swiotlb.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919
  1. /*
  2. * Dynamic DMA mapping support.
  3. *
  4. * This implementation is a fallback for platforms that do not support
  5. * I/O TLBs (aka DMA address translation hardware).
  6. * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
  7. * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
  8. * Copyright (C) 2000, 2003 Hewlett-Packard Co
  9. * David Mosberger-Tang <davidm@hpl.hp.com>
  10. *
  11. * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
  12. * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
  13. * unnecessary i-cache flushing.
  14. * 04/07/.. ak Better overflow handling. Assorted fixes.
  15. * 05/09/10 linville Add support for syncing ranges, support syncing for
  16. * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
  17. * 08/12/11 beckyb Add highmem support
  18. */
  19. #include <linux/cache.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/mm.h>
  22. #include <linux/module.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/string.h>
  25. #include <linux/swiotlb.h>
  26. #include <linux/pfn.h>
  27. #include <linux/types.h>
  28. #include <linux/ctype.h>
  29. #include <linux/highmem.h>
  30. #include <linux/gfp.h>
  31. #include <asm/io.h>
  32. #include <asm/dma.h>
  33. #include <asm/scatterlist.h>
  34. #include <linux/init.h>
  35. #include <linux/bootmem.h>
  36. #include <linux/iommu-helper.h>
  37. #define OFFSET(val,align) ((unsigned long) \
  38. ( (val) & ( (align) - 1)))
  39. #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
  40. /*
  41. * Minimum IO TLB size to bother booting with. Systems with mainly
  42. * 64bit capable cards will only lightly use the swiotlb. If we can't
  43. * allocate a contiguous 1MB, we're probably in trouble anyway.
  44. */
  45. #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
  46. /*
  47. * Enumeration for sync targets
  48. */
  49. enum dma_sync_target {
  50. SYNC_FOR_CPU = 0,
  51. SYNC_FOR_DEVICE = 1,
  52. };
  53. int swiotlb_force;
  54. /*
  55. * Used to do a quick range check in unmap_single and
  56. * sync_single_*, to see if the memory was in fact allocated by this
  57. * API.
  58. */
  59. static char *io_tlb_start, *io_tlb_end;
  60. /*
  61. * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
  62. * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
  63. */
  64. static unsigned long io_tlb_nslabs;
  65. /*
  66. * When the IOMMU overflows we return a fallback buffer. This sets the size.
  67. */
  68. static unsigned long io_tlb_overflow = 32*1024;
  69. void *io_tlb_overflow_buffer;
  70. /*
  71. * This is a free list describing the number of free entries available from
  72. * each index
  73. */
  74. static unsigned int *io_tlb_list;
  75. static unsigned int io_tlb_index;
  76. /*
  77. * We need to save away the original address corresponding to a mapped entry
  78. * for the sync operations.
  79. */
  80. static phys_addr_t *io_tlb_orig_addr;
  81. /*
  82. * Protect the above data structures in the map and unmap calls
  83. */
  84. static DEFINE_SPINLOCK(io_tlb_lock);
  85. static int late_alloc;
  86. static int __init
  87. setup_io_tlb_npages(char *str)
  88. {
  89. if (isdigit(*str)) {
  90. io_tlb_nslabs = simple_strtoul(str, &str, 0);
  91. /* avoid tail segment of size < IO_TLB_SEGSIZE */
  92. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  93. }
  94. if (*str == ',')
  95. ++str;
  96. if (!strcmp(str, "force"))
  97. swiotlb_force = 1;
  98. return 1;
  99. }
  100. __setup("swiotlb=", setup_io_tlb_npages);
  101. /* make io_tlb_overflow tunable too? */
  102. /* Note that this doesn't work with highmem page */
  103. static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
  104. volatile void *address)
  105. {
  106. return phys_to_dma(hwdev, virt_to_phys(address));
  107. }
  108. void swiotlb_print_info(void)
  109. {
  110. unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  111. phys_addr_t pstart, pend;
  112. pstart = virt_to_phys(io_tlb_start);
  113. pend = virt_to_phys(io_tlb_end);
  114. printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
  115. bytes >> 20, io_tlb_start, io_tlb_end);
  116. printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
  117. (unsigned long long)pstart,
  118. (unsigned long long)pend);
  119. }
  120. void __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
  121. {
  122. unsigned long i, bytes;
  123. bytes = nslabs << IO_TLB_SHIFT;
  124. io_tlb_nslabs = nslabs;
  125. io_tlb_start = tlb;
  126. io_tlb_end = io_tlb_start + bytes;
  127. /*
  128. * Allocate and initialize the free list array. This array is used
  129. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  130. * between io_tlb_start and io_tlb_end.
