  5389. intel_crtc->cursor_visible = visible;
  5390. }
  5391. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5392. {
  5393. struct drm_device *dev = crtc->dev;
  5394. struct drm_i915_private *dev_priv = dev->dev_private;
  5395. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5396. int pipe = intel_crtc->pipe;
  5397. bool visible = base != 0;
  5398. if (intel_crtc->cursor_visible != visible) {
  5399. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5400. if (base) {
  5401. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5402. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5403. cntl |= pipe << 28; /* Connect to correct pipe */
  5404. } else {
  5405. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5406. cntl |= CURSOR_MODE_DISABLE;
  5407. }
  5408. I915_WRITE(CURCNTR(pipe), cntl);
  5409. intel_crtc->cursor_visible = visible;
  5410. }
  5411. /* and commit changes on next vblank */
  5412. I915_WRITE(CURBASE(pipe), base);
  5413. }
  5414. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5415. {
  5416. struct drm_device *dev = crtc->dev;
  5417. struct drm_i915_private *dev_priv = dev->dev_private;
  5418. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5419. int pipe = intel_crtc->pipe;
  5420. bool visible = base != 0;
  5421. if (intel_crtc->cursor_visible != visible) {
  5422. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5423. if (base) {
  5424. cntl &= ~CURSOR_MODE;
  5425. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5426. } else {
  5427. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5428. cntl |= CURSOR_MODE_DISABLE;
  5429. }
  5430. if (IS_HASWELL(dev))
  5431. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5432. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5433. intel_crtc->cursor_visible = visible;
  5434. }
  5435. /* and commit changes on next vblank */
  5436. I915_WRITE(CURBASE_IVB(pipe), base);
  5437. }
  5438. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5439. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5440. bool on)
  5441. {
  5442. struct drm_device *dev = crtc->dev;
  5443. struct drm_i915_private *dev_priv = dev->dev_private;
  5444. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5445. int pipe = intel_crtc->pipe;
  5446. int x = intel_crtc->cursor_x;
  5447. int y = intel_crtc->cursor_y;
  5448. u32 base, pos;
  5449. bool visible;
  5450. pos = 0;
  5451. if (on && crtc->enabled && crtc->fb) {
  5452. base = intel_crtc->cursor_addr;
  5453. if (x > (int) crtc->fb->width)
  5454. base = 0;
  5455. if (y > (int) crtc->fb->height)
  5456. base = 0;
  5457. } else
  5458. base = 0;
  5459. if (x < 0) {
  5460. if (x + intel_crtc->cursor_width < 0)
  5461. base = 0;
  5462. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5463. x = -x;
  5464. }
  5465. pos |= x << CURSOR_X_SHIFT;
  5466. if (y < 0) {
  5467. if (y + intel_crtc->cursor_height < 0)
  5468. base = 0;
  5469. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5470. y = -y;
  5471. }
  5472. pos |= y << CURSOR_Y_SHIFT;
  5473. visible = base != 0;
  5474. if (!visible && !intel_crtc->cursor_visible)
  5475. return;
  5476. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5477. I915_WRITE(CURPOS_IVB(pipe), pos);
  5478. ivb_update_cursor(crtc, base);
  5479. } else {
  5480. I915_WRITE(CURPOS(pipe), pos);
  5481. if (IS_845G(dev) || IS_I865G(dev))
  5482. i845_update_cursor(crtc, base);
  5483. else
  5484. i9xx_update_cursor(crtc, base);
  5485. }
  5486. }
  5487. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5488. struct drm_file *file,
  5489. uint32_t handle,
  5490. uint32_t width, uint32_t height)
  5491. {
  5492. struct drm_device *dev = crtc->dev;
  5493. struct drm_i915_private *dev_priv = dev->dev_private;
  5494. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5495. struct drm_i915_gem_object *obj;
  5496. uint32_t addr;
  5497. int ret;
  5498. /* if we want to turn off the cursor ignore width and height */
  5499. if (!handle) {
  5500. DRM_DEBUG_KMS("cursor off\n");
  5501. addr = 0;
  5502. obj = NULL;
  5503. mutex_lock(&dev->struct_mutex);
  5504. goto finish;
  5505. }
  5506. /* Currently we only support 64x64 cursors */
  5507. if (width != 64 || height != 64) {
  5508. DRM_ERROR("we currently only support 64x64 cursors\n");
  5509. return -EINVAL;
  5510. }
  5511. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5512. if (&obj->base == NULL)
  5513. return -ENOENT;
  5514. if (obj->base.size < width * height * 4) {
  5515. DRM_ERROR("buffer is to small\n");
  5516. ret = -ENOMEM;
  5517. goto fail;
  5518. }
  5519. /* we only need to pin inside GTT if cursor is non-phy */
  5520. mutex_lock(&dev->struct_mutex);
  5521. if (!dev_priv->info->cursor_needs_physical) {
  5522. unsigned alignment;
  5523. if (obj->tiling_mode) {
  5524. DRM_ERROR("cursor cannot be tiled\n");
  5525. ret = -EINVAL;
  5526. goto fail_locked;
  5527. }
  5528. /* Note that the w/a also requires 2 PTE of padding following
  5529. * the bo. We currently fill all unused PTE with the shadow
  5530. * page and so we should always have valid PTE following the
  5531. * cursor preventing the VT-d warning.
  5532. */
  5533. alignment = 0;
  5534. if (need_vtd_wa(dev))
  5535. alignment = 64*1024;
  5536. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5537. if (ret) {
  5538. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5539. goto fail_locked;
  5540. }
  5541. ret = i915_gem_object_put_fence(obj);
  5542. if (ret) {
  5543. DRM_ERROR("failed to release fence for cursor");
  5544. goto fail_unpin;
  5545. }
  5546. addr = obj->gtt_offset;
  5547. } else {
  5548. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5549. ret = i915_gem_attach_phys_object(dev, obj,
  5550. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5551. align);
  5552. if (ret) {
  5553. DRM_ERROR("failed to attach phys object\n");
  5554. goto fail_locked;
  5555. }
  5556. addr = obj->phys_obj->handle->busaddr;
  5557. }
  5558. if (IS_GEN2(dev))
  5559. I915_WRITE(CURSIZE, (height << 12) | width);
  5560. finish:
  5561. if (intel_crtc->cursor_bo) {
  5562. if (dev_priv->info->cursor_needs_physical) {
  5563. if (intel_crtc->cursor_bo != obj)
  5564. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5565. } else
  5566. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5567. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5568. }
  5569. mutex_unlock(&dev->struct_mutex);
  5570. intel_crtc->cursor_addr = addr;
  5571. intel_crtc->cursor_bo = obj;
  5572. intel_crtc->cursor_width = width;
  5573. intel_crtc->cursor_height = height;
  5574. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5575. return 0;
  5576. fail_unpin:
  5577. i915_gem_object_unpin(obj);
  5578. fail_locked:
  5579. mutex_unlock(&dev->struct_mutex);
  5580. fail:
  5581. drm_gem_object_unreference_unlocked(&obj->base);
  5582. return ret;
  5583. }
  5584. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5585. {
  5586. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5587. intel_crtc->cursor_x = x;
  5588. intel_crtc->cursor_y = y;
  5589. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5590. return 0;
  5591. }
  5592. /** Sets the color ramps on behalf of RandR */
  5593. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5594. u16 blue, int regno)
  5595. {
  5596. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5597. intel_crtc->lut_r[regno] = red >> 8;
  5598. intel_crtc->lut_g[regno] = green >> 8;
  5599. intel_crtc->lut_b[regno] = blue >> 8;
  5600. }
  5601. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5602. u16 *blue, int regno)
  5603. {
  5604. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5605. *red = intel_crtc->lut_r[regno] << 8;
  5606. *green = intel_crtc->lut_g[regno] << 8;
  5607. *blue = intel_crtc->lut_b[regno] << 8;
  5608. }
  5609. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5610. u16 *blue, uint32_t start, uint32_t size)
  5611. {
  5612. int end = (start + size > 256) ? 256 : start + size, i;
  5613. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5614. for (i = start; i < end; i++) {
  5615. intel_crtc->lut_r[i] = red[i] >> 8;
  5616. intel_crtc->lut_g[i] = green[i] >> 8;
  5617. intel_crtc->lut_b[i] = blue[i] >> 8;
  5618. }
  5619. intel_crtc_load_lut(crtc);
  5620. }
  5621. /* VESA 640x480x72Hz mode to set on the pipe */
  5622. static struct drm_display_mode load_detect_mode = {
  5623. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5624. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5625. };
  5626. static struct drm_framebuffer *
  5627. intel_framebuffer_create(struct drm_device *dev,
  5628. struct drm_mode_fb_cmd2 *mode_cmd,
  5629. struct drm_i915_gem_object *obj)
  5630. {
  5631. struct intel_framebuffer *intel_fb;
  5632. int ret;
  5633. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5634. if (!intel_fb) {
  5635. drm_gem_object_unreference_unlocked(&obj->base);
  5636. return ERR_PTR(-ENOMEM);
  5637. }
  5638. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5639. if (ret) {
  5640. drm_gem_object_unreference_unlocked(&obj->base);
  5641. kfree(intel_fb);
  5642. return ERR_PTR(ret);
  5643. }
  5644. return &intel_fb->base;
  5645. }
  5646. static u32
  5647. intel_framebuffer_pitch_for_width(int width, int bpp)
  5648. {
  5649. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5650. return ALIGN(pitch, 64);
  5651. }
  5652. static u32
  5653. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5654. {
  5655. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5656. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5657. }
  5658. static struct drm_framebuffer *
  5659. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5660. struct drm_display_mode *mode,
  5661. int depth, int bpp)
  5662. {
  5663. struct drm_i915_gem_object *obj;
  5664. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5665. obj = i915_gem_alloc_object(dev,
  5666. intel_framebuffer_size_for_mode(mode, bpp));
  5667. if (obj == NULL)
  5668. return ERR_PTR(-ENOMEM);
  5669. mode_cmd.width = mode->hdisplay;
  5670. mode_cmd.height = mode->vdisplay;
  5671. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5672. bpp);
  5673. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5674. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5675. }
  5676. static struct drm_framebuffer *
  5677. mode_fits_in_fbdev(struct drm_device *dev,
  5678. struct drm_display_mode *mode)
  5679. {
  5680. struct drm_i915_private *dev_priv = dev->dev_private;
  5681. struct drm_i915_gem_object *obj;
  5682. struct drm_framebuffer *fb;
  5683. if (dev_priv->fbdev == NULL)
  5684. return NULL;
  5685. obj = dev_priv->fbdev->ifb.obj;
  5686. if (obj == NULL)
  5687. return NULL;
  5688. fb = &dev_priv->fbdev->ifb.base;
  5689. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5690. fb->bits_per_pixel))
  5691. return NULL;
  5692. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5693. return NULL;
  5694. return fb;
  5695. }
  5696. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5697. struct drm_display_mode *mode,
  5698. struct intel_load_detect_pipe *old)
  5699. {
  5700. struct intel_crtc *intel_crtc;
  5701. struct intel_encoder *intel_encoder =
  5702. intel_attached_encoder(connector);
  5703. struct drm_crtc *possible_crtc;
  5704. struct drm_encoder *encoder = &intel_encoder->base;
  5705. struct drm_crtc *crtc = NULL;
  5706. struct drm_device *dev = encoder->dev;
  5707. struct drm_framebuffer *fb;
  5708. int i = -1;
  5709. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5710. connector->base.id, drm_get_connector_name(connector),
  5711. encoder->base.id, drm_get_encoder_name(encoder));
  5712. /*
  5713. * Algorithm gets a little messy:
  5714. *
  5715. * - if the connector already has an assigned crtc, use it (but make
  5716. * sure it's on first)
  5717. *
  5718. * - try to find the first unused crtc that can drive this connector,
  5719. * and use that if we find one
  5720. */
  5721. /* See if we already have a CRTC for this connector */
  5722. if (encoder->crtc) {
  5723. crtc = encoder->crtc;
  5724. mutex_lock(&crtc->mutex);
  5725. old->dpms_mode = connector->dpms;
  5726. old->load_detect_temp = false;
  5727. /* Make sure the crtc and connector are running */
  5728. if (connector->dpms != DRM_MODE_DPMS_ON)
  5729. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5730. return true;
  5731. }
  5732. /* Find an unused one (if possible) */
  5733. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5734. i++;
  5735. if (!(encoder->possible_crtcs & (1 << i)))
  5736. continue;
  5737. if (!possible_crtc->enabled) {
  5738. crtc = possible_crtc;
  5739. break;
  5740. }
  5741. }
  5742. /*
  5743. * If we didn't find an unused CRTC, don't use any.
