process.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509
  1. /*
  2. * linux/arch/arm/kernel/process.c
  3. *
  4. * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  5. * Original Copyright (C) 1995 Linus Torvalds
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <stdarg.h>
  12. #include <linux/export.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/stddef.h>
  17. #include <linux/unistd.h>
  18. #include <linux/user.h>
  19. #include <linux/delay.h>
  20. #include <linux/reboot.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/kallsyms.h>
  23. #include <linux/init.h>
  24. #include <linux/cpu.h>
  25. #include <linux/elfcore.h>
  26. #include <linux/pm.h>
  27. #include <linux/tick.h>
  28. #include <linux/utsname.h>
  29. #include <linux/uaccess.h>
  30. #include <linux/random.h>
  31. #include <linux/hw_breakpoint.h>
  32. #include <linux/cpuidle.h>
  33. #include <asm/cacheflush.h>
  34. #include <asm/leds.h>
  35. #include <asm/processor.h>
  36. #include <asm/system.h>
  37. #include <asm/thread_notify.h>
  38. #include <asm/stacktrace.h>
  39. #include <asm/mach/time.h>
  40. #ifdef CONFIG_CC_STACKPROTECTOR
  41. #include <linux/stackprotector.h>
  42. unsigned long __stack_chk_guard __read_mostly;
  43. EXPORT_SYMBOL(__stack_chk_guard);
  44. #endif
  45. static const char *processor_modes[] = {
  46. "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
  47. "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
  48. "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "UK6_32" , "ABT_32" ,
  49. "UK8_32" , "UK9_32" , "UK10_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
  50. };
  51. static const char *isa_modes[] = {
  52. "ARM" , "Thumb" , "Jazelle", "ThumbEE"
  53. };
  54. extern void setup_mm_for_reboot(char mode);
  55. static volatile int hlt_counter;
  56. #include <mach/system.h>
  57. void disable_hlt(void)
  58. {
  59. hlt_counter++;
  60. }
  61. EXPORT_SYMBOL(disable_hlt);
  62. void enable_hlt(void)
  63. {
  64. hlt_counter--;
  65. }
  66. EXPORT_SYMBOL(enable_hlt);
  67. static int __init nohlt_setup(char *__unused)
  68. {
  69. hlt_counter = 1;
  70. return 1;
  71. }
  72. static int __init hlt_setup(char *__unused)
  73. {
  74. hlt_counter = 0;
  75. return 1;
  76. }
  77. __setup("nohlt", nohlt_setup);
  78. __setup("hlt", hlt_setup);
  79. void arm_machine_restart(char mode, const char *cmd)
  80. {
  81. /* Disable interrupts first */
  82. local_irq_disable();
  83. local_fiq_disable();
  84. /*
  85. * Tell the mm system that we are going to reboot -
  86. * we may need it to insert some 1:1 mappings so that
  87. * soft boot works.
  88. */
  89. setup_mm_for_reboot(mode);
  90. /* Clean and invalidate caches */
  91. flush_cache_all();
  92. /* Turn off caching */
  93. cpu_proc_fin();
  94. /* Push out any further dirty data, and ensure cache is empty */
  95. flush_cache_all();
  96. /* Now call the architecture specific reboot code. */
  97. arch_reset(mode, cmd);
  98. }
  99. /*
  100. * Function pointers to optional machine specific functions
  101. */
  102. void (*pm_power_off)(void);
  103. EXPORT_SYMBOL(pm_power_off);
  104. void (*arm_pm_restart)(char str, const char *cmd) = arm_machine_restart;
  105. EXPORT_SYMBOL_GPL(arm_pm_restart);
  106. static void do_nothing(void *unused)
  107. {
  108. }
  109. /*
  110. * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
  111. * pm_idle and update to new pm_idle value. Required while changing pm_idle
  112. * handler on SMP systems.
  113. *
  114. * Caller must have changed pm_idle to the new value before the call. Old
  115. * pm_idle value will not be used by any CPU after the return of this function.
