slab.c 101 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same intializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/config.h>
  89. #include <linux/slab.h>
  90. #include <linux/mm.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/seq_file.h>
  97. #include <linux/notifier.h>
  98. #include <linux/kallsyms.h>
  99. #include <linux/cpu.h>
  100. #include <linux/sysctl.h>
  101. #include <linux/module.h>
  102. #include <linux/rcupdate.h>
  103. #include <linux/string.h>
  104. #include <linux/nodemask.h>
  105. #include <linux/mempolicy.h>
  106. #include <linux/mutex.h>
  107. #include <asm/uaccess.h>
  108. #include <asm/cacheflush.h>
  109. #include <asm/tlbflush.h>
  110. #include <asm/page.h>
  111. /*
  112. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
  113. * SLAB_RED_ZONE & SLAB_POISON.
  114. * 0 for faster, smaller code (especially in the critical paths).
  115. *
  116. * STATS - 1 to collect stats for /proc/slabinfo.
  117. * 0 for faster, smaller code (especially in the critical paths).
  118. *
  119. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  120. */
  121. #ifdef CONFIG_DEBUG_SLAB
  122. #define DEBUG 1
  123. #define STATS 1
  124. #define FORCED_DEBUG 1
  125. #else
  126. #define DEBUG 0
  127. #define STATS 0
  128. #define FORCED_DEBUG 0
  129. #endif
  130. /* Shouldn't this be in a header file somewhere? */
  131. #define BYTES_PER_WORD sizeof(void *)
  132. #ifndef cache_line_size
  133. #define cache_line_size() L1_CACHE_BYTES
  134. #endif
  135. #ifndef ARCH_KMALLOC_MINALIGN
  136. /*
  137. * Enforce a minimum alignment for the kmalloc caches.
  138. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  139. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  140. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  141. * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
  142. * Note that this flag disables some debug features.
  143. */
  144. #define ARCH_KMALLOC_MINALIGN 0
  145. #endif
  146. #ifndef ARCH_SLAB_MINALIGN
  147. /*
  148. * Enforce a minimum alignment for all caches.
  149. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  150. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  151. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  152. * some debug features.
  153. */
  154. #define ARCH_SLAB_MINALIGN 0
  155. #endif
  156. #ifndef ARCH_KMALLOC_FLAGS
  157. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  158. #endif
  159. /* Legal flag mask for kmem_cache_create(). */
  160. #if DEBUG
  161. # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
  162. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  163. SLAB_CACHE_DMA | \
  164. SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
  165. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  166. SLAB_DESTROY_BY_RCU)
  167. #else
  168. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  169. SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
  170. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  171. SLAB_DESTROY_BY_RCU)
  172. #endif
  173. /*
  174. * kmem_bufctl_t:
  175. *
  176. * Bufctl's are used for linking objs within a slab
  177. * linked offsets.
  178. *
  179. * This implementation relies on "struct page" for locating the cache &
  180. * slab an object belongs to.
  181. * This allows the bufctl structure to be small (one int), but limits
  182. * the number of objects a slab (not a cache) can contain when off-slab
  183. * bufctls are used. The limit is the size of the largest general cache
  184. * that does not use off-slab slabs.
  185. * For 32bit archs with 4 kB pages, is this 56.
  186. * This is not serious, as it is only for large objects, when it is unwise
  187. * to have too many per slab.
  188. * Note: This limit can be raised by introducing a general cache whose size
  189. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  190. */
  191. typedef unsigned int kmem_bufctl_t;
  192. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  193. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  194. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
  195. /* Max number of objs-per-slab for caches which use off-slab slabs.
  196. * Needed to avoid a possible looping condition in cache_grow().
  197. */
  198. static unsigned long offslab_limit;
  199. /*
  200. * struct slab
  201. *
  202. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  203. * for a slab, or allocated from an general cache.
  204. * Slabs are chained into three list: fully used, partial, fully free slabs.
  205. */
  206. struct slab {
  207. struct list_head list;
  208. unsigned long colouroff;
  209. void *s_mem; /* including colour offset */
  210. unsigned int inuse; /* num of objs active in slab */
  211. kmem_bufctl_t free;
  212. unsigned short nodeid;
  213. };
  214. /*
  215. * struct slab_rcu
  216. *
  217. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  218. * arrange for kmem_freepages to be called via RCU. This is useful if
  219. * we need to approach a kernel structure obliquely, from its address
  220. * obtained without the usual locking. We can lock the structure to
  221. * stabilize it and check it's still at the given address, only if we
  222. * can be sure that the memory has not been meanwhile reused for some
  223. * other kind of object (which our subsystem's lock might corrupt).
  224. *
  225. * rcu_read_lock before reading the address, then rcu_read_unlock after
  226. * taking the spinlock within the structure expected at that address.
  227. *
  228. * We assume struct slab_rcu can overlay struct slab when destroying.
  229. */
  230. struct slab_rcu {
  231. struct rcu_head head;
  232. struct kmem_cache *cachep;
  233. void *addr;
  234. };
  235. /*
  236. * struct array_cache
  237. *
  238. * Purpose:
  239. * - LIFO ordering, to hand out cache-warm objects from _alloc
  240. * - reduce the number of linked list operations
  241. * - reduce spinlock operations
  242. *
  243. * The limit is stored in the per-cpu structure to reduce the data cache
  244. * footprint.
  245. *
  246. */
  247. struct array_cache {
  248. unsigned int avail;
  249. unsigned int limit;
  250. unsigned int batchcount;
  251. unsigned int touched;
  252. spinlock_t lock;
  253. void *entry[0]; /*
  254. * Must have this definition in here for the proper
  255. * alignment of array_cache. Also simplifies accessing
  256. * the entries.
  257. * [0] is for gcc 2.95. It should really be [].
  258. */
  259. };
  260. /*
  261. * bootstrap: The caches do not work without cpuarrays anymore, but the
  262. * cpuarrays are allocated from the generic caches...
  263. */
  264. #define BOOT_CPUCACHE_ENTRIES 1
  265. struct arraycache_init {
  266. struct array_cache cache;
  267. void *entries[BOOT_CPUCACHE_ENTRIES];
  268. };
  269. /*
  270. * The slab lists for all objects.
  271. */
  272. struct kmem_list3 {
  273. struct list_head slabs_partial; /* partial list first, better asm code */
  274. struct list_head slabs_full;
  275. struct list_head slabs_free;
  276. unsigned long free_objects;
  277. unsigned long next_reap;
  278. int free_touched;
  279. unsigned int free_limit;
  280. unsigned int colour_next; /* Per-node cache coloring */
  281. spinlock_t list_lock;
  282. struct array_cache *shared; /* shared per node */
  283. struct array_cache **alien; /* on other nodes */
  284. };
  285. /*
  286. * Need this for bootstrapping a per node allocator.
  287. */
  288. #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
  289. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  290. #define CACHE_CACHE 0
  291. #define SIZE_AC 1
  292. #define SIZE_L3 (1 + MAX_NUMNODES)
  293. /*
  294. * This function must be completely optimized away if a constant is passed to
  295. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  296. */
  297. static __always_inline int index_of(const size_t size)
  298. {
  299. extern void __bad_size(void);
  300. if (__builtin_constant_p(size)) {
  301. int i = 0;
  302. #define CACHE(x) \
  303. if (size <=x) \
  304. return i; \
  305. else \
  306. i++;
  307. #include "linux/kmalloc_sizes.h"
  308. #undef CACHE
  309. __bad_size();
  310. } else
  311. __bad_size();
  312. return 0;
  313. }
  314. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  315. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  316. static void kmem_list3_init(struct kmem_list3 *parent)
  317. {
  318. INIT_LIST_HEAD(&parent->slabs_full);
  319. INIT_LIST_HEAD(&parent->slabs_partial);
  320. INIT_LIST_HEAD(&parent->slabs_free);
  321. parent->shared = NULL;
  322. parent->alien = NULL;
  323. parent->colour_next = 0;
  324. spin_lock_init(&parent->list_lock);
  325. parent->free_objects = 0;
  326. parent->free_touched = 0;
  327. }
  328. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  329. do { \
  330. INIT_LIST_HEAD(listp); \
  331. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  332. } while (0)
  333. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  334. do { \
  335. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  336. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  337. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  338. } while (0)
  339. /*
  340. * struct kmem_cache
  341. *
  342. * manages a cache.
  343. */
  344. struct kmem_cache {
  345. /* 1) per-cpu data, touched during every alloc/free */
  346. struct array_cache *array[NR_CPUS];
  347. /* 2) Cache tunables. Protected by cache_chain_mutex */
  348. unsigned int batchcount;
  349. unsigned int limit;
  350. unsigned int shared;
  351. unsigned int buffer_size;
  352. /* 3) touched by every alloc & free from the backend */
  353. struct kmem_list3 *nodelists[MAX_NUMNODES];
  354. unsigned int flags; /* constant flags */
  355. unsigned int num; /* # of objs per slab */
  356. /* 4) cache_grow/shrink */
  357. /* order of pgs per slab (2^n) */
  358. unsigned int gfporder;
  359. /* force GFP flags, e.g. GFP_DMA */
  360. gfp_t gfpflags;
  361. size_t colour; /* cache colouring range */
  362. unsigned int colour_off; /* colour offset */
  363. struct kmem_cache *slabp_cache;
  364. unsigned int slab_size;
  365. unsigned int dflags; /* dynamic flags */
  366. /* constructor func */
  367. void (*ctor) (void *, struct kmem_cache *, unsigned long);
  368. /* de-constructor func */
  369. void (*dtor) (void *, struct kmem_cache *, unsigned long);
  370. /* 5) cache creation/removal */
  371. const char *name;
  372. struct list_head next;
  373. /* 6) statistics */
  374. #if STATS
  375. unsigned long num_active;
  376. unsigned long num_allocations;
  377. unsigned long high_mark;
  378. unsigned long grown;
  379. unsigned long reaped;
  380. unsigned long errors;
  381. unsigned long max_freeable;
  382. unsigned long node_allocs;
  383. unsigned long node_frees;
  384. atomic_t allochit;
  385. atomic_t allocmiss;
  386. atomic_t freehit;
  387. atomic_t freemiss;
  388. #endif
  389. #if DEBUG
  390. /*
  391. * If debugging is enabled, then the allocator can add additional
  392. * fields and/or padding to every object. buffer_size contains the total
  393. * object size including these internal fields, the following two
  394. * variables contain the offset to the user object and its size.
  395. */
  396. int obj_offset;
  397. int obj_size;
  398. #endif
  399. };
  400. #define CFLGS_OFF_SLAB (0x80000000UL)
  401. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  402. #define BATCHREFILL_LIMIT 16
  403. /*
  404. * Optimization question: fewer reaps means less probability for unnessary
  405. * cpucache drain/refill cycles.
  406. *
  407. * OTOH the cpuarrays can contain lots of objects,
  408. * which could lock up otherwise freeable slabs.
  409. */
  410. #define REAPTIMEOUT_CPUC (2*HZ)
  411. #define REAPTIMEOUT_LIST3 (4*HZ)
  412. #if STATS
  413. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  414. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  415. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  416. #define STATS_INC_GROWN(x) ((x)->grown++)
  417. #define STATS_INC_REAPED(x) ((x)->reaped++)
  418. #define STATS_SET_HIGH(x) \
  419. do { \
  420. if ((x)->num_active > (x)->high_mark) \
  421. (x)->high_mark = (x)->num_active; \
  422. } while (0)
  423. #define STATS_INC_ERR(x) ((x)->errors++)
  424. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  425. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  426. #define STATS_SET_FREEABLE(x, i) \
  427. do { \
  428. if ((x)->max_freeable < i) \
  429. (x)->max_freeable = i; \
  430. } while (0)
  431. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  432. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  433. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  434. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  435. #else
  436. #define STATS_INC_ACTIVE(x) do { } while (0)
  437. #define STATS_DEC_ACTIVE(x) do { } while (0)
  438. #define STATS_INC_ALLOCED(x) do { } while (0)
  439. #define STATS_INC_GROWN(x) do { } while (0)
  440. #define STATS_INC_REAPED(x) do { } while (0)
  441. #define STATS_SET_HIGH(x) do { } while (0)
  442. #define STATS_INC_ERR(x) do { } while (0)
  443. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  444. #define STATS_INC_NODEFREES(x) do { } while (0)
  445. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  446. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  447. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  448. #define STATS_INC_FREEHIT(x) do { } while (0)
  449. #define STATS_INC_FREEMISS(x) do { } while (0)
  450. #endif
  451. #if DEBUG
  452. /*
  453. * Magic nums for obj red zoning.
  454. * Placed in the first word before and the first word after an obj.
  455. */
  456. #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
  457. #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
  458. /* ...and for poisoning */
  459. #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
  460. #define POISON_FREE 0x6b /* for use-after-free poisoning */
  461. #define POISON_END 0xa5 /* end-byte of poisoning */
  462. /*
  463. * memory layout of objects:
  464. * 0 : objp
  465. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  466. * the end of an object is aligned with the end of the real
  467. * allocation. Catches writes behind the end of the allocation.
  468. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  469. * redzone word.
  470. * cachep->obj_offset: The real object.
  471. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  472. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  473. * [BYTES_PER_WORD long]
  474. */
  475. static int obj_offset(struct kmem_cache *cachep)
  476. {
  477. return cachep->obj_offset;
  478. }
  479. static int obj_size(struct kmem_cache *cachep)
  480. {
  481. return cachep->obj_size;
  482. }
  483. static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  484. {
  485. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  486. return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
  487. }
  488. static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  489. {
  490. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  491. if (cachep->flags & SLAB_STORE_USER)
  492. return (unsigned long *)(objp + cachep->buffer_size -
  493. 2 * BYTES_PER_WORD);
  494. return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
  495. }
  496. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  497. {
  498. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  499. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  500. }
  501. #else
  502. #define obj_offset(x) 0
  503. #define obj_size(cachep) (cachep->buffer_size)
  504. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  505. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  506. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  507. #endif
  508. /*
  509. * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
  510. * order.
  511. */
  512. #if defined(CONFIG_LARGE_ALLOCS)
  513. #define MAX_OBJ_ORDER 13 /* up to 32Mb */
  514. #define MAX_GFP_ORDER 13 /* up to 32Mb */
  515. #elif defined(CONFIG_MMU)
  516. #define MAX_OBJ_ORDER 5 /* 32 pages */
  517. #define MAX_GFP_ORDER 5 /* 32 pages */
  518. #else
  519. #define MAX_OBJ_ORDER 8 /* up to 1Mb */
  520. #define MAX_GFP_ORDER 8 /* up to 1Mb */
  521. #endif
  522. /*
  523. * Do not go above this order unless 0 objects fit into the slab.
  524. */
  525. #define BREAK_GFP_ORDER_HI 1
  526. #define BREAK_GFP_ORDER_LO 0
  527. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  528. /*
  529. * Functions for storing/retrieving the cachep and or slab from the page
  530. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  531. * these are used to find the cache which an obj belongs to.
