sched.c 203 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <asm/tlb.h>
  70. #include <asm/irq_regs.h>
  71. /*
  72. * Scheduler clock - returns current time in nanosec units.
  73. * This is default implementation.
  74. * Architectures and sub-architectures can override this.
  75. */
  76. unsigned long long __attribute__((weak)) sched_clock(void)
  77. {
  78. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  79. }
  80. /*
  81. * Convert user-nice values [ -20 ... 0 ... 19 ]
  82. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  83. * and back.
  84. */
  85. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  86. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  87. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  88. /*
  89. * 'User priority' is the nice value converted to something we
  90. * can work with better when scaling various scheduler parameters,
  91. * it's a [ 0 ... 39 ] range.
  92. */
  93. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  94. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  95. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  96. /*
  97. * Helpers for converting nanosecond timing to jiffy resolution
  98. */
  99. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  100. #define NICE_0_LOAD SCHED_LOAD_SCALE
  101. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  102. /*
  103. * These are the 'tuning knobs' of the scheduler:
  104. *
  105. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  106. * Timeslices get refilled after they expire.
  107. */
  108. #define DEF_TIMESLICE (100 * HZ / 1000)
  109. /*
  110. * single value that denotes runtime == period, ie unlimited time.
  111. */
  112. #define RUNTIME_INF ((u64)~0ULL)
  113. #ifdef CONFIG_SMP
  114. /*
  115. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  116. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  117. */
  118. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  119. {
  120. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  121. }
  122. /*
  123. * Each time a sched group cpu_power is changed,
  124. * we must compute its reciprocal value
  125. */
  126. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  127. {
  128. sg->__cpu_power += val;
  129. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  130. }
  131. #endif
  132. static inline int rt_policy(int policy)
  133. {
  134. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  135. return 1;
  136. return 0;
  137. }
  138. static inline int task_has_rt_policy(struct task_struct *p)
  139. {
  140. return rt_policy(p->policy);
  141. }
  142. /*
  143. * This is the priority-queue data structure of the RT scheduling class:
  144. */
  145. struct rt_prio_array {
  146. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  147. struct list_head queue[MAX_RT_PRIO];
  148. };
  149. struct rt_bandwidth {
  150. ktime_t rt_period;
  151. u64 rt_runtime;
  152. spinlock_t rt_runtime_lock;
  153. struct hrtimer rt_period_timer;
  154. };
  155. static struct rt_bandwidth def_rt_bandwidth;
  156. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  157. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  158. {
  159. struct rt_bandwidth *rt_b =
  160. container_of(timer, struct rt_bandwidth, rt_period_timer);
  161. ktime_t now;
  162. int overrun;
  163. int idle = 0;
  164. for (;;) {
  165. now = hrtimer_cb_get_time(timer);
  166. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  167. if (!overrun)
  168. break;
  169. idle = do_sched_rt_period_timer(rt_b, overrun);
  170. }
  171. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  172. }
  173. static
  174. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  175. {
  176. rt_b->rt_period = ns_to_ktime(period);
  177. rt_b->rt_runtime = runtime;
  178. spin_lock_init(&rt_b->rt_runtime_lock);
  179. hrtimer_init(&rt_b->rt_period_timer,
  180. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  181. rt_b->rt_period_timer.function = sched_rt_period_timer;
  182. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  183. }
  184. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  185. {
  186. ktime_t now;
  187. if (rt_b->rt_runtime == RUNTIME_INF)
  188. return;
  189. if (hrtimer_active(&rt_b->rt_period_timer))
  190. return;
  191. spin_lock(&rt_b->rt_runtime_lock);
  192. for (;;) {
  193. if (hrtimer_active(&rt_b->rt_period_timer))
  194. break;
  195. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  196. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  197. hrtimer_start(&rt_b->rt_period_timer,
  198. rt_b->rt_period_timer.expires,
  199. HRTIMER_MODE_ABS);
  200. }
  201. spin_unlock(&rt_b->rt_runtime_lock);
  202. }
  203. #ifdef CONFIG_RT_GROUP_SCHED
  204. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  205. {
  206. hrtimer_cancel(&rt_b->rt_period_timer);
  207. }
  208. #endif
  209. #ifdef CONFIG_GROUP_SCHED
  210. #include <linux/cgroup.h>
  211. struct cfs_rq;
  212. static LIST_HEAD(task_groups);
  213. /* task group related information */
  214. struct task_group {
  215. #ifdef CONFIG_CGROUP_SCHED
  216. struct cgroup_subsys_state css;
  217. #endif
  218. #ifdef CONFIG_FAIR_GROUP_SCHED
  219. /* schedulable entities of this group on each cpu */
  220. struct sched_entity **se;
  221. /* runqueue "owned" by this group on each cpu */
  222. struct cfs_rq **cfs_rq;
  223. unsigned long shares;
  224. #endif
  225. #ifdef CONFIG_RT_GROUP_SCHED
  226. struct sched_rt_entity **rt_se;
  227. struct rt_rq **rt_rq;
  228. struct rt_bandwidth rt_bandwidth;
  229. #endif
  230. struct rcu_head rcu;
  231. struct list_head list;
  232. };
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. /* Default task group's sched entity on each cpu */
  235. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  236. /* Default task group's cfs_rq on each cpu */
  237. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  238. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  239. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  240. #endif
  241. #ifdef CONFIG_RT_GROUP_SCHED
  242. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  243. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  244. static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
  245. static struct rt_rq *init_rt_rq_p[NR_CPUS];
  246. #endif
  247. /* task_group_lock serializes add/remove of task groups and also changes to
  248. * a task group's cpu shares.
  249. */
  250. static DEFINE_SPINLOCK(task_group_lock);
  251. /* doms_cur_mutex serializes access to doms_cur[] array */
  252. static DEFINE_MUTEX(doms_cur_mutex);
  253. #ifdef CONFIG_FAIR_GROUP_SCHED
  254. #ifdef CONFIG_USER_SCHED
  255. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  256. #else
  257. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  258. #endif
  259. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  260. #endif
  261. /* Default task group.
  262. * Every task in system belong to this group at bootup.
  263. */
  264. struct task_group init_task_group = {
  265. #ifdef CONFIG_FAIR_GROUP_SCHED
  266. .se = init_sched_entity_p,
  267. .cfs_rq = init_cfs_rq_p,
  268. #endif
  269. #ifdef CONFIG_RT_GROUP_SCHED
  270. .rt_se = init_sched_rt_entity_p,
  271. .rt_rq = init_rt_rq_p,
  272. #endif
  273. };
  274. /* return group to which a task belongs */
  275. static inline struct task_group *task_group(struct task_struct *p)
  276. {
  277. struct task_group *tg;
  278. #ifdef CONFIG_USER_SCHED
  279. tg = p->user->tg;
  280. #elif defined(CONFIG_CGROUP_SCHED)
  281. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  282. struct task_group, css);
  283. #else
  284. tg = &init_task_group;
  285. #endif
  286. return tg;
  287. }
  288. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  289. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  290. {
  291. #ifdef CONFIG_FAIR_GROUP_SCHED
  292. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  293. p->se.parent = task_group(p)->se[cpu];
  294. #endif
  295. #ifdef CONFIG_RT_GROUP_SCHED
  296. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  297. p->rt.parent = task_group(p)->rt_se[cpu];
  298. #endif
  299. }
  300. static inline void lock_doms_cur(void)
  301. {
  302. mutex_lock(&doms_cur_mutex);
  303. }
  304. static inline void unlock_doms_cur(void)
  305. {
  306. mutex_unlock(&doms_cur_mutex);
  307. }
  308. #else
  309. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  310. static inline void lock_doms_cur(void) { }
  311. static inline void unlock_doms_cur(void) { }
  312. #endif /* CONFIG_GROUP_SCHED */
  313. /* CFS-related fields in a runqueue */
  314. struct cfs_rq {
  315. struct load_weight load;
  316. unsigned long nr_running;
  317. u64 exec_clock;
  318. u64 min_vruntime;
  319. struct rb_root tasks_timeline;
  320. struct rb_node *rb_leftmost;
  321. struct rb_node *rb_load_balance_curr;
  322. /* 'curr' points to currently running entity on this cfs_rq.
  323. * It is set to NULL otherwise (i.e when none are currently running).
  324. */
  325. struct sched_entity *curr, *next;
  326. unsigned long nr_spread_over;
  327. #ifdef CONFIG_FAIR_GROUP_SCHED
  328. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  329. /*
  330. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  331. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  332. * (like users, containers etc.)
  333. *
  334. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  335. * list is used during load balance.
  336. */
  337. struct list_head leaf_cfs_rq_list;
  338. struct task_group *tg; /* group that "owns" this runqueue */
  339. #endif
  340. };
  341. /* Real-Time classes' related field in a runqueue: */
  342. struct rt_rq {
  343. struct rt_prio_array active;
  344. unsigned long rt_nr_running;
  345. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  346. int highest_prio; /* highest queued rt task prio */
  347. #endif
  348. #ifdef CONFIG_SMP
  349. unsigned long rt_nr_migratory;
  350. int overloaded;
  351. #endif
  352. int rt_throttled;
  353. u64 rt_time;
  354. u64 rt_runtime;
  355. spinlock_t rt_runtime_lock;
  356. #ifdef CONFIG_RT_GROUP_SCHED
  357. unsigned long rt_nr_boosted;
  358. struct rq *rq;
  359. struct list_head leaf_rt_rq_list;
  360. struct task_group *tg;
  361. struct sched_rt_entity *rt_se;
  362. #endif
  363. };
  364. #ifdef CONFIG_SMP
  365. /*
  366. * We add the notion of a root-domain which will be used to define per-domain
  367. * variables. Each exclusive cpuset essentially defines an island domain by
  368. * fully partitioning the member cpus from any other cpuset. Whenever a new
  369. * exclusive cpuset is created, we also create and attach a new root-domain
  370. * object.
  371. *
  372. */
  373. struct root_domain {
  374. atomic_t refcount;
  375. cpumask_t span;
  376. cpumask_t online;
  377. /*
  378. * The "RT overload" flag: it gets set if a CPU has more than
  379. * one runnable RT task.
  380. */
  381. cpumask_t rto_mask;
  382. atomic_t rto_count;
  383. };
  384. /*
  385. * By default the system creates a single root-domain with all cpus as
  386. * members (mimicking the global state we have today).
  387. */
  388. static struct root_domain def_root_domain;
  389. #endif
  390. /*
  391. * This is the main, per-CPU runqueue data structure.
  392. *
  393. * Locking rule: those places that want to lock multiple runqueues
  394. * (such as the load balancing or the thread migration code), lock
  395. * acquire operations must be ordered by ascending &runqueue.
  396. */
  397. struct rq {
  398. /* runqueue lock: */
  399. spinlock_t lock;
  400. /*
  401. * nr_running and cpu_load should be in the same cacheline because
  402. * remote CPUs use both these fields when doing load calculation.
  403. */
  404. unsigned long nr_running;
  405. #define CPU_LOAD_IDX_MAX 5
  406. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  407. unsigned char idle_at_tick;
  408. #ifdef CONFIG_NO_HZ
  409. unsigned long last_tick_seen;
  410. unsigned char in_nohz_recently;
  411. #endif
  412. /* capture load from *all* tasks on this cpu: */
  413. struct load_weight load;
  414. unsigned long nr_load_updates;
  415. u64 nr_switches;
  416. struct cfs_rq cfs;
  417. struct rt_rq rt;
  418. #ifdef CONFIG_FAIR_GROUP_SCHED
  419. /* list of leaf cfs_rq on this cpu: */
  420. struct list_head leaf_cfs_rq_list;
  421. #endif
  422. #ifdef CONFIG_RT_GROUP_SCHED
  423. struct list_head leaf_rt_rq_list;
  424. #endif
  425. /*
  426. * This is part of a global counter where only the total sum
  427. * over all CPUs matters. A task can increase this counter on
  428. * one CPU and if it got migrated afterwards it may decrease
  429. * it on another CPU. Always updated under the runqueue lock:
  430. */
  431. unsigned long nr_uninterruptible;
  432. struct task_struct *curr, *idle;
  433. unsigned long next_balance;
  434. struct mm_struct *prev_mm;
  435. u64 clock, prev_clock_raw;
  436. s64 clock_max_delta;
  437. unsigned int clock_warps, clock_overflows, clock_underflows;
  438. u64 idle_clock;
  439. unsigned int clock_deep_idle_events;
  440. u64 tick_timestamp;
  441. atomic_t nr_iowait;
  442. #ifdef CONFIG_SMP
  443. struct root_domain *rd;
  444. struct sched_domain *sd;
  445. /* For active balancing */
  446. int active_balance;
  447. int push_cpu;
  448. /* cpu of this runqueue: */
  449. int cpu;
  450. struct task_struct *migration_thread;
  451. struct list_head migration_queue;
  452. #endif
  453. #ifdef CONFIG_SCHED_HRTICK
  454. unsigned long hrtick_flags;
  455. ktime_t hrtick_expire;
  456. struct hrtimer hrtick_timer;
  457. #endif
  458. #ifdef CONFIG_SCHEDSTATS
  459. /* latency stats */
  460. struct sched_info rq_sched_info;
  461. /* sys_sched_yield() stats */
  462. unsigned int yld_exp_empty;
  463. unsigned int yld_act_empty;
  464. unsigned int yld_both_empty;
  465. unsigned int yld_count;
  466. /* schedule() stats */
  467. unsigned int sched_switch;
  468. unsigned int sched_count;
  469. unsigned int sched_goidle;
  470. /* try_to_wake_up() stats */
  471. unsigned int ttwu_count;
  472. unsigned int ttwu_local;
  473. /* BKL stats */
  474. unsigned int bkl_count;
  475. #endif
  476. struct lock_class_key rq_lock_key;
  477. };
  478. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  479. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  480. {
  481. rq->curr->sched_class->check_preempt_curr(rq, p);
  482. }
  483. static inline int cpu_of(struct rq *rq)
  484. {
  485. #ifdef CONFIG_SMP
  486. return rq->cpu;
  487. #else
  488. return 0;
  489. #endif
  490. }
  491. #ifdef CONFIG_NO_HZ
  492. static inline bool nohz_on(int cpu)
  493. {
  494. return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
  495. }
  496. static inline u64 max_skipped_ticks(struct rq *rq)
  497. {
  498. return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
  499. }
  500. static inline void update_last_tick_seen(struct rq *rq)
  501. {
  502. rq->last_tick_seen = jiffies;
  503. }
  504. #else
  505. static inline u64 max_skipped_ticks(struct rq *rq)
  506. {
  507. return 1;
  508. }
  509. static inline void update_last_tick_seen(struct rq *rq)
  510. {
  511. }
  512. #endif
  513. /*
  514. * Update the per-runqueue clock, as finegrained as the platform can give
  515. * us, but without assuming monotonicity, etc.:
  516. */
  517. static void __update_rq_clock(struct rq *rq)
  518. {
  519. u64 prev_raw = rq->prev_clock_raw;
  520. u64 now = sched_clock();
  521. s64 delta = now - prev_raw;
  522. u64 clock = rq->clock;
  523. #ifdef CONFIG_SCHED_DEBUG
  524. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  525. #endif
  526. /*
  527. * Protect against sched_clock() occasionally going backwards:
  528. */
  529. if (unlikely(delta < 0)) {
  530. clock++;
  531. rq->clock_warps++;
  532. } else {
  533. /*
  534. * Catch too large forward jumps too:
  535. */
  536. u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
  537. u64 max_time = rq->tick_timestamp + max_jump;
  538. if (unlikely(clock + delta > max_time)) {
  539. if (clock < max_time)
  540. clock = max_time;
  541. else
  542. clock++;
  543. rq->clock_overflows++;
  544. } else {
  545. if (unlikely(delta > rq->clock_max_delta))
  546. rq->clock_max_delta = delta;
  547. clock += delta;
  548. }
  549. }
  550. rq->prev_clock_raw = now;
  551. rq->clock = clock;
  552. }
  553. static void update_rq_clock(struct rq *rq)
  554. {
  555. if (likely(smp_processor_id() == cpu_of(rq)))
  556. __update_rq_clock(rq);
  557. }
  558. /*
  559. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  560. * See detach_destroy_domains: synchronize_sched for details.
  561. *
  562. * The domain tree of any CPU may only be accessed from within
  563. * preempt-disabled sections.
  564. */
  565. #define for_each_domain(cpu, __sd) \
  566. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  567. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  568. #define this_rq() (&__get_cpu_var(runqueues))
  569. #define task_rq(p) cpu_rq(task_cpu(p))
  570. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  571. /*
  572. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  573. */
  574. #ifdef CONFIG_SCHED_DEBUG
  575. # define const_debug __read_mostly
  576. #else
  577. # define const_debug static const
  578. #endif
  579. /*
  580. * Debugging: various feature bits
  581. */
  582. enum {
  583. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  584. SCHED_FEAT_WAKEUP_PREEMPT = 2,
  585. SCHED_FEAT_START_DEBIT = 4,
  586. SCHED_FEAT_AFFINE_WAKEUPS = 8,
  587. SCHED_FEAT_CACHE_HOT_BUDDY = 16,
  588. SCHED_FEAT_SYNC_WAKEUPS = 32,
  589. SCHED_FEAT_HRTICK = 64,
  590. SCHED_FEAT_DOUBLE_TICK = 128,
  591. };
  592. const_debug unsigned int sysctl_sched_features =
  593. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  594. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  595. SCHED_FEAT_START_DEBIT * 1 |
  596. SCHED_FEAT_AFFINE_WAKEUPS * 1 |
  597. SCHED_FEAT_CACHE_HOT_BUDDY * 1 |
  598. SCHED_FEAT_SYNC_WAKEUPS * 1 |
  599. SCHED_FEAT_HRTICK * 1 |
  600. SCHED_FEAT_DOUBLE_TICK * 0;
  601. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  602. /*
  603. * Number of tasks to iterate in a single balance run.
  604. * Limited because this is done with IRQs disabled.
  605. */
  606. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  607. /*
  608. * period over which we measure -rt task cpu usage in us.
  609. * default: 1s
  610. */
  611. unsigned int sysctl_sched_rt_period = 1000000;
  612. static __read_mostly int scheduler_running;
  613. /*
  614. * part of the period that we allow rt tasks to run in us.
  615. * default: 0.95s
  616. */
  617. int sysctl_sched_rt_runtime = 950000;
  618. static inline u64 global_rt_period(void)
  619. {
  620. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  621. }
  622. static inline u64 global_rt_runtime(void)
  623. {
  624. if (sysctl_sched_rt_period < 0)
  625. return RUNTIME_INF;
  626. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  627. }
  628. static const unsigned long long time_sync_thresh = 100000;
  629. static DEFINE_PER_CPU(unsigned long long, time_offset);
  630. static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
  631. /*
  632. * Global lock which we take every now and then to synchronize
  633. * the CPUs time. This method is not warp-safe, but it's good
  634. * enough to synchronize slowly diverging time sources and thus
  635. * it's good enough for tracing:
  636. */
  637. static DEFINE_SPINLOCK(time_sync_lock);
  638. static unsigned long long prev_global_time;
  639. static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
  640. {
  641. unsigned long flags;
  642. spin_lock_irqsave(&time_sync_lock, flags);
  643. if (time < prev_global_time) {
  644. per_cpu(time_offset, cpu) += prev_global_time - time;
  645. time = prev_global_time;
  646. } else {
  647. prev_global_time = time;
  648. }
  649. spin_unlock_irqrestore(&time_sync_lock, flags);
  650. return time;
  651. }
  652. static unsigned long long __cpu_clock(int cpu)
  653. {
  654. unsigned long long now;
  655. unsigned long flags;
  656. struct rq *rq;
  657. /*
  658. * Only call sched_clock() if the scheduler has already been
  659. * initialized (some code might call cpu_clock() very early):
  660. */
  661. if (unlikely(!scheduler_running))
  662. return 0;
  663. local_irq_save(flags);
  664. rq = cpu_rq(cpu);
  665. update_rq_clock(rq);
  666. now = rq->clock;
  667. local_irq_restore(flags);
  668. return now;
  669. }
  670. /*
  671. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  672. * clock constructed from sched_clock():
  673. */
  674. unsigned long long cpu_clock(int cpu)
  675. {
  676. unsigned long long prev_cpu_time, time, delta_time;
  677. prev_cpu_time = per_cpu(prev_cpu_time, cpu);
  678. time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
  679. delta_time = time-prev_cpu_time;
  680. if (unlikely(delta_time > time_sync_thresh))
  681. time = __sync_cpu_clock(time, cpu);
  682. return time;
  683. }
  684. EXPORT_SYMBOL_GPL(cpu_clock);
  685. #ifndef prepare_arch_switch
  686. # define prepare_arch_switch(next) do { } while (0)
  687. #endif
  688. #ifndef finish_arch_switch
  689. # define finish_arch_switch(prev) do { } while (0)
  690. #endif
  691. static inline int task_current(struct rq *rq, struct task_struct *p)
  692. {
  693. return rq->curr == p;
  694. }
  695. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  696. static inline int task_running(struct rq *rq, struct task_struct *p)
  697. {
  698. return task_current(rq, p);
  699. }
  700. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  701. {
  702. }
  703. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  704. {
  705. #ifdef CONFIG_DEBUG_SPINLOCK
  706. /* this is a valid case when another task releases the spinlock */
  707. rq->lock.owner = current;
  708. #endif
  709. /*
  710. * If we are tracking spinlock dependencies then we have to
  711. * fix up the runqueue lock - which gets 'carried over' from
  712. * prev into current:
  713. */
  714. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  715. spin_unlock_irq(&rq->lock);
  716. }
  717. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  718. static inline int task_running(struct rq *rq, struct task_struct *p)
  719. {
  720. #ifdef CONFIG_SMP
  721. return p->oncpu;
  722. #else
  723. return task_current(rq, p);
  724. #endif
  725. }
  726. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  727. {
  728. #ifdef CONFIG_SMP
  729. /*
  730. * We can optimise this out completely for !SMP, because the
  731. * SMP rebalancing from interrupt is the only thing that cares
  732. * here.
  733. */
  734. next->oncpu = 1;
  735. #endif
  736. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  737. spin_unlock_irq(&rq->lock);
  738. #else
  739. spin_unlock(&rq->lock);
  740. #endif
  741. }
  742. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  743. {
  744. #ifdef CONFIG_SMP
  745. /*
  746. * After ->oncpu is cleared, the task can be moved to a different CPU.
  747. * We must ensure this doesn't happen until the switch is completely
  748. * finished.
  749. */
  750. smp_wmb();
  751. prev->oncpu = 0;
  752. #endif
  753. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  754. local_irq_enable();
  755. #endif
  756. }
  757. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  758. /*
  759. * __task_rq_lock - lock the runqueue a given task resides on.
  760. * Must be called interrupts disabled.
  761. */
  762. static inline struct rq *__task_rq_lock(struct task_struct *p)
  763. __acquires(rq->lock)
  764. {
  765. for (;;) {
  766. struct rq *rq = task_rq(p);
  767. spin_lock(&rq->lock);
  768. if (likely(rq == task_rq(p)))
  769. return rq;
  770. spin_unlock(&rq->lock);
  771. }
  772. }
  773. /*
  774. * task_rq_lock - lock the runqueue a given task resides on and disable
  775. * interrupts. Note the ordering: we can safely lookup the task_rq without
  776. * explicitly disabling preemption.
  777. */
  778. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  779. __acquires(rq->lock)
  780. {
  781. struct rq *rq;
  782. for (;;) {
  783. local_irq_save(*flags);
  784. rq = task_rq(p);
  785. spin_lock(&rq->lock);
  786. if (likely(rq == task_rq(p)))
  787. return rq;
  788. spin_unlock_irqrestore(&rq->lock, *flags);
  789. }
  790. }
  791. static void __task_rq_unlock(struct rq *rq)
  792. __releases(rq->lock)
  793. {
  794. spin_unlock(&rq->lock);
  795. }
  796. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  797. __releases(rq->lock)
  798. {
  799. spin_unlock_irqrestore(&rq->lock, *flags);
  800. }
  801. /*
  802. * this_rq_lock - lock this runqueue and disable interrupts.
  803. */
  804. static struct rq *this_rq_lock(void)
  805. __acquires(rq->lock)
  806. {
  807. struct rq *rq;
  808. local_irq_disable();
  809. rq = this_rq();
  810. spin_lock(&rq->lock);
  811. return rq;
  812. }
  813. /*
  814. * We are going deep-idle (irqs are disabled):
  815. */
  816. void sched_clock_idle_sleep_event(void)
  817. {
  818. struct rq *rq = cpu_rq(smp_processor_id());
  819. spin_lock(&rq->lock);
  820. __update_rq_clock(rq);
  821. spin_unlock(&rq->lock);
  822. rq->clock_deep_idle_events++;
  823. }
  824. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  825. /*
  826. * We just idled delta nanoseconds (called with irqs disabled):
  827. */
  828. void sched_clock_idle_wakeup_event(u64 delta_ns)
  829. {
  830. struct rq *rq = cpu_rq(smp_processor_id());
  831. u64 now = sched_clock();
  832. rq->idle_clock += delta_ns;
  833. /*
  834. * Override the previous timestamp and ignore all
  835. * sched_clock() deltas that occured while we idled,
  836. * and use the PM-provided delta_ns to advance the
  837. * rq clock:
  838. */
  839. spin_lock(&rq->lock);
  840. rq->prev_clock_raw = now;
  841. rq->clock += delta_ns;
  842. spin_unlock(&rq->lock);
  843. touch_softlockup_watchdog();
  844. }
  845. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  846. static void __resched_task(struct task_struct *p, int tif_bit);
  847. static inline void resched_task(struct task_struct *p)
  848. {
  849. __resched_task(p, TIF_NEED_RESCHED);
  850. }
  851. #ifdef CONFIG_SCHED_HRTICK
  852. /*
  853. * Use HR-timers to deliver accurate preemption points.
  854. *
  855. * Its all a bit involved since we cannot program an hrt while holding the
  856. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  857. * reschedule event.
  858. *
  859. * When we get rescheduled we reprogram the hrtick_timer outside of the
  860. * rq->lock.
  861. */
  862. static inline void resched_hrt(struct task_struct *p)
  863. {
  864. __resched_task(p, TIF_HRTICK_RESCHED);
  865. }
  866. static inline void resched_rq(struct rq *rq)
  867. {
  868. unsigned long flags;
  869. spin_lock_irqsave(&rq->lock, flags);
  870. resched_task(rq->curr);
  871. spin_unlock_irqrestore(&rq->lock, flags);
  872. }
  873. enum {
  874. HRTICK_SET, /* re-programm hrtick_timer */
  875. HRTICK_RESET, /* not a new slice */
  876. };
  877. /*
  878. * Use hrtick when:
  879. * - enabled by features
  880. * - hrtimer is actually high res
  881. */
  882. static inline int hrtick_enabled(struct rq *rq)
  883. {
  884. if (!sched_feat(HRTICK))
  885. return 0;
  886. return hrtimer_is_hres_active(&rq->hrtick_timer);
  887. }
  888. /*
  889. * Called to set the hrtick timer state.
  890. *
  891. * called with rq->lock held and irqs disabled
  892. */
  893. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  894. {
  895. assert_spin_locked(&rq->lock);
  896. /*
  897. * preempt at: now + delay
  898. */
  899. rq->hrtick_expire =
  900. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  901. /*
  902. * indicate we need to program the timer
  903. */
  904. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  905. if (reset)
  906. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  907. /*
  908. * New slices are called from the schedule path and don't need a
  909. * forced reschedule.
  910. */
  911. if (reset)
  912. resched_hrt(rq->curr);
  913. }
  914. static void hrtick_clear(struct rq *rq)
  915. {
  916. if (hrtimer_active(&rq->hrtick_timer))
  917. hrtimer_cancel(&rq->hrtick_timer);
  918. }
  919. /*
  920. * Update the timer from the possible pending state.
  921. */
  922. static void hrtick_set(struct rq *rq)
  923. {
  924. ktime_t time;
  925. int set, reset;
  926. unsigned long flags;
  927. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  928. spin_lock_irqsave(&rq->lock, flags);
  929. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  930. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  931. time = rq->hrtick_expire;
  932. clear_thread_flag(TIF_HRTICK_RESCHED);
  933. spin_unlock_irqrestore(&rq->lock, flags);
  934. if (set) {
  935. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  936. if (reset && !hrtimer_active(&rq->hrtick_timer))
  937. resched_rq(rq);
  938. } else
  939. hrtick_clear(rq);
  940. }
  941. /*
  942. * High-resolution timer tick.
  943. * Runs from hardirq context with interrupts disabled.
  944. */
  945. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  946. {
  947. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  948. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  949. spin_lock(&rq->lock);
  950. __update_rq_clock(rq);
  951. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  952. spin_unlock(&rq->lock);
  953. return HRTIMER_NORESTART;
  954. }
  955. static inline void init_rq_hrtick(struct rq *rq)
  956. {
  957. rq->hrtick_flags = 0;
  958. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  959. rq->hrtick_timer.function = hrtick;
  960. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  961. }
  962. void hrtick_resched(void)
  963. {
  964. struct rq *rq;
  965. unsigned long flags;
  966. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  967. return;
  968. local_irq_save(flags);
  969. rq = cpu_rq(smp_processor_id());
  970. hrtick_set(rq);
  971. local_irq_restore(flags);
  972. }
  973. #else
  974. static inline void hrtick_clear(struct rq *rq)
  975. {
  976. }
  977. static inline void hrtick_set(struct rq *rq)
  978. {
  979. }
  980. static inline void init_rq_hrtick(struct rq *rq)
  981. {
  982. }
  983. void hrtick_resched(void)
  984. {
  985. }
  986. #endif
  987. /*
  988. * resched_task - mark a task 'to be rescheduled now'.
  989. *
  990. * On UP this means the setting of the need_resched flag, on SMP it
  991. * might also involve a cross-CPU call to trigger the scheduler on
  992. * the target CPU.
  993. */
  994. #ifdef CONFIG_SMP
  995. #ifndef tsk_is_polling
  996. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  997. #endif
  998. static void __resched_task(struct task_struct *p, int tif_bit)
  999. {
  1000. int cpu;
  1001. assert_spin_locked(&task_rq(p)->lock);
  1002. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  1003. return;
  1004. set_tsk_thread_flag(p, tif_bit);
  1005. cpu = task_cpu(p);
  1006. if (cpu == smp_processor_id())
  1007. return;
  1008. /* NEED_RESCHED must be visible before we test polling */
  1009. smp_mb();
  1010. if (!tsk_is_polling(p))
  1011. smp_send_reschedule(cpu);
  1012. }
  1013. static void resched_cpu(int cpu)
  1014. {
  1015. struct rq *rq = cpu_rq(cpu);
  1016. unsigned long flags;
  1017. if (!spin_trylock_irqsave(&rq->lock, flags))
  1018. return;
  1019. resched_task(cpu_curr(cpu));
  1020. spin_unlock_irqrestore(&rq->lock, flags);
  1021. }
  1022. #ifdef CONFIG_NO_HZ
  1023. /*
  1024. * When add_timer_on() enqueues a timer into the timer wheel of an
  1025. * idle CPU then this timer might expire before the next timer event
  1026. * which is scheduled to wake up that CPU. In case of a completely
  1027. * idle system the next event might even be infinite time into the
  1028. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1029. * leaves the inner idle loop so the newly added timer is taken into
  1030. * account when the CPU goes back to idle and evaluates the timer
  1031. * wheel for the next timer event.
