namespace.c 70 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/user_namespace.h>
  15. #include <linux/namei.h>
  16. #include <linux/security.h>
  17. #include <linux/idr.h>
  18. #include <linux/acct.h> /* acct_auto_close_mnt */
  19. #include <linux/init.h> /* init_rootfs */
  20. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  21. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  22. #include <linux/uaccess.h>
  23. #include <linux/proc_ns.h>
  24. #include <linux/magic.h>
  25. #include "pnode.h"
  26. #include "internal.h"
  27. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  28. #define HASH_SIZE (1UL << HASH_SHIFT)
  29. static int event;
  30. static DEFINE_IDA(mnt_id_ida);
  31. static DEFINE_IDA(mnt_group_ida);
  32. static DEFINE_SPINLOCK(mnt_id_lock);
  33. static int mnt_id_start = 0;
  34. static int mnt_group_start = 1;
  35. static struct list_head *mount_hashtable __read_mostly;
  36. static struct list_head *mountpoint_hashtable __read_mostly;
  37. static struct kmem_cache *mnt_cache __read_mostly;
  38. static DECLARE_RWSEM(namespace_sem);
  39. /* /sys/fs */
  40. struct kobject *fs_kobj;
  41. EXPORT_SYMBOL_GPL(fs_kobj);
  42. /*
  43. * vfsmount lock may be taken for read to prevent changes to the
  44. * vfsmount hash, ie. during mountpoint lookups or walking back
  45. * up the tree.
  46. *
  47. * It should be taken for write in all cases where the vfsmount
  48. * tree or hash is modified or when a vfsmount structure is modified.
  49. */
  50. DEFINE_BRLOCK(vfsmount_lock);
  51. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  52. {
  53. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  54. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  55. tmp = tmp + (tmp >> HASH_SHIFT);
  56. return tmp & (HASH_SIZE - 1);
  57. }
  58. /*
  59. * allocation is serialized by namespace_sem, but we need the spinlock to
  60. * serialize with freeing.
  61. */
  62. static int mnt_alloc_id(struct mount *mnt)
  63. {
  64. int res;
  65. retry:
  66. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  67. spin_lock(&mnt_id_lock);
  68. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  69. if (!res)
  70. mnt_id_start = mnt->mnt_id + 1;
  71. spin_unlock(&mnt_id_lock);
  72. if (res == -EAGAIN)
  73. goto retry;
  74. return res;
  75. }
  76. static void mnt_free_id(struct mount *mnt)
  77. {
  78. int id = mnt->mnt_id;
  79. spin_lock(&mnt_id_lock);
  80. ida_remove(&mnt_id_ida, id);
  81. if (mnt_id_start > id)
  82. mnt_id_start = id;
  83. spin_unlock(&mnt_id_lock);
  84. }
  85. /*
  86. * Allocate a new peer group ID
  87. *
  88. * mnt_group_ida is protected by namespace_sem
  89. */
  90. static int mnt_alloc_group_id(struct mount *mnt)
  91. {
  92. int res;
  93. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  94. return -ENOMEM;
  95. res = ida_get_new_above(&mnt_group_ida,
  96. mnt_group_start,
  97. &mnt->mnt_group_id);
  98. if (!res)
  99. mnt_group_start = mnt->mnt_group_id + 1;
  100. return res;
  101. }
  102. /*
  103. * Release a peer group ID
  104. */
  105. void mnt_release_group_id(struct mount *mnt)
  106. {
  107. int id = mnt->mnt_group_id;
  108. ida_remove(&mnt_group_ida, id);
  109. if (mnt_group_start > id)
  110. mnt_group_start = id;
  111. mnt->mnt_group_id = 0;
  112. }
  113. /*
  114. * vfsmount lock must be held for read
  115. */
  116. static inline void mnt_add_count(struct mount *mnt, int n)
  117. {
  118. #ifdef CONFIG_SMP
  119. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  120. #else
  121. preempt_disable();
  122. mnt->mnt_count += n;
  123. preempt_enable();
  124. #endif
  125. }
  126. /*
  127. * vfsmount lock must be held for write
  128. */
  129. unsigned int mnt_get_count(struct mount *mnt)
  130. {
  131. #ifdef CONFIG_SMP
  132. unsigned int count = 0;
  133. int cpu;
  134. for_each_possible_cpu(cpu) {
  135. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  136. }
  137. return count;
  138. #else
  139. return mnt->mnt_count;
  140. #endif
  141. }
  142. static struct mount *alloc_vfsmnt(const char *name)
  143. {
  144. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  145. if (mnt) {
  146. int err;
  147. err = mnt_alloc_id(mnt);
  148. if (err)
  149. goto out_free_cache;
  150. if (name) {
  151. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  152. if (!mnt->mnt_devname)
  153. goto out_free_id;
  154. }
  155. #ifdef CONFIG_SMP
  156. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  157. if (!mnt->mnt_pcp)
  158. goto out_free_devname;
  159. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  160. #else
  161. mnt->mnt_count = 1;
  162. mnt->mnt_writers = 0;
  163. #endif
  164. INIT_LIST_HEAD(&mnt->mnt_hash);
  165. INIT_LIST_HEAD(&mnt->mnt_child);
  166. INIT_LIST_HEAD(&mnt->mnt_mounts);
  167. INIT_LIST_HEAD(&mnt->mnt_list);
  168. INIT_LIST_HEAD(&mnt->mnt_expire);
  169. INIT_LIST_HEAD(&mnt->mnt_share);
  170. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  171. INIT_LIST_HEAD(&mnt->mnt_slave);
  172. #ifdef CONFIG_FSNOTIFY
  173. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  174. #endif
  175. }
  176. return mnt;
  177. #ifdef CONFIG_SMP
  178. out_free_devname:
  179. kfree(mnt->mnt_devname);
  180. #endif
  181. out_free_id:
  182. mnt_free_id(mnt);
  183. out_free_cache:
  184. kmem_cache_free(mnt_cache, mnt);
  185. return NULL;
  186. }
  187. /*
  188. * Most r/o checks on a fs are for operations that take
  189. * discrete amounts of time, like a write() or unlink().
  190. * We must keep track of when those operations start
  191. * (for permission checks) and when they end, so that
  192. * we can determine when writes are able to occur to
  193. * a filesystem.
  194. */
  195. /*
  196. * __mnt_is_readonly: check whether a mount is read-only
  197. * @mnt: the mount to check for its write status
  198. *
  199. * This shouldn't be used directly ouside of the VFS.
  200. * It does not guarantee that the filesystem will stay
  201. * r/w, just that it is right *now*. This can not and
  202. * should not be used in place of IS_RDONLY(inode).
  203. * mnt_want/drop_write() will _keep_ the filesystem
  204. * r/w.
  205. */
  206. int __mnt_is_readonly(struct vfsmount *mnt)
  207. {
  208. if (mnt->mnt_flags & MNT_READONLY)
  209. return 1;
  210. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  211. return 1;
  212. return 0;
  213. }
  214. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  215. static inline void mnt_inc_writers(struct mount *mnt)
  216. {
  217. #ifdef CONFIG_SMP
  218. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  219. #else
  220. mnt->mnt_writers++;
  221. #endif
  222. }
  223. static inline void mnt_dec_writers(struct mount *mnt)
  224. {
  225. #ifdef CONFIG_SMP
  226. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  227. #else
  228. mnt->mnt_writers--;
  229. #endif
  230. }
  231. static unsigned int mnt_get_writers(struct mount *mnt)
  232. {
  233. #ifdef CONFIG_SMP
  234. unsigned int count = 0;
  235. int cpu;
  236. for_each_possible_cpu(cpu) {
  237. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  238. }
  239. return count;
  240. #else
  241. return mnt->mnt_writers;
  242. #endif
  243. }
  244. static int mnt_is_readonly(struct vfsmount *mnt)
  245. {
  246. if (mnt->mnt_sb->s_readonly_remount)
  247. return 1;
  248. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  249. smp_rmb();
  250. return __mnt_is_readonly(mnt);
  251. }
  252. /*
  253. * Most r/o & frozen checks on a fs are for operations that take discrete
  254. * amounts of time, like a write() or unlink(). We must keep track of when
  255. * those operations start (for permission checks) and when they end, so that we
  256. * can determine when writes are able to occur to a filesystem.
  257. */
  258. /**
  259. * __mnt_want_write - get write access to a mount without freeze protection
  260. * @m: the mount on which to take a write
  261. *
  262. * This tells the low-level filesystem that a write is about to be performed to
  263. * it, and makes sure that writes are allowed (mnt it read-write) before
  264. * returning success. This operation does not protect against filesystem being
  265. * frozen. When the write operation is finished, __mnt_drop_write() must be
  266. * called. This is effectively a refcount.
  267. */
  268. int __mnt_want_write(struct vfsmount *m)
  269. {
  270. struct mount *mnt = real_mount(m);
  271. int ret = 0;
  272. preempt_disable();
  273. mnt_inc_writers(mnt);
  274. /*
  275. * The store to mnt_inc_writers must be visible before we pass
  276. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  277. * incremented count after it has set MNT_WRITE_HOLD.
  278. */
  279. smp_mb();
  280. while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
  281. cpu_relax();
  282. /*
  283. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  284. * be set to match its requirements. So we must not load that until
  285. * MNT_WRITE_HOLD is cleared.
  286. */
  287. smp_rmb();
  288. if (mnt_is_readonly(m)) {
  289. mnt_dec_writers(mnt);
  290. ret = -EROFS;
  291. }
  292. preempt_enable();
  293. return ret;
  294. }
  295. /**
  296. * mnt_want_write - get write access to a mount
  297. * @m: the mount on which to take a write
  298. *
  299. * This tells the low-level filesystem that a write is about to be performed to
  300. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  301. * is not frozen) before returning success. When the write operation is
  302. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  303. */
  304. int mnt_want_write(struct vfsmount *m)
  305. {
  306. int ret;
  307. sb_start_write(m->mnt_sb);
  308. ret = __mnt_want_write(m);
  309. if (ret)
  310. sb_end_write(m->mnt_sb);
  311. return ret;
  312. }
  313. EXPORT_SYMBOL_GPL(mnt_want_write);
  314. /**
  315. * mnt_clone_write - get write access to a mount
  316. * @mnt: the mount on which to take a write
  317. *
  318. * This is effectively like mnt_want_write, except
  319. * it must only be used to take an extra write reference
  320. * on a mountpoint that we already know has a write reference
  321. * on it. This allows some optimisation.
  322. *
  323. * After finished, mnt_drop_write must be called as usual to
  324. * drop the reference.