  131. */
  132. io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
  133. for (i = 0; i < io_tlb_nslabs; i++)
  134. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  135. io_tlb_index = 0;
  136. io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(phys_addr_t));
  137. /*
  138. * Get the overflow emergency buffer
  139. */
  140. io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
  141. if (!io_tlb_overflow_buffer)
  142. panic("Cannot allocate SWIOTLB overflow buffer!\n");
  143. if (verbose)
  144. swiotlb_print_info();
  145. }
  146. /*
  147. * Statically reserve bounce buffer space and initialize bounce buffer data
  148. * structures for the software IO TLB used to implement the DMA API.
  149. */
  150. void __init
  151. swiotlb_init_with_default_size(size_t default_size, int verbose)
  152. {
  153. unsigned long bytes;
  154. if (!io_tlb_nslabs) {
  155. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  156. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  157. }
  158. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  159. /*
  160. * Get IO TLB memory from the low pages
  161. */
  162. io_tlb_start = alloc_bootmem_low_pages(bytes);
  163. if (!io_tlb_start)
  164. panic("Cannot allocate SWIOTLB buffer");
  165. swiotlb_init_with_tbl(io_tlb_start, io_tlb_nslabs, verbose);
  166. }
  167. void __init
  168. swiotlb_init(int verbose)
  169. {
  170. swiotlb_init_with_default_size(64 * (1<<20), verbose); /* default to 64MB */
  171. }
  172. /*
  173. * Systems with larger DMA zones (those that don't support ISA) can
  174. * initialize the swiotlb later using the slab allocator if needed.
  175. * This should be just like above, but with some error catching.
  176. */
  177. int
  178. swiotlb_late_init_with_default_size(size_t default_size)
  179. {
  180. unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
  181. unsigned int order;
  182. if (!io_tlb_nslabs) {
  183. io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
  184. io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
  185. }
  186. /*
  187. * Get IO TLB memory from the low pages
  188. */
  189. order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
  190. io_tlb_nslabs = SLABS_PER_PAGE << order;
  191. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  192. while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
  193. io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
  194. order);
  195. if (io_tlb_start)
  196. break;
  197. order--;
  198. }
  199. if (!io_tlb_start)
  200. goto cleanup1;
  201. if (order != get_order(bytes)) {
  202. printk(KERN_WARNING "Warning: only able to allocate %ld MB "
  203. "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
  204. io_tlb_nslabs = SLABS_PER_PAGE << order;
  205. bytes = io_tlb_nslabs << IO_TLB_SHIFT;
  206. }
  207. io_tlb_end = io_tlb_start + bytes;
  208. memset(io_tlb_start, 0, bytes);
  209. /*
  210. * Allocate and initialize the free list array. This array is used
  211. * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
  212. * between io_tlb_start and io_tlb_end.