  532. */
  533. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  534. {
  535. page->lru.next = (struct list_head *)cache;
  536. }
  537. static inline struct kmem_cache *page_get_cache(struct page *page)
  538. {
  539. return (struct kmem_cache *)page->lru.next;
  540. }
  541. static inline void page_set_slab(struct page *page, struct slab *slab)
  542. {
  543. page->lru.prev = (struct list_head *)slab;
  544. }
  545. static inline struct slab *page_get_slab(struct page *page)
  546. {
  547. return (struct slab *)page->lru.prev;
  548. }
  549. static inline struct kmem_cache *virt_to_cache(const void *obj)
  550. {
  551. struct page *page = virt_to_page(obj);
  552. return page_get_cache(page);
  553. }
  554. static inline struct slab *virt_to_slab(const void *obj)
  555. {
  556. struct page *page = virt_to_page(obj);
  557. return page_get_slab(page);
  558. }
  559. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  560. unsigned int idx)
  561. {
  562. return slab->s_mem + cache->buffer_size * idx;
  563. }
  564. static inline unsigned int obj_to_index(struct kmem_cache *cache,
  565. struct slab *slab, void *obj)
  566. {
  567. return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
  568. }
  569. /*
  570. * These are the default caches for kmalloc. Custom caches can have other sizes.
  571. */
  572. struct cache_sizes malloc_sizes[] = {
  573. #define CACHE(x) { .cs_size = (x) },
  574. #include <linux/kmalloc_sizes.h>
  575. CACHE(ULONG_MAX)
  576. #undef CACHE
  577. };
  578. EXPORT_SYMBOL(malloc_sizes);
  579. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  580. struct cache_names {
  581. char *name;
  582. char *name_dma;
  583. };
  584. static struct cache_names __initdata cache_names[] = {
  585. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  586. #include <linux/kmalloc_sizes.h>
  587. {NULL,}
  588. #undef CACHE
  589. };
  590. static struct arraycache_init initarray_cache __initdata =
  591. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  592. static struct arraycache_init initarray_generic =
  593. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  594. /* internal cache of cache description objs */
  595. static struct kmem_cache cache_cache = {
  596. .batchcount = 1,
  597. .limit = BOOT_CPUCACHE_ENTRIES,
  598. .shared = 1,
  599. .buffer_size = sizeof(struct kmem_cache),
  600. .name = "kmem_cache",
  601. #if DEBUG
  602. .obj_size = sizeof(struct kmem_cache),
  603. #endif
  604. };
  605. /* Guard access to the cache-chain. */
  606. static DEFINE_MUTEX(cache_chain_mutex);
  607. static struct list_head cache_chain;
  608. /*
  609. * vm_enough_memory() looks at this to determine how many slab-allocated pages
  610. * are possibly freeable under pressure
  611. *
  612. * SLAB_RECLAIM_ACCOUNT turns this on per-slab
  613. */
  614. atomic_t slab_reclaim_pages;
  615. /*
  616. * chicken and egg problem: delay the per-cpu array allocation
  617. * until the general caches are up.
  618. */
  619. static enum {
  620. NONE,
  621. PARTIAL_AC,
  622. PARTIAL_L3,
  623. FULL
  624. } g_cpucache_up;
  625. static DEFINE_PER_CPU(struct work_struct, reap_work);
  626. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  627. int node);
  628. static void enable_cpucache(struct kmem_cache *cachep);
  629. static void cache_reap(void *unused);
  630. static int __node_shrink(struct kmem_cache *cachep, int node);
  631. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  632. {
  633. return cachep->array[smp_processor_id()];
  634. }
  635. static inline struct kmem_cache *__find_general_cachep(size_t size,
  636. gfp_t gfpflags)
  637. {
  638. struct cache_sizes *csizep = malloc_sizes;
  639. #if DEBUG
  640. /* This happens if someone tries to call
  641. * kmem_cache_create(), or __kmalloc(), before
  642. * the generic caches are initialized.
  643. */
  644. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  645. #endif
  646. while (size > csizep->cs_size)
  647. csizep++;
  648. /*
  649. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  650. * has cs_{dma,}cachep==NULL. Thus no special case
  651. * for large kmalloc calls required.
  652. */
  653. if (unlikely(gfpflags & GFP_DMA))
  654. return csizep->cs_dmacachep;
  655. return csizep->cs_cachep;
  656. }
  657. struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  658. {
  659. return __find_general_cachep(size, gfpflags);
  660. }
  661. EXPORT_SYMBOL(kmem_find_general_cachep);
  662. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  663. {
  664. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  665. }
  666. /*
  667. * Calculate the number of objects and left-over bytes for a given buffer size.
  668. */
  669. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  670. size_t align, int flags, size_t *left_over,
  671. unsigned int *num)
  672. {
  673. int nr_objs;
  674. size_t mgmt_size;
  675. size_t slab_size = PAGE_SIZE << gfporder;
  676. /*
  677. * The slab management structure can be either off the slab or
  678. * on it. For the latter case, the memory allocated for a
  679. * slab is used for:
  680. *
  681. * - The struct slab
  682. * - One kmem_bufctl_t for each object
  683. * - Padding to respect alignment of @align
  684. * - @buffer_size bytes for each object
  685. *
  686. * If the slab management structure is off the slab, then the
  687. * alignment will already be calculated into the size. Because
  688. * the slabs are all pages aligned, the objects will be at the
  689. * correct alignment when allocated.
  690. */
  691. if (flags & CFLGS_OFF_SLAB) {
  692. mgmt_size = 0;
  693. nr_objs = slab_size / buffer_size;
  694. if (nr_objs > SLAB_LIMIT)
  695. nr_objs = SLAB_LIMIT;
  696. } else {
  697. /*
  698. * Ignore padding for the initial guess. The padding
  699. * is at most @align-1 bytes, and @buffer_size is at
  700. * least @align. In the worst case, this result will
  701. * be one greater than the number of objects that fit
  702. * into the memory allocation when taking the padding
  703. * into account.
  704. */
  705. nr_objs = (slab_size - sizeof(struct slab)) /
  706. (buffer_size + sizeof(kmem_bufctl_t));
  707. /*
  708. * This calculated number will be either the right
  709. * amount, or one greater than what we want.
  710. */
  711. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  712. > slab_size)
  713. nr_objs--;
  714. if (nr_objs > SLAB_LIMIT)
  715. nr_objs = SLAB_LIMIT;
  716. mgmt_size = slab_mgmt_size(nr_objs, align);
  717. }
  718. *num = nr_objs;
  719. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  720. }
  721. #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
  722. static void __slab_error(const char *function, struct kmem_cache *cachep,
  723. char *msg)
  724. {
  725. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  726. function, cachep->name, msg);
  727. dump_stack();
  728. }
  729. #ifdef CONFIG_NUMA
  730. /*
  731. * Special reaping functions for NUMA systems called from cache_reap().
  732. * These take care of doing round robin flushing of alien caches (containing
  733. * objects freed on different nodes from which they were allocated) and the
  734. * flushing of remote pcps by calling drain_node_pages.
  735. */
  736. static DEFINE_PER_CPU(unsigned long, reap_node);
  737. static void init_reap_node(int cpu)
  738. {
  739. int node;
  740. node = next_node(cpu_to_node(cpu), node_online_map);
  741. if (node == MAX_NUMNODES)
  742. node = 0;
  743. __get_cpu_var(reap_node) = node;
  744. }
  745. static void next_reap_node(void)
  746. {
  747. int node = __get_cpu_var(reap_node);
  748. /*
  749. * Also drain per cpu pages on remote zones
  750. */
  751. if (node != numa_node_id())
  752. drain_node_pages(node);
  753. node = next_node(node, node_online_map);
  754. if (unlikely(node >= MAX_NUMNODES))
  755. node = first_node(node_online_map);
  756. __get_cpu_var(reap_node) = node;
  757. }
  758. #else
  759. #define init_reap_node(cpu) do { } while (0)
  760. #define next_reap_node(void) do { } while (0)
  761. #endif
  762. /*
  763. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  764. * via the workqueue/eventd.
  765. * Add the CPU number into the expiration time to minimize the possibility of
  766. * the CPUs getting into lockstep and contending for the global cache chain
  767. * lock.
  768. */
  769. static void __devinit start_cpu_timer(int cpu)
  770. {
  771. struct work_struct *reap_work = &per_cpu(reap_work, cpu);
  772. /*
  773. * When this gets called from do_initcalls via cpucache_init(),
  774. * init_workqueues() has already run, so keventd will be setup
  775. * at that time.
  776. */
  777. if (keventd_up() && reap_work->func == NULL) {
  778. init_reap_node(cpu);
  779. INIT_WORK(reap_work, cache_reap, NULL);
  780. schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
  781. }
  782. }
  783. static struct array_cache *alloc_arraycache(int node, int entries,
  784. int batchcount)
  785. {
  786. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  787. struct array_cache *nc = NULL;
  788. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  789. if (nc) {
  790. nc->avail = 0;
  791. nc->limit = entries;
  792. nc->batchcount = batchcount;
  793. nc->touched = 0;
  794. spin_lock_init(&nc->lock);
  795. }
  796. return nc;
  797. }
  798. #ifdef CONFIG_NUMA
  799. static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
  800. static struct array_cache **alloc_alien_cache(int node, int limit)
  801. {
  802. struct array_cache **ac_ptr;
  803. int memsize = sizeof(void *) * MAX_NUMNODES;
  804. int i;
  805. if (limit > 1)
  806. limit = 12;
  807. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  808. if (ac_ptr) {
  809. for_each_node(i) {
  810. if (i == node || !node_online(i)) {
  811. ac_ptr[i] = NULL;
  812. continue;
  813. }
  814. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  815. if (!ac_ptr[i]) {
  816. for (i--; i <= 0; i--)
  817. kfree(ac_ptr[i]);
  818. kfree(ac_ptr);
  819. return NULL;
  820. }
  821. }
  822. }
  823. return ac_ptr;
  824. }
  825. static void free_alien_cache(struct array_cache **ac_ptr)
  826. {
  827. int i;
  828. if (!ac_ptr)
  829. return;
  830. for_each_node(i)
  831. kfree(ac_ptr[i]);
  832. kfree(ac_ptr);
  833. }
  834. static void __drain_alien_cache(struct kmem_cache *cachep,
  835. struct array_cache *ac, int node)
  836. {
  837. struct kmem_list3 *rl3 = cachep->nodelists[node];
  838. if (ac->avail) {
  839. spin_lock(&rl3->list_lock);
  840. free_block(cachep, ac->entry, ac->avail, node);
  841. ac->avail = 0;
  842. spin_unlock(&rl3->list_lock);
  843. }
  844. }
  845. /*
  846. * Called from cache_reap() to regularly drain alien caches round robin.
  847. */
  848. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  849. {
  850. int node = __get_cpu_var(reap_node);
  851. if (l3->alien) {
  852. struct array_cache *ac = l3->alien[node];
  853. if (ac && ac->avail) {
  854. spin_lock_irq(&ac->lock);
  855. __drain_alien_cache(cachep, ac, node);
  856. spin_unlock_irq(&ac->lock);
  857. }
  858. }
  859. }
  860. static void drain_alien_cache(struct kmem_cache *cachep,
  861. struct array_cache **alien)
  862. {
  863. int i = 0;
  864. struct array_cache *ac;
  865. unsigned long flags;
  866. for_each_online_node(i) {
  867. ac = alien[i];
  868. if (ac) {
  869. spin_lock_irqsave(&ac->lock, flags);
  870. __drain_alien_cache(cachep, ac, i);
  871. spin_unlock_irqrestore(&ac->lock, flags);
  872. }
  873. }
  874. }
  875. #else
  876. #define drain_alien_cache(cachep, alien) do { } while (0)
  877. #define reap_alien(cachep, l3) do { } while (0)
  878. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  879. {
  880. return (struct array_cache **) 0x01020304ul;
  881. }
  882. static inline void free_alien_cache(struct array_cache **ac_ptr)
  883. {
  884. }
  885. #endif
  886. static int __devinit cpuup_callback(struct notifier_block *nfb,
  887. unsigned long action, void *hcpu)
  888. {
  889. long cpu = (long)hcpu;
  890. struct kmem_cache *cachep;
  891. struct kmem_list3 *l3 = NULL;
  892. int node = cpu_to_node(cpu);
  893. int memsize = sizeof(struct kmem_list3);
  894. switch (action) {
  895. case CPU_UP_PREPARE:
  896. mutex_lock(&cache_chain_mutex);
  897. /*
  898. * We need to do this right in the beginning since
  899. * alloc_arraycache's are going to use this list.
  900. * kmalloc_node allows us to add the slab to the right
  901. * kmem_list3 and not this cpu's kmem_list3
  902. */
  903. list_for_each_entry(cachep, &cache_chain, next) {
  904. /*
  905. * Set up the size64 kmemlist for cpu before we can
  906. * begin anything. Make sure some other cpu on this
  907. * node has not already allocated this
  908. */
  909. if (!cachep->nodelists[node]) {
  910. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  911. if (!l3)
  912. goto bad;
  913. kmem_list3_init(l3);
  914. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  915. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  916. /*
  917. * The l3s don't come and go as CPUs come and
  918. * go. cache_chain_mutex is sufficient
  919. * protection here.
  920. */
  921. cachep->nodelists[node] = l3;
  922. }
  923. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  924. cachep->nodelists[node]->free_limit =
  925. (1 + nr_cpus_node(node)) *
  926. cachep->batchcount + cachep->num;
  927. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  928. }
  929. /*
  930. * Now we can go ahead with allocating the shared arrays and
  931. * array caches
  932. */
  933. list_for_each_entry(cachep, &cache_chain, next) {
  934. struct array_cache *nc;
  935. struct array_cache *shared;
  936. struct array_cache **alien;
  937. nc = alloc_arraycache(node, cachep->limit,
  938. cachep->batchcount);
  939. if (!nc)
  940. goto bad;
  941. shared = alloc_arraycache(node,
  942. cachep->shared * cachep->batchcount,
  943. 0xbaadf00d);
  944. if (!shared)
  945. goto bad;
  946. alien = alloc_alien_cache(node, cachep->limit);
  947. if (!alien)
  948. goto bad;
  949. cachep->array[cpu] = nc;
  950. l3 = cachep->nodelists[node];
  951. BUG_ON(!l3);
  952. spin_lock_irq(&l3->list_lock);
  953. if (!l3->shared) {
  954. /*
  955. * We are serialised from CPU_DEAD or
  956. * CPU_UP_CANCELLED by the cpucontrol lock
  957. */
  958. l3->shared = shared;
  959. shared = NULL;
  960. }
  961. #ifdef CONFIG_NUMA
  962. if (!l3->alien) {
  963. l3->alien = alien;
  964. alien = NULL;
  965. }
  966. #endif
  967. spin_unlock_irq(&l3->list_lock);
  968. kfree(shared);
  969. free_alien_cache(alien);
  970. }
  971. mutex_unlock(&cache_chain_mutex);
  972. break;
  973. case CPU_ONLINE:
  974. start_cpu_timer(cpu);
  975. break;
  976. #ifdef CONFIG_HOTPLUG_CPU
  977. case CPU_DEAD:
  978. /*
  979. * Even if all the cpus of a node are down, we don't free the
  980. * kmem_list3 of any cache. This to avoid a race between
  981. * cpu_down, and a kmalloc allocation from another cpu for
  982. * memory from the node of the cpu going down. The list3
  983. * structure is usually allocated from kmem_cache_create() and
  984. * gets destroyed at kmem_cache_destroy().