  1032. */
  1033. void wake_up_idle_cpu(int cpu)
  1034. {
  1035. struct rq *rq = cpu_rq(cpu);
  1036. if (cpu == smp_processor_id())
  1037. return;
  1038. /*
  1039. * This is safe, as this function is called with the timer
  1040. * wheel base lock of (cpu) held. When the CPU is on the way
  1041. * to idle and has not yet set rq->curr to idle then it will
  1042. * be serialized on the timer wheel base lock and take the new
  1043. * timer into account automatically.
  1044. */
  1045. if (rq->curr != rq->idle)
  1046. return;
  1047. /*
  1048. * We can set TIF_RESCHED on the idle task of the other CPU
  1049. * lockless. The worst case is that the other CPU runs the
  1050. * idle task through an additional NOOP schedule()
  1051. */
  1052. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1053. /* NEED_RESCHED must be visible before we test polling */
  1054. smp_mb();
  1055. if (!tsk_is_polling(rq->idle))
  1056. smp_send_reschedule(cpu);
  1057. }
  1058. #endif
  1059. #else
  1060. static void __resched_task(struct task_struct *p, int tif_bit)
  1061. {
  1062. assert_spin_locked(&task_rq(p)->lock);
  1063. set_tsk_thread_flag(p, tif_bit);
  1064. }
  1065. #endif
  1066. #if BITS_PER_LONG == 32
  1067. # define WMULT_CONST (~0UL)
  1068. #else
  1069. # define WMULT_CONST (1UL << 32)
  1070. #endif
  1071. #define WMULT_SHIFT 32
  1072. /*
  1073. * Shift right and round:
  1074. */
  1075. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1076. static unsigned long
  1077. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1078. struct load_weight *lw)
  1079. {
  1080. u64 tmp;
  1081. if (unlikely(!lw->inv_weight))
  1082. lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
  1083. tmp = (u64)delta_exec * weight;
  1084. /*
  1085. * Check whether we'd overflow the 64-bit multiplication:
  1086. */
  1087. if (unlikely(tmp > WMULT_CONST))
  1088. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1089. WMULT_SHIFT/2);
  1090. else
  1091. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1092. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1093. }
  1094. static inline unsigned long
  1095. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  1096. {
  1097. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  1098. }
  1099. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1100. {
  1101. lw->weight += inc;
  1102. lw->inv_weight = 0;
  1103. }
  1104. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1105. {
  1106. lw->weight -= dec;
  1107. lw->inv_weight = 0;
  1108. }
  1109. /*
  1110. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1111. * of tasks with abnormal "nice" values across CPUs the contribution that
  1112. * each task makes to its run queue's load is weighted according to its
  1113. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1114. * scaled version of the new time slice allocation that they receive on time
  1115. * slice expiry etc.
  1116. */
  1117. #define WEIGHT_IDLEPRIO 2
  1118. #define WMULT_IDLEPRIO (1 << 31)
  1119. /*
  1120. * Nice levels are multiplicative, with a gentle 10% change for every
  1121. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1122. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1123. * that remained on nice 0.
  1124. *
  1125. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1126. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1127. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1128. * If a task goes up by ~10% and another task goes down by ~10% then
  1129. * the relative distance between them is ~25%.)
  1130. */
  1131. static const int prio_to_weight[40] = {
  1132. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1133. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1134. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1135. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1136. /* 0 */ 1024, 820, 655, 526, 423,
  1137. /* 5 */ 335, 272, 215, 172, 137,
  1138. /* 10 */ 110, 87, 70, 56, 45,
  1139. /* 15 */ 36, 29, 23, 18, 15,
  1140. };
  1141. /*
  1142. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1143. *
  1144. * In cases where the weight does not change often, we can use the
  1145. * precalculated inverse to speed up arithmetics by turning divisions
  1146. * into multiplications:
  1147. */
  1148. static const u32 prio_to_wmult[40] = {
  1149. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1150. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1151. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1152. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1153. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1154. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1155. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1156. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1157. };
  1158. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1159. /*
  1160. * runqueue iterator, to support SMP load-balancing between different
  1161. * scheduling classes, without having to expose their internal data
  1162. * structures to the load-balancing proper:
  1163. */
  1164. struct rq_iterator {
  1165. void *arg;
  1166. struct task_struct *(*start)(void *);
  1167. struct task_struct *(*next)(void *);
  1168. };
  1169. #ifdef CONFIG_SMP
  1170. static unsigned long
  1171. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1172. unsigned long max_load_move, struct sched_domain *sd,
  1173. enum cpu_idle_type idle, int *all_pinned,
  1174. int *this_best_prio, struct rq_iterator *iterator);
  1175. static int
  1176. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1177. struct sched_domain *sd, enum cpu_idle_type idle,
  1178. struct rq_iterator *iterator);
  1179. #endif
  1180. #ifdef CONFIG_CGROUP_CPUACCT
  1181. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1182. #else
  1183. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1184. #endif
  1185. #ifdef CONFIG_SMP
  1186. static unsigned long source_load(int cpu, int type);
  1187. static unsigned long target_load(int cpu, int type);
  1188. static unsigned long cpu_avg_load_per_task(int cpu);
  1189. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1190. #endif /* CONFIG_SMP */
  1191. #include "sched_stats.h"
  1192. #include "sched_idletask.c"
  1193. #include "sched_fair.c"
  1194. #include "sched_rt.c"
  1195. #ifdef CONFIG_SCHED_DEBUG
  1196. # include "sched_debug.c"
  1197. #endif
  1198. #define sched_class_highest (&rt_sched_class)
  1199. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  1200. {
  1201. update_load_add(&rq->load, p->se.load.weight);
  1202. }
  1203. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  1204. {
  1205. update_load_sub(&rq->load, p->se.load.weight);
  1206. }
  1207. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  1208. {
  1209. rq->nr_running++;
  1210. inc_load(rq, p);
  1211. }
  1212. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  1213. {
  1214. rq->nr_running--;
  1215. dec_load(rq, p);
  1216. }
  1217. static void set_load_weight(struct task_struct *p)
  1218. {
  1219. if (task_has_rt_policy(p)) {
  1220. p->se.load.weight = prio_to_weight[0] * 2;
  1221. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1222. return;
  1223. }
  1224. /*
  1225. * SCHED_IDLE tasks get minimal weight:
  1226. */
  1227. if (p->policy == SCHED_IDLE) {
  1228. p->se.load.weight = WEIGHT_IDLEPRIO;
  1229. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1230. return;
  1231. }
  1232. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1233. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1234. }
  1235. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1236. {
  1237. sched_info_queued(p);
  1238. p->sched_class->enqueue_task(rq, p, wakeup);
  1239. p->se.on_rq = 1;
  1240. }
  1241. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1242. {
  1243. p->sched_class->dequeue_task(rq, p, sleep);
  1244. p->se.on_rq = 0;
  1245. }
  1246. /*
  1247. * __normal_prio - return the priority that is based on the static prio
  1248. */
  1249. static inline int __normal_prio(struct task_struct *p)
  1250. {
  1251. return p->static_prio;
  1252. }
  1253. /*
  1254. * Calculate the expected normal priority: i.e. priority
  1255. * without taking RT-inheritance into account. Might be
  1256. * boosted by interactivity modifiers. Changes upon fork,
  1257. * setprio syscalls, and whenever the interactivity
  1258. * estimator recalculates.
  1259. */
  1260. static inline int normal_prio(struct task_struct *p)
  1261. {
  1262. int prio;
  1263. if (task_has_rt_policy(p))
  1264. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1265. else
  1266. prio = __normal_prio(p);
  1267. return prio;
  1268. }
  1269. /*
  1270. * Calculate the current priority, i.e. the priority
  1271. * taken into account by the scheduler. This value might
  1272. * be boosted by RT tasks, or might be boosted by
  1273. * interactivity modifiers. Will be RT if the task got
  1274. * RT-boosted. If not then it returns p->normal_prio.
  1275. */
  1276. static int effective_prio(struct task_struct *p)
  1277. {
  1278. p->normal_prio = normal_prio(p);
  1279. /*
  1280. * If we are RT tasks or we were boosted to RT priority,
  1281. * keep the priority unchanged. Otherwise, update priority
  1282. * to the normal priority:
  1283. */
  1284. if (!rt_prio(p->prio))
  1285. return p->normal_prio;
  1286. return p->prio;
  1287. }
  1288. /*
  1289. * activate_task - move a task to the runqueue.
  1290. */
  1291. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1292. {
  1293. if (task_contributes_to_load(p))
  1294. rq->nr_uninterruptible--;
  1295. enqueue_task(rq, p, wakeup);
  1296. inc_nr_running(p, rq);
  1297. }
  1298. /*
  1299. * deactivate_task - remove a task from the runqueue.
  1300. */
  1301. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1302. {
  1303. if (task_contributes_to_load(p))
  1304. rq->nr_uninterruptible++;
  1305. dequeue_task(rq, p, sleep);
  1306. dec_nr_running(p, rq);
  1307. }
  1308. /**
  1309. * task_curr - is this task currently executing on a CPU?
  1310. * @p: the task in question.
  1311. */
  1312. inline int task_curr(const struct task_struct *p)
  1313. {
  1314. return cpu_curr(task_cpu(p)) == p;
  1315. }
  1316. /* Used instead of source_load when we know the type == 0 */
  1317. unsigned long weighted_cpuload(const int cpu)
  1318. {
  1319. return cpu_rq(cpu)->load.weight;
  1320. }
  1321. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1322. {
  1323. set_task_rq(p, cpu);
  1324. #ifdef CONFIG_SMP
  1325. /*
  1326. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1327. * successfuly executed on another CPU. We must ensure that updates of
  1328. * per-task data have been completed by this moment.
  1329. */
  1330. smp_wmb();
  1331. task_thread_info(p)->cpu = cpu;
  1332. #endif
  1333. }
  1334. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1335. const struct sched_class *prev_class,
  1336. int oldprio, int running)
  1337. {
  1338. if (prev_class != p->sched_class) {
  1339. if (prev_class->switched_from)
  1340. prev_class->switched_from(rq, p, running);
  1341. p->sched_class->switched_to(rq, p, running);
  1342. } else
  1343. p->sched_class->prio_changed(rq, p, oldprio, running);
  1344. }
  1345. #ifdef CONFIG_SMP
  1346. /*
  1347. * Is this task likely cache-hot:
  1348. */
  1349. static int
  1350. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1351. {
  1352. s64 delta;
  1353. /*
  1354. * Buddy candidates are cache hot:
  1355. */
  1356. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1357. return 1;
  1358. if (p->sched_class != &fair_sched_class)
  1359. return 0;
  1360. if (sysctl_sched_migration_cost == -1)
  1361. return 1;
  1362. if (sysctl_sched_migration_cost == 0)
  1363. return 0;
  1364. delta = now - p->se.exec_start;
  1365. return delta < (s64)sysctl_sched_migration_cost;
  1366. }
  1367. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1368. {
  1369. int old_cpu = task_cpu(p);
  1370. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1371. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1372. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1373. u64 clock_offset;
  1374. clock_offset = old_rq->clock - new_rq->clock;
  1375. #ifdef CONFIG_SCHEDSTATS
  1376. if (p->se.wait_start)
  1377. p->se.wait_start -= clock_offset;
  1378. if (p->se.sleep_start)
  1379. p->se.sleep_start -= clock_offset;
  1380. if (p->se.block_start)
  1381. p->se.block_start -= clock_offset;
  1382. if (old_cpu != new_cpu) {
  1383. schedstat_inc(p, se.nr_migrations);
  1384. if (task_hot(p, old_rq->clock, NULL))
  1385. schedstat_inc(p, se.nr_forced2_migrations);
  1386. }
  1387. #endif
  1388. p->se.vruntime -= old_cfsrq->min_vruntime -
  1389. new_cfsrq->min_vruntime;
  1390. __set_task_cpu(p, new_cpu);
  1391. }
  1392. struct migration_req {
  1393. struct list_head list;
  1394. struct task_struct *task;
  1395. int dest_cpu;
  1396. struct completion done;
  1397. };
  1398. /*
  1399. * The task's runqueue lock must be held.
  1400. * Returns true if you have to wait for migration thread.
  1401. */
  1402. static int
  1403. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1404. {
  1405. struct rq *rq = task_rq(p);
  1406. /*
  1407. * If the task is not on a runqueue (and not running), then
  1408. * it is sufficient to simply update the task's cpu field.
  1409. */
  1410. if (!p->se.on_rq && !task_running(rq, p)) {
  1411. set_task_cpu(p, dest_cpu);
  1412. return 0;
  1413. }
  1414. init_completion(&req->done);
  1415. req->task = p;
  1416. req->dest_cpu = dest_cpu;
  1417. list_add(&req->list, &rq->migration_queue);
  1418. return 1;
  1419. }
  1420. /*
  1421. * wait_task_inactive - wait for a thread to unschedule.
  1422. *
  1423. * The caller must ensure that the task *will* unschedule sometime soon,
  1424. * else this function might spin for a *long* time. This function can't
  1425. * be called with interrupts off, or it may introduce deadlock with
  1426. * smp_call_function() if an IPI is sent by the same process we are
  1427. * waiting to become inactive.
  1428. */
  1429. void wait_task_inactive(struct task_struct *p)
  1430. {
  1431. unsigned long flags;
  1432. int running, on_rq;
  1433. struct rq *rq;
  1434. for (;;) {
  1435. /*
  1436. * We do the initial early heuristics without holding
  1437. * any task-queue locks at all. We'll only try to get
  1438. * the runqueue lock when things look like they will
  1439. * work out!
  1440. */
  1441. rq = task_rq(p);
  1442. /*
  1443. * If the task is actively running on another CPU
  1444. * still, just relax and busy-wait without holding
  1445. * any locks.
  1446. *
  1447. * NOTE! Since we don't hold any locks, it's not
  1448. * even sure that "rq" stays as the right runqueue!
  1449. * But we don't care, since "task_running()" will
  1450. * return false if the runqueue has changed and p
  1451. * is actually now running somewhere else!
  1452. */
  1453. while (task_running(rq, p))
  1454. cpu_relax();
  1455. /*
  1456. * Ok, time to look more closely! We need the rq
  1457. * lock now, to be *sure*. If we're wrong, we'll
  1458. * just go back and repeat.
  1459. */
  1460. rq = task_rq_lock(p, &flags);
  1461. running = task_running(rq, p);
  1462. on_rq = p->se.on_rq;
  1463. task_rq_unlock(rq, &flags);
  1464. /*
  1465. * Was it really running after all now that we
  1466. * checked with the proper locks actually held?
  1467. *
  1468. * Oops. Go back and try again..
  1469. */
  1470. if (unlikely(running)) {
  1471. cpu_relax();
  1472. continue;
  1473. }
  1474. /*
  1475. * It's not enough that it's not actively running,
  1476. * it must be off the runqueue _entirely_, and not
  1477. * preempted!
  1478. *
  1479. * So if it wa still runnable (but just not actively
  1480. * running right now), it's preempted, and we should
  1481. * yield - it could be a while.
  1482. */
  1483. if (unlikely(on_rq)) {
  1484. schedule_timeout_uninterruptible(1);
  1485. continue;
  1486. }
  1487. /*
  1488. * Ahh, all good. It wasn't running, and it wasn't
  1489. * runnable, which means that it will never become
  1490. * running in the future either. We're all done!
  1491. */
  1492. break;
  1493. }
  1494. }
  1495. /***
  1496. * kick_process - kick a running thread to enter/exit the kernel
  1497. * @p: the to-be-kicked thread
  1498. *
  1499. * Cause a process which is running on another CPU to enter
  1500. * kernel-mode, without any delay. (to get signals handled.)
  1501. *
  1502. * NOTE: this function doesnt have to take the runqueue lock,
  1503. * because all it wants to ensure is that the remote task enters
  1504. * the kernel. If the IPI races and the task has been migrated
  1505. * to another CPU then no harm is done and the purpose has been
  1506. * achieved as well.
  1507. */
  1508. void kick_process(struct task_struct *p)
  1509. {
  1510. int cpu;
  1511. preempt_disable();
  1512. cpu = task_cpu(p);
  1513. if ((cpu != smp_processor_id()) && task_curr(p))
  1514. smp_send_reschedule(cpu);
  1515. preempt_enable();
  1516. }
  1517. /*
  1518. * Return a low guess at the load of a migration-source cpu weighted
  1519. * according to the scheduling class and "nice" value.
  1520. *
  1521. * We want to under-estimate the load of migration sources, to
  1522. * balance conservatively.
  1523. */
  1524. static unsigned long source_load(int cpu, int type)
  1525. {
  1526. struct rq *rq = cpu_rq(cpu);
  1527. unsigned long total = weighted_cpuload(cpu);
  1528. if (type == 0)
  1529. return total;
  1530. return min(rq->cpu_load[type-1], total);
  1531. }
  1532. /*
  1533. * Return a high guess at the load of a migration-target cpu weighted
  1534. * according to the scheduling class and "nice" value.
  1535. */
  1536. static unsigned long target_load(int cpu, int type)
  1537. {
  1538. struct rq *rq = cpu_rq(cpu);
  1539. unsigned long total = weighted_cpuload(cpu);
  1540. if (type == 0)
  1541. return total;
  1542. return max(rq->cpu_load[type-1], total);
  1543. }
  1544. /*
  1545. * Return the average load per task on the cpu's run queue
  1546. */
  1547. static unsigned long cpu_avg_load_per_task(int cpu)
  1548. {
  1549. struct rq *rq = cpu_rq(cpu);
  1550. unsigned long total = weighted_cpuload(cpu);
  1551. unsigned long n = rq->nr_running;
  1552. return n ? total / n : SCHED_LOAD_SCALE;
  1553. }
  1554. /*
  1555. * find_idlest_group finds and returns the least busy CPU group within the
  1556. * domain.
  1557. */
  1558. static struct sched_group *
  1559. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1560. {
  1561. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1562. unsigned long min_load = ULONG_MAX, this_load = 0;
  1563. int load_idx = sd->forkexec_idx;
  1564. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1565. do {
  1566. unsigned long load, avg_load;
  1567. int local_group;
  1568. int i;
  1569. /* Skip over this group if it has no CPUs allowed */
  1570. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1571. continue;
  1572. local_group = cpu_isset(this_cpu, group->cpumask);
  1573. /* Tally up the load of all CPUs in the group */
  1574. avg_load = 0;
  1575. for_each_cpu_mask(i, group->cpumask) {
  1576. /* Bias balancing toward cpus of our domain */
  1577. if (local_group)
  1578. load = source_load(i, load_idx);
  1579. else
  1580. load = target_load(i, load_idx);
  1581. avg_load += load;
  1582. }
  1583. /* Adjust by relative CPU power of the group */
  1584. avg_load = sg_div_cpu_power(group,
  1585. avg_load * SCHED_LOAD_SCALE);
  1586. if (local_group) {
  1587. this_load = avg_load;
  1588. this = group;
  1589. } else if (avg_load < min_load) {
  1590. min_load = avg_load;
  1591. idlest = group;
  1592. }
  1593. } while (group = group->next, group != sd->groups);
  1594. if (!idlest || 100*this_load < imbalance*min_load)
  1595. return NULL;
  1596. return idlest;
  1597. }
  1598. /*
  1599. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1600. */
  1601. static int
  1602. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1603. {
  1604. cpumask_t tmp;
  1605. unsigned long load, min_load = ULONG_MAX;
  1606. int idlest = -1;
  1607. int i;
  1608. /* Traverse only the allowed CPUs */
  1609. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1610. for_each_cpu_mask(i, tmp) {
  1611. load = weighted_cpuload(i);
  1612. if (load < min_load || (load == min_load && i == this_cpu)) {
  1613. min_load = load;
  1614. idlest = i;
  1615. }
  1616. }
  1617. return idlest;
  1618. }
  1619. /*
  1620. * sched_balance_self: balance the current task (running on cpu) in domains
  1621. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1622. * SD_BALANCE_EXEC.
  1623. *
  1624. * Balance, ie. select the least loaded group.
  1625. *
  1626. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1627. *
  1628. * preempt must be disabled.
  1629. */
  1630. static int sched_balance_self(int cpu, int flag)
  1631. {
  1632. struct task_struct *t = current;
  1633. struct sched_domain *tmp, *sd = NULL;
  1634. for_each_domain(cpu, tmp) {
  1635. /*
  1636. * If power savings logic is enabled for a domain, stop there.
  1637. */
  1638. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1639. break;
  1640. if (tmp->flags & flag)
  1641. sd = tmp;
  1642. }
  1643. while (sd) {
  1644. cpumask_t span;
  1645. struct sched_group *group;
  1646. int new_cpu, weight;
  1647. if (!(sd->flags & flag)) {
  1648. sd = sd->child;
  1649. continue;
  1650. }
  1651. span = sd->span;
  1652. group = find_idlest_group(sd, t, cpu);
  1653. if (!group) {
  1654. sd = sd->child;
  1655. continue;
  1656. }
  1657. new_cpu = find_idlest_cpu(group, t, cpu);
  1658. if (new_cpu == -1 || new_cpu == cpu) {
  1659. /* Now try balancing at a lower domain level of cpu */
  1660. sd = sd->child;
  1661. continue;
  1662. }
  1663. /* Now try balancing at a lower domain level of new_cpu */
  1664. cpu = new_cpu;
  1665. sd = NULL;
  1666. weight = cpus_weight(span);
  1667. for_each_domain(cpu, tmp) {
  1668. if (weight <= cpus_weight(tmp->span))
  1669. break;
  1670. if (tmp->flags & flag)
  1671. sd = tmp;
  1672. }
  1673. /* while loop will break here if sd == NULL */
  1674. }
  1675. return cpu;
  1676. }
  1677. #endif /* CONFIG_SMP */
  1678. /***
  1679. * try_to_wake_up - wake up a thread
  1680. * @p: the to-be-woken-up thread
  1681. * @state: the mask of task states that can be woken
  1682. * @sync: do a synchronous wakeup?
  1683. *
  1684. * Put it on the run-queue if it's not already there. The "current"
  1685. * thread is always on the run-queue (except when the actual
  1686. * re-schedule is in progress), and as such you're allowed to do
  1687. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1688. * runnable without the overhead of this.
  1689. *
  1690. * returns failure only if the task is already active.
  1691. */
  1692. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1693. {
  1694. int cpu, orig_cpu, this_cpu, success = 0;
  1695. unsigned long flags;
  1696. long old_state;
  1697. struct rq *rq;
  1698. if (!sched_feat(SYNC_WAKEUPS))
  1699. sync = 0;
  1700. smp_wmb();
  1701. rq = task_rq_lock(p, &flags);
  1702. old_state = p->state;
  1703. if (!(old_state & state))
  1704. goto out;
  1705. if (p->se.on_rq)
  1706. goto out_running;
  1707. cpu = task_cpu(p);
  1708. orig_cpu = cpu;
  1709. this_cpu = smp_processor_id();
  1710. #ifdef CONFIG_SMP
  1711. if (unlikely(task_running(rq, p)))
  1712. goto out_activate;
  1713. cpu = p->sched_class->select_task_rq(p, sync);
  1714. if (cpu != orig_cpu) {
  1715. set_task_cpu(p, cpu);
  1716. task_rq_unlock(rq, &flags);
  1717. /* might preempt at this point */
  1718. rq = task_rq_lock(p, &flags);
  1719. old_state = p->state;
  1720. if (!(old_state & state))
  1721. goto out;
  1722. if (p->se.on_rq)
  1723. goto out_running;
  1724. this_cpu = smp_processor_id();
  1725. cpu = task_cpu(p);
  1726. }
  1727. #ifdef CONFIG_SCHEDSTATS
  1728. schedstat_inc(rq, ttwu_count);
  1729. if (cpu == this_cpu)
  1730. schedstat_inc(rq, ttwu_local);
  1731. else {
  1732. struct sched_domain *sd;
  1733. for_each_domain(this_cpu, sd) {
  1734. if (cpu_isset(cpu, sd->span)) {
  1735. schedstat_inc(sd, ttwu_wake_remote);
  1736. break;
  1737. }
  1738. }
  1739. }
  1740. #endif
  1741. out_activate:
  1742. #endif /* CONFIG_SMP */
  1743. schedstat_inc(p, se.nr_wakeups);
  1744. if (sync)
  1745. schedstat_inc(p, se.nr_wakeups_sync);
  1746. if (orig_cpu != cpu)
  1747. schedstat_inc(p, se.nr_wakeups_migrate);
  1748. if (cpu == this_cpu)
  1749. schedstat_inc(p, se.nr_wakeups_local);
  1750. else
  1751. schedstat_inc(p, se.nr_wakeups_remote);
  1752. update_rq_clock(rq);
  1753. activate_task(rq, p, 1);
  1754. success = 1;
  1755. out_running:
  1756. check_preempt_curr(rq, p);
  1757. p->state = TASK_RUNNING;
  1758. #ifdef CONFIG_SMP
  1759. if (p->sched_class->task_wake_up)
  1760. p->sched_class->task_wake_up(rq, p);
  1761. #endif
  1762. out:
  1763. task_rq_unlock(rq, &flags);
  1764. return success;
  1765. }
  1766. int wake_up_process(struct task_struct *p)
  1767. {
  1768. return try_to_wake_up(p, TASK_ALL, 0);
  1769. }
  1770. EXPORT_SYMBOL(wake_up_process);
  1771. int wake_up_state(struct task_struct *p, unsigned int state)
  1772. {
  1773. return try_to_wake_up(p, state, 0);
  1774. }
  1775. /*
  1776. * Perform scheduler related setup for a newly forked process p.
  1777. * p is forked by current.
  1778. *
  1779. * __sched_fork() is basic setup used by init_idle() too:
  1780. */
  1781. static void __sched_fork(struct task_struct *p)
  1782. {
  1783. p->se.exec_start = 0;
  1784. p->se.sum_exec_runtime = 0;
  1785. p->se.prev_sum_exec_runtime = 0;
  1786. p->se.last_wakeup = 0;
  1787. p->se.avg_overlap = 0;
  1788. #ifdef CONFIG_SCHEDSTATS
  1789. p->se.wait_start = 0;
  1790. p->se.sum_sleep_runtime = 0;
  1791. p->se.sleep_start = 0;
  1792. p->se.block_start = 0;
  1793. p->se.sleep_max = 0;
  1794. p->se.block_max = 0;
  1795. p->se.exec_max = 0;
  1796. p->se.slice_max = 0;
  1797. p->se.wait_max = 0;
  1798. #endif
  1799. INIT_LIST_HEAD(&p->rt.run_list);
  1800. p->se.on_rq = 0;
  1801. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1802. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1803. #endif
  1804. /*
  1805. * We mark the process as running here, but have not actually
  1806. * inserted it onto the runqueue yet. This guarantees that
  1807. * nobody will actually run it, and a signal or other external
  1808. * event cannot wake it up and insert it on the runqueue either.
  1809. */
  1810. p->state = TASK_RUNNING;
  1811. }
  1812. /*
  1813. * fork()/clone()-time setup:
  1814. */
  1815. void sched_fork(struct task_struct *p, int clone_flags)
  1816. {
  1817. int cpu = get_cpu();
  1818. __sched_fork(p);
  1819. #ifdef CONFIG_SMP
  1820. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1821. #endif
  1822. set_task_cpu(p, cpu);
  1823. /*
  1824. * Make sure we do not leak PI boosting priority to the child:
  1825. */
  1826. p->prio = current->normal_prio;
  1827. if (!rt_prio(p->prio))
  1828. p->sched_class = &fair_sched_class;
  1829. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1830. if (likely(sched_info_on()))
  1831. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1832. #endif
  1833. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1834. p->oncpu = 0;
  1835. #endif
  1836. #ifdef CONFIG_PREEMPT
  1837. /* Want to start with kernel preemption disabled. */
  1838. task_thread_info(p)->preempt_count = 1;
  1839. #endif
  1840. put_cpu();
  1841. }
  1842. /*
  1843. * wake_up_new_task - wake up a newly created task for the first time.
  1844. *
  1845. * This function will do some initial scheduler statistics housekeeping
  1846. * that must be done for every newly created context, then puts the task
  1847. * on the runqueue and wakes it.
  1848. */
  1849. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1850. {
  1851. unsigned long flags;
  1852. struct rq *rq;
  1853. rq = task_rq_lock(p, &flags);
  1854. BUG_ON(p->state != TASK_RUNNING);
  1855. update_rq_clock(rq);
  1856. p->prio = effective_prio(p);
  1857. if (!p->sched_class->task_new || !current->se.on_rq) {
  1858. activate_task(rq, p, 0);
  1859. } else {
  1860. /*
  1861. * Let the scheduling class do new task startup
  1862. * management (if any):
  1863. */
  1864. p->sched_class->task_new(rq, p);
  1865. inc_nr_running(p, rq);
  1866. }
  1867. check_preempt_curr(rq, p);
  1868. #ifdef CONFIG_SMP
  1869. if (p->sched_class->task_wake_up)
  1870. p->sched_class->task_wake_up(rq, p);
  1871. #endif
  1872. task_rq_unlock(rq, &flags);
  1873. }
  1874. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1875. /**
  1876. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1877. * @notifier: notifier struct to register
  1878. */
  1879. void preempt_notifier_register(struct preempt_notifier *notifier)
  1880. {
  1881. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1882. }
  1883. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1884. /**
  1885. * preempt_notifier_unregister - no longer interested in preemption notifications
  1886. * @notifier: notifier struct to unregister
  1887. *
  1888. * This is safe to call from within a preemption notifier.
  1889. */
  1890. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1891. {
  1892. hlist_del(&notifier->link);
  1893. }
  1894. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1895. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1896. {
  1897. struct preempt_notifier *notifier;
  1898. struct hlist_node *node;
  1899. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1900. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1901. }
  1902. static void
  1903. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1904. struct task_struct *next)
  1905. {
  1906. struct preempt_notifier *notifier;
  1907. struct hlist_node *node;
  1908. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1909. notifier->ops->sched_out(notifier, next);
  1910. }
  1911. #else
  1912. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1913. {
  1914. }
  1915. static void
  1916. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1917. struct task_struct *next)
  1918. {
  1919. }
  1920. #endif
  1921. /**
  1922. * prepare_task_switch - prepare to switch tasks
  1923. * @rq: the runqueue preparing to switch
  1924. * @prev: the current task that is being switched out
  1925. * @next: the task we are going to switch to.
  1926. *
  1927. * This is called with the rq lock held and interrupts off. It must
  1928. * be paired with a subsequent finish_task_switch after the context
  1929. * switch.