  213. */
  214. io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
  215. get_order(io_tlb_nslabs * sizeof(int)));
  216. if (!io_tlb_list)
  217. goto cleanup2;
  218. for (i = 0; i < io_tlb_nslabs; i++)
  219. io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
  220. io_tlb_index = 0;
  221. io_tlb_orig_addr = (phys_addr_t *)
  222. __get_free_pages(GFP_KERNEL,
  223. get_order(io_tlb_nslabs *
  224. sizeof(phys_addr_t)));
  225. if (!io_tlb_orig_addr)
  226. goto cleanup3;
  227. memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
  228. /*
  229. * Get the overflow emergency buffer
  230. */
  231. io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
  232. get_order(io_tlb_overflow));
  233. if (!io_tlb_overflow_buffer)
  234. goto cleanup4;
  235. swiotlb_print_info();
  236. late_alloc = 1;
  237. return 0;
  238. cleanup4:
  239. free_pages((unsigned long)io_tlb_orig_addr,
  240. get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
  241. io_tlb_orig_addr = NULL;
  242. cleanup3:
  243. free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
  244. sizeof(int)));
  245. io_tlb_list = NULL;
  246. cleanup2:
  247. io_tlb_end = NULL;
  248. free_pages((unsigned long)io_tlb_start, order);
  249. io_tlb_start = NULL;
  250. cleanup1:
  251. io_tlb_nslabs = req_nslabs;
  252. return -ENOMEM;
  253. }
  254. void __init swiotlb_free(void)
  255. {
  256. if (!io_tlb_overflow_buffer)
  257. return;
  258. if (late_alloc) {
  259. free_pages((unsigned long)io_tlb_overflow_buffer,
  260. get_order(io_tlb_overflow));
  261. free_pages((unsigned long)io_tlb_orig_addr,
  262. get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
  263. free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
  264. sizeof(int)));
  265. free_pages((unsigned long)io_tlb_start,
  266. get_order(io_tlb_nslabs << IO_TLB_SHIFT));
  267. } else {
  268. free_bootmem_late(__pa(io_tlb_overflow_buffer),
  269. io_tlb_overflow);
  270. free_bootmem_late(__pa(io_tlb_orig_addr),
  271. io_tlb_nslabs * sizeof(phys_addr_t));
  272. free_bootmem_late(__pa(io_tlb_list),
  273. io_tlb_nslabs * sizeof(int));
  274. free_bootmem_late(__pa(io_tlb_start),
  275. io_tlb_nslabs << IO_TLB_SHIFT);
  276. }
  277. }
  278. static int is_swiotlb_buffer(phys_addr_t paddr)
  279. {
  280. return paddr >= virt_to_phys(io_tlb_start) &&
  281. paddr < virt_to_phys(io_tlb_end);
  282. }
  283. /*
  284. * Bounce: copy the swiotlb buffer back to the original dma location
  285. */
  286. static void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
  287. enum dma_data_direction dir)
  288. {
  289. unsigned long pfn = PFN_DOWN(phys);
  290. if (PageHighMem(pfn_to_page(pfn))) {
  291. /* The buffer does not have a mapping. Map it in and copy */
  292. unsigned int offset = phys & ~PAGE_MASK;
  293. char *buffer;
  294. unsigned int sz = 0;
  295. unsigned long flags;
  296. while (size) {
  297. sz = min_t(size_t, PAGE_SIZE - offset, size);
  298. local_irq_save(flags);
  299. buffer = kmap_atomic(pfn_to_page(pfn),
  300. KM_BOUNCE_READ);
  301. if (dir == DMA_TO_DEVICE)
  302. memcpy(dma_addr, buffer + offset, sz);
  303. else
  304. memcpy(buffer + offset, dma_addr, sz);
  305. kunmap_atomic(buffer, KM_BOUNCE_READ);
  306. local_irq_restore(flags);
  307. size -= sz;
  308. pfn++;
  309. dma_addr += sz;
  310. offset = 0;
  311. }
  312. } else {
  313. if (dir == DMA_TO_DEVICE)
  314. memcpy(dma_addr, phys_to_virt(phys), size);
  315. else
  316. memcpy(phys_to_virt(phys), dma_addr, size);
  317. }
  318. }
  319. void *swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr,
  320. phys_addr_t phys, size_t size, int dir)
  321. {
  322. unsigned long flags;
  323. char *dma_addr;
  324. unsigned int nslots, stride, index, wrap;
  325. int i;
  326. unsigned long mask;
  327. unsigned long offset_slots;
  328. unsigned long max_slots;
  329. mask = dma_get_seg_boundary(hwdev);
  330. tbl_dma_addr &= mask;
  331. offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  332. /*
  333. * Carefully handle integer overflow which can occur when mask == ~0UL.