  985. */
  986. /* fall thru */
  987. case CPU_UP_CANCELED:
  988. mutex_lock(&cache_chain_mutex);
  989. list_for_each_entry(cachep, &cache_chain, next) {
  990. struct array_cache *nc;
  991. struct array_cache *shared;
  992. struct array_cache **alien;
  993. cpumask_t mask;
  994. mask = node_to_cpumask(node);
  995. /* cpu is dead; no one can alloc from it. */
  996. nc = cachep->array[cpu];
  997. cachep->array[cpu] = NULL;
  998. l3 = cachep->nodelists[node];
  999. if (!l3)
  1000. goto free_array_cache;
  1001. spin_lock_irq(&l3->list_lock);
  1002. /* Free limit for this kmem_list3 */
  1003. l3->free_limit -= cachep->batchcount;
  1004. if (nc)
  1005. free_block(cachep, nc->entry, nc->avail, node);
  1006. if (!cpus_empty(mask)) {
  1007. spin_unlock_irq(&l3->list_lock);
  1008. goto free_array_cache;
  1009. }
  1010. shared = l3->shared;
  1011. if (shared) {
  1012. free_block(cachep, l3->shared->entry,
  1013. l3->shared->avail, node);
  1014. l3->shared = NULL;
  1015. }
  1016. alien = l3->alien;
  1017. l3->alien = NULL;
  1018. spin_unlock_irq(&l3->list_lock);
  1019. kfree(shared);
  1020. if (alien) {
  1021. drain_alien_cache(cachep, alien);
  1022. free_alien_cache(alien);
  1023. }
  1024. free_array_cache:
  1025. kfree(nc);
  1026. }
  1027. /*
  1028. * In the previous loop, all the objects were freed to
  1029. * the respective cache's slabs, now we can go ahead and
  1030. * shrink each nodelist to its limit.
  1031. */
  1032. list_for_each_entry(cachep, &cache_chain, next) {
  1033. l3 = cachep->nodelists[node];
  1034. if (!l3)
  1035. continue;
  1036. spin_lock_irq(&l3->list_lock);
  1037. /* free slabs belonging to this node */
  1038. __node_shrink(cachep, node);
  1039. spin_unlock_irq(&l3->list_lock);
  1040. }
  1041. mutex_unlock(&cache_chain_mutex);
  1042. break;
  1043. #endif
  1044. }
  1045. return NOTIFY_OK;
  1046. bad:
  1047. mutex_unlock(&cache_chain_mutex);
  1048. return NOTIFY_BAD;
  1049. }
  1050. static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
  1051. /*
  1052. * swap the static kmem_list3 with kmalloced memory
  1053. */
  1054. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1055. int nodeid)
  1056. {
  1057. struct kmem_list3 *ptr;
  1058. BUG_ON(cachep->nodelists[nodeid] != list);
  1059. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1060. BUG_ON(!ptr);
  1061. local_irq_disable();
  1062. memcpy(ptr, list, sizeof(struct kmem_list3));
  1063. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1064. cachep->nodelists[nodeid] = ptr;
  1065. local_irq_enable();
  1066. }
  1067. /*
  1068. * Initialisation. Called after the page allocator have been initialised and
  1069. * before smp_init().
  1070. */
  1071. void __init kmem_cache_init(void)
  1072. {
  1073. size_t left_over;
  1074. struct cache_sizes *sizes;
  1075. struct cache_names *names;
  1076. int i;
  1077. int order;
  1078. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1079. kmem_list3_init(&initkmem_list3[i]);
  1080. if (i < MAX_NUMNODES)
  1081. cache_cache.nodelists[i] = NULL;
  1082. }
  1083. /*
  1084. * Fragmentation resistance on low memory - only use bigger
  1085. * page orders on machines with more than 32MB of memory.
  1086. */
  1087. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1088. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1089. /* Bootstrap is tricky, because several objects are allocated
  1090. * from caches that do not exist yet:
  1091. * 1) initialize the cache_cache cache: it contains the struct
  1092. * kmem_cache structures of all caches, except cache_cache itself:
  1093. * cache_cache is statically allocated.
  1094. * Initially an __init data area is used for the head array and the
  1095. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1096. * array at the end of the bootstrap.
  1097. * 2) Create the first kmalloc cache.
  1098. * The struct kmem_cache for the new cache is allocated normally.
  1099. * An __init data area is used for the head array.
  1100. * 3) Create the remaining kmalloc caches, with minimally sized
  1101. * head arrays.
  1102. * 4) Replace the __init data head arrays for cache_cache and the first
  1103. * kmalloc cache with kmalloc allocated arrays.
  1104. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1105. * the other cache's with kmalloc allocated memory.
  1106. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1107. */
  1108. /* 1) create the cache_cache */
  1109. INIT_LIST_HEAD(&cache_chain);
  1110. list_add(&cache_cache.next, &cache_chain);
  1111. cache_cache.colour_off = cache_line_size();
  1112. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1113. cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
  1114. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1115. cache_line_size());
  1116. for (order = 0; order < MAX_ORDER; order++) {
  1117. cache_estimate(order, cache_cache.buffer_size,
  1118. cache_line_size(), 0, &left_over, &cache_cache.num);
  1119. if (cache_cache.num)
  1120. break;
  1121. }
  1122. if (!cache_cache.num)
  1123. BUG();
  1124. cache_cache.gfporder = order;
  1125. cache_cache.colour = left_over / cache_cache.colour_off;
  1126. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1127. sizeof(struct slab), cache_line_size());
  1128. /* 2+3) create the kmalloc caches */
  1129. sizes = malloc_sizes;
  1130. names = cache_names;
  1131. /*
  1132. * Initialize the caches that provide memory for the array cache and the
  1133. * kmem_list3 structures first. Without this, further allocations will
  1134. * bug.
  1135. */
  1136. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1137. sizes[INDEX_AC].cs_size,
  1138. ARCH_KMALLOC_MINALIGN,
  1139. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1140. NULL, NULL);
  1141. if (INDEX_AC != INDEX_L3) {
  1142. sizes[INDEX_L3].cs_cachep =
  1143. kmem_cache_create(names[INDEX_L3].name,
  1144. sizes[INDEX_L3].cs_size,
  1145. ARCH_KMALLOC_MINALIGN,
  1146. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1147. NULL, NULL);
  1148. }
  1149. while (sizes->cs_size != ULONG_MAX) {
  1150. /*
  1151. * For performance, all the general caches are L1 aligned.
  1152. * This should be particularly beneficial on SMP boxes, as it
  1153. * eliminates "false sharing".
  1154. * Note for systems short on memory removing the alignment will
  1155. * allow tighter packing of the smaller caches.
  1156. */
  1157. if (!sizes->cs_cachep) {
  1158. sizes->cs_cachep = kmem_cache_create(names->name,
  1159. sizes->cs_size,
  1160. ARCH_KMALLOC_MINALIGN,
  1161. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1162. NULL, NULL);
  1163. }
  1164. /* Inc off-slab bufctl limit until the ceiling is hit. */
  1165. if (!(OFF_SLAB(sizes->cs_cachep))) {
  1166. offslab_limit = sizes->cs_size - sizeof(struct slab);
  1167. offslab_limit /= sizeof(kmem_bufctl_t);
  1168. }
  1169. sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
  1170. sizes->cs_size,
  1171. ARCH_KMALLOC_MINALIGN,
  1172. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1173. SLAB_PANIC,
  1174. NULL, NULL);
  1175. sizes++;
  1176. names++;
  1177. }
  1178. /* 4) Replace the bootstrap head arrays */
  1179. {
  1180. void *ptr;
  1181. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1182. local_irq_disable();
  1183. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1184. memcpy(ptr, cpu_cache_get(&cache_cache),
  1185. sizeof(struct arraycache_init));
  1186. cache_cache.array[smp_processor_id()] = ptr;
  1187. local_irq_enable();
  1188. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1189. local_irq_disable();
  1190. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1191. != &initarray_generic.cache);
  1192. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1193. sizeof(struct arraycache_init));
  1194. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1195. ptr;
  1196. local_irq_enable();
  1197. }
  1198. /* 5) Replace the bootstrap kmem_list3's */
  1199. {
  1200. int node;
  1201. /* Replace the static kmem_list3 structures for the boot cpu */
  1202. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
  1203. numa_node_id());
  1204. for_each_online_node(node) {
  1205. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1206. &initkmem_list3[SIZE_AC + node], node);
  1207. if (INDEX_AC != INDEX_L3) {
  1208. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1209. &initkmem_list3[SIZE_L3 + node],
  1210. node);
  1211. }
  1212. }
  1213. }
  1214. /* 6) resize the head arrays to their final sizes */
  1215. {
  1216. struct kmem_cache *cachep;
  1217. mutex_lock(&cache_chain_mutex);
  1218. list_for_each_entry(cachep, &cache_chain, next)
  1219. enable_cpucache(cachep);
  1220. mutex_unlock(&cache_chain_mutex);
  1221. }
  1222. /* Done! */
  1223. g_cpucache_up = FULL;
  1224. /*
  1225. * Register a cpu startup notifier callback that initializes
  1226. * cpu_cache_get for all new cpus
  1227. */
  1228. register_cpu_notifier(&cpucache_notifier);
  1229. /*
  1230. * The reap timers are started later, with a module init call: That part
  1231. * of the kernel is not yet operational.
  1232. */
  1233. }
  1234. static int __init cpucache_init(void)
  1235. {
  1236. int cpu;
  1237. /*
  1238. * Register the timers that return unneeded pages to the page allocator
  1239. */
  1240. for_each_online_cpu(cpu)
  1241. start_cpu_timer(cpu);
  1242. return 0;
  1243. }
  1244. __initcall(cpucache_init);
  1245. /*
  1246. * Interface to system's page allocator. No need to hold the cache-lock.
  1247. *
  1248. * If we requested dmaable memory, we will get it. Even if we
  1249. * did not request dmaable memory, we might get it, but that
  1250. * would be relatively rare and ignorable.
  1251. */
  1252. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1253. {
  1254. struct page *page;
  1255. void *addr;
  1256. int i;
  1257. flags |= cachep->gfpflags;
  1258. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1259. if (!page)
  1260. return NULL;
  1261. addr = page_address(page);
  1262. i = (1 << cachep->gfporder);
  1263. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1264. atomic_add(i, &slab_reclaim_pages);
  1265. add_page_state(nr_slab, i);
  1266. while (i--) {
  1267. __SetPageSlab(page);
  1268. page++;
  1269. }
  1270. return addr;
  1271. }
  1272. /*
  1273. * Interface to system's page release.
  1274. */
  1275. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1276. {
  1277. unsigned long i = (1 << cachep->gfporder);
  1278. struct page *page = virt_to_page(addr);
  1279. const unsigned long nr_freed = i;
  1280. while (i--) {
  1281. BUG_ON(!PageSlab(page));
  1282. __ClearPageSlab(page);
  1283. page++;
  1284. }
  1285. sub_page_state(nr_slab, nr_freed);
  1286. if (current->reclaim_state)
  1287. current->reclaim_state->reclaimed_slab += nr_freed;
  1288. free_pages((unsigned long)addr, cachep->gfporder);
  1289. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1290. atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
  1291. }
  1292. static void kmem_rcu_free(struct rcu_head *head)
  1293. {
  1294. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1295. struct kmem_cache *cachep = slab_rcu->cachep;
  1296. kmem_freepages(cachep, slab_rcu->addr);
  1297. if (OFF_SLAB(cachep))
  1298. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1299. }
  1300. #if DEBUG
  1301. #ifdef CONFIG_DEBUG_PAGEALLOC
  1302. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1303. unsigned long caller)
  1304. {
  1305. int size = obj_size(cachep);
  1306. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1307. if (size < 5 * sizeof(unsigned long))
  1308. return;
  1309. *addr++ = 0x12345678;
  1310. *addr++ = caller;
  1311. *addr++ = smp_processor_id();
  1312. size -= 3 * sizeof(unsigned long);
  1313. {
  1314. unsigned long *sptr = &caller;
  1315. unsigned long svalue;
  1316. while (!kstack_end(sptr)) {
  1317. svalue = *sptr++;
  1318. if (kernel_text_address(svalue)) {
  1319. *addr++ = svalue;
  1320. size -= sizeof(unsigned long);
  1321. if (size <= sizeof(unsigned long))
  1322. break;
  1323. }
  1324. }
  1325. }
  1326. *addr++ = 0x87654321;
  1327. }
  1328. #endif
  1329. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1330. {
  1331. int size = obj_size(cachep);
  1332. addr = &((char *)addr)[obj_offset(cachep)];
  1333. memset(addr, val, size);
  1334. *(unsigned char *)(addr + size - 1) = POISON_END;
  1335. }
  1336. static void dump_line(char *data, int offset, int limit)
  1337. {
  1338. int i;
  1339. printk(KERN_ERR "%03x:", offset);
  1340. for (i = 0; i < limit; i++)
  1341. printk(" %02x", (unsigned char)data[offset + i]);
  1342. printk("\n");
  1343. }
  1344. #endif
  1345. #if DEBUG
  1346. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1347. {
  1348. int i, size;
  1349. char *realobj;
  1350. if (cachep->flags & SLAB_RED_ZONE) {
  1351. printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
  1352. *dbg_redzone1(cachep, objp),
  1353. *dbg_redzone2(cachep, objp));
  1354. }
  1355. if (cachep->flags & SLAB_STORE_USER) {
  1356. printk(KERN_ERR "Last user: [<%p>]",
  1357. *dbg_userword(cachep, objp));
  1358. print_symbol("(%s)",
  1359. (unsigned long)*dbg_userword(cachep, objp));
  1360. printk("\n");
  1361. }
  1362. realobj = (char *)objp + obj_offset(cachep);
  1363. size = obj_size(cachep);
  1364. for (i = 0; i < size && lines; i += 16, lines--) {
  1365. int limit;
  1366. limit = 16;
  1367. if (i + limit > size)
  1368. limit = size - i;
  1369. dump_line(realobj, i, limit);
  1370. }
  1371. }
  1372. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1373. {
  1374. char *realobj;
  1375. int size, i;
  1376. int lines = 0;
  1377. realobj = (char *)objp + obj_offset(cachep);
  1378. size = obj_size(cachep);
  1379. for (i = 0; i < size; i++) {
  1380. char exp = POISON_FREE;
  1381. if (i == size - 1)
  1382. exp = POISON_END;
  1383. if (realobj[i] != exp) {
  1384. int limit;
  1385. /* Mismatch ! */
  1386. /* Print header */
  1387. if (lines == 0) {
  1388. printk(KERN_ERR
  1389. "Slab corruption: start=%p, len=%d\n",
  1390. realobj, size);
  1391. print_objinfo(cachep, objp, 0);
  1392. }
  1393. /* Hexdump the affected line */
  1394. i = (i / 16) * 16;
  1395. limit = 16;
  1396. if (i + limit > size)
  1397. limit = size - i;
  1398. dump_line(realobj, i, limit);
  1399. i += 16;
  1400. lines++;
  1401. /* Limit to 5 lines */
  1402. if (lines > 5)
  1403. break;
  1404. }
  1405. }
  1406. if (lines != 0) {
  1407. /* Print some data about the neighboring objects, if they
  1408. * exist:
  1409. */
  1410. struct slab *slabp = virt_to_slab(objp);
  1411. unsigned int objnr;
  1412. objnr = obj_to_index(cachep, slabp, objp);
  1413. if (objnr) {
  1414. objp = index_to_obj(cachep, slabp, objnr - 1);
  1415. realobj = (char *)objp + obj_offset(cachep);
  1416. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1417. realobj, size);
  1418. print_objinfo(cachep, objp, 2);
  1419. }
  1420. if (objnr + 1 < cachep->num) {
  1421. objp = index_to_obj(cachep, slabp, objnr + 1);
  1422. realobj = (char *)objp + obj_offset(cachep);
  1423. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1424. realobj, size);
  1425. print_objinfo(cachep, objp, 2);
  1426. }
  1427. }
  1428. }
  1429. #endif
  1430. #if DEBUG
  1431. /**
  1432. * slab_destroy_objs - destroy a slab and its objects
  1433. * @cachep: cache pointer being destroyed
  1434. * @slabp: slab pointer being destroyed
  1435. *
  1436. * Call the registered destructor for each object in a slab that is being
  1437. * destroyed.
