truncate.c 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413
  1. /*
  2. * linux/fs/ufs/truncate.c
  3. *
  4. * Copyright (C) 1998
  5. * Daniel Pirkl <daniel.pirkl@email.cz>
  6. * Charles University, Faculty of Mathematics and Physics
  7. *
  8. * from
  9. *
  10. * linux/fs/ext2/truncate.c
  11. *
  12. * Copyright (C) 1992, 1993, 1994, 1995
  13. * Remy Card (card@masi.ibp.fr)
  14. * Laboratoire MASI - Institut Blaise Pascal
  15. * Universite Pierre et Marie Curie (Paris VI)
  16. *
  17. * from
  18. *
  19. * linux/fs/minix/truncate.c
  20. *
  21. * Copyright (C) 1991, 1992 Linus Torvalds
  22. *
  23. * Big-endian to little-endian byte-swapping/bitmaps by
  24. * David S. Miller (davem@caip.rutgers.edu), 1995
  25. */
  26. /*
  27. * Real random numbers for secure rm added 94/02/18
  28. * Idea from Pierre del Perugia <delperug@gla.ecoledoc.ibp.fr>
  29. */
  30. /*
  31. * Modified to avoid infinite loop on 2006 by
  32. * Evgeniy Dushistov <dushistov@mail.ru>
  33. */
  34. #include <linux/errno.h>
  35. #include <linux/fs.h>
  36. #include <linux/ufs_fs.h>
  37. #include <linux/fcntl.h>
  38. #include <linux/time.h>
  39. #include <linux/stat.h>
  40. #include <linux/string.h>
  41. #include <linux/smp_lock.h>
  42. #include <linux/buffer_head.h>
  43. #include <linux/blkdev.h>
  44. #include <linux/sched.h>
  45. #include "swab.h"
  46. #include "util.h"
  47. /*
  48. * Secure deletion currently doesn't work. It interacts very badly
  49. * with buffers shared with memory mappings, and for that reason
  50. * can't be done in the truncate() routines. It should instead be
  51. * done separately in "release()" before calling the truncate routines
  52. * that will release the actual file blocks.
  53. *
  54. * Linus
  55. */
  56. #define DIRECT_BLOCK ((inode->i_size + uspi->s_bsize - 1) >> uspi->s_bshift)
  57. #define DIRECT_FRAGMENT ((inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift)
  58. static int ufs_trunc_direct (struct inode * inode)
  59. {
  60. struct ufs_inode_info *ufsi = UFS_I(inode);
  61. struct super_block * sb;
  62. struct ufs_sb_private_info * uspi;
  63. __fs32 * p;
  64. unsigned frag1, frag2, frag3, frag4, block1, block2;
  65. unsigned frag_to_free, free_count;
  66. unsigned i, tmp;
  67. int retry;
  68. UFSD("ENTER\n");
  69. sb = inode->i_sb;
  70. uspi = UFS_SB(sb)->s_uspi;
  71. frag_to_free = 0;
  72. free_count = 0;
  73. retry = 0;
  74. frag1 = DIRECT_FRAGMENT;
  75. frag4 = min_t(u32, UFS_NDIR_FRAGMENT, ufsi->i_lastfrag);
  76. frag2 = ((frag1 & uspi->s_fpbmask) ? ((frag1 | uspi->s_fpbmask) + 1) : frag1);
  77. frag3 = frag4 & ~uspi->s_fpbmask;
  78. block1 = block2 = 0;
  79. if (frag2 > frag3) {
  80. frag2 = frag4;
  81. frag3 = frag4 = 0;
  82. }
  83. else if (frag2 < frag3) {
  84. block1 = ufs_fragstoblks (frag2);
  85. block2 = ufs_fragstoblks (frag3);
  86. }