  5744. */
  5745. if (!crtc) {
  5746. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5747. return false;
  5748. }
  5749. mutex_lock(&crtc->mutex);
  5750. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5751. to_intel_connector(connector)->new_encoder = intel_encoder;
  5752. intel_crtc = to_intel_crtc(crtc);
  5753. old->dpms_mode = connector->dpms;
  5754. old->load_detect_temp = true;
  5755. old->release_fb = NULL;
  5756. if (!mode)
  5757. mode = &load_detect_mode;
  5758. /* We need a framebuffer large enough to accommodate all accesses
  5759. * that the plane may generate whilst we perform load detection.
  5760. * We can not rely on the fbcon either being present (we get called
  5761. * during its initialisation to detect all boot displays, or it may
  5762. * not even exist) or that it is large enough to satisfy the
  5763. * requested mode.
  5764. */
  5765. fb = mode_fits_in_fbdev(dev, mode);
  5766. if (fb == NULL) {
  5767. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5768. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5769. old->release_fb = fb;
  5770. } else
  5771. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5772. if (IS_ERR(fb)) {
  5773. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5774. mutex_unlock(&crtc->mutex);
  5775. return false;
  5776. }
  5777. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  5778. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5779. if (old->release_fb)
  5780. old->release_fb->funcs->destroy(old->release_fb);
  5781. mutex_unlock(&crtc->mutex);
  5782. return false;
  5783. }
  5784. /* let the connector get through one full cycle before testing */
  5785. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5786. return true;
  5787. }
  5788. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5789. struct intel_load_detect_pipe *old)
  5790. {
  5791. struct intel_encoder *intel_encoder =
  5792. intel_attached_encoder(connector);
  5793. struct drm_encoder *encoder = &intel_encoder->base;
  5794. struct drm_crtc *crtc = encoder->crtc;
  5795. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5796. connector->base.id, drm_get_connector_name(connector),
  5797. encoder->base.id, drm_get_encoder_name(encoder));
  5798. if (old->load_detect_temp) {
  5799. to_intel_connector(connector)->new_encoder = NULL;
  5800. intel_encoder->new_crtc = NULL;
  5801. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5802. if (old->release_fb) {
  5803. drm_framebuffer_unregister_private(old->release_fb);
  5804. drm_framebuffer_unreference(old->release_fb);
  5805. }
  5806. mutex_unlock(&crtc->mutex);
  5807. return;
  5808. }
  5809. /* Switch crtc and encoder back off if necessary */
  5810. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5811. connector->funcs->dpms(connector, old->dpms_mode);
  5812. mutex_unlock(&crtc->mutex);
  5813. }
  5814. /* Returns the clock of the currently programmed mode of the given pipe. */
  5815. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5816. {
  5817. struct drm_i915_private *dev_priv = dev->dev_private;
  5818. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5819. int pipe = intel_crtc->pipe;
  5820. u32 dpll = I915_READ(DPLL(pipe));
  5821. u32 fp;
  5822. intel_clock_t clock;
  5823. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5824. fp = I915_READ(FP0(pipe));
  5825. else
  5826. fp = I915_READ(FP1(pipe));
  5827. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5828. if (IS_PINEVIEW(dev)) {
  5829. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5830. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5831. } else {
  5832. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5833. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5834. }
  5835. if (!IS_GEN2(dev)) {
  5836. if (IS_PINEVIEW(dev))
  5837. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5838. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5839. else
  5840. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5841. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5842. switch (dpll & DPLL_MODE_MASK) {
  5843. case DPLLB_MODE_DAC_SERIAL:
  5844. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5845. 5 : 10;
  5846. break;
  5847. case DPLLB_MODE_LVDS:
  5848. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5849. 7 : 14;
  5850. break;
  5851. default:
  5852. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5853. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5854. return 0;
  5855. }
  5856. if (IS_PINEVIEW(dev))
  5857. pineview_clock(96000, &clock);
  5858. else
  5859. i9xx_clock(96000, &clock);
  5860. } else {
  5861. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5862. if (is_lvds) {
  5863. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5864. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5865. clock.p2 = 14;
  5866. if ((dpll & PLL_REF_INPUT_MASK) ==
  5867. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5868. /* XXX: might not be 66MHz */
  5869. i9xx_clock(66000, &clock);
  5870. } else
  5871. i9xx_clock(48000, &clock);
  5872. } else {
  5873. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5874. clock.p1 = 2;
  5875. else {
  5876. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5877. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5878. }
  5879. if (dpll & PLL_P2_DIVIDE_BY_4)
  5880. clock.p2 = 4;
  5881. else
  5882. clock.p2 = 2;
  5883. i9xx_clock(48000, &clock);
  5884. }
  5885. }
  5886. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5887. * i830PllIsValid() because it relies on the xf86_config connector
  5888. * configuration being accurate, which it isn't necessarily.
  5889. */
  5890. return clock.dot;
  5891. }
  5892. /** Returns the currently programmed mode of the given pipe. */
  5893. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5894. struct drm_crtc *crtc)
  5895. {
  5896. struct drm_i915_private *dev_priv = dev->dev_private;
  5897. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5898. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  5899. struct drm_display_mode *mode;
  5900. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5901. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5902. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5903. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5904. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5905. if (!mode)
  5906. return NULL;
  5907. mode->clock = intel_crtc_clock_get(dev, crtc);
  5908. mode->hdisplay = (htot & 0xffff) + 1;
  5909. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5910. mode->hsync_start = (hsync & 0xffff) + 1;
  5911. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5912. mode->vdisplay = (vtot & 0xffff) + 1;
  5913. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5914. mode->vsync_start = (vsync & 0xffff) + 1;
  5915. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5916. drm_mode_set_name(mode);
  5917. return mode;
  5918. }
  5919. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5920. {
  5921. struct drm_device *dev = crtc->dev;
  5922. drm_i915_private_t *dev_priv = dev->dev_private;
  5923. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5924. int pipe = intel_crtc->pipe;
  5925. int dpll_reg = DPLL(pipe);
  5926. int dpll;
  5927. if (HAS_PCH_SPLIT(dev))
  5928. return;
  5929. if (!dev_priv->lvds_downclock_avail)
  5930. return;
  5931. dpll = I915_READ(dpll_reg);
  5932. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5933. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5934. assert_panel_unlocked(dev_priv, pipe);
  5935. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5936. I915_WRITE(dpll_reg, dpll);
  5937. intel_wait_for_vblank(dev, pipe);
  5938. dpll = I915_READ(dpll_reg);
  5939. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5940. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5941. }
  5942. }
  5943. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5944. {
  5945. struct drm_device *dev = crtc->dev;
  5946. drm_i915_private_t *dev_priv = dev->dev_private;
  5947. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5948. if (HAS_PCH_SPLIT(dev))
  5949. return;
  5950. if (!dev_priv->lvds_downclock_avail)
  5951. return;
  5952. /*
  5953. * Since this is called by a timer, we should never get here in
  5954. * the manual case.
  5955. */
  5956. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5957. int pipe = intel_crtc->pipe;
  5958. int dpll_reg = DPLL(pipe);
  5959. int dpll;
  5960. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5961. assert_panel_unlocked(dev_priv, pipe);
  5962. dpll = I915_READ(dpll_reg);
  5963. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5964. I915_WRITE(dpll_reg, dpll);
  5965. intel_wait_for_vblank(dev, pipe);
  5966. dpll = I915_READ(dpll_reg);
  5967. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5968. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5969. }
  5970. }
  5971. void intel_mark_busy(struct drm_device *dev)
  5972. {
  5973. i915_update_gfx_val(dev->dev_private);
  5974. }
  5975. void intel_mark_idle(struct drm_device *dev)
  5976. {
  5977. struct drm_crtc *crtc;
  5978. if (!i915_powersave)
  5979. return;
  5980. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5981. if (!crtc->fb)
  5982. continue;
  5983. intel_decrease_pllclock(crtc);
  5984. }
  5985. }
  5986. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5987. {
  5988. struct drm_device *dev = obj->base.dev;
  5989. struct drm_crtc *crtc;
  5990. if (!i915_powersave)
  5991. return;
  5992. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5993. if (!crtc->fb)
  5994. continue;
  5995. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5996. intel_increase_pllclock(crtc);
  5997. }
  5998. }
  5999. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6000. {
  6001. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6002. struct drm_device *dev = crtc->dev;
  6003. struct intel_unpin_work *work;
  6004. unsigned long flags;
  6005. spin_lock_irqsave(&dev->event_lock, flags);
  6006. work = intel_crtc->unpin_work;
  6007. intel_crtc->unpin_work = NULL;
  6008. spin_unlock_irqrestore(&dev->event_lock, flags);
  6009. if (work) {
  6010. cancel_work_sync(&work->work);
  6011. kfree(work);
  6012. }
  6013. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  6014. drm_crtc_cleanup(crtc);
  6015. kfree(intel_crtc);
  6016. }
  6017. static void intel_unpin_work_fn(struct work_struct *__work)
  6018. {
  6019. struct intel_unpin_work *work =
  6020. container_of(__work, struct intel_unpin_work, work);
  6021. struct drm_device *dev = work->crtc->dev;
  6022. mutex_lock(&dev->struct_mutex);
  6023. intel_unpin_fb_obj(work->old_fb_obj);
  6024. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6025. drm_gem_object_unreference(&work->old_fb_obj->base);
  6026. intel_update_fbc(dev);
  6027. mutex_unlock(&dev->struct_mutex);
  6028. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  6029. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  6030. kfree(work);
  6031. }
  6032. static void do_intel_finish_page_flip(struct drm_device *dev,
  6033. struct drm_crtc *crtc)
  6034. {
  6035. drm_i915_private_t *dev_priv = dev->dev_private;
  6036. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6037. struct intel_unpin_work *work;
  6038. unsigned long flags;
  6039. /* Ignore early vblank irqs */
  6040. if (intel_crtc == NULL)
  6041. return;
  6042. spin_lock_irqsave(&dev->event_lock, flags);
  6043. work = intel_crtc->unpin_work;
  6044. /* Ensure we don't miss a work->pending update ... */
  6045. smp_rmb();
  6046. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6047. spin_unlock_irqrestore(&dev->event_lock, flags);
  6048. return;
  6049. }
  6050. /* and that the unpin work is consistent wrt ->pending. */
  6051. smp_rmb();
  6052. intel_crtc->unpin_work = NULL;
  6053. if (work->event)
  6054. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6055. drm_vblank_put(dev, intel_crtc->pipe);
  6056. spin_unlock_irqrestore(&dev->event_lock, flags);
  6057. wake_up_all(&dev_priv->pending_flip_queue);
  6058. queue_work(dev_priv->wq, &work->work);
  6059. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6060. }
  6061. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6062. {
  6063. drm_i915_private_t *dev_priv = dev->dev_private;
  6064. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6065. do_intel_finish_page_flip(dev, crtc);
  6066. }
  6067. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6068. {
  6069. drm_i915_private_t *dev_priv = dev->dev_private;
  6070. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6071. do_intel_finish_page_flip(dev, crtc);
  6072. }
  6073. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6074. {
  6075. drm_i915_private_t *dev_priv = dev->dev_private;
  6076. struct intel_crtc *intel_crtc =
  6077. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6078. unsigned long flags;
  6079. /* NB: An MMIO update of the plane base pointer will also
  6080. * generate a page-flip completion irq, i.e. every modeset
  6081. * is also accompanied by a spurious intel_prepare_page_flip().
  6082. */
  6083. spin_lock_irqsave(&dev->event_lock, flags);
  6084. if (intel_crtc->unpin_work)
  6085. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6086. spin_unlock_irqrestore(&dev->event_lock, flags);
  6087. }
  6088. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6089. {
  6090. /* Ensure that the work item is consistent when activating it ... */
  6091. smp_wmb();
  6092. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6093. /* and that it is marked active as soon as the irq could fire. */
  6094. smp_wmb();
  6095. }
  6096. static int intel_gen2_queue_flip(struct drm_device *dev,
  6097. struct drm_crtc *crtc,
  6098. struct drm_framebuffer *fb,
  6099. struct drm_i915_gem_object *obj)
  6100. {
  6101. struct drm_i915_private *dev_priv = dev->dev_private;
  6102. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6103. u32 flip_mask;
  6104. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6105. int ret;
  6106. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6107. if (ret)
  6108. goto err;
  6109. ret = intel_ring_begin(ring, 6);
  6110. if (ret)
  6111. goto err_unpin;
  6112. /* Can't queue multiple flips, so wait for the previous
  6113. * one to finish before executing the next.