  1438. */
  1439. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1440. {
  1441. int i;
  1442. for (i = 0; i < cachep->num; i++) {
  1443. void *objp = index_to_obj(cachep, slabp, i);
  1444. if (cachep->flags & SLAB_POISON) {
  1445. #ifdef CONFIG_DEBUG_PAGEALLOC
  1446. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1447. OFF_SLAB(cachep))
  1448. kernel_map_pages(virt_to_page(objp),
  1449. cachep->buffer_size / PAGE_SIZE, 1);
  1450. else
  1451. check_poison_obj(cachep, objp);
  1452. #else
  1453. check_poison_obj(cachep, objp);
  1454. #endif
  1455. }
  1456. if (cachep->flags & SLAB_RED_ZONE) {
  1457. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1458. slab_error(cachep, "start of a freed object "
  1459. "was overwritten");
  1460. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1461. slab_error(cachep, "end of a freed object "
  1462. "was overwritten");
  1463. }
  1464. if (cachep->dtor && !(cachep->flags & SLAB_POISON))
  1465. (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
  1466. }
  1467. }
  1468. #else
  1469. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1470. {
  1471. if (cachep->dtor) {
  1472. int i;
  1473. for (i = 0; i < cachep->num; i++) {
  1474. void *objp = index_to_obj(cachep, slabp, i);
  1475. (cachep->dtor) (objp, cachep, 0);
  1476. }
  1477. }
  1478. }
  1479. #endif
  1480. /**
  1481. * slab_destroy - destroy and release all objects in a slab
  1482. * @cachep: cache pointer being destroyed
  1483. * @slabp: slab pointer being destroyed
  1484. *
  1485. * Destroy all the objs in a slab, and release the mem back to the system.
  1486. * Before calling the slab must have been unlinked from the cache. The
  1487. * cache-lock is not held/needed.
  1488. */
  1489. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1490. {
  1491. void *addr = slabp->s_mem - slabp->colouroff;
  1492. slab_destroy_objs(cachep, slabp);
  1493. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1494. struct slab_rcu *slab_rcu;
  1495. slab_rcu = (struct slab_rcu *)slabp;
  1496. slab_rcu->cachep = cachep;
  1497. slab_rcu->addr = addr;
  1498. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1499. } else {
  1500. kmem_freepages(cachep, addr);
  1501. if (OFF_SLAB(cachep))
  1502. kmem_cache_free(cachep->slabp_cache, slabp);
  1503. }
  1504. }
  1505. /*
  1506. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1507. * size of kmem_list3.
  1508. */
  1509. static void set_up_list3s(struct kmem_cache *cachep, int index)
  1510. {
  1511. int node;
  1512. for_each_online_node(node) {
  1513. cachep->nodelists[node] = &initkmem_list3[index + node];
  1514. cachep->nodelists[node]->next_reap = jiffies +
  1515. REAPTIMEOUT_LIST3 +
  1516. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1517. }
  1518. }
  1519. /**
  1520. * calculate_slab_order - calculate size (page order) of slabs
  1521. * @cachep: pointer to the cache that is being created
  1522. * @size: size of objects to be created in this cache.
  1523. * @align: required alignment for the objects.
  1524. * @flags: slab allocation flags
  1525. *
  1526. * Also calculates the number of objects per slab.
  1527. *
  1528. * This could be made much more intelligent. For now, try to avoid using
  1529. * high order pages for slabs. When the gfp() functions are more friendly
  1530. * towards high-order requests, this should be changed.
  1531. */
  1532. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1533. size_t size, size_t align, unsigned long flags)
  1534. {
  1535. size_t left_over = 0;
  1536. int gfporder;
  1537. for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
  1538. unsigned int num;
  1539. size_t remainder;
  1540. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1541. if (!num)
  1542. continue;
  1543. /* More than offslab_limit objects will cause problems */
  1544. if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
  1545. break;
  1546. /* Found something acceptable - save it away */
  1547. cachep->num = num;
  1548. cachep->gfporder = gfporder;
  1549. left_over = remainder;
  1550. /*
  1551. * A VFS-reclaimable slab tends to have most allocations
  1552. * as GFP_NOFS and we really don't want to have to be allocating
  1553. * higher-order pages when we are unable to shrink dcache.
  1554. */
  1555. if (flags & SLAB_RECLAIM_ACCOUNT)
  1556. break;
  1557. /*
  1558. * Large number of objects is good, but very large slabs are
  1559. * currently bad for the gfp()s.
  1560. */
  1561. if (gfporder >= slab_break_gfp_order)
  1562. break;
  1563. /*
  1564. * Acceptable internal fragmentation?
  1565. */
  1566. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1567. break;
  1568. }
  1569. return left_over;
  1570. }
  1571. static void setup_cpu_cache(struct kmem_cache *cachep)
  1572. {
  1573. if (g_cpucache_up == FULL) {
  1574. enable_cpucache(cachep);
  1575. return;
  1576. }
  1577. if (g_cpucache_up == NONE) {
  1578. /*
  1579. * Note: the first kmem_cache_create must create the cache
  1580. * that's used by kmalloc(24), otherwise the creation of
  1581. * further caches will BUG().
  1582. */
  1583. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1584. /*
  1585. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1586. * the first cache, then we need to set up all its list3s,
  1587. * otherwise the creation of further caches will BUG().
  1588. */
  1589. set_up_list3s(cachep, SIZE_AC);
  1590. if (INDEX_AC == INDEX_L3)
  1591. g_cpucache_up = PARTIAL_L3;
  1592. else
  1593. g_cpucache_up = PARTIAL_AC;
  1594. } else {
  1595. cachep->array[smp_processor_id()] =
  1596. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1597. if (g_cpucache_up == PARTIAL_AC) {
  1598. set_up_list3s(cachep, SIZE_L3);
  1599. g_cpucache_up = PARTIAL_L3;
  1600. } else {
  1601. int node;
  1602. for_each_online_node(node) {
  1603. cachep->nodelists[node] =
  1604. kmalloc_node(sizeof(struct kmem_list3),
  1605. GFP_KERNEL, node);
  1606. BUG_ON(!cachep->nodelists[node]);
  1607. kmem_list3_init(cachep->nodelists[node]);
  1608. }
  1609. }
  1610. }
  1611. cachep->nodelists[numa_node_id()]->next_reap =
  1612. jiffies + REAPTIMEOUT_LIST3 +
  1613. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1614. cpu_cache_get(cachep)->avail = 0;
  1615. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1616. cpu_cache_get(cachep)->batchcount = 1;
  1617. cpu_cache_get(cachep)->touched = 0;
  1618. cachep->batchcount = 1;
  1619. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1620. }
  1621. /**
  1622. * kmem_cache_create - Create a cache.
  1623. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1624. * @size: The size of objects to be created in this cache.
  1625. * @align: The required alignment for the objects.
  1626. * @flags: SLAB flags
  1627. * @ctor: A constructor for the objects.
  1628. * @dtor: A destructor for the objects.
  1629. *
  1630. * Returns a ptr to the cache on success, NULL on failure.
  1631. * Cannot be called within a int, but can be interrupted.
  1632. * The @ctor is run when new pages are allocated by the cache
  1633. * and the @dtor is run before the pages are handed back.
  1634. *
  1635. * @name must be valid until the cache is destroyed. This implies that
  1636. * the module calling this has to destroy the cache before getting unloaded.
  1637. *
  1638. * The flags are
  1639. *
  1640. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1641. * to catch references to uninitialised memory.
  1642. *
  1643. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1644. * for buffer overruns.
  1645. *
  1646. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1647. * cacheline. This can be beneficial if you're counting cycles as closely
  1648. * as davem.
  1649. */
  1650. struct kmem_cache *
  1651. kmem_cache_create (const char *name, size_t size, size_t align,
  1652. unsigned long flags,
  1653. void (*ctor)(void*, struct kmem_cache *, unsigned long),
  1654. void (*dtor)(void*, struct kmem_cache *, unsigned long))
  1655. {
  1656. size_t left_over, slab_size, ralign;
  1657. struct kmem_cache *cachep = NULL;
  1658. struct list_head *p;
  1659. /*
  1660. * Sanity checks... these are all serious usage bugs.
  1661. */
  1662. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1663. (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
  1664. printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
  1665. name);
  1666. BUG();
  1667. }
  1668. /*
  1669. * Prevent CPUs from coming and going.
  1670. * lock_cpu_hotplug() nests outside cache_chain_mutex
  1671. */
  1672. lock_cpu_hotplug();
  1673. mutex_lock(&cache_chain_mutex);
  1674. list_for_each(p, &cache_chain) {
  1675. struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
  1676. mm_segment_t old_fs = get_fs();
  1677. char tmp;
  1678. int res;
  1679. /*
  1680. * This happens when the module gets unloaded and doesn't
  1681. * destroy its slab cache and no-one else reuses the vmalloc
  1682. * area of the module. Print a warning.
  1683. */
  1684. set_fs(KERNEL_DS);
  1685. res = __get_user(tmp, pc->name);
  1686. set_fs(old_fs);
  1687. if (res) {
  1688. printk("SLAB: cache with size %d has lost its name\n",
  1689. pc->buffer_size);
  1690. continue;
  1691. }
  1692. if (!strcmp(pc->name, name)) {
  1693. printk("kmem_cache_create: duplicate cache %s\n", name);
  1694. dump_stack();
  1695. goto oops;
  1696. }
  1697. }
  1698. #if DEBUG
  1699. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1700. if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
  1701. /* No constructor, but inital state check requested */
  1702. printk(KERN_ERR "%s: No con, but init state check "
  1703. "requested - %s\n", __FUNCTION__, name);
  1704. flags &= ~SLAB_DEBUG_INITIAL;
  1705. }
  1706. #if FORCED_DEBUG
  1707. /*
  1708. * Enable redzoning and last user accounting, except for caches with
  1709. * large objects, if the increased size would increase the object size
  1710. * above the next power of two: caches with object sizes just above a
  1711. * power of two have a significant amount of internal fragmentation.
  1712. */
  1713. if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
  1714. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1715. if (!(flags & SLAB_DESTROY_BY_RCU))
  1716. flags |= SLAB_POISON;
  1717. #endif
  1718. if (flags & SLAB_DESTROY_BY_RCU)
  1719. BUG_ON(flags & SLAB_POISON);
  1720. #endif
  1721. if (flags & SLAB_DESTROY_BY_RCU)
  1722. BUG_ON(dtor);
  1723. /*
  1724. * Always checks flags, a caller might be expecting debug support which
  1725. * isn't available.
  1726. */
  1727. if (flags & ~CREATE_MASK)
  1728. BUG();
  1729. /*
  1730. * Check that size is in terms of words. This is needed to avoid
  1731. * unaligned accesses for some archs when redzoning is used, and makes
  1732. * sure any on-slab bufctl's are also correctly aligned.
  1733. */
  1734. if (size & (BYTES_PER_WORD - 1)) {
  1735. size += (BYTES_PER_WORD - 1);
  1736. size &= ~(BYTES_PER_WORD - 1);
  1737. }
  1738. /* calculate the final buffer alignment: */
  1739. /* 1) arch recommendation: can be overridden for debug */
  1740. if (flags & SLAB_HWCACHE_ALIGN) {
  1741. /*
  1742. * Default alignment: as specified by the arch code. Except if
  1743. * an object is really small, then squeeze multiple objects into
  1744. * one cacheline.
  1745. */
  1746. ralign = cache_line_size();
  1747. while (size <= ralign / 2)
  1748. ralign /= 2;
  1749. } else {
  1750. ralign = BYTES_PER_WORD;
  1751. }
  1752. /* 2) arch mandated alignment: disables debug if necessary */
  1753. if (ralign < ARCH_SLAB_MINALIGN) {
  1754. ralign = ARCH_SLAB_MINALIGN;
  1755. if (ralign > BYTES_PER_WORD)
  1756. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1757. }
  1758. /* 3) caller mandated alignment: disables debug if necessary */
  1759. if (ralign < align) {
  1760. ralign = align;
  1761. if (ralign > BYTES_PER_WORD)
  1762. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1763. }
  1764. /*
  1765. * 4) Store it. Note that the debug code below can reduce
  1766. * the alignment to BYTES_PER_WORD.
  1767. */
  1768. align = ralign;
  1769. /* Get cache's description obj. */
  1770. cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
  1771. if (!cachep)
  1772. goto oops;
  1773. memset(cachep, 0, sizeof(struct kmem_cache));
  1774. #if DEBUG
  1775. cachep->obj_size = size;
  1776. if (flags & SLAB_RED_ZONE) {
  1777. /* redzoning only works with word aligned caches */
  1778. align = BYTES_PER_WORD;
  1779. /* add space for red zone words */
  1780. cachep->obj_offset += BYTES_PER_WORD;
  1781. size += 2 * BYTES_PER_WORD;
  1782. }
  1783. if (flags & SLAB_STORE_USER) {
  1784. /* user store requires word alignment and
  1785. * one word storage behind the end of the real
  1786. * object.
  1787. */
  1788. align = BYTES_PER_WORD;
  1789. size += BYTES_PER_WORD;
  1790. }
  1791. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  1792. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  1793. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  1794. cachep->obj_offset += PAGE_SIZE - size;
  1795. size = PAGE_SIZE;
  1796. }
  1797. #endif
  1798. #endif
  1799. /* Determine if the slab management is 'on' or 'off' slab. */
  1800. if (size >= (PAGE_SIZE >> 3))
  1801. /*
  1802. * Size is large, assume best to place the slab management obj
  1803. * off-slab (should allow better packing of objs).
