slub.c 111 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/swap.h> /* struct reclaim_state */
  12. #include <linux/module.h>
  13. #include <linux/bit_spinlock.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/bitops.h>
  16. #include <linux/slab.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/kmemcheck.h>
  20. #include <linux/cpu.h>
  21. #include <linux/cpuset.h>
  22. #include <linux/mempolicy.h>
  23. #include <linux/ctype.h>
  24. #include <linux/debugobjects.h>
  25. #include <linux/kallsyms.h>
  26. #include <linux/memory.h>
  27. #include <linux/math64.h>
  28. #include <linux/fault-inject.h>
  29. #include <trace/events/kmem.h>
  30. /*
  31. * Lock order:
  32. * 1. slab_lock(page)
  33. * 2. slab->list_lock
  34. *
  35. * The slab_lock protects operations on the object of a particular
  36. * slab and its metadata in the page struct. If the slab lock
  37. * has been taken then no allocations nor frees can be performed
  38. * on the objects in the slab nor can the slab be added or removed
  39. * from the partial or full lists since this would mean modifying
  40. * the page_struct of the slab.
  41. *
  42. * The list_lock protects the partial and full list on each node and
  43. * the partial slab counter. If taken then no new slabs may be added or
  44. * removed from the lists nor make the number of partial slabs be modified.
  45. * (Note that the total number of slabs is an atomic value that may be
  46. * modified without taking the list lock).
  47. *
  48. * The list_lock is a centralized lock and thus we avoid taking it as
  49. * much as possible. As long as SLUB does not have to handle partial
  50. * slabs, operations can continue without any centralized lock. F.e.
  51. * allocating a long series of objects that fill up slabs does not require
  52. * the list lock.
  53. *
  54. * The lock order is sometimes inverted when we are trying to get a slab
  55. * off a list. We take the list_lock and then look for a page on the list
  56. * to use. While we do that objects in the slabs may be freed. We can
  57. * only operate on the slab if we have also taken the slab_lock. So we use
  58. * a slab_trylock() on the slab. If trylock was successful then no frees
  59. * can occur anymore and we can use the slab for allocations etc. If the
  60. * slab_trylock() does not succeed then frees are in progress in the slab and
  61. * we must stay away from it for a while since we may cause a bouncing
  62. * cacheline if we try to acquire the lock. So go onto the next slab.
  63. * If all pages are busy then we may allocate a new slab instead of reusing
  64. * a partial slab. A new slab has noone operating on it and thus there is
  65. * no danger of cacheline contention.
  66. *
  67. * Interrupts are disabled during allocation and deallocation in order to
  68. * make the slab allocator safe to use in the context of an irq. In addition
  69. * interrupts are disabled to ensure that the processor does not change
  70. * while handling per_cpu slabs, due to kernel preemption.
  71. *
  72. * SLUB assigns one slab for allocation to each processor.
  73. * Allocations only occur from these slabs called cpu slabs.
  74. *
  75. * Slabs with free elements are kept on a partial list and during regular
  76. * operations no list for full slabs is used. If an object in a full slab is
  77. * freed then the slab will show up again on the partial lists.
  78. * We track full slabs for debugging purposes though because otherwise we
  79. * cannot scan all objects.
  80. *
  81. * Slabs are freed when they become empty. Teardown and setup is
  82. * minimal so we rely on the page allocators per cpu caches for
  83. * fast frees and allocs.
  84. *
  85. * Overloading of page flags that are otherwise used for LRU management.
  86. *
  87. * PageActive The slab is frozen and exempt from list processing.
  88. * This means that the slab is dedicated to a purpose
  89. * such as satisfying allocations for a specific
  90. * processor. Objects may be freed in the slab while
  91. * it is frozen but slab_free will then skip the usual
  92. * list operations. It is up to the processor holding
  93. * the slab to integrate the slab into the slab lists
  94. * when the slab is no longer needed.
  95. *
  96. * One use of this flag is to mark slabs that are
  97. * used for allocations. Then such a slab becomes a cpu
  98. * slab. The cpu slab may be equipped with an additional
  99. * freelist that allows lockless access to
  100. * free objects in addition to the regular freelist
  101. * that requires the slab lock.
  102. *
  103. * PageError Slab requires special handling due to debug
  104. * options set. This moves slab handling out of
  105. * the fast path and disables lockless freelists.
  106. */
  107. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  108. SLAB_TRACE | SLAB_DEBUG_FREE)
  109. static inline int kmem_cache_debug(struct kmem_cache *s)
  110. {
  111. #ifdef CONFIG_SLUB_DEBUG
  112. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  113. #else
  114. return 0;
  115. #endif
  116. }
  117. /*
  118. * Issues still to be resolved:
  119. *
  120. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  121. *
  122. * - Variable sizing of the per node arrays
  123. */
  124. /* Enable to test recovery from slab corruption on boot */
  125. #undef SLUB_RESILIENCY_TEST
  126. /*
  127. * Mininum number of partial slabs. These will be left on the partial
  128. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  129. */
  130. #define MIN_PARTIAL 5
  131. /*
  132. * Maximum number of desirable partial slabs.
  133. * The existence of more partial slabs makes kmem_cache_shrink
  134. * sort the partial list by the number of objects in the.
  135. */
  136. #define MAX_PARTIAL 10
  137. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  138. SLAB_POISON | SLAB_STORE_USER)
  139. /*
  140. * Debugging flags that require metadata to be stored in the slab. These get
  141. * disabled when slub_debug=O is used and a cache's min order increases with
  142. * metadata.
  143. */
  144. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  145. /*
  146. * Set of flags that will prevent slab merging
  147. */
  148. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  149. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  150. SLAB_FAILSLAB)
  151. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  152. SLAB_CACHE_DMA | SLAB_NOTRACK)
  153. #define OO_SHIFT 16
  154. #define OO_MASK ((1 << OO_SHIFT) - 1)
  155. #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
  156. /* Internal SLUB flags */
  157. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  158. static int kmem_size = sizeof(struct kmem_cache);
  159. #ifdef CONFIG_SMP
  160. static struct notifier_block slab_notifier;
  161. #endif
  162. static enum {
  163. DOWN, /* No slab functionality available */
  164. PARTIAL, /* Kmem_cache_node works */
  165. UP, /* Everything works but does not show up in sysfs */
  166. SYSFS /* Sysfs up */
  167. } slab_state = DOWN;
  168. /* A list of all slab caches on the system */
  169. static DECLARE_RWSEM(slub_lock);
  170. static LIST_HEAD(slab_caches);
  171. /*
  172. * Tracking user of a slab.
