phy_a.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635
  1. /*
  2. Broadcom B43 wireless driver
  3. IEEE 802.11a PHY driver
  4. Copyright (c) 2005 Martin Langer <martin-langer@gmx.de>,
  5. Copyright (c) 2005-2007 Stefano Brivio <stefano.brivio@polimi.it>
  6. Copyright (c) 2005-2008 Michael Buesch <mb@bu3sch.de>
  7. Copyright (c) 2005, 2006 Danny van Dyk <kugelfang@gentoo.org>
  8. Copyright (c) 2005, 2006 Andreas Jaggi <andreas.jaggi@waterwave.ch>
  9. This program is free software; you can redistribute it and/or modify
  10. it under the terms of the GNU General Public License as published by
  11. the Free Software Foundation; either version 2 of the License, or
  12. (at your option) any later version.
  13. This program is distributed in the hope that it will be useful,
  14. but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. GNU General Public License for more details.
  17. You should have received a copy of the GNU General Public License
  18. along with this program; see the file COPYING. If not, write to
  19. the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
  20. Boston, MA 02110-1301, USA.
  21. */
  22. #include "b43.h"
  23. #include "phy_a.h"
  24. #include "phy_common.h"
  25. #include "wa.h"
  26. #include "tables.h"
  27. #include "main.h"
  28. /* Get the freq, as it has to be written to the device. */
  29. static inline u16 channel2freq_a(u8 channel)
  30. {
  31. B43_WARN_ON(channel > 200);
  32. return (5000 + 5 * channel);
  33. }
  34. static inline u16 freq_r3A_value(u16 frequency)
  35. {
  36. u16 value;
  37. if (frequency < 5091)
  38. value = 0x0040;
  39. else if (frequency < 5321)
  40. value = 0x0000;
  41. else if (frequency < 5806)
  42. value = 0x0080;
  43. else
  44. value = 0x0040;
  45. return value;
  46. }
  47. #if 0
  48. /* This function converts a TSSI value to dBm in Q5.2 */
  49. static s8 b43_aphy_estimate_power_out(struct b43_wldev *dev, s8 tssi)
  50. {
  51. struct b43_phy *phy = &dev->phy;
  52. struct b43_phy_a *aphy = phy->a;
  53. s8 dbm = 0;
  54. s32 tmp;
  55. tmp = (aphy->tgt_idle_tssi - aphy->cur_idle_tssi + tssi);
  56. tmp += 0x80;
  57. tmp = clamp_val(tmp, 0x00, 0xFF);
  58. dbm = aphy->tssi2dbm[tmp];
  59. //TODO: There's a FIXME on the specs
  60. return dbm;
  61. }
  62. #endif
  63. static void b43_radio_set_tx_iq(struct b43_wldev *dev)
  64. {
  65. static const u8 data_high[5] = { 0x00, 0x40, 0x80, 0x90, 0xD0 };
  66. static const u8 data_low[5] = { 0x00, 0x01, 0x05, 0x06, 0x0A };
  67. u16 tmp = b43_radio_read16(dev, 0x001E);
  68. int i, j;
  69. for (i = 0; i < 5; i++) {
  70. for (j = 0; j < 5; j++) {
  71. if (tmp == (data_high[i] << 4 | data_low[j])) {
  72. b43_phy_write(dev, 0x0069,
  73. (i - j) << 8 | 0x00C0);
  74. return;
  75. }
  76. }
  77. }
  78. }
  79. static void aphy_channel_switch(struct b43_wldev *dev, unsigned int channel)
  80. {
  81. u16 freq, r8, tmp;
  82. freq = channel2freq_a(channel);
  83. r8 = b43_radio_read16(dev, 0x0008);
  84. b43_write16(dev, 0x03F0, freq);
  85. b43_radio_write16(dev, 0x0008, r8);
  86. //TODO: write max channel TX power? to Radio 0x2D
  87. tmp = b43_radio_read16(dev, 0x002E);
  88. tmp &= 0x0080;
  89. //TODO: OR tmp with the Power out estimation for this channel?
