pch_udc.c 81 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964
  1. /*
  2. * Copyright (C) 2010 OKI SEMICONDUCTOR CO., LTD.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; version 2 of the License.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18. #include <linux/kernel.h>
  19. #include <linux/module.h>
  20. #include <linux/pci.h>
  21. #include <linux/delay.h>
  22. #include <linux/errno.h>
  23. #include <linux/list.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/usb/ch9.h>
  26. #include <linux/usb/gadget.h>
  27. /* Address offset of Registers */
  28. #define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */
  29. #define UDC_EPCTL_ADDR 0x00 /* Endpoint control */
  30. #define UDC_EPSTS_ADDR 0x04 /* Endpoint status */
  31. #define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */
  32. #define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */
  33. #define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */
  34. #define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */
  35. #define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */
  36. #define UDC_DEVCFG_ADDR 0x400 /* Device configuration */
  37. #define UDC_DEVCTL_ADDR 0x404 /* Device control */
  38. #define UDC_DEVSTS_ADDR 0x408 /* Device status */
  39. #define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */
  40. #define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */
  41. #define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */
  42. #define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */
  43. #define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */
  44. #define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */
  45. #define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */
  46. #define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */
  47. /* Endpoint control register */
  48. /* Bit position */
  49. #define UDC_EPCTL_MRXFLUSH (1 << 12)
  50. #define UDC_EPCTL_RRDY (1 << 9)
  51. #define UDC_EPCTL_CNAK (1 << 8)
  52. #define UDC_EPCTL_SNAK (1 << 7)
  53. #define UDC_EPCTL_NAK (1 << 6)
  54. #define UDC_EPCTL_P (1 << 3)
  55. #define UDC_EPCTL_F (1 << 1)
  56. #define UDC_EPCTL_S (1 << 0)
  57. #define UDC_EPCTL_ET_SHIFT 4
  58. /* Mask patern */
  59. #define UDC_EPCTL_ET_MASK 0x00000030
  60. /* Value for ET field */
  61. #define UDC_EPCTL_ET_CONTROL 0
  62. #define UDC_EPCTL_ET_ISO 1
  63. #define UDC_EPCTL_ET_BULK 2
  64. #define UDC_EPCTL_ET_INTERRUPT 3
  65. /* Endpoint status register */
  66. /* Bit position */
  67. #define UDC_EPSTS_XFERDONE (1 << 27)
  68. #define UDC_EPSTS_RSS (1 << 26)
  69. #define UDC_EPSTS_RCS (1 << 25)
  70. #define UDC_EPSTS_TXEMPTY (1 << 24)
  71. #define UDC_EPSTS_TDC (1 << 10)
  72. #define UDC_EPSTS_HE (1 << 9)
  73. #define UDC_EPSTS_MRXFIFO_EMP (1 << 8)
  74. #define UDC_EPSTS_BNA (1 << 7)
  75. #define UDC_EPSTS_IN (1 << 6)
  76. #define UDC_EPSTS_OUT_SHIFT 4
  77. /* Mask patern */
  78. #define UDC_EPSTS_OUT_MASK 0x00000030
  79. #define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0
  80. /* Value for OUT field */
  81. #define UDC_EPSTS_OUT_SETUP 2
  82. #define UDC_EPSTS_OUT_DATA 1
  83. /* Device configuration register */
  84. /* Bit position */
  85. #define UDC_DEVCFG_CSR_PRG (1 << 17)
  86. #define UDC_DEVCFG_SP (1 << 3)
  87. /* SPD Valee */
  88. #define UDC_DEVCFG_SPD_HS 0x0
  89. #define UDC_DEVCFG_SPD_FS 0x1
  90. #define UDC_DEVCFG_SPD_LS 0x2
  91. /* Device control register */
  92. /* Bit position */
  93. #define UDC_DEVCTL_THLEN_SHIFT 24
  94. #define UDC_DEVCTL_BRLEN_SHIFT 16
  95. #define UDC_DEVCTL_CSR_DONE (1 << 13)
  96. #define UDC_DEVCTL_SD (1 << 10)
  97. #define UDC_DEVCTL_MODE (1 << 9)
  98. #define UDC_DEVCTL_BREN (1 << 8)
  99. #define UDC_DEVCTL_THE (1 << 7)
  100. #define UDC_DEVCTL_DU (1 << 4)
  101. #define UDC_DEVCTL_TDE (1 << 3)
  102. #define UDC_DEVCTL_RDE (1 << 2)
  103. #define UDC_DEVCTL_RES (1 << 0)
  104. /* Device status register */
  105. /* Bit position */
  106. #define UDC_DEVSTS_TS_SHIFT 18
  107. #define UDC_DEVSTS_ENUM_SPEED_SHIFT 13
  108. #define UDC_DEVSTS_ALT_SHIFT 8
  109. #define UDC_DEVSTS_INTF_SHIFT 4
  110. #define UDC_DEVSTS_CFG_SHIFT 0
  111. /* Mask patern */
  112. #define UDC_DEVSTS_TS_MASK 0xfffc0000
  113. #define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
  114. #define UDC_DEVSTS_ALT_MASK 0x00000f00
  115. #define UDC_DEVSTS_INTF_MASK 0x000000f0
  116. #define UDC_DEVSTS_CFG_MASK 0x0000000f
  117. /* value for maximum speed for SPEED field */
  118. #define UDC_DEVSTS_ENUM_SPEED_FULL 1
  119. #define UDC_DEVSTS_ENUM_SPEED_HIGH 0
  120. #define UDC_DEVSTS_ENUM_SPEED_LOW 2
  121. #define UDC_DEVSTS_ENUM_SPEED_FULLX 3
  122. /* Device irq register */
  123. /* Bit position */
  124. #define UDC_DEVINT_RWKP (1 << 7)
  125. #define UDC_DEVINT_ENUM (1 << 6)
  126. #define UDC_DEVINT_SOF (1 << 5)
  127. #define UDC_DEVINT_US (1 << 4)
  128. #define UDC_DEVINT_UR (1 << 3)
  129. #define UDC_DEVINT_ES (1 << 2)
  130. #define UDC_DEVINT_SI (1 << 1)
  131. #define UDC_DEVINT_SC (1 << 0)
  132. /* Mask patern */
  133. #define UDC_DEVINT_MSK 0x7f
  134. /* Endpoint irq register */
  135. /* Bit position */
  136. #define UDC_EPINT_IN_SHIFT 0
  137. #define UDC_EPINT_OUT_SHIFT 16
  138. #define UDC_EPINT_IN_EP0 (1 << 0)
  139. #define UDC_EPINT_OUT_EP0 (1 << 16)
  140. /* Mask patern */
  141. #define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
  142. /* UDC_CSR_BUSY Status register */
  143. /* Bit position */
  144. #define UDC_CSR_BUSY (1 << 0)
  145. /* SOFT RESET register */
  146. /* Bit position */
  147. #define UDC_PSRST (1 << 1)
  148. #define UDC_SRST (1 << 0)
  149. /* USB_DEVICE endpoint register */
  150. /* Bit position */
  151. #define UDC_CSR_NE_NUM_SHIFT 0
  152. #define UDC_CSR_NE_DIR_SHIFT 4
  153. #define UDC_CSR_NE_TYPE_SHIFT 5
  154. #define UDC_CSR_NE_CFG_SHIFT 7
  155. #define UDC_CSR_NE_INTF_SHIFT 11
  156. #define UDC_CSR_NE_ALT_SHIFT 15
  157. #define UDC_CSR_NE_MAX_PKT_SHIFT 19
  158. /* Mask patern */
  159. #define UDC_CSR_NE_NUM_MASK 0x0000000f
  160. #define UDC_CSR_NE_DIR_MASK 0x00000010
  161. #define UDC_CSR_NE_TYPE_MASK 0x00000060
  162. #define UDC_CSR_NE_CFG_MASK 0x00000780
  163. #define UDC_CSR_NE_INTF_MASK 0x00007800
  164. #define UDC_CSR_NE_ALT_MASK 0x00078000
  165. #define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
  166. #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
  167. #define PCH_UDC_EPINT(in, num)\
  168. (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
  169. /* Index of endpoint */
  170. #define UDC_EP0IN_IDX 0
  171. #define UDC_EP0OUT_IDX 1
  172. #define UDC_EPIN_IDX(ep) (ep * 2)
  173. #define UDC_EPOUT_IDX(ep) (ep * 2 + 1)
  174. #define PCH_UDC_EP0 0
  175. #define PCH_UDC_EP1 1
  176. #define PCH_UDC_EP2 2
  177. #define PCH_UDC_EP3 3
  178. /* Number of endpoint */
  179. #define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */
  180. #define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */
  181. /* Length Value */
  182. #define PCH_UDC_BRLEN 0x0F /* Burst length */
  183. #define PCH_UDC_THLEN 0x1F /* Threshold length */
  184. /* Value of EP Buffer Size */
  185. #define UDC_EP0IN_BUFF_SIZE 16
  186. #define UDC_EPIN_BUFF_SIZE 256
  187. #define UDC_EP0OUT_BUFF_SIZE 16
  188. #define UDC_EPOUT_BUFF_SIZE 256
  189. /* Value of EP maximum packet size */
  190. #define UDC_EP0IN_MAX_PKT_SIZE 64
  191. #define UDC_EP0OUT_MAX_PKT_SIZE 64
  192. #define UDC_BULK_MAX_PKT_SIZE 512
  193. /* DMA */
  194. #define DMA_DIR_RX 1 /* DMA for data receive */
  195. #define DMA_DIR_TX 2 /* DMA for data transmit */
  196. #define DMA_ADDR_INVALID (~(dma_addr_t)0)
  197. #define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */
  198. /**
  199. * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
  200. * for data
  201. * @status: Status quadlet
  202. * @reserved: Reserved
  203. * @dataptr: Buffer descriptor
  204. * @next: Next descriptor
  205. */
  206. struct pch_udc_data_dma_desc {
  207. u32 status;
  208. u32 reserved;
  209. u32 dataptr;
  210. u32 next;
  211. };
  212. /**
  213. * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
  214. * for control data
  215. * @status: Status
  216. * @reserved: Reserved
  217. * @data12: First setup word
  218. * @data34: Second setup word
  219. */
  220. struct pch_udc_stp_dma_desc {
  221. u32 status;
  222. u32 reserved;
  223. struct usb_ctrlrequest request;
  224. } __attribute((packed));
  225. /* DMA status definitions */
  226. /* Buffer status */
  227. #define PCH_UDC_BUFF_STS 0xC0000000
  228. #define PCH_UDC_BS_HST_RDY 0x00000000
  229. #define PCH_UDC_BS_DMA_BSY 0x40000000
  230. #define PCH_UDC_BS_DMA_DONE 0x80000000
  231. #define PCH_UDC_BS_HST_BSY 0xC0000000
  232. /* Rx/Tx Status */
  233. #define PCH_UDC_RXTX_STS 0x30000000
  234. #define PCH_UDC_RTS_SUCC 0x00000000
  235. #define PCH_UDC_RTS_DESERR 0x10000000
  236. #define PCH_UDC_RTS_BUFERR 0x30000000
  237. /* Last Descriptor Indication */
  238. #define PCH_UDC_DMA_LAST 0x08000000
  239. /* Number of Rx/Tx Bytes Mask */
  240. #define PCH_UDC_RXTX_BYTES 0x0000ffff
  241. /**
  242. * struct pch_udc_cfg_data - Structure to hold current configuration
  243. * and interface information
  244. * @cur_cfg: current configuration in use
  245. * @cur_intf: current interface in use
  246. * @cur_alt: current alt interface in use
  247. */
  248. struct pch_udc_cfg_data {
  249. u16 cur_cfg;
  250. u16 cur_intf;
  251. u16 cur_alt;
  252. };
  253. /**
  254. * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
  255. * @ep: embedded ep request
  256. * @td_stp_phys: for setup request
  257. * @td_data_phys: for data request
  258. * @td_stp: for setup request
  259. * @td_data: for data request
  260. * @dev: reference to device struct
  261. * @offset_addr: offset address of ep register
  262. * @desc: for this ep
  263. * @queue: queue for requests
  264. * @num: endpoint number
  265. * @in: endpoint is IN
  266. * @halted: endpoint halted?