  325. */
  326. int mnt_clone_write(struct vfsmount *mnt)
  327. {
  328. /* superblock may be r/o */
  329. if (__mnt_is_readonly(mnt))
  330. return -EROFS;
  331. preempt_disable();
  332. mnt_inc_writers(real_mount(mnt));
  333. preempt_enable();
  334. return 0;
  335. }
  336. EXPORT_SYMBOL_GPL(mnt_clone_write);
  337. /**
  338. * __mnt_want_write_file - get write access to a file's mount
  339. * @file: the file who's mount on which to take a write
  340. *
  341. * This is like __mnt_want_write, but it takes a file and can
  342. * do some optimisations if the file is open for write already
  343. */
  344. int __mnt_want_write_file(struct file *file)
  345. {
  346. struct inode *inode = file_inode(file);
  347. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  348. return __mnt_want_write(file->f_path.mnt);
  349. else
  350. return mnt_clone_write(file->f_path.mnt);
  351. }
  352. /**
  353. * mnt_want_write_file - get write access to a file's mount
  354. * @file: the file who's mount on which to take a write
  355. *
  356. * This is like mnt_want_write, but it takes a file and can
  357. * do some optimisations if the file is open for write already
  358. */
  359. int mnt_want_write_file(struct file *file)
  360. {
  361. int ret;
  362. sb_start_write(file->f_path.mnt->mnt_sb);
  363. ret = __mnt_want_write_file(file);
  364. if (ret)
  365. sb_end_write(file->f_path.mnt->mnt_sb);
  366. return ret;
  367. }
  368. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  369. /**
  370. * __mnt_drop_write - give up write access to a mount
  371. * @mnt: the mount on which to give up write access
  372. *
  373. * Tells the low-level filesystem that we are done
  374. * performing writes to it. Must be matched with
  375. * __mnt_want_write() call above.
  376. */
  377. void __mnt_drop_write(struct vfsmount *mnt)
  378. {
  379. preempt_disable();
  380. mnt_dec_writers(real_mount(mnt));
  381. preempt_enable();
  382. }
  383. /**
  384. * mnt_drop_write - give up write access to a mount
  385. * @mnt: the mount on which to give up write access
  386. *
  387. * Tells the low-level filesystem that we are done performing writes to it and
  388. * also allows filesystem to be frozen again. Must be matched with
  389. * mnt_want_write() call above.
  390. */
  391. void mnt_drop_write(struct vfsmount *mnt)
  392. {
  393. __mnt_drop_write(mnt);
  394. sb_end_write(mnt->mnt_sb);
  395. }
  396. EXPORT_SYMBOL_GPL(mnt_drop_write);
  397. void __mnt_drop_write_file(struct file *file)
  398. {
  399. __mnt_drop_write(file->f_path.mnt);
  400. }
  401. void mnt_drop_write_file(struct file *file)
  402. {
  403. mnt_drop_write(file->f_path.mnt);
  404. }
  405. EXPORT_SYMBOL(mnt_drop_write_file);
  406. static int mnt_make_readonly(struct mount *mnt)
  407. {
  408. int ret = 0;
  409. br_write_lock(&vfsmount_lock);
  410. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  411. /*
  412. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  413. * should be visible before we do.
  414. */
  415. smp_mb();
  416. /*
  417. * With writers on hold, if this value is zero, then there are
  418. * definitely no active writers (although held writers may subsequently
  419. * increment the count, they'll have to wait, and decrement it after
  420. * seeing MNT_READONLY).
  421. *
  422. * It is OK to have counter incremented on one CPU and decremented on
  423. * another: the sum will add up correctly. The danger would be when we
  424. * sum up each counter, if we read a counter before it is incremented,
  425. * but then read another CPU's count which it has been subsequently
  426. * decremented from -- we would see more decrements than we should.
  427. * MNT_WRITE_HOLD protects against this scenario, because
  428. * mnt_want_write first increments count, then smp_mb, then spins on
  429. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  430. * we're counting up here.
  431. */
  432. if (mnt_get_writers(mnt) > 0)
  433. ret = -EBUSY;
  434. else
  435. mnt->mnt.mnt_flags |= MNT_READONLY;
  436. /*
  437. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  438. * that become unheld will see MNT_READONLY.
  439. */
  440. smp_wmb();
  441. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  442. br_write_unlock(&vfsmount_lock);
  443. return ret;
  444. }
  445. static void __mnt_unmake_readonly(struct mount *mnt)
  446. {
  447. br_write_lock(&vfsmount_lock);
  448. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  449. br_write_unlock(&vfsmount_lock);
  450. }
  451. int sb_prepare_remount_readonly(struct super_block *sb)
  452. {
  453. struct mount *mnt;
  454. int err = 0;
  455. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  456. if (atomic_long_read(&sb->s_remove_count))
  457. return -EBUSY;
  458. br_write_lock(&vfsmount_lock);
  459. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  460. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  461. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  462. smp_mb();
  463. if (mnt_get_writers(mnt) > 0) {
  464. err = -EBUSY;
  465. break;
  466. }
  467. }
  468. }
  469. if (!err && atomic_long_read(&sb->s_remove_count))
  470. err = -EBUSY;
  471. if (!err) {
  472. sb->s_readonly_remount = 1;
  473. smp_wmb();
  474. }
  475. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  476. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  477. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  478. }
  479. br_write_unlock(&vfsmount_lock);
  480. return err;
  481. }
  482. static void free_vfsmnt(struct mount *mnt)
  483. {
  484. kfree(mnt->mnt_devname);
  485. mnt_free_id(mnt);
  486. #ifdef CONFIG_SMP
  487. free_percpu(mnt->mnt_pcp);
  488. #endif
  489. kmem_cache_free(mnt_cache, mnt);
  490. }
  491. /*
  492. * find the first or last mount at @dentry on vfsmount @mnt depending on
  493. * @dir. If @dir is set return the first mount else return the last mount.
  494. * vfsmount_lock must be held for read or write.
  495. */
  496. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  497. int dir)
  498. {
  499. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  500. struct list_head *tmp = head;
  501. struct mount *p, *found = NULL;
  502. for (;;) {
  503. tmp = dir ? tmp->next : tmp->prev;
  504. p = NULL;
  505. if (tmp == head)
  506. break;
  507. p = list_entry(tmp, struct mount, mnt_hash);
  508. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
  509. found = p;
  510. break;
  511. }
  512. }
  513. return found;
  514. }
  515. /*
  516. * lookup_mnt - Return the first child mount mounted at path
  517. *
  518. * "First" means first mounted chronologically. If you create the
  519. * following mounts:
  520. *
  521. * mount /dev/sda1 /mnt
  522. * mount /dev/sda2 /mnt
  523. * mount /dev/sda3 /mnt
  524. *
  525. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  526. * return successively the root dentry and vfsmount of /dev/sda1, then
  527. * /dev/sda2, then /dev/sda3, then NULL.
  528. *
  529. * lookup_mnt takes a reference to the found vfsmount.
  530. */
  531. struct vfsmount *lookup_mnt(struct path *path)
  532. {
  533. struct mount *child_mnt;
  534. br_read_lock(&vfsmount_lock);
  535. child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
  536. if (child_mnt) {
  537. mnt_add_count(child_mnt, 1);
  538. br_read_unlock(&vfsmount_lock);
  539. return &child_mnt->mnt;
  540. } else {
  541. br_read_unlock(&vfsmount_lock);
  542. return NULL;
  543. }
  544. }
  545. static struct mountpoint *new_mountpoint(struct dentry *dentry)
  546. {
  547. struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
  548. struct mountpoint *mp;
  549. int ret;
  550. list_for_each_entry(mp, chain, m_hash) {
  551. if (mp->m_dentry == dentry) {
  552. /* might be worth a WARN_ON() */
  553. if (d_unlinked(dentry))
  554. return ERR_PTR(-ENOENT);
  555. mp->m_count++;
  556. return mp;
  557. }
  558. }
  559. mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
  560. if (!mp)
  561. return ERR_PTR(-ENOMEM);
  562. ret = d_set_mounted(dentry);
  563. if (ret) {
  564. kfree(mp);
  565. return ERR_PTR(ret);
  566. }
  567. mp->m_dentry = dentry;
  568. mp->m_count = 1;
  569. list_add(&mp->m_hash, chain);
  570. return mp;
  571. }
  572. static void put_mountpoint(struct mountpoint *mp)
  573. {
  574. if (!--mp->m_count) {
  575. struct dentry *dentry = mp->m_dentry;
  576. spin_lock(&dentry->d_lock);
  577. dentry->d_flags &= ~DCACHE_MOUNTED;
  578. spin_unlock(&dentry->d_lock);
  579. list_del(&mp->m_hash);
  580. kfree(mp);
  581. }
  582. }
  583. static inline int check_mnt(struct mount *mnt)
  584. {
  585. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  586. }
  587. /*
  588. * vfsmount lock must be held for write
  589. */
  590. static void touch_mnt_namespace(struct mnt_namespace *ns)
  591. {
  592. if (ns) {
  593. ns->event = ++event;
  594. wake_up_interruptible(&ns->poll);
  595. }
  596. }
  597. /*
  598. * vfsmount lock must be held for write
  599. */
  600. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  601. {
  602. if (ns && ns->event != event) {
  603. ns->event = event;
  604. wake_up_interruptible(&ns->poll);
  605. }
  606. }
  607. /*
  608. * vfsmount lock must be held for write
  609. */
  610. static void detach_mnt(struct mount *mnt, struct path *old_path)
  611. {
  612. old_path->dentry = mnt->mnt_mountpoint;
  613. old_path->mnt = &mnt->mnt_parent->mnt;
  614. mnt->mnt_parent = mnt;
  615. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  616. list_del_init(&mnt->mnt_child);
  617. list_del_init(&mnt->mnt_hash);
  618. put_mountpoint(mnt->mnt_mp);
  619. mnt->mnt_mp = NULL;
  620. }
  621. /*
  622. * vfsmount lock must be held for write
  623. */
  624. void mnt_set_mountpoint(struct mount *mnt,
  625. struct mountpoint *mp,
  626. struct mount *child_mnt)
  627. {
  628. mp->m_count++;
  629. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  630. child_mnt->mnt_mountpoint = dget(mp->m_dentry);
  631. child_mnt->mnt_parent = mnt;
  632. child_mnt->mnt_mp = mp;
  633. }
  634. /*
  635. * vfsmount lock must be held for write
  636. */
  637. static void attach_mnt(struct mount *mnt,
  638. struct mount *parent,
  639. struct mountpoint *mp)
  640. {
  641. mnt_set_mountpoint(parent, mp, mnt);
  642. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  643. hash(&parent->mnt, mp->m_dentry));
  644. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  645. }
  646. /*
  647. * vfsmount lock must be held for write
  648. */
  649. static void commit_tree(struct mount *mnt)
  650. {
  651. struct mount *parent = mnt->mnt_parent;
  652. struct mount *m;
  653. LIST_HEAD(head);
  654. struct mnt_namespace *n = parent->mnt_ns;
  655. BUG_ON(parent == mnt);
  656. list_add_tail(&head, &mnt->mnt_list);