  90. b43_radio_write16(dev, 0x002E, tmp);
  91. if (freq >= 4920 && freq <= 5500) {
  92. /*
  93. * r8 = (((freq * 15 * 0xE1FC780F) >> 32) / 29) & 0x0F;
  94. * = (freq * 0.025862069
  95. */
  96. r8 = 3 * freq / 116; /* is equal to r8 = freq * 0.025862 */
  97. }
  98. b43_radio_write16(dev, 0x0007, (r8 << 4) | r8);
  99. b43_radio_write16(dev, 0x0020, (r8 << 4) | r8);
  100. b43_radio_write16(dev, 0x0021, (r8 << 4) | r8);
  101. b43_radio_write16(dev, 0x0022, (b43_radio_read16(dev, 0x0022)
  102. & 0x000F) | (r8 << 4));
  103. b43_radio_write16(dev, 0x002A, (r8 << 4));
  104. b43_radio_write16(dev, 0x002B, (r8 << 4));
  105. b43_radio_write16(dev, 0x0008, (b43_radio_read16(dev, 0x0008)
  106. & 0x00F0) | (r8 << 4));
  107. b43_radio_write16(dev, 0x0029, (b43_radio_read16(dev, 0x0029)
  108. & 0xFF0F) | 0x00B0);
  109. b43_radio_write16(dev, 0x0035, 0x00AA);
  110. b43_radio_write16(dev, 0x0036, 0x0085);
  111. b43_radio_write16(dev, 0x003A, (b43_radio_read16(dev, 0x003A)
  112. & 0xFF20) |
  113. freq_r3A_value(freq));
  114. b43_radio_write16(dev, 0x003D,
  115. b43_radio_read16(dev, 0x003D) & 0x00FF);
  116. b43_radio_write16(dev, 0x0081, (b43_radio_read16(dev, 0x0081)
  117. & 0xFF7F) | 0x0080);
  118. b43_radio_write16(dev, 0x0035,
  119. b43_radio_read16(dev, 0x0035) & 0xFFEF);
  120. b43_radio_write16(dev, 0x0035, (b43_radio_read16(dev, 0x0035)
  121. & 0xFFEF) | 0x0010);
  122. b43_radio_set_tx_iq(dev);
  123. //TODO: TSSI2dbm workaround
  124. //FIXME b43_phy_xmitpower(dev);
  125. }
  126. static void b43_radio_init2060(struct b43_wldev *dev)
  127. {
  128. b43_radio_write16(dev, 0x0004, 0x00C0);
  129. b43_radio_write16(dev, 0x0005, 0x0008);
  130. b43_radio_write16(dev, 0x0009, 0x0040);
  131. b43_radio_write16(dev, 0x0005, 0x00AA);
  132. b43_radio_write16(dev, 0x0032, 0x008F);
  133. b43_radio_write16(dev, 0x0006, 0x008F);
  134. b43_radio_write16(dev, 0x0034, 0x008F);
  135. b43_radio_write16(dev, 0x002C, 0x0007);
  136. b43_radio_write16(dev, 0x0082, 0x0080);
  137. b43_radio_write16(dev, 0x0080, 0x0000);
  138. b43_radio_write16(dev, 0x003F, 0x00DA);
  139. b43_radio_write16(dev, 0x0005, b43_radio_read16(dev, 0x0005) & ~0x0008);
  140. b43_radio_write16(dev, 0x0081, b43_radio_read16(dev, 0x0081) & ~0x0010);
  141. b43_radio_write16(dev, 0x0081, b43_radio_read16(dev, 0x0081) & ~0x0020);
  142. b43_radio_write16(dev, 0x0081, b43_radio_read16(dev, 0x0081) & ~0x0020);
  143. msleep(1); /* delay 400usec */
  144. b43_radio_write16(dev, 0x0081,
  145. (b43_radio_read16(dev, 0x0081) & ~0x0020) | 0x0010);
  146. msleep(1); /* delay 400usec */