  1804. */
  1805. flags |= CFLGS_OFF_SLAB;
  1806. size = ALIGN(size, align);
  1807. left_over = calculate_slab_order(cachep, size, align, flags);
  1808. if (!cachep->num) {
  1809. printk("kmem_cache_create: couldn't create cache %s.\n", name);
  1810. kmem_cache_free(&cache_cache, cachep);
  1811. cachep = NULL;
  1812. goto oops;
  1813. }
  1814. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  1815. + sizeof(struct slab), align);
  1816. /*
  1817. * If the slab has been placed off-slab, and we have enough space then
  1818. * move it on-slab. This is at the expense of any extra colouring.
  1819. */
  1820. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  1821. flags &= ~CFLGS_OFF_SLAB;
  1822. left_over -= slab_size;
  1823. }
  1824. if (flags & CFLGS_OFF_SLAB) {
  1825. /* really off slab. No need for manual alignment */
  1826. slab_size =
  1827. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  1828. }
  1829. cachep->colour_off = cache_line_size();
  1830. /* Offset must be a multiple of the alignment. */
  1831. if (cachep->colour_off < align)
  1832. cachep->colour_off = align;
  1833. cachep->colour = left_over / cachep->colour_off;
  1834. cachep->slab_size = slab_size;
  1835. cachep->flags = flags;
  1836. cachep->gfpflags = 0;
  1837. if (flags & SLAB_CACHE_DMA)
  1838. cachep->gfpflags |= GFP_DMA;
  1839. cachep->buffer_size = size;
  1840. if (flags & CFLGS_OFF_SLAB)
  1841. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  1842. cachep->ctor = ctor;
  1843. cachep->dtor = dtor;
  1844. cachep->name = name;
  1845. setup_cpu_cache(cachep);
  1846. /* cache setup completed, link it into the list */
  1847. list_add(&cachep->next, &cache_chain);
  1848. oops:
  1849. if (!cachep && (flags & SLAB_PANIC))
  1850. panic("kmem_cache_create(): failed to create slab `%s'\n",
  1851. name);
  1852. mutex_unlock(&cache_chain_mutex);
  1853. unlock_cpu_hotplug();
  1854. return cachep;
  1855. }
  1856. EXPORT_SYMBOL(kmem_cache_create);
  1857. #if DEBUG
  1858. static void check_irq_off(void)
  1859. {
  1860. BUG_ON(!irqs_disabled());
  1861. }
  1862. static void check_irq_on(void)
  1863. {
  1864. BUG_ON(irqs_disabled());
  1865. }
  1866. static void check_spinlock_acquired(struct kmem_cache *cachep)
  1867. {
  1868. #ifdef CONFIG_SMP
  1869. check_irq_off();
  1870. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  1871. #endif
  1872. }
  1873. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  1874. {
  1875. #ifdef CONFIG_SMP
  1876. check_irq_off();
  1877. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  1878. #endif
  1879. }
  1880. #else
  1881. #define check_irq_off() do { } while(0)
  1882. #define check_irq_on() do { } while(0)
  1883. #define check_spinlock_acquired(x) do { } while(0)
  1884. #define check_spinlock_acquired_node(x, y) do { } while(0)
  1885. #endif
  1886. /*
  1887. * Waits for all CPUs to execute func().
  1888. */
  1889. static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
  1890. {
  1891. check_irq_on();
  1892. preempt_disable();
  1893. local_irq_disable();
  1894. func(arg);
  1895. local_irq_enable();
  1896. if (smp_call_function(func, arg, 1, 1))
  1897. BUG();
  1898. preempt_enable();
  1899. }
  1900. static void drain_array_locked(struct kmem_cache *cachep,
  1901. struct array_cache *ac, int force, int node);
  1902. static void do_drain(void *arg)
  1903. {
  1904. struct kmem_cache *cachep = arg;
  1905. struct array_cache *ac;
  1906. int node = numa_node_id();
  1907. check_irq_off();
  1908. ac = cpu_cache_get(cachep);
  1909. spin_lock(&cachep->nodelists[node]->list_lock);
  1910. free_block(cachep, ac->entry, ac->avail, node);
  1911. spin_unlock(&cachep->nodelists[node]->list_lock);
  1912. ac->avail = 0;
  1913. }
  1914. static void drain_cpu_caches(struct kmem_cache *cachep)
  1915. {
  1916. struct kmem_list3 *l3;
  1917. int node;
  1918. smp_call_function_all_cpus(do_drain, cachep);
  1919. check_irq_on();
  1920. for_each_online_node(node) {
  1921. l3 = cachep->nodelists[node];
  1922. if (l3) {
  1923. spin_lock_irq(&l3->list_lock);
  1924. drain_array_locked(cachep, l3->shared, 1, node);
  1925. spin_unlock_irq(&l3->list_lock);
  1926. if (l3->alien)
  1927. drain_alien_cache(cachep, l3->alien);
  1928. }
  1929. }
  1930. }
  1931. static int __node_shrink(struct kmem_cache *cachep, int node)
  1932. {
  1933. struct slab *slabp;
  1934. struct kmem_list3 *l3 = cachep->nodelists[node];
  1935. int ret;
  1936. for (;;) {
  1937. struct list_head *p;
  1938. p = l3->slabs_free.prev;
  1939. if (p == &l3->slabs_free)
  1940. break;
  1941. slabp = list_entry(l3->slabs_free.prev, struct slab, list);
  1942. #if DEBUG
  1943. if (slabp->inuse)
  1944. BUG();
  1945. #endif
  1946. list_del(&slabp->list);
  1947. l3->free_objects -= cachep->num;
  1948. spin_unlock_irq(&l3->list_lock);
  1949. slab_destroy(cachep, slabp);
  1950. spin_lock_irq(&l3->list_lock);
  1951. }
  1952. ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
  1953. return ret;
  1954. }
  1955. static int __cache_shrink(struct kmem_cache *cachep)
  1956. {
  1957. int ret = 0, i = 0;
  1958. struct kmem_list3 *l3;
  1959. drain_cpu_caches(cachep);
  1960. check_irq_on();
  1961. for_each_online_node(i) {
  1962. l3 = cachep->nodelists[i];
  1963. if (l3) {
  1964. spin_lock_irq(&l3->list_lock);
  1965. ret += __node_shrink(cachep, i);
  1966. spin_unlock_irq(&l3->list_lock);
  1967. }
  1968. }
  1969. return (ret ? 1 : 0);
  1970. }
  1971. /**
  1972. * kmem_cache_shrink - Shrink a cache.
  1973. * @cachep: The cache to shrink.
  1974. *
  1975. * Releases as many slabs as possible for a cache.
  1976. * To help debugging, a zero exit status indicates all slabs were released.
  1977. */
  1978. int kmem_cache_shrink(struct kmem_cache *cachep)
  1979. {
  1980. if (!cachep || in_interrupt())
  1981. BUG();
  1982. return __cache_shrink(cachep);
  1983. }
  1984. EXPORT_SYMBOL(kmem_cache_shrink);
  1985. /**
  1986. * kmem_cache_destroy - delete a cache
  1987. * @cachep: the cache to destroy
  1988. *
  1989. * Remove a struct kmem_cache object from the slab cache.
  1990. * Returns 0 on success.
  1991. *
  1992. * It is expected this function will be called by a module when it is
  1993. * unloaded. This will remove the cache completely, and avoid a duplicate
  1994. * cache being allocated each time a module is loaded and unloaded, if the
  1995. * module doesn't have persistent in-kernel storage across loads and unloads.
  1996. *
  1997. * The cache must be empty before calling this function.
  1998. *
  1999. * The caller must guarantee that noone will allocate memory from the cache
  2000. * during the kmem_cache_destroy().
  2001. */
  2002. int kmem_cache_destroy(struct kmem_cache *cachep)
  2003. {
  2004. int i;
  2005. struct kmem_list3 *l3;
  2006. if (!cachep || in_interrupt())
  2007. BUG();
  2008. /* Don't let CPUs to come and go */
  2009. lock_cpu_hotplug();
  2010. /* Find the cache in the chain of caches. */
  2011. mutex_lock(&cache_chain_mutex);
  2012. /*
  2013. * the chain is never empty, cache_cache is never destroyed
  2014. */
  2015. list_del(&cachep->next);
  2016. mutex_unlock(&cache_chain_mutex);
  2017. if (__cache_shrink(cachep)) {
  2018. slab_error(cachep, "Can't free all objects");
  2019. mutex_lock(&cache_chain_mutex);
  2020. list_add(&cachep->next, &cache_chain);
  2021. mutex_unlock(&cache_chain_mutex);
  2022. unlock_cpu_hotplug();
  2023. return 1;
  2024. }
  2025. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2026. synchronize_rcu();
  2027. for_each_online_cpu(i)
  2028. kfree(cachep->array[i]);
  2029. /* NUMA: free the list3 structures */
  2030. for_each_online_node(i) {
  2031. l3 = cachep->nodelists[i];
  2032. if (l3) {
  2033. kfree(l3->shared);
  2034. free_alien_cache(l3->alien);
  2035. kfree(l3);
  2036. }
  2037. }
  2038. kmem_cache_free(&cache_cache, cachep);
  2039. unlock_cpu_hotplug();
  2040. return 0;
  2041. }
  2042. EXPORT_SYMBOL(kmem_cache_destroy);
  2043. /* Get the memory for a slab management obj. */
  2044. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2045. int colour_off, gfp_t local_flags)
  2046. {
  2047. struct slab *slabp;
  2048. if (OFF_SLAB(cachep)) {
  2049. /* Slab management obj is off-slab. */
  2050. slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
  2051. if (!slabp)
  2052. return NULL;
  2053. } else {
  2054. slabp = objp + colour_off;
  2055. colour_off += cachep->slab_size;
  2056. }
  2057. slabp->inuse = 0;
  2058. slabp->colouroff = colour_off;
  2059. slabp->s_mem = objp + colour_off;
  2060. return slabp;
  2061. }
  2062. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2063. {
  2064. return (kmem_bufctl_t *) (slabp + 1);
  2065. }
  2066. static void cache_init_objs(struct kmem_cache *cachep,
  2067. struct slab *slabp, unsigned long ctor_flags)
  2068. {
  2069. int i;
  2070. for (i = 0; i < cachep->num; i++) {
  2071. void *objp = index_to_obj(cachep, slabp, i);
  2072. #if DEBUG
  2073. /* need to poison the objs? */
  2074. if (cachep->flags & SLAB_POISON)
  2075. poison_obj(cachep, objp, POISON_FREE);
  2076. if (cachep->flags & SLAB_STORE_USER)
  2077. *dbg_userword(cachep, objp) = NULL;
  2078. if (cachep->flags & SLAB_RED_ZONE) {
  2079. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2080. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2081. }
  2082. /*
  2083. * Constructors are not allowed to allocate memory from the same
  2084. * cache which they are a constructor for. Otherwise, deadlock.
  2085. * They must also be threaded.
  2086. */
  2087. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2088. cachep->ctor(objp + obj_offset(cachep), cachep,
  2089. ctor_flags);
  2090. if (cachep->flags & SLAB_RED_ZONE) {
  2091. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2092. slab_error(cachep, "constructor overwrote the"
  2093. " end of an object");
  2094. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2095. slab_error(cachep, "constructor overwrote the"
  2096. " start of an object");
  2097. }
  2098. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2099. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2100. kernel_map_pages(virt_to_page(objp),
  2101. cachep->buffer_size / PAGE_SIZE, 0);
  2102. #else
  2103. if (cachep->ctor)
  2104. cachep->ctor(objp, cachep, ctor_flags);
  2105. #endif
  2106. slab_bufctl(slabp)[i] = i + 1;
  2107. }
  2108. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2109. slabp->free = 0;
  2110. }
  2111. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2112. {
  2113. if (flags & SLAB_DMA)
  2114. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2115. else
  2116. BUG_ON(cachep->gfpflags & GFP_DMA);
  2117. }
  2118. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2119. int nodeid)
  2120. {
  2121. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2122. kmem_bufctl_t next;
  2123. slabp->inuse++;
  2124. next = slab_bufctl(slabp)[slabp->free];
  2125. #if DEBUG
  2126. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2127. WARN_ON(slabp->nodeid != nodeid);
  2128. #endif
  2129. slabp->free = next;
  2130. return objp;
  2131. }
  2132. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2133. void *objp, int nodeid)
  2134. {
  2135. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2136. #if DEBUG
  2137. /* Verify that the slab belongs to the intended node */
  2138. WARN_ON(slabp->nodeid != nodeid);
  2139. if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
  2140. printk(KERN_ERR "slab: double free detected in cache "
  2141. "'%s', objp %p\n", cachep->name, objp);
  2142. BUG();
  2143. }
  2144. #endif
  2145. slab_bufctl(slabp)[objnr] = slabp->free;
  2146. slabp->free = objnr;
  2147. slabp->inuse--;
  2148. }
  2149. static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
  2150. void *objp)
  2151. {
  2152. int i;
  2153. struct page *page;
  2154. /* Nasty!!!!!! I hope this is OK. */
  2155. i = 1 << cachep->gfporder;
  2156. page = virt_to_page(objp);
  2157. do {
  2158. page_set_cache(page, cachep);
  2159. page_set_slab(page, slabp);
  2160. page++;
  2161. } while (--i);
  2162. }
  2163. /*
  2164. * Grow (by 1) the number of slabs within a cache. This is called by
  2165. * kmem_cache_alloc() when there are no active objs left in a cache.
  2166. */
  2167. static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2168. {
  2169. struct slab *slabp;
  2170. void *objp;
  2171. size_t offset;
  2172. gfp_t local_flags;
  2173. unsigned long ctor_flags;
  2174. struct kmem_list3 *l3;
  2175. /*
  2176. * Be lazy and only check for valid flags here, keeping it out of the
  2177. * critical path in kmem_cache_alloc().
  2178. */
  2179. if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
  2180. BUG();
  2181. if (flags & SLAB_NO_GROW)
  2182. return 0;
  2183. ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2184. local_flags = (flags & SLAB_LEVEL_MASK);
  2185. if (!(local_flags & __GFP_WAIT))
  2186. /*
  2187. * Not allowed to sleep. Need to tell a constructor about
  2188. * this - it might need to know...
  2189. */
  2190. ctor_flags |= SLAB_CTOR_ATOMIC;
  2191. /* Take the l3 list lock to change the colour_next on this node */
  2192. check_irq_off();
  2193. l3 = cachep->nodelists[nodeid];
  2194. spin_lock(&l3->list_lock);
  2195. /* Get colour for the slab, and cal the next value. */
  2196. offset = l3->colour_next;
  2197. l3->colour_next++;
  2198. if (l3->colour_next >= cachep->colour)
  2199. l3->colour_next = 0;
  2200. spin_unlock(&l3->list_lock);
  2201. offset *= cachep->colour_off;
  2202. if (local_flags & __GFP_WAIT)
  2203. local_irq_enable();
  2204. /*
  2205. * The test for missing atomic flag is performed here, rather than
  2206. * the more obvious place, simply to reduce the critical path length
  2207. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2208. * will eventually be caught here (where it matters).
  2209. */
  2210. kmem_flagcheck(cachep, flags);
  2211. /*
  2212. * Get mem for the objs. Attempt to allocate a physical page from
  2213. * 'nodeid'.