  267. * @epsts: Endpoint status
  268. */
  269. struct pch_udc_ep {
  270. struct usb_ep ep;
  271. dma_addr_t td_stp_phys;
  272. dma_addr_t td_data_phys;
  273. struct pch_udc_stp_dma_desc *td_stp;
  274. struct pch_udc_data_dma_desc *td_data;
  275. struct pch_udc_dev *dev;
  276. unsigned long offset_addr;
  277. const struct usb_endpoint_descriptor *desc;
  278. struct list_head queue;
  279. unsigned num:5,
  280. in:1,
  281. halted:1;
  282. unsigned long epsts;
  283. };
  284. /**
  285. * struct pch_udc_dev - Structure holding complete information
  286. * of the PCH USB device
  287. * @gadget: gadget driver data
  288. * @driver: reference to gadget driver bound
  289. * @pdev: reference to the PCI device
  290. * @ep: array of endpoints
  291. * @lock: protects all state
  292. * @active: enabled the PCI device
  293. * @stall: stall requested
  294. * @prot_stall: protcol stall requested
  295. * @irq_registered: irq registered with system
  296. * @mem_region: device memory mapped
  297. * @registered: driver regsitered with system
  298. * @suspended: driver in suspended state
  299. * @connected: gadget driver associated
  300. * @set_cfg_not_acked: pending acknowledgement 4 setup
  301. * @waiting_zlp_ack: pending acknowledgement 4 ZLP
  302. * @data_requests: DMA pool for data requests
  303. * @stp_requests: DMA pool for setup requests
  304. * @dma_addr: DMA pool for received
  305. * @ep0out_buf: Buffer for DMA
  306. * @setup_data: Received setup data
  307. * @phys_addr: of device memory
  308. * @base_addr: for mapped device memory
  309. * @irq: IRQ line for the device
  310. * @cfg_data: current cfg, intf, and alt in use
  311. */
  312. struct pch_udc_dev {
  313. struct usb_gadget gadget;
  314. struct usb_gadget_driver *driver;
  315. struct pci_dev *pdev;
  316. struct pch_udc_ep ep[PCH_UDC_EP_NUM];
  317. spinlock_t lock; /* protects all state */
  318. unsigned active:1,
  319. stall:1,
  320. prot_stall:1,
  321. irq_registered:1,
  322. mem_region:1,
  323. registered:1,
  324. suspended:1,
  325. connected:1,
  326. set_cfg_not_acked:1,
  327. waiting_zlp_ack:1;
  328. struct pci_pool *data_requests;
  329. struct pci_pool *stp_requests;
  330. dma_addr_t dma_addr;
  331. void *ep0out_buf;
  332. struct usb_ctrlrequest setup_data;
  333. unsigned long phys_addr;
  334. void __iomem *base_addr;
  335. unsigned irq;
  336. struct pch_udc_cfg_data cfg_data;
  337. };
  338. #define PCH_UDC_PCI_BAR 1
  339. #define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808
  340. static const char ep0_string[] = "ep0in";
  341. static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */
  342. struct pch_udc_dev *pch_udc; /* pointer to device object */
  343. static int speed_fs;
  344. module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
  345. MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
  346. /**
  347. * struct pch_udc_request - Structure holding a PCH USB device request packet
  348. * @req: embedded ep request
  349. * @td_data_phys: phys. address
  350. * @td_data: first dma desc. of chain
  351. * @td_data_last: last dma desc. of chain
  352. * @queue: associated queue
  353. * @dma_going: DMA in progress for request
  354. * @dma_mapped: DMA memory mapped for request
  355. * @dma_done: DMA completed for request
  356. * @chain_len: chain length
  357. */
  358. struct pch_udc_request {
  359. struct usb_request req;
  360. dma_addr_t td_data_phys;
  361. struct pch_udc_data_dma_desc *td_data;
  362. struct pch_udc_data_dma_desc *td_data_last;
  363. struct list_head queue;
  364. unsigned dma_going:1,
  365. dma_mapped:1,
  366. dma_done:1;
  367. unsigned chain_len;
  368. };
  369. static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
  370. {
  371. return ioread32(dev->base_addr + reg);
  372. }
  373. static inline void pch_udc_writel(struct pch_udc_dev *dev,
  374. unsigned long val, unsigned long reg)
  375. {
  376. iowrite32(val, dev->base_addr + reg);
  377. }
  378. static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
  379. unsigned long reg,
  380. unsigned long bitmask)
  381. {
  382. pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
  383. }
  384. static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
  385. unsigned long reg,
  386. unsigned long bitmask)
  387. {
  388. pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
  389. }
  390. static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
  391. {
  392. return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
  393. }
  394. static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
  395. unsigned long val, unsigned long reg)
  396. {
  397. iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
  398. }
  399. static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
  400. unsigned long reg,
  401. unsigned long bitmask)
  402. {
  403. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
  404. }
  405. static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
  406. unsigned long reg,
  407. unsigned long bitmask)
  408. {
  409. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
  410. }
  411. /**
  412. * pch_udc_csr_busy() - Wait till idle.
  413. * @dev: Reference to pch_udc_dev structure
  414. */
  415. static void pch_udc_csr_busy(struct pch_udc_dev *dev)
  416. {
  417. unsigned int count = 200;
  418. /* Wait till idle */
  419. while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
  420. && --count)
  421. cpu_relax();
  422. if (!count)
  423. dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
  424. }
  425. /**
  426. * pch_udc_write_csr() - Write the command and status registers.
  427. * @dev: Reference to pch_udc_dev structure
  428. * @val: value to be written to CSR register
  429. * @addr: address of CSR register
  430. */
  431. static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
  432. unsigned int ep)
  433. {
  434. unsigned long reg = PCH_UDC_CSR(ep);
  435. pch_udc_csr_busy(dev); /* Wait till idle */
  436. pch_udc_writel(dev, val, reg);
  437. pch_udc_csr_busy(dev); /* Wait till idle */
  438. }
  439. /**
  440. * pch_udc_read_csr() - Read the command and status registers.
  441. * @dev: Reference to pch_udc_dev structure
  442. * @addr: address of CSR register
  443. *
  444. * Return codes: content of CSR register
  445. */
  446. static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
  447. {
  448. unsigned long reg = PCH_UDC_CSR(ep);
  449. pch_udc_csr_busy(dev); /* Wait till idle */
  450. pch_udc_readl(dev, reg); /* Dummy read */
  451. pch_udc_csr_busy(dev); /* Wait till idle */
  452. return pch_udc_readl(dev, reg);
  453. }
  454. /**
  455. * pch_udc_rmt_wakeup() - Initiate for remote wakeup
  456. * @dev: Reference to pch_udc_dev structure
  457. */
  458. static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
  459. {
  460. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  461. mdelay(1);
  462. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  463. }
  464. /**
  465. * pch_udc_get_frame() - Get the current frame from device status register
  466. * @dev: Reference to pch_udc_dev structure
  467. * Retern current frame
  468. */
  469. static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
  470. {
  471. u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  472. return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
  473. }
  474. /**
  475. * pch_udc_clear_selfpowered() - Clear the self power control
  476. * @dev: Reference to pch_udc_regs structure
  477. */
  478. static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
  479. {
  480. pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  481. }
  482. /**
  483. * pch_udc_set_selfpowered() - Set the self power control
  484. * @dev: Reference to pch_udc_regs structure
  485. */
  486. static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
  487. {
  488. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  489. }
  490. /**
  491. * pch_udc_set_disconnect() - Set the disconnect status.
  492. * @dev: Reference to pch_udc_regs structure
  493. */
  494. static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
  495. {
  496. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  497. }
  498. /**
  499. * pch_udc_clear_disconnect() - Clear the disconnect status.
  500. * @dev: Reference to pch_udc_regs structure
  501. */
  502. static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
  503. {
  504. /* Clear the disconnect */
  505. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  506. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  507. mdelay(1);
  508. /* Resume USB signalling */
  509. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  510. }
  511. /**
  512. * pch_udc_vbus_session() - set or clearr the disconnect status.
  513. * @dev: Reference to pch_udc_regs structure
  514. * @is_active: Parameter specifying the action
  515. * 0: indicating VBUS power is ending
  516. * !0: indicating VBUS power is starting
  517. */
  518. static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
  519. int is_active)
  520. {
  521. if (is_active)
  522. pch_udc_clear_disconnect(dev);
  523. else
  524. pch_udc_set_disconnect(dev);
  525. }
  526. /**
  527. * pch_udc_ep_set_stall() - Set the stall of endpoint
  528. * @ep: Reference to structure of type pch_udc_ep_regs
  529. */
  530. static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
  531. {
  532. if (ep->in) {
  533. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  534. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  535. } else {
  536. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  537. }
  538. }
  539. /**
  540. * pch_udc_ep_clear_stall() - Clear the stall of endpoint
  541. * @ep: Reference to structure of type pch_udc_ep_regs
  542. */
  543. static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
  544. {
  545. /* Clear the stall */
  546. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  547. /* Clear NAK by writing CNAK */
  548. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  549. }
  550. /**
  551. * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
  552. * @ep: Reference to structure of type pch_udc_ep_regs
  553. * @type: Type of endpoint
  554. */
  555. static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
  556. u8 type)
  557. {
  558. pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
  559. UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
  560. }
  561. /**
  562. * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
  563. * @ep: Reference to structure of type pch_udc_ep_regs
  564. * @buf_size: The buffer size
  565. */
  566. static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
  567. u32 buf_size, u32 ep_in)
  568. {
  569. u32 data;
  570. if (ep_in) {
  571. data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
  572. data = (data & 0xffff0000) | (buf_size & 0xffff);
  573. pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
  574. } else {
  575. data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  576. data = (buf_size << 16) | (data & 0xffff);
  577. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  578. }
  579. }
  580. /**
  581. * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
  582. * @ep: Reference to structure of type pch_udc_ep_regs
  583. * @pkt_size: The packet size
  584. */
  585. static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
  586. {
  587. u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  588. data = (data & 0xffff0000) | (pkt_size & 0xffff);
  589. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  590. }
  591. /**
  592. * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
  593. * @ep: Reference to structure of type pch_udc_ep_regs
  594. * @addr: Address of the register
  595. */
  596. static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
  597. {
  598. pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
  599. }
  600. /**
  601. * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
  602. * @ep: Reference to structure of type pch_udc_ep_regs
  603. * @addr: Address of the register
  604. */
  605. static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
  606. {
  607. pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
  608. }
  609. /**
  610. * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
  611. * @ep: Reference to structure of type pch_udc_ep_regs
  612. */
  613. static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
  614. {
  615. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
  616. }
  617. /**
  618. * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
  619. * @ep: Reference to structure of type pch_udc_ep_regs
  620. */
  621. static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
  622. {
  623. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  624. }
  625. /**
  626. * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
  627. * @ep: Reference to structure of type pch_udc_ep_regs
  628. */
  629. static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
  630. {
  631. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  632. }
  633. /**
  634. * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
  635. * register depending on the direction specified
  636. * @dev: Reference to structure of type pch_udc_regs
  637. * @dir: whether Tx or Rx
  638. * DMA_DIR_RX: Receive
  639. * DMA_DIR_TX: Transmit
  640. */
  641. static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
  642. {
  643. if (dir == DMA_DIR_RX)
  644. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  645. else if (dir == DMA_DIR_TX)
  646. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  647. }
