fpu-internal.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582
  1. /*
  2. * Copyright (C) 1994 Linus Torvalds
  3. *
  4. * Pentium III FXSR, SSE support
  5. * General FPU state handling cleanups
  6. * Gareth Hughes <gareth@valinux.com>, May 2000
  7. * x86-64 work by Andi Kleen 2002
  8. */
  9. #ifndef _FPU_INTERNAL_H
  10. #define _FPU_INTERNAL_H
  11. #include <linux/kernel_stat.h>
  12. #include <linux/regset.h>
  13. #include <linux/compat.h>
  14. #include <linux/slab.h>
  15. #include <asm/asm.h>
  16. #include <asm/cpufeature.h>
  17. #include <asm/processor.h>
  18. #include <asm/sigcontext.h>
  19. #include <asm/user.h>
  20. #include <asm/uaccess.h>
  21. #include <asm/xsave.h>
  22. #ifdef CONFIG_X86_64
  23. # include <asm/sigcontext32.h>
  24. # include <asm/user32.h>
  25. int ia32_setup_rt_frame(int sig, struct k_sigaction *ka, siginfo_t *info,
  26. compat_sigset_t *set, struct pt_regs *regs);
  27. int ia32_setup_frame(int sig, struct k_sigaction *ka,
  28. compat_sigset_t *set, struct pt_regs *regs);
  29. #else
  30. # define user_i387_ia32_struct user_i387_struct
  31. # define user32_fxsr_struct user_fxsr_struct
  32. # define ia32_setup_frame __setup_frame
  33. # define ia32_setup_rt_frame __setup_rt_frame
  34. #endif
  35. extern unsigned int mxcsr_feature_mask;
  36. extern void fpu_init(void);
  37. extern void eager_fpu_init(void);
  38. DECLARE_PER_CPU(struct task_struct *, fpu_owner_task);
  39. extern void convert_from_fxsr(struct user_i387_ia32_struct *env,
  40. struct task_struct *tsk);
  41. extern void convert_to_fxsr(struct task_struct *tsk,
  42. const struct user_i387_ia32_struct *env);
  43. extern user_regset_active_fn fpregs_active, xfpregs_active;
  44. extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get,
  45. xstateregs_get;
  46. extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set,
  47. xstateregs_set;
  48. /*
  49. * xstateregs_active == fpregs_active. Please refer to the comment
  50. * at the definition of fpregs_active.
  51. */
  52. #define xstateregs_active fpregs_active
  53. #ifdef CONFIG_MATH_EMULATION
  54. # define HAVE_HWFP (boot_cpu_data.hard_math)
  55. extern void finit_soft_fpu(struct i387_soft_struct *soft);
  56. #else
  57. # define HAVE_HWFP 1
  58. static inline void finit_soft_fpu(struct i387_soft_struct *soft) {}
  59. #endif
  60. static inline int is_ia32_compat_frame(void)
  61. {
  62. return config_enabled(CONFIG_IA32_EMULATION) &&
  63. test_thread_flag(TIF_IA32);
  64. }
  65. static inline int is_ia32_frame(void)
  66. {
  67. return config_enabled(CONFIG_X86_32) || is_ia32_compat_frame();
  68. }
  69. static inline int is_x32_frame(void)
  70. {
  71. return config_enabled(CONFIG_X86_X32_ABI) && test_thread_flag(TIF_X32);
  72. }
  73. #define X87_FSW_ES (1 << 7) /* Exception Summary */
  74. static __always_inline __pure bool use_eager_fpu(void)
  75. {
  76. return static_cpu_has(X86_FEATURE_EAGER_FPU);
  77. }
  78. static __always_inline __pure bool use_xsaveopt(void)
  79. {
  80. return static_cpu_has(X86_FEATURE_XSAVEOPT);
  81. }
  82. static __always_inline __pure bool use_xsave(void)
  83. {
  84. return static_cpu_has(X86_FEATURE_XSAVE);
  85. }
  86. static __always_inline __pure bool use_fxsr(void)
  87. {
  88. return static_cpu_has(X86_FEATURE_FXSR);
  89. }
  90. static inline void fx_finit(struct i387_fxsave_struct *fx)
  91. {
  92. memset(fx, 0, xstate_size);
  93. fx->cwd = 0x37f;
  94. fx->mxcsr = MXCSR_DEFAULT;
  95. }