  173. */
  174. struct track {
  175. unsigned long addr; /* Called from address */
  176. int cpu; /* Was running on cpu */
  177. int pid; /* Pid context */
  178. unsigned long when; /* When did the operation occur */
  179. };
  180. enum track_item { TRACK_ALLOC, TRACK_FREE };
  181. #ifdef CONFIG_SYSFS
  182. static int sysfs_slab_add(struct kmem_cache *);
  183. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  184. static void sysfs_slab_remove(struct kmem_cache *);
  185. #else
  186. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  187. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  188. { return 0; }
  189. static inline void sysfs_slab_remove(struct kmem_cache *s)
  190. {
  191. kfree(s->name);
  192. kfree(s);
  193. }
  194. #endif
  195. static inline void stat(struct kmem_cache *s, enum stat_item si)
  196. {
  197. #ifdef CONFIG_SLUB_STATS
  198. __this_cpu_inc(s->cpu_slab->stat[si]);
  199. #endif
  200. }
  201. /********************************************************************
  202. * Core slab cache functions
  203. *******************************************************************/
  204. int slab_is_available(void)
  205. {
  206. return slab_state >= UP;
  207. }
  208. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  209. {
  210. return s->node[node];
  211. }
  212. /* Verify that a pointer has an address that is valid within a slab page */
  213. static inline int check_valid_pointer(struct kmem_cache *s,
  214. struct page *page, const void *object)
  215. {
  216. void *base;
  217. if (!object)
  218. return 1;
  219. base = page_address(page);
  220. if (object < base || object >= base + page->objects * s->size ||
  221. (object - base) % s->size) {
  222. return 0;
  223. }
  224. return 1;
  225. }
  226. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  227. {
  228. return *(void **)(object + s->offset);
  229. }
  230. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  231. {
  232. *(void **)(object + s->offset) = fp;
  233. }
  234. /* Loop over all objects in a slab */
  235. #define for_each_object(__p, __s, __addr, __objects) \
  236. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  237. __p += (__s)->size)
  238. /* Scan freelist */
  239. #define for_each_free_object(__p, __s, __free) \
  240. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  241. /* Determine object index from a given position */
  242. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  243. {
  244. return (p - addr) / s->size;
  245. }
  246. static inline int order_objects(int order, unsigned long size, int reserved)
  247. {
  248. return ((PAGE_SIZE << order) - reserved) / size;
  249. }
  250. static inline struct kmem_cache_order_objects oo_make(int order,
  251. unsigned long size, int reserved)
  252. {
  253. struct kmem_cache_order_objects x = {
  254. (order << OO_SHIFT) + order_objects(order, size, reserved)
  255. };
  256. return x;
  257. }
  258. static inline int oo_order(struct kmem_cache_order_objects x)
  259. {
  260. return x.x >> OO_SHIFT;
  261. }
  262. static inline int oo_objects(struct kmem_cache_order_objects x)
  263. {
  264. return x.x & OO_MASK;
  265. }
  266. #ifdef CONFIG_SLUB_DEBUG
  267. /*
  268. * Debug settings:
  269. */
  270. #ifdef CONFIG_SLUB_DEBUG_ON
  271. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  272. #else
  273. static int slub_debug;
  274. #endif
  275. static char *slub_debug_slabs;
  276. static int disable_higher_order_debug;
  277. /*
  278. * Object debugging
  279. */
  280. static void print_section(char *text, u8 *addr, unsigned int length)
  281. {
  282. int i, offset;
  283. int newline = 1;
  284. char ascii[17];
  285. ascii[16] = 0;
  286. for (i = 0; i < length; i++) {
  287. if (newline) {
  288. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  289. newline = 0;
  290. }
  291. printk(KERN_CONT " %02x", addr[i]);
  292. offset = i % 16;
  293. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  294. if (offset == 15) {
  295. printk(KERN_CONT " %s\n", ascii);
  296. newline = 1;
  297. }
  298. }
  299. if (!newline) {
  300. i %= 16;
  301. while (i < 16) {
  302. printk(KERN_CONT " ");
  303. ascii[i] = ' ';
  304. i++;
  305. }
  306. printk(KERN_CONT " %s\n", ascii);
  307. }
  308. }
  309. static struct track *get_track(struct kmem_cache *s, void *object,
  310. enum track_item alloc)
  311. {
  312. struct track *p;
  313. if (s->offset)
  314. p = object + s->offset + sizeof(void *);
  315. else
  316. p = object + s->inuse;
  317. return p + alloc;
  318. }
  319. static void set_track(struct kmem_cache *s, void *object,
  320. enum track_item alloc, unsigned long addr)
  321. {
  322. struct track *p = get_track(s, object, alloc);
  323. if (addr) {
  324. p->addr = addr;
  325. p->cpu = smp_processor_id();
  326. p->pid = current->pid;
  327. p->when = jiffies;
  328. } else
  329. memset(p, 0, sizeof(struct track));
  330. }
  331. static void init_tracking(struct kmem_cache *s, void *object)
  332. {
  333. if (!(s->flags & SLAB_STORE_USER))
  334. return;
  335. set_track(s, object, TRACK_FREE, 0UL);
  336. set_track(s, object, TRACK_ALLOC, 0UL);
  337. }
  338. static void print_track(const char *s, struct track *t)
  339. {
  340. if (!t->addr)
  341. return;
  342. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  343. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  344. }
  345. static void print_tracking(struct kmem_cache *s, void *object)
  346. {
  347. if (!(s->flags & SLAB_STORE_USER))
  348. return;
  349. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  350. print_track("Freed", get_track(s, object, TRACK_FREE));
  351. }
  352. static void print_page_info(struct page *page)
  353. {
  354. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  355. page, page->objects, page->inuse, page->freelist, page->flags);
  356. }
  357. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  358. {
  359. va_list args;
  360. char buf[100];
  361. va_start(args, fmt);
  362. vsnprintf(buf, sizeof(buf), fmt, args);
  363. va_end(args);
  364. printk(KERN_ERR "========================================"
  365. "=====================================\n");
  366. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  367. printk(KERN_ERR "----------------------------------------"
  368. "-------------------------------------\n\n");
  369. }
  370. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  371. {
  372. va_list args;
  373. char buf[100];
  374. va_start(args, fmt);
  375. vsnprintf(buf, sizeof(buf), fmt, args);
  376. va_end(args);
  377. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  378. }
  379. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  380. {
  381. unsigned int off; /* Offset of last byte */
  382. u8 *addr = page_address(page);
  383. print_tracking(s, p);
  384. print_page_info(page);
  385. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  386. p, p - addr, get_freepointer(s, p));
  387. if (p > addr + 16)
  388. print_section("Bytes b4", p - 16, 16);
  389. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  390. if (s->flags & SLAB_RED_ZONE)
  391. print_section("Redzone", p + s->objsize,
  392. s->inuse - s->objsize);
  393. if (s->offset)
  394. off = s->offset + sizeof(void *);
  395. else
  396. off = s->inuse;
  397. if (s->flags & SLAB_STORE_USER)
  398. off += 2 * sizeof(struct track);
  399. if (off != s->size)
  400. /* Beginning of the filler is the free pointer */
  401. print_section("Padding", p + off, s->size - off);
  402. dump_stack();
  403. }
  404. static void object_err(struct kmem_cache *s, struct page *page,
  405. u8 *object, char *reason)
  406. {
  407. slab_bug(s, "%s", reason);
  408. print_trailer(s, page, object);
  409. }
  410. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  411. {
  412. va_list args;
  413. char buf[100];
  414. va_start(args, fmt);
  415. vsnprintf(buf, sizeof(buf), fmt, args);
  416. va_end(args);
  417. slab_bug(s, "%s", buf);
  418. print_page_info(page);
  419. dump_stack();
  420. }
  421. static void init_object(struct kmem_cache *s, void *object, u8 val)
  422. {
  423. u8 *p = object;
  424. if (s->flags & __OBJECT_POISON) {
  425. memset(p, POISON_FREE, s->objsize - 1);
  426. p[s->objsize - 1] = POISON_END;
  427. }
  428. if (s->flags & SLAB_RED_ZONE)
  429. memset(p + s->objsize, val, s->inuse - s->objsize);
  430. }
  431. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  432. {
  433. while (bytes) {
  434. if (*start != (u8)value)
  435. return start;
  436. start++;
  437. bytes--;
  438. }
  439. return NULL;
  440. }
  441. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  442. void *from, void *to)
  443. {
  444. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  445. memset(from, data, to - from);
  446. }
  447. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  448. u8 *object, char *what,
  449. u8 *start, unsigned int value, unsigned int bytes)
  450. {
  451. u8 *fault;
  452. u8 *end;
  453. fault = check_bytes(start, value, bytes);
  454. if (!fault)
  455. return 1;
  456. end = start + bytes;
  457. while (end > fault && end[-1] == value)
  458. end--;
  459. slab_bug(s, "%s overwritten", what);
  460. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  461. fault, end - 1, fault[0], value);
  462. print_trailer(s, page, object);
  463. restore_bytes(s, what, value, fault, end);
  464. return 0;
  465. }
  466. /*
  467. * Object layout:
  468. *
  469. * object address
  470. * Bytes of the object to be managed.
  471. * If the freepointer may overlay the object then the free
  472. * pointer is the first word of the object.
  473. *
  474. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  475. * 0xa5 (POISON_END)
  476. *
  477. * object + s->objsize
  478. * Padding to reach word boundary. This is also used for Redzoning.
  479. * Padding is extended by another word if Redzoning is enabled and
  480. * objsize == inuse.
  481. *
  482. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  483. * 0xcc (RED_ACTIVE) for objects in use.
  484. *
  485. * object + s->inuse
  486. * Meta data starts here.
  487. *
  488. * A. Free pointer (if we cannot overwrite object on free)
  489. * B. Tracking data for SLAB_STORE_USER
  490. * C. Padding to reach required alignment boundary or at mininum
  491. * one word if debugging is on to be able to detect writes
  492. * before the word boundary.