  2214. */
  2215. objp = kmem_getpages(cachep, flags, nodeid);
  2216. if (!objp)
  2217. goto failed;
  2218. /* Get slab management. */
  2219. slabp = alloc_slabmgmt(cachep, objp, offset, local_flags);
  2220. if (!slabp)
  2221. goto opps1;
  2222. slabp->nodeid = nodeid;
  2223. set_slab_attr(cachep, slabp, objp);
  2224. cache_init_objs(cachep, slabp, ctor_flags);
  2225. if (local_flags & __GFP_WAIT)
  2226. local_irq_disable();
  2227. check_irq_off();
  2228. spin_lock(&l3->list_lock);
  2229. /* Make slab active. */
  2230. list_add_tail(&slabp->list, &(l3->slabs_free));
  2231. STATS_INC_GROWN(cachep);
  2232. l3->free_objects += cachep->num;
  2233. spin_unlock(&l3->list_lock);
  2234. return 1;
  2235. opps1:
  2236. kmem_freepages(cachep, objp);
  2237. failed:
  2238. if (local_flags & __GFP_WAIT)
  2239. local_irq_disable();
  2240. return 0;
  2241. }
  2242. #if DEBUG
  2243. /*
  2244. * Perform extra freeing checks:
  2245. * - detect bad pointers.
  2246. * - POISON/RED_ZONE checking
  2247. * - destructor calls, for caches with POISON+dtor
  2248. */
  2249. static void kfree_debugcheck(const void *objp)
  2250. {
  2251. struct page *page;
  2252. if (!virt_addr_valid(objp)) {
  2253. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2254. (unsigned long)objp);
  2255. BUG();
  2256. }
  2257. page = virt_to_page(objp);
  2258. if (!PageSlab(page)) {
  2259. printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
  2260. (unsigned long)objp);
  2261. BUG();
  2262. }
  2263. }
  2264. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2265. void *caller)
  2266. {
  2267. struct page *page;
  2268. unsigned int objnr;
  2269. struct slab *slabp;
  2270. objp -= obj_offset(cachep);
  2271. kfree_debugcheck(objp);
  2272. page = virt_to_page(objp);
  2273. if (page_get_cache(page) != cachep) {
  2274. printk(KERN_ERR "mismatch in kmem_cache_free: expected "
  2275. "cache %p, got %p\n",
  2276. page_get_cache(page), cachep);
  2277. printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
  2278. printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
  2279. page_get_cache(page)->name);
  2280. WARN_ON(1);
  2281. }
  2282. slabp = page_get_slab(page);
  2283. if (cachep->flags & SLAB_RED_ZONE) {
  2284. if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
  2285. *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
  2286. slab_error(cachep, "double free, or memory outside"
  2287. " object was overwritten");
  2288. printk(KERN_ERR "%p: redzone 1:0x%lx, "
  2289. "redzone 2:0x%lx.\n",
  2290. objp, *dbg_redzone1(cachep, objp),
  2291. *dbg_redzone2(cachep, objp));
  2292. }
  2293. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2294. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2295. }
  2296. if (cachep->flags & SLAB_STORE_USER)
  2297. *dbg_userword(cachep, objp) = caller;
  2298. objnr = obj_to_index(cachep, slabp, objp);
  2299. BUG_ON(objnr >= cachep->num);
  2300. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2301. if (cachep->flags & SLAB_DEBUG_INITIAL) {
  2302. /*
  2303. * Need to call the slab's constructor so the caller can
  2304. * perform a verify of its state (debugging). Called without
  2305. * the cache-lock held.
  2306. */
  2307. cachep->ctor(objp + obj_offset(cachep),
  2308. cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
  2309. }
  2310. if (cachep->flags & SLAB_POISON && cachep->dtor) {
  2311. /* we want to cache poison the object,
  2312. * call the destruction callback
  2313. */
  2314. cachep->dtor(objp + obj_offset(cachep), cachep, 0);
  2315. }
  2316. if (cachep->flags & SLAB_POISON) {
  2317. #ifdef CONFIG_DEBUG_PAGEALLOC
  2318. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2319. store_stackinfo(cachep, objp, (unsigned long)caller);
  2320. kernel_map_pages(virt_to_page(objp),
  2321. cachep->buffer_size / PAGE_SIZE, 0);
  2322. } else {
  2323. poison_obj(cachep, objp, POISON_FREE);
  2324. }
  2325. #else
  2326. poison_obj(cachep, objp, POISON_FREE);
  2327. #endif
  2328. }
  2329. return objp;
  2330. }
  2331. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2332. {
  2333. kmem_bufctl_t i;
  2334. int entries = 0;
  2335. /* Check slab's freelist to see if this obj is there. */
  2336. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2337. entries++;
  2338. if (entries > cachep->num || i >= cachep->num)
  2339. goto bad;
  2340. }
  2341. if (entries != cachep->num - slabp->inuse) {
  2342. bad:
  2343. printk(KERN_ERR "slab: Internal list corruption detected in "
  2344. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2345. cachep->name, cachep->num, slabp, slabp->inuse);
  2346. for (i = 0;
  2347. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2348. i++) {
  2349. if (i % 16 == 0)
  2350. printk("\n%03x:", i);
  2351. printk(" %02x", ((unsigned char *)slabp)[i]);
  2352. }
  2353. printk("\n");
  2354. BUG();
  2355. }
  2356. }
  2357. #else
  2358. #define kfree_debugcheck(x) do { } while(0)
  2359. #define cache_free_debugcheck(x,objp,z) (objp)
  2360. #define check_slabp(x,y) do { } while(0)
  2361. #endif
  2362. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2363. {
  2364. int batchcount;
  2365. struct kmem_list3 *l3;
  2366. struct array_cache *ac;
  2367. check_irq_off();
  2368. ac = cpu_cache_get(cachep);
  2369. retry:
  2370. batchcount = ac->batchcount;
  2371. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2372. /*
  2373. * If there was little recent activity on this cache, then
  2374. * perform only a partial refill. Otherwise we could generate
  2375. * refill bouncing.
  2376. */
  2377. batchcount = BATCHREFILL_LIMIT;
  2378. }
  2379. l3 = cachep->nodelists[numa_node_id()];
  2380. BUG_ON(ac->avail > 0 || !l3);
  2381. spin_lock(&l3->list_lock);
  2382. if (l3->shared) {
  2383. struct array_cache *shared_array = l3->shared;
  2384. if (shared_array->avail) {
  2385. if (batchcount > shared_array->avail)
  2386. batchcount = shared_array->avail;
  2387. shared_array->avail -= batchcount;
  2388. ac->avail = batchcount;
  2389. memcpy(ac->entry,
  2390. &(shared_array->entry[shared_array->avail]),
  2391. sizeof(void *) * batchcount);
  2392. shared_array->touched = 1;
  2393. goto alloc_done;
  2394. }
  2395. }
  2396. while (batchcount > 0) {
  2397. struct list_head *entry;
  2398. struct slab *slabp;
  2399. /* Get slab alloc is to come from. */
  2400. entry = l3->slabs_partial.next;
  2401. if (entry == &l3->slabs_partial) {
  2402. l3->free_touched = 1;
  2403. entry = l3->slabs_free.next;
  2404. if (entry == &l3->slabs_free)
  2405. goto must_grow;
  2406. }
  2407. slabp = list_entry(entry, struct slab, list);
  2408. check_slabp(cachep, slabp);
  2409. check_spinlock_acquired(cachep);
  2410. while (slabp->inuse < cachep->num && batchcount--) {
  2411. STATS_INC_ALLOCED(cachep);
  2412. STATS_INC_ACTIVE(cachep);
  2413. STATS_SET_HIGH(cachep);
  2414. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2415. numa_node_id());
  2416. }
  2417. check_slabp(cachep, slabp);
  2418. /* move slabp to correct slabp list: */
  2419. list_del(&slabp->list);
  2420. if (slabp->free == BUFCTL_END)
  2421. list_add(&slabp->list, &l3->slabs_full);
  2422. else
  2423. list_add(&slabp->list, &l3->slabs_partial);
  2424. }
  2425. must_grow:
  2426. l3->free_objects -= ac->avail;
  2427. alloc_done:
  2428. spin_unlock(&l3->list_lock);
  2429. if (unlikely(!ac->avail)) {
  2430. int x;
  2431. x = cache_grow(cachep, flags, numa_node_id());
  2432. /* cache_grow can reenable interrupts, then ac could change. */
  2433. ac = cpu_cache_get(cachep);
  2434. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2435. return NULL;
  2436. if (!ac->avail) /* objects refilled by interrupt? */
  2437. goto retry;
  2438. }
  2439. ac->touched = 1;
  2440. return ac->entry[--ac->avail];
  2441. }
  2442. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2443. gfp_t flags)
  2444. {
  2445. might_sleep_if(flags & __GFP_WAIT);
  2446. #if DEBUG
  2447. kmem_flagcheck(cachep, flags);
  2448. #endif
  2449. }
  2450. #if DEBUG
  2451. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2452. gfp_t flags, void *objp, void *caller)
  2453. {
  2454. if (!objp)
  2455. return objp;
  2456. if (cachep->flags & SLAB_POISON) {
  2457. #ifdef CONFIG_DEBUG_PAGEALLOC
  2458. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2459. kernel_map_pages(virt_to_page(objp),
  2460. cachep->buffer_size / PAGE_SIZE, 1);
  2461. else
  2462. check_poison_obj(cachep, objp);
  2463. #else
  2464. check_poison_obj(cachep, objp);
  2465. #endif
  2466. poison_obj(cachep, objp, POISON_INUSE);
  2467. }
  2468. if (cachep->flags & SLAB_STORE_USER)
  2469. *dbg_userword(cachep, objp) = caller;
  2470. if (cachep->flags & SLAB_RED_ZONE) {
  2471. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2472. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2473. slab_error(cachep, "double free, or memory outside"
  2474. " object was overwritten");
  2475. printk(KERN_ERR
  2476. "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
  2477. objp, *dbg_redzone1(cachep, objp),
  2478. *dbg_redzone2(cachep, objp));
  2479. }
  2480. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2481. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2482. }
  2483. objp += obj_offset(cachep);
  2484. if (cachep->ctor && cachep->flags & SLAB_POISON) {
  2485. unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2486. if (!(flags & __GFP_WAIT))
  2487. ctor_flags |= SLAB_CTOR_ATOMIC;
  2488. cachep->ctor(objp, cachep, ctor_flags);
  2489. }
  2490. return objp;
  2491. }
  2492. #else
  2493. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2494. #endif
  2495. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2496. {
  2497. void *objp;
  2498. struct array_cache *ac;
  2499. #ifdef CONFIG_NUMA
  2500. if (unlikely(current->mempolicy && !in_interrupt())) {
  2501. int nid = slab_node(current->mempolicy);
  2502. if (nid != numa_node_id())
  2503. return __cache_alloc_node(cachep, flags, nid);
  2504. }
  2505. #endif
  2506. check_irq_off();
  2507. ac = cpu_cache_get(cachep);
  2508. if (likely(ac->avail)) {
  2509. STATS_INC_ALLOCHIT(cachep);
  2510. ac->touched = 1;
  2511. objp = ac->entry[--ac->avail];
  2512. } else {
  2513. STATS_INC_ALLOCMISS(cachep);
  2514. objp = cache_alloc_refill(cachep, flags);
  2515. }
  2516. return objp;
  2517. }
  2518. static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
  2519. gfp_t flags, void *caller)
  2520. {
  2521. unsigned long save_flags;
  2522. void *objp;
  2523. cache_alloc_debugcheck_before(cachep, flags);
  2524. local_irq_save(save_flags);
  2525. objp = ____cache_alloc(cachep, flags);
  2526. local_irq_restore(save_flags);
  2527. objp = cache_alloc_debugcheck_after(cachep, flags, objp,
  2528. caller);
  2529. prefetchw(objp);
  2530. return objp;
  2531. }
  2532. #ifdef CONFIG_NUMA
  2533. /*
  2534. * A interface to enable slab creation on nodeid
  2535. */
  2536. static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2537. int nodeid)
  2538. {
  2539. struct list_head *entry;
  2540. struct slab *slabp;
  2541. struct kmem_list3 *l3;
  2542. void *obj;
  2543. int x;
  2544. l3 = cachep->nodelists[nodeid];
  2545. BUG_ON(!l3);
  2546. retry:
  2547. check_irq_off();
  2548. spin_lock(&l3->list_lock);
  2549. entry = l3->slabs_partial.next;
  2550. if (entry == &l3->slabs_partial) {
  2551. l3->free_touched = 1;
  2552. entry = l3->slabs_free.next;
  2553. if (entry == &l3->slabs_free)
  2554. goto must_grow;
  2555. }
  2556. slabp = list_entry(entry, struct slab, list);
  2557. check_spinlock_acquired_node(cachep, nodeid);
  2558. check_slabp(cachep, slabp);
  2559. STATS_INC_NODEALLOCS(cachep);
  2560. STATS_INC_ACTIVE(cachep);
  2561. STATS_SET_HIGH(cachep);
  2562. BUG_ON(slabp->inuse == cachep->num);
  2563. obj = slab_get_obj(cachep, slabp, nodeid);
  2564. check_slabp(cachep, slabp);
  2565. l3->free_objects--;
  2566. /* move slabp to correct slabp list: */
  2567. list_del(&slabp->list);
  2568. if (slabp->free == BUFCTL_END)
  2569. list_add(&slabp->list, &l3->slabs_full);
  2570. else
  2571. list_add(&slabp->list, &l3->slabs_partial);
  2572. spin_unlock(&l3->list_lock);
  2573. goto done;
  2574. must_grow:
  2575. spin_unlock(&l3->list_lock);
  2576. x = cache_grow(cachep, flags, nodeid);
  2577. if (!x)
  2578. return NULL;
  2579. goto retry;
  2580. done:
  2581. return obj;
  2582. }
  2583. #endif
  2584. /*
  2585. * Caller needs to acquire correct kmem_list's list_lock
  2586. */
  2587. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  2588. int node)
  2589. {
  2590. int i;
  2591. struct kmem_list3 *l3;
  2592. for (i = 0; i < nr_objects; i++) {
  2593. void *objp = objpp[i];
  2594. struct slab *slabp;
  2595. slabp = virt_to_slab(objp);
  2596. l3 = cachep->nodelists[node];
  2597. list_del(&slabp->list);
  2598. check_spinlock_acquired_node(cachep, node);
  2599. check_slabp(cachep, slabp);
  2600. slab_put_obj(cachep, slabp, objp, node);
  2601. STATS_DEC_ACTIVE(cachep);
  2602. l3->free_objects++;
  2603. check_slabp(cachep, slabp);
  2604. /* fixup slab chains */
  2605. if (slabp->inuse == 0) {
  2606. if (l3->free_objects > l3->free_limit) {
  2607. l3->free_objects -= cachep->num;
  2608. slab_destroy(cachep, slabp);
  2609. } else {
  2610. list_add(&slabp->list, &l3->slabs_free);
  2611. }
  2612. } else {
  2613. /* Unconditionally move a slab to the end of the
  2614. * partial list on free - maximum time for the
  2615. * other objects to be freed, too.