  96. extern void __sanitize_i387_state(struct task_struct *);
  97. static inline void sanitize_i387_state(struct task_struct *tsk)
  98. {
  99. if (!use_xsaveopt())
  100. return;
  101. __sanitize_i387_state(tsk);
  102. }
  103. #define check_insn(insn, output, input...) \
  104. ({ \
  105. int err; \
  106. asm volatile("1:" #insn "\n\t" \
  107. "2:\n" \
  108. ".section .fixup,\"ax\"\n" \
  109. "3: movl $-1,%[err]\n" \
  110. " jmp 2b\n" \
  111. ".previous\n" \
  112. _ASM_EXTABLE(1b, 3b) \
  113. : [err] "=r" (err), output \
  114. : "0"(0), input); \
  115. err; \
  116. })
  117. static inline int fsave_user(struct i387_fsave_struct __user *fx)
  118. {
  119. return check_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx));
  120. }
  121. static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
  122. {
  123. if (config_enabled(CONFIG_X86_32))
  124. return check_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
  125. else if (config_enabled(CONFIG_AS_FXSAVEQ))
  126. return check_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
  127. /* See comment in fpu_fxsave() below. */
  128. return check_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
  129. }
  130. static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
  131. {
  132. if (config_enabled(CONFIG_X86_32))
  133. return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
  134. else if (config_enabled(CONFIG_AS_FXSAVEQ))
  135. return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
  136. /* See comment in fpu_fxsave() below. */
  137. return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
  138. "m" (*fx));
  139. }
  140. static inline int frstor_checking(struct i387_fsave_struct *fx)
  141. {
  142. return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
  143. }
  144. static inline void fpu_fxsave(struct fpu *fpu)
  145. {
  146. if (config_enabled(CONFIG_X86_32))
  147. asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state->fxsave));
  148. else if (config_enabled(CONFIG_AS_FXSAVEQ))
  149. asm volatile("fxsaveq %0" : "=m" (fpu->state->fxsave));
  150. else {
  151. /* Using "rex64; fxsave %0" is broken because, if the memory
  152. * operand uses any extended registers for addressing, a second
  153. * REX prefix will be generated (to the assembler, rex64
  154. * followed by semicolon is a separate instruction), and hence
  155. * the 64-bitness is lost.
  156. *
  157. * Using "fxsaveq %0" would be the ideal choice, but is only
  158. * supported starting with gas 2.16.
  159. *
  160. * Using, as a workaround, the properly prefixed form below
  161. * isn't accepted by any binutils version so far released,
  162. * complaining that the same type of prefix is used twice if
  163. * an extended register is needed for addressing (fix submitted
  164. * to mainline 2005-11-21).
  165. *
  166. * asm volatile("rex64/fxsave %0" : "=m" (fpu->state->fxsave));
  167. *
  168. * This, however, we can work around by forcing the compiler to
  169. * select an addressing mode that doesn't require extended
  170. * registers.
  171. */
  172. asm volatile( "rex64/fxsave (%[fx])"
  173. : "=m" (fpu->state->fxsave)
  174. : [fx] "R" (&fpu->state->fxsave));
  175. }
  176. }
  177. /*
  178. * These must be called with preempt disabled. Returns
  179. * 'true' if the FPU state is still intact.
  180. */
  181. static inline int fpu_save_init(struct fpu *fpu)
  182. {
  183. if (use_xsave()) {
  184. fpu_xsave(fpu);
  185. /*
  186. * xsave header may indicate the init state of the FP.