  6114. */
  6115. if (intel_crtc->plane)
  6116. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6117. else
  6118. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6119. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6120. intel_ring_emit(ring, MI_NOOP);
  6121. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6122. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6123. intel_ring_emit(ring, fb->pitches[0]);
  6124. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6125. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6126. intel_mark_page_flip_active(intel_crtc);
  6127. intel_ring_advance(ring);
  6128. return 0;
  6129. err_unpin:
  6130. intel_unpin_fb_obj(obj);
  6131. err:
  6132. return ret;
  6133. }
  6134. static int intel_gen3_queue_flip(struct drm_device *dev,
  6135. struct drm_crtc *crtc,
  6136. struct drm_framebuffer *fb,
  6137. struct drm_i915_gem_object *obj)
  6138. {
  6139. struct drm_i915_private *dev_priv = dev->dev_private;
  6140. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6141. u32 flip_mask;
  6142. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6143. int ret;
  6144. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6145. if (ret)
  6146. goto err;
  6147. ret = intel_ring_begin(ring, 6);
  6148. if (ret)
  6149. goto err_unpin;
  6150. if (intel_crtc->plane)
  6151. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6152. else
  6153. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6154. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6155. intel_ring_emit(ring, MI_NOOP);
  6156. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6157. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6158. intel_ring_emit(ring, fb->pitches[0]);
  6159. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6160. intel_ring_emit(ring, MI_NOOP);
  6161. intel_mark_page_flip_active(intel_crtc);
  6162. intel_ring_advance(ring);
  6163. return 0;
  6164. err_unpin:
  6165. intel_unpin_fb_obj(obj);
  6166. err:
  6167. return ret;
  6168. }
  6169. static int intel_gen4_queue_flip(struct drm_device *dev,
  6170. struct drm_crtc *crtc,
  6171. struct drm_framebuffer *fb,
  6172. struct drm_i915_gem_object *obj)
  6173. {
  6174. struct drm_i915_private *dev_priv = dev->dev_private;
  6175. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6176. uint32_t pf, pipesrc;
  6177. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6178. int ret;
  6179. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6180. if (ret)
  6181. goto err;
  6182. ret = intel_ring_begin(ring, 4);
  6183. if (ret)
  6184. goto err_unpin;
  6185. /* i965+ uses the linear or tiled offsets from the
  6186. * Display Registers (which do not change across a page-flip)
  6187. * so we need only reprogram the base address.
  6188. */
  6189. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6190. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6191. intel_ring_emit(ring, fb->pitches[0]);
  6192. intel_ring_emit(ring,
  6193. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  6194. obj->tiling_mode);
  6195. /* XXX Enabling the panel-fitter across page-flip is so far
  6196. * untested on non-native modes, so ignore it for now.
  6197. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6198. */
  6199. pf = 0;
  6200. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6201. intel_ring_emit(ring, pf | pipesrc);
  6202. intel_mark_page_flip_active(intel_crtc);
  6203. intel_ring_advance(ring);
  6204. return 0;
  6205. err_unpin:
  6206. intel_unpin_fb_obj(obj);
  6207. err:
  6208. return ret;
  6209. }
  6210. static int intel_gen6_queue_flip(struct drm_device *dev,
  6211. struct drm_crtc *crtc,
  6212. struct drm_framebuffer *fb,
  6213. struct drm_i915_gem_object *obj)
  6214. {
  6215. struct drm_i915_private *dev_priv = dev->dev_private;
  6216. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6217. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6218. uint32_t pf, pipesrc;
  6219. int ret;
  6220. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6221. if (ret)
  6222. goto err;
  6223. ret = intel_ring_begin(ring, 4);
  6224. if (ret)
  6225. goto err_unpin;
  6226. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6227. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6228. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6229. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6230. /* Contrary to the suggestions in the documentation,
  6231. * "Enable Panel Fitter" does not seem to be required when page
  6232. * flipping with a non-native mode, and worse causes a normal
  6233. * modeset to fail.
  6234. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6235. */
  6236. pf = 0;
  6237. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6238. intel_ring_emit(ring, pf | pipesrc);
  6239. intel_mark_page_flip_active(intel_crtc);
  6240. intel_ring_advance(ring);
  6241. return 0;
  6242. err_unpin:
  6243. intel_unpin_fb_obj(obj);
  6244. err:
  6245. return ret;
  6246. }
  6247. /*
  6248. * On gen7 we currently use the blit ring because (in early silicon at least)
  6249. * the render ring doesn't give us interrpts for page flip completion, which
  6250. * means clients will hang after the first flip is queued. Fortunately the
  6251. * blit ring generates interrupts properly, so use it instead.
  6252. */
  6253. static int intel_gen7_queue_flip(struct drm_device *dev,
  6254. struct drm_crtc *crtc,
  6255. struct drm_framebuffer *fb,
  6256. struct drm_i915_gem_object *obj)
  6257. {
  6258. struct drm_i915_private *dev_priv = dev->dev_private;
  6259. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6260. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6261. uint32_t plane_bit = 0;
  6262. int ret;
  6263. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6264. if (ret)
  6265. goto err;
  6266. switch(intel_crtc->plane) {
  6267. case PLANE_A:
  6268. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6269. break;
  6270. case PLANE_B:
  6271. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6272. break;
  6273. case PLANE_C:
  6274. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6275. break;
  6276. default:
  6277. WARN_ONCE(1, "unknown plane in flip command\n");
  6278. ret = -ENODEV;
  6279. goto err_unpin;
  6280. }
  6281. ret = intel_ring_begin(ring, 4);
  6282. if (ret)
  6283. goto err_unpin;
  6284. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6285. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6286. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6287. intel_ring_emit(ring, (MI_NOOP));
  6288. intel_mark_page_flip_active(intel_crtc);
  6289. intel_ring_advance(ring);
  6290. return 0;
  6291. err_unpin:
  6292. intel_unpin_fb_obj(obj);
  6293. err:
  6294. return ret;
  6295. }
  6296. static int intel_default_queue_flip(struct drm_device *dev,
  6297. struct drm_crtc *crtc,
  6298. struct drm_framebuffer *fb,
  6299. struct drm_i915_gem_object *obj)
  6300. {
  6301. return -ENODEV;
  6302. }
  6303. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6304. struct drm_framebuffer *fb,
  6305. struct drm_pending_vblank_event *event)
  6306. {
  6307. struct drm_device *dev = crtc->dev;
  6308. struct drm_i915_private *dev_priv = dev->dev_private;
  6309. struct drm_framebuffer *old_fb = crtc->fb;
  6310. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6311. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6312. struct intel_unpin_work *work;
  6313. unsigned long flags;
  6314. int ret;
  6315. /* Can't change pixel format via MI display flips. */
  6316. if (fb->pixel_format != crtc->fb->pixel_format)
  6317. return -EINVAL;
  6318. /*
  6319. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6320. * Note that pitch changes could also affect these register.
  6321. */
  6322. if (INTEL_INFO(dev)->gen > 3 &&
  6323. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6324. fb->pitches[0] != crtc->fb->pitches[0]))
  6325. return -EINVAL;
  6326. work = kzalloc(sizeof *work, GFP_KERNEL);
  6327. if (work == NULL)
  6328. return -ENOMEM;
  6329. work->event = event;
  6330. work->crtc = crtc;
  6331. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6332. INIT_WORK(&work->work, intel_unpin_work_fn);
  6333. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6334. if (ret)
  6335. goto free_work;
  6336. /* We borrow the event spin lock for protecting unpin_work */
  6337. spin_lock_irqsave(&dev->event_lock, flags);
  6338. if (intel_crtc->unpin_work) {
  6339. spin_unlock_irqrestore(&dev->event_lock, flags);
  6340. kfree(work);
  6341. drm_vblank_put(dev, intel_crtc->pipe);
  6342. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6343. return -EBUSY;
  6344. }
  6345. intel_crtc->unpin_work = work;
  6346. spin_unlock_irqrestore(&dev->event_lock, flags);
  6347. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6348. flush_workqueue(dev_priv->wq);
  6349. ret = i915_mutex_lock_interruptible(dev);
  6350. if (ret)
  6351. goto cleanup;
  6352. /* Reference the objects for the scheduled work. */
  6353. drm_gem_object_reference(&work->old_fb_obj->base);
  6354. drm_gem_object_reference(&obj->base);
  6355. crtc->fb = fb;
  6356. work->pending_flip_obj = obj;
  6357. work->enable_stall_check = true;
  6358. atomic_inc(&intel_crtc->unpin_work_count);
  6359. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6360. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6361. if (ret)
  6362. goto cleanup_pending;
  6363. intel_disable_fbc(dev);
  6364. intel_mark_fb_busy(obj);
  6365. mutex_unlock(&dev->struct_mutex);
  6366. trace_i915_flip_request(intel_crtc->plane, obj);
  6367. return 0;
  6368. cleanup_pending:
  6369. atomic_dec(&intel_crtc->unpin_work_count);
  6370. crtc->fb = old_fb;
  6371. drm_gem_object_unreference(&work->old_fb_obj->base);
  6372. drm_gem_object_unreference(&obj->base);
  6373. mutex_unlock(&dev->struct_mutex);
  6374. cleanup:
  6375. spin_lock_irqsave(&dev->event_lock, flags);
  6376. intel_crtc->unpin_work = NULL;
  6377. spin_unlock_irqrestore(&dev->event_lock, flags);
  6378. drm_vblank_put(dev, intel_crtc->pipe);
  6379. free_work:
  6380. kfree(work);
  6381. return ret;
  6382. }
  6383. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6384. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6385. .load_lut = intel_crtc_load_lut,
  6386. };
  6387. bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
  6388. {
  6389. struct intel_encoder *other_encoder;
  6390. struct drm_crtc *crtc = &encoder->new_crtc->base;
  6391. if (WARN_ON(!crtc))
  6392. return false;
  6393. list_for_each_entry(other_encoder,
  6394. &crtc->dev->mode_config.encoder_list,
  6395. base.head) {
  6396. if (&other_encoder->new_crtc->base != crtc ||
  6397. encoder == other_encoder)
  6398. continue;
  6399. else
  6400. return true;
  6401. }
  6402. return false;
  6403. }
  6404. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6405. struct drm_crtc *crtc)
  6406. {
  6407. struct drm_device *dev;
  6408. struct drm_crtc *tmp;
  6409. int crtc_mask = 1;
  6410. WARN(!crtc, "checking null crtc?\n");
  6411. dev = crtc->dev;
  6412. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6413. if (tmp == crtc)
  6414. break;
  6415. crtc_mask <<= 1;
  6416. }
  6417. if (encoder->possible_crtcs & crtc_mask)
  6418. return true;
  6419. return false;
  6420. }
  6421. /**
  6422. * intel_modeset_update_staged_output_state
  6423. *
  6424. * Updates the staged output configuration state, e.g. after we've read out the
  6425. * current hw state.
  6426. */
  6427. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6428. {
  6429. struct intel_encoder *encoder;
  6430. struct intel_connector *connector;
  6431. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6432. base.head) {
  6433. connector->new_encoder =
  6434. to_intel_encoder(connector->base.encoder);
  6435. }
  6436. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6437. base.head) {
  6438. encoder->new_crtc =
  6439. to_intel_crtc(encoder->base.crtc);
  6440. }
  6441. }
  6442. /**
  6443. * intel_modeset_commit_output_state
  6444. *
  6445. * This function copies the stage display pipe configuration to the real one.