  334. */
  335. max_slots = mask + 1
  336. ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
  337. : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
  338. /*
  339. * For mappings greater than a page, we limit the stride (and
  340. * hence alignment) to a page size.
  341. */
  342. nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  343. if (size > PAGE_SIZE)
  344. stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
  345. else
  346. stride = 1;
  347. BUG_ON(!nslots);
  348. /*
  349. * Find suitable number of IO TLB entries size that will fit this
  350. * request and allocate a buffer from that IO TLB pool.
  351. */
  352. spin_lock_irqsave(&io_tlb_lock, flags);
  353. index = ALIGN(io_tlb_index, stride);
  354. if (index >= io_tlb_nslabs)
  355. index = 0;
  356. wrap = index;
  357. do {
  358. while (iommu_is_span_boundary(index, nslots, offset_slots,
  359. max_slots)) {
  360. index += stride;
  361. if (index >= io_tlb_nslabs)
  362. index = 0;
  363. if (index == wrap)
  364. goto not_found;
  365. }
  366. /*
  367. * If we find a slot that indicates we have 'nslots' number of
  368. * contiguous buffers, we allocate the buffers from that slot
  369. * and mark the entries as '0' indicating unavailable.
  370. */
  371. if (io_tlb_list[index] >= nslots) {
  372. int count = 0;
  373. for (i = index; i < (int) (index + nslots); i++)
  374. io_tlb_list[i] = 0;
  375. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
  376. io_tlb_list[i] = ++count;
  377. dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
  378. /*
  379. * Update the indices to avoid searching in the next
  380. * round.
  381. */
  382. io_tlb_index = ((index + nslots) < io_tlb_nslabs
  383. ? (index + nslots) : 0);
  384. goto found;
  385. }
  386. index += stride;
  387. if (index >= io_tlb_nslabs)
  388. index = 0;
  389. } while (index != wrap);
  390. not_found:
  391. spin_unlock_irqrestore(&io_tlb_lock, flags);
  392. return NULL;
  393. found:
  394. spin_unlock_irqrestore(&io_tlb_lock, flags);
  395. /*
  396. * Save away the mapping from the original address to the DMA address.
  397. * This is needed when we sync the memory. Then we sync the buffer if
  398. * needed.
  399. */
  400. for (i = 0; i < nslots; i++)
  401. io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
  402. if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
  403. swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
  404. return dma_addr;
  405. }
  406. /*
  407. * Allocates bounce buffer and returns its kernel virtual address.
  408. */
  409. static void *
  410. map_single(struct device *hwdev, phys_addr_t phys, size_t size, int dir)
  411. {
  412. dma_addr_t start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start);
  413. return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
  414. }
  415. /*
  416. * dma_addr is the kernel virtual address of the bounce buffer to unmap.
  417. */
  418. static void
  419. do_unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
  420. {
  421. unsigned long flags;
  422. int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
  423. int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
  424. phys_addr_t phys = io_tlb_orig_addr[index];
  425. /*
  426. * First, sync the memory before unmapping the entry
  427. */
  428. if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
  429. swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
  430. /*
  431. * Return the buffer to the free list by setting the corresponding
  432. * entries to indicate the number of contiguous entries available.
  433. * While returning the entries to the free list, we merge the entries
  434. * with slots below and above the pool being returned.