  87. UFSD("frag1 %u, frag2 %u, block1 %u, block2 %u, frag3 %u, frag4 %u\n", frag1, frag2, block1, block2, frag3, frag4);
  88. if (frag1 >= frag2)
  89. goto next1;
  90. /*
  91. * Free first free fragments
  92. */
  93. p = ufsi->i_u1.i_data + ufs_fragstoblks (frag1);
  94. tmp = fs32_to_cpu(sb, *p);
  95. if (!tmp )
  96. ufs_panic (sb, "ufs_trunc_direct", "internal error");
  97. frag1 = ufs_fragnum (frag1);
  98. frag2 = ufs_fragnum (frag2);
  99. inode->i_blocks -= (frag2-frag1) << uspi->s_nspfshift;
  100. mark_inode_dirty(inode);
  101. ufs_free_fragments (inode, tmp + frag1, frag2 - frag1);
  102. frag_to_free = tmp + frag1;
  103. next1:
  104. /*
  105. * Free whole blocks
  106. */
  107. for (i = block1 ; i < block2; i++) {
  108. p = ufsi->i_u1.i_data + i;
  109. tmp = fs32_to_cpu(sb, *p);
  110. if (!tmp)
  111. continue;
  112. *p = 0;
  113. inode->i_blocks -= uspi->s_nspb;
  114. mark_inode_dirty(inode);
  115. if (free_count == 0) {
  116. frag_to_free = tmp;
  117. free_count = uspi->s_fpb;
  118. } else if (free_count > 0 && frag_to_free == tmp - free_count)
  119. free_count += uspi->s_fpb;
  120. else {
  121. ufs_free_blocks (inode, frag_to_free, free_count);
  122. frag_to_free = tmp;
  123. free_count = uspi->s_fpb;
  124. }
  125. }
  126. if (free_count > 0)
  127. ufs_free_blocks (inode, frag_to_free, free_count);
  128. if (frag3 >= frag4)
  129. goto next3;
  130. /*
  131. * Free last free fragments
  132. */
  133. p = ufsi->i_u1.i_data + ufs_fragstoblks (frag3);
  134. tmp = fs32_to_cpu(sb, *p);
  135. if (!tmp )
  136. ufs_panic(sb, "ufs_truncate_direct", "internal error");
  137. frag4 = ufs_fragnum (frag4);
  138. *p = 0;
  139. inode->i_blocks -= frag4 << uspi->s_nspfshift;
  140. mark_inode_dirty(inode);
  141. ufs_free_fragments (inode, tmp, frag4);
  142. next3:
  143. UFSD("EXIT\n");
  144. return retry;
  145. }
  146. static int ufs_trunc_indirect (struct inode * inode, unsigned offset, __fs32 *p)
  147. {
  148. struct super_block * sb;
  149. struct ufs_sb_private_info * uspi;
  150. struct ufs_buffer_head * ind_ubh;
  151. __fs32 * ind;
  152. unsigned indirect_block, i, tmp;
  153. unsigned frag_to_free, free_count;
  154. int retry;
  155. UFSD("ENTER\n");
  156. sb = inode->i_sb;
  157. uspi = UFS_SB(sb)->s_uspi;
  158. frag_to_free = 0;
  159. free_count = 0;
  160. retry = 0;
  161. tmp = fs32_to_cpu(sb, *p);
  162. if (!tmp)
  163. return 0;
  164. ind_ubh = ubh_bread(sb, tmp, uspi->s_bsize);
  165. if (tmp != fs32_to_cpu(sb, *p)) {
  166. ubh_brelse (ind_ubh);
  167. return 1;
  168. }
  169. if (!ind_ubh) {
  170. *p = 0;
  171. return 0;
  172. }
  173. indirect_block = (DIRECT_BLOCK > offset) ? (DIRECT_BLOCK - offset) : 0;
  174. for (i = indirect_block; i < uspi->s_apb; i++) {
  175. ind = ubh_get_addr32 (ind_ubh, i);
  176. tmp = fs32_to_cpu(sb, *ind);
  177. if (!tmp)
  178. continue;
  179. *ind = 0;
  180. ubh_mark_buffer_dirty(ind_ubh);