  187. */
  188. if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP))
  189. return 1;
  190. } else if (use_fxsr()) {
  191. fpu_fxsave(fpu);
  192. } else {
  193. asm volatile("fnsave %[fx]; fwait"
  194. : [fx] "=m" (fpu->state->fsave));
  195. return 0;
  196. }
  197. /*
  198. * If exceptions are pending, we need to clear them so
  199. * that we don't randomly get exceptions later.
  200. *
  201. * FIXME! Is this perhaps only true for the old-style
  202. * irq13 case? Maybe we could leave the x87 state
  203. * intact otherwise?
  204. */
  205. if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) {
  206. asm volatile("fnclex");
  207. return 0;
  208. }
  209. return 1;
  210. }
  211. static inline int __save_init_fpu(struct task_struct *tsk)
  212. {
  213. return fpu_save_init(&tsk->thread.fpu);
  214. }
  215. static inline int fpu_restore_checking(struct fpu *fpu)
  216. {
  217. if (use_xsave())
  218. return fpu_xrstor_checking(&fpu->state->xsave);
  219. else if (use_fxsr())
  220. return fxrstor_checking(&fpu->state->fxsave);
  221. else
  222. return frstor_checking(&fpu->state->fsave);
  223. }
  224. static inline int restore_fpu_checking(struct task_struct *tsk)
  225. {
  226. /* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
  227. is pending. Clear the x87 state here by setting it to fixed
  228. values. "m" is a random variable that should be in L1 */
  229. alternative_input(
  230. ASM_NOP8 ASM_NOP2,
  231. "emms\n\t" /* clear stack tags */
  232. "fildl %P[addr]", /* set F?P to defined value */
  233. X86_FEATURE_FXSAVE_LEAK,
  234. [addr] "m" (tsk->thread.fpu.has_fpu));
  235. return fpu_restore_checking(&tsk->thread.fpu);
  236. }
  237. /*
  238. * Software FPU state helpers. Careful: these need to
  239. * be preemption protection *and* they need to be
  240. * properly paired with the CR0.TS changes!
  241. */
  242. static inline int __thread_has_fpu(struct task_struct *tsk)
  243. {
  244. return tsk->thread.fpu.has_fpu;
  245. }
  246. /* Must be paired with an 'stts' after! */
  247. static inline void __thread_clear_has_fpu(struct task_struct *tsk)
  248. {
  249. tsk->thread.fpu.has_fpu = 0;
  250. this_cpu_write(fpu_owner_task, NULL);
  251. }
  252. /* Must be paired with a 'clts' before! */
  253. static inline void __thread_set_has_fpu(struct task_struct *tsk)
  254. {
  255. tsk->thread.fpu.has_fpu = 1;
  256. this_cpu_write(fpu_owner_task, tsk);
  257. }
  258. /*
  259. * Encapsulate the CR0.TS handling together with the
  260. * software flag.
  261. *
  262. * These generally need preemption protection to work,
  263. * do try to avoid using these on their own.
  264. */
  265. static inline void __thread_fpu_end(struct task_struct *tsk)
  266. {
  267. __thread_clear_has_fpu(tsk);
  268. if (!use_eager_fpu())
  269. stts();
  270. }
  271. static inline void __thread_fpu_begin(struct task_struct *tsk)
  272. {
  273. if (!use_eager_fpu())
  274. clts();
  275. __thread_set_has_fpu(tsk);
  276. }
  277. static inline void __drop_fpu(struct task_struct *tsk)
  278. {
  279. if (__thread_has_fpu(tsk)) {
  280. /* Ignore delayed exceptions from user space */
  281. asm volatile("1: fwait\n"
  282. "2:\n"
  283. _ASM_EXTABLE(1b, 2b));
  284. __thread_fpu_end(tsk);
  285. }
  286. }
  287. static inline void drop_fpu(struct task_struct *tsk)
  288. {
  289. /*
  290. * Forget coprocessor state..