  648. /**
  649. * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
  650. * register depending on the direction specified
  651. * @dev: Reference to structure of type pch_udc_regs
  652. * @dir: Whether Tx or Rx
  653. * DMA_DIR_RX: Receive
  654. * DMA_DIR_TX: Transmit
  655. */
  656. static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
  657. {
  658. if (dir == DMA_DIR_RX)
  659. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  660. else if (dir == DMA_DIR_TX)
  661. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  662. }
  663. /**
  664. * pch_udc_set_csr_done() - Set the device control register
  665. * CSR done field (bit 13)
  666. * @dev: reference to structure of type pch_udc_regs
  667. */
  668. static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
  669. {
  670. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
  671. }
  672. /**
  673. * pch_udc_disable_interrupts() - Disables the specified interrupts
  674. * @dev: Reference to structure of type pch_udc_regs
  675. * @mask: Mask to disable interrupts
  676. */
  677. static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
  678. u32 mask)
  679. {
  680. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
  681. }
  682. /**
  683. * pch_udc_enable_interrupts() - Enable the specified interrupts
  684. * @dev: Reference to structure of type pch_udc_regs
  685. * @mask: Mask to enable interrupts
  686. */
  687. static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
  688. u32 mask)
  689. {
  690. pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
  691. }
  692. /**
  693. * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
  694. * @dev: Reference to structure of type pch_udc_regs
  695. * @mask: Mask to disable interrupts
  696. */
  697. static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
  698. u32 mask)
  699. {
  700. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
  701. }
  702. /**
  703. * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
  704. * @dev: Reference to structure of type pch_udc_regs
  705. * @mask: Mask to enable interrupts
  706. */
  707. static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
  708. u32 mask)
  709. {
  710. pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
  711. }
  712. /**
  713. * pch_udc_read_device_interrupts() - Read the device interrupts
  714. * @dev: Reference to structure of type pch_udc_regs
  715. * Retern The device interrupts
  716. */
  717. static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
  718. {
  719. return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
  720. }
  721. /**
  722. * pch_udc_write_device_interrupts() - Write device interrupts
  723. * @dev: Reference to structure of type pch_udc_regs
  724. * @val: The value to be written to interrupt register
  725. */
  726. static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
  727. u32 val)
  728. {
  729. pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
  730. }
  731. /**
  732. * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
  733. * @dev: Reference to structure of type pch_udc_regs
  734. * Retern The endpoint interrupt
  735. */
  736. static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
  737. {
  738. return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
  739. }
  740. /**
  741. * pch_udc_write_ep_interrupts() - Clear endpoint interupts
  742. * @dev: Reference to structure of type pch_udc_regs
  743. * @val: The value to be written to interrupt register
  744. */
  745. static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
  746. u32 val)
  747. {
  748. pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
  749. }
  750. /**
  751. * pch_udc_read_device_status() - Read the device status
  752. * @dev: Reference to structure of type pch_udc_regs
  753. * Retern The device status
  754. */
  755. static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
  756. {
  757. return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  758. }
  759. /**
  760. * pch_udc_read_ep_control() - Read the endpoint control
  761. * @ep: Reference to structure of type pch_udc_ep_regs
  762. * Retern The endpoint control register value
  763. */
  764. static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
  765. {
  766. return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
  767. }
  768. /**
  769. * pch_udc_clear_ep_control() - Clear the endpoint control register
  770. * @ep: Reference to structure of type pch_udc_ep_regs
  771. * Retern The endpoint control register value
  772. */
  773. static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
  774. {
  775. return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
  776. }
  777. /**
  778. * pch_udc_read_ep_status() - Read the endpoint status
  779. * @ep: Reference to structure of type pch_udc_ep_regs
  780. * Retern The endpoint status
  781. */
  782. static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
  783. {
  784. return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
  785. }
  786. /**
  787. * pch_udc_clear_ep_status() - Clear the endpoint status
  788. * @ep: Reference to structure of type pch_udc_ep_regs
  789. * @stat: Endpoint status
  790. */
  791. static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
  792. u32 stat)
  793. {
  794. return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
  795. }
  796. /**
  797. * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
  798. * of the endpoint control register
  799. * @ep: Reference to structure of type pch_udc_ep_regs
  800. */
  801. static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
  802. {
  803. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
  804. }
  805. /**
  806. * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
  807. * of the endpoint control register
  808. * @ep: reference to structure of type pch_udc_ep_regs
  809. */
  810. static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
  811. {
  812. unsigned int loopcnt = 0;
  813. struct pch_udc_dev *dev = ep->dev;
  814. if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
  815. return;
  816. if (!ep->in) {
  817. loopcnt = 10000;
  818. while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
  819. --loopcnt)
  820. udelay(5);
  821. if (!loopcnt)
  822. dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
  823. __func__);
  824. }
  825. loopcnt = 10000;
  826. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
  827. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  828. udelay(5);
  829. }
  830. if (!loopcnt)
  831. dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
  832. __func__, ep->num, (ep->in ? "in" : "out"));
  833. }
  834. /**
  835. * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
  836. * @ep: reference to structure of type pch_udc_ep_regs
  837. * @dir: direction of endpoint
  838. * 0: endpoint is OUT
  839. * !0: endpoint is IN
  840. */
  841. static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
  842. {
  843. unsigned int loopcnt = 0;
  844. struct pch_udc_dev *dev = ep->dev;
  845. if (dir) { /* IN ep */
  846. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  847. return;
  848. }
  849. if (pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP)
  850. return;
  851. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_MRXFLUSH);
  852. /* Wait for RxFIFO Empty */
  853. loopcnt = 10000;
  854. while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
  855. --loopcnt)
  856. udelay(5);
  857. if (!loopcnt)
  858. dev_err(&dev->pdev->dev, "RxFIFO not Empty\n");
  859. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_MRXFLUSH);
  860. }
  861. /**
  862. * pch_udc_ep_enable() - This api enables endpoint
  863. * @regs: Reference to structure pch_udc_ep_regs
  864. * @desc: endpoint descriptor
  865. */
  866. static void pch_udc_ep_enable(struct pch_udc_ep *ep,
  867. struct pch_udc_cfg_data *cfg,
  868. const struct usb_endpoint_descriptor *desc)
  869. {
  870. u32 val = 0;
  871. u32 buff_size = 0;
  872. pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
  873. if (ep->in)
  874. buff_size = UDC_EPIN_BUFF_SIZE;
  875. else
  876. buff_size = UDC_EPOUT_BUFF_SIZE;
  877. pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
  878. pch_udc_ep_set_maxpkt(ep, le16_to_cpu(desc->wMaxPacketSize));
  879. pch_udc_ep_set_nak(ep);
  880. pch_udc_ep_fifo_flush(ep, ep->in);
  881. /* Configure the endpoint */
  882. val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
  883. ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
  884. UDC_CSR_NE_TYPE_SHIFT) |
  885. (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
  886. (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
  887. (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
  888. le16_to_cpu(desc->wMaxPacketSize) << UDC_CSR_NE_MAX_PKT_SHIFT;
  889. if (ep->in)
  890. pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
  891. else
  892. pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
  893. }
  894. /**
  895. * pch_udc_ep_disable() - This api disables endpoint
  896. * @regs: Reference to structure pch_udc_ep_regs
  897. */
  898. static void pch_udc_ep_disable(struct pch_udc_ep *ep)
  899. {
  900. if (ep->in) {
  901. /* flush the fifo */
  902. pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
  903. /* set NAK */
  904. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  905. pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
  906. } else {
  907. /* set NAK */
  908. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  909. }
  910. /* reset desc pointer */
  911. pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
  912. }
  913. /**
  914. * pch_udc_wait_ep_stall() - Wait EP stall.
  915. * @dev: Reference to pch_udc_dev structure
  916. */
  917. static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
  918. {
  919. unsigned int count = 10000;
  920. /* Wait till idle */
  921. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
  922. udelay(5);
  923. if (!count)
  924. dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
  925. }
  926. /**
  927. * pch_udc_init() - This API initializes usb device controller
  928. * @dev: Rreference to pch_udc_regs structure
  929. */
  930. static void pch_udc_init(struct pch_udc_dev *dev)
  931. {
  932. if (NULL == dev) {
  933. pr_err("%s: Invalid address\n", __func__);
  934. return;
  935. }
  936. /* Soft Reset and Reset PHY */
  937. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  938. pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
  939. mdelay(1);
  940. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  941. pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
  942. mdelay(1);
  943. /* mask and clear all device interrupts */
  944. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  945. pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
  946. /* mask and clear all ep interrupts */
  947. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  948. pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  949. /* enable dynamic CSR programmingi, self powered and device speed */
  950. if (speed_fs)
  951. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  952. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
  953. else /* defaul high speed */
  954. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  955. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
  956. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
  957. (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
  958. (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
  959. UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
  960. UDC_DEVCTL_THE);
  961. }
  962. /**
  963. * pch_udc_exit() - This API exit usb device controller
  964. * @dev: Reference to pch_udc_regs structure
  965. */
  966. static void pch_udc_exit(struct pch_udc_dev *dev)
  967. {
  968. /* mask all device interrupts */
  969. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  970. /* mask all ep interrupts */
  971. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  972. /* put device in disconnected state */
  973. pch_udc_set_disconnect(dev);
  974. }
  975. /**
  976. * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
  977. * @gadget: Reference to the gadget driver
  978. *
  979. * Return codes:
  980. * 0: Success
  981. * -EINVAL: If the gadget passed is NULL
  982. */
  983. static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
  984. {
  985. struct pch_udc_dev *dev;
  986. if (!gadget)
  987. return -EINVAL;
  988. dev = container_of(gadget, struct pch_udc_dev, gadget);
  989. return pch_udc_get_frame(dev);
  990. }
  991. /**
  992. * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
  993. * @gadget: Reference to the gadget driver
  994. *
  995. * Return codes:
  996. * 0: Success
  997. * -EINVAL: If the gadget passed is NULL
  998. */
  999. static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
  1000. {
  1001. struct pch_udc_dev *dev;
  1002. unsigned long flags;
  1003. if (!gadget)
  1004. return -EINVAL;
  1005. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1006. spin_lock_irqsave(&dev->lock, flags);
  1007. pch_udc_rmt_wakeup(dev);
  1008. spin_unlock_irqrestore(&dev->lock, flags);
  1009. return 0;
  1010. }
  1011. /**
  1012. * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
  1013. * is self powered or not
  1014. * @gadget: Reference to the gadget driver
  1015. * @value: Specifies self powered or not
  1016. *
  1017. * Return codes:
  1018. * 0: Success
  1019. * -EINVAL: If the gadget passed is NULL
  1020. */
  1021. static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