  147. b43_radio_write16(dev, 0x0005,
  148. (b43_radio_read16(dev, 0x0005) & ~0x0008) | 0x0008);
  149. b43_radio_write16(dev, 0x0085, b43_radio_read16(dev, 0x0085) & ~0x0010);
  150. b43_radio_write16(dev, 0x0005, b43_radio_read16(dev, 0x0005) & ~0x0008);
  151. b43_radio_write16(dev, 0x0081, b43_radio_read16(dev, 0x0081) & ~0x0040);
  152. b43_radio_write16(dev, 0x0081,
  153. (b43_radio_read16(dev, 0x0081) & ~0x0040) | 0x0040);
  154. b43_radio_write16(dev, 0x0005,
  155. (b43_radio_read16(dev, 0x0081) & ~0x0008) | 0x0008);
  156. b43_phy_write(dev, 0x0063, 0xDDC6);
  157. b43_phy_write(dev, 0x0069, 0x07BE);
  158. b43_phy_write(dev, 0x006A, 0x0000);
  159. aphy_channel_switch(dev, dev->phy.ops->get_default_chan(dev));
  160. msleep(1);
  161. }
  162. static void b43_phy_rssiagc(struct b43_wldev *dev, u8 enable)
  163. {
  164. int i;
  165. if (dev->phy.rev < 3) {
  166. if (enable)
  167. for (i = 0; i < B43_TAB_RSSIAGC1_SIZE; i++) {
  168. b43_ofdmtab_write16(dev,
  169. B43_OFDMTAB_LNAHPFGAIN1, i, 0xFFF8);
  170. b43_ofdmtab_write16(dev,
  171. B43_OFDMTAB_WRSSI, i, 0xFFF8);
  172. }
  173. else
  174. for (i = 0; i < B43_TAB_RSSIAGC1_SIZE; i++) {
  175. b43_ofdmtab_write16(dev,
  176. B43_OFDMTAB_LNAHPFGAIN1, i, b43_tab_rssiagc1[i]);
  177. b43_ofdmtab_write16(dev,
  178. B43_OFDMTAB_WRSSI, i, b43_tab_rssiagc1[i]);
  179. }
  180. } else {
  181. if (enable)
  182. for (i = 0; i < B43_TAB_RSSIAGC1_SIZE; i++)
  183. b43_ofdmtab_write16(dev,
  184. B43_OFDMTAB_WRSSI, i, 0x0820);
  185. else
  186. for (i = 0; i < B43_TAB_RSSIAGC2_SIZE; i++)
  187. b43_ofdmtab_write16(dev,
  188. B43_OFDMTAB_WRSSI, i, b43_tab_rssiagc2[i]);
  189. }
  190. }
  191. static void b43_phy_ww(struct b43_wldev *dev)
  192. {
  193. u16 b, curr_s, best_s = 0xFFFF;
  194. int i;
  195. b43_phy_mask(dev, B43_PHY_CRS0, ~B43_PHY_CRS0_EN);
  196. b43_phy_set(dev, B43_PHY_OFDM(0x1B), 0x1000);
  197. b43_phy_write(dev, B43_PHY_OFDM(0x82),
  198. (b43_phy_read(dev, B43_PHY_OFDM(0x82)) & 0xF0FF) | 0x0300);
  199. b43_radio_write16(dev, 0x0009,
  200. b43_radio_read16(dev, 0x0009) | 0x0080);
  201. b43_radio_write16(dev, 0x0012,
  202. (b43_radio_read16(dev, 0x0012) & 0xFFFC) | 0x0002);
  203. b43_wa_initgains(dev);
  204. b43_phy_write(dev, B43_PHY_OFDM(0xBA), 0x3ED5);
  205. b = b43_phy_read(dev, B43_PHY_PWRDOWN);
  206. b43_phy_write(dev, B43_PHY_PWRDOWN, (b & 0xFFF8) | 0x0005);
  207. b43_radio_write16(dev, 0x0004,
  208. b43_radio_read16(dev, 0x0004) | 0x0004);
  209. for (i = 0x10; i <= 0x20; i++) {
  210. b43_radio_write16(dev, 0x0013, i);
  211. curr_s = b43_phy_read(dev, B43_PHY_OTABLEQ) & 0x00FF;