  291. */
  292. preempt_disable();
  293. tsk->fpu_counter = 0;
  294. __drop_fpu(tsk);
  295. clear_used_math();
  296. preempt_enable();
  297. }
  298. static inline void drop_init_fpu(struct task_struct *tsk)
  299. {
  300. if (!use_eager_fpu())
  301. drop_fpu(tsk);
  302. else {
  303. if (use_xsave())
  304. xrstor_state(init_xstate_buf, -1);
  305. else
  306. fxrstor_checking(&init_xstate_buf->i387);
  307. }
  308. }
  309. /*
  310. * FPU state switching for scheduling.
  311. *
  312. * This is a two-stage process:
  313. *
  314. * - switch_fpu_prepare() saves the old state and
  315. * sets the new state of the CR0.TS bit. This is
  316. * done within the context of the old process.
  317. *
  318. * - switch_fpu_finish() restores the new state as
  319. * necessary.
  320. */
  321. typedef struct { int preload; } fpu_switch_t;
  322. /*
  323. * FIXME! We could do a totally lazy restore, but we need to
  324. * add a per-cpu "this was the task that last touched the FPU
  325. * on this CPU" variable, and the task needs to have a "I last
  326. * touched the FPU on this CPU" and check them.
  327. *
  328. * We don't do that yet, so "fpu_lazy_restore()" always returns
  329. * false, but some day..
  330. */
  331. static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu)
  332. {
  333. return new == this_cpu_read_stable(fpu_owner_task) &&
  334. cpu == new->thread.fpu.last_cpu;
  335. }
  336. static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu)
  337. {
  338. fpu_switch_t fpu;
  339. /*
  340. * If the task has used the math, pre-load the FPU on xsave processors
  341. * or if the past 5 consecutive context-switches used math.
  342. */
  343. fpu.preload = tsk_used_math(new) && (use_eager_fpu() ||
  344. new->fpu_counter > 5);
  345. if (__thread_has_fpu(old)) {
  346. if (!__save_init_fpu(old))
  347. cpu = ~0;
  348. old->thread.fpu.last_cpu = cpu;
  349. old->thread.fpu.has_fpu = 0; /* But leave fpu_owner_task! */
  350. /* Don't change CR0.TS if we just switch! */
  351. if (fpu.preload) {
  352. new->fpu_counter++;
  353. __thread_set_has_fpu(new);
  354. prefetch(new->thread.fpu.state);
  355. } else if (!use_eager_fpu())
  356. stts();
  357. } else {
  358. old->fpu_counter = 0;
  359. old->thread.fpu.last_cpu = ~0;
  360. if (fpu.preload) {
  361. new->fpu_counter++;
  362. if (!use_eager_fpu() && fpu_lazy_restore(new, cpu))
  363. fpu.preload = 0;
  364. else
  365. prefetch(new->thread.fpu.state);
  366. __thread_fpu_begin(new);
  367. }
  368. }
  369. return fpu;
  370. }
  371. /*
  372. * By the time this gets called, we've already cleared CR0.TS and
  373. * given the process the FPU if we are going to preload the FPU
  374. * state - all we need to do is to conditionally restore the register
  375. * state itself.
  376. */
  377. static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu)
  378. {
  379. if (fpu.preload) {
  380. if (unlikely(restore_fpu_checking(new)))
  381. drop_init_fpu(new);
  382. }
  383. }
  384. /*
  385. * Signal frame handlers...
  386. */
  387. extern int save_xstate_sig(void __user *buf, void __user *fx, int size);
  388. extern int __restore_xstate_sig(void __user *buf, void __user *fx, int size);
  389. static inline int xstate_sigframe_size(void)
  390. {
  391. return use_xsave() ? xstate_size + FP_XSTATE_MAGIC2_SIZE : xstate_size;
  392. }
  393. static inline int restore_xstate_sig(void __user *buf, int ia32_frame)
  394. {
  395. void __user *buf_fx = buf;
  396. int size = xstate_sigframe_size();
  397. if (ia32_frame && use_fxsr()) {
  398. buf_fx = buf + sizeof(struct i387_fsave_struct);
  399. size += sizeof(struct i387_fsave_struct);
  400. }
  401. return __restore_xstate_sig(buf, buf_fx, size);
  402. }
  403. /*
  404. * Need to be preemption-safe.