  657. list_for_each_entry(m, &head, mnt_list)
  658. m->mnt_ns = n;
  659. list_splice(&head, n->list.prev);
  660. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  661. hash(&parent->mnt, mnt->mnt_mountpoint));
  662. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  663. touch_mnt_namespace(n);
  664. }
  665. static struct mount *next_mnt(struct mount *p, struct mount *root)
  666. {
  667. struct list_head *next = p->mnt_mounts.next;
  668. if (next == &p->mnt_mounts) {
  669. while (1) {
  670. if (p == root)
  671. return NULL;
  672. next = p->mnt_child.next;
  673. if (next != &p->mnt_parent->mnt_mounts)
  674. break;
  675. p = p->mnt_parent;
  676. }
  677. }
  678. return list_entry(next, struct mount, mnt_child);
  679. }
  680. static struct mount *skip_mnt_tree(struct mount *p)
  681. {
  682. struct list_head *prev = p->mnt_mounts.prev;
  683. while (prev != &p->mnt_mounts) {
  684. p = list_entry(prev, struct mount, mnt_child);
  685. prev = p->mnt_mounts.prev;
  686. }
  687. return p;
  688. }
  689. struct vfsmount *
  690. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  691. {
  692. struct mount *mnt;
  693. struct dentry *root;
  694. if (!type)
  695. return ERR_PTR(-ENODEV);
  696. mnt = alloc_vfsmnt(name);
  697. if (!mnt)
  698. return ERR_PTR(-ENOMEM);
  699. if (flags & MS_KERNMOUNT)
  700. mnt->mnt.mnt_flags = MNT_INTERNAL;
  701. root = mount_fs(type, flags, name, data);
  702. if (IS_ERR(root)) {
  703. free_vfsmnt(mnt);
  704. return ERR_CAST(root);
  705. }
  706. mnt->mnt.mnt_root = root;
  707. mnt->mnt.mnt_sb = root->d_sb;
  708. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  709. mnt->mnt_parent = mnt;
  710. br_write_lock(&vfsmount_lock);
  711. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  712. br_write_unlock(&vfsmount_lock);
  713. return &mnt->mnt;
  714. }
  715. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  716. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  717. int flag)
  718. {
  719. struct super_block *sb = old->mnt.mnt_sb;
  720. struct mount *mnt;
  721. int err;
  722. mnt = alloc_vfsmnt(old->mnt_devname);
  723. if (!mnt)
  724. return ERR_PTR(-ENOMEM);
  725. if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
  726. mnt->mnt_group_id = 0; /* not a peer of original */
  727. else
  728. mnt->mnt_group_id = old->mnt_group_id;
  729. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  730. err = mnt_alloc_group_id(mnt);
  731. if (err)
  732. goto out_free;
  733. }
  734. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
  735. /* Don't allow unprivileged users to change mount flags */
  736. if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
  737. mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
  738. /* Don't allow unprivileged users to reveal what is under a mount */
  739. if ((flag & CL_UNPRIVILEGED) && list_empty(&old->mnt_expire))
  740. mnt->mnt.mnt_flags |= MNT_LOCKED;
  741. atomic_inc(&sb->s_active);
  742. mnt->mnt.mnt_sb = sb;
  743. mnt->mnt.mnt_root = dget(root);
  744. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  745. mnt->mnt_parent = mnt;
  746. br_write_lock(&vfsmount_lock);
  747. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  748. br_write_unlock(&vfsmount_lock);
  749. if ((flag & CL_SLAVE) ||
  750. ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
  751. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  752. mnt->mnt_master = old;
  753. CLEAR_MNT_SHARED(mnt);
  754. } else if (!(flag & CL_PRIVATE)) {
  755. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  756. list_add(&mnt->mnt_share, &old->mnt_share);
  757. if (IS_MNT_SLAVE(old))
  758. list_add(&mnt->mnt_slave, &old->mnt_slave);
  759. mnt->mnt_master = old->mnt_master;
  760. }
  761. if (flag & CL_MAKE_SHARED)
  762. set_mnt_shared(mnt);
  763. /* stick the duplicate mount on the same expiry list
  764. * as the original if that was on one */
  765. if (flag & CL_EXPIRE) {
  766. if (!list_empty(&old->mnt_expire))
  767. list_add(&mnt->mnt_expire, &old->mnt_expire);
  768. }
  769. return mnt;
  770. out_free:
  771. free_vfsmnt(mnt);
  772. return ERR_PTR(err);
  773. }
  774. static void mntput_no_expire(struct mount *mnt)
  775. {
  776. put_again:
  777. #ifdef CONFIG_SMP
  778. br_read_lock(&vfsmount_lock);
  779. if (likely(mnt->mnt_ns)) {
  780. /* shouldn't be the last one */
  781. mnt_add_count(mnt, -1);
  782. br_read_unlock(&vfsmount_lock);
  783. return;
  784. }
  785. br_read_unlock(&vfsmount_lock);
  786. br_write_lock(&vfsmount_lock);
  787. mnt_add_count(mnt, -1);
  788. if (mnt_get_count(mnt)) {
  789. br_write_unlock(&vfsmount_lock);
  790. return;
  791. }
  792. #else
  793. mnt_add_count(mnt, -1);
  794. if (likely(mnt_get_count(mnt)))
  795. return;
  796. br_write_lock(&vfsmount_lock);
  797. #endif
  798. if (unlikely(mnt->mnt_pinned)) {
  799. mnt_add_count(mnt, mnt->mnt_pinned + 1);
  800. mnt->mnt_pinned = 0;
  801. br_write_unlock(&vfsmount_lock);
  802. acct_auto_close_mnt(&mnt->mnt);
  803. goto put_again;
  804. }
  805. list_del(&mnt->mnt_instance);
  806. br_write_unlock(&vfsmount_lock);
  807. /*
  808. * This probably indicates that somebody messed
  809. * up a mnt_want/drop_write() pair. If this
  810. * happens, the filesystem was probably unable
  811. * to make r/w->r/o transitions.
  812. */
  813. /*
  814. * The locking used to deal with mnt_count decrement provides barriers,
  815. * so mnt_get_writers() below is safe.
  816. */
  817. WARN_ON(mnt_get_writers(mnt));
  818. fsnotify_vfsmount_delete(&mnt->mnt);
  819. dput(mnt->mnt.mnt_root);
  820. deactivate_super(mnt->mnt.mnt_sb);
  821. free_vfsmnt(mnt);
  822. }
  823. void mntput(struct vfsmount *mnt)
  824. {
  825. if (mnt) {
  826. struct mount *m = real_mount(mnt);
  827. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  828. if (unlikely(m->mnt_expiry_mark))
  829. m->mnt_expiry_mark = 0;
  830. mntput_no_expire(m);
  831. }
  832. }
  833. EXPORT_SYMBOL(mntput);
  834. struct vfsmount *mntget(struct vfsmount *mnt)
  835. {
  836. if (mnt)
  837. mnt_add_count(real_mount(mnt), 1);
  838. return mnt;
  839. }
  840. EXPORT_SYMBOL(mntget);
  841. void mnt_pin(struct vfsmount *mnt)
  842. {
  843. br_write_lock(&vfsmount_lock);
  844. real_mount(mnt)->mnt_pinned++;
  845. br_write_unlock(&vfsmount_lock);
  846. }
  847. EXPORT_SYMBOL(mnt_pin);
  848. void mnt_unpin(struct vfsmount *m)
  849. {
  850. struct mount *mnt = real_mount(m);
  851. br_write_lock(&vfsmount_lock);
  852. if (mnt->mnt_pinned) {
  853. mnt_add_count(mnt, 1);
  854. mnt->mnt_pinned--;
  855. }
  856. br_write_unlock(&vfsmount_lock);
  857. }
  858. EXPORT_SYMBOL(mnt_unpin);
  859. static inline void mangle(struct seq_file *m, const char *s)
  860. {
  861. seq_escape(m, s, " \t\n\\");
  862. }
  863. /*
  864. * Simple .show_options callback for filesystems which don't want to
  865. * implement more complex mount option showing.
  866. *
  867. * See also save_mount_options().
  868. */
  869. int generic_show_options(struct seq_file *m, struct dentry *root)
  870. {
  871. const char *options;
  872. rcu_read_lock();
  873. options = rcu_dereference(root->d_sb->s_options);
  874. if (options != NULL && options[0]) {
  875. seq_putc(m, ',');
  876. mangle(m, options);
  877. }
  878. rcu_read_unlock();
  879. return 0;
  880. }
  881. EXPORT_SYMBOL(generic_show_options);
  882. /*
  883. * If filesystem uses generic_show_options(), this function should be
  884. * called from the fill_super() callback.
  885. *
  886. * The .remount_fs callback usually needs to be handled in a special
  887. * way, to make sure, that previous options are not overwritten if the
  888. * remount fails.
  889. *
  890. * Also note, that if the filesystem's .remount_fs function doesn't
  891. * reset all options to their default value, but changes only newly
  892. * given options, then the displayed options will not reflect reality
  893. * any more.
  894. */
  895. void save_mount_options(struct super_block *sb, char *options)
  896. {
  897. BUG_ON(sb->s_options);
  898. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  899. }
  900. EXPORT_SYMBOL(save_mount_options);
  901. void replace_mount_options(struct super_block *sb, char *options)
  902. {
  903. char *old = sb->s_options;
  904. rcu_assign_pointer(sb->s_options, options);
  905. if (old) {
  906. synchronize_rcu();
  907. kfree(old);
  908. }
  909. }
  910. EXPORT_SYMBOL(replace_mount_options);
  911. #ifdef CONFIG_PROC_FS
  912. /* iterator; we want it to have access to namespace_sem, thus here... */
  913. static void *m_start(struct seq_file *m, loff_t *pos)
  914. {
  915. struct proc_mounts *p = proc_mounts(m);
  916. down_read(&namespace_sem);
  917. return seq_list_start(&p->ns->list, *pos);
  918. }
  919. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  920. {
  921. struct proc_mounts *p = proc_mounts(m);
  922. return seq_list_next(v, &p->ns->list, pos);
  923. }
  924. static void m_stop(struct seq_file *m, void *v)
  925. {
  926. up_read(&namespace_sem);
  927. }
  928. static int m_show(struct seq_file *m, void *v)
  929. {
  930. struct proc_mounts *p = proc_mounts(m);
  931. struct mount *r = list_entry(v, struct mount, mnt_list);
  932. return p->show(m, &r->mnt);
  933. }
  934. const struct seq_operations mounts_op = {
  935. .start = m_start,
  936. .next = m_next,
  937. .stop = m_stop,
  938. .show = m_show,
  939. };
  940. #endif /* CONFIG_PROC_FS */
  941. /**
  942. * may_umount_tree - check if a mount tree is busy
  943. * @mnt: root of mount tree
  944. *
  945. * This is called to check if a tree of mounts has any
  946. * open files, pwds, chroots or sub mounts that are
  947. * busy.
  948. */
  949. int may_umount_tree(struct vfsmount *m)
  950. {
  951. struct mount *mnt = real_mount(m);
  952. int actual_refs = 0;
  953. int minimum_refs = 0;
  954. struct mount *p;
  955. BUG_ON(!m);
  956. /* write lock needed for mnt_get_count */
  957. br_write_lock(&vfsmount_lock);
  958. for (p = mnt; p; p = next_mnt(p, mnt)) {
  959. actual_refs += mnt_get_count(p);
  960. minimum_refs += 2;
  961. }
  962. br_write_unlock(&vfsmount_lock);
  963. if (actual_refs > minimum_refs)
  964. return 0;
  965. return 1;
  966. }
  967. EXPORT_SYMBOL(may_umount_tree);
  968. /**
  969. * may_umount - check if a mount point is busy
  970. * @mnt: root of mount
  971. *
  972. * This is called to check if a mount point has any
  973. * open files, pwds, chroots or sub mounts. If the
  974. * mount has sub mounts this will return busy
  975. * regardless of whether the sub mounts are busy.
  976. *
  977. * Doesn't take quota and stuff into account. IOW, in some cases it will
  978. * give false negatives. The main reason why it's here is that we need
  979. * a non-destructive way to look for easily umountable filesystems.