  6446. */
  6447. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6448. {
  6449. struct intel_encoder *encoder;
  6450. struct intel_connector *connector;
  6451. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6452. base.head) {
  6453. connector->base.encoder = &connector->new_encoder->base;
  6454. }
  6455. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6456. base.head) {
  6457. encoder->base.crtc = &encoder->new_crtc->base;
  6458. }
  6459. }
  6460. static void
  6461. connected_sink_compute_bpp(struct intel_connector * connector,
  6462. struct intel_crtc_config *pipe_config)
  6463. {
  6464. int bpp = pipe_config->pipe_bpp;
  6465. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6466. connector->base.base.id,
  6467. drm_get_connector_name(&connector->base));
  6468. /* Don't use an invalid EDID bpc value */
  6469. if (connector->base.display_info.bpc &&
  6470. connector->base.display_info.bpc * 3 < bpp) {
  6471. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6472. bpp, connector->base.display_info.bpc*3);
  6473. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6474. }
  6475. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6476. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6477. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6478. bpp);
  6479. pipe_config->pipe_bpp = 24;
  6480. }
  6481. }
  6482. static int
  6483. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6484. struct drm_framebuffer *fb,
  6485. struct intel_crtc_config *pipe_config)
  6486. {
  6487. struct drm_device *dev = crtc->base.dev;
  6488. struct intel_connector *connector;
  6489. int bpp;
  6490. switch (fb->pixel_format) {
  6491. case DRM_FORMAT_C8:
  6492. bpp = 8*3; /* since we go through a colormap */
  6493. break;
  6494. case DRM_FORMAT_XRGB1555:
  6495. case DRM_FORMAT_ARGB1555:
  6496. /* checked in intel_framebuffer_init already */
  6497. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6498. return -EINVAL;
  6499. case DRM_FORMAT_RGB565:
  6500. bpp = 6*3; /* min is 18bpp */
  6501. break;
  6502. case DRM_FORMAT_XBGR8888:
  6503. case DRM_FORMAT_ABGR8888:
  6504. /* checked in intel_framebuffer_init already */
  6505. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6506. return -EINVAL;
  6507. case DRM_FORMAT_XRGB8888:
  6508. case DRM_FORMAT_ARGB8888:
  6509. bpp = 8*3;
  6510. break;
  6511. case DRM_FORMAT_XRGB2101010:
  6512. case DRM_FORMAT_ARGB2101010:
  6513. case DRM_FORMAT_XBGR2101010:
  6514. case DRM_FORMAT_ABGR2101010:
  6515. /* checked in intel_framebuffer_init already */
  6516. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6517. return -EINVAL;
  6518. bpp = 10*3;
  6519. break;
  6520. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6521. default:
  6522. DRM_DEBUG_KMS("unsupported depth\n");
  6523. return -EINVAL;
  6524. }
  6525. pipe_config->pipe_bpp = bpp;
  6526. /* Clamp display bpp to EDID value */
  6527. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6528. base.head) {
  6529. if (!connector->new_encoder ||
  6530. connector->new_encoder->new_crtc != crtc)
  6531. continue;
  6532. connected_sink_compute_bpp(connector, pipe_config);
  6533. }
  6534. return bpp;
  6535. }
  6536. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6537. struct intel_crtc_config *pipe_config,
  6538. const char *context)
  6539. {
  6540. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6541. context, pipe_name(crtc->pipe));
  6542. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6543. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6544. pipe_config->pipe_bpp, pipe_config->dither);
  6545. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6546. pipe_config->has_pch_encoder,
  6547. pipe_config->fdi_lanes,
  6548. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6549. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6550. pipe_config->fdi_m_n.tu);
  6551. DRM_DEBUG_KMS("requested mode:\n");
  6552. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6553. DRM_DEBUG_KMS("adjusted mode:\n");
  6554. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6555. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6556. pipe_config->gmch_pfit.control,
  6557. pipe_config->gmch_pfit.pgm_ratios,
  6558. pipe_config->gmch_pfit.lvds_border_bits);
  6559. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
  6560. pipe_config->pch_pfit.pos,
  6561. pipe_config->pch_pfit.size);
  6562. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  6563. }
  6564. static struct intel_crtc_config *
  6565. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6566. struct drm_framebuffer *fb,
  6567. struct drm_display_mode *mode)
  6568. {
  6569. struct drm_device *dev = crtc->dev;
  6570. struct drm_encoder_helper_funcs *encoder_funcs;
  6571. struct intel_encoder *encoder;
  6572. struct intel_crtc_config *pipe_config;
  6573. int plane_bpp, ret = -EINVAL;
  6574. bool retry = true;
  6575. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6576. if (!pipe_config)
  6577. return ERR_PTR(-ENOMEM);
  6578. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6579. drm_mode_copy(&pipe_config->requested_mode, mode);
  6580. pipe_config->cpu_transcoder = to_intel_crtc(crtc)->pipe;
  6581. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  6582. * plane pixel format and any sink constraints into account. Returns the
  6583. * source plane bpp so that dithering can be selected on mismatches
  6584. * after encoders and crtc also have had their say. */
  6585. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  6586. fb, pipe_config);
  6587. if (plane_bpp < 0)
  6588. goto fail;
  6589. encoder_retry:
  6590. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6591. * adjust it according to limitations or connector properties, and also
  6592. * a chance to reject the mode entirely.
  6593. */
  6594. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6595. base.head) {
  6596. if (&encoder->new_crtc->base != crtc)
  6597. continue;
  6598. if (encoder->compute_config) {
  6599. if (!(encoder->compute_config(encoder, pipe_config))) {
  6600. DRM_DEBUG_KMS("Encoder config failure\n");
  6601. goto fail;
  6602. }
  6603. continue;
  6604. }
  6605. encoder_funcs = encoder->base.helper_private;
  6606. if (!(encoder_funcs->mode_fixup(&encoder->base,
  6607. &pipe_config->requested_mode,
  6608. &pipe_config->adjusted_mode))) {
  6609. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6610. goto fail;
  6611. }
  6612. }
  6613. ret = intel_crtc_compute_config(crtc, pipe_config);
  6614. if (ret < 0) {
  6615. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6616. goto fail;
  6617. }
  6618. if (ret == RETRY) {
  6619. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  6620. ret = -EINVAL;
  6621. goto fail;
  6622. }
  6623. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  6624. retry = false;
  6625. goto encoder_retry;
  6626. }
  6627. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6628. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6629. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6630. return pipe_config;
  6631. fail:
  6632. kfree(pipe_config);
  6633. return ERR_PTR(ret);
  6634. }
  6635. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6636. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6637. static void
  6638. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6639. unsigned *prepare_pipes, unsigned *disable_pipes)
  6640. {
  6641. struct intel_crtc *intel_crtc;
  6642. struct drm_device *dev = crtc->dev;
  6643. struct intel_encoder *encoder;
  6644. struct intel_connector *connector;
  6645. struct drm_crtc *tmp_crtc;
  6646. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6647. /* Check which crtcs have changed outputs connected to them, these need
  6648. * to be part of the prepare_pipes mask. We don't (yet) support global
  6649. * modeset across multiple crtcs, so modeset_pipes will only have one
  6650. * bit set at most. */
  6651. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6652. base.head) {
  6653. if (connector->base.encoder == &connector->new_encoder->base)
  6654. continue;
  6655. if (connector->base.encoder) {
  6656. tmp_crtc = connector->base.encoder->crtc;
  6657. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6658. }
  6659. if (connector->new_encoder)
  6660. *prepare_pipes |=
  6661. 1 << connector->new_encoder->new_crtc->pipe;
  6662. }
  6663. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6664. base.head) {
  6665. if (encoder->base.crtc == &encoder->new_crtc->base)
  6666. continue;
  6667. if (encoder->base.crtc) {
  6668. tmp_crtc = encoder->base.crtc;
  6669. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6670. }
  6671. if (encoder->new_crtc)
  6672. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6673. }
  6674. /* Check for any pipes that will be fully disabled ... */
  6675. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6676. base.head) {
  6677. bool used = false;
  6678. /* Don't try to disable disabled crtcs. */
  6679. if (!intel_crtc->base.enabled)
  6680. continue;
  6681. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6682. base.head) {
  6683. if (encoder->new_crtc == intel_crtc)
  6684. used = true;
  6685. }
  6686. if (!used)
  6687. *disable_pipes |= 1 << intel_crtc->pipe;
  6688. }
  6689. /* set_mode is also used to update properties on life display pipes. */
  6690. intel_crtc = to_intel_crtc(crtc);
  6691. if (crtc->enabled)
  6692. *prepare_pipes |= 1 << intel_crtc->pipe;
  6693. /*
  6694. * For simplicity do a full modeset on any pipe where the output routing
  6695. * changed. We could be more clever, but that would require us to be
  6696. * more careful with calling the relevant encoder->mode_set functions.
  6697. */
  6698. if (*prepare_pipes)
  6699. *modeset_pipes = *prepare_pipes;
  6700. /* ... and mask these out. */
  6701. *modeset_pipes &= ~(*disable_pipes);
  6702. *prepare_pipes &= ~(*disable_pipes);
  6703. /*
  6704. * HACK: We don't (yet) fully support global modesets. intel_set_config
  6705. * obies this rule, but the modeset restore mode of
  6706. * intel_modeset_setup_hw_state does not.
  6707. */
  6708. *modeset_pipes &= 1 << intel_crtc->pipe;
  6709. *prepare_pipes &= 1 << intel_crtc->pipe;
  6710. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6711. *modeset_pipes, *prepare_pipes, *disable_pipes);
  6712. }
  6713. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6714. {
  6715. struct drm_encoder *encoder;
  6716. struct drm_device *dev = crtc->dev;
  6717. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6718. if (encoder->crtc == crtc)
  6719. return true;
  6720. return false;
  6721. }
  6722. static void
  6723. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6724. {
  6725. struct intel_encoder *intel_encoder;
  6726. struct intel_crtc *intel_crtc;
  6727. struct drm_connector *connector;
  6728. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6729. base.head) {
  6730. if (!intel_encoder->base.crtc)
  6731. continue;
  6732. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6733. if (prepare_pipes & (1 << intel_crtc->pipe))
  6734. intel_encoder->connectors_active = false;
  6735. }
  6736. intel_modeset_commit_output_state(dev);
  6737. /* Update computed state. */
  6738. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6739. base.head) {
  6740. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6741. }
  6742. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6743. if (!connector->encoder || !connector->encoder->crtc)
  6744. continue;
  6745. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6746. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6747. struct drm_property *dpms_property =
  6748. dev->mode_config.dpms_property;
  6749. connector->dpms = DRM_MODE_DPMS_ON;
  6750. drm_object_property_set_value(&connector->base,
  6751. dpms_property,
  6752. DRM_MODE_DPMS_ON);
  6753. intel_encoder = to_intel_encoder(connector->encoder);
  6754. intel_encoder->connectors_active = true;
  6755. }
  6756. }
  6757. }
  6758. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6759. list_for_each_entry((intel_crtc), \
  6760. &(dev)->mode_config.crtc_list, \
  6761. base.head) \
  6762. if (mask & (1 <<(intel_crtc)->pipe))
  6763. static bool
  6764. intel_pipe_config_compare(struct drm_device *dev,
  6765. struct intel_crtc_config *current_config,
  6766. struct intel_crtc_config *pipe_config)
  6767. {
  6768. #define PIPE_CONF_CHECK_I(name) \
  6769. if (current_config->name != pipe_config->name) { \
  6770. DRM_ERROR("mismatch in " #name " " \
  6771. "(expected %i, found %i)\n", \
  6772. current_config->name, \
  6773. pipe_config->name); \
  6774. return false; \
  6775. }
  6776. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  6777. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  6778. DRM_ERROR("mismatch in " #name " " \
  6779. "(expected %i, found %i)\n", \
  6780. current_config->name & (mask), \
  6781. pipe_config->name & (mask)); \
  6782. return false; \
  6783. }
  6784. PIPE_CONF_CHECK_I(cpu_transcoder);
  6785. PIPE_CONF_CHECK_I(has_pch_encoder);
  6786. PIPE_CONF_CHECK_I(fdi_lanes);
  6787. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  6788. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  6789. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  6790. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  6791. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  6792. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  6793. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  6794. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  6795. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  6796. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  6797. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  6798. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  6799. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  6800. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  6801. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  6802. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  6803. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  6804. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6805. DRM_MODE_FLAG_INTERLACE);
  6806. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6807. DRM_MODE_FLAG_PHSYNC);
  6808. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6809. DRM_MODE_FLAG_NHSYNC);
  6810. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6811. DRM_MODE_FLAG_PVSYNC);
  6812. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6813. DRM_MODE_FLAG_NVSYNC);
  6814. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  6815. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  6816. PIPE_CONF_CHECK_I(gmch_pfit.control);
  6817. /* pfit ratios are autocomputed by the hw on gen4+ */
  6818. if (INTEL_INFO(dev)->gen < 4)
  6819. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  6820. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  6821. PIPE_CONF_CHECK_I(pch_pfit.pos);
  6822. PIPE_CONF_CHECK_I(pch_pfit.size);
  6823. PIPE_CONF_CHECK_I(ips_enabled);
  6824. #undef PIPE_CONF_CHECK_I
  6825. #undef PIPE_CONF_CHECK_FLAGS
  6826. return true;
  6827. }
  6828. void
  6829. intel_modeset_check_state(struct drm_device *dev)
  6830. {
  6831. drm_i915_private_t *dev_priv = dev->dev_private;
  6832. struct intel_crtc *crtc;
  6833. struct intel_encoder *encoder;
  6834. struct intel_connector *connector;
  6835. struct intel_crtc_config pipe_config;
  6836. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6837. base.head) {
  6838. /* This also checks the encoder/connector hw state with the
  6839. * ->get_hw_state callbacks. */
  6840. intel_connector_check_state(connector);
  6841. WARN(&connector->new_encoder->base != connector->base.encoder,
  6842. "connector's staged encoder doesn't match current encoder\n");
  6843. }
  6844. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6845. base.head) {
  6846. bool enabled = false;
  6847. bool active = false;
  6848. enum pipe pipe, tracked_pipe;
  6849. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6850. encoder->base.base.id,
  6851. drm_get_encoder_name(&encoder->base));
  6852. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6853. "encoder's stage crtc doesn't match current crtc\n");
  6854. WARN(encoder->connectors_active && !encoder->base.crtc,
  6855. "encoder's active_connectors set, but no crtc\n");
  6856. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6857. base.head) {
  6858. if (connector->base.encoder != &encoder->base)
  6859. continue;
  6860. enabled = true;
  6861. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6862. active = true;
  6863. }
  6864. WARN(!!encoder->base.crtc != enabled,
  6865. "encoder's enabled state mismatch "
  6866. "(expected %i, found %i)\n",
  6867. !!encoder->base.crtc, enabled);
  6868. WARN(active && !encoder->base.crtc,
  6869. "active encoder with no crtc\n");
  6870. WARN(encoder->connectors_active != active,
  6871. "encoder's computed active state doesn't match tracked active state "
  6872. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6873. active = encoder->get_hw_state(encoder, &pipe);
  6874. WARN(active != encoder->connectors_active,
  6875. "encoder's hw state doesn't match sw tracking "
  6876. "(expected %i, found %i)\n",
  6877. encoder->connectors_active, active);
  6878. if (!encoder->base.crtc)
  6879. continue;
  6880. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6881. WARN(active && pipe != tracked_pipe,
  6882. "active encoder's pipe doesn't match"
  6883. "(expected %i, found %i)\n",
  6884. tracked_pipe, pipe);
  6885. }
  6886. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6887. base.head) {
  6888. bool enabled = false;
  6889. bool active = false;
  6890. memset(&pipe_config, 0, sizeof(pipe_config));
  6891. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6892. crtc->base.base.id);
  6893. WARN(crtc->active && !crtc->base.enabled,
  6894. "active crtc, but not enabled in sw tracking\n");
  6895. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6896. base.head) {
  6897. if (encoder->base.crtc != &crtc->base)
  6898. continue;
  6899. enabled = true;
  6900. if (encoder->connectors_active)
  6901. active = true;
  6902. if (encoder->get_config)
  6903. encoder->get_config(encoder, &pipe_config);
  6904. }
  6905. WARN(active != crtc->active,
  6906. "crtc's computed active state doesn't match tracked active state "
  6907. "(expected %i, found %i)\n", active, crtc->active);
  6908. WARN(enabled != crtc->base.enabled,
  6909. "crtc's computed enabled state doesn't match tracked enabled state "
  6910. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6911. active = dev_priv->display.get_pipe_config(crtc,
  6912. &pipe_config);
  6913. WARN(crtc->active != active,
  6914. "crtc active state doesn't match with hw state "
  6915. "(expected %i, found %i)\n", crtc->active, active);
  6916. if (active &&
  6917. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  6918. WARN(1, "pipe state doesn't match!\n");
  6919. intel_dump_pipe_config(crtc, &pipe_config,
  6920. "[hw state]");
  6921. intel_dump_pipe_config(crtc, &crtc->config,
  6922. "[sw state]");
  6923. }
  6924. }
  6925. }
  6926. static int __intel_set_mode(struct drm_crtc *crtc,
  6927. struct drm_display_mode *mode,
  6928. int x, int y, struct drm_framebuffer *fb)
  6929. {
  6930. struct drm_device *dev = crtc->dev;
  6931. drm_i915_private_t *dev_priv = dev->dev_private;
  6932. struct drm_display_mode *saved_mode, *saved_hwmode;
  6933. struct intel_crtc_config *pipe_config = NULL;
  6934. struct intel_crtc *intel_crtc;
  6935. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6936. int ret = 0;
  6937. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  6938. if (!saved_mode)
  6939. return -ENOMEM;
  6940. saved_hwmode = saved_mode + 1;
  6941. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6942. &prepare_pipes, &disable_pipes);
  6943. *saved_hwmode = crtc->hwmode;
  6944. *saved_mode = crtc->mode;
  6945. /* Hack: Because we don't (yet) support global modeset on multiple
  6946. * crtcs, we don't keep track of the new mode for more than one crtc.