  212. if (!curr_s) {
  213. best_s = 0x0000;
  214. break;
  215. } else if (curr_s >= 0x0080)
  216. curr_s = 0x0100 - curr_s;
  217. if (curr_s < best_s)
  218. best_s = curr_s;
  219. }
  220. b43_phy_write(dev, B43_PHY_PWRDOWN, b);
  221. b43_radio_write16(dev, 0x0004,
  222. b43_radio_read16(dev, 0x0004) & 0xFFFB);
  223. b43_radio_write16(dev, 0x0013, best_s);
  224. b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1_R1, 0, 0xFFEC);
  225. b43_phy_write(dev, B43_PHY_OFDM(0xB7), 0x1E80);
  226. b43_phy_write(dev, B43_PHY_OFDM(0xB6), 0x1C00);
  227. b43_phy_write(dev, B43_PHY_OFDM(0xB5), 0x0EC0);
  228. b43_phy_write(dev, B43_PHY_OFDM(0xB2), 0x00C0);
  229. b43_phy_write(dev, B43_PHY_OFDM(0xB9), 0x1FFF);
  230. b43_phy_write(dev, B43_PHY_OFDM(0xBB),
  231. (b43_phy_read(dev, B43_PHY_OFDM(0xBB)) & 0xF000) | 0x0053);
  232. b43_phy_write(dev, B43_PHY_OFDM61,
  233. (b43_phy_read(dev, B43_PHY_OFDM61) & 0xFE1F) | 0x0120);
  234. b43_phy_write(dev, B43_PHY_OFDM(0x13),
  235. (b43_phy_read(dev, B43_PHY_OFDM(0x13)) & 0x0FFF) | 0x3000);
  236. b43_phy_write(dev, B43_PHY_OFDM(0x14),
  237. (b43_phy_read(dev, B43_PHY_OFDM(0x14)) & 0x0FFF) | 0x3000);
  238. b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1, 6, 0x0017);
  239. for (i = 0; i < 6; i++)
  240. b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1, i, 0x000F);
  241. b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1, 0x0D, 0x000E);
  242. b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1, 0x0E, 0x0011);
  243. b43_ofdmtab_write16(dev, B43_OFDMTAB_AGC1, 0x0F, 0x0013);
  244. b43_phy_write(dev, B43_PHY_OFDM(0x33), 0x5030);
  245. b43_phy_set(dev, B43_PHY_CRS0, B43_PHY_CRS0_EN);
  246. }
  247. static void hardware_pctl_init_aphy(struct b43_wldev *dev)
  248. {
  249. //TODO
  250. }
  251. void b43_phy_inita(struct b43_wldev *dev)
  252. {
  253. struct ssb_bus *bus = dev->dev->bus;
  254. struct b43_phy *phy = &dev->phy;
  255. /* This lowlevel A-PHY init is also called from G-PHY init.
  256. * So we must not access phy->a, if called from G-PHY code.
  257. */
  258. B43_WARN_ON((phy->type != B43_PHYTYPE_A) &&
  259. (phy->type != B43_PHYTYPE_G));
  260. might_sleep();
  261. if (phy->rev >= 6) {
  262. if (phy->type == B43_PHYTYPE_A)
  263. b43_phy_mask(dev, B43_PHY_OFDM(0x1B), ~0x1000);
  264. if (b43_phy_read(dev, B43_PHY_ENCORE) & B43_PHY_ENCORE_EN)
  265. b43_phy_set(dev, B43_PHY_ENCORE, 0x0010);
  266. else
  267. b43_phy_mask(dev, B43_PHY_ENCORE, ~0x1010);
  268. }
  269. b43_wa_all(dev);
  270. if (phy->type == B43_PHYTYPE_A) {
  271. if (phy->gmode && (phy->rev < 3))
  272. b43_phy_set(dev, 0x0034, 0x0001);