  1930. *
  1931. * prepare_task_switch sets up locking and calls architecture specific
  1932. * hooks.
  1933. */
  1934. static inline void
  1935. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1936. struct task_struct *next)
  1937. {
  1938. fire_sched_out_preempt_notifiers(prev, next);
  1939. prepare_lock_switch(rq, next);
  1940. prepare_arch_switch(next);
  1941. }
  1942. /**
  1943. * finish_task_switch - clean up after a task-switch
  1944. * @rq: runqueue associated with task-switch
  1945. * @prev: the thread we just switched away from.
  1946. *
  1947. * finish_task_switch must be called after the context switch, paired
  1948. * with a prepare_task_switch call before the context switch.
  1949. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1950. * and do any other architecture-specific cleanup actions.
  1951. *
  1952. * Note that we may have delayed dropping an mm in context_switch(). If
  1953. * so, we finish that here outside of the runqueue lock. (Doing it
  1954. * with the lock held can cause deadlocks; see schedule() for
  1955. * details.)
  1956. */
  1957. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1958. __releases(rq->lock)
  1959. {
  1960. struct mm_struct *mm = rq->prev_mm;
  1961. long prev_state;
  1962. rq->prev_mm = NULL;
  1963. /*
  1964. * A task struct has one reference for the use as "current".
  1965. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1966. * schedule one last time. The schedule call will never return, and
  1967. * the scheduled task must drop that reference.
  1968. * The test for TASK_DEAD must occur while the runqueue locks are
  1969. * still held, otherwise prev could be scheduled on another cpu, die
  1970. * there before we look at prev->state, and then the reference would
  1971. * be dropped twice.
  1972. * Manfred Spraul <manfred@colorfullife.com>
  1973. */
  1974. prev_state = prev->state;
  1975. finish_arch_switch(prev);
  1976. finish_lock_switch(rq, prev);
  1977. #ifdef CONFIG_SMP
  1978. if (current->sched_class->post_schedule)
  1979. current->sched_class->post_schedule(rq);
  1980. #endif
  1981. fire_sched_in_preempt_notifiers(current);
  1982. if (mm)
  1983. mmdrop(mm);
  1984. if (unlikely(prev_state == TASK_DEAD)) {
  1985. /*
  1986. * Remove function-return probe instances associated with this
  1987. * task and put them back on the free list.
  1988. */
  1989. kprobe_flush_task(prev);
  1990. put_task_struct(prev);
  1991. }
  1992. }
  1993. /**
  1994. * schedule_tail - first thing a freshly forked thread must call.
  1995. * @prev: the thread we just switched away from.
  1996. */
  1997. asmlinkage void schedule_tail(struct task_struct *prev)
  1998. __releases(rq->lock)
  1999. {
  2000. struct rq *rq = this_rq();
  2001. finish_task_switch(rq, prev);
  2002. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2003. /* In this case, finish_task_switch does not reenable preemption */
  2004. preempt_enable();
  2005. #endif
  2006. if (current->set_child_tid)
  2007. put_user(task_pid_vnr(current), current->set_child_tid);
  2008. }
  2009. /*
  2010. * context_switch - switch to the new MM and the new
  2011. * thread's register state.
  2012. */
  2013. static inline void
  2014. context_switch(struct rq *rq, struct task_struct *prev,
  2015. struct task_struct *next)
  2016. {
  2017. struct mm_struct *mm, *oldmm;
  2018. prepare_task_switch(rq, prev, next);
  2019. mm = next->mm;
  2020. oldmm = prev->active_mm;
  2021. /*
  2022. * For paravirt, this is coupled with an exit in switch_to to
  2023. * combine the page table reload and the switch backend into
  2024. * one hypercall.
  2025. */
  2026. arch_enter_lazy_cpu_mode();
  2027. if (unlikely(!mm)) {
  2028. next->active_mm = oldmm;
  2029. atomic_inc(&oldmm->mm_count);
  2030. enter_lazy_tlb(oldmm, next);
  2031. } else
  2032. switch_mm(oldmm, mm, next);
  2033. if (unlikely(!prev->mm)) {
  2034. prev->active_mm = NULL;
  2035. rq->prev_mm = oldmm;
  2036. }
  2037. /*
  2038. * Since the runqueue lock will be released by the next
  2039. * task (which is an invalid locking op but in the case
  2040. * of the scheduler it's an obvious special-case), so we
  2041. * do an early lockdep release here:
  2042. */
  2043. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2044. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2045. #endif
  2046. /* Here we just switch the register state and the stack. */
  2047. switch_to(prev, next, prev);
  2048. barrier();
  2049. /*
  2050. * this_rq must be evaluated again because prev may have moved
  2051. * CPUs since it called schedule(), thus the 'rq' on its stack
  2052. * frame will be invalid.
  2053. */
  2054. finish_task_switch(this_rq(), prev);
  2055. }
  2056. /*
  2057. * nr_running, nr_uninterruptible and nr_context_switches:
  2058. *
  2059. * externally visible scheduler statistics: current number of runnable
  2060. * threads, current number of uninterruptible-sleeping threads, total
  2061. * number of context switches performed since bootup.
  2062. */
  2063. unsigned long nr_running(void)
  2064. {
  2065. unsigned long i, sum = 0;
  2066. for_each_online_cpu(i)
  2067. sum += cpu_rq(i)->nr_running;
  2068. return sum;
  2069. }
  2070. unsigned long nr_uninterruptible(void)
  2071. {
  2072. unsigned long i, sum = 0;
  2073. for_each_possible_cpu(i)
  2074. sum += cpu_rq(i)->nr_uninterruptible;
  2075. /*
  2076. * Since we read the counters lockless, it might be slightly
  2077. * inaccurate. Do not allow it to go below zero though:
  2078. */
  2079. if (unlikely((long)sum < 0))
  2080. sum = 0;
  2081. return sum;
  2082. }
  2083. unsigned long long nr_context_switches(void)
  2084. {
  2085. int i;
  2086. unsigned long long sum = 0;
  2087. for_each_possible_cpu(i)
  2088. sum += cpu_rq(i)->nr_switches;
  2089. return sum;
  2090. }
  2091. unsigned long nr_iowait(void)
  2092. {
  2093. unsigned long i, sum = 0;
  2094. for_each_possible_cpu(i)
  2095. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2096. return sum;
  2097. }
  2098. unsigned long nr_active(void)
  2099. {
  2100. unsigned long i, running = 0, uninterruptible = 0;
  2101. for_each_online_cpu(i) {
  2102. running += cpu_rq(i)->nr_running;
  2103. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2104. }
  2105. if (unlikely((long)uninterruptible < 0))
  2106. uninterruptible = 0;
  2107. return running + uninterruptible;
  2108. }
  2109. /*
  2110. * Update rq->cpu_load[] statistics. This function is usually called every
  2111. * scheduler tick (TICK_NSEC).
  2112. */
  2113. static void update_cpu_load(struct rq *this_rq)
  2114. {
  2115. unsigned long this_load = this_rq->load.weight;
  2116. int i, scale;
  2117. this_rq->nr_load_updates++;
  2118. /* Update our load: */
  2119. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2120. unsigned long old_load, new_load;
  2121. /* scale is effectively 1 << i now, and >> i divides by scale */
  2122. old_load = this_rq->cpu_load[i];
  2123. new_load = this_load;
  2124. /*
  2125. * Round up the averaging division if load is increasing. This
  2126. * prevents us from getting stuck on 9 if the load is 10, for
  2127. * example.
  2128. */
  2129. if (new_load > old_load)
  2130. new_load += scale-1;
  2131. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2132. }
  2133. }
  2134. #ifdef CONFIG_SMP
  2135. /*
  2136. * double_rq_lock - safely lock two runqueues
  2137. *
  2138. * Note this does not disable interrupts like task_rq_lock,
  2139. * you need to do so manually before calling.
  2140. */
  2141. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2142. __acquires(rq1->lock)
  2143. __acquires(rq2->lock)
  2144. {
  2145. BUG_ON(!irqs_disabled());
  2146. if (rq1 == rq2) {
  2147. spin_lock(&rq1->lock);
  2148. __acquire(rq2->lock); /* Fake it out ;) */
  2149. } else {
  2150. if (rq1 < rq2) {
  2151. spin_lock(&rq1->lock);
  2152. spin_lock(&rq2->lock);
  2153. } else {
  2154. spin_lock(&rq2->lock);
  2155. spin_lock(&rq1->lock);
  2156. }
  2157. }
  2158. update_rq_clock(rq1);
  2159. update_rq_clock(rq2);
  2160. }
  2161. /*
  2162. * double_rq_unlock - safely unlock two runqueues
  2163. *
  2164. * Note this does not restore interrupts like task_rq_unlock,
  2165. * you need to do so manually after calling.
  2166. */
  2167. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2168. __releases(rq1->lock)
  2169. __releases(rq2->lock)
  2170. {
  2171. spin_unlock(&rq1->lock);
  2172. if (rq1 != rq2)
  2173. spin_unlock(&rq2->lock);
  2174. else
  2175. __release(rq2->lock);
  2176. }
  2177. /*
  2178. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2179. */
  2180. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2181. __releases(this_rq->lock)
  2182. __acquires(busiest->lock)
  2183. __acquires(this_rq->lock)
  2184. {
  2185. int ret = 0;
  2186. if (unlikely(!irqs_disabled())) {
  2187. /* printk() doesn't work good under rq->lock */
  2188. spin_unlock(&this_rq->lock);
  2189. BUG_ON(1);
  2190. }
  2191. if (unlikely(!spin_trylock(&busiest->lock))) {
  2192. if (busiest < this_rq) {
  2193. spin_unlock(&this_rq->lock);
  2194. spin_lock(&busiest->lock);
  2195. spin_lock(&this_rq->lock);
  2196. ret = 1;
  2197. } else
  2198. spin_lock(&busiest->lock);
  2199. }
  2200. return ret;
  2201. }
  2202. /*
  2203. * If dest_cpu is allowed for this process, migrate the task to it.
  2204. * This is accomplished by forcing the cpu_allowed mask to only
  2205. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2206. * the cpu_allowed mask is restored.
  2207. */
  2208. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2209. {
  2210. struct migration_req req;
  2211. unsigned long flags;
  2212. struct rq *rq;
  2213. rq = task_rq_lock(p, &flags);
  2214. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2215. || unlikely(cpu_is_offline(dest_cpu)))
  2216. goto out;
  2217. /* force the process onto the specified CPU */
  2218. if (migrate_task(p, dest_cpu, &req)) {
  2219. /* Need to wait for migration thread (might exit: take ref). */
  2220. struct task_struct *mt = rq->migration_thread;
  2221. get_task_struct(mt);
  2222. task_rq_unlock(rq, &flags);
  2223. wake_up_process(mt);
  2224. put_task_struct(mt);
  2225. wait_for_completion(&req.done);
  2226. return;
  2227. }
  2228. out:
  2229. task_rq_unlock(rq, &flags);
  2230. }
  2231. /*
  2232. * sched_exec - execve() is a valuable balancing opportunity, because at
  2233. * this point the task has the smallest effective memory and cache footprint.
  2234. */
  2235. void sched_exec(void)
  2236. {
  2237. int new_cpu, this_cpu = get_cpu();
  2238. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2239. put_cpu();
  2240. if (new_cpu != this_cpu)
  2241. sched_migrate_task(current, new_cpu);
  2242. }
  2243. /*
  2244. * pull_task - move a task from a remote runqueue to the local runqueue.
  2245. * Both runqueues must be locked.
  2246. */
  2247. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2248. struct rq *this_rq, int this_cpu)
  2249. {
  2250. deactivate_task(src_rq, p, 0);
  2251. set_task_cpu(p, this_cpu);
  2252. activate_task(this_rq, p, 0);
  2253. /*
  2254. * Note that idle threads have a prio of MAX_PRIO, for this test
  2255. * to be always true for them.
  2256. */
  2257. check_preempt_curr(this_rq, p);
  2258. }
  2259. /*
  2260. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2261. */
  2262. static
  2263. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2264. struct sched_domain *sd, enum cpu_idle_type idle,
  2265. int *all_pinned)
  2266. {
  2267. /*
  2268. * We do not migrate tasks that are:
  2269. * 1) running (obviously), or
  2270. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2271. * 3) are cache-hot on their current CPU.
  2272. */
  2273. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2274. schedstat_inc(p, se.nr_failed_migrations_affine);
  2275. return 0;
  2276. }
  2277. *all_pinned = 0;
  2278. if (task_running(rq, p)) {
  2279. schedstat_inc(p, se.nr_failed_migrations_running);
  2280. return 0;
  2281. }
  2282. /*
  2283. * Aggressive migration if:
  2284. * 1) task is cache cold, or
  2285. * 2) too many balance attempts have failed.
  2286. */
  2287. if (!task_hot(p, rq->clock, sd) ||
  2288. sd->nr_balance_failed > sd->cache_nice_tries) {
  2289. #ifdef CONFIG_SCHEDSTATS
  2290. if (task_hot(p, rq->clock, sd)) {
  2291. schedstat_inc(sd, lb_hot_gained[idle]);
  2292. schedstat_inc(p, se.nr_forced_migrations);
  2293. }
  2294. #endif
  2295. return 1;
  2296. }
  2297. if (task_hot(p, rq->clock, sd)) {
  2298. schedstat_inc(p, se.nr_failed_migrations_hot);
  2299. return 0;
  2300. }
  2301. return 1;
  2302. }
  2303. static unsigned long
  2304. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2305. unsigned long max_load_move, struct sched_domain *sd,
  2306. enum cpu_idle_type idle, int *all_pinned,
  2307. int *this_best_prio, struct rq_iterator *iterator)
  2308. {
  2309. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2310. struct task_struct *p;
  2311. long rem_load_move = max_load_move;
  2312. if (max_load_move == 0)
  2313. goto out;
  2314. pinned = 1;
  2315. /*
  2316. * Start the load-balancing iterator:
  2317. */
  2318. p = iterator->start(iterator->arg);
  2319. next:
  2320. if (!p || loops++ > sysctl_sched_nr_migrate)
  2321. goto out;
  2322. /*
  2323. * To help distribute high priority tasks across CPUs we don't
  2324. * skip a task if it will be the highest priority task (i.e. smallest
  2325. * prio value) on its new queue regardless of its load weight
  2326. */
  2327. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2328. SCHED_LOAD_SCALE_FUZZ;
  2329. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2330. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2331. p = iterator->next(iterator->arg);
  2332. goto next;
  2333. }
  2334. pull_task(busiest, p, this_rq, this_cpu);
  2335. pulled++;
  2336. rem_load_move -= p->se.load.weight;
  2337. /*
  2338. * We only want to steal up to the prescribed amount of weighted load.
  2339. */
  2340. if (rem_load_move > 0) {
  2341. if (p->prio < *this_best_prio)
  2342. *this_best_prio = p->prio;
  2343. p = iterator->next(iterator->arg);
  2344. goto next;
  2345. }
  2346. out:
  2347. /*
  2348. * Right now, this is one of only two places pull_task() is called,
  2349. * so we can safely collect pull_task() stats here rather than
  2350. * inside pull_task().
  2351. */
  2352. schedstat_add(sd, lb_gained[idle], pulled);
  2353. if (all_pinned)
  2354. *all_pinned = pinned;
  2355. return max_load_move - rem_load_move;
  2356. }
  2357. /*
  2358. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2359. * this_rq, as part of a balancing operation within domain "sd".
  2360. * Returns 1 if successful and 0 otherwise.
  2361. *
  2362. * Called with both runqueues locked.
  2363. */
  2364. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2365. unsigned long max_load_move,
  2366. struct sched_domain *sd, enum cpu_idle_type idle,
  2367. int *all_pinned)
  2368. {
  2369. const struct sched_class *class = sched_class_highest;
  2370. unsigned long total_load_moved = 0;
  2371. int this_best_prio = this_rq->curr->prio;
  2372. do {
  2373. total_load_moved +=
  2374. class->load_balance(this_rq, this_cpu, busiest,
  2375. max_load_move - total_load_moved,
  2376. sd, idle, all_pinned, &this_best_prio);
  2377. class = class->next;
  2378. } while (class && max_load_move > total_load_moved);
  2379. return total_load_moved > 0;
  2380. }
  2381. static int
  2382. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2383. struct sched_domain *sd, enum cpu_idle_type idle,
  2384. struct rq_iterator *iterator)
  2385. {
  2386. struct task_struct *p = iterator->start(iterator->arg);
  2387. int pinned = 0;
  2388. while (p) {
  2389. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2390. pull_task(busiest, p, this_rq, this_cpu);
  2391. /*
  2392. * Right now, this is only the second place pull_task()
  2393. * is called, so we can safely collect pull_task()
  2394. * stats here rather than inside pull_task().
  2395. */
  2396. schedstat_inc(sd, lb_gained[idle]);
  2397. return 1;
  2398. }
  2399. p = iterator->next(iterator->arg);
  2400. }
  2401. return 0;
  2402. }
  2403. /*
  2404. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2405. * part of active balancing operations within "domain".
  2406. * Returns 1 if successful and 0 otherwise.
  2407. *
  2408. * Called with both runqueues locked.
  2409. */
  2410. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2411. struct sched_domain *sd, enum cpu_idle_type idle)
  2412. {
  2413. const struct sched_class *class;
  2414. for (class = sched_class_highest; class; class = class->next)
  2415. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2416. return 1;
  2417. return 0;
  2418. }
  2419. /*
  2420. * find_busiest_group finds and returns the busiest CPU group within the
  2421. * domain. It calculates and returns the amount of weighted load which
  2422. * should be moved to restore balance via the imbalance parameter.
  2423. */
  2424. static struct sched_group *
  2425. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2426. unsigned long *imbalance, enum cpu_idle_type idle,
  2427. int *sd_idle, cpumask_t *cpus, int *balance)
  2428. {
  2429. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2430. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2431. unsigned long max_pull;
  2432. unsigned long busiest_load_per_task, busiest_nr_running;
  2433. unsigned long this_load_per_task, this_nr_running;
  2434. int load_idx, group_imb = 0;
  2435. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2436. int power_savings_balance = 1;
  2437. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2438. unsigned long min_nr_running = ULONG_MAX;
  2439. struct sched_group *group_min = NULL, *group_leader = NULL;
  2440. #endif
  2441. max_load = this_load = total_load = total_pwr = 0;
  2442. busiest_load_per_task = busiest_nr_running = 0;
  2443. this_load_per_task = this_nr_running = 0;
  2444. if (idle == CPU_NOT_IDLE)
  2445. load_idx = sd->busy_idx;
  2446. else if (idle == CPU_NEWLY_IDLE)
  2447. load_idx = sd->newidle_idx;
  2448. else
  2449. load_idx = sd->idle_idx;
  2450. do {
  2451. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2452. int local_group;
  2453. int i;
  2454. int __group_imb = 0;
  2455. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2456. unsigned long sum_nr_running, sum_weighted_load;
  2457. local_group = cpu_isset(this_cpu, group->cpumask);
  2458. if (local_group)
  2459. balance_cpu = first_cpu(group->cpumask);
  2460. /* Tally up the load of all CPUs in the group */
  2461. sum_weighted_load = sum_nr_running = avg_load = 0;
  2462. max_cpu_load = 0;
  2463. min_cpu_load = ~0UL;
  2464. for_each_cpu_mask(i, group->cpumask) {
  2465. struct rq *rq;
  2466. if (!cpu_isset(i, *cpus))
  2467. continue;
  2468. rq = cpu_rq(i);
  2469. if (*sd_idle && rq->nr_running)
  2470. *sd_idle = 0;
  2471. /* Bias balancing toward cpus of our domain */
  2472. if (local_group) {
  2473. if (idle_cpu(i) && !first_idle_cpu) {
  2474. first_idle_cpu = 1;
  2475. balance_cpu = i;
  2476. }
  2477. load = target_load(i, load_idx);
  2478. } else {
  2479. load = source_load(i, load_idx);
  2480. if (load > max_cpu_load)
  2481. max_cpu_load = load;
  2482. if (min_cpu_load > load)
  2483. min_cpu_load = load;
  2484. }
  2485. avg_load += load;
  2486. sum_nr_running += rq->nr_running;
  2487. sum_weighted_load += weighted_cpuload(i);
  2488. }
  2489. /*
  2490. * First idle cpu or the first cpu(busiest) in this sched group
  2491. * is eligible for doing load balancing at this and above
  2492. * domains. In the newly idle case, we will allow all the cpu's
  2493. * to do the newly idle load balance.
  2494. */
  2495. if (idle != CPU_NEWLY_IDLE && local_group &&
  2496. balance_cpu != this_cpu && balance) {
  2497. *balance = 0;
  2498. goto ret;
  2499. }
  2500. total_load += avg_load;
  2501. total_pwr += group->__cpu_power;
  2502. /* Adjust by relative CPU power of the group */
  2503. avg_load = sg_div_cpu_power(group,
  2504. avg_load * SCHED_LOAD_SCALE);
  2505. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2506. __group_imb = 1;
  2507. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2508. if (local_group) {
  2509. this_load = avg_load;
  2510. this = group;
  2511. this_nr_running = sum_nr_running;
  2512. this_load_per_task = sum_weighted_load;
  2513. } else if (avg_load > max_load &&
  2514. (sum_nr_running > group_capacity || __group_imb)) {
  2515. max_load = avg_load;
  2516. busiest = group;
  2517. busiest_nr_running = sum_nr_running;
  2518. busiest_load_per_task = sum_weighted_load;
  2519. group_imb = __group_imb;
  2520. }
  2521. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2522. /*
  2523. * Busy processors will not participate in power savings
  2524. * balance.
  2525. */
  2526. if (idle == CPU_NOT_IDLE ||
  2527. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2528. goto group_next;
  2529. /*
  2530. * If the local group is idle or completely loaded
  2531. * no need to do power savings balance at this domain
  2532. */
  2533. if (local_group && (this_nr_running >= group_capacity ||
  2534. !this_nr_running))
  2535. power_savings_balance = 0;
  2536. /*
  2537. * If a group is already running at full capacity or idle,
  2538. * don't include that group in power savings calculations
  2539. */
  2540. if (!power_savings_balance || sum_nr_running >= group_capacity
  2541. || !sum_nr_running)
  2542. goto group_next;
  2543. /*
  2544. * Calculate the group which has the least non-idle load.
  2545. * This is the group from where we need to pick up the load
  2546. * for saving power
  2547. */
  2548. if ((sum_nr_running < min_nr_running) ||
  2549. (sum_nr_running == min_nr_running &&
  2550. first_cpu(group->cpumask) <
  2551. first_cpu(group_min->cpumask))) {
  2552. group_min = group;
  2553. min_nr_running = sum_nr_running;
  2554. min_load_per_task = sum_weighted_load /
  2555. sum_nr_running;
  2556. }
  2557. /*
  2558. * Calculate the group which is almost near its
  2559. * capacity but still has some space to pick up some load
  2560. * from other group and save more power
  2561. */
  2562. if (sum_nr_running <= group_capacity - 1) {
  2563. if (sum_nr_running > leader_nr_running ||
  2564. (sum_nr_running == leader_nr_running &&
  2565. first_cpu(group->cpumask) >
  2566. first_cpu(group_leader->cpumask))) {
  2567. group_leader = group;
  2568. leader_nr_running = sum_nr_running;
  2569. }
  2570. }
  2571. group_next:
  2572. #endif
  2573. group = group->next;
  2574. } while (group != sd->groups);
  2575. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2576. goto out_balanced;
  2577. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2578. if (this_load >= avg_load ||
  2579. 100*max_load <= sd->imbalance_pct*this_load)
  2580. goto out_balanced;
  2581. busiest_load_per_task /= busiest_nr_running;
  2582. if (group_imb)
  2583. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2584. /*
  2585. * We're trying to get all the cpus to the average_load, so we don't
  2586. * want to push ourselves above the average load, nor do we wish to
  2587. * reduce the max loaded cpu below the average load, as either of these
  2588. * actions would just result in more rebalancing later, and ping-pong
  2589. * tasks around. Thus we look for the minimum possible imbalance.
  2590. * Negative imbalances (*we* are more loaded than anyone else) will
  2591. * be counted as no imbalance for these purposes -- we can't fix that
  2592. * by pulling tasks to us. Be careful of negative numbers as they'll
  2593. * appear as very large values with unsigned longs.
  2594. */
  2595. if (max_load <= busiest_load_per_task)
  2596. goto out_balanced;
  2597. /*
  2598. * In the presence of smp nice balancing, certain scenarios can have
  2599. * max load less than avg load(as we skip the groups at or below
  2600. * its cpu_power, while calculating max_load..)
  2601. */
  2602. if (max_load < avg_load) {
  2603. *imbalance = 0;
  2604. goto small_imbalance;
  2605. }
  2606. /* Don't want to pull so many tasks that a group would go idle */
  2607. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2608. /* How much load to actually move to equalise the imbalance */
  2609. *imbalance = min(max_pull * busiest->__cpu_power,
  2610. (avg_load - this_load) * this->__cpu_power)
  2611. / SCHED_LOAD_SCALE;
  2612. /*
  2613. * if *imbalance is less than the average load per runnable task
  2614. * there is no gaurantee that any tasks will be moved so we'll have
  2615. * a think about bumping its value to force at least one task to be
  2616. * moved
  2617. */
  2618. if (*imbalance < busiest_load_per_task) {
  2619. unsigned long tmp, pwr_now, pwr_move;
  2620. unsigned int imbn;
  2621. small_imbalance:
  2622. pwr_move = pwr_now = 0;
  2623. imbn = 2;
  2624. if (this_nr_running) {
  2625. this_load_per_task /= this_nr_running;
  2626. if (busiest_load_per_task > this_load_per_task)
  2627. imbn = 1;
  2628. } else
  2629. this_load_per_task = SCHED_LOAD_SCALE;
  2630. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2631. busiest_load_per_task * imbn) {
  2632. *imbalance = busiest_load_per_task;
  2633. return busiest;
  2634. }
  2635. /*
  2636. * OK, we don't have enough imbalance to justify moving tasks,
  2637. * however we may be able to increase total CPU power used by
  2638. * moving them.
  2639. */
  2640. pwr_now += busiest->__cpu_power *
  2641. min(busiest_load_per_task, max_load);
  2642. pwr_now += this->__cpu_power *
  2643. min(this_load_per_task, this_load);
  2644. pwr_now /= SCHED_LOAD_SCALE;
  2645. /* Amount of load we'd subtract */
  2646. tmp = sg_div_cpu_power(busiest,
  2647. busiest_load_per_task * SCHED_LOAD_SCALE);
  2648. if (max_load > tmp)
  2649. pwr_move += busiest->__cpu_power *
  2650. min(busiest_load_per_task, max_load - tmp);
  2651. /* Amount of load we'd add */
  2652. if (max_load * busiest->__cpu_power <
  2653. busiest_load_per_task * SCHED_LOAD_SCALE)
  2654. tmp = sg_div_cpu_power(this,
  2655. max_load * busiest->__cpu_power);
  2656. else
  2657. tmp = sg_div_cpu_power(this,
  2658. busiest_load_per_task * SCHED_LOAD_SCALE);
  2659. pwr_move += this->__cpu_power *
  2660. min(this_load_per_task, this_load + tmp);
  2661. pwr_move /= SCHED_LOAD_SCALE;
  2662. /* Move if we gain throughput */
  2663. if (pwr_move > pwr_now)
  2664. *imbalance = busiest_load_per_task;
  2665. }
  2666. return busiest;
  2667. out_balanced:
  2668. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2669. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2670. goto ret;
  2671. if (this == group_leader && group_leader != group_min) {
  2672. *imbalance = min_load_per_task;
  2673. return group_min;
  2674. }
  2675. #endif
  2676. ret:
  2677. *imbalance = 0;
  2678. return NULL;
  2679. }
  2680. /*
  2681. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2682. */
  2683. static struct rq *
  2684. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2685. unsigned long imbalance, cpumask_t *cpus)
  2686. {
  2687. struct rq *busiest = NULL, *rq;
  2688. unsigned long max_load = 0;
  2689. int i;
  2690. for_each_cpu_mask(i, group->cpumask) {
  2691. unsigned long wl;
  2692. if (!cpu_isset(i, *cpus))
  2693. continue;
  2694. rq = cpu_rq(i);
  2695. wl = weighted_cpuload(i);
  2696. if (rq->nr_running == 1 && wl > imbalance)
  2697. continue;
  2698. if (wl > max_load) {
  2699. max_load = wl;
  2700. busiest = rq;
  2701. }
  2702. }
  2703. return busiest;
  2704. }
  2705. /*
  2706. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2707. * so long as it is large enough.
  2708. */
  2709. #define MAX_PINNED_INTERVAL 512
  2710. /*
  2711. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2712. * tasks if there is an imbalance.
  2713. */
  2714. static int load_balance(int this_cpu, struct rq *this_rq,
  2715. struct sched_domain *sd, enum cpu_idle_type idle,
  2716. int *balance)
  2717. {
  2718. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2719. struct sched_group *group;
  2720. unsigned long imbalance;
  2721. struct rq *busiest;
  2722. cpumask_t cpus = CPU_MASK_ALL;
  2723. unsigned long flags;
  2724. /*
  2725. * When power savings policy is enabled for the parent domain, idle
  2726. * sibling can pick up load irrespective of busy siblings. In this case,
  2727. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2728. * portraying it as CPU_NOT_IDLE.
  2729. */
  2730. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2731. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2732. sd_idle = 1;
  2733. schedstat_inc(sd, lb_count[idle]);
  2734. redo:
  2735. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2736. &cpus, balance);
  2737. if (*balance == 0)
  2738. goto out_balanced;
  2739. if (!group) {
  2740. schedstat_inc(sd, lb_nobusyg[idle]);
  2741. goto out_balanced;
  2742. }
  2743. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2744. if (!busiest) {
  2745. schedstat_inc(sd, lb_nobusyq[idle]);
  2746. goto out_balanced;
  2747. }
  2748. BUG_ON(busiest == this_rq);
  2749. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2750. ld_moved = 0;
  2751. if (busiest->nr_running > 1) {
  2752. /*
  2753. * Attempt to move tasks. If find_busiest_group has found
  2754. * an imbalance but busiest->nr_running <= 1, the group is
  2755. * still unbalanced. ld_moved simply stays zero, so it is
  2756. * correctly treated as an imbalance.
  2757. */
  2758. local_irq_save(flags);
  2759. double_rq_lock(this_rq, busiest);
  2760. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2761. imbalance, sd, idle, &all_pinned);
  2762. double_rq_unlock(this_rq, busiest);
  2763. local_irq_restore(flags);
  2764. /*
  2765. * some other cpu did the load balance for us.