  980. */
  981. int may_umount(struct vfsmount *mnt)
  982. {
  983. int ret = 1;
  984. down_read(&namespace_sem);
  985. br_write_lock(&vfsmount_lock);
  986. if (propagate_mount_busy(real_mount(mnt), 2))
  987. ret = 0;
  988. br_write_unlock(&vfsmount_lock);
  989. up_read(&namespace_sem);
  990. return ret;
  991. }
  992. EXPORT_SYMBOL(may_umount);
  993. static LIST_HEAD(unmounted); /* protected by namespace_sem */
  994. static void namespace_unlock(void)
  995. {
  996. struct mount *mnt;
  997. LIST_HEAD(head);
  998. if (likely(list_empty(&unmounted))) {
  999. up_write(&namespace_sem);
  1000. return;
  1001. }
  1002. list_splice_init(&unmounted, &head);
  1003. up_write(&namespace_sem);
  1004. while (!list_empty(&head)) {
  1005. mnt = list_first_entry(&head, struct mount, mnt_hash);
  1006. list_del_init(&mnt->mnt_hash);
  1007. if (mnt->mnt_ex_mountpoint.mnt)
  1008. path_put(&mnt->mnt_ex_mountpoint);
  1009. mntput(&mnt->mnt);
  1010. }
  1011. }
  1012. static inline void namespace_lock(void)
  1013. {
  1014. down_write(&namespace_sem);
  1015. }
  1016. /*
  1017. * vfsmount lock must be held for write
  1018. * namespace_sem must be held for write
  1019. */
  1020. void umount_tree(struct mount *mnt, int propagate)
  1021. {
  1022. LIST_HEAD(tmp_list);
  1023. struct mount *p;
  1024. for (p = mnt; p; p = next_mnt(p, mnt))
  1025. list_move(&p->mnt_hash, &tmp_list);
  1026. if (propagate)
  1027. propagate_umount(&tmp_list);
  1028. list_for_each_entry(p, &tmp_list, mnt_hash) {
  1029. list_del_init(&p->mnt_expire);
  1030. list_del_init(&p->mnt_list);
  1031. __touch_mnt_namespace(p->mnt_ns);
  1032. p->mnt_ns = NULL;
  1033. list_del_init(&p->mnt_child);
  1034. if (mnt_has_parent(p)) {
  1035. put_mountpoint(p->mnt_mp);
  1036. /* move the reference to mountpoint into ->mnt_ex_mountpoint */
  1037. p->mnt_ex_mountpoint.dentry = p->mnt_mountpoint;
  1038. p->mnt_ex_mountpoint.mnt = &p->mnt_parent->mnt;
  1039. p->mnt_mountpoint = p->mnt.mnt_root;
  1040. p->mnt_parent = p;
  1041. p->mnt_mp = NULL;
  1042. }
  1043. change_mnt_propagation(p, MS_PRIVATE);
  1044. }
  1045. list_splice(&tmp_list, &unmounted);
  1046. }
  1047. static void shrink_submounts(struct mount *mnt);
  1048. static int do_umount(struct mount *mnt, int flags)
  1049. {
  1050. struct super_block *sb = mnt->mnt.mnt_sb;
  1051. int retval;
  1052. retval = security_sb_umount(&mnt->mnt, flags);
  1053. if (retval)
  1054. return retval;
  1055. /*
  1056. * Allow userspace to request a mountpoint be expired rather than
  1057. * unmounting unconditionally. Unmount only happens if:
  1058. * (1) the mark is already set (the mark is cleared by mntput())
  1059. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1060. */
  1061. if (flags & MNT_EXPIRE) {
  1062. if (&mnt->mnt == current->fs->root.mnt ||
  1063. flags & (MNT_FORCE | MNT_DETACH))
  1064. return -EINVAL;
  1065. /*
  1066. * probably don't strictly need the lock here if we examined
  1067. * all race cases, but it's a slowpath.
  1068. */
  1069. br_write_lock(&vfsmount_lock);
  1070. if (mnt_get_count(mnt) != 2) {
  1071. br_write_unlock(&vfsmount_lock);
  1072. return -EBUSY;
  1073. }
  1074. br_write_unlock(&vfsmount_lock);
  1075. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1076. return -EAGAIN;
  1077. }
  1078. /*
  1079. * If we may have to abort operations to get out of this
  1080. * mount, and they will themselves hold resources we must
  1081. * allow the fs to do things. In the Unix tradition of
  1082. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1083. * might fail to complete on the first run through as other tasks
  1084. * must return, and the like. Thats for the mount program to worry
  1085. * about for the moment.
  1086. */
  1087. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1088. sb->s_op->umount_begin(sb);
  1089. }
  1090. /*
  1091. * No sense to grab the lock for this test, but test itself looks
  1092. * somewhat bogus. Suggestions for better replacement?
  1093. * Ho-hum... In principle, we might treat that as umount + switch
  1094. * to rootfs. GC would eventually take care of the old vfsmount.
  1095. * Actually it makes sense, especially if rootfs would contain a
  1096. * /reboot - static binary that would close all descriptors and
  1097. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1098. */
  1099. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1100. /*
  1101. * Special case for "unmounting" root ...
  1102. * we just try to remount it readonly.
  1103. */
  1104. down_write(&sb->s_umount);
  1105. if (!(sb->s_flags & MS_RDONLY))
  1106. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1107. up_write(&sb->s_umount);
  1108. return retval;
  1109. }
  1110. namespace_lock();
  1111. br_write_lock(&vfsmount_lock);
  1112. event++;
  1113. if (!(flags & MNT_DETACH))
  1114. shrink_submounts(mnt);
  1115. retval = -EBUSY;
  1116. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  1117. if (!list_empty(&mnt->mnt_list))
  1118. umount_tree(mnt, 1);
  1119. retval = 0;
  1120. }
  1121. br_write_unlock(&vfsmount_lock);
  1122. namespace_unlock();
  1123. return retval;
  1124. }
  1125. /*
  1126. * Is the caller allowed to modify his namespace?
  1127. */
  1128. static inline bool may_mount(void)
  1129. {
  1130. return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
  1131. }
  1132. /*
  1133. * Now umount can handle mount points as well as block devices.
  1134. * This is important for filesystems which use unnamed block devices.
  1135. *
  1136. * We now support a flag for forced unmount like the other 'big iron'
  1137. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1138. */
  1139. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1140. {
  1141. struct path path;
  1142. struct mount *mnt;
  1143. int retval;
  1144. int lookup_flags = 0;
  1145. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1146. return -EINVAL;
  1147. if (!may_mount())
  1148. return -EPERM;
  1149. if (!(flags & UMOUNT_NOFOLLOW))
  1150. lookup_flags |= LOOKUP_FOLLOW;
  1151. retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
  1152. if (retval)
  1153. goto out;
  1154. mnt = real_mount(path.mnt);
  1155. retval = -EINVAL;
  1156. if (path.dentry != path.mnt->mnt_root)
  1157. goto dput_and_out;
  1158. if (!check_mnt(mnt))
  1159. goto dput_and_out;
  1160. if (mnt->mnt.mnt_flags & MNT_LOCKED)
  1161. goto dput_and_out;
  1162. retval = do_umount(mnt, flags);
  1163. dput_and_out:
  1164. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1165. dput(path.dentry);
  1166. mntput_no_expire(mnt);
  1167. out:
  1168. return retval;
  1169. }
  1170. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1171. /*
  1172. * The 2.0 compatible umount. No flags.
  1173. */
  1174. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1175. {
  1176. return sys_umount(name, 0);
  1177. }
  1178. #endif
  1179. static bool is_mnt_ns_file(struct dentry *dentry)
  1180. {
  1181. /* Is this a proxy for a mount namespace? */
  1182. struct inode *inode = dentry->d_inode;
  1183. struct proc_ns *ei;
  1184. if (!proc_ns_inode(inode))
  1185. return false;
  1186. ei = get_proc_ns(inode);
  1187. if (ei->ns_ops != &mntns_operations)
  1188. return false;
  1189. return true;
  1190. }
  1191. static bool mnt_ns_loop(struct dentry *dentry)
  1192. {
  1193. /* Could bind mounting the mount namespace inode cause a
  1194. * mount namespace loop?
  1195. */
  1196. struct mnt_namespace *mnt_ns;
  1197. if (!is_mnt_ns_file(dentry))
  1198. return false;
  1199. mnt_ns = get_proc_ns(dentry->d_inode)->ns;
  1200. return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
  1201. }
  1202. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1203. int flag)
  1204. {
  1205. struct mount *res, *p, *q, *r, *parent;
  1206. if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
  1207. return ERR_PTR(-EINVAL);
  1208. if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
  1209. return ERR_PTR(-EINVAL);
  1210. res = q = clone_mnt(mnt, dentry, flag);
  1211. if (IS_ERR(q))
  1212. return q;
  1213. q->mnt.mnt_flags &= ~MNT_LOCKED;
  1214. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1215. p = mnt;
  1216. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1217. struct mount *s;
  1218. if (!is_subdir(r->mnt_mountpoint, dentry))
  1219. continue;
  1220. for (s = r; s; s = next_mnt(s, r)) {
  1221. if (!(flag & CL_COPY_UNBINDABLE) &&
  1222. IS_MNT_UNBINDABLE(s)) {
  1223. s = skip_mnt_tree(s);
  1224. continue;
  1225. }
  1226. if (!(flag & CL_COPY_MNT_NS_FILE) &&
  1227. is_mnt_ns_file(s->mnt.mnt_root)) {
  1228. s = skip_mnt_tree(s);
  1229. continue;
  1230. }
  1231. while (p != s->mnt_parent) {
  1232. p = p->mnt_parent;
  1233. q = q->mnt_parent;
  1234. }
  1235. p = s;
  1236. parent = q;
  1237. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1238. if (IS_ERR(q))
  1239. goto out;
  1240. br_write_lock(&vfsmount_lock);
  1241. list_add_tail(&q->mnt_list, &res->mnt_list);
  1242. attach_mnt(q, parent, p->mnt_mp);
  1243. br_write_unlock(&vfsmount_lock);
  1244. }
  1245. }
  1246. return res;
  1247. out:
  1248. if (res) {
  1249. br_write_lock(&vfsmount_lock);
  1250. umount_tree(res, 0);
  1251. br_write_unlock(&vfsmount_lock);
  1252. }
  1253. return q;
  1254. }
  1255. /* Caller should check returned pointer for errors */
  1256. struct vfsmount *collect_mounts(struct path *path)
  1257. {
  1258. struct mount *tree;
  1259. namespace_lock();
  1260. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1261. CL_COPY_ALL | CL_PRIVATE);
  1262. namespace_unlock();
  1263. if (IS_ERR(tree))
  1264. return ERR_CAST(tree);
  1265. return &tree->mnt;
  1266. }
  1267. void drop_collected_mounts(struct vfsmount *mnt)
  1268. {
  1269. namespace_lock();
  1270. br_write_lock(&vfsmount_lock);
  1271. umount_tree(real_mount(mnt), 0);
  1272. br_write_unlock(&vfsmount_lock);
  1273. namespace_unlock();
  1274. }
  1275. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1276. struct vfsmount *root)
  1277. {
  1278. struct mount *mnt;
  1279. int res = f(root, arg);
  1280. if (res)
  1281. return res;
  1282. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1283. res = f(&mnt->mnt, arg);
  1284. if (res)
  1285. return res;
  1286. }
  1287. return 0;
  1288. }
  1289. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1290. {
  1291. struct mount *p;
  1292. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1293. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1294. mnt_release_group_id(p);
  1295. }
  1296. }
  1297. static int invent_group_ids(struct mount *mnt, bool recurse)
  1298. {
  1299. struct mount *p;
  1300. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1301. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1302. int err = mnt_alloc_group_id(p);
  1303. if (err) {
  1304. cleanup_group_ids(mnt, p);
  1305. return err;
  1306. }
  1307. }
  1308. }
  1309. return 0;
  1310. }
  1311. /*
  1312. * @source_mnt : mount tree to be attached
  1313. * @nd : place the mount tree @source_mnt is attached
  1314. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1315. * store the parent mount and mountpoint dentry.