  2616. */
  2617. list_add_tail(&slabp->list, &l3->slabs_partial);
  2618. }
  2619. }
  2620. }
  2621. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  2622. {
  2623. int batchcount;
  2624. struct kmem_list3 *l3;
  2625. int node = numa_node_id();
  2626. batchcount = ac->batchcount;
  2627. #if DEBUG
  2628. BUG_ON(!batchcount || batchcount > ac->avail);
  2629. #endif
  2630. check_irq_off();
  2631. l3 = cachep->nodelists[node];
  2632. spin_lock(&l3->list_lock);
  2633. if (l3->shared) {
  2634. struct array_cache *shared_array = l3->shared;
  2635. int max = shared_array->limit - shared_array->avail;
  2636. if (max) {
  2637. if (batchcount > max)
  2638. batchcount = max;
  2639. memcpy(&(shared_array->entry[shared_array->avail]),
  2640. ac->entry, sizeof(void *) * batchcount);
  2641. shared_array->avail += batchcount;
  2642. goto free_done;
  2643. }
  2644. }
  2645. free_block(cachep, ac->entry, batchcount, node);
  2646. free_done:
  2647. #if STATS
  2648. {
  2649. int i = 0;
  2650. struct list_head *p;
  2651. p = l3->slabs_free.next;
  2652. while (p != &(l3->slabs_free)) {
  2653. struct slab *slabp;
  2654. slabp = list_entry(p, struct slab, list);
  2655. BUG_ON(slabp->inuse);
  2656. i++;
  2657. p = p->next;
  2658. }
  2659. STATS_SET_FREEABLE(cachep, i);
  2660. }
  2661. #endif
  2662. spin_unlock(&l3->list_lock);
  2663. ac->avail -= batchcount;
  2664. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  2665. }
  2666. /*
  2667. * Release an obj back to its cache. If the obj has a constructed state, it must
  2668. * be in this state _before_ it is released. Called with disabled ints.
  2669. */
  2670. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  2671. {
  2672. struct array_cache *ac = cpu_cache_get(cachep);
  2673. check_irq_off();
  2674. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  2675. /* Make sure we are not freeing a object from another
  2676. * node to the array cache on this cpu.
  2677. */
  2678. #ifdef CONFIG_NUMA
  2679. {
  2680. struct slab *slabp;
  2681. slabp = virt_to_slab(objp);
  2682. if (unlikely(slabp->nodeid != numa_node_id())) {
  2683. struct array_cache *alien = NULL;
  2684. int nodeid = slabp->nodeid;
  2685. struct kmem_list3 *l3;
  2686. l3 = cachep->nodelists[numa_node_id()];
  2687. STATS_INC_NODEFREES(cachep);
  2688. if (l3->alien && l3->alien[nodeid]) {
  2689. alien = l3->alien[nodeid];
  2690. spin_lock(&alien->lock);
  2691. if (unlikely(alien->avail == alien->limit))
  2692. __drain_alien_cache(cachep,
  2693. alien, nodeid);
  2694. alien->entry[alien->avail++] = objp;
  2695. spin_unlock(&alien->lock);
  2696. } else {
  2697. spin_lock(&(cachep->nodelists[nodeid])->
  2698. list_lock);
  2699. free_block(cachep, &objp, 1, nodeid);
  2700. spin_unlock(&(cachep->nodelists[nodeid])->
  2701. list_lock);
  2702. }
  2703. return;
  2704. }
  2705. }
  2706. #endif
  2707. if (likely(ac->avail < ac->limit)) {
  2708. STATS_INC_FREEHIT(cachep);
  2709. ac->entry[ac->avail++] = objp;
  2710. return;
  2711. } else {
  2712. STATS_INC_FREEMISS(cachep);
  2713. cache_flusharray(cachep, ac);
  2714. ac->entry[ac->avail++] = objp;
  2715. }
  2716. }
  2717. /**
  2718. * kmem_cache_alloc - Allocate an object
  2719. * @cachep: The cache to allocate from.
  2720. * @flags: See kmalloc().
  2721. *
  2722. * Allocate an object from this cache. The flags are only relevant
  2723. * if the cache has no available objects.
  2724. */
  2725. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2726. {
  2727. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  2728. }
  2729. EXPORT_SYMBOL(kmem_cache_alloc);
  2730. /**
  2731. * kmem_ptr_validate - check if an untrusted pointer might
  2732. * be a slab entry.
  2733. * @cachep: the cache we're checking against
  2734. * @ptr: pointer to validate
  2735. *
  2736. * This verifies that the untrusted pointer looks sane:
  2737. * it is _not_ a guarantee that the pointer is actually
  2738. * part of the slab cache in question, but it at least
  2739. * validates that the pointer can be dereferenced and
  2740. * looks half-way sane.
  2741. *
  2742. * Currently only used for dentry validation.
  2743. */
  2744. int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
  2745. {
  2746. unsigned long addr = (unsigned long)ptr;
  2747. unsigned long min_addr = PAGE_OFFSET;
  2748. unsigned long align_mask = BYTES_PER_WORD - 1;
  2749. unsigned long size = cachep->buffer_size;
  2750. struct page *page;
  2751. if (unlikely(addr < min_addr))
  2752. goto out;
  2753. if (unlikely(addr > (unsigned long)high_memory - size))
  2754. goto out;
  2755. if (unlikely(addr & align_mask))
  2756. goto out;
  2757. if (unlikely(!kern_addr_valid(addr)))
  2758. goto out;
  2759. if (unlikely(!kern_addr_valid(addr + size - 1)))
  2760. goto out;
  2761. page = virt_to_page(ptr);
  2762. if (unlikely(!PageSlab(page)))
  2763. goto out;
  2764. if (unlikely(page_get_cache(page) != cachep))
  2765. goto out;
  2766. return 1;
  2767. out:
  2768. return 0;
  2769. }
  2770. #ifdef CONFIG_NUMA
  2771. /**
  2772. * kmem_cache_alloc_node - Allocate an object on the specified node
  2773. * @cachep: The cache to allocate from.
  2774. * @flags: See kmalloc().
  2775. * @nodeid: node number of the target node.
  2776. *
  2777. * Identical to kmem_cache_alloc, except that this function is slow
  2778. * and can sleep. And it will allocate memory on the given node, which
  2779. * can improve the performance for cpu bound structures.
  2780. * New and improved: it will now make sure that the object gets
  2781. * put on the correct node list so that there is no false sharing.
  2782. */
  2783. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2784. {
  2785. unsigned long save_flags;
  2786. void *ptr;
  2787. cache_alloc_debugcheck_before(cachep, flags);
  2788. local_irq_save(save_flags);
  2789. if (nodeid == -1 || nodeid == numa_node_id() ||
  2790. !cachep->nodelists[nodeid])
  2791. ptr = ____cache_alloc(cachep, flags);
  2792. else
  2793. ptr = __cache_alloc_node(cachep, flags, nodeid);
  2794. local_irq_restore(save_flags);
  2795. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
  2796. __builtin_return_address(0));
  2797. return ptr;
  2798. }
  2799. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2800. void *kmalloc_node(size_t size, gfp_t flags, int node)
  2801. {
  2802. struct kmem_cache *cachep;
  2803. cachep = kmem_find_general_cachep(size, flags);
  2804. if (unlikely(cachep == NULL))
  2805. return NULL;
  2806. return kmem_cache_alloc_node(cachep, flags, node);
  2807. }
  2808. EXPORT_SYMBOL(kmalloc_node);
  2809. #endif
  2810. /**
  2811. * kmalloc - allocate memory
  2812. * @size: how many bytes of memory are required.
  2813. * @flags: the type of memory to allocate.
  2814. * @caller: function caller for debug tracking of the caller
  2815. *
  2816. * kmalloc is the normal method of allocating memory
  2817. * in the kernel.
  2818. *
  2819. * The @flags argument may be one of:
  2820. *
  2821. * %GFP_USER - Allocate memory on behalf of user. May sleep.
  2822. *
  2823. * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
  2824. *
  2825. * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
  2826. *
  2827. * Additionally, the %GFP_DMA flag may be set to indicate the memory
  2828. * must be suitable for DMA. This can mean different things on different
  2829. * platforms. For example, on i386, it means that the memory must come
  2830. * from the first 16MB.
  2831. */
  2832. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  2833. void *caller)
  2834. {
  2835. struct kmem_cache *cachep;
  2836. /* If you want to save a few bytes .text space: replace
  2837. * __ with kmem_.
  2838. * Then kmalloc uses the uninlined functions instead of the inline
  2839. * functions.
  2840. */
  2841. cachep = __find_general_cachep(size, flags);
  2842. if (unlikely(cachep == NULL))
  2843. return NULL;
  2844. return __cache_alloc(cachep, flags, caller);
  2845. }
  2846. #ifndef CONFIG_DEBUG_SLAB
  2847. void *__kmalloc(size_t size, gfp_t flags)
  2848. {
  2849. return __do_kmalloc(size, flags, NULL);
  2850. }
  2851. EXPORT_SYMBOL(__kmalloc);
  2852. #else
  2853. void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
  2854. {
  2855. return __do_kmalloc(size, flags, caller);
  2856. }
  2857. EXPORT_SYMBOL(__kmalloc_track_caller);
  2858. #endif
  2859. #ifdef CONFIG_SMP
  2860. /**
  2861. * __alloc_percpu - allocate one copy of the object for every present
  2862. * cpu in the system, zeroing them.
  2863. * Objects should be dereferenced using the per_cpu_ptr macro only.
  2864. *
  2865. * @size: how many bytes of memory are required.
  2866. */
  2867. void *__alloc_percpu(size_t size)
  2868. {
  2869. int i;
  2870. struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
  2871. if (!pdata)
  2872. return NULL;
  2873. /*
  2874. * Cannot use for_each_online_cpu since a cpu may come online
  2875. * and we have no way of figuring out how to fix the array
  2876. * that we have allocated then....
  2877. */
  2878. for_each_cpu(i) {
  2879. int node = cpu_to_node(i);
  2880. if (node_online(node))
  2881. pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
  2882. else
  2883. pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
  2884. if (!pdata->ptrs[i])
  2885. goto unwind_oom;
  2886. memset(pdata->ptrs[i], 0, size);
  2887. }
  2888. /* Catch derefs w/o wrappers */
  2889. return (void *)(~(unsigned long)pdata);
  2890. unwind_oom:
  2891. while (--i >= 0) {
  2892. if (!cpu_possible(i))
  2893. continue;
  2894. kfree(pdata->ptrs[i]);
  2895. }
  2896. kfree(pdata);
  2897. return NULL;
  2898. }
  2899. EXPORT_SYMBOL(__alloc_percpu);
  2900. #endif
  2901. /**
  2902. * kmem_cache_free - Deallocate an object
  2903. * @cachep: The cache the allocation was from.
  2904. * @objp: The previously allocated object.
  2905. *
  2906. * Free an object which was previously allocated from this
  2907. * cache.
  2908. */
  2909. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  2910. {
  2911. unsigned long flags;
  2912. local_irq_save(flags);
  2913. __cache_free(cachep, objp);
  2914. local_irq_restore(flags);
  2915. }
  2916. EXPORT_SYMBOL(kmem_cache_free);
  2917. /**
  2918. * kfree - free previously allocated memory
  2919. * @objp: pointer returned by kmalloc.
  2920. *
  2921. * If @objp is NULL, no operation is performed.
  2922. *
  2923. * Don't free memory not originally allocated by kmalloc()
  2924. * or you will run into trouble.
  2925. */
  2926. void kfree(const void *objp)
  2927. {
  2928. struct kmem_cache *c;
  2929. unsigned long flags;
  2930. if (unlikely(!objp))
  2931. return;
  2932. local_irq_save(flags);
  2933. kfree_debugcheck(objp);
  2934. c = virt_to_cache(objp);
  2935. mutex_debug_check_no_locks_freed(objp, obj_size(c));
  2936. __cache_free(c, (void *)objp);
  2937. local_irq_restore(flags);
  2938. }
  2939. EXPORT_SYMBOL(kfree);
  2940. #ifdef CONFIG_SMP
  2941. /**
  2942. * free_percpu - free previously allocated percpu memory
  2943. * @objp: pointer returned by alloc_percpu.
  2944. *
  2945. * Don't free memory not originally allocated by alloc_percpu()
  2946. * The complemented objp is to check for that.
  2947. */
  2948. void free_percpu(const void *objp)
  2949. {
  2950. int i;
  2951. struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
  2952. /*
  2953. * We allocate for all cpus so we cannot use for online cpu here.
  2954. */
  2955. for_each_cpu(i)
  2956. kfree(p->ptrs[i]);
  2957. kfree(p);
  2958. }
  2959. EXPORT_SYMBOL(free_percpu);
  2960. #endif
  2961. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  2962. {
  2963. return obj_size(cachep);
  2964. }
  2965. EXPORT_SYMBOL(kmem_cache_size);
  2966. const char *kmem_cache_name(struct kmem_cache *cachep)
  2967. {
  2968. return cachep->name;
  2969. }
  2970. EXPORT_SYMBOL_GPL(kmem_cache_name);
  2971. /*
  2972. * This initializes kmem_list3 for all nodes.
  2973. */
  2974. static int alloc_kmemlist(struct kmem_cache *cachep)
  2975. {
  2976. int node;
  2977. struct kmem_list3 *l3;
  2978. int err = 0;
  2979. for_each_online_node(node) {
  2980. struct array_cache *nc = NULL, *new;
  2981. struct array_cache **new_alien = NULL;
  2982. #ifdef CONFIG_NUMA
  2983. new_alien = alloc_alien_cache(node, cachep->limit);
  2984. if (!new_alien)
  2985. goto fail;
  2986. #endif
  2987. new = alloc_arraycache(node, cachep->shared*cachep->batchcount,
  2988. 0xbaadf00d);
  2989. if (!new)
  2990. goto fail;
  2991. l3 = cachep->nodelists[node];
  2992. if (l3) {
  2993. spin_lock_irq(&l3->list_lock);
  2994. nc = cachep->nodelists[node]->shared;
  2995. if (nc)
  2996. free_block(cachep, nc->entry, nc->avail, node);
  2997. l3->shared = new;
  2998. if (!cachep->nodelists[node]->alien) {
  2999. l3->alien = new_alien;
  3000. new_alien = NULL;
  3001. }
  3002. l3->free_limit = (1 + nr_cpus_node(node)) *
  3003. cachep->batchcount + cachep->num;
  3004. spin_unlock_irq(&l3->list_lock);
  3005. kfree(nc);
  3006. free_alien_cache(new_alien);
  3007. continue;
  3008. }
  3009. l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
  3010. if (!l3)
  3011. goto fail;
  3012. kmem_list3_init(l3);
  3013. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3014. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3015. l3->shared = new;
  3016. l3->alien = new_alien;
  3017. l3->free_limit = (1 + nr_cpus_node(node)) *
  3018. cachep->batchcount + cachep->num;
  3019. cachep->nodelists[node] = l3;
  3020. }
  3021. return err;
  3022. fail:
  3023. err = -ENOMEM;
  3024. return err;
  3025. }
  3026. struct ccupdate_struct {
  3027. struct kmem_cache *cachep;
  3028. struct array_cache *new[NR_CPUS];
  3029. };
  3030. static void do_ccupdate_local(void *info)
  3031. {
  3032. struct ccupdate_struct *new = info;
  3033. struct array_cache *old;
  3034. check_irq_off();
  3035. old = cpu_cache_get(new->cachep);
  3036. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3037. new->new[smp_processor_id()] = old;
  3038. }
  3039. /* Always called with the cache_chain_mutex held */
  3040. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3041. int batchcount, int shared)
  3042. {
  3043. struct ccupdate_struct new;
  3044. int i, err;
  3045. memset(&new.new, 0, sizeof(new.new));
  3046. for_each_online_cpu(i) {
  3047. new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3048. batchcount);
  3049. if (!new.new[i]) {
  3050. for (i--; i >= 0; i--)
  3051. kfree(new.new[i]);
  3052. return -ENOMEM;
  3053. }
  3054. }
  3055. new.cachep = cachep;
  3056. smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
  3057. check_irq_on();
  3058. cachep->batchcount = batchcount;
  3059. cachep->limit = limit;
  3060. cachep->shared = shared;
  3061. for_each_online_cpu(i) {
  3062. struct array_cache *ccold = new.new[i];
  3063. if (!ccold)
  3064. continue;
  3065. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3066. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3067. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3068. kfree(ccold);
  3069. }
  3070. err = alloc_kmemlist(cachep);
  3071. if (err) {
  3072. printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
  3073. cachep->name, -err);
  3074. BUG();
  3075. }
  3076. return 0;
  3077. }
  3078. /* Called with cache_chain_mutex held always */
  3079. static void enable_cpucache(struct kmem_cache *cachep)
  3080. {
  3081. int err;
  3082. int limit, shared;
  3083. /*
  3084. * The head array serves three purposes:
  3085. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3086. * - reduce the number of spinlock operations.