  2766. */
  2767. if (ld_moved && this_cpu != smp_processor_id())
  2768. resched_cpu(this_cpu);
  2769. /* All tasks on this runqueue were pinned by CPU affinity */
  2770. if (unlikely(all_pinned)) {
  2771. cpu_clear(cpu_of(busiest), cpus);
  2772. if (!cpus_empty(cpus))
  2773. goto redo;
  2774. goto out_balanced;
  2775. }
  2776. }
  2777. if (!ld_moved) {
  2778. schedstat_inc(sd, lb_failed[idle]);
  2779. sd->nr_balance_failed++;
  2780. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2781. spin_lock_irqsave(&busiest->lock, flags);
  2782. /* don't kick the migration_thread, if the curr
  2783. * task on busiest cpu can't be moved to this_cpu
  2784. */
  2785. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2786. spin_unlock_irqrestore(&busiest->lock, flags);
  2787. all_pinned = 1;
  2788. goto out_one_pinned;
  2789. }
  2790. if (!busiest->active_balance) {
  2791. busiest->active_balance = 1;
  2792. busiest->push_cpu = this_cpu;
  2793. active_balance = 1;
  2794. }
  2795. spin_unlock_irqrestore(&busiest->lock, flags);
  2796. if (active_balance)
  2797. wake_up_process(busiest->migration_thread);
  2798. /*
  2799. * We've kicked active balancing, reset the failure
  2800. * counter.
  2801. */
  2802. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2803. }
  2804. } else
  2805. sd->nr_balance_failed = 0;
  2806. if (likely(!active_balance)) {
  2807. /* We were unbalanced, so reset the balancing interval */
  2808. sd->balance_interval = sd->min_interval;
  2809. } else {
  2810. /*
  2811. * If we've begun active balancing, start to back off. This
  2812. * case may not be covered by the all_pinned logic if there
  2813. * is only 1 task on the busy runqueue (because we don't call
  2814. * move_tasks).
  2815. */
  2816. if (sd->balance_interval < sd->max_interval)
  2817. sd->balance_interval *= 2;
  2818. }
  2819. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2820. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2821. return -1;
  2822. return ld_moved;
  2823. out_balanced:
  2824. schedstat_inc(sd, lb_balanced[idle]);
  2825. sd->nr_balance_failed = 0;
  2826. out_one_pinned:
  2827. /* tune up the balancing interval */
  2828. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2829. (sd->balance_interval < sd->max_interval))
  2830. sd->balance_interval *= 2;
  2831. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2832. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2833. return -1;
  2834. return 0;
  2835. }
  2836. /*
  2837. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2838. * tasks if there is an imbalance.
  2839. *
  2840. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2841. * this_rq is locked.
  2842. */
  2843. static int
  2844. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2845. {
  2846. struct sched_group *group;
  2847. struct rq *busiest = NULL;
  2848. unsigned long imbalance;
  2849. int ld_moved = 0;
  2850. int sd_idle = 0;
  2851. int all_pinned = 0;
  2852. cpumask_t cpus = CPU_MASK_ALL;
  2853. /*
  2854. * When power savings policy is enabled for the parent domain, idle
  2855. * sibling can pick up load irrespective of busy siblings. In this case,
  2856. * let the state of idle sibling percolate up as IDLE, instead of
  2857. * portraying it as CPU_NOT_IDLE.
  2858. */
  2859. if (sd->flags & SD_SHARE_CPUPOWER &&
  2860. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2861. sd_idle = 1;
  2862. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2863. redo:
  2864. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2865. &sd_idle, &cpus, NULL);
  2866. if (!group) {
  2867. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2868. goto out_balanced;
  2869. }
  2870. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2871. &cpus);
  2872. if (!busiest) {
  2873. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2874. goto out_balanced;
  2875. }
  2876. BUG_ON(busiest == this_rq);
  2877. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2878. ld_moved = 0;
  2879. if (busiest->nr_running > 1) {
  2880. /* Attempt to move tasks */
  2881. double_lock_balance(this_rq, busiest);
  2882. /* this_rq->clock is already updated */
  2883. update_rq_clock(busiest);
  2884. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2885. imbalance, sd, CPU_NEWLY_IDLE,
  2886. &all_pinned);
  2887. spin_unlock(&busiest->lock);
  2888. if (unlikely(all_pinned)) {
  2889. cpu_clear(cpu_of(busiest), cpus);
  2890. if (!cpus_empty(cpus))
  2891. goto redo;
  2892. }
  2893. }
  2894. if (!ld_moved) {
  2895. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2896. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2897. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2898. return -1;
  2899. } else
  2900. sd->nr_balance_failed = 0;
  2901. return ld_moved;
  2902. out_balanced:
  2903. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2904. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2905. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2906. return -1;
  2907. sd->nr_balance_failed = 0;
  2908. return 0;
  2909. }
  2910. /*
  2911. * idle_balance is called by schedule() if this_cpu is about to become
  2912. * idle. Attempts to pull tasks from other CPUs.
  2913. */
  2914. static void idle_balance(int this_cpu, struct rq *this_rq)
  2915. {
  2916. struct sched_domain *sd;
  2917. int pulled_task = -1;
  2918. unsigned long next_balance = jiffies + HZ;
  2919. for_each_domain(this_cpu, sd) {
  2920. unsigned long interval;
  2921. if (!(sd->flags & SD_LOAD_BALANCE))
  2922. continue;
  2923. if (sd->flags & SD_BALANCE_NEWIDLE)
  2924. /* If we've pulled tasks over stop searching: */
  2925. pulled_task = load_balance_newidle(this_cpu,
  2926. this_rq, sd);
  2927. interval = msecs_to_jiffies(sd->balance_interval);
  2928. if (time_after(next_balance, sd->last_balance + interval))
  2929. next_balance = sd->last_balance + interval;
  2930. if (pulled_task)
  2931. break;
  2932. }
  2933. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2934. /*
  2935. * We are going idle. next_balance may be set based on
  2936. * a busy processor. So reset next_balance.
  2937. */
  2938. this_rq->next_balance = next_balance;
  2939. }
  2940. }
  2941. /*
  2942. * active_load_balance is run by migration threads. It pushes running tasks
  2943. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2944. * running on each physical CPU where possible, and avoids physical /
  2945. * logical imbalances.
  2946. *
  2947. * Called with busiest_rq locked.
  2948. */
  2949. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2950. {
  2951. int target_cpu = busiest_rq->push_cpu;
  2952. struct sched_domain *sd;
  2953. struct rq *target_rq;
  2954. /* Is there any task to move? */
  2955. if (busiest_rq->nr_running <= 1)
  2956. return;
  2957. target_rq = cpu_rq(target_cpu);
  2958. /*
  2959. * This condition is "impossible", if it occurs
  2960. * we need to fix it. Originally reported by
  2961. * Bjorn Helgaas on a 128-cpu setup.
  2962. */
  2963. BUG_ON(busiest_rq == target_rq);
  2964. /* move a task from busiest_rq to target_rq */
  2965. double_lock_balance(busiest_rq, target_rq);
  2966. update_rq_clock(busiest_rq);
  2967. update_rq_clock(target_rq);
  2968. /* Search for an sd spanning us and the target CPU. */
  2969. for_each_domain(target_cpu, sd) {
  2970. if ((sd->flags & SD_LOAD_BALANCE) &&
  2971. cpu_isset(busiest_cpu, sd->span))
  2972. break;
  2973. }
  2974. if (likely(sd)) {
  2975. schedstat_inc(sd, alb_count);
  2976. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2977. sd, CPU_IDLE))
  2978. schedstat_inc(sd, alb_pushed);
  2979. else
  2980. schedstat_inc(sd, alb_failed);
  2981. }
  2982. spin_unlock(&target_rq->lock);
  2983. }
  2984. #ifdef CONFIG_NO_HZ
  2985. static struct {
  2986. atomic_t load_balancer;
  2987. cpumask_t cpu_mask;
  2988. } nohz ____cacheline_aligned = {
  2989. .load_balancer = ATOMIC_INIT(-1),
  2990. .cpu_mask = CPU_MASK_NONE,
  2991. };
  2992. /*
  2993. * This routine will try to nominate the ilb (idle load balancing)
  2994. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2995. * load balancing on behalf of all those cpus. If all the cpus in the system
  2996. * go into this tickless mode, then there will be no ilb owner (as there is
  2997. * no need for one) and all the cpus will sleep till the next wakeup event
  2998. * arrives...
  2999. *
  3000. * For the ilb owner, tick is not stopped. And this tick will be used
  3001. * for idle load balancing. ilb owner will still be part of
  3002. * nohz.cpu_mask..
  3003. *
  3004. * While stopping the tick, this cpu will become the ilb owner if there
  3005. * is no other owner. And will be the owner till that cpu becomes busy
  3006. * or if all cpus in the system stop their ticks at which point
  3007. * there is no need for ilb owner.
  3008. *
  3009. * When the ilb owner becomes busy, it nominates another owner, during the
  3010. * next busy scheduler_tick()
  3011. */
  3012. int select_nohz_load_balancer(int stop_tick)
  3013. {
  3014. int cpu = smp_processor_id();
  3015. if (stop_tick) {
  3016. cpu_set(cpu, nohz.cpu_mask);
  3017. cpu_rq(cpu)->in_nohz_recently = 1;
  3018. /*
  3019. * If we are going offline and still the leader, give up!
  3020. */
  3021. if (cpu_is_offline(cpu) &&
  3022. atomic_read(&nohz.load_balancer) == cpu) {
  3023. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3024. BUG();
  3025. return 0;
  3026. }
  3027. /* time for ilb owner also to sleep */
  3028. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3029. if (atomic_read(&nohz.load_balancer) == cpu)
  3030. atomic_set(&nohz.load_balancer, -1);
  3031. return 0;
  3032. }
  3033. if (atomic_read(&nohz.load_balancer) == -1) {
  3034. /* make me the ilb owner */
  3035. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3036. return 1;
  3037. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3038. return 1;
  3039. } else {
  3040. if (!cpu_isset(cpu, nohz.cpu_mask))
  3041. return 0;
  3042. cpu_clear(cpu, nohz.cpu_mask);
  3043. if (atomic_read(&nohz.load_balancer) == cpu)
  3044. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3045. BUG();
  3046. }
  3047. return 0;
  3048. }
  3049. #endif
  3050. static DEFINE_SPINLOCK(balancing);
  3051. /*
  3052. * It checks each scheduling domain to see if it is due to be balanced,
  3053. * and initiates a balancing operation if so.
  3054. *
  3055. * Balancing parameters are set up in arch_init_sched_domains.
  3056. */
  3057. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3058. {
  3059. int balance = 1;
  3060. struct rq *rq = cpu_rq(cpu);
  3061. unsigned long interval;
  3062. struct sched_domain *sd;
  3063. /* Earliest time when we have to do rebalance again */
  3064. unsigned long next_balance = jiffies + 60*HZ;
  3065. int update_next_balance = 0;
  3066. for_each_domain(cpu, sd) {
  3067. if (!(sd->flags & SD_LOAD_BALANCE))
  3068. continue;
  3069. interval = sd->balance_interval;
  3070. if (idle != CPU_IDLE)
  3071. interval *= sd->busy_factor;
  3072. /* scale ms to jiffies */
  3073. interval = msecs_to_jiffies(interval);
  3074. if (unlikely(!interval))
  3075. interval = 1;
  3076. if (interval > HZ*NR_CPUS/10)
  3077. interval = HZ*NR_CPUS/10;
  3078. if (sd->flags & SD_SERIALIZE) {
  3079. if (!spin_trylock(&balancing))
  3080. goto out;
  3081. }
  3082. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3083. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3084. /*
  3085. * We've pulled tasks over so either we're no
  3086. * longer idle, or one of our SMT siblings is
  3087. * not idle.
  3088. */
  3089. idle = CPU_NOT_IDLE;
  3090. }
  3091. sd->last_balance = jiffies;
  3092. }
  3093. if (sd->flags & SD_SERIALIZE)
  3094. spin_unlock(&balancing);
  3095. out:
  3096. if (time_after(next_balance, sd->last_balance + interval)) {
  3097. next_balance = sd->last_balance + interval;
  3098. update_next_balance = 1;
  3099. }
  3100. /*
  3101. * Stop the load balance at this level. There is another
  3102. * CPU in our sched group which is doing load balancing more
  3103. * actively.
  3104. */
  3105. if (!balance)
  3106. break;
  3107. }
  3108. /*
  3109. * next_balance will be updated only when there is a need.
  3110. * When the cpu is attached to null domain for ex, it will not be
  3111. * updated.
  3112. */
  3113. if (likely(update_next_balance))
  3114. rq->next_balance = next_balance;
  3115. }
  3116. /*
  3117. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3118. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3119. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3120. */
  3121. static void run_rebalance_domains(struct softirq_action *h)
  3122. {
  3123. int this_cpu = smp_processor_id();
  3124. struct rq *this_rq = cpu_rq(this_cpu);
  3125. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3126. CPU_IDLE : CPU_NOT_IDLE;
  3127. rebalance_domains(this_cpu, idle);
  3128. #ifdef CONFIG_NO_HZ
  3129. /*
  3130. * If this cpu is the owner for idle load balancing, then do the
  3131. * balancing on behalf of the other idle cpus whose ticks are
  3132. * stopped.
  3133. */
  3134. if (this_rq->idle_at_tick &&
  3135. atomic_read(&nohz.load_balancer) == this_cpu) {
  3136. cpumask_t cpus = nohz.cpu_mask;
  3137. struct rq *rq;
  3138. int balance_cpu;
  3139. cpu_clear(this_cpu, cpus);
  3140. for_each_cpu_mask(balance_cpu, cpus) {
  3141. /*
  3142. * If this cpu gets work to do, stop the load balancing
  3143. * work being done for other cpus. Next load
  3144. * balancing owner will pick it up.
  3145. */
  3146. if (need_resched())
  3147. break;
  3148. rebalance_domains(balance_cpu, CPU_IDLE);
  3149. rq = cpu_rq(balance_cpu);
  3150. if (time_after(this_rq->next_balance, rq->next_balance))
  3151. this_rq->next_balance = rq->next_balance;
  3152. }
  3153. }
  3154. #endif
  3155. }
  3156. /*
  3157. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3158. *
  3159. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3160. * idle load balancing owner or decide to stop the periodic load balancing,
  3161. * if the whole system is idle.
  3162. */
  3163. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3164. {
  3165. #ifdef CONFIG_NO_HZ
  3166. /*
  3167. * If we were in the nohz mode recently and busy at the current
  3168. * scheduler tick, then check if we need to nominate new idle
  3169. * load balancer.
  3170. */
  3171. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3172. rq->in_nohz_recently = 0;
  3173. if (atomic_read(&nohz.load_balancer) == cpu) {
  3174. cpu_clear(cpu, nohz.cpu_mask);
  3175. atomic_set(&nohz.load_balancer, -1);
  3176. }
  3177. if (atomic_read(&nohz.load_balancer) == -1) {
  3178. /*
  3179. * simple selection for now: Nominate the
  3180. * first cpu in the nohz list to be the next
  3181. * ilb owner.
  3182. *
  3183. * TBD: Traverse the sched domains and nominate
  3184. * the nearest cpu in the nohz.cpu_mask.
  3185. */
  3186. int ilb = first_cpu(nohz.cpu_mask);
  3187. if (ilb != NR_CPUS)
  3188. resched_cpu(ilb);
  3189. }
  3190. }
  3191. /*
  3192. * If this cpu is idle and doing idle load balancing for all the
  3193. * cpus with ticks stopped, is it time for that to stop?
  3194. */
  3195. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3196. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3197. resched_cpu(cpu);
  3198. return;
  3199. }
  3200. /*
  3201. * If this cpu is idle and the idle load balancing is done by
  3202. * someone else, then no need raise the SCHED_SOFTIRQ
  3203. */
  3204. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3205. cpu_isset(cpu, nohz.cpu_mask))
  3206. return;
  3207. #endif
  3208. if (time_after_eq(jiffies, rq->next_balance))
  3209. raise_softirq(SCHED_SOFTIRQ);
  3210. }
  3211. #else /* CONFIG_SMP */
  3212. /*
  3213. * on UP we do not need to balance between CPUs:
  3214. */
  3215. static inline void idle_balance(int cpu, struct rq *rq)
  3216. {
  3217. }
  3218. #endif
  3219. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3220. EXPORT_PER_CPU_SYMBOL(kstat);
  3221. /*
  3222. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3223. * that have not yet been banked in case the task is currently running.
  3224. */
  3225. unsigned long long task_sched_runtime(struct task_struct *p)
  3226. {
  3227. unsigned long flags;
  3228. u64 ns, delta_exec;
  3229. struct rq *rq;
  3230. rq = task_rq_lock(p, &flags);
  3231. ns = p->se.sum_exec_runtime;
  3232. if (task_current(rq, p)) {
  3233. update_rq_clock(rq);
  3234. delta_exec = rq->clock - p->se.exec_start;
  3235. if ((s64)delta_exec > 0)
  3236. ns += delta_exec;
  3237. }
  3238. task_rq_unlock(rq, &flags);
  3239. return ns;
  3240. }
  3241. /*
  3242. * Account user cpu time to a process.
  3243. * @p: the process that the cpu time gets accounted to
  3244. * @cputime: the cpu time spent in user space since the last update
  3245. */
  3246. void account_user_time(struct task_struct *p, cputime_t cputime)
  3247. {
  3248. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3249. cputime64_t tmp;
  3250. p->utime = cputime_add(p->utime, cputime);
  3251. /* Add user time to cpustat. */
  3252. tmp = cputime_to_cputime64(cputime);
  3253. if (TASK_NICE(p) > 0)
  3254. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3255. else
  3256. cpustat->user = cputime64_add(cpustat->user, tmp);
  3257. }
  3258. /*
  3259. * Account guest cpu time to a process.
  3260. * @p: the process that the cpu time gets accounted to
  3261. * @cputime: the cpu time spent in virtual machine since the last update
  3262. */
  3263. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3264. {
  3265. cputime64_t tmp;
  3266. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3267. tmp = cputime_to_cputime64(cputime);
  3268. p->utime = cputime_add(p->utime, cputime);
  3269. p->gtime = cputime_add(p->gtime, cputime);
  3270. cpustat->user = cputime64_add(cpustat->user, tmp);
  3271. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3272. }
  3273. /*
  3274. * Account scaled user cpu time to a process.
  3275. * @p: the process that the cpu time gets accounted to
  3276. * @cputime: the cpu time spent in user space since the last update
  3277. */
  3278. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3279. {
  3280. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3281. }
  3282. /*
  3283. * Account system cpu time to a process.
  3284. * @p: the process that the cpu time gets accounted to
  3285. * @hardirq_offset: the offset to subtract from hardirq_count()
  3286. * @cputime: the cpu time spent in kernel space since the last update
  3287. */
  3288. void account_system_time(struct task_struct *p, int hardirq_offset,
  3289. cputime_t cputime)
  3290. {
  3291. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3292. struct rq *rq = this_rq();
  3293. cputime64_t tmp;
  3294. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  3295. return account_guest_time(p, cputime);
  3296. p->stime = cputime_add(p->stime, cputime);
  3297. /* Add system time to cpustat. */
  3298. tmp = cputime_to_cputime64(cputime);
  3299. if (hardirq_count() - hardirq_offset)
  3300. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3301. else if (softirq_count())
  3302. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3303. else if (p != rq->idle)
  3304. cpustat->system = cputime64_add(cpustat->system, tmp);
  3305. else if (atomic_read(&rq->nr_iowait) > 0)
  3306. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3307. else
  3308. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3309. /* Account for system time used */
  3310. acct_update_integrals(p);
  3311. }
  3312. /*
  3313. * Account scaled system cpu time to a process.
  3314. * @p: the process that the cpu time gets accounted to
  3315. * @hardirq_offset: the offset to subtract from hardirq_count()
  3316. * @cputime: the cpu time spent in kernel space since the last update
  3317. */
  3318. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3319. {
  3320. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3321. }
  3322. /*
  3323. * Account for involuntary wait time.
  3324. * @p: the process from which the cpu time has been stolen
  3325. * @steal: the cpu time spent in involuntary wait
  3326. */
  3327. void account_steal_time(struct task_struct *p, cputime_t steal)
  3328. {
  3329. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3330. cputime64_t tmp = cputime_to_cputime64(steal);
  3331. struct rq *rq = this_rq();
  3332. if (p == rq->idle) {
  3333. p->stime = cputime_add(p->stime, steal);
  3334. if (atomic_read(&rq->nr_iowait) > 0)
  3335. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3336. else
  3337. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3338. } else
  3339. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3340. }
  3341. /*
  3342. * This function gets called by the timer code, with HZ frequency.
  3343. * We call it with interrupts disabled.
  3344. *
  3345. * It also gets called by the fork code, when changing the parent's
  3346. * timeslices.
  3347. */
  3348. void scheduler_tick(void)
  3349. {
  3350. int cpu = smp_processor_id();
  3351. struct rq *rq = cpu_rq(cpu);
  3352. struct task_struct *curr = rq->curr;
  3353. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  3354. spin_lock(&rq->lock);
  3355. __update_rq_clock(rq);
  3356. /*
  3357. * Let rq->clock advance by at least TICK_NSEC:
  3358. */
  3359. if (unlikely(rq->clock < next_tick)) {
  3360. rq->clock = next_tick;
  3361. rq->clock_underflows++;
  3362. }
  3363. rq->tick_timestamp = rq->clock;
  3364. update_last_tick_seen(rq);
  3365. update_cpu_load(rq);
  3366. curr->sched_class->task_tick(rq, curr, 0);
  3367. spin_unlock(&rq->lock);
  3368. #ifdef CONFIG_SMP
  3369. rq->idle_at_tick = idle_cpu(cpu);
  3370. trigger_load_balance(rq, cpu);
  3371. #endif
  3372. }
  3373. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3374. void __kprobes add_preempt_count(int val)
  3375. {
  3376. /*
  3377. * Underflow?
  3378. */
  3379. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3380. return;
  3381. preempt_count() += val;
  3382. /*
  3383. * Spinlock count overflowing soon?
  3384. */
  3385. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3386. PREEMPT_MASK - 10);
  3387. }
  3388. EXPORT_SYMBOL(add_preempt_count);
  3389. void __kprobes sub_preempt_count(int val)
  3390. {
  3391. /*
  3392. * Underflow?
  3393. */
  3394. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3395. return;
  3396. /*
  3397. * Is the spinlock portion underflowing?
  3398. */
  3399. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3400. !(preempt_count() & PREEMPT_MASK)))
  3401. return;
  3402. preempt_count() -= val;
  3403. }
  3404. EXPORT_SYMBOL(sub_preempt_count);
  3405. #endif
  3406. /*
  3407. * Print scheduling while atomic bug:
  3408. */
  3409. static noinline void __schedule_bug(struct task_struct *prev)
  3410. {
  3411. struct pt_regs *regs = get_irq_regs();
  3412. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3413. prev->comm, prev->pid, preempt_count());
  3414. debug_show_held_locks(prev);
  3415. if (irqs_disabled())
  3416. print_irqtrace_events(prev);
  3417. if (regs)
  3418. show_regs(regs);
  3419. else
  3420. dump_stack();
  3421. }
  3422. /*
  3423. * Various schedule()-time debugging checks and statistics:
  3424. */
  3425. static inline void schedule_debug(struct task_struct *prev)
  3426. {
  3427. /*
  3428. * Test if we are atomic. Since do_exit() needs to call into
  3429. * schedule() atomically, we ignore that path for now.
  3430. * Otherwise, whine if we are scheduling when we should not be.
  3431. */
  3432. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3433. __schedule_bug(prev);
  3434. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3435. schedstat_inc(this_rq(), sched_count);
  3436. #ifdef CONFIG_SCHEDSTATS
  3437. if (unlikely(prev->lock_depth >= 0)) {
  3438. schedstat_inc(this_rq(), bkl_count);
  3439. schedstat_inc(prev, sched_info.bkl_count);
  3440. }
  3441. #endif
  3442. }
  3443. /*
  3444. * Pick up the highest-prio task:
  3445. */
  3446. static inline struct task_struct *
  3447. pick_next_task(struct rq *rq, struct task_struct *prev)
  3448. {
  3449. const struct sched_class *class;
  3450. struct task_struct *p;
  3451. /*
  3452. * Optimization: we know that if all tasks are in
  3453. * the fair class we can call that function directly:
  3454. */
  3455. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3456. p = fair_sched_class.pick_next_task(rq);
  3457. if (likely(p))
  3458. return p;
  3459. }
  3460. class = sched_class_highest;
  3461. for ( ; ; ) {
  3462. p = class->pick_next_task(rq);
  3463. if (p)
  3464. return p;
  3465. /*
  3466. * Will never be NULL as the idle class always
  3467. * returns a non-NULL p:
  3468. */
  3469. class = class->next;
  3470. }
  3471. }
  3472. /*
  3473. * schedule() is the main scheduler function.
  3474. */
  3475. asmlinkage void __sched schedule(void)
  3476. {
  3477. struct task_struct *prev, *next;
  3478. unsigned long *switch_count;
  3479. struct rq *rq;
  3480. int cpu;
  3481. need_resched:
  3482. preempt_disable();
  3483. cpu = smp_processor_id();
  3484. rq = cpu_rq(cpu);
  3485. rcu_qsctr_inc(cpu);
  3486. prev = rq->curr;
  3487. switch_count = &prev->nivcsw;
  3488. release_kernel_lock(prev);
  3489. need_resched_nonpreemptible:
  3490. schedule_debug(prev);
  3491. hrtick_clear(rq);
  3492. /*
  3493. * Do the rq-clock update outside the rq lock:
  3494. */
  3495. local_irq_disable();
  3496. __update_rq_clock(rq);
  3497. spin_lock(&rq->lock);
  3498. clear_tsk_need_resched(prev);
  3499. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3500. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3501. signal_pending(prev))) {
  3502. prev->state = TASK_RUNNING;
  3503. } else {
  3504. deactivate_task(rq, prev, 1);
  3505. }
  3506. switch_count = &prev->nvcsw;
  3507. }
  3508. #ifdef CONFIG_SMP
  3509. if (prev->sched_class->pre_schedule)
  3510. prev->sched_class->pre_schedule(rq, prev);
  3511. #endif
  3512. if (unlikely(!rq->nr_running))
  3513. idle_balance(cpu, rq);
  3514. prev->sched_class->put_prev_task(rq, prev);
  3515. next = pick_next_task(rq, prev);
  3516. sched_info_switch(prev, next);
  3517. if (likely(prev != next)) {
  3518. rq->nr_switches++;
  3519. rq->curr = next;
  3520. ++*switch_count;
  3521. context_switch(rq, prev, next); /* unlocks the rq */
  3522. /*
  3523. * the context switch might have flipped the stack from under
  3524. * us, hence refresh the local variables.
  3525. */
  3526. cpu = smp_processor_id();
  3527. rq = cpu_rq(cpu);
  3528. } else
  3529. spin_unlock_irq(&rq->lock);
  3530. hrtick_set(rq);
  3531. if (unlikely(reacquire_kernel_lock(current) < 0))
  3532. goto need_resched_nonpreemptible;
  3533. preempt_enable_no_resched();
  3534. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3535. goto need_resched;
  3536. }
  3537. EXPORT_SYMBOL(schedule);
  3538. #ifdef CONFIG_PREEMPT
  3539. /*
  3540. * this is the entry point to schedule() from in-kernel preemption
  3541. * off of preempt_enable. Kernel preemptions off return from interrupt
  3542. * occur there and call schedule directly.
  3543. */
  3544. asmlinkage void __sched preempt_schedule(void)
  3545. {
  3546. struct thread_info *ti = current_thread_info();
  3547. struct task_struct *task = current;
  3548. int saved_lock_depth;
  3549. /*
  3550. * If there is a non-zero preempt_count or interrupts are disabled,
  3551. * we do not want to preempt the current task. Just return..
  3552. */
  3553. if (likely(ti->preempt_count || irqs_disabled()))
  3554. return;
  3555. do {
  3556. add_preempt_count(PREEMPT_ACTIVE);
  3557. /*
  3558. * We keep the big kernel semaphore locked, but we
  3559. * clear ->lock_depth so that schedule() doesnt
  3560. * auto-release the semaphore:
  3561. */
  3562. saved_lock_depth = task->lock_depth;
  3563. task->lock_depth = -1;
  3564. schedule();
  3565. task->lock_depth = saved_lock_depth;
  3566. sub_preempt_count(PREEMPT_ACTIVE);
  3567. /*
  3568. * Check again in case we missed a preemption opportunity
  3569. * between schedule and now.
  3570. */
  3571. barrier();
  3572. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3573. }
  3574. EXPORT_SYMBOL(preempt_schedule);
  3575. /*
  3576. * this is the entry point to schedule() from kernel preemption
  3577. * off of irq context.
  3578. * Note, that this is called and return with irqs disabled. This will
  3579. * protect us against recursive calling from irq.
  3580. */
  3581. asmlinkage void __sched preempt_schedule_irq(void)
  3582. {
  3583. struct thread_info *ti = current_thread_info();
  3584. struct task_struct *task = current;
  3585. int saved_lock_depth;
  3586. /* Catch callers which need to be fixed */
  3587. BUG_ON(ti->preempt_count || !irqs_disabled());
  3588. do {
  3589. add_preempt_count(PREEMPT_ACTIVE);
  3590. /*
  3591. * We keep the big kernel semaphore locked, but we
  3592. * clear ->lock_depth so that schedule() doesnt
  3593. * auto-release the semaphore:
  3594. */
  3595. saved_lock_depth = task->lock_depth;
  3596. task->lock_depth = -1;
  3597. local_irq_enable();
  3598. schedule();
  3599. local_irq_disable();
  3600. task->lock_depth = saved_lock_depth;
  3601. sub_preempt_count(PREEMPT_ACTIVE);
  3602. /*
  3603. * Check again in case we missed a preemption opportunity
  3604. * between schedule and now.
  3605. */
  3606. barrier();
  3607. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3608. }
  3609. #endif /* CONFIG_PREEMPT */
  3610. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3611. void *key)
  3612. {
  3613. return try_to_wake_up(curr->private, mode, sync);
  3614. }
  3615. EXPORT_SYMBOL(default_wake_function);
  3616. /*
  3617. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3618. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3619. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3620. *
  3621. * There are circumstances in which we can try to wake a task which has already
  3622. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3623. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3624. */
  3625. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3626. int nr_exclusive, int sync, void *key)
  3627. {
  3628. wait_queue_t *curr, *next;
  3629. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3630. unsigned flags = curr->flags;
  3631. if (curr->func(curr, mode, sync, key) &&
  3632. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3633. break;
  3634. }
  3635. }
  3636. /**
  3637. * __wake_up - wake up threads blocked on a waitqueue.
  3638. * @q: the waitqueue
  3639. * @mode: which threads
  3640. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3641. * @key: is directly passed to the wakeup function
  3642. */
  3643. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3644. int nr_exclusive, void *key)
  3645. {
  3646. unsigned long flags;
  3647. spin_lock_irqsave(&q->lock, flags);
  3648. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3649. spin_unlock_irqrestore(&q->lock, flags);
  3650. }
  3651. EXPORT_SYMBOL(__wake_up);
  3652. /*
  3653. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3654. */
  3655. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3656. {
  3657. __wake_up_common(q, mode, 1, 0, NULL);
  3658. }
  3659. /**
  3660. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3661. * @q: the waitqueue
  3662. * @mode: which threads
  3663. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3664. *
  3665. * The sync wakeup differs that the waker knows that it will schedule
  3666. * away soon, so while the target thread will be woken up, it will not
  3667. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3668. * with each other. This can prevent needless bouncing between CPUs.