  1316. * (done when source_mnt is moved)
  1317. *
  1318. * NOTE: in the table below explains the semantics when a source mount
  1319. * of a given type is attached to a destination mount of a given type.
  1320. * ---------------------------------------------------------------------------
  1321. * | BIND MOUNT OPERATION |
  1322. * |**************************************************************************
  1323. * | source-->| shared | private | slave | unbindable |
  1324. * | dest | | | | |
  1325. * | | | | | | |
  1326. * | v | | | | |
  1327. * |**************************************************************************
  1328. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1329. * | | | | | |
  1330. * |non-shared| shared (+) | private | slave (*) | invalid |
  1331. * ***************************************************************************
  1332. * A bind operation clones the source mount and mounts the clone on the
  1333. * destination mount.
  1334. *
  1335. * (++) the cloned mount is propagated to all the mounts in the propagation
  1336. * tree of the destination mount and the cloned mount is added to
  1337. * the peer group of the source mount.
  1338. * (+) the cloned mount is created under the destination mount and is marked
  1339. * as shared. The cloned mount is added to the peer group of the source
  1340. * mount.
  1341. * (+++) the mount is propagated to all the mounts in the propagation tree
  1342. * of the destination mount and the cloned mount is made slave
  1343. * of the same master as that of the source mount. The cloned mount
  1344. * is marked as 'shared and slave'.
  1345. * (*) the cloned mount is made a slave of the same master as that of the
  1346. * source mount.
  1347. *
  1348. * ---------------------------------------------------------------------------
  1349. * | MOVE MOUNT OPERATION |
  1350. * |**************************************************************************
  1351. * | source-->| shared | private | slave | unbindable |
  1352. * | dest | | | | |
  1353. * | | | | | | |
  1354. * | v | | | | |
  1355. * |**************************************************************************
  1356. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1357. * | | | | | |
  1358. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1359. * ***************************************************************************
  1360. *
  1361. * (+) the mount is moved to the destination. And is then propagated to
  1362. * all the mounts in the propagation tree of the destination mount.
  1363. * (+*) the mount is moved to the destination.
  1364. * (+++) the mount is moved to the destination and is then propagated to
  1365. * all the mounts belonging to the destination mount's propagation tree.
  1366. * the mount is marked as 'shared and slave'.
  1367. * (*) the mount continues to be a slave at the new location.
  1368. *
  1369. * if the source mount is a tree, the operations explained above is
  1370. * applied to each mount in the tree.
  1371. * Must be called without spinlocks held, since this function can sleep
  1372. * in allocations.
  1373. */
  1374. static int attach_recursive_mnt(struct mount *source_mnt,
  1375. struct mount *dest_mnt,
  1376. struct mountpoint *dest_mp,
  1377. struct path *parent_path)
  1378. {
  1379. LIST_HEAD(tree_list);
  1380. struct mount *child, *p;
  1381. int err;
  1382. if (IS_MNT_SHARED(dest_mnt)) {
  1383. err = invent_group_ids(source_mnt, true);
  1384. if (err)
  1385. goto out;
  1386. }
  1387. err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
  1388. if (err)
  1389. goto out_cleanup_ids;
  1390. br_write_lock(&vfsmount_lock);
  1391. if (IS_MNT_SHARED(dest_mnt)) {
  1392. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1393. set_mnt_shared(p);
  1394. }
  1395. if (parent_path) {
  1396. detach_mnt(source_mnt, parent_path);
  1397. attach_mnt(source_mnt, dest_mnt, dest_mp);
  1398. touch_mnt_namespace(source_mnt->mnt_ns);
  1399. } else {
  1400. mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
  1401. commit_tree(source_mnt);
  1402. }
  1403. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1404. list_del_init(&child->mnt_hash);
  1405. commit_tree(child);
  1406. }
  1407. br_write_unlock(&vfsmount_lock);
  1408. return 0;
  1409. out_cleanup_ids:
  1410. if (IS_MNT_SHARED(dest_mnt))
  1411. cleanup_group_ids(source_mnt, NULL);
  1412. out:
  1413. return err;
  1414. }
  1415. static struct mountpoint *lock_mount(struct path *path)
  1416. {
  1417. struct vfsmount *mnt;
  1418. struct dentry *dentry = path->dentry;
  1419. retry:
  1420. mutex_lock(&dentry->d_inode->i_mutex);
  1421. if (unlikely(cant_mount(dentry))) {
  1422. mutex_unlock(&dentry->d_inode->i_mutex);
  1423. return ERR_PTR(-ENOENT);
  1424. }
  1425. namespace_lock();
  1426. mnt = lookup_mnt(path);
  1427. if (likely(!mnt)) {
  1428. struct mountpoint *mp = new_mountpoint(dentry);
  1429. if (IS_ERR(mp)) {
  1430. namespace_unlock();
  1431. mutex_unlock(&dentry->d_inode->i_mutex);
  1432. return mp;
  1433. }
  1434. return mp;
  1435. }
  1436. namespace_unlock();
  1437. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1438. path_put(path);
  1439. path->mnt = mnt;
  1440. dentry = path->dentry = dget(mnt->mnt_root);
  1441. goto retry;
  1442. }
  1443. static void unlock_mount(struct mountpoint *where)
  1444. {
  1445. struct dentry *dentry = where->m_dentry;
  1446. put_mountpoint(where);
  1447. namespace_unlock();
  1448. mutex_unlock(&dentry->d_inode->i_mutex);
  1449. }
  1450. static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
  1451. {
  1452. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1453. return -EINVAL;
  1454. if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
  1455. S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
  1456. return -ENOTDIR;
  1457. return attach_recursive_mnt(mnt, p, mp, NULL);
  1458. }
  1459. /*
  1460. * Sanity check the flags to change_mnt_propagation.
  1461. */
  1462. static int flags_to_propagation_type(int flags)
  1463. {
  1464. int type = flags & ~(MS_REC | MS_SILENT);
  1465. /* Fail if any non-propagation flags are set */
  1466. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1467. return 0;
  1468. /* Only one propagation flag should be set */
  1469. if (!is_power_of_2(type))
  1470. return 0;
  1471. return type;
  1472. }
  1473. /*
  1474. * recursively change the type of the mountpoint.
  1475. */
  1476. static int do_change_type(struct path *path, int flag)
  1477. {
  1478. struct mount *m;
  1479. struct mount *mnt = real_mount(path->mnt);
  1480. int recurse = flag & MS_REC;
  1481. int type;
  1482. int err = 0;
  1483. if (path->dentry != path->mnt->mnt_root)
  1484. return -EINVAL;
  1485. type = flags_to_propagation_type(flag);
  1486. if (!type)
  1487. return -EINVAL;
  1488. namespace_lock();
  1489. if (type == MS_SHARED) {
  1490. err = invent_group_ids(mnt, recurse);
  1491. if (err)
  1492. goto out_unlock;
  1493. }
  1494. br_write_lock(&vfsmount_lock);
  1495. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1496. change_mnt_propagation(m, type);
  1497. br_write_unlock(&vfsmount_lock);
  1498. out_unlock:
  1499. namespace_unlock();
  1500. return err;
  1501. }
  1502. static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
  1503. {
  1504. struct mount *child;
  1505. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  1506. if (!is_subdir(child->mnt_mountpoint, dentry))
  1507. continue;
  1508. if (child->mnt.mnt_flags & MNT_LOCKED)
  1509. return true;
  1510. }
  1511. return false;
  1512. }
  1513. /*
  1514. * do loopback mount.
  1515. */
  1516. static int do_loopback(struct path *path, const char *old_name,
  1517. int recurse)
  1518. {
  1519. struct path old_path;
  1520. struct mount *mnt = NULL, *old, *parent;
  1521. struct mountpoint *mp;
  1522. int err;
  1523. if (!old_name || !*old_name)
  1524. return -EINVAL;
  1525. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1526. if (err)
  1527. return err;
  1528. err = -EINVAL;
  1529. if (mnt_ns_loop(old_path.dentry))
  1530. goto out;
  1531. mp = lock_mount(path);
  1532. err = PTR_ERR(mp);
  1533. if (IS_ERR(mp))
  1534. goto out;
  1535. old = real_mount(old_path.mnt);
  1536. parent = real_mount(path->mnt);
  1537. err = -EINVAL;
  1538. if (IS_MNT_UNBINDABLE(old))
  1539. goto out2;
  1540. if (!check_mnt(parent) || !check_mnt(old))
  1541. goto out2;
  1542. if (!recurse && has_locked_children(old, old_path.dentry))
  1543. goto out2;
  1544. if (recurse)
  1545. mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
  1546. else
  1547. mnt = clone_mnt(old, old_path.dentry, 0);
  1548. if (IS_ERR(mnt)) {
  1549. err = PTR_ERR(mnt);
  1550. goto out2;
  1551. }
  1552. mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  1553. err = graft_tree(mnt, parent, mp);
  1554. if (err) {
  1555. br_write_lock(&vfsmount_lock);
  1556. umount_tree(mnt, 0);
  1557. br_write_unlock(&vfsmount_lock);
  1558. }
  1559. out2:
  1560. unlock_mount(mp);
  1561. out:
  1562. path_put(&old_path);
  1563. return err;
  1564. }
  1565. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1566. {
  1567. int error = 0;
  1568. int readonly_request = 0;
  1569. if (ms_flags & MS_RDONLY)
  1570. readonly_request = 1;
  1571. if (readonly_request == __mnt_is_readonly(mnt))
  1572. return 0;
  1573. if (mnt->mnt_flags & MNT_LOCK_READONLY)
  1574. return -EPERM;
  1575. if (readonly_request)
  1576. error = mnt_make_readonly(real_mount(mnt));
  1577. else
  1578. __mnt_unmake_readonly(real_mount(mnt));
  1579. return error;
  1580. }
  1581. /*
  1582. * change filesystem flags. dir should be a physical root of filesystem.
  1583. * If you've mounted a non-root directory somewhere and want to do remount
  1584. * on it - tough luck.