  1022. {
  1023. struct pch_udc_dev *dev;
  1024. if (!gadget)
  1025. return -EINVAL;
  1026. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1027. if (value)
  1028. pch_udc_set_selfpowered(dev);
  1029. else
  1030. pch_udc_clear_selfpowered(dev);
  1031. return 0;
  1032. }
  1033. /**
  1034. * pch_udc_pcd_pullup() - This API is invoked to make the device
  1035. * visible/invisible to the host
  1036. * @gadget: Reference to the gadget driver
  1037. * @is_on: Specifies whether the pull up is made active or inactive
  1038. *
  1039. * Return codes:
  1040. * 0: Success
  1041. * -EINVAL: If the gadget passed is NULL
  1042. */
  1043. static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
  1044. {
  1045. struct pch_udc_dev *dev;
  1046. if (!gadget)
  1047. return -EINVAL;
  1048. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1049. pch_udc_vbus_session(dev, is_on);
  1050. return 0;
  1051. }
  1052. /**
  1053. * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
  1054. * transceiver (or GPIO) that
  1055. * detects a VBUS power session starting/ending
  1056. * @gadget: Reference to the gadget driver
  1057. * @is_active: specifies whether the session is starting or ending
  1058. *
  1059. * Return codes:
  1060. * 0: Success
  1061. * -EINVAL: If the gadget passed is NULL
  1062. */
  1063. static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
  1064. {
  1065. struct pch_udc_dev *dev;
  1066. if (!gadget)
  1067. return -EINVAL;
  1068. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1069. pch_udc_vbus_session(dev, is_active);
  1070. return 0;
  1071. }
  1072. /**
  1073. * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
  1074. * SET_CONFIGURATION calls to
  1075. * specify how much power the device can consume
  1076. * @gadget: Reference to the gadget driver
  1077. * @mA: specifies the current limit in 2mA unit
  1078. *
  1079. * Return codes:
  1080. * -EINVAL: If the gadget passed is NULL
  1081. * -EOPNOTSUPP:
  1082. */
  1083. static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
  1084. {
  1085. return -EOPNOTSUPP;
  1086. }
  1087. static const struct usb_gadget_ops pch_udc_ops = {
  1088. .get_frame = pch_udc_pcd_get_frame,
  1089. .wakeup = pch_udc_pcd_wakeup,
  1090. .set_selfpowered = pch_udc_pcd_selfpowered,
  1091. .pullup = pch_udc_pcd_pullup,
  1092. .vbus_session = pch_udc_pcd_vbus_session,
  1093. .vbus_draw = pch_udc_pcd_vbus_draw,
  1094. };
  1095. /**
  1096. * complete_req() - This API is invoked from the driver when processing
  1097. * of a request is complete
  1098. * @ep: Reference to the endpoint structure
  1099. * @req: Reference to the request structure
  1100. * @status: Indicates the success/failure of completion
  1101. */
  1102. static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1103. int status)
  1104. {
  1105. struct pch_udc_dev *dev;
  1106. unsigned halted = ep->halted;
  1107. list_del_init(&req->queue);
  1108. /* set new status if pending */
  1109. if (req->req.status == -EINPROGRESS)
  1110. req->req.status = status;
  1111. else
  1112. status = req->req.status;
  1113. dev = ep->dev;
  1114. if (req->dma_mapped) {
  1115. if (ep->in)
  1116. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1117. req->req.length, DMA_TO_DEVICE);
  1118. else
  1119. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1120. req->req.length, DMA_FROM_DEVICE);
  1121. req->dma_mapped = 0;
  1122. req->req.dma = DMA_ADDR_INVALID;
  1123. }
  1124. ep->halted = 1;
  1125. spin_unlock(&dev->lock);
  1126. if (!ep->in)
  1127. pch_udc_ep_clear_rrdy(ep);
  1128. req->req.complete(&ep->ep, &req->req);
  1129. spin_lock(&dev->lock);
  1130. ep->halted = halted;
  1131. }
  1132. /**
  1133. * empty_req_queue() - This API empties the request queue of an endpoint
  1134. * @ep: Reference to the endpoint structure
  1135. */
  1136. static void empty_req_queue(struct pch_udc_ep *ep)
  1137. {
  1138. struct pch_udc_request *req;
  1139. ep->halted = 1;
  1140. while (!list_empty(&ep->queue)) {
  1141. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1142. complete_req(ep, req, -ESHUTDOWN); /* Remove from list */
  1143. }
  1144. }
  1145. /**
  1146. * pch_udc_free_dma_chain() - This function frees the DMA chain created
  1147. * for the request
  1148. * @dev Reference to the driver structure
  1149. * @req Reference to the request to be freed
  1150. *
  1151. * Return codes:
  1152. * 0: Success
  1153. */
  1154. static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
  1155. struct pch_udc_request *req)
  1156. {
  1157. struct pch_udc_data_dma_desc *td = req->td_data;
  1158. unsigned i = req->chain_len;
  1159. for (; i > 1; --i) {
  1160. dma_addr_t addr = (dma_addr_t)td->next;
  1161. /* do not free first desc., will be done by free for request */
  1162. td = phys_to_virt(addr);
  1163. pci_pool_free(dev->data_requests, td, addr);
  1164. }
  1165. }
  1166. /**
  1167. * pch_udc_create_dma_chain() - This function creates or reinitializes
  1168. * a DMA chain
  1169. * @ep: Reference to the endpoint structure
  1170. * @req: Reference to the request
  1171. * @buf_len: The buffer length
  1172. * @gfp_flags: Flags to be used while mapping the data buffer
  1173. *
  1174. * Return codes:
  1175. * 0: success,
  1176. * -ENOMEM: pci_pool_alloc invocation fails
  1177. */
  1178. static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
  1179. struct pch_udc_request *req,
  1180. unsigned long buf_len,
  1181. gfp_t gfp_flags)
  1182. {
  1183. struct pch_udc_data_dma_desc *td = req->td_data, *last;
  1184. unsigned long bytes = req->req.length, i = 0;
  1185. dma_addr_t dma_addr;
  1186. unsigned len = 1;
  1187. if (req->chain_len > 1)
  1188. pch_udc_free_dma_chain(ep->dev, req);
  1189. for (; ; bytes -= buf_len, ++len) {
  1190. if (ep->in)
  1191. td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
  1192. else
  1193. td->status = PCH_UDC_BS_HST_BSY;
  1194. if (bytes <= buf_len)
  1195. break;
  1196. last = td;
  1197. td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
  1198. &dma_addr);
  1199. if (!td)
  1200. goto nomem;
  1201. i += buf_len;
  1202. td->dataptr = req->req.dma + i;
  1203. last->next = dma_addr;
  1204. }
  1205. req->td_data_last = td;
  1206. td->status |= PCH_UDC_DMA_LAST;
  1207. td->next = req->td_data_phys;
  1208. req->chain_len = len;
  1209. return 0;
  1210. nomem:
  1211. if (len > 1) {
  1212. req->chain_len = len;
  1213. pch_udc_free_dma_chain(ep->dev, req);
  1214. }
  1215. req->chain_len = 1;
  1216. return -ENOMEM;
  1217. }
  1218. /**
  1219. * prepare_dma() - This function creates and initializes the DMA chain
  1220. * for the request
  1221. * @ep: Reference to the endpoint structure
  1222. * @req: Reference to the request
  1223. * @gfp: Flag to be used while mapping the data buffer
  1224. *
  1225. * Return codes:
  1226. * 0: Success
  1227. * Other 0: linux error number on failure
  1228. */
  1229. static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1230. gfp_t gfp)
  1231. {
  1232. int retval;
  1233. req->td_data->dataptr = req->req.dma;
  1234. req->td_data->status |= PCH_UDC_DMA_LAST;
  1235. /* Allocate and create a DMA chain */
  1236. retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  1237. if (retval) {
  1238. pr_err("%s: could not create DMA chain: %d\n",
  1239. __func__, retval);
  1240. return retval;
  1241. }
  1242. if (!ep->in)
  1243. return 0;
  1244. if (req->req.length <= ep->ep.maxpacket)
  1245. req->td_data->status = PCH_UDC_DMA_LAST | PCH_UDC_BS_HST_BSY |
  1246. req->req.length;
  1247. /* if bytes < max packet then tx bytes must
  1248. * be written in packet per buffer mode
  1249. */
  1250. if ((req->req.length < ep->ep.maxpacket) || !ep->num)
  1251. req->td_data->status = (req->td_data->status &
  1252. ~PCH_UDC_RXTX_BYTES) | req->req.length;
  1253. req->td_data->status = (req->td_data->status &
  1254. ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_BSY;
  1255. return 0;
  1256. }
  1257. /**
  1258. * process_zlp() - This function process zero length packets
  1259. * from the gadget driver
  1260. * @ep: Reference to the endpoint structure
  1261. * @req: Reference to the request
  1262. */
  1263. static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
  1264. {
  1265. struct pch_udc_dev *dev = ep->dev;
  1266. /* IN zlp's are handled by hardware */
  1267. complete_req(ep, req, 0);
  1268. /* if set_config or set_intf is waiting for ack by zlp
  1269. * then set CSR_DONE
  1270. */
  1271. if (dev->set_cfg_not_acked) {
  1272. pch_udc_set_csr_done(dev);
  1273. dev->set_cfg_not_acked = 0;
  1274. }
  1275. /* setup command is ACK'ed now by zlp */
  1276. if (!dev->stall && dev->waiting_zlp_ack) {
  1277. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  1278. dev->waiting_zlp_ack = 0;
  1279. }
  1280. }
  1281. /**
  1282. * pch_udc_start_rxrequest() - This function starts the receive requirement.
  1283. * @ep: Reference to the endpoint structure
  1284. * @req: Reference to the request structure
  1285. */
  1286. static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
  1287. struct pch_udc_request *req)
  1288. {
  1289. struct pch_udc_data_dma_desc *td_data;
  1290. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1291. td_data = req->td_data;
  1292. /* Set the status bits for all descriptors */
  1293. while (1) {
  1294. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1295. PCH_UDC_BS_HST_RDY;
  1296. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1297. break;
  1298. td_data = phys_to_virt(td_data->next);
  1299. }
  1300. /* Write the descriptor pointer */
  1301. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1302. req->dma_going = 1;
  1303. pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
  1304. pch_udc_set_dma(ep->dev, DMA_DIR_RX);
  1305. pch_udc_ep_clear_nak(ep);
  1306. pch_udc_ep_set_rrdy(ep);
  1307. }
  1308. /**
  1309. * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
  1310. * from gadget driver
  1311. * @usbep: Reference to the USB endpoint structure
  1312. * @desc: Reference to the USB endpoint descriptor structure
  1313. *
  1314. * Return codes:
  1315. * 0: Success
  1316. * -EINVAL:
  1317. * -ESHUTDOWN:
  1318. */
  1319. static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
  1320. const struct usb_endpoint_descriptor *desc)
  1321. {
  1322. struct pch_udc_ep *ep;
  1323. struct pch_udc_dev *dev;
  1324. unsigned long iflags;
  1325. if (!usbep || (usbep->name == ep0_string) || !desc ||
  1326. (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
  1327. return -EINVAL;
  1328. ep = container_of(usbep, struct pch_udc_ep, ep);
  1329. dev = ep->dev;
  1330. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1331. return -ESHUTDOWN;
  1332. spin_lock_irqsave(&dev->lock, iflags);
  1333. ep->desc = desc;
  1334. ep->halted = 0;
  1335. pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
  1336. ep->ep.maxpacket = le16_to_cpu(desc->wMaxPacketSize);
  1337. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1338. spin_unlock_irqrestore(&dev->lock, iflags);
  1339. return 0;
  1340. }
  1341. /**
  1342. * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
  1343. * from gadget driver
  1344. * @usbep Reference to the USB endpoint structure
  1345. *
  1346. * Return codes:
  1347. * 0: Success
  1348. * -EINVAL:
  1349. */
  1350. static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
  1351. {
  1352. struct pch_udc_ep *ep;
  1353. struct pch_udc_dev *dev;
  1354. unsigned long iflags;
  1355. if (!usbep)
  1356. return -EINVAL;
  1357. ep = container_of(usbep, struct pch_udc_ep, ep);
  1358. dev = ep->dev;
  1359. if ((usbep->name == ep0_string) || !ep->desc)
  1360. return -EINVAL;
  1361. spin_lock_irqsave(&ep->dev->lock, iflags);
  1362. empty_req_queue(ep);
  1363. ep->halted = 1;
  1364. pch_udc_ep_disable(ep);
  1365. pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1366. ep->desc = NULL;
  1367. INIT_LIST_HEAD(&ep->queue);
  1368. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1369. return 0;
  1370. }
  1371. /**
  1372. * pch_udc_alloc_request() - This function allocates request structure.
  1373. * It is called by gadget driver
  1374. * @usbep: Reference to the USB endpoint structure
  1375. * @gfp: Flag to be used while allocating memory
  1376. *
  1377. * Return codes:
  1378. * NULL: Failure
  1379. * Allocated address: Success
  1380. */
  1381. static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
  1382. gfp_t gfp)
  1383. {
  1384. struct pch_udc_request *req;
  1385. struct pch_udc_ep *ep;
  1386. struct pch_udc_data_dma_desc *dma_desc;
  1387. struct pch_udc_dev *dev;
  1388. if (!usbep)
  1389. return NULL;
  1390. ep = container_of(usbep, struct pch_udc_ep, ep);
  1391. dev = ep->dev;
  1392. req = kzalloc(sizeof *req, gfp);
  1393. if (!req)
  1394. return NULL;
  1395. req->req.dma = DMA_ADDR_INVALID;
  1396. INIT_LIST_HEAD(&req->queue);
  1397. if (!ep->dev->dma_addr)
  1398. return &req->req;
  1399. /* ep0 in requests are allocated from data pool here */
  1400. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  1401. &req->td_data_phys);
  1402. if (NULL == dma_desc) {
  1403. kfree(req);
  1404. return NULL;
  1405. }
  1406. /* prevent from using desc. - set HOST BUSY */
  1407. dma_desc->status |= PCH_UDC_BS_HST_BSY;
  1408. dma_desc->dataptr = __constant_cpu_to_le32(DMA_ADDR_INVALID);
  1409. req->td_data = dma_desc;
  1410. req->td_data_last = dma_desc;
  1411. req->chain_len = 1;
  1412. return &req->req;
  1413. }
  1414. /**
  1415. * pch_udc_free_request() - This function frees request structure.