  3669. *
  3670. * On UP it can prevent extra preemption.
  3671. */
  3672. void
  3673. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3674. {
  3675. unsigned long flags;
  3676. int sync = 1;
  3677. if (unlikely(!q))
  3678. return;
  3679. if (unlikely(!nr_exclusive))
  3680. sync = 0;
  3681. spin_lock_irqsave(&q->lock, flags);
  3682. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3683. spin_unlock_irqrestore(&q->lock, flags);
  3684. }
  3685. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3686. void complete(struct completion *x)
  3687. {
  3688. unsigned long flags;
  3689. spin_lock_irqsave(&x->wait.lock, flags);
  3690. x->done++;
  3691. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3692. spin_unlock_irqrestore(&x->wait.lock, flags);
  3693. }
  3694. EXPORT_SYMBOL(complete);
  3695. void complete_all(struct completion *x)
  3696. {
  3697. unsigned long flags;
  3698. spin_lock_irqsave(&x->wait.lock, flags);
  3699. x->done += UINT_MAX/2;
  3700. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3701. spin_unlock_irqrestore(&x->wait.lock, flags);
  3702. }
  3703. EXPORT_SYMBOL(complete_all);
  3704. static inline long __sched
  3705. do_wait_for_common(struct completion *x, long timeout, int state)
  3706. {
  3707. if (!x->done) {
  3708. DECLARE_WAITQUEUE(wait, current);
  3709. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3710. __add_wait_queue_tail(&x->wait, &wait);
  3711. do {
  3712. if ((state == TASK_INTERRUPTIBLE &&
  3713. signal_pending(current)) ||
  3714. (state == TASK_KILLABLE &&
  3715. fatal_signal_pending(current))) {
  3716. __remove_wait_queue(&x->wait, &wait);
  3717. return -ERESTARTSYS;
  3718. }
  3719. __set_current_state(state);
  3720. spin_unlock_irq(&x->wait.lock);
  3721. timeout = schedule_timeout(timeout);
  3722. spin_lock_irq(&x->wait.lock);
  3723. if (!timeout) {
  3724. __remove_wait_queue(&x->wait, &wait);
  3725. return timeout;
  3726. }
  3727. } while (!x->done);
  3728. __remove_wait_queue(&x->wait, &wait);
  3729. }
  3730. x->done--;
  3731. return timeout;
  3732. }
  3733. static long __sched
  3734. wait_for_common(struct completion *x, long timeout, int state)
  3735. {
  3736. might_sleep();
  3737. spin_lock_irq(&x->wait.lock);
  3738. timeout = do_wait_for_common(x, timeout, state);
  3739. spin_unlock_irq(&x->wait.lock);
  3740. return timeout;
  3741. }
  3742. void __sched wait_for_completion(struct completion *x)
  3743. {
  3744. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3745. }
  3746. EXPORT_SYMBOL(wait_for_completion);
  3747. unsigned long __sched
  3748. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3749. {
  3750. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3751. }
  3752. EXPORT_SYMBOL(wait_for_completion_timeout);
  3753. int __sched wait_for_completion_interruptible(struct completion *x)
  3754. {
  3755. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3756. if (t == -ERESTARTSYS)
  3757. return t;
  3758. return 0;
  3759. }
  3760. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3761. unsigned long __sched
  3762. wait_for_completion_interruptible_timeout(struct completion *x,
  3763. unsigned long timeout)
  3764. {
  3765. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3766. }
  3767. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3768. int __sched wait_for_completion_killable(struct completion *x)
  3769. {
  3770. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3771. if (t == -ERESTARTSYS)
  3772. return t;
  3773. return 0;
  3774. }
  3775. EXPORT_SYMBOL(wait_for_completion_killable);
  3776. static long __sched
  3777. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3778. {
  3779. unsigned long flags;
  3780. wait_queue_t wait;
  3781. init_waitqueue_entry(&wait, current);
  3782. __set_current_state(state);
  3783. spin_lock_irqsave(&q->lock, flags);
  3784. __add_wait_queue(q, &wait);
  3785. spin_unlock(&q->lock);
  3786. timeout = schedule_timeout(timeout);
  3787. spin_lock_irq(&q->lock);
  3788. __remove_wait_queue(q, &wait);
  3789. spin_unlock_irqrestore(&q->lock, flags);
  3790. return timeout;
  3791. }
  3792. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3793. {
  3794. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3795. }
  3796. EXPORT_SYMBOL(interruptible_sleep_on);
  3797. long __sched
  3798. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3799. {
  3800. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3801. }
  3802. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3803. void __sched sleep_on(wait_queue_head_t *q)
  3804. {
  3805. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3806. }
  3807. EXPORT_SYMBOL(sleep_on);
  3808. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3809. {
  3810. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3811. }
  3812. EXPORT_SYMBOL(sleep_on_timeout);
  3813. #ifdef CONFIG_RT_MUTEXES
  3814. /*
  3815. * rt_mutex_setprio - set the current priority of a task
  3816. * @p: task
  3817. * @prio: prio value (kernel-internal form)
  3818. *
  3819. * This function changes the 'effective' priority of a task. It does
  3820. * not touch ->normal_prio like __setscheduler().
  3821. *
  3822. * Used by the rt_mutex code to implement priority inheritance logic.
  3823. */
  3824. void rt_mutex_setprio(struct task_struct *p, int prio)
  3825. {
  3826. unsigned long flags;
  3827. int oldprio, on_rq, running;
  3828. struct rq *rq;
  3829. const struct sched_class *prev_class = p->sched_class;
  3830. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3831. rq = task_rq_lock(p, &flags);
  3832. update_rq_clock(rq);
  3833. oldprio = p->prio;
  3834. on_rq = p->se.on_rq;
  3835. running = task_current(rq, p);
  3836. if (on_rq)
  3837. dequeue_task(rq, p, 0);
  3838. if (running)
  3839. p->sched_class->put_prev_task(rq, p);
  3840. if (rt_prio(prio))
  3841. p->sched_class = &rt_sched_class;
  3842. else
  3843. p->sched_class = &fair_sched_class;
  3844. p->prio = prio;
  3845. if (running)
  3846. p->sched_class->set_curr_task(rq);
  3847. if (on_rq) {
  3848. enqueue_task(rq, p, 0);
  3849. check_class_changed(rq, p, prev_class, oldprio, running);
  3850. }
  3851. task_rq_unlock(rq, &flags);
  3852. }
  3853. #endif
  3854. void set_user_nice(struct task_struct *p, long nice)
  3855. {
  3856. int old_prio, delta, on_rq;
  3857. unsigned long flags;
  3858. struct rq *rq;
  3859. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3860. return;
  3861. /*
  3862. * We have to be careful, if called from sys_setpriority(),
  3863. * the task might be in the middle of scheduling on another CPU.
  3864. */
  3865. rq = task_rq_lock(p, &flags);
  3866. update_rq_clock(rq);
  3867. /*
  3868. * The RT priorities are set via sched_setscheduler(), but we still
  3869. * allow the 'normal' nice value to be set - but as expected
  3870. * it wont have any effect on scheduling until the task is
  3871. * SCHED_FIFO/SCHED_RR:
  3872. */
  3873. if (task_has_rt_policy(p)) {
  3874. p->static_prio = NICE_TO_PRIO(nice);
  3875. goto out_unlock;
  3876. }
  3877. on_rq = p->se.on_rq;
  3878. if (on_rq) {
  3879. dequeue_task(rq, p, 0);
  3880. dec_load(rq, p);
  3881. }
  3882. p->static_prio = NICE_TO_PRIO(nice);
  3883. set_load_weight(p);
  3884. old_prio = p->prio;
  3885. p->prio = effective_prio(p);
  3886. delta = p->prio - old_prio;
  3887. if (on_rq) {
  3888. enqueue_task(rq, p, 0);
  3889. inc_load(rq, p);
  3890. /*
  3891. * If the task increased its priority or is running and
  3892. * lowered its priority, then reschedule its CPU:
  3893. */
  3894. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3895. resched_task(rq->curr);
  3896. }
  3897. out_unlock:
  3898. task_rq_unlock(rq, &flags);
  3899. }
  3900. EXPORT_SYMBOL(set_user_nice);
  3901. /*
  3902. * can_nice - check if a task can reduce its nice value
  3903. * @p: task
  3904. * @nice: nice value
  3905. */
  3906. int can_nice(const struct task_struct *p, const int nice)
  3907. {
  3908. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3909. int nice_rlim = 20 - nice;
  3910. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3911. capable(CAP_SYS_NICE));
  3912. }
  3913. #ifdef __ARCH_WANT_SYS_NICE
  3914. /*
  3915. * sys_nice - change the priority of the current process.
  3916. * @increment: priority increment
  3917. *
  3918. * sys_setpriority is a more generic, but much slower function that
  3919. * does similar things.
  3920. */
  3921. asmlinkage long sys_nice(int increment)
  3922. {
  3923. long nice, retval;
  3924. /*
  3925. * Setpriority might change our priority at the same moment.
  3926. * We don't have to worry. Conceptually one call occurs first
  3927. * and we have a single winner.
  3928. */
  3929. if (increment < -40)
  3930. increment = -40;
  3931. if (increment > 40)
  3932. increment = 40;
  3933. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3934. if (nice < -20)
  3935. nice = -20;
  3936. if (nice > 19)
  3937. nice = 19;
  3938. if (increment < 0 && !can_nice(current, nice))
  3939. return -EPERM;
  3940. retval = security_task_setnice(current, nice);
  3941. if (retval)
  3942. return retval;
  3943. set_user_nice(current, nice);
  3944. return 0;
  3945. }
  3946. #endif
  3947. /**
  3948. * task_prio - return the priority value of a given task.
  3949. * @p: the task in question.
  3950. *
  3951. * This is the priority value as seen by users in /proc.
  3952. * RT tasks are offset by -200. Normal tasks are centered
  3953. * around 0, value goes from -16 to +15.
  3954. */
  3955. int task_prio(const struct task_struct *p)
  3956. {
  3957. return p->prio - MAX_RT_PRIO;
  3958. }
  3959. /**
  3960. * task_nice - return the nice value of a given task.
  3961. * @p: the task in question.
  3962. */
  3963. int task_nice(const struct task_struct *p)
  3964. {
  3965. return TASK_NICE(p);
  3966. }
  3967. EXPORT_SYMBOL(task_nice);
  3968. /**
  3969. * idle_cpu - is a given cpu idle currently?
  3970. * @cpu: the processor in question.
  3971. */
  3972. int idle_cpu(int cpu)
  3973. {
  3974. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3975. }
  3976. /**
  3977. * idle_task - return the idle task for a given cpu.
  3978. * @cpu: the processor in question.
  3979. */
  3980. struct task_struct *idle_task(int cpu)
  3981. {
  3982. return cpu_rq(cpu)->idle;
  3983. }
  3984. /**
  3985. * find_process_by_pid - find a process with a matching PID value.
  3986. * @pid: the pid in question.
  3987. */
  3988. static struct task_struct *find_process_by_pid(pid_t pid)
  3989. {
  3990. return pid ? find_task_by_vpid(pid) : current;
  3991. }
  3992. /* Actually do priority change: must hold rq lock. */
  3993. static void
  3994. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3995. {
  3996. BUG_ON(p->se.on_rq);
  3997. p->policy = policy;
  3998. switch (p->policy) {
  3999. case SCHED_NORMAL:
  4000. case SCHED_BATCH:
  4001. case SCHED_IDLE:
  4002. p->sched_class = &fair_sched_class;
  4003. break;
  4004. case SCHED_FIFO:
  4005. case SCHED_RR:
  4006. p->sched_class = &rt_sched_class;
  4007. break;
  4008. }
  4009. p->rt_priority = prio;
  4010. p->normal_prio = normal_prio(p);
  4011. /* we are holding p->pi_lock already */
  4012. p->prio = rt_mutex_getprio(p);
  4013. set_load_weight(p);
  4014. }
  4015. /**
  4016. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4017. * @p: the task in question.
  4018. * @policy: new policy.
  4019. * @param: structure containing the new RT priority.
  4020. *
  4021. * NOTE that the task may be already dead.
  4022. */
  4023. int sched_setscheduler(struct task_struct *p, int policy,
  4024. struct sched_param *param)
  4025. {
  4026. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4027. unsigned long flags;
  4028. const struct sched_class *prev_class = p->sched_class;
  4029. struct rq *rq;
  4030. /* may grab non-irq protected spin_locks */
  4031. BUG_ON(in_interrupt());
  4032. recheck:
  4033. /* double check policy once rq lock held */
  4034. if (policy < 0)
  4035. policy = oldpolicy = p->policy;
  4036. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4037. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4038. policy != SCHED_IDLE)
  4039. return -EINVAL;
  4040. /*
  4041. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4042. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4043. * SCHED_BATCH and SCHED_IDLE is 0.
  4044. */
  4045. if (param->sched_priority < 0 ||
  4046. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4047. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4048. return -EINVAL;
  4049. if (rt_policy(policy) != (param->sched_priority != 0))
  4050. return -EINVAL;
  4051. /*
  4052. * Allow unprivileged RT tasks to decrease priority:
  4053. */
  4054. if (!capable(CAP_SYS_NICE)) {
  4055. if (rt_policy(policy)) {
  4056. unsigned long rlim_rtprio;
  4057. if (!lock_task_sighand(p, &flags))
  4058. return -ESRCH;
  4059. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4060. unlock_task_sighand(p, &flags);
  4061. /* can't set/change the rt policy */
  4062. if (policy != p->policy && !rlim_rtprio)
  4063. return -EPERM;
  4064. /* can't increase priority */
  4065. if (param->sched_priority > p->rt_priority &&
  4066. param->sched_priority > rlim_rtprio)
  4067. return -EPERM;
  4068. }
  4069. /*
  4070. * Like positive nice levels, dont allow tasks to
  4071. * move out of SCHED_IDLE either:
  4072. */
  4073. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4074. return -EPERM;
  4075. /* can't change other user's priorities */
  4076. if ((current->euid != p->euid) &&
  4077. (current->euid != p->uid))
  4078. return -EPERM;
  4079. }
  4080. #ifdef CONFIG_RT_GROUP_SCHED
  4081. /*
  4082. * Do not allow realtime tasks into groups that have no runtime
  4083. * assigned.
  4084. */
  4085. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4086. return -EPERM;
  4087. #endif
  4088. retval = security_task_setscheduler(p, policy, param);
  4089. if (retval)
  4090. return retval;
  4091. /*
  4092. * make sure no PI-waiters arrive (or leave) while we are
  4093. * changing the priority of the task:
  4094. */
  4095. spin_lock_irqsave(&p->pi_lock, flags);
  4096. /*
  4097. * To be able to change p->policy safely, the apropriate
  4098. * runqueue lock must be held.
  4099. */
  4100. rq = __task_rq_lock(p);
  4101. /* recheck policy now with rq lock held */
  4102. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4103. policy = oldpolicy = -1;
  4104. __task_rq_unlock(rq);
  4105. spin_unlock_irqrestore(&p->pi_lock, flags);
  4106. goto recheck;
  4107. }
  4108. update_rq_clock(rq);
  4109. on_rq = p->se.on_rq;
  4110. running = task_current(rq, p);
  4111. if (on_rq)
  4112. deactivate_task(rq, p, 0);
  4113. if (running)
  4114. p->sched_class->put_prev_task(rq, p);
  4115. oldprio = p->prio;
  4116. __setscheduler(rq, p, policy, param->sched_priority);
  4117. if (running)
  4118. p->sched_class->set_curr_task(rq);
  4119. if (on_rq) {
  4120. activate_task(rq, p, 0);
  4121. check_class_changed(rq, p, prev_class, oldprio, running);
  4122. }
  4123. __task_rq_unlock(rq);
  4124. spin_unlock_irqrestore(&p->pi_lock, flags);
  4125. rt_mutex_adjust_pi(p);
  4126. return 0;
  4127. }
  4128. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4129. static int
  4130. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4131. {
  4132. struct sched_param lparam;
  4133. struct task_struct *p;
  4134. int retval;
  4135. if (!param || pid < 0)
  4136. return -EINVAL;
  4137. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4138. return -EFAULT;
  4139. rcu_read_lock();
  4140. retval = -ESRCH;
  4141. p = find_process_by_pid(pid);
  4142. if (p != NULL)
  4143. retval = sched_setscheduler(p, policy, &lparam);
  4144. rcu_read_unlock();
  4145. return retval;
  4146. }
  4147. /**
  4148. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4149. * @pid: the pid in question.
  4150. * @policy: new policy.
  4151. * @param: structure containing the new RT priority.
  4152. */
  4153. asmlinkage long
  4154. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4155. {
  4156. /* negative values for policy are not valid */
  4157. if (policy < 0)
  4158. return -EINVAL;
  4159. return do_sched_setscheduler(pid, policy, param);
  4160. }
  4161. /**
  4162. * sys_sched_setparam - set/change the RT priority of a thread
  4163. * @pid: the pid in question.
  4164. * @param: structure containing the new RT priority.
  4165. */
  4166. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4167. {
  4168. return do_sched_setscheduler(pid, -1, param);
  4169. }
  4170. /**
  4171. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4172. * @pid: the pid in question.
  4173. */
  4174. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4175. {
  4176. struct task_struct *p;
  4177. int retval;
  4178. if (pid < 0)
  4179. return -EINVAL;
  4180. retval = -ESRCH;
  4181. read_lock(&tasklist_lock);
  4182. p = find_process_by_pid(pid);
  4183. if (p) {
  4184. retval = security_task_getscheduler(p);
  4185. if (!retval)
  4186. retval = p->policy;
  4187. }
  4188. read_unlock(&tasklist_lock);
  4189. return retval;
  4190. }
  4191. /**
  4192. * sys_sched_getscheduler - get the RT priority of a thread
  4193. * @pid: the pid in question.
  4194. * @param: structure containing the RT priority.
  4195. */
  4196. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4197. {
  4198. struct sched_param lp;
  4199. struct task_struct *p;
  4200. int retval;
  4201. if (!param || pid < 0)
  4202. return -EINVAL;
  4203. read_lock(&tasklist_lock);
  4204. p = find_process_by_pid(pid);
  4205. retval = -ESRCH;
  4206. if (!p)
  4207. goto out_unlock;
  4208. retval = security_task_getscheduler(p);
  4209. if (retval)
  4210. goto out_unlock;
  4211. lp.sched_priority = p->rt_priority;
  4212. read_unlock(&tasklist_lock);
  4213. /*
  4214. * This one might sleep, we cannot do it with a spinlock held ...
  4215. */
  4216. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4217. return retval;
  4218. out_unlock:
  4219. read_unlock(&tasklist_lock);
  4220. return retval;
  4221. }
  4222. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  4223. {
  4224. cpumask_t cpus_allowed;
  4225. struct task_struct *p;
  4226. int retval;
  4227. get_online_cpus();
  4228. read_lock(&tasklist_lock);
  4229. p = find_process_by_pid(pid);
  4230. if (!p) {
  4231. read_unlock(&tasklist_lock);
  4232. put_online_cpus();
  4233. return -ESRCH;
  4234. }
  4235. /*
  4236. * It is not safe to call set_cpus_allowed with the
  4237. * tasklist_lock held. We will bump the task_struct's
  4238. * usage count and then drop tasklist_lock.
  4239. */
  4240. get_task_struct(p);
  4241. read_unlock(&tasklist_lock);
  4242. retval = -EPERM;
  4243. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4244. !capable(CAP_SYS_NICE))
  4245. goto out_unlock;
  4246. retval = security_task_setscheduler(p, 0, NULL);
  4247. if (retval)
  4248. goto out_unlock;
  4249. cpus_allowed = cpuset_cpus_allowed(p);
  4250. cpus_and(new_mask, new_mask, cpus_allowed);
  4251. again:
  4252. retval = set_cpus_allowed(p, new_mask);
  4253. if (!retval) {
  4254. cpus_allowed = cpuset_cpus_allowed(p);
  4255. if (!cpus_subset(new_mask, cpus_allowed)) {
  4256. /*
  4257. * We must have raced with a concurrent cpuset
  4258. * update. Just reset the cpus_allowed to the
  4259. * cpuset's cpus_allowed
  4260. */
  4261. new_mask = cpus_allowed;
  4262. goto again;
  4263. }
  4264. }
  4265. out_unlock:
  4266. put_task_struct(p);
  4267. put_online_cpus();
  4268. return retval;
  4269. }
  4270. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4271. cpumask_t *new_mask)
  4272. {
  4273. if (len < sizeof(cpumask_t)) {
  4274. memset(new_mask, 0, sizeof(cpumask_t));
  4275. } else if (len > sizeof(cpumask_t)) {
  4276. len = sizeof(cpumask_t);
  4277. }
  4278. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4279. }
  4280. /**
  4281. * sys_sched_setaffinity - set the cpu affinity of a process
  4282. * @pid: pid of the process
  4283. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4284. * @user_mask_ptr: user-space pointer to the new cpu mask
  4285. */
  4286. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4287. unsigned long __user *user_mask_ptr)
  4288. {
  4289. cpumask_t new_mask;
  4290. int retval;
  4291. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4292. if (retval)
  4293. return retval;
  4294. return sched_setaffinity(pid, new_mask);
  4295. }
  4296. /*
  4297. * Represents all cpu's present in the system
  4298. * In systems capable of hotplug, this map could dynamically grow
  4299. * as new cpu's are detected in the system via any platform specific
  4300. * method, such as ACPI for e.g.
  4301. */
  4302. cpumask_t cpu_present_map __read_mostly;
  4303. EXPORT_SYMBOL(cpu_present_map);
  4304. #ifndef CONFIG_SMP
  4305. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4306. EXPORT_SYMBOL(cpu_online_map);
  4307. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4308. EXPORT_SYMBOL(cpu_possible_map);
  4309. #endif
  4310. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4311. {
  4312. struct task_struct *p;
  4313. int retval;
  4314. get_online_cpus();
  4315. read_lock(&tasklist_lock);
  4316. retval = -ESRCH;
  4317. p = find_process_by_pid(pid);
  4318. if (!p)
  4319. goto out_unlock;
  4320. retval = security_task_getscheduler(p);
  4321. if (retval)
  4322. goto out_unlock;
  4323. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4324. out_unlock:
  4325. read_unlock(&tasklist_lock);
  4326. put_online_cpus();
  4327. return retval;
  4328. }
  4329. /**
  4330. * sys_sched_getaffinity - get the cpu affinity of a process
  4331. * @pid: pid of the process
  4332. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4333. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4334. */
  4335. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4336. unsigned long __user *user_mask_ptr)
  4337. {
  4338. int ret;
  4339. cpumask_t mask;
  4340. if (len < sizeof(cpumask_t))
  4341. return -EINVAL;
  4342. ret = sched_getaffinity(pid, &mask);
  4343. if (ret < 0)
  4344. return ret;
  4345. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4346. return -EFAULT;
  4347. return sizeof(cpumask_t);
  4348. }
  4349. /**
  4350. * sys_sched_yield - yield the current processor to other threads.
  4351. *
  4352. * This function yields the current CPU to other tasks. If there are no
  4353. * other threads running on this CPU then this function will return.
  4354. */
  4355. asmlinkage long sys_sched_yield(void)
  4356. {
  4357. struct rq *rq = this_rq_lock();
  4358. schedstat_inc(rq, yld_count);
  4359. current->sched_class->yield_task(rq);
  4360. /*
  4361. * Since we are going to call schedule() anyway, there's
  4362. * no need to preempt or enable interrupts:
  4363. */
  4364. __release(rq->lock);
  4365. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4366. _raw_spin_unlock(&rq->lock);
  4367. preempt_enable_no_resched();
  4368. schedule();
  4369. return 0;
  4370. }
  4371. static void __cond_resched(void)
  4372. {
  4373. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4374. __might_sleep(__FILE__, __LINE__);
  4375. #endif
  4376. /*
  4377. * The BKS might be reacquired before we have dropped
  4378. * PREEMPT_ACTIVE, which could trigger a second
  4379. * cond_resched() call.
  4380. */
  4381. do {
  4382. add_preempt_count(PREEMPT_ACTIVE);
  4383. schedule();
  4384. sub_preempt_count(PREEMPT_ACTIVE);
  4385. } while (need_resched());
  4386. }
  4387. #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
  4388. int __sched _cond_resched(void)
  4389. {
  4390. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4391. system_state == SYSTEM_RUNNING) {
  4392. __cond_resched();
  4393. return 1;
  4394. }
  4395. return 0;
  4396. }
  4397. EXPORT_SYMBOL(_cond_resched);
  4398. #endif
  4399. /*
  4400. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4401. * call schedule, and on return reacquire the lock.
  4402. *
  4403. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4404. * operations here to prevent schedule() from being called twice (once via
  4405. * spin_unlock(), once by hand).
  4406. */
  4407. int cond_resched_lock(spinlock_t *lock)
  4408. {
  4409. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4410. int ret = 0;
  4411. if (spin_needbreak(lock) || resched) {
  4412. spin_unlock(lock);
  4413. if (resched && need_resched())
  4414. __cond_resched();
  4415. else
  4416. cpu_relax();
  4417. ret = 1;
  4418. spin_lock(lock);
  4419. }
  4420. return ret;
  4421. }
  4422. EXPORT_SYMBOL(cond_resched_lock);
  4423. int __sched cond_resched_softirq(void)
  4424. {
  4425. BUG_ON(!in_softirq());
  4426. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4427. local_bh_enable();
  4428. __cond_resched();
  4429. local_bh_disable();
  4430. return 1;
  4431. }
  4432. return 0;
  4433. }
  4434. EXPORT_SYMBOL(cond_resched_softirq);
  4435. /**
  4436. * yield - yield the current processor to other threads.
  4437. *
  4438. * This is a shortcut for kernel-space yielding - it marks the
  4439. * thread runnable and calls sys_sched_yield().
  4440. */
  4441. void __sched yield(void)
  4442. {
  4443. set_current_state(TASK_RUNNING);
  4444. sys_sched_yield();
  4445. }
  4446. EXPORT_SYMBOL(yield);
  4447. /*
  4448. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4449. * that process accounting knows that this is a task in IO wait state.
  4450. *
  4451. * But don't do that if it is a deliberate, throttling IO wait (this task
  4452. * has set its backing_dev_info: the queue against which it should throttle)
  4453. */
  4454. void __sched io_schedule(void)
  4455. {
  4456. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4457. delayacct_blkio_start();
  4458. atomic_inc(&rq->nr_iowait);
  4459. schedule();
  4460. atomic_dec(&rq->nr_iowait);
  4461. delayacct_blkio_end();
  4462. }
  4463. EXPORT_SYMBOL(io_schedule);
  4464. long __sched io_schedule_timeout(long timeout)
  4465. {
  4466. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4467. long ret;
  4468. delayacct_blkio_start();
  4469. atomic_inc(&rq->nr_iowait);
  4470. ret = schedule_timeout(timeout);
  4471. atomic_dec(&rq->nr_iowait);
  4472. delayacct_blkio_end();
  4473. return ret;
  4474. }
  4475. /**
  4476. * sys_sched_get_priority_max - return maximum RT priority.
  4477. * @policy: scheduling class.
  4478. *
  4479. * this syscall returns the maximum rt_priority that can be used
  4480. * by a given scheduling class.
  4481. */
  4482. asmlinkage long sys_sched_get_priority_max(int policy)
  4483. {
  4484. int ret = -EINVAL;
  4485. switch (policy) {
  4486. case SCHED_FIFO:
  4487. case SCHED_RR:
  4488. ret = MAX_USER_RT_PRIO-1;
  4489. break;
  4490. case SCHED_NORMAL:
  4491. case SCHED_BATCH:
  4492. case SCHED_IDLE:
  4493. ret = 0;
  4494. break;
  4495. }
  4496. return ret;
  4497. }
  4498. /**
  4499. * sys_sched_get_priority_min - return minimum RT priority.
  4500. * @policy: scheduling class.
  4501. *
  4502. * this syscall returns the minimum rt_priority that can be used
  4503. * by a given scheduling class.
  4504. */
  4505. asmlinkage long sys_sched_get_priority_min(int policy)
  4506. {
  4507. int ret = -EINVAL;
  4508. switch (policy) {
  4509. case SCHED_FIFO:
  4510. case SCHED_RR:
  4511. ret = 1;
  4512. break;
  4513. case SCHED_NORMAL:
  4514. case SCHED_BATCH:
  4515. case SCHED_IDLE:
  4516. ret = 0;
  4517. }
  4518. return ret;
  4519. }
  4520. /**
  4521. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4522. * @pid: pid of the process.
  4523. * @interval: userspace pointer to the timeslice value.
  4524. *
  4525. * this syscall writes the default timeslice value of a given process
  4526. * into the user-space timespec buffer. A value of '0' means infinity.