  1585. */
  1586. static int do_remount(struct path *path, int flags, int mnt_flags,
  1587. void *data)
  1588. {
  1589. int err;
  1590. struct super_block *sb = path->mnt->mnt_sb;
  1591. struct mount *mnt = real_mount(path->mnt);
  1592. if (!check_mnt(mnt))
  1593. return -EINVAL;
  1594. if (path->dentry != path->mnt->mnt_root)
  1595. return -EINVAL;
  1596. err = security_sb_remount(sb, data);
  1597. if (err)
  1598. return err;
  1599. down_write(&sb->s_umount);
  1600. if (flags & MS_BIND)
  1601. err = change_mount_flags(path->mnt, flags);
  1602. else if (!capable(CAP_SYS_ADMIN))
  1603. err = -EPERM;
  1604. else
  1605. err = do_remount_sb(sb, flags, data, 0);
  1606. if (!err) {
  1607. br_write_lock(&vfsmount_lock);
  1608. mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
  1609. mnt->mnt.mnt_flags = mnt_flags;
  1610. touch_mnt_namespace(mnt->mnt_ns);
  1611. br_write_unlock(&vfsmount_lock);
  1612. }
  1613. up_write(&sb->s_umount);
  1614. return err;
  1615. }
  1616. static inline int tree_contains_unbindable(struct mount *mnt)
  1617. {
  1618. struct mount *p;
  1619. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1620. if (IS_MNT_UNBINDABLE(p))
  1621. return 1;
  1622. }
  1623. return 0;
  1624. }
  1625. static int do_move_mount(struct path *path, const char *old_name)
  1626. {
  1627. struct path old_path, parent_path;
  1628. struct mount *p;
  1629. struct mount *old;
  1630. struct mountpoint *mp;
  1631. int err;
  1632. if (!old_name || !*old_name)
  1633. return -EINVAL;
  1634. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1635. if (err)
  1636. return err;
  1637. mp = lock_mount(path);
  1638. err = PTR_ERR(mp);
  1639. if (IS_ERR(mp))
  1640. goto out;
  1641. old = real_mount(old_path.mnt);
  1642. p = real_mount(path->mnt);
  1643. err = -EINVAL;
  1644. if (!check_mnt(p) || !check_mnt(old))
  1645. goto out1;
  1646. if (old->mnt.mnt_flags & MNT_LOCKED)
  1647. goto out1;
  1648. err = -EINVAL;
  1649. if (old_path.dentry != old_path.mnt->mnt_root)
  1650. goto out1;
  1651. if (!mnt_has_parent(old))
  1652. goto out1;
  1653. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1654. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1655. goto out1;
  1656. /*
  1657. * Don't move a mount residing in a shared parent.
  1658. */
  1659. if (IS_MNT_SHARED(old->mnt_parent))
  1660. goto out1;
  1661. /*
  1662. * Don't move a mount tree containing unbindable mounts to a destination
  1663. * mount which is shared.
  1664. */
  1665. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  1666. goto out1;
  1667. err = -ELOOP;
  1668. for (; mnt_has_parent(p); p = p->mnt_parent)
  1669. if (p == old)
  1670. goto out1;
  1671. err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
  1672. if (err)
  1673. goto out1;
  1674. /* if the mount is moved, it should no longer be expire
  1675. * automatically */
  1676. list_del_init(&old->mnt_expire);
  1677. out1:
  1678. unlock_mount(mp);
  1679. out:
  1680. if (!err)
  1681. path_put(&parent_path);
  1682. path_put(&old_path);
  1683. return err;
  1684. }
  1685. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1686. {
  1687. int err;
  1688. const char *subtype = strchr(fstype, '.');
  1689. if (subtype) {
  1690. subtype++;
  1691. err = -EINVAL;
  1692. if (!subtype[0])
  1693. goto err;
  1694. } else
  1695. subtype = "";
  1696. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1697. err = -ENOMEM;
  1698. if (!mnt->mnt_sb->s_subtype)
  1699. goto err;
  1700. return mnt;
  1701. err:
  1702. mntput(mnt);
  1703. return ERR_PTR(err);
  1704. }
  1705. /*
  1706. * add a mount into a namespace's mount tree
  1707. */
  1708. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  1709. {
  1710. struct mountpoint *mp;
  1711. struct mount *parent;
  1712. int err;
  1713. mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
  1714. mp = lock_mount(path);
  1715. if (IS_ERR(mp))
  1716. return PTR_ERR(mp);
  1717. parent = real_mount(path->mnt);
  1718. err = -EINVAL;
  1719. if (unlikely(!check_mnt(parent))) {
  1720. /* that's acceptable only for automounts done in private ns */
  1721. if (!(mnt_flags & MNT_SHRINKABLE))
  1722. goto unlock;
  1723. /* ... and for those we'd better have mountpoint still alive */
  1724. if (!parent->mnt_ns)
  1725. goto unlock;
  1726. }
  1727. /* Refuse the same filesystem on the same mount point */
  1728. err = -EBUSY;
  1729. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  1730. path->mnt->mnt_root == path->dentry)
  1731. goto unlock;
  1732. err = -EINVAL;
  1733. if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
  1734. goto unlock;
  1735. newmnt->mnt.mnt_flags = mnt_flags;
  1736. err = graft_tree(newmnt, parent, mp);
  1737. unlock:
  1738. unlock_mount(mp);
  1739. return err;
  1740. }
  1741. /*
  1742. * create a new mount for userspace and request it to be added into the
  1743. * namespace's tree
  1744. */
  1745. static int do_new_mount(struct path *path, const char *fstype, int flags,
  1746. int mnt_flags, const char *name, void *data)
  1747. {
  1748. struct file_system_type *type;
  1749. struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
  1750. struct vfsmount *mnt;
  1751. int err;
  1752. if (!fstype)
  1753. return -EINVAL;
  1754. type = get_fs_type(fstype);
  1755. if (!type)
  1756. return -ENODEV;
  1757. if (user_ns != &init_user_ns) {
  1758. if (!(type->fs_flags & FS_USERNS_MOUNT)) {
  1759. put_filesystem(type);
  1760. return -EPERM;
  1761. }
  1762. /* Only in special cases allow devices from mounts
  1763. * created outside the initial user namespace.
  1764. */
  1765. if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
  1766. flags |= MS_NODEV;
  1767. mnt_flags |= MNT_NODEV;
  1768. }
  1769. }
  1770. mnt = vfs_kern_mount(type, flags, name, data);
  1771. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  1772. !mnt->mnt_sb->s_subtype)
  1773. mnt = fs_set_subtype(mnt, fstype);
  1774. put_filesystem(type);
  1775. if (IS_ERR(mnt))
  1776. return PTR_ERR(mnt);
  1777. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  1778. if (err)
  1779. mntput(mnt);
  1780. return err;
  1781. }
  1782. int finish_automount(struct vfsmount *m, struct path *path)
  1783. {
  1784. struct mount *mnt = real_mount(m);
  1785. int err;
  1786. /* The new mount record should have at least 2 refs to prevent it being
  1787. * expired before we get a chance to add it
  1788. */
  1789. BUG_ON(mnt_get_count(mnt) < 2);
  1790. if (m->mnt_sb == path->mnt->mnt_sb &&
  1791. m->mnt_root == path->dentry) {
  1792. err = -ELOOP;
  1793. goto fail;
  1794. }
  1795. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  1796. if (!err)
  1797. return 0;
  1798. fail:
  1799. /* remove m from any expiration list it may be on */
  1800. if (!list_empty(&mnt->mnt_expire)) {
  1801. namespace_lock();
  1802. list_del_init(&mnt->mnt_expire);
  1803. namespace_unlock();
  1804. }
  1805. mntput(m);
  1806. mntput(m);
  1807. return err;
  1808. }
  1809. /**
  1810. * mnt_set_expiry - Put a mount on an expiration list
  1811. * @mnt: The mount to list.
  1812. * @expiry_list: The list to add the mount to.
  1813. */
  1814. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1815. {
  1816. namespace_lock();
  1817. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  1818. namespace_unlock();
  1819. }
  1820. EXPORT_SYMBOL(mnt_set_expiry);
  1821. /*
  1822. * process a list of expirable mountpoints with the intent of discarding any
  1823. * mountpoints that aren't in use and haven't been touched since last we came
  1824. * here
  1825. */
  1826. void mark_mounts_for_expiry(struct list_head *mounts)
  1827. {
  1828. struct mount *mnt, *next;
  1829. LIST_HEAD(graveyard);
  1830. if (list_empty(mounts))
  1831. return;
  1832. namespace_lock();
  1833. br_write_lock(&vfsmount_lock);
  1834. /* extract from the expiration list every vfsmount that matches the
  1835. * following criteria:
  1836. * - only referenced by its parent vfsmount
  1837. * - still marked for expiry (marked on the last call here; marks are
  1838. * cleared by mntput())
  1839. */
  1840. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1841. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1842. propagate_mount_busy(mnt, 1))
  1843. continue;
  1844. list_move(&mnt->mnt_expire, &graveyard);
  1845. }
  1846. while (!list_empty(&graveyard)) {
  1847. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  1848. touch_mnt_namespace(mnt->mnt_ns);
  1849. umount_tree(mnt, 1);
  1850. }
  1851. br_write_unlock(&vfsmount_lock);
  1852. namespace_unlock();
  1853. }
  1854. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1855. /*
  1856. * Ripoff of 'select_parent()'
  1857. *
  1858. * search the list of submounts for a given mountpoint, and move any
  1859. * shrinkable submounts to the 'graveyard' list.
  1860. */
  1861. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  1862. {
  1863. struct mount *this_parent = parent;
  1864. struct list_head *next;
  1865. int found = 0;
  1866. repeat:
  1867. next = this_parent->mnt_mounts.next;
  1868. resume:
  1869. while (next != &this_parent->mnt_mounts) {
  1870. struct list_head *tmp = next;
  1871. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  1872. next = tmp->next;
  1873. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  1874. continue;
  1875. /*
  1876. * Descend a level if the d_mounts list is non-empty.
  1877. */
  1878. if (!list_empty(&mnt->mnt_mounts)) {
  1879. this_parent = mnt;
  1880. goto repeat;
  1881. }
  1882. if (!propagate_mount_busy(mnt, 1)) {
  1883. list_move_tail(&mnt->mnt_expire, graveyard);
  1884. found++;
  1885. }
  1886. }
  1887. /*
  1888. * All done at this level ... ascend and resume the search
  1889. */
  1890. if (this_parent != parent) {
  1891. next = this_parent->mnt_child.next;
  1892. this_parent = this_parent->mnt_parent;
  1893. goto resume;
  1894. }
  1895. return found;
  1896. }
  1897. /*
  1898. * process a list of expirable mountpoints with the intent of discarding any
  1899. * submounts of a specific parent mountpoint
  1900. *
  1901. * vfsmount_lock must be held for write
  1902. */
  1903. static void shrink_submounts(struct mount *mnt)
  1904. {
  1905. LIST_HEAD(graveyard);
  1906. struct mount *m;
  1907. /* extract submounts of 'mountpoint' from the expiration list */
  1908. while (select_submounts(mnt, &graveyard)) {
  1909. while (!list_empty(&graveyard)) {
  1910. m = list_first_entry(&graveyard, struct mount,
  1911. mnt_expire);
  1912. touch_mnt_namespace(m->mnt_ns);
  1913. umount_tree(m, 1);
  1914. }
  1915. }
  1916. }
  1917. /*
  1918. * Some copy_from_user() implementations do not return the exact number of
  1919. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1920. * Note that this function differs from copy_from_user() in that it will oops
  1921. * on bad values of `to', rather than returning a short copy.