  493. *
  494. * Padding is done using 0x5a (POISON_INUSE)
  495. *
  496. * object + s->size
  497. * Nothing is used beyond s->size.
  498. *
  499. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  500. * ignored. And therefore no slab options that rely on these boundaries
  501. * may be used with merged slabcaches.
  502. */
  503. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  504. {
  505. unsigned long off = s->inuse; /* The end of info */
  506. if (s->offset)
  507. /* Freepointer is placed after the object. */
  508. off += sizeof(void *);
  509. if (s->flags & SLAB_STORE_USER)
  510. /* We also have user information there */
  511. off += 2 * sizeof(struct track);
  512. if (s->size == off)
  513. return 1;
  514. return check_bytes_and_report(s, page, p, "Object padding",
  515. p + off, POISON_INUSE, s->size - off);
  516. }
  517. /* Check the pad bytes at the end of a slab page */
  518. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  519. {
  520. u8 *start;
  521. u8 *fault;
  522. u8 *end;
  523. int length;
  524. int remainder;
  525. if (!(s->flags & SLAB_POISON))
  526. return 1;
  527. start = page_address(page);
  528. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  529. end = start + length;
  530. remainder = length % s->size;
  531. if (!remainder)
  532. return 1;
  533. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  534. if (!fault)
  535. return 1;
  536. while (end > fault && end[-1] == POISON_INUSE)
  537. end--;
  538. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  539. print_section("Padding", end - remainder, remainder);
  540. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  541. return 0;
  542. }
  543. static int check_object(struct kmem_cache *s, struct page *page,
  544. void *object, u8 val)
  545. {
  546. u8 *p = object;
  547. u8 *endobject = object + s->objsize;
  548. if (s->flags & SLAB_RED_ZONE) {
  549. if (!check_bytes_and_report(s, page, object, "Redzone",
  550. endobject, val, s->inuse - s->objsize))
  551. return 0;
  552. } else {
  553. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  554. check_bytes_and_report(s, page, p, "Alignment padding",
  555. endobject, POISON_INUSE, s->inuse - s->objsize);
  556. }
  557. }
  558. if (s->flags & SLAB_POISON) {
  559. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  560. (!check_bytes_and_report(s, page, p, "Poison", p,
  561. POISON_FREE, s->objsize - 1) ||
  562. !check_bytes_and_report(s, page, p, "Poison",
  563. p + s->objsize - 1, POISON_END, 1)))
  564. return 0;
  565. /*
  566. * check_pad_bytes cleans up on its own.
  567. */
  568. check_pad_bytes(s, page, p);
  569. }
  570. if (!s->offset && val == SLUB_RED_ACTIVE)
  571. /*
  572. * Object and freepointer overlap. Cannot check
  573. * freepointer while object is allocated.
  574. */
  575. return 1;
  576. /* Check free pointer validity */
  577. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  578. object_err(s, page, p, "Freepointer corrupt");
  579. /*
  580. * No choice but to zap it and thus lose the remainder
  581. * of the free objects in this slab. May cause
  582. * another error because the object count is now wrong.
  583. */
  584. set_freepointer(s, p, NULL);
  585. return 0;
  586. }
  587. return 1;
  588. }
  589. static int check_slab(struct kmem_cache *s, struct page *page)
  590. {
  591. int maxobj;
  592. VM_BUG_ON(!irqs_disabled());
  593. if (!PageSlab(page)) {
  594. slab_err(s, page, "Not a valid slab page");
  595. return 0;
  596. }
  597. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  598. if (page->objects > maxobj) {
  599. slab_err(s, page, "objects %u > max %u",
  600. s->name, page->objects, maxobj);
  601. return 0;
  602. }
  603. if (page->inuse > page->objects) {
  604. slab_err(s, page, "inuse %u > max %u",
  605. s->name, page->inuse, page->objects);
  606. return 0;
  607. }
  608. /* Slab_pad_check fixes things up after itself */
  609. slab_pad_check(s, page);
  610. return 1;
  611. }
  612. /*
  613. * Determine if a certain object on a page is on the freelist. Must hold the
  614. * slab lock to guarantee that the chains are in a consistent state.
  615. */
  616. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  617. {
  618. int nr = 0;
  619. void *fp = page->freelist;
  620. void *object = NULL;
  621. unsigned long max_objects;
  622. while (fp && nr <= page->objects) {
  623. if (fp == search)
  624. return 1;
  625. if (!check_valid_pointer(s, page, fp)) {
  626. if (object) {
  627. object_err(s, page, object,
  628. "Freechain corrupt");
  629. set_freepointer(s, object, NULL);
  630. break;
  631. } else {
  632. slab_err(s, page, "Freepointer corrupt");
  633. page->freelist = NULL;
  634. page->inuse = page->objects;
  635. slab_fix(s, "Freelist cleared");
  636. return 0;
  637. }
  638. break;
  639. }
  640. object = fp;
  641. fp = get_freepointer(s, object);
  642. nr++;
  643. }
  644. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  645. if (max_objects > MAX_OBJS_PER_PAGE)
  646. max_objects = MAX_OBJS_PER_PAGE;
  647. if (page->objects != max_objects) {
  648. slab_err(s, page, "Wrong number of objects. Found %d but "
  649. "should be %d", page->objects, max_objects);
  650. page->objects = max_objects;
  651. slab_fix(s, "Number of objects adjusted.");
  652. }
  653. if (page->inuse != page->objects - nr) {
  654. slab_err(s, page, "Wrong object count. Counter is %d but "
  655. "counted were %d", page->inuse, page->objects - nr);
  656. page->inuse = page->objects - nr;
  657. slab_fix(s, "Object count adjusted.");
  658. }
  659. return search == NULL;
  660. }
  661. static void trace(struct kmem_cache *s, struct page *page, void *object,
  662. int alloc)
  663. {
  664. if (s->flags & SLAB_TRACE) {
  665. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  666. s->name,
  667. alloc ? "alloc" : "free",
  668. object, page->inuse,
  669. page->freelist);
  670. if (!alloc)
  671. print_section("Object", (void *)object, s->objsize);
  672. dump_stack();
  673. }
  674. }
  675. /*
  676. * Hooks for other subsystems that check memory allocations. In a typical
  677. * production configuration these hooks all should produce no code at all.
  678. */
  679. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  680. {
  681. flags &= gfp_allowed_mask;
  682. lockdep_trace_alloc(flags);
  683. might_sleep_if(flags & __GFP_WAIT);
  684. return should_failslab(s->objsize, flags, s->flags);
  685. }
  686. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  687. {
  688. flags &= gfp_allowed_mask;
  689. kmemcheck_slab_alloc(s, flags, object, s->objsize);
  690. kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
  691. }
  692. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  693. {
  694. kmemleak_free_recursive(x, s->flags);
  695. }
  696. static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
  697. {
  698. kmemcheck_slab_free(s, object, s->objsize);
  699. debug_check_no_locks_freed(object, s->objsize);
  700. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  701. debug_check_no_obj_freed(object, s->objsize);
  702. }
  703. /*
  704. * Tracking of fully allocated slabs for debugging purposes.
  705. */
  706. static void add_full(struct kmem_cache_node *n, struct page *page)
  707. {
  708. spin_lock(&n->list_lock);
  709. list_add(&page->lru, &n->full);
  710. spin_unlock(&n->list_lock);
  711. }
  712. static void remove_full(struct kmem_cache *s, struct page *page)
  713. {
  714. struct kmem_cache_node *n;
  715. if (!(s->flags & SLAB_STORE_USER))
  716. return;
  717. n = get_node(s, page_to_nid(page));
  718. spin_lock(&n->list_lock);
  719. list_del(&page->lru);
  720. spin_unlock(&n->list_lock);
  721. }
  722. /* Tracking of the number of slabs for debugging purposes */
  723. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  724. {
  725. struct kmem_cache_node *n = get_node(s, node);
  726. return atomic_long_read(&n->nr_slabs);
  727. }
  728. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  729. {
  730. return atomic_long_read(&n->nr_slabs);
  731. }
  732. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  733. {
  734. struct kmem_cache_node *n = get_node(s, node);
  735. /*
  736. * May be called early in order to allocate a slab for the
  737. * kmem_cache_node structure. Solve the chicken-egg
  738. * dilemma by deferring the increment of the count during
  739. * bootstrap (see early_kmem_cache_node_alloc).