  4527. */
  4528. asmlinkage
  4529. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4530. {
  4531. struct task_struct *p;
  4532. unsigned int time_slice;
  4533. int retval;
  4534. struct timespec t;
  4535. if (pid < 0)
  4536. return -EINVAL;
  4537. retval = -ESRCH;
  4538. read_lock(&tasklist_lock);
  4539. p = find_process_by_pid(pid);
  4540. if (!p)
  4541. goto out_unlock;
  4542. retval = security_task_getscheduler(p);
  4543. if (retval)
  4544. goto out_unlock;
  4545. /*
  4546. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4547. * tasks that are on an otherwise idle runqueue:
  4548. */
  4549. time_slice = 0;
  4550. if (p->policy == SCHED_RR) {
  4551. time_slice = DEF_TIMESLICE;
  4552. } else if (p->policy != SCHED_FIFO) {
  4553. struct sched_entity *se = &p->se;
  4554. unsigned long flags;
  4555. struct rq *rq;
  4556. rq = task_rq_lock(p, &flags);
  4557. if (rq->cfs.load.weight)
  4558. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4559. task_rq_unlock(rq, &flags);
  4560. }
  4561. read_unlock(&tasklist_lock);
  4562. jiffies_to_timespec(time_slice, &t);
  4563. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4564. return retval;
  4565. out_unlock:
  4566. read_unlock(&tasklist_lock);
  4567. return retval;
  4568. }
  4569. static const char stat_nam[] = "RSDTtZX";
  4570. void sched_show_task(struct task_struct *p)
  4571. {
  4572. unsigned long free = 0;
  4573. unsigned state;
  4574. state = p->state ? __ffs(p->state) + 1 : 0;
  4575. printk(KERN_INFO "%-13.13s %c", p->comm,
  4576. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4577. #if BITS_PER_LONG == 32
  4578. if (state == TASK_RUNNING)
  4579. printk(KERN_CONT " running ");
  4580. else
  4581. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4582. #else
  4583. if (state == TASK_RUNNING)
  4584. printk(KERN_CONT " running task ");
  4585. else
  4586. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4587. #endif
  4588. #ifdef CONFIG_DEBUG_STACK_USAGE
  4589. {
  4590. unsigned long *n = end_of_stack(p);
  4591. while (!*n)
  4592. n++;
  4593. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4594. }
  4595. #endif
  4596. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4597. task_pid_nr(p), task_pid_nr(p->real_parent));
  4598. show_stack(p, NULL);
  4599. }
  4600. void show_state_filter(unsigned long state_filter)
  4601. {
  4602. struct task_struct *g, *p;
  4603. #if BITS_PER_LONG == 32
  4604. printk(KERN_INFO
  4605. " task PC stack pid father\n");
  4606. #else
  4607. printk(KERN_INFO
  4608. " task PC stack pid father\n");
  4609. #endif
  4610. read_lock(&tasklist_lock);
  4611. do_each_thread(g, p) {
  4612. /*
  4613. * reset the NMI-timeout, listing all files on a slow
  4614. * console might take alot of time:
  4615. */
  4616. touch_nmi_watchdog();
  4617. if (!state_filter || (p->state & state_filter))
  4618. sched_show_task(p);
  4619. } while_each_thread(g, p);
  4620. touch_all_softlockup_watchdogs();
  4621. #ifdef CONFIG_SCHED_DEBUG
  4622. sysrq_sched_debug_show();
  4623. #endif
  4624. read_unlock(&tasklist_lock);
  4625. /*
  4626. * Only show locks if all tasks are dumped:
  4627. */
  4628. if (state_filter == -1)
  4629. debug_show_all_locks();
  4630. }
  4631. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4632. {
  4633. idle->sched_class = &idle_sched_class;
  4634. }
  4635. /**
  4636. * init_idle - set up an idle thread for a given CPU
  4637. * @idle: task in question
  4638. * @cpu: cpu the idle task belongs to
  4639. *
  4640. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4641. * flag, to make booting more robust.
  4642. */
  4643. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4644. {
  4645. struct rq *rq = cpu_rq(cpu);
  4646. unsigned long flags;
  4647. __sched_fork(idle);
  4648. idle->se.exec_start = sched_clock();
  4649. idle->prio = idle->normal_prio = MAX_PRIO;
  4650. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4651. __set_task_cpu(idle, cpu);
  4652. spin_lock_irqsave(&rq->lock, flags);
  4653. rq->curr = rq->idle = idle;
  4654. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4655. idle->oncpu = 1;
  4656. #endif
  4657. spin_unlock_irqrestore(&rq->lock, flags);
  4658. /* Set the preempt count _outside_ the spinlocks! */
  4659. task_thread_info(idle)->preempt_count = 0;
  4660. /*
  4661. * The idle tasks have their own, simple scheduling class:
  4662. */
  4663. idle->sched_class = &idle_sched_class;
  4664. }
  4665. /*
  4666. * In a system that switches off the HZ timer nohz_cpu_mask
  4667. * indicates which cpus entered this state. This is used
  4668. * in the rcu update to wait only for active cpus. For system
  4669. * which do not switch off the HZ timer nohz_cpu_mask should
  4670. * always be CPU_MASK_NONE.
  4671. */
  4672. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4673. /*
  4674. * Increase the granularity value when there are more CPUs,
  4675. * because with more CPUs the 'effective latency' as visible
  4676. * to users decreases. But the relationship is not linear,
  4677. * so pick a second-best guess by going with the log2 of the
  4678. * number of CPUs.
  4679. *
  4680. * This idea comes from the SD scheduler of Con Kolivas:
  4681. */
  4682. static inline void sched_init_granularity(void)
  4683. {
  4684. unsigned int factor = 1 + ilog2(num_online_cpus());
  4685. const unsigned long limit = 200000000;
  4686. sysctl_sched_min_granularity *= factor;
  4687. if (sysctl_sched_min_granularity > limit)
  4688. sysctl_sched_min_granularity = limit;
  4689. sysctl_sched_latency *= factor;
  4690. if (sysctl_sched_latency > limit)
  4691. sysctl_sched_latency = limit;
  4692. sysctl_sched_wakeup_granularity *= factor;
  4693. }
  4694. #ifdef CONFIG_SMP
  4695. /*
  4696. * This is how migration works:
  4697. *
  4698. * 1) we queue a struct migration_req structure in the source CPU's
  4699. * runqueue and wake up that CPU's migration thread.
  4700. * 2) we down() the locked semaphore => thread blocks.
  4701. * 3) migration thread wakes up (implicitly it forces the migrated
  4702. * thread off the CPU)
  4703. * 4) it gets the migration request and checks whether the migrated
  4704. * task is still in the wrong runqueue.
  4705. * 5) if it's in the wrong runqueue then the migration thread removes
  4706. * it and puts it into the right queue.
  4707. * 6) migration thread up()s the semaphore.
  4708. * 7) we wake up and the migration is done.
  4709. */
  4710. /*
  4711. * Change a given task's CPU affinity. Migrate the thread to a
  4712. * proper CPU and schedule it away if the CPU it's executing on
  4713. * is removed from the allowed bitmask.
  4714. *
  4715. * NOTE: the caller must have a valid reference to the task, the
  4716. * task must not exit() & deallocate itself prematurely. The
  4717. * call is not atomic; no spinlocks may be held.
  4718. */
  4719. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4720. {
  4721. struct migration_req req;
  4722. unsigned long flags;
  4723. struct rq *rq;
  4724. int ret = 0;
  4725. rq = task_rq_lock(p, &flags);
  4726. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4727. ret = -EINVAL;
  4728. goto out;
  4729. }
  4730. if (p->sched_class->set_cpus_allowed)
  4731. p->sched_class->set_cpus_allowed(p, &new_mask);
  4732. else {
  4733. p->cpus_allowed = new_mask;
  4734. p->rt.nr_cpus_allowed = cpus_weight(new_mask);
  4735. }
  4736. /* Can the task run on the task's current CPU? If so, we're done */
  4737. if (cpu_isset(task_cpu(p), new_mask))
  4738. goto out;
  4739. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4740. /* Need help from migration thread: drop lock and wait. */
  4741. task_rq_unlock(rq, &flags);
  4742. wake_up_process(rq->migration_thread);
  4743. wait_for_completion(&req.done);
  4744. tlb_migrate_finish(p->mm);
  4745. return 0;
  4746. }
  4747. out:
  4748. task_rq_unlock(rq, &flags);
  4749. return ret;
  4750. }
  4751. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4752. /*
  4753. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4754. * this because either it can't run here any more (set_cpus_allowed()
  4755. * away from this CPU, or CPU going down), or because we're
  4756. * attempting to rebalance this task on exec (sched_exec).
  4757. *
  4758. * So we race with normal scheduler movements, but that's OK, as long
  4759. * as the task is no longer on this CPU.
  4760. *
  4761. * Returns non-zero if task was successfully migrated.
  4762. */
  4763. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4764. {
  4765. struct rq *rq_dest, *rq_src;
  4766. int ret = 0, on_rq;
  4767. if (unlikely(cpu_is_offline(dest_cpu)))
  4768. return ret;
  4769. rq_src = cpu_rq(src_cpu);
  4770. rq_dest = cpu_rq(dest_cpu);
  4771. double_rq_lock(rq_src, rq_dest);
  4772. /* Already moved. */
  4773. if (task_cpu(p) != src_cpu)
  4774. goto out;
  4775. /* Affinity changed (again). */
  4776. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4777. goto out;
  4778. on_rq = p->se.on_rq;
  4779. if (on_rq)
  4780. deactivate_task(rq_src, p, 0);
  4781. set_task_cpu(p, dest_cpu);
  4782. if (on_rq) {
  4783. activate_task(rq_dest, p, 0);
  4784. check_preempt_curr(rq_dest, p);
  4785. }
  4786. ret = 1;
  4787. out:
  4788. double_rq_unlock(rq_src, rq_dest);
  4789. return ret;
  4790. }
  4791. /*
  4792. * migration_thread - this is a highprio system thread that performs
  4793. * thread migration by bumping thread off CPU then 'pushing' onto
  4794. * another runqueue.
  4795. */
  4796. static int migration_thread(void *data)
  4797. {
  4798. int cpu = (long)data;
  4799. struct rq *rq;
  4800. rq = cpu_rq(cpu);
  4801. BUG_ON(rq->migration_thread != current);
  4802. set_current_state(TASK_INTERRUPTIBLE);
  4803. while (!kthread_should_stop()) {
  4804. struct migration_req *req;
  4805. struct list_head *head;
  4806. spin_lock_irq(&rq->lock);
  4807. if (cpu_is_offline(cpu)) {
  4808. spin_unlock_irq(&rq->lock);
  4809. goto wait_to_die;
  4810. }
  4811. if (rq->active_balance) {
  4812. active_load_balance(rq, cpu);
  4813. rq->active_balance = 0;
  4814. }
  4815. head = &rq->migration_queue;
  4816. if (list_empty(head)) {
  4817. spin_unlock_irq(&rq->lock);
  4818. schedule();
  4819. set_current_state(TASK_INTERRUPTIBLE);
  4820. continue;
  4821. }
  4822. req = list_entry(head->next, struct migration_req, list);
  4823. list_del_init(head->next);
  4824. spin_unlock(&rq->lock);
  4825. __migrate_task(req->task, cpu, req->dest_cpu);
  4826. local_irq_enable();
  4827. complete(&req->done);
  4828. }
  4829. __set_current_state(TASK_RUNNING);
  4830. return 0;
  4831. wait_to_die:
  4832. /* Wait for kthread_stop */
  4833. set_current_state(TASK_INTERRUPTIBLE);
  4834. while (!kthread_should_stop()) {
  4835. schedule();
  4836. set_current_state(TASK_INTERRUPTIBLE);
  4837. }
  4838. __set_current_state(TASK_RUNNING);
  4839. return 0;
  4840. }
  4841. #ifdef CONFIG_HOTPLUG_CPU
  4842. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4843. {
  4844. int ret;
  4845. local_irq_disable();
  4846. ret = __migrate_task(p, src_cpu, dest_cpu);
  4847. local_irq_enable();
  4848. return ret;
  4849. }
  4850. /*
  4851. * Figure out where task on dead CPU should go, use force if necessary.
  4852. * NOTE: interrupts should be disabled by the caller
  4853. */
  4854. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4855. {
  4856. unsigned long flags;
  4857. cpumask_t mask;
  4858. struct rq *rq;
  4859. int dest_cpu;
  4860. do {
  4861. /* On same node? */
  4862. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4863. cpus_and(mask, mask, p->cpus_allowed);
  4864. dest_cpu = any_online_cpu(mask);
  4865. /* On any allowed CPU? */
  4866. if (dest_cpu == NR_CPUS)
  4867. dest_cpu = any_online_cpu(p->cpus_allowed);
  4868. /* No more Mr. Nice Guy. */
  4869. if (dest_cpu == NR_CPUS) {
  4870. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4871. /*
  4872. * Try to stay on the same cpuset, where the
  4873. * current cpuset may be a subset of all cpus.
  4874. * The cpuset_cpus_allowed_locked() variant of
  4875. * cpuset_cpus_allowed() will not block. It must be
  4876. * called within calls to cpuset_lock/cpuset_unlock.
  4877. */
  4878. rq = task_rq_lock(p, &flags);
  4879. p->cpus_allowed = cpus_allowed;
  4880. dest_cpu = any_online_cpu(p->cpus_allowed);
  4881. task_rq_unlock(rq, &flags);
  4882. /*
  4883. * Don't tell them about moving exiting tasks or
  4884. * kernel threads (both mm NULL), since they never
  4885. * leave kernel.
  4886. */
  4887. if (p->mm && printk_ratelimit()) {
  4888. printk(KERN_INFO "process %d (%s) no "
  4889. "longer affine to cpu%d\n",
  4890. task_pid_nr(p), p->comm, dead_cpu);
  4891. }
  4892. }
  4893. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4894. }
  4895. /*
  4896. * While a dead CPU has no uninterruptible tasks queued at this point,
  4897. * it might still have a nonzero ->nr_uninterruptible counter, because
  4898. * for performance reasons the counter is not stricly tracking tasks to
  4899. * their home CPUs. So we just add the counter to another CPU's counter,
  4900. * to keep the global sum constant after CPU-down:
  4901. */
  4902. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4903. {
  4904. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4905. unsigned long flags;
  4906. local_irq_save(flags);
  4907. double_rq_lock(rq_src, rq_dest);
  4908. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4909. rq_src->nr_uninterruptible = 0;
  4910. double_rq_unlock(rq_src, rq_dest);
  4911. local_irq_restore(flags);
  4912. }
  4913. /* Run through task list and migrate tasks from the dead cpu. */
  4914. static void migrate_live_tasks(int src_cpu)
  4915. {
  4916. struct task_struct *p, *t;
  4917. read_lock(&tasklist_lock);
  4918. do_each_thread(t, p) {
  4919. if (p == current)
  4920. continue;
  4921. if (task_cpu(p) == src_cpu)
  4922. move_task_off_dead_cpu(src_cpu, p);
  4923. } while_each_thread(t, p);
  4924. read_unlock(&tasklist_lock);
  4925. }
  4926. /*
  4927. * Schedules idle task to be the next runnable task on current CPU.
  4928. * It does so by boosting its priority to highest possible.
  4929. * Used by CPU offline code.
  4930. */
  4931. void sched_idle_next(void)
  4932. {
  4933. int this_cpu = smp_processor_id();
  4934. struct rq *rq = cpu_rq(this_cpu);
  4935. struct task_struct *p = rq->idle;
  4936. unsigned long flags;
  4937. /* cpu has to be offline */
  4938. BUG_ON(cpu_online(this_cpu));
  4939. /*
  4940. * Strictly not necessary since rest of the CPUs are stopped by now
  4941. * and interrupts disabled on the current cpu.
  4942. */
  4943. spin_lock_irqsave(&rq->lock, flags);
  4944. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4945. update_rq_clock(rq);
  4946. activate_task(rq, p, 0);
  4947. spin_unlock_irqrestore(&rq->lock, flags);
  4948. }
  4949. /*
  4950. * Ensures that the idle task is using init_mm right before its cpu goes
  4951. * offline.
  4952. */
  4953. void idle_task_exit(void)
  4954. {
  4955. struct mm_struct *mm = current->active_mm;
  4956. BUG_ON(cpu_online(smp_processor_id()));
  4957. if (mm != &init_mm)
  4958. switch_mm(mm, &init_mm, current);
  4959. mmdrop(mm);
  4960. }
  4961. /* called under rq->lock with disabled interrupts */
  4962. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4963. {
  4964. struct rq *rq = cpu_rq(dead_cpu);
  4965. /* Must be exiting, otherwise would be on tasklist. */
  4966. BUG_ON(!p->exit_state);
  4967. /* Cannot have done final schedule yet: would have vanished. */
  4968. BUG_ON(p->state == TASK_DEAD);
  4969. get_task_struct(p);
  4970. /*
  4971. * Drop lock around migration; if someone else moves it,
  4972. * that's OK. No task can be added to this CPU, so iteration is
  4973. * fine.
  4974. */
  4975. spin_unlock_irq(&rq->lock);
  4976. move_task_off_dead_cpu(dead_cpu, p);
  4977. spin_lock_irq(&rq->lock);
  4978. put_task_struct(p);
  4979. }
  4980. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4981. static void migrate_dead_tasks(unsigned int dead_cpu)
  4982. {
  4983. struct rq *rq = cpu_rq(dead_cpu);
  4984. struct task_struct *next;
  4985. for ( ; ; ) {
  4986. if (!rq->nr_running)
  4987. break;
  4988. update_rq_clock(rq);
  4989. next = pick_next_task(rq, rq->curr);
  4990. if (!next)
  4991. break;
  4992. migrate_dead(dead_cpu, next);
  4993. }
  4994. }
  4995. #endif /* CONFIG_HOTPLUG_CPU */
  4996. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4997. static struct ctl_table sd_ctl_dir[] = {
  4998. {
  4999. .procname = "sched_domain",
  5000. .mode = 0555,
  5001. },
  5002. {0, },
  5003. };
  5004. static struct ctl_table sd_ctl_root[] = {
  5005. {
  5006. .ctl_name = CTL_KERN,
  5007. .procname = "kernel",
  5008. .mode = 0555,
  5009. .child = sd_ctl_dir,
  5010. },
  5011. {0, },
  5012. };
  5013. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5014. {
  5015. struct ctl_table *entry =
  5016. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5017. return entry;
  5018. }
  5019. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5020. {
  5021. struct ctl_table *entry;
  5022. /*
  5023. * In the intermediate directories, both the child directory and
  5024. * procname are dynamically allocated and could fail but the mode
  5025. * will always be set. In the lowest directory the names are
  5026. * static strings and all have proc handlers.
  5027. */
  5028. for (entry = *tablep; entry->mode; entry++) {
  5029. if (entry->child)
  5030. sd_free_ctl_entry(&entry->child);
  5031. if (entry->proc_handler == NULL)
  5032. kfree(entry->procname);
  5033. }
  5034. kfree(*tablep);
  5035. *tablep = NULL;
  5036. }
  5037. static void
  5038. set_table_entry(struct ctl_table *entry,
  5039. const char *procname, void *data, int maxlen,
  5040. mode_t mode, proc_handler *proc_handler)
  5041. {
  5042. entry->procname = procname;
  5043. entry->data = data;
  5044. entry->maxlen = maxlen;
  5045. entry->mode = mode;
  5046. entry->proc_handler = proc_handler;
  5047. }
  5048. static struct ctl_table *
  5049. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5050. {
  5051. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5052. if (table == NULL)
  5053. return NULL;
  5054. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5055. sizeof(long), 0644, proc_doulongvec_minmax);
  5056. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5057. sizeof(long), 0644, proc_doulongvec_minmax);
  5058. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5059. sizeof(int), 0644, proc_dointvec_minmax);
  5060. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5061. sizeof(int), 0644, proc_dointvec_minmax);
  5062. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5063. sizeof(int), 0644, proc_dointvec_minmax);
  5064. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5065. sizeof(int), 0644, proc_dointvec_minmax);
  5066. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5067. sizeof(int), 0644, proc_dointvec_minmax);
  5068. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5069. sizeof(int), 0644, proc_dointvec_minmax);
  5070. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5071. sizeof(int), 0644, proc_dointvec_minmax);
  5072. set_table_entry(&table[9], "cache_nice_tries",
  5073. &sd->cache_nice_tries,
  5074. sizeof(int), 0644, proc_dointvec_minmax);
  5075. set_table_entry(&table[10], "flags", &sd->flags,
  5076. sizeof(int), 0644, proc_dointvec_minmax);
  5077. /* &table[11] is terminator */
  5078. return table;
  5079. }
  5080. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5081. {
  5082. struct ctl_table *entry, *table;
  5083. struct sched_domain *sd;
  5084. int domain_num = 0, i;
  5085. char buf[32];
  5086. for_each_domain(cpu, sd)
  5087. domain_num++;
  5088. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5089. if (table == NULL)
  5090. return NULL;
  5091. i = 0;
  5092. for_each_domain(cpu, sd) {
  5093. snprintf(buf, 32, "domain%d", i);
  5094. entry->procname = kstrdup(buf, GFP_KERNEL);
  5095. entry->mode = 0555;
  5096. entry->child = sd_alloc_ctl_domain_table(sd);
  5097. entry++;
  5098. i++;
  5099. }
  5100. return table;
  5101. }
  5102. static struct ctl_table_header *sd_sysctl_header;
  5103. static void register_sched_domain_sysctl(void)
  5104. {
  5105. int i, cpu_num = num_online_cpus();
  5106. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5107. char buf[32];
  5108. WARN_ON(sd_ctl_dir[0].child);
  5109. sd_ctl_dir[0].child = entry;
  5110. if (entry == NULL)
  5111. return;
  5112. for_each_online_cpu(i) {
  5113. snprintf(buf, 32, "cpu%d", i);
  5114. entry->procname = kstrdup(buf, GFP_KERNEL);
  5115. entry->mode = 0555;
  5116. entry->child = sd_alloc_ctl_cpu_table(i);
  5117. entry++;
  5118. }
  5119. WARN_ON(sd_sysctl_header);
  5120. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5121. }
  5122. /* may be called multiple times per register */
  5123. static void unregister_sched_domain_sysctl(void)
  5124. {
  5125. if (sd_sysctl_header)
  5126. unregister_sysctl_table(sd_sysctl_header);
  5127. sd_sysctl_header = NULL;
  5128. if (sd_ctl_dir[0].child)
  5129. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5130. }
  5131. #else
  5132. static void register_sched_domain_sysctl(void)
  5133. {
  5134. }
  5135. static void unregister_sched_domain_sysctl(void)
  5136. {
  5137. }
  5138. #endif
  5139. /*
  5140. * migration_call - callback that gets triggered when a CPU is added.
  5141. * Here we can start up the necessary migration thread for the new CPU.
  5142. */
  5143. static int __cpuinit
  5144. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5145. {
  5146. struct task_struct *p;
  5147. int cpu = (long)hcpu;
  5148. unsigned long flags;
  5149. struct rq *rq;
  5150. switch (action) {
  5151. case CPU_UP_PREPARE:
  5152. case CPU_UP_PREPARE_FROZEN:
  5153. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5154. if (IS_ERR(p))
  5155. return NOTIFY_BAD;
  5156. kthread_bind(p, cpu);
  5157. /* Must be high prio: stop_machine expects to yield to it. */
  5158. rq = task_rq_lock(p, &flags);
  5159. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5160. task_rq_unlock(rq, &flags);
  5161. cpu_rq(cpu)->migration_thread = p;
  5162. break;
  5163. case CPU_ONLINE:
  5164. case CPU_ONLINE_FROZEN:
  5165. /* Strictly unnecessary, as first user will wake it. */
  5166. wake_up_process(cpu_rq(cpu)->migration_thread);
  5167. /* Update our root-domain */
  5168. rq = cpu_rq(cpu);
  5169. spin_lock_irqsave(&rq->lock, flags);
  5170. if (rq->rd) {
  5171. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5172. cpu_set(cpu, rq->rd->online);
  5173. }
  5174. spin_unlock_irqrestore(&rq->lock, flags);
  5175. break;
  5176. #ifdef CONFIG_HOTPLUG_CPU
  5177. case CPU_UP_CANCELED:
  5178. case CPU_UP_CANCELED_FROZEN:
  5179. if (!cpu_rq(cpu)->migration_thread)
  5180. break;
  5181. /* Unbind it from offline cpu so it can run. Fall thru. */
  5182. kthread_bind(cpu_rq(cpu)->migration_thread,
  5183. any_online_cpu(cpu_online_map));
  5184. kthread_stop(cpu_rq(cpu)->migration_thread);
  5185. cpu_rq(cpu)->migration_thread = NULL;
  5186. break;
  5187. case CPU_DEAD:
  5188. case CPU_DEAD_FROZEN:
  5189. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5190. migrate_live_tasks(cpu);
  5191. rq = cpu_rq(cpu);
  5192. kthread_stop(rq->migration_thread);
  5193. rq->migration_thread = NULL;
  5194. /* Idle task back to normal (off runqueue, low prio) */
  5195. spin_lock_irq(&rq->lock);
  5196. update_rq_clock(rq);
  5197. deactivate_task(rq, rq->idle, 0);
  5198. rq->idle->static_prio = MAX_PRIO;
  5199. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5200. rq->idle->sched_class = &idle_sched_class;
  5201. migrate_dead_tasks(cpu);
  5202. spin_unlock_irq(&rq->lock);
  5203. cpuset_unlock();
  5204. migrate_nr_uninterruptible(rq);
  5205. BUG_ON(rq->nr_running != 0);
  5206. /*
  5207. * No need to migrate the tasks: it was best-effort if
  5208. * they didn't take sched_hotcpu_mutex. Just wake up
  5209. * the requestors.
  5210. */
  5211. spin_lock_irq(&rq->lock);
  5212. while (!list_empty(&rq->migration_queue)) {
  5213. struct migration_req *req;
  5214. req = list_entry(rq->migration_queue.next,
  5215. struct migration_req, list);
  5216. list_del_init(&req->list);
  5217. complete(&req->done);
  5218. }
  5219. spin_unlock_irq(&rq->lock);
  5220. break;
  5221. case CPU_DYING:
  5222. case CPU_DYING_FROZEN:
  5223. /* Update our root-domain */
  5224. rq = cpu_rq(cpu);
  5225. spin_lock_irqsave(&rq->lock, flags);
  5226. if (rq->rd) {
  5227. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5228. cpu_clear(cpu, rq->rd->online);
  5229. }
  5230. spin_unlock_irqrestore(&rq->lock, flags);
  5231. break;
  5232. #endif
  5233. }
  5234. return NOTIFY_OK;
  5235. }
  5236. /* Register at highest priority so that task migration (migrate_all_tasks)
  5237. * happens before everything else.
  5238. */
  5239. static struct notifier_block __cpuinitdata migration_notifier = {
  5240. .notifier_call = migration_call,
  5241. .priority = 10
  5242. };
  5243. void __init migration_init(void)
  5244. {
  5245. void *cpu = (void *)(long)smp_processor_id();
  5246. int err;
  5247. /* Start one for the boot CPU: */
  5248. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5249. BUG_ON(err == NOTIFY_BAD);
  5250. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5251. register_cpu_notifier(&migration_notifier);
  5252. }
  5253. #endif
  5254. #ifdef CONFIG_SMP
  5255. /* Number of possible processor ids */
  5256. int nr_cpu_ids __read_mostly = NR_CPUS;
  5257. EXPORT_SYMBOL(nr_cpu_ids);
  5258. #ifdef CONFIG_SCHED_DEBUG
  5259. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  5260. {
  5261. struct sched_group *group = sd->groups;
  5262. cpumask_t groupmask;
  5263. char str[NR_CPUS];
  5264. cpumask_scnprintf(str, NR_CPUS, sd->span);
  5265. cpus_clear(groupmask);
  5266. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5267. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5268. printk("does not load-balance\n");
  5269. if (sd->parent)
  5270. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5271. " has parent");
  5272. return -1;
  5273. }
  5274. printk(KERN_CONT "span %s\n", str);
  5275. if (!cpu_isset(cpu, sd->span)) {
  5276. printk(KERN_ERR "ERROR: domain->span does not contain "
  5277. "CPU%d\n", cpu);
  5278. }
  5279. if (!cpu_isset(cpu, group->cpumask)) {
  5280. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5281. " CPU%d\n", cpu);
  5282. }
  5283. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5284. do {
  5285. if (!group) {
  5286. printk("\n");
  5287. printk(KERN_ERR "ERROR: group is NULL\n");
  5288. break;
  5289. }
  5290. if (!group->__cpu_power) {
  5291. printk(KERN_CONT "\n");
  5292. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5293. "set\n");
  5294. break;
  5295. }
  5296. if (!cpus_weight(group->cpumask)) {
  5297. printk(KERN_CONT "\n");
  5298. printk(KERN_ERR "ERROR: empty group\n");
  5299. break;
  5300. }
  5301. if (cpus_intersects(groupmask, group->cpumask)) {
  5302. printk(KERN_CONT "\n");
  5303. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5304. break;
  5305. }
  5306. cpus_or(groupmask, groupmask, group->cpumask);
  5307. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  5308. printk(KERN_CONT " %s", str);
  5309. group = group->next;
  5310. } while (group != sd->groups);
  5311. printk(KERN_CONT "\n");
  5312. if (!cpus_equal(sd->span, groupmask))
  5313. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5314. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  5315. printk(KERN_ERR "ERROR: parent span is not a superset "
  5316. "of domain->span\n");
  5317. return 0;
  5318. }
  5319. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5320. {
  5321. int level = 0;
  5322. if (!sd) {
  5323. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5324. return;
  5325. }
  5326. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5327. for (;;) {
  5328. if (sched_domain_debug_one(sd, cpu, level))
  5329. break;
  5330. level++;
  5331. sd = sd->parent;
  5332. if (!sd)
  5333. break;
  5334. }
  5335. }
  5336. #else
  5337. # define sched_domain_debug(sd, cpu) do { } while (0)
  5338. #endif
  5339. static int sd_degenerate(struct sched_domain *sd)
  5340. {
  5341. if (cpus_weight(sd->span) == 1)
  5342. return 1;
  5343. /* Following flags need at least 2 groups */
  5344. if (sd->flags & (SD_LOAD_BALANCE |
  5345. SD_BALANCE_NEWIDLE |
  5346. SD_BALANCE_FORK |
  5347. SD_BALANCE_EXEC |
  5348. SD_SHARE_CPUPOWER |
  5349. SD_SHARE_PKG_RESOURCES)) {
  5350. if (sd->groups != sd->groups->next)
  5351. return 0;
  5352. }
  5353. /* Following flags don't use groups */
  5354. if (sd->flags & (SD_WAKE_IDLE |
  5355. SD_WAKE_AFFINE |
  5356. SD_WAKE_BALANCE))
  5357. return 0;
  5358. return 1;
  5359. }
  5360. static int
  5361. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5362. {
  5363. unsigned long cflags = sd->flags, pflags = parent->flags;
  5364. if (sd_degenerate(parent))
  5365. return 1;
  5366. if (!cpus_equal(sd->span, parent->span))
  5367. return 0;
  5368. /* Does parent contain flags not in child? */
  5369. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5370. if (cflags & SD_WAKE_AFFINE)
  5371. pflags &= ~SD_WAKE_BALANCE;
  5372. /* Flags needing groups don't count if only 1 group in parent */
  5373. if (parent->groups == parent->groups->next) {
  5374. pflags &= ~(SD_LOAD_BALANCE |
  5375. SD_BALANCE_NEWIDLE |
  5376. SD_BALANCE_FORK |
  5377. SD_BALANCE_EXEC |
  5378. SD_SHARE_CPUPOWER |
  5379. SD_SHARE_PKG_RESOURCES);
  5380. }
  5381. if (~cflags & pflags)
  5382. return 0;
  5383. return 1;
  5384. }
  5385. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5386. {
  5387. unsigned long flags;
  5388. const struct sched_class *class;
  5389. spin_lock_irqsave(&rq->lock, flags);
  5390. if (rq->rd) {
  5391. struct root_domain *old_rd = rq->rd;
  5392. for (class = sched_class_highest; class; class = class->next) {
  5393. if (class->leave_domain)
  5394. class->leave_domain(rq);
  5395. }
  5396. cpu_clear(rq->cpu, old_rd->span);
  5397. cpu_clear(rq->cpu, old_rd->online);
  5398. if (atomic_dec_and_test(&old_rd->refcount))
  5399. kfree(old_rd);
  5400. }
  5401. atomic_inc(&rd->refcount);
  5402. rq->rd = rd;
  5403. cpu_set(rq->cpu, rd->span);
  5404. if (cpu_isset(rq->cpu, cpu_online_map))
  5405. cpu_set(rq->cpu, rd->online);
  5406. for (class = sched_class_highest; class; class = class->next) {
  5407. if (class->join_domain)
  5408. class->join_domain(rq);
  5409. }
  5410. spin_unlock_irqrestore(&rq->lock, flags);
  5411. }
  5412. static void init_rootdomain(struct root_domain *rd)
  5413. {
  5414. memset(rd, 0, sizeof(*rd));
  5415. cpus_clear(rd->span);
  5416. cpus_clear(rd->online);
  5417. }
  5418. static void init_defrootdomain(void)
  5419. {
  5420. init_rootdomain(&def_root_domain);
  5421. atomic_set(&def_root_domain.refcount, 1);
  5422. }
  5423. static struct root_domain *alloc_rootdomain(void)
  5424. {
  5425. struct root_domain *rd;
  5426. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5427. if (!rd)
  5428. return NULL;
  5429. init_rootdomain(rd);
  5430. return rd;
  5431. }
  5432. /*
  5433. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5434. * hold the hotplug lock.