  405. *
  406. * NOTE! user_fpu_begin() must be used only immediately before restoring
  407. * it. This function does not do any save/restore on their own.
  408. */
  409. static inline void user_fpu_begin(void)
  410. {
  411. preempt_disable();
  412. if (!user_has_fpu())
  413. __thread_fpu_begin(current);
  414. preempt_enable();
  415. }
  416. static inline void __save_fpu(struct task_struct *tsk)
  417. {
  418. if (use_xsave())
  419. xsave_state(&tsk->thread.fpu.state->xsave, -1);
  420. else
  421. fpu_fxsave(&tsk->thread.fpu);
  422. }
  423. /*
  424. * These disable preemption on their own and are safe
  425. */
  426. static inline void save_init_fpu(struct task_struct *tsk)
  427. {
  428. WARN_ON_ONCE(!__thread_has_fpu(tsk));
  429. if (use_eager_fpu()) {
  430. __save_fpu(tsk);
  431. return;
  432. }
  433. preempt_disable();
  434. __save_init_fpu(tsk);
  435. __thread_fpu_end(tsk);
  436. preempt_enable();
  437. }
  438. /*
  439. * i387 state interaction
  440. */
  441. static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
  442. {
  443. if (cpu_has_fxsr) {
  444. return tsk->thread.fpu.state->fxsave.cwd;
  445. } else {
  446. return (unsigned short)tsk->thread.fpu.state->fsave.cwd;
  447. }
  448. }
  449. static inline unsigned short get_fpu_swd(struct task_struct *tsk)
  450. {
  451. if (cpu_has_fxsr) {
  452. return tsk->thread.fpu.state->fxsave.swd;
  453. } else {
  454. return (unsigned short)tsk->thread.fpu.state->fsave.swd;
  455. }
  456. }
  457. static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
  458. {
  459. if (cpu_has_xmm) {
  460. return tsk->thread.fpu.state->fxsave.mxcsr;
  461. } else {
  462. return MXCSR_DEFAULT;
  463. }
  464. }
  465. static bool fpu_allocated(struct fpu *fpu)
  466. {
  467. return fpu->state != NULL;
  468. }
  469. static inline int fpu_alloc(struct fpu *fpu)
  470. {
  471. if (fpu_allocated(fpu))
  472. return 0;
  473. fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL);
  474. if (!fpu->state)
  475. return -ENOMEM;
  476. WARN_ON((unsigned long)fpu->state & 15);
  477. return 0;
  478. }
  479. static inline void fpu_free(struct fpu *fpu)
  480. {
  481. if (fpu->state) {
  482. kmem_cache_free(task_xstate_cachep, fpu->state);
  483. fpu->state = NULL;
  484. }
  485. }
  486. static inline void fpu_copy(struct task_struct *dst, struct task_struct *src)
  487. {
  488. if (use_eager_fpu()) {
  489. memset(&dst->thread.fpu.state->xsave, 0, xstate_size);
  490. __save_fpu(dst);
  491. } else {
  492. struct fpu *dfpu = &dst->thread.fpu;
  493. struct fpu *sfpu = &src->thread.fpu;
  494. unlazy_fpu(src);
  495. memcpy(dfpu->state, sfpu->state, xstate_size);
  496. }
  497. }
  498. static inline unsigned long
  499. alloc_mathframe(unsigned long sp, int ia32_frame, unsigned long *buf_fx,
  500. unsigned long *size)
  501. {
  502. unsigned long frame_size = xstate_sigframe_size();
  503. *buf_fx = sp = round_down(sp - frame_size, 64);
  504. if (ia32_frame && use_fxsr()) {
  505. frame_size += sizeof(struct i387_fsave_struct);
  506. sp -= sizeof(struct i387_fsave_struct);
  507. }
  508. *size = frame_size;
  509. return sp;
  510. }
  511. #endif