  740. */
  741. if (n) {
  742. atomic_long_inc(&n->nr_slabs);
  743. atomic_long_add(objects, &n->total_objects);
  744. }
  745. }
  746. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  747. {
  748. struct kmem_cache_node *n = get_node(s, node);
  749. atomic_long_dec(&n->nr_slabs);
  750. atomic_long_sub(objects, &n->total_objects);
  751. }
  752. /* Object debug checks for alloc/free paths */
  753. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  754. void *object)
  755. {
  756. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  757. return;
  758. init_object(s, object, SLUB_RED_INACTIVE);
  759. init_tracking(s, object);
  760. }
  761. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  762. void *object, unsigned long addr)
  763. {
  764. if (!check_slab(s, page))
  765. goto bad;
  766. if (!on_freelist(s, page, object)) {
  767. object_err(s, page, object, "Object already allocated");
  768. goto bad;
  769. }
  770. if (!check_valid_pointer(s, page, object)) {
  771. object_err(s, page, object, "Freelist Pointer check fails");
  772. goto bad;
  773. }
  774. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  775. goto bad;
  776. /* Success perform special debug activities for allocs */
  777. if (s->flags & SLAB_STORE_USER)
  778. set_track(s, object, TRACK_ALLOC, addr);
  779. trace(s, page, object, 1);
  780. init_object(s, object, SLUB_RED_ACTIVE);
  781. return 1;
  782. bad:
  783. if (PageSlab(page)) {
  784. /*
  785. * If this is a slab page then lets do the best we can
  786. * to avoid issues in the future. Marking all objects
  787. * as used avoids touching the remaining objects.
  788. */
  789. slab_fix(s, "Marking all objects used");
  790. page->inuse = page->objects;
  791. page->freelist = NULL;
  792. }
  793. return 0;
  794. }
  795. static noinline int free_debug_processing(struct kmem_cache *s,
  796. struct page *page, void *object, unsigned long addr)
  797. {
  798. if (!check_slab(s, page))
  799. goto fail;
  800. if (!check_valid_pointer(s, page, object)) {
  801. slab_err(s, page, "Invalid object pointer 0x%p", object);
  802. goto fail;
  803. }
  804. if (on_freelist(s, page, object)) {
  805. object_err(s, page, object, "Object already free");
  806. goto fail;
  807. }
  808. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  809. return 0;
  810. if (unlikely(s != page->slab)) {
  811. if (!PageSlab(page)) {
  812. slab_err(s, page, "Attempt to free object(0x%p) "
  813. "outside of slab", object);
  814. } else if (!page->slab) {
  815. printk(KERN_ERR
  816. "SLUB <none>: no slab for object 0x%p.\n",
  817. object);
  818. dump_stack();
  819. } else
  820. object_err(s, page, object,
  821. "page slab pointer corrupt.");
  822. goto fail;
  823. }
  824. /* Special debug activities for freeing objects */
  825. if (!PageSlubFrozen(page) && !page->freelist)
  826. remove_full(s, page);
  827. if (s->flags & SLAB_STORE_USER)
  828. set_track(s, object, TRACK_FREE, addr);
  829. trace(s, page, object, 0);
  830. init_object(s, object, SLUB_RED_INACTIVE);
  831. return 1;
  832. fail:
  833. slab_fix(s, "Object at 0x%p not freed", object);
  834. return 0;
  835. }
  836. static int __init setup_slub_debug(char *str)
  837. {
  838. slub_debug = DEBUG_DEFAULT_FLAGS;
  839. if (*str++ != '=' || !*str)
  840. /*
  841. * No options specified. Switch on full debugging.
  842. */
  843. goto out;
  844. if (*str == ',')
  845. /*
  846. * No options but restriction on slabs. This means full
  847. * debugging for slabs matching a pattern.
  848. */
  849. goto check_slabs;
  850. if (tolower(*str) == 'o') {
  851. /*
  852. * Avoid enabling debugging on caches if its minimum order
  853. * would increase as a result.
  854. */
  855. disable_higher_order_debug = 1;
  856. goto out;
  857. }
  858. slub_debug = 0;
  859. if (*str == '-')
  860. /*
  861. * Switch off all debugging measures.
  862. */
  863. goto out;
  864. /*
  865. * Determine which debug features should be switched on
  866. */
  867. for (; *str && *str != ','; str++) {
  868. switch (tolower(*str)) {
  869. case 'f':
  870. slub_debug |= SLAB_DEBUG_FREE;
  871. break;
  872. case 'z':
  873. slub_debug |= SLAB_RED_ZONE;
  874. break;
  875. case 'p':
  876. slub_debug |= SLAB_POISON;
  877. break;
  878. case 'u':
  879. slub_debug |= SLAB_STORE_USER;
  880. break;
  881. case 't':
  882. slub_debug |= SLAB_TRACE;
  883. break;
  884. case 'a':
  885. slub_debug |= SLAB_FAILSLAB;
  886. break;
  887. default:
  888. printk(KERN_ERR "slub_debug option '%c' "
  889. "unknown. skipped\n", *str);
  890. }
  891. }
  892. check_slabs:
  893. if (*str == ',')
  894. slub_debug_slabs = str + 1;
  895. out:
  896. return 1;
  897. }
  898. __setup("slub_debug", setup_slub_debug);
  899. static unsigned long kmem_cache_flags(unsigned long objsize,
  900. unsigned long flags, const char *name,
  901. void (*ctor)(void *))
  902. {
  903. /*
  904. * Enable debugging if selected on the kernel commandline.
  905. */
  906. if (slub_debug && (!slub_debug_slabs ||
  907. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  908. flags |= slub_debug;
  909. return flags;
  910. }
  911. #else
  912. static inline void setup_object_debug(struct kmem_cache *s,
  913. struct page *page, void *object) {}
  914. static inline int alloc_debug_processing(struct kmem_cache *s,
  915. struct page *page, void *object, unsigned long addr) { return 0; }
  916. static inline int free_debug_processing(struct kmem_cache *s,
  917. struct page *page, void *object, unsigned long addr) { return 0; }
  918. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  919. { return 1; }
  920. static inline int check_object(struct kmem_cache *s, struct page *page,
  921. void *object, u8 val) { return 1; }
  922. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  923. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  924. unsigned long flags, const char *name,
  925. void (*ctor)(void *))
  926. {
  927. return flags;
  928. }
  929. #define slub_debug 0
  930. #define disable_higher_order_debug 0
  931. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  932. { return 0; }
  933. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  934. { return 0; }
  935. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  936. int objects) {}
  937. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  938. int objects) {}
  939. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  940. { return 0; }
  941. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  942. void *object) {}
  943. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  944. static inline void slab_free_hook_irq(struct kmem_cache *s,
  945. void *object) {}
  946. #endif /* CONFIG_SLUB_DEBUG */
  947. /*
  948. * Slab allocation and freeing
  949. */
  950. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  951. struct kmem_cache_order_objects oo)
  952. {
  953. int order = oo_order(oo);
  954. flags |= __GFP_NOTRACK;
  955. if (node == NUMA_NO_NODE)
  956. return alloc_pages(flags, order);
  957. else
  958. return alloc_pages_exact_node(node, flags, order);
  959. }
  960. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  961. {
  962. struct page *page;
  963. struct kmem_cache_order_objects oo = s->oo;
  964. gfp_t alloc_gfp;
  965. flags |= s->allocflags;
  966. /*
  967. * Let the initial higher-order allocation fail under memory pressure
  968. * so we fall-back to the minimum order allocation.
  969. */
  970. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  971. page = alloc_slab_page(alloc_gfp, node, oo);
  972. if (unlikely(!page)) {
  973. oo = s->min;
  974. /*
  975. * Allocation may have failed due to fragmentation.
  976. * Try a lower order alloc if possible
  977. */
  978. page = alloc_slab_page(flags, node, oo);
  979. if (!page)
  980. return NULL;
  981. stat(s, ORDER_FALLBACK);
  982. }
  983. if (kmemcheck_enabled
  984. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  985. int pages = 1 << oo_order(oo);
  986. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  987. /*
  988. * Objects from caches that have a constructor don't get
  989. * cleared when they're allocated, so we need to do it here.