  6947. * Hence simply check whether any bit is set in modeset_pipes in all the
  6948. * pieces of code that are not yet converted to deal with mutliple crtcs
  6949. * changing their mode at the same time. */
  6950. if (modeset_pipes) {
  6951. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  6952. if (IS_ERR(pipe_config)) {
  6953. ret = PTR_ERR(pipe_config);
  6954. pipe_config = NULL;
  6955. goto out;
  6956. }
  6957. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  6958. "[modeset]");
  6959. }
  6960. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6961. intel_crtc_disable(&intel_crtc->base);
  6962. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6963. if (intel_crtc->base.enabled)
  6964. dev_priv->display.crtc_disable(&intel_crtc->base);
  6965. }
  6966. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6967. * to set it here already despite that we pass it down the callchain.
  6968. */
  6969. if (modeset_pipes) {
  6970. crtc->mode = *mode;
  6971. /* mode_set/enable/disable functions rely on a correct pipe
  6972. * config. */
  6973. to_intel_crtc(crtc)->config = *pipe_config;
  6974. }
  6975. /* Only after disabling all output pipelines that will be changed can we
  6976. * update the the output configuration. */
  6977. intel_modeset_update_state(dev, prepare_pipes);
  6978. if (dev_priv->display.modeset_global_resources)
  6979. dev_priv->display.modeset_global_resources(dev);
  6980. /* Set up the DPLL and any encoders state that needs to adjust or depend
  6981. * on the DPLL.
  6982. */
  6983. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  6984. ret = intel_crtc_mode_set(&intel_crtc->base,
  6985. x, y, fb);
  6986. if (ret)
  6987. goto done;
  6988. }
  6989. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  6990. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  6991. dev_priv->display.crtc_enable(&intel_crtc->base);
  6992. if (modeset_pipes) {
  6993. /* Store real post-adjustment hardware mode. */
  6994. crtc->hwmode = pipe_config->adjusted_mode;
  6995. /* Calculate and store various constants which
  6996. * are later needed by vblank and swap-completion
  6997. * timestamping. They are derived from true hwmode.
  6998. */
  6999. drm_calc_timestamping_constants(crtc);
  7000. }
  7001. /* FIXME: add subpixel order */
  7002. done:
  7003. if (ret && crtc->enabled) {
  7004. crtc->hwmode = *saved_hwmode;
  7005. crtc->mode = *saved_mode;
  7006. }
  7007. out:
  7008. kfree(pipe_config);
  7009. kfree(saved_mode);
  7010. return ret;
  7011. }
  7012. int intel_set_mode(struct drm_crtc *crtc,
  7013. struct drm_display_mode *mode,
  7014. int x, int y, struct drm_framebuffer *fb)
  7015. {
  7016. int ret;
  7017. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7018. if (ret == 0)
  7019. intel_modeset_check_state(crtc->dev);
  7020. return ret;
  7021. }
  7022. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7023. {
  7024. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7025. }
  7026. #undef for_each_intel_crtc_masked
  7027. static void intel_set_config_free(struct intel_set_config *config)
  7028. {
  7029. if (!config)
  7030. return;
  7031. kfree(config->save_connector_encoders);
  7032. kfree(config->save_encoder_crtcs);
  7033. kfree(config);
  7034. }
  7035. static int intel_set_config_save_state(struct drm_device *dev,
  7036. struct intel_set_config *config)
  7037. {
  7038. struct drm_encoder *encoder;
  7039. struct drm_connector *connector;
  7040. int count;
  7041. config->save_encoder_crtcs =
  7042. kcalloc(dev->mode_config.num_encoder,
  7043. sizeof(struct drm_crtc *), GFP_KERNEL);
  7044. if (!config->save_encoder_crtcs)
  7045. return -ENOMEM;
  7046. config->save_connector_encoders =
  7047. kcalloc(dev->mode_config.num_connector,
  7048. sizeof(struct drm_encoder *), GFP_KERNEL);
  7049. if (!config->save_connector_encoders)
  7050. return -ENOMEM;
  7051. /* Copy data. Note that driver private data is not affected.
  7052. * Should anything bad happen only the expected state is
  7053. * restored, not the drivers personal bookkeeping.
  7054. */
  7055. count = 0;
  7056. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7057. config->save_encoder_crtcs[count++] = encoder->crtc;
  7058. }
  7059. count = 0;
  7060. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7061. config->save_connector_encoders[count++] = connector->encoder;
  7062. }
  7063. return 0;
  7064. }
  7065. static void intel_set_config_restore_state(struct drm_device *dev,
  7066. struct intel_set_config *config)
  7067. {
  7068. struct intel_encoder *encoder;
  7069. struct intel_connector *connector;
  7070. int count;
  7071. count = 0;
  7072. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7073. encoder->new_crtc =
  7074. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7075. }
  7076. count = 0;
  7077. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7078. connector->new_encoder =
  7079. to_intel_encoder(config->save_connector_encoders[count++]);
  7080. }
  7081. }
  7082. static void
  7083. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7084. struct intel_set_config *config)
  7085. {
  7086. /* We should be able to check here if the fb has the same properties
  7087. * and then just flip_or_move it */
  7088. if (set->crtc->fb != set->fb) {
  7089. /* If we have no fb then treat it as a full mode set */
  7090. if (set->crtc->fb == NULL) {
  7091. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  7092. config->mode_changed = true;
  7093. } else if (set->fb == NULL) {
  7094. config->mode_changed = true;
  7095. } else if (set->fb->pixel_format !=
  7096. set->crtc->fb->pixel_format) {
  7097. config->mode_changed = true;
  7098. } else
  7099. config->fb_changed = true;
  7100. }
  7101. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7102. config->fb_changed = true;
  7103. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7104. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7105. drm_mode_debug_printmodeline(&set->crtc->mode);
  7106. drm_mode_debug_printmodeline(set->mode);
  7107. config->mode_changed = true;
  7108. }
  7109. }
  7110. static int
  7111. intel_modeset_stage_output_state(struct drm_device *dev,
  7112. struct drm_mode_set *set,
  7113. struct intel_set_config *config)
  7114. {
  7115. struct drm_crtc *new_crtc;
  7116. struct intel_connector *connector;
  7117. struct intel_encoder *encoder;
  7118. int count, ro;
  7119. /* The upper layers ensure that we either disable a crtc or have a list
  7120. * of connectors. For paranoia, double-check this. */
  7121. WARN_ON(!set->fb && (set->num_connectors != 0));
  7122. WARN_ON(set->fb && (set->num_connectors == 0));
  7123. count = 0;
  7124. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7125. base.head) {
  7126. /* Otherwise traverse passed in connector list and get encoders
  7127. * for them. */
  7128. for (ro = 0; ro < set->num_connectors; ro++) {
  7129. if (set->connectors[ro] == &connector->base) {
  7130. connector->new_encoder = connector->encoder;
  7131. break;
  7132. }
  7133. }
  7134. /* If we disable the crtc, disable all its connectors. Also, if
  7135. * the connector is on the changing crtc but not on the new
  7136. * connector list, disable it. */
  7137. if ((!set->fb || ro == set->num_connectors) &&
  7138. connector->base.encoder &&
  7139. connector->base.encoder->crtc == set->crtc) {
  7140. connector->new_encoder = NULL;
  7141. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7142. connector->base.base.id,
  7143. drm_get_connector_name(&connector->base));
  7144. }
  7145. if (&connector->new_encoder->base != connector->base.encoder) {
  7146. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7147. config->mode_changed = true;
  7148. }
  7149. }
  7150. /* connector->new_encoder is now updated for all connectors. */
  7151. /* Update crtc of enabled connectors. */
  7152. count = 0;
  7153. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7154. base.head) {
  7155. if (!connector->new_encoder)
  7156. continue;
  7157. new_crtc = connector->new_encoder->base.crtc;
  7158. for (ro = 0; ro < set->num_connectors; ro++) {
  7159. if (set->connectors[ro] == &connector->base)
  7160. new_crtc = set->crtc;
  7161. }
  7162. /* Make sure the new CRTC will work with the encoder */
  7163. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7164. new_crtc)) {
  7165. return -EINVAL;
  7166. }
  7167. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7168. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7169. connector->base.base.id,
  7170. drm_get_connector_name(&connector->base),
  7171. new_crtc->base.id);
  7172. }
  7173. /* Check for any encoders that needs to be disabled. */
  7174. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7175. base.head) {
  7176. list_for_each_entry(connector,
  7177. &dev->mode_config.connector_list,
  7178. base.head) {
  7179. if (connector->new_encoder == encoder) {
  7180. WARN_ON(!connector->new_encoder->new_crtc);
  7181. goto next_encoder;
  7182. }
  7183. }
  7184. encoder->new_crtc = NULL;
  7185. next_encoder:
  7186. /* Only now check for crtc changes so we don't miss encoders
  7187. * that will be disabled. */
  7188. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7189. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7190. config->mode_changed = true;
  7191. }
  7192. }
  7193. /* Now we've also updated encoder->new_crtc for all encoders. */
  7194. return 0;
  7195. }
  7196. static int intel_crtc_set_config(struct drm_mode_set *set)
  7197. {
  7198. struct drm_device *dev;
  7199. struct drm_mode_set save_set;
  7200. struct intel_set_config *config;
  7201. int ret;
  7202. BUG_ON(!set);
  7203. BUG_ON(!set->crtc);
  7204. BUG_ON(!set->crtc->helper_private);
  7205. /* Enforce sane interface api - has been abused by the fb helper. */
  7206. BUG_ON(!set->mode && set->fb);
  7207. BUG_ON(set->fb && set->num_connectors == 0);
  7208. if (set->fb) {
  7209. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7210. set->crtc->base.id, set->fb->base.id,
  7211. (int)set->num_connectors, set->x, set->y);
  7212. } else {
  7213. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7214. }
  7215. dev = set->crtc->dev;
  7216. ret = -ENOMEM;
  7217. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7218. if (!config)
  7219. goto out_config;
  7220. ret = intel_set_config_save_state(dev, config);
  7221. if (ret)
  7222. goto out_config;
  7223. save_set.crtc = set->crtc;
  7224. save_set.mode = &set->crtc->mode;
  7225. save_set.x = set->crtc->x;
  7226. save_set.y = set->crtc->y;
  7227. save_set.fb = set->crtc->fb;
  7228. /* Compute whether we need a full modeset, only an fb base update or no
  7229. * change at all. In the future we might also check whether only the
  7230. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7231. * such cases. */
  7232. intel_set_config_compute_mode_changes(set, config);
  7233. ret = intel_modeset_stage_output_state(dev, set, config);
  7234. if (ret)
  7235. goto fail;
  7236. if (config->mode_changed) {
  7237. ret = intel_set_mode(set->crtc, set->mode,
  7238. set->x, set->y, set->fb);
  7239. if (ret) {
  7240. DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
  7241. set->crtc->base.id, ret);
  7242. goto fail;
  7243. }
  7244. } else if (config->fb_changed) {
  7245. intel_crtc_wait_for_pending_flips(set->crtc);
  7246. ret = intel_pipe_set_base(set->crtc,
  7247. set->x, set->y, set->fb);
  7248. }
  7249. intel_set_config_free(config);
  7250. return 0;
  7251. fail:
  7252. intel_set_config_restore_state(dev, config);
  7253. /* Try to restore the config */
  7254. if (config->mode_changed &&
  7255. intel_set_mode(save_set.crtc, save_set.mode,
  7256. save_set.x, save_set.y, save_set.fb))
  7257. DRM_ERROR("failed to restore config after modeset failure\n");
  7258. out_config:
  7259. intel_set_config_free(config);
  7260. return ret;
  7261. }
  7262. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7263. .cursor_set = intel_crtc_cursor_set,
  7264. .cursor_move = intel_crtc_cursor_move,
  7265. .gamma_set = intel_crtc_gamma_set,
  7266. .set_config = intel_crtc_set_config,
  7267. .destroy = intel_crtc_destroy,
  7268. .page_flip = intel_crtc_page_flip,
  7269. };
  7270. static void intel_cpu_pll_init(struct drm_device *dev)
  7271. {
  7272. if (HAS_DDI(dev))
  7273. intel_ddi_pll_init(dev);
  7274. }
  7275. static void intel_pch_pll_init(struct drm_device *dev)
  7276. {
  7277. drm_i915_private_t *dev_priv = dev->dev_private;
  7278. int i;
  7279. if (dev_priv->num_pch_pll == 0) {
  7280. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  7281. return;
  7282. }
  7283. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  7284. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  7285. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  7286. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  7287. }
  7288. }
  7289. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7290. {
  7291. drm_i915_private_t *dev_priv = dev->dev_private;
  7292. struct intel_crtc *intel_crtc;
  7293. int i;
  7294. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7295. if (intel_crtc == NULL)
  7296. return;
  7297. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7298. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7299. for (i = 0; i < 256; i++) {
  7300. intel_crtc->lut_r[i] = i;
  7301. intel_crtc->lut_g[i] = i;
  7302. intel_crtc->lut_b[i] = i;
  7303. }
  7304. /* Swap pipes & planes for FBC on pre-965 */
  7305. intel_crtc->pipe = pipe;
  7306. intel_crtc->plane = pipe;
  7307. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7308. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7309. intel_crtc->plane = !pipe;
  7310. }
  7311. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7312. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7313. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7314. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7315. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7316. }
  7317. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7318. struct drm_file *file)
  7319. {
  7320. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7321. struct drm_mode_object *drmmode_obj;