  181. if (free_count == 0) {
  182. frag_to_free = tmp;
  183. free_count = uspi->s_fpb;
  184. } else if (free_count > 0 && frag_to_free == tmp - free_count)
  185. free_count += uspi->s_fpb;
  186. else {
  187. ufs_free_blocks (inode, frag_to_free, free_count);
  188. frag_to_free = tmp;
  189. free_count = uspi->s_fpb;
  190. }
  191. inode->i_blocks -= uspi->s_nspb;
  192. mark_inode_dirty(inode);
  193. }
  194. if (free_count > 0) {
  195. ufs_free_blocks (inode, frag_to_free, free_count);
  196. }
  197. for (i = 0; i < uspi->s_apb; i++)
  198. if (*ubh_get_addr32(ind_ubh,i))
  199. break;
  200. if (i >= uspi->s_apb) {
  201. tmp = fs32_to_cpu(sb, *p);
  202. *p = 0;
  203. inode->i_blocks -= uspi->s_nspb;
  204. mark_inode_dirty(inode);
  205. ufs_free_blocks (inode, tmp, uspi->s_fpb);
  206. ubh_bforget(ind_ubh);
  207. ind_ubh = NULL;
  208. }
  209. if (IS_SYNC(inode) && ind_ubh && ubh_buffer_dirty(ind_ubh)) {
  210. ubh_ll_rw_block (SWRITE, 1, &ind_ubh);
  211. ubh_wait_on_buffer (ind_ubh);
  212. }
  213. ubh_brelse (ind_ubh);
  214. UFSD("EXIT\n");
  215. return retry;
  216. }
  217. static int ufs_trunc_dindirect (struct inode *inode, unsigned offset, __fs32 *p)
  218. {
  219. struct super_block * sb;
  220. struct ufs_sb_private_info * uspi;
  221. struct ufs_buffer_head * dind_bh;
  222. unsigned i, tmp, dindirect_block;
  223. __fs32 * dind;
  224. int retry = 0;
  225. UFSD("ENTER\n");
  226. sb = inode->i_sb;
  227. uspi = UFS_SB(sb)->s_uspi;
  228. dindirect_block = (DIRECT_BLOCK > offset)
  229. ? ((DIRECT_BLOCK - offset) >> uspi->s_apbshift) : 0;
  230. retry = 0;
  231. tmp = fs32_to_cpu(sb, *p);
  232. if (!tmp)
  233. return 0;
  234. dind_bh = ubh_bread(sb, tmp, uspi->s_bsize);
  235. if (tmp != fs32_to_cpu(sb, *p)) {
  236. ubh_brelse (dind_bh);
  237. return 1;
  238. }
  239. if (!dind_bh) {
  240. *p = 0;
  241. return 0;
  242. }
  243. for (i = dindirect_block ; i < uspi->s_apb ; i++) {
  244. dind = ubh_get_addr32 (dind_bh, i);
  245. tmp = fs32_to_cpu(sb, *dind);
  246. if (!tmp)
  247. continue;
  248. retry |= ufs_trunc_indirect (inode, offset + (i << uspi->s_apbshift), dind);
  249. ubh_mark_buffer_dirty(dind_bh);
  250. }
  251. for (i = 0; i < uspi->s_apb; i++)
  252. if (*ubh_get_addr32 (dind_bh, i))
  253. break;
  254. if (i >= uspi->s_apb) {
  255. tmp = fs32_to_cpu(sb, *p);
  256. *p = 0;
  257. inode->i_blocks -= uspi->s_nspb;
  258. mark_inode_dirty(inode);
  259. ufs_free_blocks (inode, tmp, uspi->s_fpb);
  260. ubh_bforget(dind_bh);
  261. dind_bh = NULL;
  262. }
  263. if (IS_SYNC(inode) && dind_bh && ubh_buffer_dirty(dind_bh)) {
  264. ubh_ll_rw_block (SWRITE, 1, &dind_bh);
  265. ubh_wait_on_buffer (dind_bh);
  266. }
  267. ubh_brelse (dind_bh);
  268. UFSD("EXIT\n");
  269. return retry;
  270. }
  271. static int ufs_trunc_tindirect (struct inode * inode)
  272. {
  273. struct ufs_inode_info *ufsi = UFS_I(inode);