  116. */
  117. void cpu_idle_wait(void)
  118. {
  119. smp_mb();
  120. /* kick all the CPUs so that they exit out of pm_idle */
  121. smp_call_function(do_nothing, NULL, 1);
  122. }
  123. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  124. /*
  125. * This is our default idle handler. We need to disable
  126. * interrupts here to ensure we don't miss a wakeup call.
  127. */
  128. static void default_idle(void)
  129. {
  130. if (!need_resched())
  131. arch_idle();
  132. local_irq_enable();
  133. }
  134. void (*pm_idle)(void) = default_idle;
  135. EXPORT_SYMBOL(pm_idle);
  136. /*
  137. * The idle thread, has rather strange semantics for calling pm_idle,
  138. * but this is what x86 does and we need to do the same, so that
  139. * things like cpuidle get called in the same way. The only difference
  140. * is that we always respect 'hlt_counter' to prevent low power idle.
  141. */
  142. void cpu_idle(void)
  143. {
  144. local_fiq_enable();
  145. /* endless idle loop with no priority at all */
  146. while (1) {
  147. tick_nohz_stop_sched_tick(1);
  148. leds_event(led_idle_start);
  149. while (!need_resched()) {
  150. #ifdef CONFIG_HOTPLUG_CPU
  151. if (cpu_is_offline(smp_processor_id()))
  152. cpu_die();
  153. #endif
  154. local_irq_disable();
  155. if (hlt_counter) {
  156. local_irq_enable();
  157. cpu_relax();
  158. } else {
  159. stop_critical_timings();
  160. if (cpuidle_idle_call())
  161. pm_idle();
  162. start_critical_timings();
  163. /*
  164. * This will eventually be removed - pm_idle
  165. * functions should always return with IRQs
  166. * enabled.
  167. */
  168. WARN_ON(irqs_disabled());
  169. local_irq_enable();
  170. }
  171. }
  172. leds_event(led_idle_end);
  173. tick_nohz_restart_sched_tick();
  174. preempt_enable_no_resched();
  175. schedule();
  176. preempt_disable();
  177. }
  178. }
  179. static char reboot_mode = 'h';
  180. int __init reboot_setup(char *str)
  181. {
  182. reboot_mode = str[0];
  183. return 1;
  184. }
  185. __setup("reboot=", reboot_setup);
  186. void machine_shutdown(void)
  187. {
  188. #ifdef CONFIG_SMP
  189. smp_send_stop();
  190. #endif
  191. }
  192. void machine_halt(void)
  193. {
  194. machine_shutdown();
  195. while (1);
  196. }
  197. void machine_power_off(void)
  198. {
  199. machine_shutdown();
  200. if (pm_power_off)
  201. pm_power_off();
  202. }
  203. void machine_restart(char *cmd)
  204. {
  205. machine_shutdown();
  206. arm_pm_restart(reboot_mode, cmd);
  207. /* Give a grace period for failure to restart of 1s */
  208. mdelay(1000);
  209. /* Whoops - the platform was unable to reboot. Tell the user! */
  210. printk("Reboot failed -- System halted\n");
  211. while (1);
  212. }
  213. void __show_regs(struct pt_regs *regs)
  214. {
  215. unsigned long flags;
  216. char buf[64];
  217. printk("CPU: %d %s (%s %.*s)\n",
  218. raw_smp_processor_id(), print_tainted(),
  219. init_utsname()->release,
  220. (int)strcspn(init_utsname()->version, " "),
  221. init_utsname()->version);
  222. print_symbol("PC is at %s\n", instruction_pointer(regs));
  223. print_symbol("LR is at %s\n", regs->ARM_lr);
  224. printk("pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
  225. "sp : %08lx ip : %08lx fp : %08lx\n",
  226. regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
  227. regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
  228. printk("r10: %08lx r9 : %08lx r8 : %08lx\n",
  229. regs->ARM_r10, regs->ARM_r9,
  230. regs->ARM_r8);
  231. printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
  232. regs->ARM_r7, regs->ARM_r6,
  233. regs->ARM_r5, regs->ARM_r4);
  234. printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
  235. regs->ARM_r3, regs->ARM_r2,
  236. regs->ARM_r1, regs->ARM_r0);