  7322. struct intel_crtc *crtc;
  7323. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7324. return -ENODEV;
  7325. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7326. DRM_MODE_OBJECT_CRTC);
  7327. if (!drmmode_obj) {
  7328. DRM_ERROR("no such CRTC id\n");
  7329. return -EINVAL;
  7330. }
  7331. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7332. pipe_from_crtc_id->pipe = crtc->pipe;
  7333. return 0;
  7334. }
  7335. static int intel_encoder_clones(struct intel_encoder *encoder)
  7336. {
  7337. struct drm_device *dev = encoder->base.dev;
  7338. struct intel_encoder *source_encoder;
  7339. int index_mask = 0;
  7340. int entry = 0;
  7341. list_for_each_entry(source_encoder,
  7342. &dev->mode_config.encoder_list, base.head) {
  7343. if (encoder == source_encoder)
  7344. index_mask |= (1 << entry);
  7345. /* Intel hw has only one MUX where enocoders could be cloned. */
  7346. if (encoder->cloneable && source_encoder->cloneable)
  7347. index_mask |= (1 << entry);
  7348. entry++;
  7349. }
  7350. return index_mask;
  7351. }
  7352. static bool has_edp_a(struct drm_device *dev)
  7353. {
  7354. struct drm_i915_private *dev_priv = dev->dev_private;
  7355. if (!IS_MOBILE(dev))
  7356. return false;
  7357. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7358. return false;
  7359. if (IS_GEN5(dev) &&
  7360. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7361. return false;
  7362. return true;
  7363. }
  7364. static void intel_setup_outputs(struct drm_device *dev)
  7365. {
  7366. struct drm_i915_private *dev_priv = dev->dev_private;
  7367. struct intel_encoder *encoder;
  7368. bool dpd_is_edp = false;
  7369. bool has_lvds;
  7370. has_lvds = intel_lvds_init(dev);
  7371. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  7372. /* disable the panel fitter on everything but LVDS */
  7373. I915_WRITE(PFIT_CONTROL, 0);
  7374. }
  7375. if (!IS_ULT(dev))
  7376. intel_crt_init(dev);
  7377. if (HAS_DDI(dev)) {
  7378. int found;
  7379. /* Haswell uses DDI functions to detect digital outputs */
  7380. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7381. /* DDI A only supports eDP */
  7382. if (found)
  7383. intel_ddi_init(dev, PORT_A);
  7384. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7385. * register */
  7386. found = I915_READ(SFUSE_STRAP);
  7387. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7388. intel_ddi_init(dev, PORT_B);
  7389. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7390. intel_ddi_init(dev, PORT_C);
  7391. if (found & SFUSE_STRAP_DDID_DETECTED)
  7392. intel_ddi_init(dev, PORT_D);
  7393. } else if (HAS_PCH_SPLIT(dev)) {
  7394. int found;
  7395. dpd_is_edp = intel_dpd_is_edp(dev);
  7396. if (has_edp_a(dev))
  7397. intel_dp_init(dev, DP_A, PORT_A);
  7398. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7399. /* PCH SDVOB multiplex with HDMIB */
  7400. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7401. if (!found)
  7402. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7403. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7404. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7405. }
  7406. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7407. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7408. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7409. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7410. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7411. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7412. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7413. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7414. } else if (IS_VALLEYVIEW(dev)) {
  7415. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7416. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7417. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
  7418. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7419. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7420. PORT_B);
  7421. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7422. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7423. }
  7424. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7425. bool found = false;
  7426. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7427. DRM_DEBUG_KMS("probing SDVOB\n");
  7428. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7429. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7430. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7431. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  7432. }
  7433. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  7434. intel_dp_init(dev, DP_B, PORT_B);
  7435. }
  7436. /* Before G4X SDVOC doesn't have its own detect register */
  7437. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7438. DRM_DEBUG_KMS("probing SDVOC\n");
  7439. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  7440. }
  7441. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  7442. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7443. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7444. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  7445. }
  7446. if (SUPPORTS_INTEGRATED_DP(dev))
  7447. intel_dp_init(dev, DP_C, PORT_C);
  7448. }
  7449. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7450. (I915_READ(DP_D) & DP_DETECTED))
  7451. intel_dp_init(dev, DP_D, PORT_D);
  7452. } else if (IS_GEN2(dev))
  7453. intel_dvo_init(dev);
  7454. if (SUPPORTS_TV(dev))
  7455. intel_tv_init(dev);
  7456. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7457. encoder->base.possible_crtcs = encoder->crtc_mask;
  7458. encoder->base.possible_clones =
  7459. intel_encoder_clones(encoder);
  7460. }
  7461. intel_init_pch_refclk(dev);
  7462. drm_helper_move_panel_connectors_to_head(dev);
  7463. }
  7464. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7465. {
  7466. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7467. drm_framebuffer_cleanup(fb);
  7468. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7469. kfree(intel_fb);
  7470. }
  7471. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7472. struct drm_file *file,
  7473. unsigned int *handle)
  7474. {
  7475. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7476. struct drm_i915_gem_object *obj = intel_fb->obj;
  7477. return drm_gem_handle_create(file, &obj->base, handle);
  7478. }
  7479. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7480. .destroy = intel_user_framebuffer_destroy,
  7481. .create_handle = intel_user_framebuffer_create_handle,
  7482. };
  7483. int intel_framebuffer_init(struct drm_device *dev,
  7484. struct intel_framebuffer *intel_fb,
  7485. struct drm_mode_fb_cmd2 *mode_cmd,
  7486. struct drm_i915_gem_object *obj)
  7487. {
  7488. int ret;
  7489. if (obj->tiling_mode == I915_TILING_Y) {
  7490. DRM_DEBUG("hardware does not support tiling Y\n");
  7491. return -EINVAL;
  7492. }
  7493. if (mode_cmd->pitches[0] & 63) {
  7494. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  7495. mode_cmd->pitches[0]);
  7496. return -EINVAL;
  7497. }
  7498. /* FIXME <= Gen4 stride limits are bit unclear */
  7499. if (mode_cmd->pitches[0] > 32768) {
  7500. DRM_DEBUG("pitch (%d) must be at less than 32768\n",
  7501. mode_cmd->pitches[0]);
  7502. return -EINVAL;
  7503. }
  7504. if (obj->tiling_mode != I915_TILING_NONE &&
  7505. mode_cmd->pitches[0] != obj->stride) {
  7506. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  7507. mode_cmd->pitches[0], obj->stride);
  7508. return -EINVAL;
  7509. }
  7510. /* Reject formats not supported by any plane early. */
  7511. switch (mode_cmd->pixel_format) {
  7512. case DRM_FORMAT_C8:
  7513. case DRM_FORMAT_RGB565:
  7514. case DRM_FORMAT_XRGB8888:
  7515. case DRM_FORMAT_ARGB8888:
  7516. break;
  7517. case DRM_FORMAT_XRGB1555:
  7518. case DRM_FORMAT_ARGB1555:
  7519. if (INTEL_INFO(dev)->gen > 3) {
  7520. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7521. return -EINVAL;
  7522. }
  7523. break;
  7524. case DRM_FORMAT_XBGR8888:
  7525. case DRM_FORMAT_ABGR8888:
  7526. case DRM_FORMAT_XRGB2101010:
  7527. case DRM_FORMAT_ARGB2101010:
  7528. case DRM_FORMAT_XBGR2101010:
  7529. case DRM_FORMAT_ABGR2101010:
  7530. if (INTEL_INFO(dev)->gen < 4) {
  7531. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7532. return -EINVAL;
  7533. }
  7534. break;
  7535. case DRM_FORMAT_YUYV:
  7536. case DRM_FORMAT_UYVY:
  7537. case DRM_FORMAT_YVYU:
  7538. case DRM_FORMAT_VYUY:
  7539. if (INTEL_INFO(dev)->gen < 5) {
  7540. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7541. return -EINVAL;
  7542. }
  7543. break;
  7544. default:
  7545. DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
  7546. return -EINVAL;
  7547. }
  7548. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7549. if (mode_cmd->offsets[0] != 0)
  7550. return -EINVAL;
  7551. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7552. intel_fb->obj = obj;
  7553. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7554. if (ret) {
  7555. DRM_ERROR("framebuffer init failed %d\n", ret);
  7556. return ret;
  7557. }
  7558. return 0;
  7559. }
  7560. static struct drm_framebuffer *
  7561. intel_user_framebuffer_create(struct drm_device *dev,
  7562. struct drm_file *filp,
  7563. struct drm_mode_fb_cmd2 *mode_cmd)
  7564. {
  7565. struct drm_i915_gem_object *obj;
  7566. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7567. mode_cmd->handles[0]));
  7568. if (&obj->base == NULL)
  7569. return ERR_PTR(-ENOENT);
  7570. return intel_framebuffer_create(dev, mode_cmd, obj);
  7571. }
  7572. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7573. .fb_create = intel_user_framebuffer_create,
  7574. .output_poll_changed = intel_fb_output_poll_changed,
  7575. };
  7576. /* Set up chip specific display functions */
  7577. static void intel_init_display(struct drm_device *dev)
  7578. {
  7579. struct drm_i915_private *dev_priv = dev->dev_private;
  7580. if (HAS_DDI(dev)) {
  7581. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  7582. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7583. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7584. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7585. dev_priv->display.off = haswell_crtc_off;
  7586. dev_priv->display.update_plane = ironlake_update_plane;
  7587. } else if (HAS_PCH_SPLIT(dev)) {
  7588. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  7589. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7590. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7591. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7592. dev_priv->display.off = ironlake_crtc_off;
  7593. dev_priv->display.update_plane = ironlake_update_plane;
  7594. } else if (IS_VALLEYVIEW(dev)) {
  7595. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7596. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7597. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  7598. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7599. dev_priv->display.off = i9xx_crtc_off;
  7600. dev_priv->display.update_plane = i9xx_update_plane;
  7601. } else {
  7602. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7603. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7604. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7605. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7606. dev_priv->display.off = i9xx_crtc_off;
  7607. dev_priv->display.update_plane = i9xx_update_plane;
  7608. }
  7609. /* Returns the core display clock speed */
  7610. if (IS_VALLEYVIEW(dev))
  7611. dev_priv->display.get_display_clock_speed =
  7612. valleyview_get_display_clock_speed;
  7613. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7614. dev_priv->display.get_display_clock_speed =
  7615. i945_get_display_clock_speed;
  7616. else if (IS_I915G(dev))
  7617. dev_priv->display.get_display_clock_speed =
  7618. i915_get_display_clock_speed;
  7619. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7620. dev_priv->display.get_display_clock_speed =
  7621. i9xx_misc_get_display_clock_speed;
  7622. else if (IS_I915GM(dev))
  7623. dev_priv->display.get_display_clock_speed =
  7624. i915gm_get_display_clock_speed;
  7625. else if (IS_I865G(dev))
  7626. dev_priv->display.get_display_clock_speed =
  7627. i865_get_display_clock_speed;
  7628. else if (IS_I85X(dev))
  7629. dev_priv->display.get_display_clock_speed =
  7630. i855_get_display_clock_speed;
  7631. else /* 852, 830 */
  7632. dev_priv->display.get_display_clock_speed =
  7633. i830_get_display_clock_speed;
  7634. if (HAS_PCH_SPLIT(dev)) {
  7635. if (IS_GEN5(dev)) {
  7636. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7637. dev_priv->display.write_eld = ironlake_write_eld;
  7638. } else if (IS_GEN6(dev)) {
  7639. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7640. dev_priv->display.write_eld = ironlake_write_eld;
  7641. } else if (IS_IVYBRIDGE(dev)) {
  7642. /* FIXME: detect B0+ stepping and use auto training */
  7643. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7644. dev_priv->display.write_eld = ironlake_write_eld;
  7645. dev_priv->display.modeset_global_resources =
  7646. ivb_modeset_global_resources;
  7647. } else if (IS_HASWELL(dev)) {
  7648. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7649. dev_priv->display.write_eld = haswell_write_eld;
  7650. dev_priv->display.modeset_global_resources =
  7651. haswell_modeset_global_resources;
  7652. }
  7653. } else if (IS_G4X(dev)) {
  7654. dev_priv->display.write_eld = g4x_write_eld;
  7655. }
  7656. /* Default just returns -ENODEV to indicate unsupported */
  7657. dev_priv->display.queue_flip = intel_default_queue_flip;
  7658. switch (INTEL_INFO(dev)->gen) {
  7659. case 2:
  7660. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7661. break;
  7662. case 3:
  7663. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7664. break;
  7665. case 4:
  7666. case 5:
  7667. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7668. break;
  7669. case 6:
  7670. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7671. break;
  7672. case 7:
  7673. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7674. break;
  7675. }
  7676. }
  7677. /*
  7678. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7679. * resume, or other times. This quirk makes sure that's the case for
  7680. * affected systems.