  274. struct super_block * sb;
  275. struct ufs_sb_private_info * uspi;
  276. struct ufs_buffer_head * tind_bh;
  277. unsigned tindirect_block, tmp, i;
  278. __fs32 * tind, * p;
  279. int retry;
  280. UFSD("ENTER\n");
  281. sb = inode->i_sb;
  282. uspi = UFS_SB(sb)->s_uspi;
  283. retry = 0;
  284. tindirect_block = (DIRECT_BLOCK > (UFS_NDADDR + uspi->s_apb + uspi->s_2apb))
  285. ? ((DIRECT_BLOCK - UFS_NDADDR - uspi->s_apb - uspi->s_2apb) >> uspi->s_2apbshift) : 0;
  286. p = ufsi->i_u1.i_data + UFS_TIND_BLOCK;
  287. if (!(tmp = fs32_to_cpu(sb, *p)))
  288. return 0;
  289. tind_bh = ubh_bread (sb, tmp, uspi->s_bsize);
  290. if (tmp != fs32_to_cpu(sb, *p)) {
  291. ubh_brelse (tind_bh);
  292. return 1;
  293. }
  294. if (!tind_bh) {
  295. *p = 0;
  296. return 0;
  297. }
  298. for (i = tindirect_block ; i < uspi->s_apb ; i++) {
  299. tind = ubh_get_addr32 (tind_bh, i);
  300. retry |= ufs_trunc_dindirect(inode, UFS_NDADDR +
  301. uspi->s_apb + ((i + 1) << uspi->s_2apbshift), tind);
  302. ubh_mark_buffer_dirty(tind_bh);
  303. }
  304. for (i = 0; i < uspi->s_apb; i++)
  305. if (*ubh_get_addr32 (tind_bh, i))
  306. break;
  307. if (i >= uspi->s_apb) {
  308. tmp = fs32_to_cpu(sb, *p);
  309. *p = 0;
  310. inode->i_blocks -= uspi->s_nspb;
  311. mark_inode_dirty(inode);
  312. ufs_free_blocks (inode, tmp, uspi->s_fpb);
  313. ubh_bforget(tind_bh);
  314. tind_bh = NULL;
  315. }
  316. if (IS_SYNC(inode) && tind_bh && ubh_buffer_dirty(tind_bh)) {
  317. ubh_ll_rw_block (SWRITE, 1, &tind_bh);
  318. ubh_wait_on_buffer (tind_bh);
  319. }
  320. ubh_brelse (tind_bh);
  321. UFSD("EXIT\n");
  322. return retry;
  323. }
  324. void ufs_truncate (struct inode * inode)
  325. {
  326. struct ufs_inode_info *ufsi = UFS_I(inode);
  327. struct super_block * sb;
  328. struct ufs_sb_private_info * uspi;
  329. int retry;
  330. UFSD("ENTER\n");
  331. sb = inode->i_sb;
  332. uspi = UFS_SB(sb)->s_uspi;
  333. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
  334. return;
  335. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  336. return;
  337. block_truncate_page(inode->i_mapping, inode->i_size, ufs_getfrag_block);
  338. lock_kernel();
  339. while (1) {
  340. retry = ufs_trunc_direct(inode);
  341. retry |= ufs_trunc_indirect (inode, UFS_IND_BLOCK,
  342. (__fs32 *) &ufsi->i_u1.i_data[UFS_IND_BLOCK]);
  343. retry |= ufs_trunc_dindirect (inode, UFS_IND_BLOCK + uspi->s_apb,
  344. (__fs32 *) &ufsi->i_u1.i_data[UFS_DIND_BLOCK]);
  345. retry |= ufs_trunc_tindirect (inode);
  346. if (!retry)
  347. break;
  348. if (IS_SYNC(inode) && (inode->i_state & I_DIRTY))
  349. ufs_sync_inode (inode);
  350. blk_run_address_space(inode->i_mapping);
  351. yield();
  352. }
  353. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  354. ufsi->i_lastfrag = DIRECT_FRAGMENT;
  355. unlock_kernel();
  356. mark_inode_dirty(inode);
  357. UFSD("EXIT\n");
  358. }