  435. */
  436. spin_lock_irqsave(&io_tlb_lock, flags);
  437. {
  438. count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
  439. io_tlb_list[index + nslots] : 0);
  440. /*
  441. * Step 1: return the slots to the free list, merging the
  442. * slots with superceeding slots
  443. */
  444. for (i = index + nslots - 1; i >= index; i--)
  445. io_tlb_list[i] = ++count;
  446. /*
  447. * Step 2: merge the returned slots with the preceding slots,
  448. * if available (non zero)
  449. */
  450. for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
  451. io_tlb_list[i] = ++count;
  452. }
  453. spin_unlock_irqrestore(&io_tlb_lock, flags);
  454. }
  455. static void
  456. sync_single(struct device *hwdev, char *dma_addr, size_t size,
  457. int dir, int target)
  458. {
  459. int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
  460. phys_addr_t phys = io_tlb_orig_addr[index];
  461. phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
  462. switch (target) {
  463. case SYNC_FOR_CPU:
  464. if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
  465. swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
  466. else
  467. BUG_ON(dir != DMA_TO_DEVICE);
  468. break;
  469. case SYNC_FOR_DEVICE:
  470. if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
  471. swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
  472. else
  473. BUG_ON(dir != DMA_FROM_DEVICE);
  474. break;
  475. default:
  476. BUG();
  477. }
  478. }
  479. void *
  480. swiotlb_alloc_coherent(struct device *hwdev, size_t size,
  481. dma_addr_t *dma_handle, gfp_t flags)
  482. {
  483. dma_addr_t dev_addr;
  484. void *ret;
  485. int order = get_order(size);
  486. u64 dma_mask = DMA_BIT_MASK(32);
  487. if (hwdev && hwdev->coherent_dma_mask)
  488. dma_mask = hwdev->coherent_dma_mask;
  489. ret = (void *)__get_free_pages(flags, order);
  490. if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
  491. /*
  492. * The allocated memory isn't reachable by the device.
  493. */
  494. free_pages((unsigned long) ret, order);
  495. ret = NULL;
  496. }
  497. if (!ret) {
  498. /*
  499. * We are either out of memory or the device can't DMA
  500. * to GFP_DMA memory; fall back on map_single(), which
  501. * will grab memory from the lowest available address range.
  502. */
  503. ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
  504. if (!ret)
  505. return NULL;
  506. }
  507. memset(ret, 0, size);
  508. dev_addr = swiotlb_virt_to_bus(hwdev, ret);
  509. /* Confirm address can be DMA'd by device */
  510. if (dev_addr + size - 1 > dma_mask) {
  511. printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
  512. (unsigned long long)dma_mask,
  513. (unsigned long long)dev_addr);
  514. /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
  515. do_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
  516. return NULL;
  517. }
  518. *dma_handle = dev_addr;
  519. return ret;
  520. }
  521. EXPORT_SYMBOL(swiotlb_alloc_coherent);
  522. void
  523. swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
  524. dma_addr_t dev_addr)
  525. {
  526. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  527. WARN_ON(irqs_disabled());
  528. if (!is_swiotlb_buffer(paddr))
  529. free_pages((unsigned long)vaddr, get_order(size));
  530. else
  531. /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
  532. do_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
  533. }
  534. EXPORT_SYMBOL(swiotlb_free_coherent);
  535. static void
  536. swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
  537. {
  538. /*
  539. * Ran out of IOMMU space for this operation. This is very bad.
  540. * Unfortunately the drivers cannot handle this operation properly.
  541. * unless they check for dma_mapping_error (most don't)
  542. * When the mapping is small enough return a static buffer to limit
  543. * the damage, or panic when the transfer is too big.
  544. */
  545. printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
  546. "device %s\n", size, dev ? dev_name(dev) : "?");
  547. if (size <= io_tlb_overflow || !do_panic)
  548. return;
  549. if (dir == DMA_BIDIRECTIONAL)
  550. panic("DMA: Random memory could be DMA accessed\n");
  551. if (dir == DMA_FROM_DEVICE)
  552. panic("DMA: Random memory could be DMA written\n");
  553. if (dir == DMA_TO_DEVICE)
  554. panic("DMA: Random memory could be DMA read\n");
  555. }
  556. /*
  557. * Map a single buffer of the indicated size for DMA in streaming mode. The
  558. * physical address to use is returned.