  3087. * - reduce the number of linked list operations on the slab and
  3088. * bufctl chains: array operations are cheaper.
  3089. * The numbers are guessed, we should auto-tune as described by
  3090. * Bonwick.
  3091. */
  3092. if (cachep->buffer_size > 131072)
  3093. limit = 1;
  3094. else if (cachep->buffer_size > PAGE_SIZE)
  3095. limit = 8;
  3096. else if (cachep->buffer_size > 1024)
  3097. limit = 24;
  3098. else if (cachep->buffer_size > 256)
  3099. limit = 54;
  3100. else
  3101. limit = 120;
  3102. /*
  3103. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3104. * allocation behaviour: Most allocs on one cpu, most free operations
  3105. * on another cpu. For these cases, an efficient object passing between
  3106. * cpus is necessary. This is provided by a shared array. The array
  3107. * replaces Bonwick's magazine layer.
  3108. * On uniprocessor, it's functionally equivalent (but less efficient)
  3109. * to a larger limit. Thus disabled by default.
  3110. */
  3111. shared = 0;
  3112. #ifdef CONFIG_SMP
  3113. if (cachep->buffer_size <= PAGE_SIZE)
  3114. shared = 8;
  3115. #endif
  3116. #if DEBUG
  3117. /*
  3118. * With debugging enabled, large batchcount lead to excessively long
  3119. * periods with disabled local interrupts. Limit the batchcount
  3120. */
  3121. if (limit > 32)
  3122. limit = 32;
  3123. #endif
  3124. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3125. if (err)
  3126. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3127. cachep->name, -err);
  3128. }
  3129. static void drain_array_locked(struct kmem_cache *cachep,
  3130. struct array_cache *ac, int force, int node)
  3131. {
  3132. int tofree;
  3133. check_spinlock_acquired_node(cachep, node);
  3134. if (ac->touched && !force) {
  3135. ac->touched = 0;
  3136. } else if (ac->avail) {
  3137. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3138. if (tofree > ac->avail)
  3139. tofree = (ac->avail + 1) / 2;
  3140. free_block(cachep, ac->entry, tofree, node);
  3141. ac->avail -= tofree;
  3142. memmove(ac->entry, &(ac->entry[tofree]),
  3143. sizeof(void *) * ac->avail);
  3144. }
  3145. }
  3146. /**
  3147. * cache_reap - Reclaim memory from caches.
  3148. * @unused: unused parameter
  3149. *
  3150. * Called from workqueue/eventd every few seconds.
  3151. * Purpose:
  3152. * - clear the per-cpu caches for this CPU.
  3153. * - return freeable pages to the main free memory pool.
  3154. *
  3155. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3156. * again on the next iteration.
  3157. */
  3158. static void cache_reap(void *unused)
  3159. {
  3160. struct list_head *walk;
  3161. struct kmem_list3 *l3;
  3162. if (!mutex_trylock(&cache_chain_mutex)) {
  3163. /* Give up. Setup the next iteration. */
  3164. schedule_delayed_work(&__get_cpu_var(reap_work),
  3165. REAPTIMEOUT_CPUC);
  3166. return;
  3167. }
  3168. list_for_each(walk, &cache_chain) {
  3169. struct kmem_cache *searchp;
  3170. struct list_head *p;
  3171. int tofree;
  3172. struct slab *slabp;
  3173. searchp = list_entry(walk, struct kmem_cache, next);
  3174. check_irq_on();
  3175. l3 = searchp->nodelists[numa_node_id()];
  3176. reap_alien(searchp, l3);
  3177. spin_lock_irq(&l3->list_lock);
  3178. drain_array_locked(searchp, cpu_cache_get(searchp), 0,
  3179. numa_node_id());
  3180. if (time_after(l3->next_reap, jiffies))
  3181. goto next_unlock;
  3182. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3183. if (l3->shared)
  3184. drain_array_locked(searchp, l3->shared, 0,
  3185. numa_node_id());
  3186. if (l3->free_touched) {
  3187. l3->free_touched = 0;
  3188. goto next_unlock;
  3189. }
  3190. tofree = (l3->free_limit + 5 * searchp->num - 1) /
  3191. (5 * searchp->num);
  3192. do {
  3193. p = l3->slabs_free.next;
  3194. if (p == &(l3->slabs_free))
  3195. break;
  3196. slabp = list_entry(p, struct slab, list);
  3197. BUG_ON(slabp->inuse);
  3198. list_del(&slabp->list);
  3199. STATS_INC_REAPED(searchp);
  3200. /*
  3201. * Safe to drop the lock. The slab is no longer linked
  3202. * to the cache. searchp cannot disappear, we hold
  3203. * cache_chain_lock
  3204. */
  3205. l3->free_objects -= searchp->num;
  3206. spin_unlock_irq(&l3->list_lock);
  3207. slab_destroy(searchp, slabp);
  3208. spin_lock_irq(&l3->list_lock);
  3209. } while (--tofree > 0);
  3210. next_unlock:
  3211. spin_unlock_irq(&l3->list_lock);
  3212. cond_resched();
  3213. }
  3214. check_irq_on();
  3215. mutex_unlock(&cache_chain_mutex);
  3216. next_reap_node();
  3217. /* Set up the next iteration */
  3218. schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
  3219. }
  3220. #ifdef CONFIG_PROC_FS
  3221. static void print_slabinfo_header(struct seq_file *m)
  3222. {
  3223. /*
  3224. * Output format version, so at least we can change it
  3225. * without _too_ many complaints.
  3226. */
  3227. #if STATS
  3228. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3229. #else
  3230. seq_puts(m, "slabinfo - version: 2.1\n");
  3231. #endif
  3232. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3233. "<objperslab> <pagesperslab>");
  3234. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3235. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3236. #if STATS
  3237. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3238. "<error> <maxfreeable> <nodeallocs> <remotefrees>");
  3239. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3240. #endif
  3241. seq_putc(m, '\n');
  3242. }
  3243. static void *s_start(struct seq_file *m, loff_t *pos)
  3244. {
  3245. loff_t n = *pos;
  3246. struct list_head *p;
  3247. mutex_lock(&cache_chain_mutex);
  3248. if (!n)
  3249. print_slabinfo_header(m);
  3250. p = cache_chain.next;
  3251. while (n--) {
  3252. p = p->next;
  3253. if (p == &cache_chain)
  3254. return NULL;
  3255. }
  3256. return list_entry(p, struct kmem_cache, next);
  3257. }
  3258. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3259. {
  3260. struct kmem_cache *cachep = p;
  3261. ++*pos;
  3262. return cachep->next.next == &cache_chain ?
  3263. NULL : list_entry(cachep->next.next, struct kmem_cache, next);
  3264. }
  3265. static void s_stop(struct seq_file *m, void *p)
  3266. {
  3267. mutex_unlock(&cache_chain_mutex);
  3268. }
  3269. static int s_show(struct seq_file *m, void *p)
  3270. {
  3271. struct kmem_cache *cachep = p;
  3272. struct list_head *q;
  3273. struct slab *slabp;
  3274. unsigned long active_objs;
  3275. unsigned long num_objs;
  3276. unsigned long active_slabs = 0;
  3277. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3278. const char *name;
  3279. char *error = NULL;
  3280. int node;
  3281. struct kmem_list3 *l3;
  3282. active_objs = 0;
  3283. num_slabs = 0;
  3284. for_each_online_node(node) {
  3285. l3 = cachep->nodelists[node];
  3286. if (!l3)
  3287. continue;
  3288. check_irq_on();
  3289. spin_lock_irq(&l3->list_lock);
  3290. list_for_each(q, &l3->slabs_full) {
  3291. slabp = list_entry(q, struct slab, list);
  3292. if (slabp->inuse != cachep->num && !error)
  3293. error = "slabs_full accounting error";
  3294. active_objs += cachep->num;
  3295. active_slabs++;
  3296. }
  3297. list_for_each(q, &l3->slabs_partial) {
  3298. slabp = list_entry(q, struct slab, list);
  3299. if (slabp->inuse == cachep->num && !error)
  3300. error = "slabs_partial inuse accounting error";
  3301. if (!slabp->inuse && !error)
  3302. error = "slabs_partial/inuse accounting error";
  3303. active_objs += slabp->inuse;
  3304. active_slabs++;
  3305. }
  3306. list_for_each(q, &l3->slabs_free) {
  3307. slabp = list_entry(q, struct slab, list);
  3308. if (slabp->inuse && !error)
  3309. error = "slabs_free/inuse accounting error";
  3310. num_slabs++;
  3311. }
  3312. free_objects += l3->free_objects;
  3313. if (l3->shared)
  3314. shared_avail += l3->shared->avail;
  3315. spin_unlock_irq(&l3->list_lock);
  3316. }
  3317. num_slabs += active_slabs;
  3318. num_objs = num_slabs * cachep->num;
  3319. if (num_objs - active_objs != free_objects && !error)
  3320. error = "free_objects accounting error";
  3321. name = cachep->name;
  3322. if (error)
  3323. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3324. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3325. name, active_objs, num_objs, cachep->buffer_size,
  3326. cachep->num, (1 << cachep->gfporder));
  3327. seq_printf(m, " : tunables %4u %4u %4u",
  3328. cachep->limit, cachep->batchcount, cachep->shared);
  3329. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3330. active_slabs, num_slabs, shared_avail);
  3331. #if STATS
  3332. { /* list3 stats */
  3333. unsigned long high = cachep->high_mark;
  3334. unsigned long allocs = cachep->num_allocations;
  3335. unsigned long grown = cachep->grown;
  3336. unsigned long reaped = cachep->reaped;
  3337. unsigned long errors = cachep->errors;
  3338. unsigned long max_freeable = cachep->max_freeable;
  3339. unsigned long node_allocs = cachep->node_allocs;
  3340. unsigned long node_frees = cachep->node_frees;
  3341. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3342. %4lu %4lu %4lu %4lu", allocs, high, grown,
  3343. reaped, errors, max_freeable, node_allocs,
  3344. node_frees);
  3345. }
  3346. /* cpu stats */
  3347. {
  3348. unsigned long allochit = atomic_read(&cachep->allochit);
  3349. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3350. unsigned long freehit = atomic_read(&cachep->freehit);
  3351. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3352. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3353. allochit, allocmiss, freehit, freemiss);
  3354. }
  3355. #endif
  3356. seq_putc(m, '\n');
  3357. return 0;
  3358. }
  3359. /*
  3360. * slabinfo_op - iterator that generates /proc/slabinfo
  3361. *
  3362. * Output layout:
  3363. * cache-name
  3364. * num-active-objs
  3365. * total-objs
  3366. * object size
  3367. * num-active-slabs
  3368. * total-slabs
  3369. * num-pages-per-slab
  3370. * + further values on SMP and with statistics enabled
  3371. */
  3372. struct seq_operations slabinfo_op = {
  3373. .start = s_start,
  3374. .next = s_next,
  3375. .stop = s_stop,
  3376. .show = s_show,
  3377. };
  3378. #define MAX_SLABINFO_WRITE 128
  3379. /**
  3380. * slabinfo_write - Tuning for the slab allocator
  3381. * @file: unused
  3382. * @buffer: user buffer
  3383. * @count: data length
  3384. * @ppos: unused
  3385. */
  3386. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3387. size_t count, loff_t *ppos)
  3388. {
  3389. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3390. int limit, batchcount, shared, res;
  3391. struct list_head *p;
  3392. if (count > MAX_SLABINFO_WRITE)
  3393. return -EINVAL;
  3394. if (copy_from_user(&kbuf, buffer, count))
  3395. return -EFAULT;
  3396. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3397. tmp = strchr(kbuf, ' ');
  3398. if (!tmp)
  3399. return -EINVAL;
  3400. *tmp = '\0';
  3401. tmp++;
  3402. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3403. return -EINVAL;
  3404. /* Find the cache in the chain of caches. */
  3405. mutex_lock(&cache_chain_mutex);
  3406. res = -EINVAL;
  3407. list_for_each(p, &cache_chain) {
  3408. struct kmem_cache *cachep;
  3409. cachep = list_entry(p, struct kmem_cache, next);
  3410. if (!strcmp(cachep->name, kbuf)) {
  3411. if (limit < 1 || batchcount < 1 ||
  3412. batchcount > limit || shared < 0) {
  3413. res = 0;
  3414. } else {
  3415. res = do_tune_cpucache(cachep, limit,
  3416. batchcount, shared);
  3417. }
  3418. break;
  3419. }
  3420. }
  3421. mutex_unlock(&cache_chain_mutex);
  3422. if (res >= 0)
  3423. res = count;
  3424. return res;
  3425. }
  3426. #endif
  3427. /**
  3428. * ksize - get the actual amount of memory allocated for a given object
  3429. * @objp: Pointer to the object
  3430. *
  3431. * kmalloc may internally round up allocations and return more memory
  3432. * than requested. ksize() can be used to determine the actual amount of
  3433. * memory allocated. The caller may use this additional memory, even though
  3434. * a smaller amount of memory was initially specified with the kmalloc call.
  3435. * The caller must guarantee that objp points to a valid object previously
  3436. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3437. * must not be freed during the duration of the call.
  3438. */
  3439. unsigned int ksize(const void *objp)
  3440. {
  3441. if (unlikely(objp == NULL))
  3442. return 0;
  3443. return obj_size(virt_to_cache(objp));
  3444. }