  273. b43_phy_rssiagc(dev, 0);
  274. b43_phy_set(dev, B43_PHY_CRS0, B43_PHY_CRS0_EN);
  275. b43_radio_init2060(dev);
  276. if ((bus->boardinfo.vendor == SSB_BOARDVENDOR_BCM) &&
  277. ((bus->boardinfo.type == SSB_BOARD_BU4306) ||
  278. (bus->boardinfo.type == SSB_BOARD_BU4309))) {
  279. ; //TODO: A PHY LO
  280. }
  281. if (phy->rev >= 3)
  282. b43_phy_ww(dev);
  283. hardware_pctl_init_aphy(dev);
  284. //TODO: radar detection
  285. }
  286. if ((phy->type == B43_PHYTYPE_G) &&
  287. (dev->dev->bus->sprom.boardflags_lo & B43_BFL_PACTRL)) {
  288. b43_phy_write(dev, B43_PHY_OFDM(0x6E),
  289. (b43_phy_read(dev, B43_PHY_OFDM(0x6E))
  290. & 0xE000) | 0x3CF);
  291. }
  292. }
  293. /* Initialise the TSSI->dBm lookup table */
  294. static int b43_aphy_init_tssi2dbm_table(struct b43_wldev *dev)
  295. {
  296. struct b43_phy *phy = &dev->phy;
  297. struct b43_phy_a *aphy = phy->a;
  298. s16 pab0, pab1, pab2;
  299. pab0 = (s16) (dev->dev->bus->sprom.pa1b0);
  300. pab1 = (s16) (dev->dev->bus->sprom.pa1b1);
  301. pab2 = (s16) (dev->dev->bus->sprom.pa1b2);
  302. if (pab0 != 0 && pab1 != 0 && pab2 != 0 &&
  303. pab0 != -1 && pab1 != -1 && pab2 != -1) {
  304. /* The pabX values are set in SPROM. Use them. */
  305. if ((s8) dev->dev->bus->sprom.itssi_a != 0 &&
  306. (s8) dev->dev->bus->sprom.itssi_a != -1)
  307. aphy->tgt_idle_tssi =
  308. (s8) (dev->dev->bus->sprom.itssi_a);
  309. else
  310. aphy->tgt_idle_tssi = 62;
  311. aphy->tssi2dbm = b43_generate_dyn_tssi2dbm_tab(dev, pab0,
  312. pab1, pab2);
  313. if (!aphy->tssi2dbm)
  314. return -ENOMEM;
  315. } else {
  316. /* pabX values not set in SPROM,
  317. * but APHY needs a generated table. */
  318. aphy->tssi2dbm = NULL;
  319. b43err(dev->wl, "Could not generate tssi2dBm "
  320. "table (wrong SPROM info)!\n");
  321. return -ENODEV;
  322. }
  323. return 0;
  324. }
  325. static int b43_aphy_op_allocate(struct b43_wldev *dev)
  326. {
  327. struct b43_phy_a *aphy;
  328. int err;
  329. aphy = kzalloc(sizeof(*aphy), GFP_KERNEL);
  330. if (!aphy)
  331. return -ENOMEM;
  332. dev->phy.a = aphy;
  333. err = b43_aphy_init_tssi2dbm_table(dev);
  334. if (err)
  335. goto err_free_aphy;
  336. return 0;
  337. err_free_aphy:
  338. kfree(aphy);
  339. dev->phy.a = NULL;
  340. return err;
  341. }
  342. static void b43_aphy_op_prepare_structs(struct b43_wldev *dev)
  343. {
  344. struct b43_phy *phy = &dev->phy;
  345. struct b43_phy_a *aphy = phy->a;
  346. const void *tssi2dbm;
  347. int tgt_idle_tssi;
  348. /* tssi2dbm table is constant, so it is initialized at alloc time.