  5435. */
  5436. static void
  5437. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5438. {
  5439. struct rq *rq = cpu_rq(cpu);
  5440. struct sched_domain *tmp;
  5441. /* Remove the sched domains which do not contribute to scheduling. */
  5442. for (tmp = sd; tmp; tmp = tmp->parent) {
  5443. struct sched_domain *parent = tmp->parent;
  5444. if (!parent)
  5445. break;
  5446. if (sd_parent_degenerate(tmp, parent)) {
  5447. tmp->parent = parent->parent;
  5448. if (parent->parent)
  5449. parent->parent->child = tmp;
  5450. }
  5451. }
  5452. if (sd && sd_degenerate(sd)) {
  5453. sd = sd->parent;
  5454. if (sd)
  5455. sd->child = NULL;
  5456. }
  5457. sched_domain_debug(sd, cpu);
  5458. rq_attach_root(rq, rd);
  5459. rcu_assign_pointer(rq->sd, sd);
  5460. }
  5461. /* cpus with isolated domains */
  5462. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5463. /* Setup the mask of cpus configured for isolated domains */
  5464. static int __init isolated_cpu_setup(char *str)
  5465. {
  5466. int ints[NR_CPUS], i;
  5467. str = get_options(str, ARRAY_SIZE(ints), ints);
  5468. cpus_clear(cpu_isolated_map);
  5469. for (i = 1; i <= ints[0]; i++)
  5470. if (ints[i] < NR_CPUS)
  5471. cpu_set(ints[i], cpu_isolated_map);
  5472. return 1;
  5473. }
  5474. __setup("isolcpus=", isolated_cpu_setup);
  5475. /*
  5476. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5477. * to a function which identifies what group(along with sched group) a CPU
  5478. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5479. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5480. *
  5481. * init_sched_build_groups will build a circular linked list of the groups
  5482. * covered by the given span, and will set each group's ->cpumask correctly,
  5483. * and ->cpu_power to 0.
  5484. */
  5485. static void
  5486. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5487. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5488. struct sched_group **sg))
  5489. {
  5490. struct sched_group *first = NULL, *last = NULL;
  5491. cpumask_t covered = CPU_MASK_NONE;
  5492. int i;
  5493. for_each_cpu_mask(i, span) {
  5494. struct sched_group *sg;
  5495. int group = group_fn(i, cpu_map, &sg);
  5496. int j;
  5497. if (cpu_isset(i, covered))
  5498. continue;
  5499. sg->cpumask = CPU_MASK_NONE;
  5500. sg->__cpu_power = 0;
  5501. for_each_cpu_mask(j, span) {
  5502. if (group_fn(j, cpu_map, NULL) != group)
  5503. continue;
  5504. cpu_set(j, covered);
  5505. cpu_set(j, sg->cpumask);
  5506. }
  5507. if (!first)
  5508. first = sg;
  5509. if (last)
  5510. last->next = sg;
  5511. last = sg;
  5512. }
  5513. last->next = first;
  5514. }
  5515. #define SD_NODES_PER_DOMAIN 16
  5516. #ifdef CONFIG_NUMA
  5517. /**
  5518. * find_next_best_node - find the next node to include in a sched_domain
  5519. * @node: node whose sched_domain we're building
  5520. * @used_nodes: nodes already in the sched_domain
  5521. *
  5522. * Find the next node to include in a given scheduling domain. Simply
  5523. * finds the closest node not already in the @used_nodes map.
  5524. *
  5525. * Should use nodemask_t.
  5526. */
  5527. static int find_next_best_node(int node, unsigned long *used_nodes)
  5528. {
  5529. int i, n, val, min_val, best_node = 0;
  5530. min_val = INT_MAX;
  5531. for (i = 0; i < MAX_NUMNODES; i++) {
  5532. /* Start at @node */
  5533. n = (node + i) % MAX_NUMNODES;
  5534. if (!nr_cpus_node(n))
  5535. continue;
  5536. /* Skip already used nodes */
  5537. if (test_bit(n, used_nodes))
  5538. continue;
  5539. /* Simple min distance search */
  5540. val = node_distance(node, n);
  5541. if (val < min_val) {
  5542. min_val = val;
  5543. best_node = n;
  5544. }
  5545. }
  5546. set_bit(best_node, used_nodes);
  5547. return best_node;
  5548. }
  5549. /**
  5550. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5551. * @node: node whose cpumask we're constructing
  5552. * @size: number of nodes to include in this span
  5553. *
  5554. * Given a node, construct a good cpumask for its sched_domain to span. It
  5555. * should be one that prevents unnecessary balancing, but also spreads tasks
  5556. * out optimally.
  5557. */
  5558. static cpumask_t sched_domain_node_span(int node)
  5559. {
  5560. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5561. cpumask_t span, nodemask;
  5562. int i;
  5563. cpus_clear(span);
  5564. bitmap_zero(used_nodes, MAX_NUMNODES);
  5565. nodemask = node_to_cpumask(node);
  5566. cpus_or(span, span, nodemask);
  5567. set_bit(node, used_nodes);
  5568. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5569. int next_node = find_next_best_node(node, used_nodes);
  5570. nodemask = node_to_cpumask(next_node);
  5571. cpus_or(span, span, nodemask);
  5572. }
  5573. return span;
  5574. }
  5575. #endif
  5576. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5577. /*
  5578. * SMT sched-domains:
  5579. */
  5580. #ifdef CONFIG_SCHED_SMT
  5581. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5582. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5583. static int
  5584. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5585. {
  5586. if (sg)
  5587. *sg = &per_cpu(sched_group_cpus, cpu);
  5588. return cpu;
  5589. }
  5590. #endif
  5591. /*
  5592. * multi-core sched-domains:
  5593. */
  5594. #ifdef CONFIG_SCHED_MC
  5595. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5596. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5597. #endif
  5598. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5599. static int
  5600. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5601. {
  5602. int group;
  5603. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5604. cpus_and(mask, mask, *cpu_map);
  5605. group = first_cpu(mask);
  5606. if (sg)
  5607. *sg = &per_cpu(sched_group_core, group);
  5608. return group;
  5609. }
  5610. #elif defined(CONFIG_SCHED_MC)
  5611. static int
  5612. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5613. {
  5614. if (sg)
  5615. *sg = &per_cpu(sched_group_core, cpu);
  5616. return cpu;
  5617. }
  5618. #endif
  5619. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5620. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5621. static int
  5622. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5623. {
  5624. int group;
  5625. #ifdef CONFIG_SCHED_MC
  5626. cpumask_t mask = cpu_coregroup_map(cpu);
  5627. cpus_and(mask, mask, *cpu_map);
  5628. group = first_cpu(mask);
  5629. #elif defined(CONFIG_SCHED_SMT)
  5630. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5631. cpus_and(mask, mask, *cpu_map);
  5632. group = first_cpu(mask);
  5633. #else
  5634. group = cpu;
  5635. #endif
  5636. if (sg)
  5637. *sg = &per_cpu(sched_group_phys, group);
  5638. return group;
  5639. }
  5640. #ifdef CONFIG_NUMA
  5641. /*
  5642. * The init_sched_build_groups can't handle what we want to do with node
  5643. * groups, so roll our own. Now each node has its own list of groups which
  5644. * gets dynamically allocated.
  5645. */
  5646. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5647. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5648. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5649. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5650. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5651. struct sched_group **sg)
  5652. {
  5653. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5654. int group;
  5655. cpus_and(nodemask, nodemask, *cpu_map);
  5656. group = first_cpu(nodemask);
  5657. if (sg)
  5658. *sg = &per_cpu(sched_group_allnodes, group);
  5659. return group;
  5660. }
  5661. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5662. {
  5663. struct sched_group *sg = group_head;
  5664. int j;
  5665. if (!sg)
  5666. return;
  5667. do {
  5668. for_each_cpu_mask(j, sg->cpumask) {
  5669. struct sched_domain *sd;
  5670. sd = &per_cpu(phys_domains, j);
  5671. if (j != first_cpu(sd->groups->cpumask)) {
  5672. /*
  5673. * Only add "power" once for each
  5674. * physical package.
  5675. */
  5676. continue;
  5677. }
  5678. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5679. }
  5680. sg = sg->next;
  5681. } while (sg != group_head);
  5682. }
  5683. #endif
  5684. #ifdef CONFIG_NUMA
  5685. /* Free memory allocated for various sched_group structures */
  5686. static void free_sched_groups(const cpumask_t *cpu_map)
  5687. {
  5688. int cpu, i;
  5689. for_each_cpu_mask(cpu, *cpu_map) {
  5690. struct sched_group **sched_group_nodes
  5691. = sched_group_nodes_bycpu[cpu];
  5692. if (!sched_group_nodes)
  5693. continue;
  5694. for (i = 0; i < MAX_NUMNODES; i++) {
  5695. cpumask_t nodemask = node_to_cpumask(i);
  5696. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5697. cpus_and(nodemask, nodemask, *cpu_map);
  5698. if (cpus_empty(nodemask))
  5699. continue;
  5700. if (sg == NULL)
  5701. continue;
  5702. sg = sg->next;
  5703. next_sg:
  5704. oldsg = sg;
  5705. sg = sg->next;
  5706. kfree(oldsg);
  5707. if (oldsg != sched_group_nodes[i])
  5708. goto next_sg;
  5709. }
  5710. kfree(sched_group_nodes);
  5711. sched_group_nodes_bycpu[cpu] = NULL;
  5712. }
  5713. }
  5714. #else
  5715. static void free_sched_groups(const cpumask_t *cpu_map)
  5716. {
  5717. }
  5718. #endif
  5719. /*
  5720. * Initialize sched groups cpu_power.
  5721. *
  5722. * cpu_power indicates the capacity of sched group, which is used while
  5723. * distributing the load between different sched groups in a sched domain.
  5724. * Typically cpu_power for all the groups in a sched domain will be same unless
  5725. * there are asymmetries in the topology. If there are asymmetries, group
  5726. * having more cpu_power will pickup more load compared to the group having
  5727. * less cpu_power.
  5728. *
  5729. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5730. * the maximum number of tasks a group can handle in the presence of other idle
  5731. * or lightly loaded groups in the same sched domain.
  5732. */
  5733. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5734. {
  5735. struct sched_domain *child;
  5736. struct sched_group *group;
  5737. WARN_ON(!sd || !sd->groups);
  5738. if (cpu != first_cpu(sd->groups->cpumask))
  5739. return;
  5740. child = sd->child;
  5741. sd->groups->__cpu_power = 0;
  5742. /*
  5743. * For perf policy, if the groups in child domain share resources
  5744. * (for example cores sharing some portions of the cache hierarchy
  5745. * or SMT), then set this domain groups cpu_power such that each group
  5746. * can handle only one task, when there are other idle groups in the
  5747. * same sched domain.
  5748. */
  5749. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5750. (child->flags &
  5751. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5752. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5753. return;
  5754. }
  5755. /*
  5756. * add cpu_power of each child group to this groups cpu_power
  5757. */
  5758. group = child->groups;
  5759. do {
  5760. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5761. group = group->next;
  5762. } while (group != child->groups);
  5763. }
  5764. /*
  5765. * Build sched domains for a given set of cpus and attach the sched domains
  5766. * to the individual cpus
  5767. */
  5768. static int build_sched_domains(const cpumask_t *cpu_map)
  5769. {
  5770. int i;
  5771. struct root_domain *rd;
  5772. #ifdef CONFIG_NUMA
  5773. struct sched_group **sched_group_nodes = NULL;
  5774. int sd_allnodes = 0;
  5775. /*
  5776. * Allocate the per-node list of sched groups
  5777. */
  5778. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5779. GFP_KERNEL);
  5780. if (!sched_group_nodes) {
  5781. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5782. return -ENOMEM;
  5783. }
  5784. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5785. #endif
  5786. rd = alloc_rootdomain();
  5787. if (!rd) {
  5788. printk(KERN_WARNING "Cannot alloc root domain\n");
  5789. return -ENOMEM;
  5790. }
  5791. /*
  5792. * Set up domains for cpus specified by the cpu_map.
  5793. */
  5794. for_each_cpu_mask(i, *cpu_map) {
  5795. struct sched_domain *sd = NULL, *p;
  5796. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5797. cpus_and(nodemask, nodemask, *cpu_map);
  5798. #ifdef CONFIG_NUMA
  5799. if (cpus_weight(*cpu_map) >
  5800. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5801. sd = &per_cpu(allnodes_domains, i);
  5802. *sd = SD_ALLNODES_INIT;
  5803. sd->span = *cpu_map;
  5804. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5805. p = sd;
  5806. sd_allnodes = 1;
  5807. } else
  5808. p = NULL;
  5809. sd = &per_cpu(node_domains, i);
  5810. *sd = SD_NODE_INIT;
  5811. sd->span = sched_domain_node_span(cpu_to_node(i));
  5812. sd->parent = p;
  5813. if (p)
  5814. p->child = sd;
  5815. cpus_and(sd->span, sd->span, *cpu_map);
  5816. #endif
  5817. p = sd;
  5818. sd = &per_cpu(phys_domains, i);
  5819. *sd = SD_CPU_INIT;
  5820. sd->span = nodemask;
  5821. sd->parent = p;
  5822. if (p)
  5823. p->child = sd;
  5824. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5825. #ifdef CONFIG_SCHED_MC
  5826. p = sd;
  5827. sd = &per_cpu(core_domains, i);
  5828. *sd = SD_MC_INIT;
  5829. sd->span = cpu_coregroup_map(i);
  5830. cpus_and(sd->span, sd->span, *cpu_map);
  5831. sd->parent = p;
  5832. p->child = sd;
  5833. cpu_to_core_group(i, cpu_map, &sd->groups);
  5834. #endif
  5835. #ifdef CONFIG_SCHED_SMT
  5836. p = sd;
  5837. sd = &per_cpu(cpu_domains, i);
  5838. *sd = SD_SIBLING_INIT;
  5839. sd->span = per_cpu(cpu_sibling_map, i);
  5840. cpus_and(sd->span, sd->span, *cpu_map);
  5841. sd->parent = p;
  5842. p->child = sd;
  5843. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5844. #endif
  5845. }
  5846. #ifdef CONFIG_SCHED_SMT
  5847. /* Set up CPU (sibling) groups */
  5848. for_each_cpu_mask(i, *cpu_map) {
  5849. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5850. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5851. if (i != first_cpu(this_sibling_map))
  5852. continue;
  5853. init_sched_build_groups(this_sibling_map, cpu_map,
  5854. &cpu_to_cpu_group);
  5855. }
  5856. #endif
  5857. #ifdef CONFIG_SCHED_MC
  5858. /* Set up multi-core groups */
  5859. for_each_cpu_mask(i, *cpu_map) {
  5860. cpumask_t this_core_map = cpu_coregroup_map(i);
  5861. cpus_and(this_core_map, this_core_map, *cpu_map);
  5862. if (i != first_cpu(this_core_map))
  5863. continue;
  5864. init_sched_build_groups(this_core_map, cpu_map,
  5865. &cpu_to_core_group);
  5866. }
  5867. #endif
  5868. /* Set up physical groups */
  5869. for (i = 0; i < MAX_NUMNODES; i++) {
  5870. cpumask_t nodemask = node_to_cpumask(i);
  5871. cpus_and(nodemask, nodemask, *cpu_map);
  5872. if (cpus_empty(nodemask))
  5873. continue;
  5874. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5875. }
  5876. #ifdef CONFIG_NUMA
  5877. /* Set up node groups */
  5878. if (sd_allnodes)
  5879. init_sched_build_groups(*cpu_map, cpu_map,
  5880. &cpu_to_allnodes_group);
  5881. for (i = 0; i < MAX_NUMNODES; i++) {
  5882. /* Set up node groups */
  5883. struct sched_group *sg, *prev;
  5884. cpumask_t nodemask = node_to_cpumask(i);
  5885. cpumask_t domainspan;
  5886. cpumask_t covered = CPU_MASK_NONE;
  5887. int j;
  5888. cpus_and(nodemask, nodemask, *cpu_map);
  5889. if (cpus_empty(nodemask)) {
  5890. sched_group_nodes[i] = NULL;
  5891. continue;
  5892. }
  5893. domainspan = sched_domain_node_span(i);
  5894. cpus_and(domainspan, domainspan, *cpu_map);
  5895. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5896. if (!sg) {
  5897. printk(KERN_WARNING "Can not alloc domain group for "
  5898. "node %d\n", i);
  5899. goto error;
  5900. }
  5901. sched_group_nodes[i] = sg;
  5902. for_each_cpu_mask(j, nodemask) {
  5903. struct sched_domain *sd;
  5904. sd = &per_cpu(node_domains, j);
  5905. sd->groups = sg;
  5906. }
  5907. sg->__cpu_power = 0;
  5908. sg->cpumask = nodemask;
  5909. sg->next = sg;
  5910. cpus_or(covered, covered, nodemask);
  5911. prev = sg;
  5912. for (j = 0; j < MAX_NUMNODES; j++) {
  5913. cpumask_t tmp, notcovered;
  5914. int n = (i + j) % MAX_NUMNODES;
  5915. cpus_complement(notcovered, covered);
  5916. cpus_and(tmp, notcovered, *cpu_map);
  5917. cpus_and(tmp, tmp, domainspan);
  5918. if (cpus_empty(tmp))
  5919. break;
  5920. nodemask = node_to_cpumask(n);
  5921. cpus_and(tmp, tmp, nodemask);
  5922. if (cpus_empty(tmp))
  5923. continue;
  5924. sg = kmalloc_node(sizeof(struct sched_group),
  5925. GFP_KERNEL, i);
  5926. if (!sg) {
  5927. printk(KERN_WARNING
  5928. "Can not alloc domain group for node %d\n", j);
  5929. goto error;
  5930. }
  5931. sg->__cpu_power = 0;
  5932. sg->cpumask = tmp;
  5933. sg->next = prev->next;
  5934. cpus_or(covered, covered, tmp);
  5935. prev->next = sg;
  5936. prev = sg;
  5937. }
  5938. }
  5939. #endif
  5940. /* Calculate CPU power for physical packages and nodes */
  5941. #ifdef CONFIG_SCHED_SMT
  5942. for_each_cpu_mask(i, *cpu_map) {
  5943. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5944. init_sched_groups_power(i, sd);
  5945. }
  5946. #endif
  5947. #ifdef CONFIG_SCHED_MC
  5948. for_each_cpu_mask(i, *cpu_map) {
  5949. struct sched_domain *sd = &per_cpu(core_domains, i);
  5950. init_sched_groups_power(i, sd);
  5951. }
  5952. #endif
  5953. for_each_cpu_mask(i, *cpu_map) {
  5954. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5955. init_sched_groups_power(i, sd);
  5956. }
  5957. #ifdef CONFIG_NUMA
  5958. for (i = 0; i < MAX_NUMNODES; i++)
  5959. init_numa_sched_groups_power(sched_group_nodes[i]);
  5960. if (sd_allnodes) {
  5961. struct sched_group *sg;
  5962. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5963. init_numa_sched_groups_power(sg);
  5964. }
  5965. #endif
  5966. /* Attach the domains */
  5967. for_each_cpu_mask(i, *cpu_map) {
  5968. struct sched_domain *sd;
  5969. #ifdef CONFIG_SCHED_SMT
  5970. sd = &per_cpu(cpu_domains, i);
  5971. #elif defined(CONFIG_SCHED_MC)
  5972. sd = &per_cpu(core_domains, i);
  5973. #else
  5974. sd = &per_cpu(phys_domains, i);
  5975. #endif
  5976. cpu_attach_domain(sd, rd, i);
  5977. }
  5978. return 0;
  5979. #ifdef CONFIG_NUMA
  5980. error:
  5981. free_sched_groups(cpu_map);
  5982. return -ENOMEM;
  5983. #endif
  5984. }
  5985. static cpumask_t *doms_cur; /* current sched domains */
  5986. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5987. /*
  5988. * Special case: If a kmalloc of a doms_cur partition (array of
  5989. * cpumask_t) fails, then fallback to a single sched domain,
  5990. * as determined by the single cpumask_t fallback_doms.
  5991. */
  5992. static cpumask_t fallback_doms;
  5993. void __attribute__((weak)) arch_update_cpu_topology(void)
  5994. {
  5995. }
  5996. /*
  5997. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5998. * For now this just excludes isolated cpus, but could be used to
  5999. * exclude other special cases in the future.
  6000. */
  6001. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6002. {
  6003. int err;
  6004. arch_update_cpu_topology();
  6005. ndoms_cur = 1;
  6006. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6007. if (!doms_cur)
  6008. doms_cur = &fallback_doms;
  6009. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6010. err = build_sched_domains(doms_cur);
  6011. register_sched_domain_sysctl();
  6012. return err;
  6013. }
  6014. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  6015. {
  6016. free_sched_groups(cpu_map);
  6017. }
  6018. /*
  6019. * Detach sched domains from a group of cpus specified in cpu_map
  6020. * These cpus will now be attached to the NULL domain
  6021. */
  6022. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6023. {
  6024. int i;
  6025. unregister_sched_domain_sysctl();
  6026. for_each_cpu_mask(i, *cpu_map)
  6027. cpu_attach_domain(NULL, &def_root_domain, i);
  6028. synchronize_sched();
  6029. arch_destroy_sched_domains(cpu_map);
  6030. }
  6031. /*
  6032. * Partition sched domains as specified by the 'ndoms_new'
  6033. * cpumasks in the array doms_new[] of cpumasks. This compares
  6034. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6035. * It destroys each deleted domain and builds each new domain.
  6036. *
  6037. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6038. * The masks don't intersect (don't overlap.) We should setup one
  6039. * sched domain for each mask. CPUs not in any of the cpumasks will
  6040. * not be load balanced. If the same cpumask appears both in the
  6041. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6042. * it as it is.
  6043. *
  6044. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6045. * ownership of it and will kfree it when done with it. If the caller
  6046. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6047. * and partition_sched_domains() will fallback to the single partition
  6048. * 'fallback_doms'.
  6049. *
  6050. * Call with hotplug lock held
  6051. */
  6052. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  6053. {
  6054. int i, j;
  6055. lock_doms_cur();
  6056. /* always unregister in case we don't destroy any domains */
  6057. unregister_sched_domain_sysctl();
  6058. if (doms_new == NULL) {
  6059. ndoms_new = 1;
  6060. doms_new = &fallback_doms;
  6061. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6062. }
  6063. /* Destroy deleted domains */
  6064. for (i = 0; i < ndoms_cur; i++) {
  6065. for (j = 0; j < ndoms_new; j++) {
  6066. if (cpus_equal(doms_cur[i], doms_new[j]))
  6067. goto match1;
  6068. }
  6069. /* no match - a current sched domain not in new doms_new[] */
  6070. detach_destroy_domains(doms_cur + i);
  6071. match1:
  6072. ;
  6073. }
  6074. /* Build new domains */
  6075. for (i = 0; i < ndoms_new; i++) {
  6076. for (j = 0; j < ndoms_cur; j++) {
  6077. if (cpus_equal(doms_new[i], doms_cur[j]))
  6078. goto match2;
  6079. }
  6080. /* no match - add a new doms_new */
  6081. build_sched_domains(doms_new + i);
  6082. match2:
  6083. ;
  6084. }
  6085. /* Remember the new sched domains */
  6086. if (doms_cur != &fallback_doms)
  6087. kfree(doms_cur);
  6088. doms_cur = doms_new;
  6089. ndoms_cur = ndoms_new;
  6090. register_sched_domain_sysctl();
  6091. unlock_doms_cur();
  6092. }
  6093. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6094. int arch_reinit_sched_domains(void)
  6095. {
  6096. int err;
  6097. get_online_cpus();
  6098. detach_destroy_domains(&cpu_online_map);
  6099. err = arch_init_sched_domains(&cpu_online_map);
  6100. put_online_cpus();
  6101. return err;
  6102. }
  6103. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6104. {
  6105. int ret;
  6106. if (buf[0] != '0' && buf[0] != '1')
  6107. return -EINVAL;
  6108. if (smt)
  6109. sched_smt_power_savings = (buf[0] == '1');
  6110. else
  6111. sched_mc_power_savings = (buf[0] == '1');
  6112. ret = arch_reinit_sched_domains();
  6113. return ret ? ret : count;
  6114. }
  6115. #ifdef CONFIG_SCHED_MC
  6116. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6117. {
  6118. return sprintf(page, "%u\n", sched_mc_power_savings);
  6119. }
  6120. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6121. const char *buf, size_t count)
  6122. {
  6123. return sched_power_savings_store(buf, count, 0);
  6124. }
  6125. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6126. sched_mc_power_savings_store);
  6127. #endif
  6128. #ifdef CONFIG_SCHED_SMT
  6129. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6130. {
  6131. return sprintf(page, "%u\n", sched_smt_power_savings);
  6132. }
  6133. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6134. const char *buf, size_t count)
  6135. {
  6136. return sched_power_savings_store(buf, count, 1);
  6137. }
  6138. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6139. sched_smt_power_savings_store);
  6140. #endif
  6141. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6142. {
  6143. int err = 0;
  6144. #ifdef CONFIG_SCHED_SMT
  6145. if (smt_capable())
  6146. err = sysfs_create_file(&cls->kset.kobj,
  6147. &attr_sched_smt_power_savings.attr);
  6148. #endif
  6149. #ifdef CONFIG_SCHED_MC
  6150. if (!err && mc_capable())
  6151. err = sysfs_create_file(&cls->kset.kobj,
  6152. &attr_sched_mc_power_savings.attr);
  6153. #endif
  6154. return err;
  6155. }
  6156. #endif
  6157. /*
  6158. * Force a reinitialization of the sched domains hierarchy. The domains
  6159. * and groups cannot be updated in place without racing with the balancing
  6160. * code, so we temporarily attach all running cpus to the NULL domain
  6161. * which will prevent rebalancing while the sched domains are recalculated.
  6162. */
  6163. static int update_sched_domains(struct notifier_block *nfb,
  6164. unsigned long action, void *hcpu)
  6165. {
  6166. switch (action) {
  6167. case CPU_UP_PREPARE:
  6168. case CPU_UP_PREPARE_FROZEN:
  6169. case CPU_DOWN_PREPARE:
  6170. case CPU_DOWN_PREPARE_FROZEN:
  6171. detach_destroy_domains(&cpu_online_map);
  6172. return NOTIFY_OK;
  6173. case CPU_UP_CANCELED:
  6174. case CPU_UP_CANCELED_FROZEN:
  6175. case CPU_DOWN_FAILED:
  6176. case CPU_DOWN_FAILED_FROZEN:
  6177. case CPU_ONLINE:
  6178. case CPU_ONLINE_FROZEN:
  6179. case CPU_DEAD:
  6180. case CPU_DEAD_FROZEN:
  6181. /*
  6182. * Fall through and re-initialise the domains.