  1922. */
  1923. static long exact_copy_from_user(void *to, const void __user * from,
  1924. unsigned long n)
  1925. {
  1926. char *t = to;
  1927. const char __user *f = from;
  1928. char c;
  1929. if (!access_ok(VERIFY_READ, from, n))
  1930. return n;
  1931. while (n) {
  1932. if (__get_user(c, f)) {
  1933. memset(t, 0, n);
  1934. break;
  1935. }
  1936. *t++ = c;
  1937. f++;
  1938. n--;
  1939. }
  1940. return n;
  1941. }
  1942. int copy_mount_options(const void __user * data, unsigned long *where)
  1943. {
  1944. int i;
  1945. unsigned long page;
  1946. unsigned long size;
  1947. *where = 0;
  1948. if (!data)
  1949. return 0;
  1950. if (!(page = __get_free_page(GFP_KERNEL)))
  1951. return -ENOMEM;
  1952. /* We only care that *some* data at the address the user
  1953. * gave us is valid. Just in case, we'll zero
  1954. * the remainder of the page.
  1955. */
  1956. /* copy_from_user cannot cross TASK_SIZE ! */
  1957. size = TASK_SIZE - (unsigned long)data;
  1958. if (size > PAGE_SIZE)
  1959. size = PAGE_SIZE;
  1960. i = size - exact_copy_from_user((void *)page, data, size);
  1961. if (!i) {
  1962. free_page(page);
  1963. return -EFAULT;
  1964. }
  1965. if (i != PAGE_SIZE)
  1966. memset((char *)page + i, 0, PAGE_SIZE - i);
  1967. *where = page;
  1968. return 0;
  1969. }
  1970. int copy_mount_string(const void __user *data, char **where)
  1971. {
  1972. char *tmp;
  1973. if (!data) {
  1974. *where = NULL;
  1975. return 0;
  1976. }
  1977. tmp = strndup_user(data, PAGE_SIZE);
  1978. if (IS_ERR(tmp))
  1979. return PTR_ERR(tmp);
  1980. *where = tmp;
  1981. return 0;
  1982. }
  1983. /*
  1984. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1985. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1986. *
  1987. * data is a (void *) that can point to any structure up to
  1988. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1989. * information (or be NULL).
  1990. *
  1991. * Pre-0.97 versions of mount() didn't have a flags word.
  1992. * When the flags word was introduced its top half was required
  1993. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1994. * Therefore, if this magic number is present, it carries no information
  1995. * and must be discarded.
  1996. */
  1997. long do_mount(const char *dev_name, const char *dir_name,
  1998. const char *type_page, unsigned long flags, void *data_page)
  1999. {
  2000. struct path path;
  2001. int retval = 0;
  2002. int mnt_flags = 0;
  2003. /* Discard magic */
  2004. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2005. flags &= ~MS_MGC_MSK;
  2006. /* Basic sanity checks */
  2007. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  2008. return -EINVAL;
  2009. if (data_page)
  2010. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2011. /* ... and get the mountpoint */
  2012. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  2013. if (retval)
  2014. return retval;
  2015. retval = security_sb_mount(dev_name, &path,
  2016. type_page, flags, data_page);
  2017. if (!retval && !may_mount())
  2018. retval = -EPERM;
  2019. if (retval)
  2020. goto dput_out;
  2021. /* Default to relatime unless overriden */
  2022. if (!(flags & MS_NOATIME))
  2023. mnt_flags |= MNT_RELATIME;
  2024. /* Separate the per-mountpoint flags */
  2025. if (flags & MS_NOSUID)
  2026. mnt_flags |= MNT_NOSUID;
  2027. if (flags & MS_NODEV)
  2028. mnt_flags |= MNT_NODEV;
  2029. if (flags & MS_NOEXEC)
  2030. mnt_flags |= MNT_NOEXEC;
  2031. if (flags & MS_NOATIME)
  2032. mnt_flags |= MNT_NOATIME;
  2033. if (flags & MS_NODIRATIME)
  2034. mnt_flags |= MNT_NODIRATIME;
  2035. if (flags & MS_STRICTATIME)
  2036. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2037. if (flags & MS_RDONLY)
  2038. mnt_flags |= MNT_READONLY;
  2039. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2040. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2041. MS_STRICTATIME);
  2042. if (flags & MS_REMOUNT)
  2043. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2044. data_page);
  2045. else if (flags & MS_BIND)
  2046. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2047. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2048. retval = do_change_type(&path, flags);
  2049. else if (flags & MS_MOVE)
  2050. retval = do_move_mount(&path, dev_name);
  2051. else
  2052. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2053. dev_name, data_page);
  2054. dput_out:
  2055. path_put(&path);
  2056. return retval;
  2057. }
  2058. static void free_mnt_ns(struct mnt_namespace *ns)
  2059. {
  2060. proc_free_inum(ns->proc_inum);
  2061. put_user_ns(ns->user_ns);
  2062. kfree(ns);
  2063. }
  2064. /*
  2065. * Assign a sequence number so we can detect when we attempt to bind
  2066. * mount a reference to an older mount namespace into the current
  2067. * mount namespace, preventing reference counting loops. A 64bit
  2068. * number incrementing at 10Ghz will take 12,427 years to wrap which
  2069. * is effectively never, so we can ignore the possibility.
  2070. */
  2071. static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
  2072. static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
  2073. {
  2074. struct mnt_namespace *new_ns;
  2075. int ret;
  2076. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2077. if (!new_ns)
  2078. return ERR_PTR(-ENOMEM);
  2079. ret = proc_alloc_inum(&new_ns->proc_inum);
  2080. if (ret) {
  2081. kfree(new_ns);
  2082. return ERR_PTR(ret);
  2083. }
  2084. new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
  2085. atomic_set(&new_ns->count, 1);
  2086. new_ns->root = NULL;
  2087. INIT_LIST_HEAD(&new_ns->list);
  2088. init_waitqueue_head(&new_ns->poll);
  2089. new_ns->event = 0;
  2090. new_ns->user_ns = get_user_ns(user_ns);
  2091. return new_ns;
  2092. }
  2093. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2094. struct user_namespace *user_ns, struct fs_struct *new_fs)
  2095. {
  2096. struct mnt_namespace *new_ns;
  2097. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2098. struct mount *p, *q;
  2099. struct mount *old;
  2100. struct mount *new;
  2101. int copy_flags;
  2102. BUG_ON(!ns);
  2103. if (likely(!(flags & CLONE_NEWNS))) {
  2104. get_mnt_ns(ns);
  2105. return ns;
  2106. }
  2107. old = ns->root;
  2108. new_ns = alloc_mnt_ns(user_ns);
  2109. if (IS_ERR(new_ns))
  2110. return new_ns;
  2111. namespace_lock();
  2112. /* First pass: copy the tree topology */
  2113. copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
  2114. if (user_ns != ns->user_ns)
  2115. copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
  2116. new = copy_tree(old, old->mnt.mnt_root, copy_flags);
  2117. if (IS_ERR(new)) {
  2118. namespace_unlock();
  2119. free_mnt_ns(new_ns);
  2120. return ERR_CAST(new);
  2121. }
  2122. new_ns->root = new;
  2123. list_add_tail(&new_ns->list, &new->mnt_list);
  2124. /*
  2125. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2126. * as belonging to new namespace. We have already acquired a private
  2127. * fs_struct, so tsk->fs->lock is not needed.
  2128. */
  2129. p = old;
  2130. q = new;
  2131. while (p) {
  2132. q->mnt_ns = new_ns;
  2133. if (new_fs) {
  2134. if (&p->mnt == new_fs->root.mnt) {
  2135. new_fs->root.mnt = mntget(&q->mnt);
  2136. rootmnt = &p->mnt;
  2137. }
  2138. if (&p->mnt == new_fs->pwd.mnt) {
  2139. new_fs->pwd.mnt = mntget(&q->mnt);
  2140. pwdmnt = &p->mnt;
  2141. }
  2142. }
  2143. p = next_mnt(p, old);
  2144. q = next_mnt(q, new);
  2145. if (!q)
  2146. break;
  2147. while (p->mnt.mnt_root != q->mnt.mnt_root)
  2148. p = next_mnt(p, old);
  2149. }
  2150. namespace_unlock();
  2151. if (rootmnt)
  2152. mntput(rootmnt);
  2153. if (pwdmnt)
  2154. mntput(pwdmnt);
  2155. return new_ns;
  2156. }
  2157. /**
  2158. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2159. * @mnt: pointer to the new root filesystem mountpoint
  2160. */
  2161. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2162. {
  2163. struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
  2164. if (!IS_ERR(new_ns)) {
  2165. struct mount *mnt = real_mount(m);
  2166. mnt->mnt_ns = new_ns;
  2167. new_ns->root = mnt;
  2168. list_add(&mnt->mnt_list, &new_ns->list);
  2169. } else {
  2170. mntput(m);
  2171. }
  2172. return new_ns;
  2173. }
  2174. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2175. {
  2176. struct mnt_namespace *ns;
  2177. struct super_block *s;
  2178. struct path path;
  2179. int err;
  2180. ns = create_mnt_ns(mnt);
  2181. if (IS_ERR(ns))
  2182. return ERR_CAST(ns);
  2183. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2184. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2185. put_mnt_ns(ns);
  2186. if (err)
  2187. return ERR_PTR(err);
  2188. /* trade a vfsmount reference for active sb one */
  2189. s = path.mnt->mnt_sb;
  2190. atomic_inc(&s->s_active);
  2191. mntput(path.mnt);
  2192. /* lock the sucker */
  2193. down_write(&s->s_umount);
  2194. /* ... and return the root of (sub)tree on it */
  2195. return path.dentry;
  2196. }
  2197. EXPORT_SYMBOL(mount_subtree);
  2198. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2199. char __user *, type, unsigned long, flags, void __user *, data)
  2200. {
  2201. int ret;
  2202. char *kernel_type;
  2203. struct filename *kernel_dir;
  2204. char *kernel_dev;
  2205. unsigned long data_page;
  2206. ret = copy_mount_string(type, &kernel_type);
  2207. if (ret < 0)
  2208. goto out_type;
  2209. kernel_dir = getname(dir_name);
  2210. if (IS_ERR(kernel_dir)) {
  2211. ret = PTR_ERR(kernel_dir);
  2212. goto out_dir;
  2213. }
  2214. ret = copy_mount_string(dev_name, &kernel_dev);
  2215. if (ret < 0)
  2216. goto out_dev;
  2217. ret = copy_mount_options(data, &data_page);
  2218. if (ret < 0)
  2219. goto out_data;
  2220. ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
  2221. (void *) data_page);
  2222. free_page(data_page);
  2223. out_data:
  2224. kfree(kernel_dev);
  2225. out_dev:
  2226. putname(kernel_dir);
  2227. out_dir:
  2228. kfree(kernel_type);
  2229. out_type:
  2230. return ret;
  2231. }
  2232. /*
  2233. * Return true if path is reachable from root
  2234. *
  2235. * namespace_sem or vfsmount_lock is held
  2236. */
  2237. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2238. const struct path *root)
  2239. {
  2240. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2241. dentry = mnt->mnt_mountpoint;
  2242. mnt = mnt->mnt_parent;
  2243. }
  2244. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2245. }
  2246. int path_is_under(struct path *path1, struct path *path2)
  2247. {
  2248. int res;
  2249. br_read_lock(&vfsmount_lock);
  2250. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2251. br_read_unlock(&vfsmount_lock);
  2252. return res;
  2253. }
  2254. EXPORT_SYMBOL(path_is_under);
  2255. /*
  2256. * pivot_root Semantics:
  2257. * Moves the root file system of the current process to the directory put_old,
  2258. * makes new_root as the new root file system of the current process, and sets
  2259. * root/cwd of all processes which had them on the current root to new_root.