  559. *
  560. * Once the device is given the dma address, the device owns this memory until
  561. * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
  562. */
  563. dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
  564. unsigned long offset, size_t size,
  565. enum dma_data_direction dir,
  566. struct dma_attrs *attrs)
  567. {
  568. phys_addr_t phys = page_to_phys(page) + offset;
  569. dma_addr_t dev_addr = phys_to_dma(dev, phys);
  570. void *map;
  571. BUG_ON(dir == DMA_NONE);
  572. /*
  573. * If the address happens to be in the device's DMA window,
  574. * we can safely return the device addr and not worry about bounce
  575. * buffering it.
  576. */
  577. if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
  578. return dev_addr;
  579. /*
  580. * Oh well, have to allocate and map a bounce buffer.
  581. */
  582. map = map_single(dev, phys, size, dir);
  583. if (!map) {
  584. swiotlb_full(dev, size, dir, 1);
  585. map = io_tlb_overflow_buffer;
  586. }
  587. dev_addr = swiotlb_virt_to_bus(dev, map);
  588. /*
  589. * Ensure that the address returned is DMA'ble
  590. */
  591. if (!dma_capable(dev, dev_addr, size))
  592. panic("map_single: bounce buffer is not DMA'ble");
  593. return dev_addr;
  594. }
  595. EXPORT_SYMBOL_GPL(swiotlb_map_page);
  596. /*
  597. * Unmap a single streaming mode DMA translation. The dma_addr and size must
  598. * match what was provided for in a previous swiotlb_map_page call. All
  599. * other usages are undefined.
  600. *
  601. * After this call, reads by the cpu to the buffer are guaranteed to see
  602. * whatever the device wrote there.
  603. */
  604. static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
  605. size_t size, int dir)
  606. {
  607. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  608. BUG_ON(dir == DMA_NONE);
  609. if (is_swiotlb_buffer(paddr)) {
  610. do_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
  611. return;
  612. }
  613. if (dir != DMA_FROM_DEVICE)
  614. return;
  615. /*
  616. * phys_to_virt doesn't work with hihgmem page but we could
  617. * call dma_mark_clean() with hihgmem page here. However, we
  618. * are fine since dma_mark_clean() is null on POWERPC. We can
  619. * make dma_mark_clean() take a physical address if necessary.
  620. */
  621. dma_mark_clean(phys_to_virt(paddr), size);
  622. }
  623. void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
  624. size_t size, enum dma_data_direction dir,
  625. struct dma_attrs *attrs)
  626. {
  627. unmap_single(hwdev, dev_addr, size, dir);
  628. }
  629. EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
  630. /*
  631. * Make physical memory consistent for a single streaming mode DMA translation
  632. * after a transfer.
  633. *
  634. * If you perform a swiotlb_map_page() but wish to interrogate the buffer
  635. * using the cpu, yet do not wish to teardown the dma mapping, you must
  636. * call this function before doing so. At the next point you give the dma
  637. * address back to the card, you must first perform a
  638. * swiotlb_dma_sync_for_device, and then the device again owns the buffer
  639. */
  640. static void
  641. swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
  642. size_t size, int dir, int target)
  643. {
  644. phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
  645. BUG_ON(dir == DMA_NONE);
  646. if (is_swiotlb_buffer(paddr)) {
  647. sync_single(hwdev, phys_to_virt(paddr), size, dir, target);
  648. return;
  649. }
  650. if (dir != DMA_FROM_DEVICE)
  651. return;
  652. dma_mark_clean(phys_to_virt(paddr), size);
  653. }
  654. void
  655. swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  656. size_t size, enum dma_data_direction dir)
  657. {
  658. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
  659. }
  660. EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
  661. void
  662. swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
  663. size_t size, enum dma_data_direction dir)
  664. {
  665. swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
  666. }
  667. EXPORT_SYMBOL(swiotlb_sync_single_for_device);
  668. /*
  669. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  670. * This is the scatter-gather version of the above swiotlb_map_page
  671. * interface. Here the scatter gather list elements are each tagged with the
  672. * appropriate dma address and length. They are obtained via
  673. * sg_dma_{address,length}(SG).