  1416. * It is called by gadget driver
  1417. * @usbep: Reference to the USB endpoint structure
  1418. * @usbreq: Reference to the USB request
  1419. */
  1420. static void pch_udc_free_request(struct usb_ep *usbep,
  1421. struct usb_request *usbreq)
  1422. {
  1423. struct pch_udc_ep *ep;
  1424. struct pch_udc_request *req;
  1425. struct pch_udc_dev *dev;
  1426. if (!usbep || !usbreq)
  1427. return;
  1428. ep = container_of(usbep, struct pch_udc_ep, ep);
  1429. req = container_of(usbreq, struct pch_udc_request, req);
  1430. dev = ep->dev;
  1431. if (!list_empty(&req->queue))
  1432. dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
  1433. __func__, usbep->name, req);
  1434. if (req->td_data != NULL) {
  1435. if (req->chain_len > 1)
  1436. pch_udc_free_dma_chain(ep->dev, req);
  1437. pci_pool_free(ep->dev->data_requests, req->td_data,
  1438. req->td_data_phys);
  1439. }
  1440. kfree(req);
  1441. }
  1442. /**
  1443. * pch_udc_pcd_queue() - This function queues a request packet. It is called
  1444. * by gadget driver
  1445. * @usbep: Reference to the USB endpoint structure
  1446. * @usbreq: Reference to the USB request
  1447. * @gfp: Flag to be used while mapping the data buffer
  1448. *
  1449. * Return codes:
  1450. * 0: Success
  1451. * linux error number: Failure
  1452. */
  1453. static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
  1454. gfp_t gfp)
  1455. {
  1456. int retval = 0;
  1457. struct pch_udc_ep *ep;
  1458. struct pch_udc_dev *dev;
  1459. struct pch_udc_request *req;
  1460. unsigned long iflags;
  1461. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
  1462. return -EINVAL;
  1463. ep = container_of(usbep, struct pch_udc_ep, ep);
  1464. dev = ep->dev;
  1465. if (!ep->desc && ep->num)
  1466. return -EINVAL;
  1467. req = container_of(usbreq, struct pch_udc_request, req);
  1468. if (!list_empty(&req->queue))
  1469. return -EINVAL;
  1470. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1471. return -ESHUTDOWN;
  1472. spin_lock_irqsave(&ep->dev->lock, iflags);
  1473. /* map the buffer for dma */
  1474. if (usbreq->length &&
  1475. ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
  1476. if (ep->in)
  1477. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1478. usbreq->buf,
  1479. usbreq->length,
  1480. DMA_TO_DEVICE);
  1481. else
  1482. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1483. usbreq->buf,
  1484. usbreq->length,
  1485. DMA_FROM_DEVICE);
  1486. req->dma_mapped = 1;
  1487. }
  1488. if (usbreq->length > 0) {
  1489. retval = prepare_dma(ep, req, GFP_ATOMIC);
  1490. if (retval)
  1491. goto probe_end;
  1492. }
  1493. usbreq->actual = 0;
  1494. usbreq->status = -EINPROGRESS;
  1495. req->dma_done = 0;
  1496. if (list_empty(&ep->queue) && !ep->halted) {
  1497. /* no pending transfer, so start this req */
  1498. if (!usbreq->length) {
  1499. process_zlp(ep, req);
  1500. retval = 0;
  1501. goto probe_end;
  1502. }
  1503. if (!ep->in) {
  1504. pch_udc_start_rxrequest(ep, req);
  1505. } else {
  1506. /*
  1507. * For IN trfr the descriptors will be programmed and
  1508. * P bit will be set when
  1509. * we get an IN token
  1510. */
  1511. pch_udc_wait_ep_stall(ep);
  1512. pch_udc_ep_clear_nak(ep);
  1513. pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
  1514. }
  1515. }
  1516. /* Now add this request to the ep's pending requests */
  1517. if (req != NULL)
  1518. list_add_tail(&req->queue, &ep->queue);
  1519. probe_end:
  1520. spin_unlock_irqrestore(&dev->lock, iflags);
  1521. return retval;
  1522. }
  1523. /**
  1524. * pch_udc_pcd_dequeue() - This function de-queues a request packet.
  1525. * It is called by gadget driver
  1526. * @usbep: Reference to the USB endpoint structure
  1527. * @usbreq: Reference to the USB request
  1528. *
  1529. * Return codes:
  1530. * 0: Success
  1531. * linux error number: Failure
  1532. */
  1533. static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
  1534. struct usb_request *usbreq)
  1535. {
  1536. struct pch_udc_ep *ep;
  1537. struct pch_udc_request *req;
  1538. struct pch_udc_dev *dev;
  1539. unsigned long flags;
  1540. int ret = -EINVAL;
  1541. ep = container_of(usbep, struct pch_udc_ep, ep);
  1542. dev = ep->dev;
  1543. if (!usbep || !usbreq || (!ep->desc && ep->num))
  1544. return ret;
  1545. req = container_of(usbreq, struct pch_udc_request, req);
  1546. spin_lock_irqsave(&ep->dev->lock, flags);
  1547. /* make sure it's still queued on this endpoint */
  1548. list_for_each_entry(req, &ep->queue, queue) {
  1549. if (&req->req == usbreq) {
  1550. pch_udc_ep_set_nak(ep);
  1551. if (!list_empty(&req->queue))
  1552. complete_req(ep, req, -ECONNRESET);
  1553. ret = 0;
  1554. break;
  1555. }
  1556. }
  1557. spin_unlock_irqrestore(&ep->dev->lock, flags);
  1558. return ret;
  1559. }
  1560. /**
  1561. * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
  1562. * feature
  1563. * @usbep: Reference to the USB endpoint structure
  1564. * @halt: Specifies whether to set or clear the feature
  1565. *
  1566. * Return codes:
  1567. * 0: Success
  1568. * linux error number: Failure
  1569. */
  1570. static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
  1571. {
  1572. struct pch_udc_ep *ep;
  1573. struct pch_udc_dev *dev;
  1574. unsigned long iflags;
  1575. int ret;
  1576. if (!usbep)
  1577. return -EINVAL;
  1578. ep = container_of(usbep, struct pch_udc_ep, ep);
  1579. dev = ep->dev;
  1580. if (!ep->desc && !ep->num)
  1581. return -EINVAL;
  1582. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1583. return -ESHUTDOWN;
  1584. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1585. if (list_empty(&ep->queue)) {
  1586. if (halt) {
  1587. if (ep->num == PCH_UDC_EP0)
  1588. ep->dev->stall = 1;
  1589. pch_udc_ep_set_stall(ep);
  1590. pch_udc_enable_ep_interrupts(ep->dev,
  1591. PCH_UDC_EPINT(ep->in,
  1592. ep->num));
  1593. } else {
  1594. pch_udc_ep_clear_stall(ep);
  1595. }
  1596. ret = 0;
  1597. } else {
  1598. ret = -EAGAIN;
  1599. }
  1600. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1601. return ret;
  1602. }
  1603. /**
  1604. * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
  1605. * halt feature
  1606. * @usbep: Reference to the USB endpoint structure
  1607. * @halt: Specifies whether to set or clear the feature
  1608. *
  1609. * Return codes:
  1610. * 0: Success
  1611. * linux error number: Failure
  1612. */
  1613. static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
  1614. {
  1615. struct pch_udc_ep *ep;
  1616. struct pch_udc_dev *dev;
  1617. unsigned long iflags;
  1618. int ret;
  1619. if (!usbep)
  1620. return -EINVAL;
  1621. ep = container_of(usbep, struct pch_udc_ep, ep);
  1622. dev = ep->dev;
  1623. if (!ep->desc && !ep->num)
  1624. return -EINVAL;
  1625. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1626. return -ESHUTDOWN;
  1627. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1628. if (!list_empty(&ep->queue)) {
  1629. ret = -EAGAIN;
  1630. } else {
  1631. if (ep->num == PCH_UDC_EP0)
  1632. ep->dev->stall = 1;
  1633. pch_udc_ep_set_stall(ep);
  1634. pch_udc_enable_ep_interrupts(ep->dev,
  1635. PCH_UDC_EPINT(ep->in, ep->num));
  1636. ep->dev->prot_stall = 1;
  1637. ret = 0;
  1638. }
  1639. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1640. return ret;
  1641. }
  1642. /**
  1643. * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
  1644. * @usbep: Reference to the USB endpoint structure
  1645. */
  1646. static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
  1647. {
  1648. struct pch_udc_ep *ep;
  1649. if (!usbep)
  1650. return;
  1651. ep = container_of(usbep, struct pch_udc_ep, ep);
  1652. if (ep->desc || !ep->num)
  1653. pch_udc_ep_fifo_flush(ep, ep->in);
  1654. }
  1655. static const struct usb_ep_ops pch_udc_ep_ops = {
  1656. .enable = pch_udc_pcd_ep_enable,
  1657. .disable = pch_udc_pcd_ep_disable,
  1658. .alloc_request = pch_udc_alloc_request,
  1659. .free_request = pch_udc_free_request,
  1660. .queue = pch_udc_pcd_queue,
  1661. .dequeue = pch_udc_pcd_dequeue,
  1662. .set_halt = pch_udc_pcd_set_halt,
  1663. .set_wedge = pch_udc_pcd_set_wedge,
  1664. .fifo_status = NULL,
  1665. .fifo_flush = pch_udc_pcd_fifo_flush,
  1666. };
  1667. /**
  1668. * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
  1669. * @td_stp: Reference to the SETP buffer structure
  1670. */
  1671. static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
  1672. {
  1673. static u32 pky_marker;
  1674. if (!td_stp)
  1675. return;
  1676. td_stp->reserved = ++pky_marker;
  1677. memset(&td_stp->request, 0xFF, sizeof td_stp->request);
  1678. td_stp->status = PCH_UDC_BS_HST_RDY;
  1679. }
  1680. /**
  1681. * pch_udc_start_next_txrequest() - This function starts
  1682. * the next transmission requirement
  1683. * @ep: Reference to the endpoint structure
  1684. */
  1685. static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
  1686. {
  1687. struct pch_udc_request *req;
  1688. struct pch_udc_data_dma_desc *td_data;
  1689. if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
  1690. return;
  1691. if (list_empty(&ep->queue))
  1692. return;
  1693. /* next request */
  1694. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1695. if (req->dma_going)
  1696. return;
  1697. if (!req->td_data)
  1698. return;
  1699. pch_udc_wait_ep_stall(ep);
  1700. req->dma_going = 1;
  1701. pch_udc_ep_set_ddptr(ep, 0);
  1702. td_data = req->td_data;
  1703. while (1) {
  1704. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1705. PCH_UDC_BS_HST_RDY;
  1706. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1707. break;
  1708. td_data = phys_to_virt(td_data->next);
  1709. }
  1710. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1711. pch_udc_set_dma(ep->dev, DMA_DIR_TX);
  1712. pch_udc_ep_set_pd(ep);
  1713. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1714. pch_udc_ep_clear_nak(ep);
  1715. }
  1716. /**
  1717. * pch_udc_complete_transfer() - This function completes a transfer
  1718. * @ep: Reference to the endpoint structure
  1719. */
  1720. static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
  1721. {
  1722. struct pch_udc_request *req;
  1723. struct pch_udc_dev *dev = ep->dev;
  1724. if (list_empty(&ep->queue))
  1725. return;
  1726. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1727. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1728. PCH_UDC_BS_DMA_DONE)
  1729. return;
  1730. if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
  1731. PCH_UDC_RTS_SUCC) {
  1732. dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
  1733. "epstatus=0x%08x\n",
  1734. (req->td_data_last->status & PCH_UDC_RXTX_STS),
  1735. (int)(ep->epsts));
  1736. return;
  1737. }
  1738. req->req.actual = req->req.length;
  1739. req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1740. req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1741. complete_req(ep, req, 0);
  1742. req->dma_going = 0;
  1743. if (!list_empty(&ep->queue)) {
  1744. pch_udc_wait_ep_stall(ep);
  1745. pch_udc_ep_clear_nak(ep);
  1746. pch_udc_enable_ep_interrupts(ep->dev,
  1747. PCH_UDC_EPINT(ep->in, ep->num));
  1748. } else {
  1749. pch_udc_disable_ep_interrupts(ep->dev,
  1750. PCH_UDC_EPINT(ep->in, ep->num));
  1751. }
  1752. }
  1753. /**
  1754. * pch_udc_complete_receiver() - This function completes a receiver
  1755. * @ep: Reference to the endpoint structure
  1756. */
  1757. static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
  1758. {
  1759. struct pch_udc_request *req;
  1760. struct pch_udc_dev *dev = ep->dev;