  349. * Save a copy of the pointer. */
  350. tssi2dbm = aphy->tssi2dbm;
  351. tgt_idle_tssi = aphy->tgt_idle_tssi;
  352. /* Zero out the whole PHY structure. */
  353. memset(aphy, 0, sizeof(*aphy));
  354. aphy->tssi2dbm = tssi2dbm;
  355. aphy->tgt_idle_tssi = tgt_idle_tssi;
  356. //TODO init struct b43_phy_a
  357. }
  358. static void b43_aphy_op_free(struct b43_wldev *dev)
  359. {
  360. struct b43_phy *phy = &dev->phy;
  361. struct b43_phy_a *aphy = phy->a;
  362. kfree(aphy->tssi2dbm);
  363. aphy->tssi2dbm = NULL;
  364. kfree(aphy);
  365. dev->phy.a = NULL;
  366. }
  367. static int b43_aphy_op_init(struct b43_wldev *dev)
  368. {
  369. b43_phy_inita(dev);
  370. return 0;
  371. }
  372. static inline u16 adjust_phyreg(struct b43_wldev *dev, u16 offset)
  373. {
  374. /* OFDM registers are base-registers for the A-PHY. */
  375. if ((offset & B43_PHYROUTE) == B43_PHYROUTE_OFDM_GPHY) {
  376. offset &= ~B43_PHYROUTE;
  377. offset |= B43_PHYROUTE_BASE;
  378. }
  379. #if B43_DEBUG
  380. if ((offset & B43_PHYROUTE) == B43_PHYROUTE_EXT_GPHY) {
  381. /* Ext-G registers are only available on G-PHYs */
  382. b43err(dev->wl, "Invalid EXT-G PHY access at "
  383. "0x%04X on A-PHY\n", offset);
  384. dump_stack();
  385. }
  386. if ((offset & B43_PHYROUTE) == B43_PHYROUTE_N_BMODE) {
  387. /* N-BMODE registers are only available on N-PHYs */
  388. b43err(dev->wl, "Invalid N-BMODE PHY access at "
  389. "0x%04X on A-PHY\n", offset);
  390. dump_stack();
  391. }
  392. #endif /* B43_DEBUG */
  393. return offset;
  394. }
  395. static u16 b43_aphy_op_read(struct b43_wldev *dev, u16 reg)
  396. {
  397. reg = adjust_phyreg(dev, reg);
  398. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  399. return b43_read16(dev, B43_MMIO_PHY_DATA);
  400. }
  401. static void b43_aphy_op_write(struct b43_wldev *dev, u16 reg, u16 value)
  402. {
  403. reg = adjust_phyreg(dev, reg);
  404. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  405. b43_write16(dev, B43_MMIO_PHY_DATA, value);
  406. }
  407. static u16 b43_aphy_op_radio_read(struct b43_wldev *dev, u16 reg)
  408. {
  409. /* Register 1 is a 32-bit register. */
  410. B43_WARN_ON(reg == 1);
  411. /* A-PHY needs 0x40 for read access */
  412. reg |= 0x40;
  413. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  414. return b43_read16(dev, B43_MMIO_RADIO_DATA_LOW);
  415. }
  416. static void b43_aphy_op_radio_write(struct b43_wldev *dev, u16 reg, u16 value)
  417. {
  418. /* Register 1 is a 32-bit register. */
  419. B43_WARN_ON(reg == 1);
  420. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  421. b43_write16(dev, B43_MMIO_RADIO_DATA_LOW, value);
  422. }
  423. static bool b43_aphy_op_supports_hwpctl(struct b43_wldev *dev)
  424. {
  425. return (dev->phy.rev >= 5);
  426. }
  427. static void b43_aphy_op_software_rfkill(struct b43_wldev *dev,
  428. enum rfkill_state state)
  429. {
  430. struct b43_phy *phy = &dev->phy;
  431. if (state == RFKILL_STATE_UNBLOCKED) {
  432. if (phy->radio_on)
  433. return;
  434. b43_radio_write16(dev, 0x0004, 0x00C0);
  435. b43_radio_write16(dev, 0x0005, 0x0008);
  436. b43_phy_mask(dev, 0x0010, 0xFFF7);
  437. b43_phy_mask(dev, 0x0011, 0xFFF7);
  438. b43_radio_init2060(dev);
  439. } else {
  440. b43_radio_write16(dev, 0x0004, 0x00FF);
  441. b43_radio_write16(dev, 0x0005, 0x00FB);
  442. b43_phy_set(dev, 0x0010, 0x0008);
  443. b43_phy_set(dev, 0x0011, 0x0008);