  237. flags = regs->ARM_cpsr;
  238. buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
  239. buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
  240. buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
  241. buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
  242. buf[4] = '\0';
  243. printk("Flags: %s IRQs o%s FIQs o%s Mode %s ISA %s Segment %s\n",
  244. buf, interrupts_enabled(regs) ? "n" : "ff",
  245. fast_interrupts_enabled(regs) ? "n" : "ff",
  246. processor_modes[processor_mode(regs)],
  247. isa_modes[isa_mode(regs)],
  248. get_fs() == get_ds() ? "kernel" : "user");
  249. #ifdef CONFIG_CPU_CP15
  250. {
  251. unsigned int ctrl;
  252. buf[0] = '\0';
  253. #ifdef CONFIG_CPU_CP15_MMU
  254. {
  255. unsigned int transbase, dac;
  256. asm("mrc p15, 0, %0, c2, c0\n\t"
  257. "mrc p15, 0, %1, c3, c0\n"
  258. : "=r" (transbase), "=r" (dac));
  259. snprintf(buf, sizeof(buf), " Table: %08x DAC: %08x",
  260. transbase, dac);
  261. }
  262. #endif
  263. asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
  264. printk("Control: %08x%s\n", ctrl, buf);
  265. }
  266. #endif
  267. }
  268. void show_regs(struct pt_regs * regs)
  269. {
  270. printk("\n");
  271. printk("Pid: %d, comm: %20s\n", task_pid_nr(current), current->comm);
  272. __show_regs(regs);
  273. dump_stack();
  274. }
  275. ATOMIC_NOTIFIER_HEAD(thread_notify_head);
  276. EXPORT_SYMBOL_GPL(thread_notify_head);
  277. /*
  278. * Free current thread data structures etc..
  279. */
  280. void exit_thread(void)
  281. {
  282. thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
  283. }
  284. void flush_thread(void)
  285. {
  286. struct thread_info *thread = current_thread_info();
  287. struct task_struct *tsk = current;
  288. flush_ptrace_hw_breakpoint(tsk);
  289. memset(thread->used_cp, 0, sizeof(thread->used_cp));
  290. memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
  291. memset(&thread->fpstate, 0, sizeof(union fp_state));
  292. thread_notify(THREAD_NOTIFY_FLUSH, thread);
  293. }
  294. void release_thread(struct task_struct *dead_task)
  295. {
  296. }
  297. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  298. int
  299. copy_thread(unsigned long clone_flags, unsigned long stack_start,
  300. unsigned long stk_sz, struct task_struct *p, struct pt_regs *regs)
  301. {
  302. struct thread_info *thread = task_thread_info(p);
  303. struct pt_regs *childregs = task_pt_regs(p);
  304. *childregs = *regs;
  305. childregs->ARM_r0 = 0;
  306. childregs->ARM_sp = stack_start;
  307. memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
  308. thread->cpu_context.sp = (unsigned long)childregs;
  309. thread->cpu_context.pc = (unsigned long)ret_from_fork;
  310. clear_ptrace_hw_breakpoint(p);
  311. if (clone_flags & CLONE_SETTLS)
  312. thread->tp_value = regs->ARM_r3;
  313. thread_notify(THREAD_NOTIFY_COPY, thread);
  314. return 0;
  315. }
  316. /*
  317. * Fill in the task's elfregs structure for a core dump.
  318. */
  319. int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
  320. {
  321. elf_core_copy_regs(elfregs, task_pt_regs(t));
  322. return 1;
  323. }
  324. /*
  325. * fill in the fpe structure for a core dump...
  326. */
  327. int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
  328. {
  329. struct thread_info *thread = current_thread_info();
  330. int used_math = thread->used_cp[1] | thread->used_cp[2];
  331. if (used_math)
  332. memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
  333. return used_math != 0;
  334. }
  335. EXPORT_SYMBOL(dump_fpu);
  336. /*
  337. * Shuffle the argument into the correct register before calling the
  338. * thread function. r4 is the thread argument, r5 is the pointer to
  339. * the thread function, and r6 points to the exit function.