  6183. */
  6184. break;
  6185. default:
  6186. return NOTIFY_DONE;
  6187. }
  6188. /* The hotplug lock is already held by cpu_up/cpu_down */
  6189. arch_init_sched_domains(&cpu_online_map);
  6190. return NOTIFY_OK;
  6191. }
  6192. void __init sched_init_smp(void)
  6193. {
  6194. cpumask_t non_isolated_cpus;
  6195. get_online_cpus();
  6196. arch_init_sched_domains(&cpu_online_map);
  6197. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6198. if (cpus_empty(non_isolated_cpus))
  6199. cpu_set(smp_processor_id(), non_isolated_cpus);
  6200. put_online_cpus();
  6201. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6202. hotcpu_notifier(update_sched_domains, 0);
  6203. /* Move init over to a non-isolated CPU */
  6204. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  6205. BUG();
  6206. sched_init_granularity();
  6207. }
  6208. #else
  6209. void __init sched_init_smp(void)
  6210. {
  6211. sched_init_granularity();
  6212. }
  6213. #endif /* CONFIG_SMP */
  6214. int in_sched_functions(unsigned long addr)
  6215. {
  6216. return in_lock_functions(addr) ||
  6217. (addr >= (unsigned long)__sched_text_start
  6218. && addr < (unsigned long)__sched_text_end);
  6219. }
  6220. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6221. {
  6222. cfs_rq->tasks_timeline = RB_ROOT;
  6223. #ifdef CONFIG_FAIR_GROUP_SCHED
  6224. cfs_rq->rq = rq;
  6225. #endif
  6226. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6227. }
  6228. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6229. {
  6230. struct rt_prio_array *array;
  6231. int i;
  6232. array = &rt_rq->active;
  6233. for (i = 0; i < MAX_RT_PRIO; i++) {
  6234. INIT_LIST_HEAD(array->queue + i);
  6235. __clear_bit(i, array->bitmap);
  6236. }
  6237. /* delimiter for bitsearch: */
  6238. __set_bit(MAX_RT_PRIO, array->bitmap);
  6239. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6240. rt_rq->highest_prio = MAX_RT_PRIO;
  6241. #endif
  6242. #ifdef CONFIG_SMP
  6243. rt_rq->rt_nr_migratory = 0;
  6244. rt_rq->overloaded = 0;
  6245. #endif
  6246. rt_rq->rt_time = 0;
  6247. rt_rq->rt_throttled = 0;
  6248. rt_rq->rt_runtime = 0;
  6249. spin_lock_init(&rt_rq->rt_runtime_lock);
  6250. #ifdef CONFIG_RT_GROUP_SCHED
  6251. rt_rq->rt_nr_boosted = 0;
  6252. rt_rq->rq = rq;
  6253. #endif
  6254. }
  6255. #ifdef CONFIG_FAIR_GROUP_SCHED
  6256. static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
  6257. struct cfs_rq *cfs_rq, struct sched_entity *se,
  6258. int cpu, int add)
  6259. {
  6260. tg->cfs_rq[cpu] = cfs_rq;
  6261. init_cfs_rq(cfs_rq, rq);
  6262. cfs_rq->tg = tg;
  6263. if (add)
  6264. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6265. tg->se[cpu] = se;
  6266. se->cfs_rq = &rq->cfs;
  6267. se->my_q = cfs_rq;
  6268. se->load.weight = tg->shares;
  6269. se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
  6270. se->parent = NULL;
  6271. }
  6272. #endif
  6273. #ifdef CONFIG_RT_GROUP_SCHED
  6274. static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
  6275. struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
  6276. int cpu, int add)
  6277. {
  6278. tg->rt_rq[cpu] = rt_rq;
  6279. init_rt_rq(rt_rq, rq);
  6280. rt_rq->tg = tg;
  6281. rt_rq->rt_se = rt_se;
  6282. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6283. if (add)
  6284. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6285. tg->rt_se[cpu] = rt_se;
  6286. rt_se->rt_rq = &rq->rt;
  6287. rt_se->my_q = rt_rq;
  6288. rt_se->parent = NULL;
  6289. INIT_LIST_HEAD(&rt_se->run_list);
  6290. }
  6291. #endif
  6292. void __init sched_init(void)
  6293. {
  6294. int highest_cpu = 0;
  6295. int i, j;
  6296. #ifdef CONFIG_SMP
  6297. init_defrootdomain();
  6298. #endif
  6299. init_rt_bandwidth(&def_rt_bandwidth,
  6300. global_rt_period(), global_rt_runtime());
  6301. #ifdef CONFIG_RT_GROUP_SCHED
  6302. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6303. global_rt_period(), global_rt_runtime());
  6304. #endif
  6305. #ifdef CONFIG_GROUP_SCHED
  6306. list_add(&init_task_group.list, &task_groups);
  6307. #endif
  6308. for_each_possible_cpu(i) {
  6309. struct rq *rq;
  6310. rq = cpu_rq(i);
  6311. spin_lock_init(&rq->lock);
  6312. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6313. rq->nr_running = 0;
  6314. rq->clock = 1;
  6315. update_last_tick_seen(rq);
  6316. init_cfs_rq(&rq->cfs, rq);
  6317. init_rt_rq(&rq->rt, rq);
  6318. #ifdef CONFIG_FAIR_GROUP_SCHED
  6319. init_task_group.shares = init_task_group_load;
  6320. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6321. init_tg_cfs_entry(rq, &init_task_group,
  6322. &per_cpu(init_cfs_rq, i),
  6323. &per_cpu(init_sched_entity, i), i, 1);
  6324. #endif
  6325. #ifdef CONFIG_RT_GROUP_SCHED
  6326. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6327. init_tg_rt_entry(rq, &init_task_group,
  6328. &per_cpu(init_rt_rq, i),
  6329. &per_cpu(init_sched_rt_entity, i), i, 1);
  6330. #else
  6331. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6332. #endif
  6333. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6334. rq->cpu_load[j] = 0;
  6335. #ifdef CONFIG_SMP
  6336. rq->sd = NULL;
  6337. rq->rd = NULL;
  6338. rq->active_balance = 0;
  6339. rq->next_balance = jiffies;
  6340. rq->push_cpu = 0;
  6341. rq->cpu = i;
  6342. rq->migration_thread = NULL;
  6343. INIT_LIST_HEAD(&rq->migration_queue);
  6344. rq_attach_root(rq, &def_root_domain);
  6345. #endif
  6346. init_rq_hrtick(rq);
  6347. atomic_set(&rq->nr_iowait, 0);
  6348. highest_cpu = i;
  6349. }
  6350. set_load_weight(&init_task);
  6351. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6352. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6353. #endif
  6354. #ifdef CONFIG_SMP
  6355. nr_cpu_ids = highest_cpu + 1;
  6356. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6357. #endif
  6358. #ifdef CONFIG_RT_MUTEXES
  6359. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6360. #endif
  6361. /*
  6362. * The boot idle thread does lazy MMU switching as well:
  6363. */
  6364. atomic_inc(&init_mm.mm_count);
  6365. enter_lazy_tlb(&init_mm, current);
  6366. /*
  6367. * Make us the idle thread. Technically, schedule() should not be
  6368. * called from this thread, however somewhere below it might be,
  6369. * but because we are the idle thread, we just pick up running again
  6370. * when this runqueue becomes "idle".
  6371. */
  6372. init_idle(current, smp_processor_id());
  6373. /*
  6374. * During early bootup we pretend to be a normal task:
  6375. */
  6376. current->sched_class = &fair_sched_class;
  6377. scheduler_running = 1;
  6378. }
  6379. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6380. void __might_sleep(char *file, int line)
  6381. {
  6382. #ifdef in_atomic
  6383. static unsigned long prev_jiffy; /* ratelimiting */
  6384. if ((in_atomic() || irqs_disabled()) &&
  6385. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6386. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6387. return;
  6388. prev_jiffy = jiffies;
  6389. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6390. " context at %s:%d\n", file, line);
  6391. printk("in_atomic():%d, irqs_disabled():%d\n",
  6392. in_atomic(), irqs_disabled());
  6393. debug_show_held_locks(current);
  6394. if (irqs_disabled())
  6395. print_irqtrace_events(current);
  6396. dump_stack();
  6397. }
  6398. #endif
  6399. }
  6400. EXPORT_SYMBOL(__might_sleep);
  6401. #endif
  6402. #ifdef CONFIG_MAGIC_SYSRQ
  6403. static void normalize_task(struct rq *rq, struct task_struct *p)
  6404. {
  6405. int on_rq;
  6406. update_rq_clock(rq);
  6407. on_rq = p->se.on_rq;
  6408. if (on_rq)
  6409. deactivate_task(rq, p, 0);
  6410. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6411. if (on_rq) {
  6412. activate_task(rq, p, 0);
  6413. resched_task(rq->curr);
  6414. }
  6415. }
  6416. void normalize_rt_tasks(void)
  6417. {
  6418. struct task_struct *g, *p;
  6419. unsigned long flags;
  6420. struct rq *rq;
  6421. read_lock_irqsave(&tasklist_lock, flags);
  6422. do_each_thread(g, p) {
  6423. /*
  6424. * Only normalize user tasks:
  6425. */
  6426. if (!p->mm)
  6427. continue;
  6428. p->se.exec_start = 0;
  6429. #ifdef CONFIG_SCHEDSTATS
  6430. p->se.wait_start = 0;
  6431. p->se.sleep_start = 0;
  6432. p->se.block_start = 0;
  6433. #endif
  6434. task_rq(p)->clock = 0;
  6435. if (!rt_task(p)) {
  6436. /*
  6437. * Renice negative nice level userspace
  6438. * tasks back to 0:
  6439. */
  6440. if (TASK_NICE(p) < 0 && p->mm)
  6441. set_user_nice(p, 0);
  6442. continue;
  6443. }
  6444. spin_lock(&p->pi_lock);
  6445. rq = __task_rq_lock(p);
  6446. normalize_task(rq, p);
  6447. __task_rq_unlock(rq);
  6448. spin_unlock(&p->pi_lock);
  6449. } while_each_thread(g, p);
  6450. read_unlock_irqrestore(&tasklist_lock, flags);
  6451. }
  6452. #endif /* CONFIG_MAGIC_SYSRQ */
  6453. #ifdef CONFIG_IA64
  6454. /*
  6455. * These functions are only useful for the IA64 MCA handling.
  6456. *
  6457. * They can only be called when the whole system has been
  6458. * stopped - every CPU needs to be quiescent, and no scheduling
  6459. * activity can take place. Using them for anything else would
  6460. * be a serious bug, and as a result, they aren't even visible
  6461. * under any other configuration.
  6462. */
  6463. /**
  6464. * curr_task - return the current task for a given cpu.
  6465. * @cpu: the processor in question.
  6466. *
  6467. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6468. */
  6469. struct task_struct *curr_task(int cpu)
  6470. {
  6471. return cpu_curr(cpu);
  6472. }
  6473. /**
  6474. * set_curr_task - set the current task for a given cpu.
  6475. * @cpu: the processor in question.
  6476. * @p: the task pointer to set.
  6477. *
  6478. * Description: This function must only be used when non-maskable interrupts
  6479. * are serviced on a separate stack. It allows the architecture to switch the
  6480. * notion of the current task on a cpu in a non-blocking manner. This function
  6481. * must be called with all CPU's synchronized, and interrupts disabled, the
  6482. * and caller must save the original value of the current task (see
  6483. * curr_task() above) and restore that value before reenabling interrupts and
  6484. * re-starting the system.
  6485. *
  6486. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6487. */
  6488. void set_curr_task(int cpu, struct task_struct *p)
  6489. {
  6490. cpu_curr(cpu) = p;
  6491. }
  6492. #endif
  6493. #ifdef CONFIG_FAIR_GROUP_SCHED
  6494. static void free_fair_sched_group(struct task_group *tg)
  6495. {
  6496. int i;
  6497. for_each_possible_cpu(i) {
  6498. if (tg->cfs_rq)
  6499. kfree(tg->cfs_rq[i]);
  6500. if (tg->se)
  6501. kfree(tg->se[i]);
  6502. }
  6503. kfree(tg->cfs_rq);
  6504. kfree(tg->se);
  6505. }
  6506. static int alloc_fair_sched_group(struct task_group *tg)
  6507. {
  6508. struct cfs_rq *cfs_rq;
  6509. struct sched_entity *se;
  6510. struct rq *rq;
  6511. int i;
  6512. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  6513. if (!tg->cfs_rq)
  6514. goto err;
  6515. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  6516. if (!tg->se)
  6517. goto err;
  6518. tg->shares = NICE_0_LOAD;
  6519. for_each_possible_cpu(i) {
  6520. rq = cpu_rq(i);
  6521. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  6522. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6523. if (!cfs_rq)
  6524. goto err;
  6525. se = kmalloc_node(sizeof(struct sched_entity),
  6526. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6527. if (!se)
  6528. goto err;
  6529. init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
  6530. }
  6531. return 1;
  6532. err:
  6533. return 0;
  6534. }
  6535. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6536. {
  6537. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6538. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6539. }
  6540. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6541. {
  6542. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6543. }
  6544. #else
  6545. static inline void free_fair_sched_group(struct task_group *tg)
  6546. {
  6547. }
  6548. static inline int alloc_fair_sched_group(struct task_group *tg)
  6549. {
  6550. return 1;
  6551. }
  6552. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6553. {
  6554. }
  6555. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6556. {
  6557. }
  6558. #endif
  6559. #ifdef CONFIG_RT_GROUP_SCHED
  6560. static void free_rt_sched_group(struct task_group *tg)
  6561. {
  6562. int i;
  6563. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6564. for_each_possible_cpu(i) {
  6565. if (tg->rt_rq)
  6566. kfree(tg->rt_rq[i]);
  6567. if (tg->rt_se)
  6568. kfree(tg->rt_se[i]);
  6569. }
  6570. kfree(tg->rt_rq);
  6571. kfree(tg->rt_se);
  6572. }
  6573. static int alloc_rt_sched_group(struct task_group *tg)
  6574. {
  6575. struct rt_rq *rt_rq;
  6576. struct sched_rt_entity *rt_se;
  6577. struct rq *rq;
  6578. int i;
  6579. tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
  6580. if (!tg->rt_rq)
  6581. goto err;
  6582. tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
  6583. if (!tg->rt_se)
  6584. goto err;
  6585. init_rt_bandwidth(&tg->rt_bandwidth,
  6586. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6587. for_each_possible_cpu(i) {
  6588. rq = cpu_rq(i);
  6589. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  6590. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6591. if (!rt_rq)
  6592. goto err;
  6593. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  6594. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6595. if (!rt_se)
  6596. goto err;
  6597. init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
  6598. }
  6599. return 1;
  6600. err:
  6601. return 0;
  6602. }
  6603. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6604. {
  6605. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6606. &cpu_rq(cpu)->leaf_rt_rq_list);
  6607. }
  6608. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6609. {
  6610. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6611. }
  6612. #else
  6613. static inline void free_rt_sched_group(struct task_group *tg)
  6614. {
  6615. }
  6616. static inline int alloc_rt_sched_group(struct task_group *tg)
  6617. {
  6618. return 1;
  6619. }
  6620. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6621. {
  6622. }
  6623. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6624. {
  6625. }
  6626. #endif
  6627. #ifdef CONFIG_GROUP_SCHED
  6628. static void free_sched_group(struct task_group *tg)
  6629. {
  6630. free_fair_sched_group(tg);
  6631. free_rt_sched_group(tg);
  6632. kfree(tg);
  6633. }
  6634. /* allocate runqueue etc for a new task group */
  6635. struct task_group *sched_create_group(void)
  6636. {
  6637. struct task_group *tg;
  6638. unsigned long flags;
  6639. int i;
  6640. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6641. if (!tg)
  6642. return ERR_PTR(-ENOMEM);
  6643. if (!alloc_fair_sched_group(tg))
  6644. goto err;
  6645. if (!alloc_rt_sched_group(tg))
  6646. goto err;
  6647. spin_lock_irqsave(&task_group_lock, flags);
  6648. for_each_possible_cpu(i) {
  6649. register_fair_sched_group(tg, i);
  6650. register_rt_sched_group(tg, i);
  6651. }
  6652. list_add_rcu(&tg->list, &task_groups);
  6653. spin_unlock_irqrestore(&task_group_lock, flags);
  6654. return tg;
  6655. err:
  6656. free_sched_group(tg);
  6657. return ERR_PTR(-ENOMEM);
  6658. }
  6659. /* rcu callback to free various structures associated with a task group */
  6660. static void free_sched_group_rcu(struct rcu_head *rhp)
  6661. {
  6662. /* now it should be safe to free those cfs_rqs */
  6663. free_sched_group(container_of(rhp, struct task_group, rcu));
  6664. }
  6665. /* Destroy runqueue etc associated with a task group */
  6666. void sched_destroy_group(struct task_group *tg)
  6667. {
  6668. unsigned long flags;
  6669. int i;
  6670. spin_lock_irqsave(&task_group_lock, flags);
  6671. for_each_possible_cpu(i) {
  6672. unregister_fair_sched_group(tg, i);
  6673. unregister_rt_sched_group(tg, i);
  6674. }
  6675. list_del_rcu(&tg->list);
  6676. spin_unlock_irqrestore(&task_group_lock, flags);
  6677. /* wait for possible concurrent references to cfs_rqs complete */
  6678. call_rcu(&tg->rcu, free_sched_group_rcu);
  6679. }
  6680. /* change task's runqueue when it moves between groups.
  6681. * The caller of this function should have put the task in its new group
  6682. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6683. * reflect its new group.
  6684. */
  6685. void sched_move_task(struct task_struct *tsk)
  6686. {
  6687. int on_rq, running;
  6688. unsigned long flags;
  6689. struct rq *rq;
  6690. rq = task_rq_lock(tsk, &flags);
  6691. update_rq_clock(rq);
  6692. running = task_current(rq, tsk);
  6693. on_rq = tsk->se.on_rq;
  6694. if (on_rq)
  6695. dequeue_task(rq, tsk, 0);
  6696. if (unlikely(running))
  6697. tsk->sched_class->put_prev_task(rq, tsk);
  6698. set_task_rq(tsk, task_cpu(tsk));
  6699. #ifdef CONFIG_FAIR_GROUP_SCHED
  6700. if (tsk->sched_class->moved_group)
  6701. tsk->sched_class->moved_group(tsk);
  6702. #endif
  6703. if (unlikely(running))
  6704. tsk->sched_class->set_curr_task(rq);
  6705. if (on_rq)
  6706. enqueue_task(rq, tsk, 0);
  6707. task_rq_unlock(rq, &flags);
  6708. }
  6709. #endif
  6710. #ifdef CONFIG_FAIR_GROUP_SCHED
  6711. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6712. {
  6713. struct cfs_rq *cfs_rq = se->cfs_rq;
  6714. struct rq *rq = cfs_rq->rq;
  6715. int on_rq;
  6716. spin_lock_irq(&rq->lock);
  6717. on_rq = se->on_rq;
  6718. if (on_rq)
  6719. dequeue_entity(cfs_rq, se, 0);
  6720. se->load.weight = shares;
  6721. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6722. if (on_rq)
  6723. enqueue_entity(cfs_rq, se, 0);
  6724. spin_unlock_irq(&rq->lock);
  6725. }
  6726. static DEFINE_MUTEX(shares_mutex);
  6727. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6728. {
  6729. int i;
  6730. unsigned long flags;
  6731. /*
  6732. * A weight of 0 or 1 can cause arithmetics problems.
  6733. * (The default weight is 1024 - so there's no practical
  6734. * limitation from this.)
  6735. */
  6736. if (shares < 2)
  6737. shares = 2;
  6738. mutex_lock(&shares_mutex);
  6739. if (tg->shares == shares)
  6740. goto done;
  6741. spin_lock_irqsave(&task_group_lock, flags);
  6742. for_each_possible_cpu(i)
  6743. unregister_fair_sched_group(tg, i);
  6744. spin_unlock_irqrestore(&task_group_lock, flags);
  6745. /* wait for any ongoing reference to this group to finish */
  6746. synchronize_sched();
  6747. /*
  6748. * Now we are free to modify the group's share on each cpu
  6749. * w/o tripping rebalance_share or load_balance_fair.
  6750. */
  6751. tg->shares = shares;
  6752. for_each_possible_cpu(i)
  6753. set_se_shares(tg->se[i], shares);
  6754. /*
  6755. * Enable load balance activity on this group, by inserting it back on
  6756. * each cpu's rq->leaf_cfs_rq_list.
  6757. */
  6758. spin_lock_irqsave(&task_group_lock, flags);
  6759. for_each_possible_cpu(i)
  6760. register_fair_sched_group(tg, i);
  6761. spin_unlock_irqrestore(&task_group_lock, flags);
  6762. done:
  6763. mutex_unlock(&shares_mutex);
  6764. return 0;
  6765. }
  6766. unsigned long sched_group_shares(struct task_group *tg)
  6767. {
  6768. return tg->shares;
  6769. }
  6770. #endif
  6771. #ifdef CONFIG_RT_GROUP_SCHED
  6772. /*
  6773. * Ensure that the real time constraints are schedulable.
  6774. */
  6775. static DEFINE_MUTEX(rt_constraints_mutex);
  6776. static unsigned long to_ratio(u64 period, u64 runtime)
  6777. {
  6778. if (runtime == RUNTIME_INF)
  6779. return 1ULL << 16;
  6780. return div64_64(runtime << 16, period);
  6781. }
  6782. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6783. {
  6784. struct task_group *tgi;
  6785. unsigned long total = 0;
  6786. unsigned long global_ratio =
  6787. to_ratio(global_rt_period(), global_rt_runtime());
  6788. rcu_read_lock();
  6789. list_for_each_entry_rcu(tgi, &task_groups, list) {
  6790. if (tgi == tg)
  6791. continue;
  6792. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  6793. tgi->rt_bandwidth.rt_runtime);
  6794. }
  6795. rcu_read_unlock();
  6796. return total + to_ratio(period, runtime) < global_ratio;
  6797. }
  6798. /* Must be called with tasklist_lock held */
  6799. static inline int tg_has_rt_tasks(struct task_group *tg)
  6800. {
  6801. struct task_struct *g, *p;
  6802. do_each_thread(g, p) {
  6803. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  6804. return 1;
  6805. } while_each_thread(g, p);
  6806. return 0;
  6807. }
  6808. static int tg_set_bandwidth(struct task_group *tg,
  6809. u64 rt_period, u64 rt_runtime)
  6810. {
  6811. int i, err = 0;
  6812. mutex_lock(&rt_constraints_mutex);
  6813. read_lock(&tasklist_lock);
  6814. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  6815. err = -EBUSY;
  6816. goto unlock;
  6817. }
  6818. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  6819. err = -EINVAL;
  6820. goto unlock;
  6821. }
  6822. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6823. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6824. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6825. for_each_possible_cpu(i) {
  6826. struct rt_rq *rt_rq = tg->rt_rq[i];
  6827. spin_lock(&rt_rq->rt_runtime_lock);
  6828. rt_rq->rt_runtime = rt_runtime;
  6829. spin_unlock(&rt_rq->rt_runtime_lock);
  6830. }
  6831. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6832. unlock:
  6833. read_unlock(&tasklist_lock);
  6834. mutex_unlock(&rt_constraints_mutex);
  6835. return err;
  6836. }
  6837. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6838. {
  6839. u64 rt_runtime, rt_period;
  6840. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6841. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6842. if (rt_runtime_us < 0)
  6843. rt_runtime = RUNTIME_INF;
  6844. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  6845. }
  6846. long sched_group_rt_runtime(struct task_group *tg)
  6847. {
  6848. u64 rt_runtime_us;
  6849. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6850. return -1;
  6851. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6852. do_div(rt_runtime_us, NSEC_PER_USEC);
  6853. return rt_runtime_us;
  6854. }
  6855. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6856. {
  6857. u64 rt_runtime, rt_period;
  6858. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6859. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6860. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  6861. }
  6862. long sched_group_rt_period(struct task_group *tg)
  6863. {
  6864. u64 rt_period_us;
  6865. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6866. do_div(rt_period_us, NSEC_PER_USEC);
  6867. return rt_period_us;
  6868. }
  6869. static int sched_rt_global_constraints(void)
  6870. {
  6871. int ret = 0;
  6872. mutex_lock(&rt_constraints_mutex);
  6873. if (!__rt_schedulable(NULL, 1, 0))
  6874. ret = -EINVAL;
  6875. mutex_unlock(&rt_constraints_mutex);
  6876. return ret;
  6877. }
  6878. #else
  6879. static int sched_rt_global_constraints(void)
  6880. {
  6881. unsigned long flags;
  6882. int i;
  6883. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6884. for_each_possible_cpu(i) {
  6885. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6886. spin_lock(&rt_rq->rt_runtime_lock);
  6887. rt_rq->rt_runtime = global_rt_runtime();
  6888. spin_unlock(&rt_rq->rt_runtime_lock);
  6889. }
  6890. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6891. return 0;
  6892. }
  6893. #endif
  6894. int sched_rt_handler(struct ctl_table *table, int write,
  6895. struct file *filp, void __user *buffer, size_t *lenp,
  6896. loff_t *ppos)
  6897. {
  6898. int ret;
  6899. int old_period, old_runtime;
  6900. static DEFINE_MUTEX(mutex);
  6901. mutex_lock(&mutex);
  6902. old_period = sysctl_sched_rt_period;
  6903. old_runtime = sysctl_sched_rt_runtime;
  6904. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  6905. if (!ret && write) {
  6906. ret = sched_rt_global_constraints();
  6907. if (ret) {
  6908. sysctl_sched_rt_period = old_period;
  6909. sysctl_sched_rt_runtime = old_runtime;
  6910. } else {
  6911. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6912. def_rt_bandwidth.rt_period =
  6913. ns_to_ktime(global_rt_period());
  6914. }
  6915. }
  6916. mutex_unlock(&mutex);
  6917. return ret;
  6918. }
  6919. #ifdef CONFIG_CGROUP_SCHED
  6920. /* return corresponding task_group object of a cgroup */
  6921. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6922. {
  6923. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6924. struct task_group, css);
  6925. }
  6926. static struct cgroup_subsys_state *
  6927. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6928. {
  6929. struct task_group *tg;
  6930. if (!cgrp->parent) {
  6931. /* This is early initialization for the top cgroup */
  6932. init_task_group.css.cgroup = cgrp;
  6933. return &init_task_group.css;
  6934. }
  6935. /* we support only 1-level deep hierarchical scheduler atm */
  6936. if (cgrp->parent->parent)
  6937. return ERR_PTR(-EINVAL);
  6938. tg = sched_create_group();
  6939. if (IS_ERR(tg))
  6940. return ERR_PTR(-ENOMEM);
  6941. /* Bind the cgroup to task_group object we just created */
  6942. tg->css.cgroup = cgrp;
  6943. return &tg->css;
  6944. }
  6945. static void
  6946. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6947. {
  6948. struct task_group *tg = cgroup_tg(cgrp);
  6949. sched_destroy_group(tg);
  6950. }
  6951. static int
  6952. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6953. struct task_struct *tsk)
  6954. {
  6955. #ifdef CONFIG_RT_GROUP_SCHED
  6956. /* Don't accept realtime tasks when there is no way for them to run */
  6957. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  6958. return -EINVAL;
  6959. #else
  6960. /* We don't support RT-tasks being in separate groups */
  6961. if (tsk->sched_class != &fair_sched_class)
  6962. return -EINVAL;
  6963. #endif
  6964. return 0;
  6965. }
  6966. static void
  6967. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6968. struct cgroup *old_cont, struct task_struct *tsk)
  6969. {
  6970. sched_move_task(tsk);
  6971. }
  6972. #ifdef CONFIG_FAIR_GROUP_SCHED
  6973. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6974. u64 shareval)
  6975. {
  6976. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  6977. }
  6978. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6979. {
  6980. struct task_group *tg = cgroup_tg(cgrp);
  6981. return (u64) tg->shares;
  6982. }
  6983. #endif
  6984. #ifdef CONFIG_RT_GROUP_SCHED
  6985. static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  6986. struct file *file,
  6987. const char __user *userbuf,
  6988. size_t nbytes, loff_t *unused_ppos)
  6989. {
  6990. char buffer[64];
  6991. int retval = 0;
  6992. s64 val;
  6993. char *end;
  6994. if (!nbytes)
  6995. return -EINVAL;
  6996. if (nbytes >= sizeof(buffer))
  6997. return -E2BIG;
  6998. if (copy_from_user(buffer, userbuf, nbytes))
  6999. return -EFAULT;
  7000. buffer[nbytes] = 0; /* nul-terminate */
  7001. /* strip newline if necessary */
  7002. if (nbytes && (buffer[nbytes-1] == '\n'))
  7003. buffer[nbytes-1] = 0;
  7004. val = simple_strtoll(buffer, &end, 0);
  7005. if (*end)
  7006. return -EINVAL;
  7007. /* Pass to subsystem */
  7008. retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7009. if (!retval)
  7010. retval = nbytes;
  7011. return retval;
  7012. }
  7013. static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
  7014. struct file *file,
  7015. char __user *buf, size_t nbytes,
  7016. loff_t *ppos)
  7017. {
  7018. char tmp[64];
  7019. long val = sched_group_rt_runtime(cgroup_tg(cgrp));
  7020. int len = sprintf(tmp, "%ld\n", val);
  7021. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  7022. }
  7023. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7024. u64 rt_period_us)
  7025. {
  7026. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7027. }
  7028. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7029. {
  7030. return sched_group_rt_period(cgroup_tg(cgrp));
  7031. }
  7032. #endif
  7033. static struct cftype cpu_files[] = {
  7034. #ifdef CONFIG_FAIR_GROUP_SCHED
  7035. {
  7036. .name = "shares",
  7037. .read_uint = cpu_shares_read_uint,
  7038. .write_uint = cpu_shares_write_uint,
  7039. },
  7040. #endif
  7041. #ifdef CONFIG_RT_GROUP_SCHED
  7042. {
  7043. .name = "rt_runtime_us",
  7044. .read = cpu_rt_runtime_read,
  7045. .write = cpu_rt_runtime_write,
  7046. },
  7047. {
  7048. .name = "rt_period_us",
  7049. .read_uint = cpu_rt_period_read_uint,
  7050. .write_uint = cpu_rt_period_write_uint,
  7051. },
  7052. #endif
  7053. };
  7054. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7055. {
  7056. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7057. }
  7058. struct cgroup_subsys cpu_cgroup_subsys = {
  7059. .name = "cpu",
  7060. .create = cpu_cgroup_create,
  7061. .destroy = cpu_cgroup_destroy,
  7062. .can_attach = cpu_cgroup_can_attach,
  7063. .attach = cpu_cgroup_attach,
  7064. .populate = cpu_cgroup_populate,
  7065. .subsys_id = cpu_cgroup_subsys_id,
  7066. .early_init = 1,
  7067. };
  7068. #endif /* CONFIG_CGROUP_SCHED */
  7069. #ifdef CONFIG_CGROUP_CPUACCT
  7070. /*
  7071. * CPU accounting code for task groups.
  7072. *
  7073. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7074. * (balbir@in.ibm.com).
  7075. */
  7076. /* track cpu usage of a group of tasks */
  7077. struct cpuacct {
  7078. struct cgroup_subsys_state css;
  7079. /* cpuusage holds pointer to a u64-type object on every cpu */
  7080. u64 *cpuusage;
  7081. };
  7082. struct cgroup_subsys cpuacct_subsys;
  7083. /* return cpu accounting group corresponding to this container */
  7084. static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
  7085. {
  7086. return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
  7087. struct cpuacct, css);
  7088. }
  7089. /* return cpu accounting group to which this task belongs */
  7090. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7091. {
  7092. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7093. struct cpuacct, css);
  7094. }
  7095. /* create a new cpu accounting group */
  7096. static struct cgroup_subsys_state *cpuacct_create(
  7097. struct cgroup_subsys *ss, struct cgroup *cont)
  7098. {
  7099. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7100. if (!ca)
  7101. return ERR_PTR(-ENOMEM);
  7102. ca->cpuusage = alloc_percpu(u64);
  7103. if (!ca->cpuusage) {
  7104. kfree(ca);
  7105. return ERR_PTR(-ENOMEM);
  7106. }
  7107. return &ca->css;
  7108. }
  7109. /* destroy an existing cpu accounting group */
  7110. static void
  7111. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  7112. {
  7113. struct cpuacct *ca = cgroup_ca(cont);
  7114. free_percpu(ca->cpuusage);
  7115. kfree(ca);
  7116. }
  7117. /* return total cpu usage (in nanoseconds) of a group */
  7118. static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
  7119. {
  7120. struct cpuacct *ca = cgroup_ca(cont);
  7121. u64 totalcpuusage = 0;
  7122. int i;
  7123. for_each_possible_cpu(i) {
  7124. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7125. /*
  7126. * Take rq->lock to make 64-bit addition safe on 32-bit
  7127. * platforms.
  7128. */
  7129. spin_lock_irq(&cpu_rq(i)->lock);
  7130. totalcpuusage += *cpuusage;
  7131. spin_unlock_irq(&cpu_rq(i)->lock);
  7132. }
  7133. return totalcpuusage;
  7134. }
  7135. static struct cftype files[] = {
  7136. {
  7137. .name = "usage",
  7138. .read_uint = cpuusage_read,
  7139. },
  7140. };
  7141. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7142. {
  7143. return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  7144. }
  7145. /*
  7146. * charge this task's execution time to its accounting group.
  7147. *
  7148. * called with rq->lock held.
  7149. */
  7150. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7151. {
  7152. struct cpuacct *ca;
  7153. if (!cpuacct_subsys.active)
  7154. return;
  7155. ca = task_ca(tsk);
  7156. if (ca) {
  7157. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7158. *cpuusage += cputime;
  7159. }
  7160. }
  7161. struct cgroup_subsys cpuacct_subsys = {
  7162. .name = "cpuacct",
  7163. .create = cpuacct_create,
  7164. .destroy = cpuacct_destroy,
  7165. .populate = cpuacct_populate,
  7166. .subsys_id = cpuacct_subsys_id,
  7167. };
  7168. #endif /* CONFIG_CGROUP_CPUACCT */