  990. */
  991. if (s->ctor)
  992. kmemcheck_mark_uninitialized_pages(page, pages);
  993. else
  994. kmemcheck_mark_unallocated_pages(page, pages);
  995. }
  996. page->objects = oo_objects(oo);
  997. mod_zone_page_state(page_zone(page),
  998. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  999. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1000. 1 << oo_order(oo));
  1001. return page;
  1002. }
  1003. static void setup_object(struct kmem_cache *s, struct page *page,
  1004. void *object)
  1005. {
  1006. setup_object_debug(s, page, object);
  1007. if (unlikely(s->ctor))
  1008. s->ctor(object);
  1009. }
  1010. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1011. {
  1012. struct page *page;
  1013. void *start;
  1014. void *last;
  1015. void *p;
  1016. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1017. page = allocate_slab(s,
  1018. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1019. if (!page)
  1020. goto out;
  1021. inc_slabs_node(s, page_to_nid(page), page->objects);
  1022. page->slab = s;
  1023. page->flags |= 1 << PG_slab;
  1024. start = page_address(page);
  1025. if (unlikely(s->flags & SLAB_POISON))
  1026. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1027. last = start;
  1028. for_each_object(p, s, start, page->objects) {
  1029. setup_object(s, page, last);
  1030. set_freepointer(s, last, p);
  1031. last = p;
  1032. }
  1033. setup_object(s, page, last);
  1034. set_freepointer(s, last, NULL);
  1035. page->freelist = start;
  1036. page->inuse = 0;
  1037. out:
  1038. return page;
  1039. }
  1040. static void __free_slab(struct kmem_cache *s, struct page *page)
  1041. {
  1042. int order = compound_order(page);
  1043. int pages = 1 << order;
  1044. if (kmem_cache_debug(s)) {
  1045. void *p;
  1046. slab_pad_check(s, page);
  1047. for_each_object(p, s, page_address(page),
  1048. page->objects)
  1049. check_object(s, page, p, SLUB_RED_INACTIVE);
  1050. }
  1051. kmemcheck_free_shadow(page, compound_order(page));
  1052. mod_zone_page_state(page_zone(page),
  1053. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1054. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1055. -pages);
  1056. __ClearPageSlab(page);
  1057. reset_page_mapcount(page);
  1058. if (current->reclaim_state)
  1059. current->reclaim_state->reclaimed_slab += pages;
  1060. __free_pages(page, order);
  1061. }
  1062. static void rcu_free_slab(struct rcu_head *h)
  1063. {
  1064. struct page *page;
  1065. page = container_of((struct list_head *)h, struct page, lru);
  1066. __free_slab(page->slab, page);
  1067. }
  1068. static void free_slab(struct kmem_cache *s, struct page *page)
  1069. {
  1070. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1071. /*
  1072. * RCU free overloads the RCU head over the LRU
  1073. */
  1074. struct rcu_head *head = (void *)&page->lru;
  1075. call_rcu(head, rcu_free_slab);
  1076. } else
  1077. __free_slab(s, page);
  1078. }
  1079. static void discard_slab(struct kmem_cache *s, struct page *page)
  1080. {
  1081. dec_slabs_node(s, page_to_nid(page), page->objects);
  1082. free_slab(s, page);
  1083. }
  1084. /*
  1085. * Per slab locking using the pagelock
  1086. */
  1087. static __always_inline void slab_lock(struct page *page)
  1088. {
  1089. bit_spin_lock(PG_locked, &page->flags);
  1090. }
  1091. static __always_inline void slab_unlock(struct page *page)
  1092. {
  1093. __bit_spin_unlock(PG_locked, &page->flags);
  1094. }
  1095. static __always_inline int slab_trylock(struct page *page)
  1096. {
  1097. int rc = 1;
  1098. rc = bit_spin_trylock(PG_locked, &page->flags);
  1099. return rc;
  1100. }
  1101. /*
  1102. * Management of partially allocated slabs
  1103. */
  1104. static void add_partial(struct kmem_cache_node *n,
  1105. struct page *page, int tail)
  1106. {
  1107. spin_lock(&n->list_lock);
  1108. n->nr_partial++;
  1109. if (tail)
  1110. list_add_tail(&page->lru, &n->partial);
  1111. else
  1112. list_add(&page->lru, &n->partial);
  1113. spin_unlock(&n->list_lock);
  1114. }
  1115. static inline void __remove_partial(struct kmem_cache_node *n,
  1116. struct page *page)
  1117. {
  1118. list_del(&page->lru);
  1119. n->nr_partial--;
  1120. }
  1121. static void remove_partial(struct kmem_cache *s, struct page *page)
  1122. {
  1123. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1124. spin_lock(&n->list_lock);
  1125. __remove_partial(n, page);
  1126. spin_unlock(&n->list_lock);
  1127. }
  1128. /*
  1129. * Lock slab and remove from the partial list.
  1130. *
  1131. * Must hold list_lock.
  1132. */
  1133. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1134. struct page *page)
  1135. {
  1136. if (slab_trylock(page)) {
  1137. __remove_partial(n, page);
  1138. __SetPageSlubFrozen(page);
  1139. return 1;
  1140. }
  1141. return 0;
  1142. }
  1143. /*
  1144. * Try to allocate a partial slab from a specific node.
  1145. */
  1146. static struct page *get_partial_node(struct kmem_cache_node *n)
  1147. {
  1148. struct page *page;
  1149. /*
  1150. * Racy check. If we mistakenly see no partial slabs then we
  1151. * just allocate an empty slab. If we mistakenly try to get a
  1152. * partial slab and there is none available then get_partials()
  1153. * will return NULL.
  1154. */
  1155. if (!n || !n->nr_partial)
  1156. return NULL;
  1157. spin_lock(&n->list_lock);
  1158. list_for_each_entry(page, &n->partial, lru)
  1159. if (lock_and_freeze_slab(n, page))
  1160. goto out;
  1161. page = NULL;
  1162. out:
  1163. spin_unlock(&n->list_lock);
  1164. return page;
  1165. }
  1166. /*
  1167. * Get a page from somewhere. Search in increasing NUMA distances.
  1168. */
  1169. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1170. {
  1171. #ifdef CONFIG_NUMA
  1172. struct zonelist *zonelist;
  1173. struct zoneref *z;
  1174. struct zone *zone;
  1175. enum zone_type high_zoneidx = gfp_zone(flags);
  1176. struct page *page;
  1177. /*
  1178. * The defrag ratio allows a configuration of the tradeoffs between
  1179. * inter node defragmentation and node local allocations. A lower
  1180. * defrag_ratio increases the tendency to do local allocations
  1181. * instead of attempting to obtain partial slabs from other nodes.
  1182. *
  1183. * If the defrag_ratio is set to 0 then kmalloc() always
  1184. * returns node local objects. If the ratio is higher then kmalloc()
  1185. * may return off node objects because partial slabs are obtained
  1186. * from other nodes and filled up.
  1187. *
  1188. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1189. * defrag_ratio = 1000) then every (well almost) allocation will
  1190. * first attempt to defrag slab caches on other nodes. This means
  1191. * scanning over all nodes to look for partial slabs which may be
  1192. * expensive if we do it every time we are trying to find a slab
  1193. * with available objects.
  1194. */
  1195. if (!s->remote_node_defrag_ratio ||
  1196. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1197. return NULL;
  1198. get_mems_allowed();
  1199. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1200. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1201. struct kmem_cache_node *n;
  1202. n = get_node(s, zone_to_nid(zone));
  1203. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1204. n->nr_partial > s->min_partial) {
  1205. page = get_partial_node(n);
  1206. if (page) {
  1207. put_mems_allowed();
  1208. return page;
  1209. }
  1210. }
  1211. }
  1212. put_mems_allowed();
  1213. #endif
  1214. return NULL;
  1215. }
  1216. /*
  1217. * Get a partial page, lock it and return it.
  1218. */
  1219. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1220. {
  1221. struct page *page;
  1222. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1223. page = get_partial_node(get_node(s, searchnode));
  1224. if (page || node != -1)
  1225. return page;
  1226. return get_any_partial(s, flags);
  1227. }
  1228. /*
  1229. * Move a page back to the lists.