  444. }
  445. }
  446. static int b43_aphy_op_switch_channel(struct b43_wldev *dev,
  447. unsigned int new_channel)
  448. {
  449. if (new_channel > 200)
  450. return -EINVAL;
  451. aphy_channel_switch(dev, new_channel);
  452. return 0;
  453. }
  454. static unsigned int b43_aphy_op_get_default_chan(struct b43_wldev *dev)
  455. {
  456. return 36; /* Default to channel 36 */
  457. }
  458. static void b43_aphy_op_set_rx_antenna(struct b43_wldev *dev, int antenna)
  459. {//TODO
  460. struct b43_phy *phy = &dev->phy;
  461. u64 hf;
  462. u16 tmp;
  463. int autodiv = 0;
  464. if (antenna == B43_ANTENNA_AUTO0 || antenna == B43_ANTENNA_AUTO1)
  465. autodiv = 1;
  466. hf = b43_hf_read(dev);
  467. hf &= ~B43_HF_ANTDIVHELP;
  468. b43_hf_write(dev, hf);
  469. tmp = b43_phy_read(dev, B43_PHY_BBANDCFG);
  470. tmp &= ~B43_PHY_BBANDCFG_RXANT;
  471. tmp |= (autodiv ? B43_ANTENNA_AUTO0 : antenna)
  472. << B43_PHY_BBANDCFG_RXANT_SHIFT;
  473. b43_phy_write(dev, B43_PHY_BBANDCFG, tmp);
  474. if (autodiv) {
  475. tmp = b43_phy_read(dev, B43_PHY_ANTDWELL);
  476. if (antenna == B43_ANTENNA_AUTO0)
  477. tmp &= ~B43_PHY_ANTDWELL_AUTODIV1;
  478. else
  479. tmp |= B43_PHY_ANTDWELL_AUTODIV1;
  480. b43_phy_write(dev, B43_PHY_ANTDWELL, tmp);
  481. }
  482. if (phy->rev < 3) {
  483. tmp = b43_phy_read(dev, B43_PHY_ANTDWELL);
  484. tmp = (tmp & 0xFF00) | 0x24;
  485. b43_phy_write(dev, B43_PHY_ANTDWELL, tmp);
  486. } else {
  487. tmp = b43_phy_read(dev, B43_PHY_OFDM61);
  488. tmp |= 0x10;
  489. b43_phy_write(dev, B43_PHY_OFDM61, tmp);
  490. if (phy->analog == 3) {
  491. b43_phy_write(dev, B43_PHY_CLIPPWRDOWNT,
  492. 0x1D);
  493. b43_phy_write(dev, B43_PHY_ADIVRELATED,
  494. 8);
  495. } else {
  496. b43_phy_write(dev, B43_PHY_CLIPPWRDOWNT,
  497. 0x3A);
  498. tmp =
  499. b43_phy_read(dev,
  500. B43_PHY_ADIVRELATED);
  501. tmp = (tmp & 0xFF00) | 8;
  502. b43_phy_write(dev, B43_PHY_ADIVRELATED,
  503. tmp);
  504. }
  505. }
  506. hf |= B43_HF_ANTDIVHELP;
  507. b43_hf_write(dev, hf);
  508. }
  509. static void b43_aphy_op_adjust_txpower(struct b43_wldev *dev)
  510. {//TODO
  511. }
  512. static enum b43_txpwr_result b43_aphy_op_recalc_txpower(struct b43_wldev *dev,
  513. bool ignore_tssi)
  514. {//TODO
  515. return B43_TXPWR_RES_DONE;
  516. }
  517. static void b43_aphy_op_pwork_15sec(struct b43_wldev *dev)
  518. {//TODO
  519. }
  520. static void b43_aphy_op_pwork_60sec(struct b43_wldev *dev)
  521. {//TODO
  522. }
  523. const struct b43_phy_operations b43_phyops_a = {
  524. .allocate = b43_aphy_op_allocate,
  525. .free = b43_aphy_op_free,
  526. .prepare_structs = b43_aphy_op_prepare_structs,
  527. .init = b43_aphy_op_init,
  528. .phy_read = b43_aphy_op_read,
  529. .phy_write = b43_aphy_op_write,
  530. .radio_read = b43_aphy_op_radio_read,
  531. .radio_write = b43_aphy_op_radio_write,
  532. .supports_hwpctl = b43_aphy_op_supports_hwpctl,
  533. .software_rfkill = b43_aphy_op_software_rfkill,
  534. .switch_analog = b43_phyop_switch_analog_generic,
  535. .switch_channel = b43_aphy_op_switch_channel,
  536. .get_default_chan = b43_aphy_op_get_default_chan,
  537. .set_rx_antenna = b43_aphy_op_set_rx_antenna,
  538. .recalc_txpower = b43_aphy_op_recalc_txpower,
  539. .adjust_txpower = b43_aphy_op_adjust_txpower,
  540. .pwork_15sec = b43_aphy_op_pwork_15sec,
  541. .pwork_60sec = b43_aphy_op_pwork_60sec,
  542. };