  7681. */
  7682. static void quirk_pipea_force(struct drm_device *dev)
  7683. {
  7684. struct drm_i915_private *dev_priv = dev->dev_private;
  7685. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7686. DRM_INFO("applying pipe a force quirk\n");
  7687. }
  7688. /*
  7689. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7690. */
  7691. static void quirk_ssc_force_disable(struct drm_device *dev)
  7692. {
  7693. struct drm_i915_private *dev_priv = dev->dev_private;
  7694. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7695. DRM_INFO("applying lvds SSC disable quirk\n");
  7696. }
  7697. /*
  7698. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7699. * brightness value
  7700. */
  7701. static void quirk_invert_brightness(struct drm_device *dev)
  7702. {
  7703. struct drm_i915_private *dev_priv = dev->dev_private;
  7704. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7705. DRM_INFO("applying inverted panel brightness quirk\n");
  7706. }
  7707. struct intel_quirk {
  7708. int device;
  7709. int subsystem_vendor;
  7710. int subsystem_device;
  7711. void (*hook)(struct drm_device *dev);
  7712. };
  7713. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7714. struct intel_dmi_quirk {
  7715. void (*hook)(struct drm_device *dev);
  7716. const struct dmi_system_id (*dmi_id_list)[];
  7717. };
  7718. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7719. {
  7720. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7721. return 1;
  7722. }
  7723. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7724. {
  7725. .dmi_id_list = &(const struct dmi_system_id[]) {
  7726. {
  7727. .callback = intel_dmi_reverse_brightness,
  7728. .ident = "NCR Corporation",
  7729. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7730. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7731. },
  7732. },
  7733. { } /* terminating entry */
  7734. },
  7735. .hook = quirk_invert_brightness,
  7736. },
  7737. };
  7738. static struct intel_quirk intel_quirks[] = {
  7739. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7740. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7741. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7742. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7743. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7744. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7745. /* 830/845 need to leave pipe A & dpll A up */
  7746. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7747. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7748. /* Lenovo U160 cannot use SSC on LVDS */
  7749. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7750. /* Sony Vaio Y cannot use SSC on LVDS */
  7751. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7752. /* Acer Aspire 5734Z must invert backlight brightness */
  7753. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7754. /* Acer/eMachines G725 */
  7755. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  7756. /* Acer/eMachines e725 */
  7757. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  7758. /* Acer/Packard Bell NCL20 */
  7759. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  7760. /* Acer Aspire 4736Z */
  7761. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  7762. };
  7763. static void intel_init_quirks(struct drm_device *dev)
  7764. {
  7765. struct pci_dev *d = dev->pdev;
  7766. int i;
  7767. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7768. struct intel_quirk *q = &intel_quirks[i];
  7769. if (d->device == q->device &&
  7770. (d->subsystem_vendor == q->subsystem_vendor ||
  7771. q->subsystem_vendor == PCI_ANY_ID) &&
  7772. (d->subsystem_device == q->subsystem_device ||
  7773. q->subsystem_device == PCI_ANY_ID))
  7774. q->hook(dev);
  7775. }
  7776. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7777. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7778. intel_dmi_quirks[i].hook(dev);
  7779. }
  7780. }
  7781. /* Disable the VGA plane that we never use */
  7782. static void i915_disable_vga(struct drm_device *dev)
  7783. {
  7784. struct drm_i915_private *dev_priv = dev->dev_private;
  7785. u8 sr1;
  7786. u32 vga_reg = i915_vgacntrl_reg(dev);
  7787. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7788. outb(SR01, VGA_SR_INDEX);
  7789. sr1 = inb(VGA_SR_DATA);
  7790. outb(sr1 | 1<<5, VGA_SR_DATA);
  7791. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7792. udelay(300);
  7793. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7794. POSTING_READ(vga_reg);
  7795. }
  7796. void intel_modeset_init_hw(struct drm_device *dev)
  7797. {
  7798. intel_init_power_well(dev);
  7799. intel_prepare_ddi(dev);
  7800. intel_init_clock_gating(dev);
  7801. mutex_lock(&dev->struct_mutex);
  7802. intel_enable_gt_powersave(dev);
  7803. mutex_unlock(&dev->struct_mutex);
  7804. }
  7805. void intel_modeset_suspend_hw(struct drm_device *dev)
  7806. {
  7807. intel_suspend_hw(dev);
  7808. }
  7809. void intel_modeset_init(struct drm_device *dev)
  7810. {
  7811. struct drm_i915_private *dev_priv = dev->dev_private;
  7812. int i, j, ret;
  7813. drm_mode_config_init(dev);
  7814. dev->mode_config.min_width = 0;
  7815. dev->mode_config.min_height = 0;
  7816. dev->mode_config.preferred_depth = 24;
  7817. dev->mode_config.prefer_shadow = 1;
  7818. dev->mode_config.funcs = &intel_mode_funcs;
  7819. intel_init_quirks(dev);
  7820. intel_init_pm(dev);
  7821. if (INTEL_INFO(dev)->num_pipes == 0)
  7822. return;
  7823. intel_init_display(dev);
  7824. if (IS_GEN2(dev)) {
  7825. dev->mode_config.max_width = 2048;
  7826. dev->mode_config.max_height = 2048;
  7827. } else if (IS_GEN3(dev)) {
  7828. dev->mode_config.max_width = 4096;
  7829. dev->mode_config.max_height = 4096;
  7830. } else {
  7831. dev->mode_config.max_width = 8192;
  7832. dev->mode_config.max_height = 8192;
  7833. }
  7834. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  7835. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7836. INTEL_INFO(dev)->num_pipes,
  7837. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  7838. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  7839. intel_crtc_init(dev, i);
  7840. for (j = 0; j < dev_priv->num_plane; j++) {
  7841. ret = intel_plane_init(dev, i, j);
  7842. if (ret)
  7843. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  7844. pipe_name(i), sprite_name(i, j), ret);
  7845. }
  7846. }
  7847. intel_cpu_pll_init(dev);
  7848. intel_pch_pll_init(dev);
  7849. /* Just disable it once at startup */
  7850. i915_disable_vga(dev);
  7851. intel_setup_outputs(dev);
  7852. /* Just in case the BIOS is doing something questionable. */
  7853. intel_disable_fbc(dev);
  7854. }
  7855. static void
  7856. intel_connector_break_all_links(struct intel_connector *connector)
  7857. {
  7858. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7859. connector->base.encoder = NULL;
  7860. connector->encoder->connectors_active = false;
  7861. connector->encoder->base.crtc = NULL;
  7862. }
  7863. static void intel_enable_pipe_a(struct drm_device *dev)
  7864. {
  7865. struct intel_connector *connector;
  7866. struct drm_connector *crt = NULL;
  7867. struct intel_load_detect_pipe load_detect_temp;
  7868. /* We can't just switch on the pipe A, we need to set things up with a
  7869. * proper mode and output configuration. As a gross hack, enable pipe A
  7870. * by enabling the load detect pipe once. */
  7871. list_for_each_entry(connector,
  7872. &dev->mode_config.connector_list,
  7873. base.head) {
  7874. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7875. crt = &connector->base;
  7876. break;
  7877. }
  7878. }
  7879. if (!crt)
  7880. return;
  7881. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  7882. intel_release_load_detect_pipe(crt, &load_detect_temp);
  7883. }
  7884. static bool
  7885. intel_check_plane_mapping(struct intel_crtc *crtc)
  7886. {
  7887. struct drm_device *dev = crtc->base.dev;
  7888. struct drm_i915_private *dev_priv = dev->dev_private;
  7889. u32 reg, val;
  7890. if (INTEL_INFO(dev)->num_pipes == 1)
  7891. return true;
  7892. reg = DSPCNTR(!crtc->plane);
  7893. val = I915_READ(reg);
  7894. if ((val & DISPLAY_PLANE_ENABLE) &&
  7895. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  7896. return false;
  7897. return true;
  7898. }
  7899. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  7900. {
  7901. struct drm_device *dev = crtc->base.dev;
  7902. struct drm_i915_private *dev_priv = dev->dev_private;
  7903. u32 reg;
  7904. /* Clear any frame start delays used for debugging left by the BIOS */
  7905. reg = PIPECONF(crtc->config.cpu_transcoder);
  7906. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  7907. /* We need to sanitize the plane -> pipe mapping first because this will
  7908. * disable the crtc (and hence change the state) if it is wrong. Note
  7909. * that gen4+ has a fixed plane -> pipe mapping. */
  7910. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  7911. struct intel_connector *connector;
  7912. bool plane;
  7913. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  7914. crtc->base.base.id);
  7915. /* Pipe has the wrong plane attached and the plane is active.