  1230. *
  1231. * Must be called with the slab lock held.
  1232. *
  1233. * On exit the slab lock will have been dropped.
  1234. */
  1235. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1236. __releases(bitlock)
  1237. {
  1238. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1239. __ClearPageSlubFrozen(page);
  1240. if (page->inuse) {
  1241. if (page->freelist) {
  1242. add_partial(n, page, tail);
  1243. stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1244. } else {
  1245. stat(s, DEACTIVATE_FULL);
  1246. if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
  1247. add_full(n, page);
  1248. }
  1249. slab_unlock(page);
  1250. } else {
  1251. stat(s, DEACTIVATE_EMPTY);
  1252. if (n->nr_partial < s->min_partial) {
  1253. /*
  1254. * Adding an empty slab to the partial slabs in order
  1255. * to avoid page allocator overhead. This slab needs
  1256. * to come after the other slabs with objects in
  1257. * so that the others get filled first. That way the
  1258. * size of the partial list stays small.
  1259. *
  1260. * kmem_cache_shrink can reclaim any empty slabs from
  1261. * the partial list.
  1262. */
  1263. add_partial(n, page, 1);
  1264. slab_unlock(page);
  1265. } else {
  1266. slab_unlock(page);
  1267. stat(s, FREE_SLAB);
  1268. discard_slab(s, page);
  1269. }
  1270. }
  1271. }
  1272. /*
  1273. * Remove the cpu slab
  1274. */
  1275. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1276. __releases(bitlock)
  1277. {
  1278. struct page *page = c->page;
  1279. int tail = 1;
  1280. if (page->freelist)
  1281. stat(s, DEACTIVATE_REMOTE_FREES);
  1282. /*
  1283. * Merge cpu freelist into slab freelist. Typically we get here
  1284. * because both freelists are empty. So this is unlikely
  1285. * to occur.
  1286. */
  1287. while (unlikely(c->freelist)) {
  1288. void **object;
  1289. tail = 0; /* Hot objects. Put the slab first */
  1290. /* Retrieve object from cpu_freelist */
  1291. object = c->freelist;
  1292. c->freelist = get_freepointer(s, c->freelist);
  1293. /* And put onto the regular freelist */
  1294. set_freepointer(s, object, page->freelist);
  1295. page->freelist = object;
  1296. page->inuse--;
  1297. }
  1298. c->page = NULL;
  1299. unfreeze_slab(s, page, tail);
  1300. }
  1301. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1302. {
  1303. stat(s, CPUSLAB_FLUSH);
  1304. slab_lock(c->page);
  1305. deactivate_slab(s, c);
  1306. }
  1307. /*
  1308. * Flush cpu slab.
  1309. *
  1310. * Called from IPI handler with interrupts disabled.
  1311. */
  1312. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1313. {
  1314. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1315. if (likely(c && c->page))
  1316. flush_slab(s, c);
  1317. }
  1318. static void flush_cpu_slab(void *d)
  1319. {
  1320. struct kmem_cache *s = d;
  1321. __flush_cpu_slab(s, smp_processor_id());
  1322. }
  1323. static void flush_all(struct kmem_cache *s)
  1324. {
  1325. on_each_cpu(flush_cpu_slab, s, 1);
  1326. }
  1327. /*
  1328. * Check if the objects in a per cpu structure fit numa
  1329. * locality expectations.
  1330. */
  1331. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1332. {
  1333. #ifdef CONFIG_NUMA
  1334. if (node != NUMA_NO_NODE && c->node != node)
  1335. return 0;
  1336. #endif
  1337. return 1;
  1338. }
  1339. static int count_free(struct page *page)
  1340. {
  1341. return page->objects - page->inuse;
  1342. }
  1343. static unsigned long count_partial(struct kmem_cache_node *n,
  1344. int (*get_count)(struct page *))
  1345. {
  1346. unsigned long flags;
  1347. unsigned long x = 0;
  1348. struct page *page;
  1349. spin_lock_irqsave(&n->list_lock, flags);
  1350. list_for_each_entry(page, &n->partial, lru)
  1351. x += get_count(page);
  1352. spin_unlock_irqrestore(&n->list_lock, flags);
  1353. return x;
  1354. }
  1355. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1356. {
  1357. #ifdef CONFIG_SLUB_DEBUG
  1358. return atomic_long_read(&n->total_objects);
  1359. #else
  1360. return 0;
  1361. #endif
  1362. }
  1363. static noinline void
  1364. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1365. {
  1366. int node;
  1367. printk(KERN_WARNING
  1368. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1369. nid, gfpflags);
  1370. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1371. "default order: %d, min order: %d\n", s->name, s->objsize,
  1372. s->size, oo_order(s->oo), oo_order(s->min));
  1373. if (oo_order(s->min) > get_order(s->objsize))
  1374. printk(KERN_WARNING " %s debugging increased min order, use "
  1375. "slub_debug=O to disable.\n", s->name);
  1376. for_each_online_node(node) {
  1377. struct kmem_cache_node *n = get_node(s, node);
  1378. unsigned long nr_slabs;
  1379. unsigned long nr_objs;
  1380. unsigned long nr_free;
  1381. if (!n)
  1382. continue;
  1383. nr_free = count_partial(n, count_free);
  1384. nr_slabs = node_nr_slabs(n);
  1385. nr_objs = node_nr_objs(n);
  1386. printk(KERN_WARNING
  1387. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1388. node, nr_slabs, nr_objs, nr_free);
  1389. }
  1390. }
  1391. /*
  1392. * Slow path. The lockless freelist is empty or we need to perform
  1393. * debugging duties.
  1394. *
  1395. * Interrupts are disabled.
  1396. *
  1397. * Processing is still very fast if new objects have been freed to the
  1398. * regular freelist. In that case we simply take over the regular freelist
  1399. * as the lockless freelist and zap the regular freelist.
  1400. *
  1401. * If that is not working then we fall back to the partial lists. We take the
  1402. * first element of the freelist as the object to allocate now and move the
  1403. * rest of the freelist to the lockless freelist.
  1404. *
  1405. * And if we were unable to get a new slab from the partial slab lists then
  1406. * we need to allocate a new slab. This is the slowest path since it involves
  1407. * a call to the page allocator and the setup of a new slab.
  1408. */
  1409. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1410. unsigned long addr, struct kmem_cache_cpu *c)
  1411. {
  1412. void **object;
  1413. struct page *new;
  1414. /* We handle __GFP_ZERO in the caller */
  1415. gfpflags &= ~__GFP_ZERO;
  1416. if (!c->page)
  1417. goto new_slab;
  1418. slab_lock(c->page);
  1419. if (unlikely(!node_match(c, node)))
  1420. goto another_slab;
  1421. stat(s, ALLOC_REFILL);
  1422. load_freelist:
  1423. object = c->page->freelist;
  1424. if (unlikely(!object))
  1425. goto another_slab;
  1426. if (kmem_cache_debug(s))
  1427. goto debug;
  1428. c->freelist = get_freepointer(s, object);
  1429. c->page->inuse = c->page->objects;
  1430. c->page->freelist = NULL;
  1431. c->node = page_to_nid(c->page);
  1432. unlock_out:
  1433. slab_unlock(c->page);
  1434. stat(s, ALLOC_SLOWPATH);
  1435. return object;
  1436. another_slab:
  1437. deactivate_slab(s, c);
  1438. new_slab:
  1439. new = get_partial(s, gfpflags, node);
  1440. if (new) {
  1441. c->page = new;
  1442. stat(s, ALLOC_FROM_PARTIAL);
  1443. goto load_freelist;
  1444. }
  1445. gfpflags &= gfp_allowed_mask;
  1446. if (gfpflags & __GFP_WAIT)
  1447. local_irq_enable();
  1448. new = new_slab(s, gfpflags, node);
  1449. if (gfpflags & __GFP_WAIT)
  1450. local_irq_disable();
  1451. if (new) {
  1452. c = __this_cpu_ptr(s->cpu_slab);
  1453. stat(s, ALLOC_SLAB);
  1454. if (c->page)
  1455. flush_slab(s, c);
  1456. slab_lock(new);
  1457. __SetPageSlubFrozen(new);
  1458. c->page = new;
  1459. goto load_freelist;
  1460. }
  1461. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1462. slab_out_of_memory(s, gfpflags, node);
  1463. return NULL;
  1464. debug:
  1465. if (!alloc_debug_processing(s, c->page, object, addr))
  1466. goto another_slab;
  1467. c->page->inuse++;
  1468. c->page->freelist = get_freepointer(s, object);
  1469. c->node = NUMA_NO_NODE;
  1470. goto unlock_out;
  1471. }
  1472. /*
  1473. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1474. * have the fastpath folded into their functions. So no function call
  1475. * overhead for requests that can be satisfied on the fastpath.