  1761. unsigned int count;
  1762. if (list_empty(&ep->queue))
  1763. return;
  1764. /* next request */
  1765. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1766. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1767. PCH_UDC_BS_DMA_DONE)
  1768. return;
  1769. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1770. pch_udc_ep_set_ddptr(ep, 0);
  1771. if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
  1772. PCH_UDC_RTS_SUCC) {
  1773. dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
  1774. "epstatus=0x%08x\n",
  1775. (req->td_data_last->status & PCH_UDC_RXTX_STS),
  1776. (int)(ep->epsts));
  1777. return;
  1778. }
  1779. count = req->td_data_last->status & PCH_UDC_RXTX_BYTES;
  1780. /* on 64k packets the RXBYTES field is zero */
  1781. if (!count && (req->req.length == UDC_DMA_MAXPACKET))
  1782. count = UDC_DMA_MAXPACKET;
  1783. req->td_data->status |= PCH_UDC_DMA_LAST;
  1784. req->td_data_last->status |= PCH_UDC_BS_HST_BSY;
  1785. req->dma_going = 0;
  1786. req->req.actual = count;
  1787. complete_req(ep, req, 0);
  1788. /* If there is a new/failed requests try that now */
  1789. if (!list_empty(&ep->queue)) {
  1790. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1791. pch_udc_start_rxrequest(ep, req);
  1792. }
  1793. }
  1794. /**
  1795. * pch_udc_svc_data_in() - This function process endpoint interrupts
  1796. * for IN endpoints
  1797. * @dev: Reference to the device structure
  1798. * @ep_num: Endpoint that generated the interrupt
  1799. */
  1800. static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
  1801. {
  1802. u32 epsts;
  1803. struct pch_udc_ep *ep;
  1804. ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  1805. epsts = ep->epsts;
  1806. ep->epsts = 0;
  1807. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  1808. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  1809. UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
  1810. return;
  1811. if ((epsts & UDC_EPSTS_BNA))
  1812. return;
  1813. if (epsts & UDC_EPSTS_HE)
  1814. return;
  1815. if (epsts & UDC_EPSTS_RSS) {
  1816. pch_udc_ep_set_stall(ep);
  1817. pch_udc_enable_ep_interrupts(ep->dev,
  1818. PCH_UDC_EPINT(ep->in, ep->num));
  1819. }
  1820. if (epsts & UDC_EPSTS_RCS) {
  1821. if (!dev->prot_stall) {
  1822. pch_udc_ep_clear_stall(ep);
  1823. } else {
  1824. pch_udc_ep_set_stall(ep);
  1825. pch_udc_enable_ep_interrupts(ep->dev,
  1826. PCH_UDC_EPINT(ep->in, ep->num));
  1827. }
  1828. }
  1829. if (epsts & UDC_EPSTS_TDC)
  1830. pch_udc_complete_transfer(ep);
  1831. /* On IN interrupt, provide data if we have any */
  1832. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
  1833. !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
  1834. pch_udc_start_next_txrequest(ep);
  1835. }
  1836. /**
  1837. * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
  1838. * @dev: Reference to the device structure
  1839. * @ep_num: Endpoint that generated the interrupt
  1840. */
  1841. static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
  1842. {
  1843. u32 epsts;
  1844. struct pch_udc_ep *ep;
  1845. struct pch_udc_request *req = NULL;
  1846. ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
  1847. epsts = ep->epsts;
  1848. ep->epsts = 0;
  1849. if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
  1850. /* next request */
  1851. req = list_entry(ep->queue.next, struct pch_udc_request,
  1852. queue);
  1853. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1854. PCH_UDC_BS_DMA_DONE) {
  1855. if (!req->dma_going)
  1856. pch_udc_start_rxrequest(ep, req);
  1857. return;
  1858. }
  1859. }
  1860. if (epsts & UDC_EPSTS_HE)
  1861. return;
  1862. if (epsts & UDC_EPSTS_RSS) {
  1863. pch_udc_ep_set_stall(ep);
  1864. pch_udc_enable_ep_interrupts(ep->dev,
  1865. PCH_UDC_EPINT(ep->in, ep->num));
  1866. }
  1867. if (epsts & UDC_EPSTS_RCS) {
  1868. if (!dev->prot_stall) {
  1869. pch_udc_ep_clear_stall(ep);
  1870. } else {
  1871. pch_udc_ep_set_stall(ep);
  1872. pch_udc_enable_ep_interrupts(ep->dev,
  1873. PCH_UDC_EPINT(ep->in, ep->num));
  1874. }
  1875. }
  1876. if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  1877. UDC_EPSTS_OUT_DATA) {
  1878. if (ep->dev->prot_stall == 1) {
  1879. pch_udc_ep_set_stall(ep);
  1880. pch_udc_enable_ep_interrupts(ep->dev,
  1881. PCH_UDC_EPINT(ep->in, ep->num));
  1882. } else {
  1883. pch_udc_complete_receiver(ep);
  1884. }
  1885. }
  1886. if (list_empty(&ep->queue))
  1887. pch_udc_set_dma(dev, DMA_DIR_RX);
  1888. }
  1889. /**
  1890. * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
  1891. * @dev: Reference to the device structure
  1892. */
  1893. static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
  1894. {
  1895. u32 epsts;
  1896. struct pch_udc_ep *ep;
  1897. struct pch_udc_ep *ep_out;
  1898. ep = &dev->ep[UDC_EP0IN_IDX];
  1899. ep_out = &dev->ep[UDC_EP0OUT_IDX];
  1900. epsts = ep->epsts;
  1901. ep->epsts = 0;
  1902. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  1903. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  1904. UDC_EPSTS_XFERDONE)))
  1905. return;
  1906. if ((epsts & UDC_EPSTS_BNA))
  1907. return;
  1908. if (epsts & UDC_EPSTS_HE)
  1909. return;
  1910. if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
  1911. pch_udc_complete_transfer(ep);
  1912. pch_udc_clear_dma(dev, DMA_DIR_RX);
  1913. ep_out->td_data->status = (ep_out->td_data->status &
  1914. ~PCH_UDC_BUFF_STS) |
  1915. PCH_UDC_BS_HST_RDY;
  1916. pch_udc_ep_clear_nak(ep_out);
  1917. pch_udc_set_dma(dev, DMA_DIR_RX);
  1918. pch_udc_ep_set_rrdy(ep_out);
  1919. }
  1920. /* On IN interrupt, provide data if we have any */
  1921. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
  1922. !(epsts & UDC_EPSTS_TXEMPTY))
  1923. pch_udc_start_next_txrequest(ep);
  1924. }
  1925. /**
  1926. * pch_udc_svc_control_out() - Routine that handle Control
  1927. * OUT endpoint interrupts
  1928. * @dev: Reference to the device structure
  1929. */
  1930. static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
  1931. {
  1932. u32 stat;
  1933. int setup_supported;
  1934. struct pch_udc_ep *ep;
  1935. ep = &dev->ep[UDC_EP0OUT_IDX];
  1936. stat = ep->epsts;
  1937. ep->epsts = 0;
  1938. /* If setup data */
  1939. if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  1940. UDC_EPSTS_OUT_SETUP) {
  1941. dev->stall = 0;
  1942. dev->ep[UDC_EP0IN_IDX].halted = 0;
  1943. dev->ep[UDC_EP0OUT_IDX].halted = 0;
  1944. dev->setup_data = ep->td_stp->request;
  1945. pch_udc_init_setup_buff(ep->td_stp);
  1946. pch_udc_clear_dma(dev, DMA_DIR_RX);
  1947. pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
  1948. dev->ep[UDC_EP0IN_IDX].in);
  1949. if ((dev->setup_data.bRequestType & USB_DIR_IN))
  1950. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  1951. else /* OUT */
  1952. dev->gadget.ep0 = &ep->ep;
  1953. spin_unlock(&dev->lock);
  1954. /* If Mass storage Reset */
  1955. if ((dev->setup_data.bRequestType == 0x21) &&
  1956. (dev->setup_data.bRequest == 0xFF))
  1957. dev->prot_stall = 0;
  1958. /* call gadget with setup data received */
  1959. setup_supported = dev->driver->setup(&dev->gadget,
  1960. &dev->setup_data);
  1961. spin_lock(&dev->lock);
  1962. if (dev->setup_data.bRequestType & USB_DIR_IN) {
  1963. ep->td_data->status = (ep->td_data->status &
  1964. ~PCH_UDC_BUFF_STS) |
  1965. PCH_UDC_BS_HST_RDY;
  1966. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  1967. }
  1968. /* ep0 in returns data on IN phase */
  1969. if (setup_supported >= 0 && setup_supported <
  1970. UDC_EP0IN_MAX_PKT_SIZE) {
  1971. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  1972. /* Gadget would have queued a request when
  1973. * we called the setup */
  1974. if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
  1975. pch_udc_set_dma(dev, DMA_DIR_RX);
  1976. pch_udc_ep_clear_nak(ep);
  1977. }
  1978. } else if (setup_supported < 0) {
  1979. /* if unsupported request, then stall */
  1980. pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
  1981. pch_udc_enable_ep_interrupts(ep->dev,
  1982. PCH_UDC_EPINT(ep->in, ep->num));
  1983. dev->stall = 0;
  1984. pch_udc_set_dma(dev, DMA_DIR_RX);
  1985. } else {
  1986. dev->waiting_zlp_ack = 1;
  1987. }
  1988. } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  1989. UDC_EPSTS_OUT_DATA) && !dev->stall) {
  1990. pch_udc_clear_dma(dev, DMA_DIR_RX);
  1991. pch_udc_ep_set_ddptr(ep, 0);
  1992. if (!list_empty(&ep->queue)) {
  1993. ep->epsts = stat;
  1994. pch_udc_svc_data_out(dev, PCH_UDC_EP0);
  1995. }
  1996. pch_udc_set_dma(dev, DMA_DIR_RX);
  1997. }
  1998. pch_udc_ep_set_rrdy(ep);
  1999. }
  2000. /**
  2001. * pch_udc_postsvc_epinters() - This function enables end point interrupts
  2002. * and clears NAK status
  2003. * @dev: Reference to the device structure
  2004. * @ep_num: End point number
  2005. */
  2006. static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
  2007. {
  2008. struct pch_udc_ep *ep;
  2009. struct pch_udc_request *req;
  2010. ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  2011. if (!list_empty(&ep->queue)) {
  2012. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  2013. pch_udc_enable_ep_interrupts(ep->dev,
  2014. PCH_UDC_EPINT(ep->in, ep->num));
  2015. pch_udc_ep_clear_nak(ep);
  2016. }
  2017. }
  2018. /**
  2019. * pch_udc_read_all_epstatus() - This function read all endpoint status
  2020. * @dev: Reference to the device structure
  2021. * @ep_intr: Status of endpoint interrupt
  2022. */
  2023. static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
  2024. {
  2025. int i;
  2026. struct pch_udc_ep *ep;
  2027. for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
  2028. /* IN */
  2029. if (ep_intr & (0x1 << i)) {
  2030. ep = &dev->ep[UDC_EPIN_IDX(i)];
  2031. ep->epsts = pch_udc_read_ep_status(ep);
  2032. pch_udc_clear_ep_status(ep, ep->epsts);
  2033. }
  2034. /* OUT */
  2035. if (ep_intr & (0x10000 << i)) {
  2036. ep = &dev->ep[UDC_EPOUT_IDX(i)];
  2037. ep->epsts = pch_udc_read_ep_status(ep);
  2038. pch_udc_clear_ep_status(ep, ep->epsts);
  2039. }
  2040. }
  2041. }
  2042. /**
  2043. * pch_udc_activate_control_ep() - This function enables the control endpoints
  2044. * for traffic after a reset
  2045. * @dev: Reference to the device structure
  2046. */
  2047. static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
  2048. {
  2049. struct pch_udc_ep *ep;
  2050. u32 val;
  2051. /* Setup the IN endpoint */
  2052. ep = &dev->ep[UDC_EP0IN_IDX];
  2053. pch_udc_clear_ep_control(ep);
  2054. pch_udc_ep_fifo_flush(ep, ep->in);
  2055. pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
  2056. pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
  2057. /* Initialize the IN EP Descriptor */
  2058. ep->td_data = NULL;
  2059. ep->td_stp = NULL;
  2060. ep->td_data_phys = 0;
  2061. ep->td_stp_phys = 0;
  2062. /* Setup the OUT endpoint */
  2063. ep = &dev->ep[UDC_EP0OUT_IDX];
  2064. pch_udc_clear_ep_control(ep);
  2065. pch_udc_ep_fifo_flush(ep, ep->in);
  2066. pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
  2067. pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
  2068. val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
  2069. pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
  2070. /* Initialize the SETUP buffer */
  2071. pch_udc_init_setup_buff(ep->td_stp);
  2072. /* Write the pointer address of dma descriptor */
  2073. pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
  2074. /* Write the pointer address of Setup descriptor */
  2075. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2076. /* Initialize the dma descriptor */