  2260. *
  2261. * Restrictions:
  2262. * The new_root and put_old must be directories, and must not be on the
  2263. * same file system as the current process root. The put_old must be
  2264. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2265. * pointed to by put_old must yield the same directory as new_root. No other
  2266. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2267. *
  2268. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2269. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2270. * in this situation.
  2271. *
  2272. * Notes:
  2273. * - we don't move root/cwd if they are not at the root (reason: if something
  2274. * cared enough to change them, it's probably wrong to force them elsewhere)
  2275. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2276. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2277. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2278. * first.
  2279. */
  2280. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2281. const char __user *, put_old)
  2282. {
  2283. struct path new, old, parent_path, root_parent, root;
  2284. struct mount *new_mnt, *root_mnt, *old_mnt;
  2285. struct mountpoint *old_mp, *root_mp;
  2286. int error;
  2287. if (!may_mount())
  2288. return -EPERM;
  2289. error = user_path_dir(new_root, &new);
  2290. if (error)
  2291. goto out0;
  2292. error = user_path_dir(put_old, &old);
  2293. if (error)
  2294. goto out1;
  2295. error = security_sb_pivotroot(&old, &new);
  2296. if (error)
  2297. goto out2;
  2298. get_fs_root(current->fs, &root);
  2299. old_mp = lock_mount(&old);
  2300. error = PTR_ERR(old_mp);
  2301. if (IS_ERR(old_mp))
  2302. goto out3;
  2303. error = -EINVAL;
  2304. new_mnt = real_mount(new.mnt);
  2305. root_mnt = real_mount(root.mnt);
  2306. old_mnt = real_mount(old.mnt);
  2307. if (IS_MNT_SHARED(old_mnt) ||
  2308. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2309. IS_MNT_SHARED(root_mnt->mnt_parent))
  2310. goto out4;
  2311. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2312. goto out4;
  2313. if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
  2314. goto out4;
  2315. error = -ENOENT;
  2316. if (d_unlinked(new.dentry))
  2317. goto out4;
  2318. error = -EBUSY;
  2319. if (new_mnt == root_mnt || old_mnt == root_mnt)
  2320. goto out4; /* loop, on the same file system */
  2321. error = -EINVAL;
  2322. if (root.mnt->mnt_root != root.dentry)
  2323. goto out4; /* not a mountpoint */
  2324. if (!mnt_has_parent(root_mnt))
  2325. goto out4; /* not attached */
  2326. root_mp = root_mnt->mnt_mp;
  2327. if (new.mnt->mnt_root != new.dentry)
  2328. goto out4; /* not a mountpoint */
  2329. if (!mnt_has_parent(new_mnt))
  2330. goto out4; /* not attached */
  2331. /* make sure we can reach put_old from new_root */
  2332. if (!is_path_reachable(old_mnt, old.dentry, &new))
  2333. goto out4;
  2334. root_mp->m_count++; /* pin it so it won't go away */
  2335. br_write_lock(&vfsmount_lock);
  2336. detach_mnt(new_mnt, &parent_path);
  2337. detach_mnt(root_mnt, &root_parent);
  2338. if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
  2339. new_mnt->mnt.mnt_flags |= MNT_LOCKED;
  2340. root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
  2341. }
  2342. /* mount old root on put_old */
  2343. attach_mnt(root_mnt, old_mnt, old_mp);
  2344. /* mount new_root on / */
  2345. attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
  2346. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2347. br_write_unlock(&vfsmount_lock);
  2348. chroot_fs_refs(&root, &new);
  2349. put_mountpoint(root_mp);
  2350. error = 0;
  2351. out4:
  2352. unlock_mount(old_mp);
  2353. if (!error) {
  2354. path_put(&root_parent);
  2355. path_put(&parent_path);
  2356. }
  2357. out3:
  2358. path_put(&root);
  2359. out2:
  2360. path_put(&old);
  2361. out1:
  2362. path_put(&new);
  2363. out0:
  2364. return error;
  2365. }
  2366. static void __init init_mount_tree(void)
  2367. {
  2368. struct vfsmount *mnt;
  2369. struct mnt_namespace *ns;
  2370. struct path root;
  2371. struct file_system_type *type;
  2372. type = get_fs_type("rootfs");
  2373. if (!type)
  2374. panic("Can't find rootfs type");
  2375. mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
  2376. put_filesystem(type);
  2377. if (IS_ERR(mnt))
  2378. panic("Can't create rootfs");
  2379. ns = create_mnt_ns(mnt);
  2380. if (IS_ERR(ns))
  2381. panic("Can't allocate initial namespace");
  2382. init_task.nsproxy->mnt_ns = ns;
  2383. get_mnt_ns(ns);
  2384. root.mnt = mnt;
  2385. root.dentry = mnt->mnt_root;
  2386. set_fs_pwd(current->fs, &root);
  2387. set_fs_root(current->fs, &root);
  2388. }
  2389. void __init mnt_init(void)
  2390. {
  2391. unsigned u;
  2392. int err;
  2393. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2394. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2395. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2396. mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2397. if (!mount_hashtable || !mountpoint_hashtable)
  2398. panic("Failed to allocate mount hash table\n");
  2399. printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2400. for (u = 0; u < HASH_SIZE; u++)
  2401. INIT_LIST_HEAD(&mount_hashtable[u]);
  2402. for (u = 0; u < HASH_SIZE; u++)
  2403. INIT_LIST_HEAD(&mountpoint_hashtable[u]);
  2404. br_lock_init(&vfsmount_lock);
  2405. err = sysfs_init();
  2406. if (err)
  2407. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2408. __func__, err);
  2409. fs_kobj = kobject_create_and_add("fs", NULL);
  2410. if (!fs_kobj)
  2411. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2412. init_rootfs();
  2413. init_mount_tree();
  2414. }
  2415. void put_mnt_ns(struct mnt_namespace *ns)
  2416. {
  2417. if (!atomic_dec_and_test(&ns->count))
  2418. return;
  2419. drop_collected_mounts(&ns->root->mnt);
  2420. free_mnt_ns(ns);
  2421. }
  2422. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2423. {
  2424. struct vfsmount *mnt;
  2425. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2426. if (!IS_ERR(mnt)) {
  2427. /*
  2428. * it is a longterm mount, don't release mnt until
  2429. * we unmount before file sys is unregistered
  2430. */
  2431. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2432. }
  2433. return mnt;
  2434. }
  2435. EXPORT_SYMBOL_GPL(kern_mount_data);
  2436. void kern_unmount(struct vfsmount *mnt)
  2437. {
  2438. /* release long term mount so mount point can be released */
  2439. if (!IS_ERR_OR_NULL(mnt)) {
  2440. br_write_lock(&vfsmount_lock);
  2441. real_mount(mnt)->mnt_ns = NULL;
  2442. br_write_unlock(&vfsmount_lock);
  2443. mntput(mnt);
  2444. }
  2445. }
  2446. EXPORT_SYMBOL(kern_unmount);
  2447. bool our_mnt(struct vfsmount *mnt)
  2448. {
  2449. return check_mnt(real_mount(mnt));
  2450. }
  2451. bool current_chrooted(void)
  2452. {
  2453. /* Does the current process have a non-standard root */
  2454. struct path ns_root;
  2455. struct path fs_root;
  2456. bool chrooted;
  2457. /* Find the namespace root */
  2458. ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
  2459. ns_root.dentry = ns_root.mnt->mnt_root;
  2460. path_get(&ns_root);
  2461. while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
  2462. ;
  2463. get_fs_root(current->fs, &fs_root);
  2464. chrooted = !path_equal(&fs_root, &ns_root);
  2465. path_put(&fs_root);
  2466. path_put(&ns_root);
  2467. return chrooted;
  2468. }
  2469. bool fs_fully_visible(struct file_system_type *type)
  2470. {
  2471. struct mnt_namespace *ns = current->nsproxy->mnt_ns;
  2472. struct mount *mnt;
  2473. bool visible = false;
  2474. if (unlikely(!ns))
  2475. return false;
  2476. down_read(&namespace_sem);
  2477. list_for_each_entry(mnt, &ns->list, mnt_list) {
  2478. struct mount *child;
  2479. if (mnt->mnt.mnt_sb->s_type != type)
  2480. continue;
  2481. /* This mount is not fully visible if there are any child mounts
  2482. * that cover anything except for empty directories.
  2483. */
  2484. list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
  2485. struct inode *inode = child->mnt_mountpoint->d_inode;
  2486. if (!S_ISDIR(inode->i_mode))
  2487. goto next;
  2488. if (inode->i_nlink != 2)
  2489. goto next;
  2490. }
  2491. visible = true;
  2492. goto found;
  2493. next: ;
  2494. }
  2495. found:
  2496. up_read(&namespace_sem);
  2497. return visible;
  2498. }
  2499. static void *mntns_get(struct task_struct *task)
  2500. {
  2501. struct mnt_namespace *ns = NULL;
  2502. struct nsproxy *nsproxy;
  2503. rcu_read_lock();
  2504. nsproxy = task_nsproxy(task);
  2505. if (nsproxy) {
  2506. ns = nsproxy->mnt_ns;
  2507. get_mnt_ns(ns);
  2508. }
  2509. rcu_read_unlock();
  2510. return ns;
  2511. }
  2512. static void mntns_put(void *ns)
  2513. {
  2514. put_mnt_ns(ns);
  2515. }
  2516. static int mntns_install(struct nsproxy *nsproxy, void *ns)
  2517. {
  2518. struct fs_struct *fs = current->fs;
  2519. struct mnt_namespace *mnt_ns = ns;
  2520. struct path root;
  2521. if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
  2522. !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
  2523. !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
  2524. return -EPERM;
  2525. if (fs->users != 1)
  2526. return -EINVAL;
  2527. get_mnt_ns(mnt_ns);
  2528. put_mnt_ns(nsproxy->mnt_ns);
  2529. nsproxy->mnt_ns = mnt_ns;
  2530. /* Find the root */
  2531. root.mnt = &mnt_ns->root->mnt;
  2532. root.dentry = mnt_ns->root->mnt.mnt_root;
  2533. path_get(&root);
  2534. while(d_mountpoint(root.dentry) && follow_down_one(&root))
  2535. ;
  2536. /* Update the pwd and root */
  2537. set_fs_pwd(fs, &root);
  2538. set_fs_root(fs, &root);
  2539. path_put(&root);
  2540. return 0;
  2541. }
  2542. static unsigned int mntns_inum(void *ns)
  2543. {
  2544. struct mnt_namespace *mnt_ns = ns;
  2545. return mnt_ns->proc_inum;
  2546. }
  2547. const struct proc_ns_operations mntns_operations = {
  2548. .name = "mnt",
  2549. .type = CLONE_NEWNS,
  2550. .get = mntns_get,
  2551. .put = mntns_put,
  2552. .install = mntns_install,
  2553. .inum = mntns_inum,
  2554. };