  674. *
  675. * NOTE: An implementation may be able to use a smaller number of
  676. * DMA address/length pairs than there are SG table elements.
  677. * (for example via virtual mapping capabilities)
  678. * The routine returns the number of addr/length pairs actually
  679. * used, at most nents.
  680. *
  681. * Device ownership issues as mentioned above for swiotlb_map_page are the
  682. * same here.
  683. */
  684. int
  685. swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
  686. enum dma_data_direction dir, struct dma_attrs *attrs)
  687. {
  688. struct scatterlist *sg;
  689. int i;
  690. BUG_ON(dir == DMA_NONE);
  691. for_each_sg(sgl, sg, nelems, i) {
  692. phys_addr_t paddr = sg_phys(sg);
  693. dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
  694. if (swiotlb_force ||
  695. !dma_capable(hwdev, dev_addr, sg->length)) {
  696. void *map = map_single(hwdev, sg_phys(sg),
  697. sg->length, dir);
  698. if (!map) {
  699. /* Don't panic here, we expect map_sg users
  700. to do proper error handling. */
  701. swiotlb_full(hwdev, sg->length, dir, 0);
  702. swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
  703. attrs);
  704. sgl[0].dma_length = 0;
  705. return 0;
  706. }
  707. sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
  708. } else
  709. sg->dma_address = dev_addr;
  710. sg->dma_length = sg->length;
  711. }
  712. return nelems;
  713. }
  714. EXPORT_SYMBOL(swiotlb_map_sg_attrs);
  715. int
  716. swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  717. int dir)
  718. {
  719. return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  720. }
  721. EXPORT_SYMBOL(swiotlb_map_sg);
  722. /*
  723. * Unmap a set of streaming mode DMA translations. Again, cpu read rules
  724. * concerning calls here are the same as for swiotlb_unmap_page() above.
  725. */
  726. void
  727. swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  728. int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
  729. {
  730. struct scatterlist *sg;
  731. int i;
  732. BUG_ON(dir == DMA_NONE);
  733. for_each_sg(sgl, sg, nelems, i)
  734. unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
  735. }
  736. EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
  737. void
  738. swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  739. int dir)
  740. {
  741. return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  742. }
  743. EXPORT_SYMBOL(swiotlb_unmap_sg);
  744. /*
  745. * Make physical memory consistent for a set of streaming mode DMA translations
  746. * after a transfer.
  747. *
  748. * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
  749. * and usage.
  750. */
  751. static void
  752. swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
  753. int nelems, int dir, int target)
  754. {
  755. struct scatterlist *sg;
  756. int i;
  757. for_each_sg(sgl, sg, nelems, i)
  758. swiotlb_sync_single(hwdev, sg->dma_address,
  759. sg->dma_length, dir, target);
  760. }
  761. void
  762. swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
  763. int nelems, enum dma_data_direction dir)
  764. {
  765. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
  766. }
  767. EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
  768. void
  769. swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
  770. int nelems, enum dma_data_direction dir)
  771. {
  772. swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
  773. }
  774. EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
  775. int
  776. swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
  777. {
  778. return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
  779. }
  780. EXPORT_SYMBOL(swiotlb_dma_mapping_error);
  781. /*
  782. * Return whether the given device DMA address mask can be supported
  783. * properly. For example, if your device can only drive the low 24-bits
  784. * during bus mastering, then you would pass 0x00ffffff as the mask to
  785. * this function.
  786. */
  787. int
  788. swiotlb_dma_supported(struct device *hwdev, u64 mask)
  789. {
  790. return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
  791. }
  792. EXPORT_SYMBOL(swiotlb_dma_supported);