  2077. ep->td_data->status = PCH_UDC_DMA_LAST;
  2078. ep->td_data->dataptr = dev->dma_addr;
  2079. ep->td_data->next = ep->td_data_phys;
  2080. pch_udc_ep_clear_nak(ep);
  2081. }
  2082. /**
  2083. * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
  2084. * @dev: Reference to driver structure
  2085. */
  2086. static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
  2087. {
  2088. struct pch_udc_ep *ep;
  2089. int i;
  2090. pch_udc_clear_dma(dev, DMA_DIR_TX);
  2091. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2092. /* Mask all endpoint interrupts */
  2093. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2094. /* clear all endpoint interrupts */
  2095. pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2096. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2097. ep = &dev->ep[i];
  2098. pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
  2099. pch_udc_clear_ep_control(ep);
  2100. pch_udc_ep_set_ddptr(ep, 0);
  2101. pch_udc_write_csr(ep->dev, 0x00, i);
  2102. }
  2103. dev->stall = 0;
  2104. dev->prot_stall = 0;
  2105. dev->waiting_zlp_ack = 0;
  2106. dev->set_cfg_not_acked = 0;
  2107. /* disable ep to empty req queue. Skip the control EP's */
  2108. for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
  2109. ep = &dev->ep[i];
  2110. pch_udc_ep_set_nak(ep);
  2111. pch_udc_ep_fifo_flush(ep, ep->in);
  2112. /* Complete request queue */
  2113. empty_req_queue(ep);
  2114. }
  2115. if (dev->driver && dev->driver->disconnect)
  2116. dev->driver->disconnect(&dev->gadget);
  2117. }
  2118. /**
  2119. * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
  2120. * done interrupt
  2121. * @dev: Reference to driver structure
  2122. */
  2123. static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
  2124. {
  2125. u32 dev_stat, dev_speed;
  2126. u32 speed = USB_SPEED_FULL;
  2127. dev_stat = pch_udc_read_device_status(dev);
  2128. dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
  2129. UDC_DEVSTS_ENUM_SPEED_SHIFT;
  2130. switch (dev_speed) {
  2131. case UDC_DEVSTS_ENUM_SPEED_HIGH:
  2132. speed = USB_SPEED_HIGH;
  2133. break;
  2134. case UDC_DEVSTS_ENUM_SPEED_FULL:
  2135. speed = USB_SPEED_FULL;
  2136. break;
  2137. case UDC_DEVSTS_ENUM_SPEED_LOW:
  2138. speed = USB_SPEED_LOW;
  2139. break;
  2140. default:
  2141. BUG();
  2142. }
  2143. dev->gadget.speed = speed;
  2144. pch_udc_activate_control_ep(dev);
  2145. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
  2146. pch_udc_set_dma(dev, DMA_DIR_TX);
  2147. pch_udc_set_dma(dev, DMA_DIR_RX);
  2148. pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
  2149. }
  2150. /**
  2151. * pch_udc_svc_intf_interrupt() - This function handles a set interface
  2152. * interrupt
  2153. * @dev: Reference to driver structure
  2154. */
  2155. static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
  2156. {
  2157. u32 reg, dev_stat = 0;
  2158. int i, ret;
  2159. dev_stat = pch_udc_read_device_status(dev);
  2160. dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
  2161. UDC_DEVSTS_INTF_SHIFT;
  2162. dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
  2163. UDC_DEVSTS_ALT_SHIFT;
  2164. dev->set_cfg_not_acked = 1;
  2165. /* Construct the usb request for gadget driver and inform it */
  2166. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2167. dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
  2168. dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
  2169. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
  2170. dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
  2171. /* programm the Endpoint Cfg registers */
  2172. /* Only one end point cfg register */
  2173. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2174. reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
  2175. (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
  2176. reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
  2177. (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
  2178. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2179. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2180. /* clear stall bits */
  2181. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2182. dev->ep[i].halted = 0;
  2183. }
  2184. dev->stall = 0;
  2185. spin_unlock(&dev->lock);
  2186. ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
  2187. spin_lock(&dev->lock);
  2188. }
  2189. /**
  2190. * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
  2191. * interrupt
  2192. * @dev: Reference to driver structure
  2193. */
  2194. static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
  2195. {
  2196. int i, ret;
  2197. u32 reg, dev_stat = 0;
  2198. dev_stat = pch_udc_read_device_status(dev);
  2199. dev->set_cfg_not_acked = 1;
  2200. dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
  2201. UDC_DEVSTS_CFG_SHIFT;
  2202. /* make usb request for gadget driver */
  2203. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2204. dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
  2205. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
  2206. /* program the NE registers */
  2207. /* Only one end point cfg register */
  2208. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2209. reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
  2210. (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
  2211. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2212. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2213. /* clear stall bits */
  2214. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2215. dev->ep[i].halted = 0;
  2216. }
  2217. dev->stall = 0;
  2218. /* call gadget zero with setup data received */
  2219. spin_unlock(&dev->lock);
  2220. ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
  2221. spin_lock(&dev->lock);
  2222. }
  2223. /**
  2224. * pch_udc_dev_isr() - This function services device interrupts
  2225. * by invoking appropriate routines.
  2226. * @dev: Reference to the device structure
  2227. * @dev_intr: The Device interrupt status.
  2228. */
  2229. static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
  2230. {
  2231. /* USB Reset Interrupt */
  2232. if (dev_intr & UDC_DEVINT_UR)
  2233. pch_udc_svc_ur_interrupt(dev);
  2234. /* Enumeration Done Interrupt */
  2235. if (dev_intr & UDC_DEVINT_ENUM)
  2236. pch_udc_svc_enum_interrupt(dev);
  2237. /* Set Interface Interrupt */
  2238. if (dev_intr & UDC_DEVINT_SI)
  2239. pch_udc_svc_intf_interrupt(dev);
  2240. /* Set Config Interrupt */
  2241. if (dev_intr & UDC_DEVINT_SC)
  2242. pch_udc_svc_cfg_interrupt(dev);
  2243. /* USB Suspend interrupt */
  2244. if (dev_intr & UDC_DEVINT_US)
  2245. dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
  2246. /* Clear the SOF interrupt, if enabled */
  2247. if (dev_intr & UDC_DEVINT_SOF)
  2248. dev_dbg(&dev->pdev->dev, "SOF\n");
  2249. /* ES interrupt, IDLE > 3ms on the USB */
  2250. if (dev_intr & UDC_DEVINT_ES)
  2251. dev_dbg(&dev->pdev->dev, "ES\n");
  2252. /* RWKP interrupt */
  2253. if (dev_intr & UDC_DEVINT_RWKP)
  2254. dev_dbg(&dev->pdev->dev, "RWKP\n");
  2255. }
  2256. /**
  2257. * pch_udc_isr() - This function handles interrupts from the PCH USB Device
  2258. * @irq: Interrupt request number
  2259. * @dev: Reference to the device structure
  2260. */
  2261. static irqreturn_t pch_udc_isr(int irq, void *pdev)
  2262. {
  2263. struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
  2264. u32 dev_intr, ep_intr;
  2265. int i;
  2266. dev_intr = pch_udc_read_device_interrupts(dev);
  2267. ep_intr = pch_udc_read_ep_interrupts(dev);
  2268. if (dev_intr)
  2269. /* Clear device interrupts */
  2270. pch_udc_write_device_interrupts(dev, dev_intr);
  2271. if (ep_intr)
  2272. /* Clear ep interrupts */
  2273. pch_udc_write_ep_interrupts(dev, ep_intr);
  2274. if (!dev_intr && !ep_intr)
  2275. return IRQ_NONE;
  2276. spin_lock(&dev->lock);
  2277. if (dev_intr)
  2278. pch_udc_dev_isr(dev, dev_intr);
  2279. if (ep_intr) {
  2280. pch_udc_read_all_epstatus(dev, ep_intr);
  2281. /* Process Control In interrupts, if present */
  2282. if (ep_intr & UDC_EPINT_IN_EP0) {
  2283. pch_udc_svc_control_in(dev);
  2284. pch_udc_postsvc_epinters(dev, 0);
  2285. }
  2286. /* Process Control Out interrupts, if present */
  2287. if (ep_intr & UDC_EPINT_OUT_EP0)
  2288. pch_udc_svc_control_out(dev);
  2289. /* Process data in end point interrupts */
  2290. for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
  2291. if (ep_intr & (1 << i)) {
  2292. pch_udc_svc_data_in(dev, i);
  2293. pch_udc_postsvc_epinters(dev, i);
  2294. }
  2295. }
  2296. /* Process data out end point interrupts */
  2297. for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
  2298. PCH_UDC_USED_EP_NUM); i++)
  2299. if (ep_intr & (1 << i))
  2300. pch_udc_svc_data_out(dev, i -
  2301. UDC_EPINT_OUT_SHIFT);
  2302. }
  2303. spin_unlock(&dev->lock);
  2304. return IRQ_HANDLED;
  2305. }
  2306. /**
  2307. * pch_udc_setup_ep0() - This function enables control endpoint for traffic
  2308. * @dev: Reference to the device structure
  2309. */
  2310. static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
  2311. {
  2312. /* enable ep0 interrupts */
  2313. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
  2314. UDC_EPINT_OUT_EP0);
  2315. /* enable device interrupts */
  2316. pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
  2317. UDC_DEVINT_ES | UDC_DEVINT_ENUM |
  2318. UDC_DEVINT_SI | UDC_DEVINT_SC);
  2319. }
  2320. /**
  2321. * gadget_release() - Free the gadget driver private data
  2322. * @pdev reference to struct pci_dev
  2323. */
  2324. static void gadget_release(struct device *pdev)
  2325. {
  2326. struct pch_udc_dev *dev = dev_get_drvdata(pdev);
  2327. kfree(dev);
  2328. }
  2329. /**
  2330. * pch_udc_pcd_reinit() - This API initializes the endpoint structures
  2331. * @dev: Reference to the driver structure
  2332. */
  2333. static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
  2334. {
  2335. const char *const ep_string[] = {
  2336. ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
  2337. "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
  2338. "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
  2339. "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
  2340. "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
  2341. "ep15in", "ep15out",
  2342. };
  2343. int i;
  2344. dev->gadget.speed = USB_SPEED_UNKNOWN;
  2345. INIT_LIST_HEAD(&dev->gadget.ep_list);
  2346. /* Initialize the endpoints structures */
  2347. memset(dev->ep, 0, sizeof dev->ep);
  2348. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2349. struct pch_udc_ep *ep = &dev->ep[i];
  2350. ep->dev = dev;
  2351. ep->halted = 1;
  2352. ep->num = i / 2;
  2353. ep->in = ~i & 1;
  2354. ep->ep.name = ep_string[i];
  2355. ep->ep.ops = &pch_udc_ep_ops;
  2356. if (ep->in)
  2357. ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
  2358. else
  2359. ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
  2360. UDC_EP_REG_SHIFT;
  2361. /* need to set ep->ep.maxpacket and set Default Configuration?*/
  2362. ep->ep.maxpacket = UDC_BULK_MAX_PKT_SIZE;
  2363. list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
  2364. INIT_LIST_HEAD(&ep->queue);
  2365. }
  2366. dev->ep[UDC_EP0IN_IDX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
  2367. dev->ep[UDC_EP0OUT_IDX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
  2368. /* remove ep0 in and out from the list. They have own pointer */
  2369. list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
  2370. list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