  340. */
  341. extern void kernel_thread_helper(void);
  342. asm( ".pushsection .text\n"
  343. " .align\n"
  344. " .type kernel_thread_helper, #function\n"
  345. "kernel_thread_helper:\n"
  346. #ifdef CONFIG_TRACE_IRQFLAGS
  347. " bl trace_hardirqs_on\n"
  348. #endif
  349. " msr cpsr_c, r7\n"
  350. " mov r0, r4\n"
  351. " mov lr, r6\n"
  352. " mov pc, r5\n"
  353. " .size kernel_thread_helper, . - kernel_thread_helper\n"
  354. " .popsection");
  355. #ifdef CONFIG_ARM_UNWIND
  356. extern void kernel_thread_exit(long code);
  357. asm( ".pushsection .text\n"
  358. " .align\n"
  359. " .type kernel_thread_exit, #function\n"
  360. "kernel_thread_exit:\n"
  361. " .fnstart\n"
  362. " .cantunwind\n"
  363. " bl do_exit\n"
  364. " nop\n"
  365. " .fnend\n"
  366. " .size kernel_thread_exit, . - kernel_thread_exit\n"
  367. " .popsection");
  368. #else
  369. #define kernel_thread_exit do_exit
  370. #endif
  371. /*
  372. * Create a kernel thread.
  373. */
  374. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  375. {
  376. struct pt_regs regs;
  377. memset(&regs, 0, sizeof(regs));
  378. regs.ARM_r4 = (unsigned long)arg;
  379. regs.ARM_r5 = (unsigned long)fn;
  380. regs.ARM_r6 = (unsigned long)kernel_thread_exit;
  381. regs.ARM_r7 = SVC_MODE | PSR_ENDSTATE | PSR_ISETSTATE;
  382. regs.ARM_pc = (unsigned long)kernel_thread_helper;
  383. regs.ARM_cpsr = regs.ARM_r7 | PSR_I_BIT;
  384. return do_fork(flags|CLONE_VM|CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  385. }
  386. EXPORT_SYMBOL(kernel_thread);
  387. unsigned long get_wchan(struct task_struct *p)
  388. {
  389. struct stackframe frame;
  390. int count = 0;
  391. if (!p || p == current || p->state == TASK_RUNNING)
  392. return 0;
  393. frame.fp = thread_saved_fp(p);
  394. frame.sp = thread_saved_sp(p);
  395. frame.lr = 0; /* recovered from the stack */
  396. frame.pc = thread_saved_pc(p);
  397. do {
  398. int ret = unwind_frame(&frame);
  399. if (ret < 0)
  400. return 0;
  401. if (!in_sched_functions(frame.pc))
  402. return frame.pc;
  403. } while (count ++ < 16);
  404. return 0;
  405. }
  406. unsigned long arch_randomize_brk(struct mm_struct *mm)
  407. {
  408. unsigned long range_end = mm->brk + 0x02000000;
  409. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  410. }
  411. #ifdef CONFIG_MMU
  412. /*
  413. * The vectors page is always readable from user space for the
  414. * atomic helpers and the signal restart code. Let's declare a mapping
  415. * for it so it is visible through ptrace and /proc/<pid>/mem.
  416. */
  417. int vectors_user_mapping(void)
  418. {
  419. struct mm_struct *mm = current->mm;
  420. return install_special_mapping(mm, 0xffff0000, PAGE_SIZE,
  421. VM_READ | VM_EXEC |
  422. VM_MAYREAD | VM_MAYEXEC |
  423. VM_ALWAYSDUMP | VM_RESERVED,
  424. NULL);
  425. }
  426. const char *arch_vma_name(struct vm_area_struct *vma)
  427. {
  428. return (vma->vm_start == 0xffff0000) ? "[vectors]" : NULL;
  429. }
  430. #endif