  7916. * Temporarily change the plane mapping and disable everything
  7917. * ... */
  7918. plane = crtc->plane;
  7919. crtc->plane = !plane;
  7920. dev_priv->display.crtc_disable(&crtc->base);
  7921. crtc->plane = plane;
  7922. /* ... and break all links. */
  7923. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7924. base.head) {
  7925. if (connector->encoder->base.crtc != &crtc->base)
  7926. continue;
  7927. intel_connector_break_all_links(connector);
  7928. }
  7929. WARN_ON(crtc->active);
  7930. crtc->base.enabled = false;
  7931. }
  7932. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  7933. crtc->pipe == PIPE_A && !crtc->active) {
  7934. /* BIOS forgot to enable pipe A, this mostly happens after
  7935. * resume. Force-enable the pipe to fix this, the update_dpms
  7936. * call below we restore the pipe to the right state, but leave
  7937. * the required bits on. */
  7938. intel_enable_pipe_a(dev);
  7939. }
  7940. /* Adjust the state of the output pipe according to whether we
  7941. * have active connectors/encoders. */
  7942. intel_crtc_update_dpms(&crtc->base);
  7943. if (crtc->active != crtc->base.enabled) {
  7944. struct intel_encoder *encoder;
  7945. /* This can happen either due to bugs in the get_hw_state
  7946. * functions or because the pipe is force-enabled due to the
  7947. * pipe A quirk. */
  7948. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  7949. crtc->base.base.id,
  7950. crtc->base.enabled ? "enabled" : "disabled",
  7951. crtc->active ? "enabled" : "disabled");
  7952. crtc->base.enabled = crtc->active;
  7953. /* Because we only establish the connector -> encoder ->
  7954. * crtc links if something is active, this means the
  7955. * crtc is now deactivated. Break the links. connector
  7956. * -> encoder links are only establish when things are
  7957. * actually up, hence no need to break them. */
  7958. WARN_ON(crtc->active);
  7959. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  7960. WARN_ON(encoder->connectors_active);
  7961. encoder->base.crtc = NULL;
  7962. }
  7963. }
  7964. }
  7965. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  7966. {
  7967. struct intel_connector *connector;
  7968. struct drm_device *dev = encoder->base.dev;
  7969. /* We need to check both for a crtc link (meaning that the
  7970. * encoder is active and trying to read from a pipe) and the
  7971. * pipe itself being active. */
  7972. bool has_active_crtc = encoder->base.crtc &&
  7973. to_intel_crtc(encoder->base.crtc)->active;
  7974. if (encoder->connectors_active && !has_active_crtc) {
  7975. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  7976. encoder->base.base.id,
  7977. drm_get_encoder_name(&encoder->base));
  7978. /* Connector is active, but has no active pipe. This is
  7979. * fallout from our resume register restoring. Disable
  7980. * the encoder manually again. */
  7981. if (encoder->base.crtc) {
  7982. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  7983. encoder->base.base.id,
  7984. drm_get_encoder_name(&encoder->base));
  7985. encoder->disable(encoder);
  7986. }
  7987. /* Inconsistent output/port/pipe state happens presumably due to
  7988. * a bug in one of the get_hw_state functions. Or someplace else
  7989. * in our code, like the register restore mess on resume. Clamp
  7990. * things to off as a safer default. */
  7991. list_for_each_entry(connector,
  7992. &dev->mode_config.connector_list,
  7993. base.head) {
  7994. if (connector->encoder != encoder)
  7995. continue;
  7996. intel_connector_break_all_links(connector);
  7997. }
  7998. }
  7999. /* Enabled encoders without active connectors will be fixed in
  8000. * the crtc fixup. */
  8001. }
  8002. void i915_redisable_vga(struct drm_device *dev)
  8003. {
  8004. struct drm_i915_private *dev_priv = dev->dev_private;
  8005. u32 vga_reg = i915_vgacntrl_reg(dev);
  8006. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  8007. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  8008. i915_disable_vga(dev);
  8009. }
  8010. }
  8011. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  8012. * and i915 state tracking structures. */
  8013. void intel_modeset_setup_hw_state(struct drm_device *dev,
  8014. bool force_restore)
  8015. {
  8016. struct drm_i915_private *dev_priv = dev->dev_private;
  8017. enum pipe pipe;
  8018. struct drm_plane *plane;
  8019. struct intel_crtc *crtc;
  8020. struct intel_encoder *encoder;
  8021. struct intel_connector *connector;
  8022. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8023. base.head) {
  8024. memset(&crtc->config, 0, sizeof(crtc->config));
  8025. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8026. &crtc->config);
  8027. crtc->base.enabled = crtc->active;
  8028. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8029. crtc->base.base.id,
  8030. crtc->active ? "enabled" : "disabled");
  8031. }
  8032. if (HAS_DDI(dev))
  8033. intel_ddi_setup_hw_pll_state(dev);
  8034. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8035. base.head) {
  8036. pipe = 0;
  8037. if (encoder->get_hw_state(encoder, &pipe)) {
  8038. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8039. encoder->base.crtc = &crtc->base;
  8040. if (encoder->get_config)
  8041. encoder->get_config(encoder, &crtc->config);
  8042. } else {
  8043. encoder->base.crtc = NULL;
  8044. }
  8045. encoder->connectors_active = false;
  8046. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8047. encoder->base.base.id,
  8048. drm_get_encoder_name(&encoder->base),
  8049. encoder->base.crtc ? "enabled" : "disabled",
  8050. pipe);
  8051. }
  8052. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8053. base.head) {
  8054. if (connector->get_hw_state(connector)) {
  8055. connector->base.dpms = DRM_MODE_DPMS_ON;
  8056. connector->encoder->connectors_active = true;
  8057. connector->base.encoder = &connector->encoder->base;
  8058. } else {
  8059. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8060. connector->base.encoder = NULL;
  8061. }
  8062. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8063. connector->base.base.id,
  8064. drm_get_connector_name(&connector->base),
  8065. connector->base.encoder ? "enabled" : "disabled");
  8066. }
  8067. /* HW state is read out, now we need to sanitize this mess. */
  8068. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8069. base.head) {
  8070. intel_sanitize_encoder(encoder);
  8071. }
  8072. for_each_pipe(pipe) {
  8073. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8074. intel_sanitize_crtc(crtc);
  8075. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8076. }
  8077. if (force_restore) {
  8078. /*
  8079. * We need to use raw interfaces for restoring state to avoid
  8080. * checking (bogus) intermediate states.
  8081. */
  8082. for_each_pipe(pipe) {
  8083. struct drm_crtc *crtc =
  8084. dev_priv->pipe_to_crtc_mapping[pipe];
  8085. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8086. crtc->fb);
  8087. }
  8088. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8089. intel_plane_restore(plane);
  8090. i915_redisable_vga(dev);
  8091. } else {
  8092. intel_modeset_update_staged_output_state(dev);
  8093. }
  8094. intel_modeset_check_state(dev);
  8095. drm_mode_config_reset(dev);
  8096. }
  8097. void intel_modeset_gem_init(struct drm_device *dev)
  8098. {
  8099. intel_modeset_init_hw(dev);
  8100. intel_setup_overlay(dev);
  8101. intel_modeset_setup_hw_state(dev, false);
  8102. }
  8103. void intel_modeset_cleanup(struct drm_device *dev)
  8104. {
  8105. struct drm_i915_private *dev_priv = dev->dev_private;
  8106. struct drm_crtc *crtc;
  8107. struct intel_crtc *intel_crtc;
  8108. /*
  8109. * Interrupts and polling as the first thing to avoid creating havoc.
  8110. * Too much stuff here (turning of rps, connectors, ...) would
  8111. * experience fancy races otherwise.
  8112. */
  8113. drm_irq_uninstall(dev);
  8114. cancel_work_sync(&dev_priv->hotplug_work);
  8115. /*
  8116. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8117. * poll handlers. Hence disable polling after hpd handling is shut down.
  8118. */
  8119. drm_kms_helper_poll_fini(dev);
  8120. mutex_lock(&dev->struct_mutex);
  8121. intel_unregister_dsm_handler();
  8122. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8123. /* Skip inactive CRTCs */
  8124. if (!crtc->fb)
  8125. continue;
  8126. intel_crtc = to_intel_crtc(crtc);
  8127. intel_increase_pllclock(crtc);
  8128. }
  8129. intel_disable_fbc(dev);
  8130. intel_disable_gt_powersave(dev);
  8131. ironlake_teardown_rc6(dev);
  8132. mutex_unlock(&dev->struct_mutex);
  8133. /* flush any delayed tasks or pending work */
  8134. flush_scheduled_work();
  8135. /* destroy backlight, if any, before the connectors */
  8136. intel_panel_destroy_backlight(dev);
  8137. drm_mode_config_cleanup(dev);
  8138. intel_cleanup_overlay(dev);
  8139. }
  8140. /*
  8141. * Return which encoder is currently attached for connector.
  8142. */
  8143. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8144. {
  8145. return &intel_attached_encoder(connector)->base;
  8146. }
  8147. void intel_connector_attach_encoder(struct intel_connector *connector,
  8148. struct intel_encoder *encoder)
  8149. {
  8150. connector->encoder = encoder;
  8151. drm_mode_connector_attach_encoder(&connector->base,
  8152. &encoder->base);
  8153. }
  8154. /*
  8155. * set vga decode state - true == enable VGA decode
  8156. */
  8157. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8158. {
  8159. struct drm_i915_private *dev_priv = dev->dev_private;
  8160. u16 gmch_ctrl;
  8161. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8162. if (state)
  8163. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8164. else
  8165. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8166. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8167. return 0;
  8168. }
  8169. #ifdef CONFIG_DEBUG_FS
  8170. #include <linux/seq_file.h>
  8171. struct intel_display_error_state {
  8172. u32 power_well_driver;
  8173. struct intel_cursor_error_state {
  8174. u32 control;
  8175. u32 position;
  8176. u32 base;
  8177. u32 size;
  8178. } cursor[I915_MAX_PIPES];
  8179. struct intel_pipe_error_state {
  8180. enum transcoder cpu_transcoder;
  8181. u32 conf;
  8182. u32 source;
  8183. u32 htotal;
  8184. u32 hblank;
  8185. u32 hsync;
  8186. u32 vtotal;
  8187. u32 vblank;
  8188. u32 vsync;
  8189. } pipe[I915_MAX_PIPES];
  8190. struct intel_plane_error_state {
  8191. u32 control;
  8192. u32 stride;
  8193. u32 size;
  8194. u32 pos;
  8195. u32 addr;
  8196. u32 surface;
  8197. u32 tile_offset;
  8198. } plane[I915_MAX_PIPES];
  8199. };
  8200. struct intel_display_error_state *
  8201. intel_display_capture_error_state(struct drm_device *dev)
  8202. {
  8203. drm_i915_private_t *dev_priv = dev->dev_private;
  8204. struct intel_display_error_state *error;
  8205. enum transcoder cpu_transcoder;
  8206. int i;
  8207. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8208. if (error == NULL)
  8209. return NULL;
  8210. if (HAS_POWER_WELL(dev))
  8211. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  8212. for_each_pipe(i) {
  8213. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  8214. error->pipe[i].cpu_transcoder = cpu_transcoder;
  8215. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  8216. error->cursor[i].control = I915_READ(CURCNTR(i));
  8217. error->cursor[i].position = I915_READ(CURPOS(i));
  8218. error->cursor[i].base = I915_READ(CURBASE(i));
  8219. } else {
  8220. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8221. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8222. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8223. }
  8224. error->plane[i].control = I915_READ(DSPCNTR(i));
  8225. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8226. if (INTEL_INFO(dev)->gen <= 3) {
  8227. error->plane[i].size = I915_READ(DSPSIZE(i));
  8228. error->plane[i].pos = I915_READ(DSPPOS(i));
  8229. }
  8230. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8231. error->plane[i].addr = I915_READ(DSPADDR(i));
  8232. if (INTEL_INFO(dev)->gen >= 4) {
  8233. error->plane[i].surface = I915_READ(DSPSURF(i));
  8234. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8235. }
  8236. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8237. error->pipe[i].source = I915_READ(PIPESRC(i));
  8238. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8239. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8240. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8241. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8242. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8243. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8244. }
  8245. /* In the code above we read the registers without checking if the power
  8246. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  8247. * prevent the next I915_WRITE from detecting it and printing an error
  8248. * message. */
  8249. if (HAS_POWER_WELL(dev))
  8250. I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
  8251. return error;
  8252. }
  8253. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  8254. void
  8255. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  8256. struct drm_device *dev,
  8257. struct intel_display_error_state *error)
  8258. {
  8259. int i;
  8260. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8261. if (HAS_POWER_WELL(dev))
  8262. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  8263. error->power_well_driver);
  8264. for_each_pipe(i) {
  8265. err_printf(m, "Pipe [%d]:\n", i);
  8266. err_printf(m, " CPU transcoder: %c\n",
  8267. transcoder_name(error->pipe[i].cpu_transcoder));
  8268. err_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8269. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8270. err_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8271. err_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8272. err_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8273. err_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8274. err_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8275. err_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8276. err_printf(m, "Plane [%d]:\n", i);
  8277. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8278. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8279. if (INTEL_INFO(dev)->gen <= 3) {
  8280. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8281. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  8282. }
  8283. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8284. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8285. if (INTEL_INFO(dev)->gen >= 4) {
  8286. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8287. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8288. }
  8289. err_printf(m, "Cursor [%d]:\n", i);
  8290. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8291. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  8292. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8293. }
  8294. }
  8295. #endif