  2371. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  2372. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  2373. }
  2374. /**
  2375. * pch_udc_pcd_init() - This API initializes the driver structure
  2376. * @dev: Reference to the driver structure
  2377. *
  2378. * Return codes:
  2379. * 0: Success
  2380. */
  2381. static int pch_udc_pcd_init(struct pch_udc_dev *dev)
  2382. {
  2383. pch_udc_init(dev);
  2384. pch_udc_pcd_reinit(dev);
  2385. return 0;
  2386. }
  2387. /**
  2388. * init_dma_pools() - create dma pools during initialization
  2389. * @pdev: reference to struct pci_dev
  2390. */
  2391. static int init_dma_pools(struct pch_udc_dev *dev)
  2392. {
  2393. struct pch_udc_stp_dma_desc *td_stp;
  2394. struct pch_udc_data_dma_desc *td_data;
  2395. /* DMA setup */
  2396. dev->data_requests = pci_pool_create("data_requests", dev->pdev,
  2397. sizeof(struct pch_udc_data_dma_desc), 0, 0);
  2398. if (!dev->data_requests) {
  2399. dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
  2400. __func__);
  2401. return -ENOMEM;
  2402. }
  2403. /* dma desc for setup data */
  2404. dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
  2405. sizeof(struct pch_udc_stp_dma_desc), 0, 0);
  2406. if (!dev->stp_requests) {
  2407. dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
  2408. __func__);
  2409. return -ENOMEM;
  2410. }
  2411. /* setup */
  2412. td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2413. &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2414. if (!td_stp) {
  2415. dev_err(&dev->pdev->dev,
  2416. "%s: can't allocate setup dma descriptor\n", __func__);
  2417. return -ENOMEM;
  2418. }
  2419. dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
  2420. /* data: 0 packets !? */
  2421. td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
  2422. &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2423. if (!td_data) {
  2424. dev_err(&dev->pdev->dev,
  2425. "%s: can't allocate data dma descriptor\n", __func__);
  2426. return -ENOMEM;
  2427. }
  2428. dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
  2429. dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
  2430. dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
  2431. dev->ep[UDC_EP0IN_IDX].td_data = NULL;
  2432. dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
  2433. dev->ep0out_buf = kzalloc(UDC_EP0OUT_BUFF_SIZE * 4, GFP_KERNEL);
  2434. if (!dev->ep0out_buf)
  2435. return -ENOMEM;
  2436. dev->dma_addr = dma_map_single(&dev->pdev->dev, dev->ep0out_buf,
  2437. UDC_EP0OUT_BUFF_SIZE * 4,
  2438. DMA_FROM_DEVICE);
  2439. return 0;
  2440. }
  2441. int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
  2442. int (*bind)(struct usb_gadget *))
  2443. {
  2444. struct pch_udc_dev *dev = pch_udc;
  2445. int retval;
  2446. if (!driver || (driver->speed == USB_SPEED_UNKNOWN) || !bind ||
  2447. !driver->setup || !driver->unbind || !driver->disconnect) {
  2448. dev_err(&dev->pdev->dev,
  2449. "%s: invalid driver parameter\n", __func__);
  2450. return -EINVAL;
  2451. }
  2452. if (!dev)
  2453. return -ENODEV;
  2454. if (dev->driver) {
  2455. dev_err(&dev->pdev->dev, "%s: already bound\n", __func__);
  2456. return -EBUSY;
  2457. }
  2458. driver->driver.bus = NULL;
  2459. dev->driver = driver;
  2460. dev->gadget.dev.driver = &driver->driver;
  2461. /* Invoke the bind routine of the gadget driver */
  2462. retval = bind(&dev->gadget);
  2463. if (retval) {
  2464. dev_err(&dev->pdev->dev, "%s: binding to %s returning %d\n",
  2465. __func__, driver->driver.name, retval);
  2466. dev->driver = NULL;
  2467. dev->gadget.dev.driver = NULL;
  2468. return retval;
  2469. }
  2470. /* get ready for ep0 traffic */
  2471. pch_udc_setup_ep0(dev);
  2472. /* clear SD */
  2473. pch_udc_clear_disconnect(dev);
  2474. dev->connected = 1;
  2475. return 0;
  2476. }
  2477. EXPORT_SYMBOL(usb_gadget_probe_driver);
  2478. int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
  2479. {
  2480. struct pch_udc_dev *dev = pch_udc;
  2481. if (!dev)
  2482. return -ENODEV;
  2483. if (!driver || (driver != dev->driver)) {
  2484. dev_err(&dev->pdev->dev,
  2485. "%s: invalid driver parameter\n", __func__);
  2486. return -EINVAL;
  2487. }
  2488. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2489. /* Assues that there are no pending requets with this driver */
  2490. driver->unbind(&dev->gadget);
  2491. dev->gadget.dev.driver = NULL;
  2492. dev->driver = NULL;
  2493. dev->connected = 0;
  2494. /* set SD */
  2495. pch_udc_set_disconnect(dev);
  2496. return 0;
  2497. }
  2498. EXPORT_SYMBOL(usb_gadget_unregister_driver);
  2499. static void pch_udc_shutdown(struct pci_dev *pdev)
  2500. {
  2501. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2502. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2503. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2504. /* disable the pullup so the host will think we're gone */
  2505. pch_udc_set_disconnect(dev);
  2506. }
  2507. static void pch_udc_remove(struct pci_dev *pdev)
  2508. {
  2509. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2510. /* gadget driver must not be registered */
  2511. if (dev->driver)
  2512. dev_err(&pdev->dev,
  2513. "%s: gadget driver still bound!!!\n", __func__);
  2514. /* dma pool cleanup */
  2515. if (dev->data_requests)
  2516. pci_pool_destroy(dev->data_requests);
  2517. if (dev->stp_requests) {
  2518. /* cleanup DMA desc's for ep0in */
  2519. if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
  2520. pci_pool_free(dev->stp_requests,
  2521. dev->ep[UDC_EP0OUT_IDX].td_stp,
  2522. dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2523. }
  2524. if (dev->ep[UDC_EP0OUT_IDX].td_data) {
  2525. pci_pool_free(dev->stp_requests,
  2526. dev->ep[UDC_EP0OUT_IDX].td_data,
  2527. dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2528. }
  2529. pci_pool_destroy(dev->stp_requests);
  2530. }
  2531. if (dev->dma_addr)
  2532. dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
  2533. UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
  2534. kfree(dev->ep0out_buf);
  2535. pch_udc_exit(dev);
  2536. if (dev->irq_registered)
  2537. free_irq(pdev->irq, dev);
  2538. if (dev->base_addr)
  2539. iounmap(dev->base_addr);
  2540. if (dev->mem_region)
  2541. release_mem_region(dev->phys_addr,
  2542. pci_resource_len(pdev, PCH_UDC_PCI_BAR));
  2543. if (dev->active)
  2544. pci_disable_device(pdev);
  2545. if (dev->registered)
  2546. device_unregister(&dev->gadget.dev);
  2547. kfree(dev);
  2548. pci_set_drvdata(pdev, NULL);
  2549. }
  2550. #ifdef CONFIG_PM
  2551. static int pch_udc_suspend(struct pci_dev *pdev, pm_message_t state)
  2552. {
  2553. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2554. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2555. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2556. pci_disable_device(pdev);
  2557. pci_enable_wake(pdev, PCI_D3hot, 0);
  2558. if (pci_save_state(pdev)) {
  2559. dev_err(&pdev->dev,
  2560. "%s: could not save PCI config state\n", __func__);
  2561. return -ENOMEM;
  2562. }
  2563. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2564. return 0;
  2565. }
  2566. static int pch_udc_resume(struct pci_dev *pdev)
  2567. {
  2568. int ret;
  2569. pci_set_power_state(pdev, PCI_D0);
  2570. pci_restore_state(pdev);
  2571. ret = pci_enable_device(pdev);
  2572. if (ret) {
  2573. dev_err(&pdev->dev, "%s: pci_enable_device failed\n", __func__);
  2574. return ret;
  2575. }
  2576. pci_enable_wake(pdev, PCI_D3hot, 0);
  2577. return 0;
  2578. }
  2579. #else
  2580. #define pch_udc_suspend NULL
  2581. #define pch_udc_resume NULL
  2582. #endif /* CONFIG_PM */
  2583. static int pch_udc_probe(struct pci_dev *pdev,
  2584. const struct pci_device_id *id)
  2585. {
  2586. unsigned long resource;
  2587. unsigned long len;
  2588. int retval;
  2589. struct pch_udc_dev *dev;
  2590. /* one udc only */
  2591. if (pch_udc) {
  2592. pr_err("%s: already probed\n", __func__);
  2593. return -EBUSY;
  2594. }
  2595. /* init */
  2596. dev = kzalloc(sizeof *dev, GFP_KERNEL);
  2597. if (!dev) {
  2598. pr_err("%s: no memory for device structure\n", __func__);
  2599. return -ENOMEM;
  2600. }
  2601. /* pci setup */
  2602. if (pci_enable_device(pdev) < 0) {
  2603. kfree(dev);
  2604. pr_err("%s: pci_enable_device failed\n", __func__);
  2605. return -ENODEV;
  2606. }
  2607. dev->active = 1;
  2608. pci_set_drvdata(pdev, dev);
  2609. /* PCI resource allocation */
  2610. resource = pci_resource_start(pdev, 1);
  2611. len = pci_resource_len(pdev, 1);
  2612. if (!request_mem_region(resource, len, KBUILD_MODNAME)) {
  2613. dev_err(&pdev->dev, "%s: pci device used already\n", __func__);
  2614. retval = -EBUSY;
  2615. goto finished;
  2616. }
  2617. dev->phys_addr = resource;
  2618. dev->mem_region = 1;
  2619. dev->base_addr = ioremap_nocache(resource, len);
  2620. if (!dev->base_addr) {
  2621. pr_err("%s: device memory cannot be mapped\n", __func__);
  2622. retval = -ENOMEM;
  2623. goto finished;
  2624. }
  2625. if (!pdev->irq) {
  2626. dev_err(&pdev->dev, "%s: irq not set\n", __func__);
  2627. retval = -ENODEV;
  2628. goto finished;
  2629. }
  2630. pch_udc = dev;
  2631. /* initialize the hardware */
  2632. if (pch_udc_pcd_init(dev))
  2633. goto finished;
  2634. if (request_irq(pdev->irq, pch_udc_isr, IRQF_SHARED, KBUILD_MODNAME,
  2635. dev)) {
  2636. dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
  2637. pdev->irq);
  2638. retval = -ENODEV;
  2639. goto finished;
  2640. }
  2641. dev->irq = pdev->irq;
  2642. dev->irq_registered = 1;
  2643. pci_set_master(pdev);
  2644. pci_try_set_mwi(pdev);
  2645. /* device struct setup */
  2646. spin_lock_init(&dev->lock);
  2647. dev->pdev = pdev;
  2648. dev->gadget.ops = &pch_udc_ops;
  2649. retval = init_dma_pools(dev);
  2650. if (retval)
  2651. goto finished;
  2652. dev_set_name(&dev->gadget.dev, "gadget");
  2653. dev->gadget.dev.parent = &pdev->dev;
  2654. dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
  2655. dev->gadget.dev.release = gadget_release;
  2656. dev->gadget.name = KBUILD_MODNAME;
  2657. dev->gadget.is_dualspeed = 1;
  2658. retval = device_register(&dev->gadget.dev);
  2659. if (retval)
  2660. goto finished;
  2661. dev->registered = 1;
  2662. /* Put the device in disconnected state till a driver is bound */
  2663. pch_udc_set_disconnect(dev);
  2664. return 0;
  2665. finished:
  2666. pch_udc_remove(pdev);
  2667. return retval;
  2668. }
  2669. static DEFINE_PCI_DEVICE_TABLE(pch_udc_pcidev_id) = {
  2670. {
  2671. PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
  2672. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2673. .class_mask = 0xffffffff,
  2674. },
  2675. { 0 },
  2676. };
  2677. MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
  2678. static struct pci_driver pch_udc_driver = {
  2679. .name = KBUILD_MODNAME,
  2680. .id_table = pch_udc_pcidev_id,
  2681. .probe = pch_udc_probe,
  2682. .remove = pch_udc_remove,
  2683. .suspend = pch_udc_suspend,
  2684. .resume = pch_udc_resume,
  2685. .shutdown = pch_udc_shutdown,
  2686. };
  2687. static int __init pch_udc_pci_init(void)
  2688. {
  2689. return pci_register_driver(&pch_udc_driver);
  2690. }
  2691. module_init(pch_udc_pci_init);
  2692. static void __exit pch_udc_pci_exit(void)
  2693. {
  2694. pci_unregister_driver(&pch_udc_driver);
  2695. }
  2696. module_exit(pch_udc_pci_exit);
  2697. MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
  2698. MODULE_AUTHOR("OKI SEMICONDUCTOR, <toshiharu-linux@dsn.okisemi.com>");
  2699. MODULE_LICENSE("GPL");