  1476. *
  1477. * The fastpath works by first checking if the lockless freelist can be used.
  1478. * If not then __slab_alloc is called for slow processing.
  1479. *
  1480. * Otherwise we can simply pick the next object from the lockless free list.
  1481. */
  1482. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1483. gfp_t gfpflags, int node, unsigned long addr)
  1484. {
  1485. void **object;
  1486. struct kmem_cache_cpu *c;
  1487. unsigned long flags;
  1488. if (slab_pre_alloc_hook(s, gfpflags))
  1489. return NULL;
  1490. local_irq_save(flags);
  1491. c = __this_cpu_ptr(s->cpu_slab);
  1492. object = c->freelist;
  1493. if (unlikely(!object || !node_match(c, node)))
  1494. object = __slab_alloc(s, gfpflags, node, addr, c);
  1495. else {
  1496. c->freelist = get_freepointer(s, object);
  1497. stat(s, ALLOC_FASTPATH);
  1498. }
  1499. local_irq_restore(flags);
  1500. if (unlikely(gfpflags & __GFP_ZERO) && object)
  1501. memset(object, 0, s->objsize);
  1502. slab_post_alloc_hook(s, gfpflags, object);
  1503. return object;
  1504. }
  1505. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1506. {
  1507. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1508. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1509. return ret;
  1510. }
  1511. EXPORT_SYMBOL(kmem_cache_alloc);
  1512. #ifdef CONFIG_TRACING
  1513. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  1514. {
  1515. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1516. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  1517. return ret;
  1518. }
  1519. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  1520. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  1521. {
  1522. void *ret = kmalloc_order(size, flags, order);
  1523. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  1524. return ret;
  1525. }
  1526. EXPORT_SYMBOL(kmalloc_order_trace);
  1527. #endif
  1528. #ifdef CONFIG_NUMA
  1529. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1530. {
  1531. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1532. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  1533. s->objsize, s->size, gfpflags, node);
  1534. return ret;
  1535. }
  1536. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1537. #ifdef CONFIG_TRACING
  1538. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  1539. gfp_t gfpflags,
  1540. int node, size_t size)
  1541. {
  1542. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1543. trace_kmalloc_node(_RET_IP_, ret,
  1544. size, s->size, gfpflags, node);
  1545. return ret;
  1546. }
  1547. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  1548. #endif
  1549. #endif
  1550. /*
  1551. * Slow patch handling. This may still be called frequently since objects
  1552. * have a longer lifetime than the cpu slabs in most processing loads.
  1553. *
  1554. * So we still attempt to reduce cache line usage. Just take the slab
  1555. * lock and free the item. If there is no additional partial page
  1556. * handling required then we can return immediately.
  1557. */
  1558. static void __slab_free(struct kmem_cache *s, struct page *page,
  1559. void *x, unsigned long addr)
  1560. {
  1561. void *prior;
  1562. void **object = (void *)x;
  1563. stat(s, FREE_SLOWPATH);
  1564. slab_lock(page);
  1565. if (kmem_cache_debug(s))
  1566. goto debug;
  1567. checks_ok:
  1568. prior = page->freelist;
  1569. set_freepointer(s, object, prior);
  1570. page->freelist = object;
  1571. page->inuse--;
  1572. if (unlikely(PageSlubFrozen(page))) {
  1573. stat(s, FREE_FROZEN);
  1574. goto out_unlock;
  1575. }
  1576. if (unlikely(!page->inuse))
  1577. goto slab_empty;
  1578. /*
  1579. * Objects left in the slab. If it was not on the partial list before
  1580. * then add it.
  1581. */
  1582. if (unlikely(!prior)) {
  1583. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1584. stat(s, FREE_ADD_PARTIAL);
  1585. }
  1586. out_unlock:
  1587. slab_unlock(page);
  1588. return;
  1589. slab_empty:
  1590. if (prior) {
  1591. /*
  1592. * Slab still on the partial list.
  1593. */
  1594. remove_partial(s, page);
  1595. stat(s, FREE_REMOVE_PARTIAL);
  1596. }
  1597. slab_unlock(page);
  1598. stat(s, FREE_SLAB);
  1599. discard_slab(s, page);
  1600. return;
  1601. debug:
  1602. if (!free_debug_processing(s, page, x, addr))
  1603. goto out_unlock;
  1604. goto checks_ok;
  1605. }
  1606. /*
  1607. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1608. * can perform fastpath freeing without additional function calls.
  1609. *
  1610. * The fastpath is only possible if we are freeing to the current cpu slab
  1611. * of this processor. This typically the case if we have just allocated
  1612. * the item before.
  1613. *
  1614. * If fastpath is not possible then fall back to __slab_free where we deal
  1615. * with all sorts of special processing.
  1616. */
  1617. static __always_inline void slab_free(struct kmem_cache *s,
  1618. struct page *page, void *x, unsigned long addr)
  1619. {
  1620. void **object = (void *)x;
  1621. struct kmem_cache_cpu *c;
  1622. unsigned long flags;
  1623. slab_free_hook(s, x);
  1624. local_irq_save(flags);
  1625. c = __this_cpu_ptr(s->cpu_slab);
  1626. slab_free_hook_irq(s, x);
  1627. if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
  1628. set_freepointer(s, object, c->freelist);
  1629. c->freelist = object;
  1630. stat(s, FREE_FASTPATH);
  1631. } else
  1632. __slab_free(s, page, x, addr);
  1633. local_irq_restore(flags);
  1634. }
  1635. void kmem_cache_free(struct kmem_cache *s, void *x)
  1636. {
  1637. struct page *page;
  1638. page = virt_to_head_page(x);
  1639. slab_free(s, page, x, _RET_IP_);
  1640. trace_kmem_cache_free(_RET_IP_, x);
  1641. }
  1642. EXPORT_SYMBOL(kmem_cache_free);
  1643. /*
  1644. * Object placement in a slab is made very easy because we always start at
  1645. * offset 0. If we tune the size of the object to the alignment then we can
  1646. * get the required alignment by putting one properly sized object after
  1647. * another.
  1648. *
  1649. * Notice that the allocation order determines the sizes of the per cpu
  1650. * caches. Each processor has always one slab available for allocations.
  1651. * Increasing the allocation order reduces the number of times that slabs
  1652. * must be moved on and off the partial lists and is therefore a factor in
  1653. * locking overhead.
  1654. */
  1655. /*
  1656. * Mininum / Maximum order of slab pages. This influences locking overhead
  1657. * and slab fragmentation. A higher order reduces the number of partial slabs
  1658. * and increases the number of allocations possible without having to
  1659. * take the list_lock.
  1660. */
  1661. static int slub_min_order;
  1662. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1663. static int slub_min_objects;
  1664. /*
  1665. * Merge control. If this is set then no merging of slab caches will occur.
  1666. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1667. */
  1668. static int slub_nomerge;
  1669. /*
  1670. * Calculate the order of allocation given an slab object size.
  1671. *
  1672. * The order of allocation has significant impact on performance and other
  1673. * system components. Generally order 0 allocations should be preferred since
  1674. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1675. * be problematic to put into order 0 slabs because there may be too much
  1676. * unused space left. We go to a higher order if more than 1/16th of the slab
  1677. * would be wasted.
  1678. *
  1679. * In order to reach satisfactory performance we must ensure that a minimum
  1680. * number of objects is in one slab. Otherwise we may generate too much
  1681. * activity on the partial lists which requires taking the list_lock. This is
  1682. * less a concern for large slabs though which are rarely used.
  1683. *
  1684. * slub_max_order specifies the order where we begin to stop considering the
  1685. * number of objects in a slab as critical. If we reach slub_max_order then
  1686. * we try to keep the page order as low as possible. So we accept more waste
  1687. * of space in favor of a small page order.
  1688. *
  1689. * Higher order allocations also allow the placement of more objects in a
  1690. * slab and thereby reduce object handling overhead. If the user has
  1691. * requested a higher mininum order then we start with that one instead of
  1692. * the smallest order which will fit the object.
  1693. */
  1694. static inline int slab_order(int size, int min_objects,
  1695. int max_order, int fract_leftover, int reserved)
  1696. {
  1697. int order;
  1698. int rem;
  1699. int min_order = slub_min_order;
  1700. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  1701. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  1702. for (order = max(min_order,
  1703. fls(min_objects * size - 1) - PAGE_SHIFT);
  1704. order <= max_order; order++) {
  1705. unsigned long slab_size = PAGE_SIZE << order;
  1706. if (slab_size < min_objects * size + reserved)
  1707. continue;
  1708. rem = (slab_size - reserved) % size;
  1709. if (rem <= slab_size / fract_leftover)
  1710. break;
  1711. }
  1712. return order;
  1713. }
  1714. static inline int calculate_order(int size, int reserved)
  1715. {
  1716. int order;
  1717. int min_objects;
  1718. int fraction;
  1719. int max_objects;
  1720. /*
  1721. * Attempt to find best configuration for a slab. This
  1722. * works by first attempting to generate a layout with
  1723. * the best configuration and backing off gradually.
  1724. *
  1725. * First we reduce the acceptable waste in a slab. Then
  1726. * we reduce the minimum objects required in a slab.
  1727. */
  1728. min_objects = slub_min_objects;
  1729. if (!min_objects)
  1730. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1731. max_objects = order_objects(slub_max_order, size, reserved);
  1732. min_objects = min(min_objects, max_objects);
  1733. while (min_objects > 1) {
  1734. fraction = 16;
  1735. while (fraction >= 4) {
  1736. order = slab_order(size, min_objects,
  1737. slub_max_order, fraction, reserved);
  1738. if (order <= slub_max_order)
  1739. return order;
  1740. fraction /= 2;
  1741. }
  1742. min_objects--;
  1743. }
  1744. /*
  1745. * We were unable to place multiple objects in a slab. Now
  1746. * lets see if we can place a single object there.
  1747. */
  1748. order = slab_order(size, 1, slub_max_order, 1, reserved);
  1749. if (order <= slub_max_order)
  1750. return order;
  1751. /*
  1752. * Doh this slab cannot be placed using slub_max_order.
  1753. */
  1754. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  1755. if (order < MAX_ORDER)
  1756. return order;
  1757. return -ENOSYS;
  1758. }
  1759. /*
  1760. * Figure out what the alignment of the objects will be.
  1761. */
  1762. static unsigned long calculate_alignment(unsigned long flags,
  1763. unsigned long align, unsigned long size)
  1764. {
  1765. /*
  1766. * If the user wants hardware cache aligned objects then follow that
  1767. * suggestion if the object is sufficiently large.
  1768. *
  1769. * The hardware cache alignment cannot override the specified
  1770. * alignment though. If that is greater then use it.
  1771. */
  1772. if (flags & SLAB_HWCACHE_ALIGN) {
  1773. unsigned long ralign = cache_line_size();
  1774. while (size <= ralign / 2)
  1775. ralign /= 2;
  1776. align = max(align, ralign);
  1777. }
  1778. if (align < ARCH_SLAB_MINALIGN)
  1779. align = ARCH_SLAB_MINALIGN;
  1780. return ALIGN(align, sizeof(void *));
  1781. }
  1782. static void
  1783. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1784. {
  1785. n->nr_partial = 0;
  1786. spin_lock_init(&n->list_lock);
  1787. INIT_LIST_HEAD(&n->partial);
  1788. #ifdef CONFIG_SLUB_DEBUG
  1789. atomic_long_set(&n->nr_slabs, 0);
  1790. atomic_long_set(&n->total_objects, 0);
  1791. INIT_LIST_HEAD(&n->full);
  1792. #endif
  1793. }
  1794. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  1795. {
  1796. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  1797. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  1798. s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
  1799. return s->cpu_slab != NULL;
  1800. }
  1801. static struct kmem_cache *kmem_cache_node;
  1802. /*
  1803. * No kmalloc_node yet so do it by hand. We know that this is the first
  1804. * slab on the node for this slabcache. There are no concurrent accesses
  1805. * possible.
  1806. *
  1807. * Note that this function only works on the kmalloc_node_cache
  1808. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1809. * memory on a fresh node that has no slab structures yet.
  1810. */
  1811. static void early_kmem_cache_node_alloc(int node)
  1812. {
  1813. struct page *page;
  1814. struct kmem_cache_node *n;
  1815. unsigned long flags;
  1816. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  1817. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  1818. BUG_ON(!page);
  1819. if (page_to_nid(page) != node) {
  1820. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1821. "node %d\n", node);
  1822. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1823. "in order to be able to continue\n");
  1824. }
  1825. n = page->freelist;
  1826. BUG_ON(!n);
  1827. page->freelist = get_freepointer(kmem_cache_node, n);
  1828. page->inuse++;
  1829. kmem_cache_node->node[node] = n;
  1830. #ifdef CONFIG_SLUB_DEBUG
  1831. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  1832. init_tracking(kmem_cache_node, n);
  1833. #endif
  1834. init_kmem_cache_node(n, kmem_cache_node);
  1835. inc_slabs_node(kmem_cache_node, node, page->objects);
  1836. /*
  1837. * lockdep requires consistent irq usage for each lock
  1838. * so even though there cannot be a race this early in
  1839. * the boot sequence, we still disable irqs.
  1840. */
  1841. local_irq_save(flags);
  1842. add_partial(n, page, 0);
  1843. local_irq_restore(flags);
  1844. }
  1845. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1846. {
  1847. int node;
  1848. for_each_node_state(node, N_NORMAL_MEMORY) {
  1849. struct kmem_cache_node *n = s->node[node];
  1850. if (n)
  1851. kmem_cache_free(kmem_cache_node, n);
  1852. s->node[node] = NULL;
  1853. }
  1854. }
  1855. static int init_kmem_cache_nodes(struct kmem_cache *s)
  1856. {
  1857. int node;
  1858. for_each_node_state(node, N_NORMAL_MEMORY) {
  1859. struct kmem_cache_node *n;
  1860. if (slab_state == DOWN) {
  1861. early_kmem_cache_node_alloc(node);
  1862. continue;
  1863. }
  1864. n = kmem_cache_alloc_node(kmem_cache_node,
  1865. GFP_KERNEL, node);
  1866. if (!n) {
  1867. free_kmem_cache_nodes(s);
  1868. return 0;
  1869. }
  1870. s->node[node] = n;
  1871. init_kmem_cache_node(n, s);
  1872. }
  1873. return 1;
  1874. }
  1875. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  1876. {
  1877. if (min < MIN_PARTIAL)
  1878. min = MIN_PARTIAL;
  1879. else if (min > MAX_PARTIAL)
  1880. min = MAX_PARTIAL;
  1881. s->min_partial = min;
  1882. }
  1883. /*
  1884. * calculate_sizes() determines the order and the distribution of data within
  1885. * a slab object.
  1886. */
  1887. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1888. {
  1889. unsigned long flags = s->flags;
  1890. unsigned long size = s->objsize;
  1891. unsigned long align = s->align;
  1892. int order;
  1893. /*
  1894. * Round up object size to the next word boundary. We can only
  1895. * place the free pointer at word boundaries and this determines
  1896. * the possible location of the free pointer.
  1897. */
  1898. size = ALIGN(size, sizeof(void *));
  1899. #ifdef CONFIG_SLUB_DEBUG
  1900. /*
  1901. * Determine if we can poison the object itself. If the user of
  1902. * the slab may touch the object after free or before allocation
  1903. * then we should never poison the object itself.
  1904. */
  1905. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1906. !s->ctor)
  1907. s->flags |= __OBJECT_POISON;
  1908. else
  1909. s->flags &= ~__OBJECT_POISON;
  1910. /*
  1911. * If we are Redzoning then check if there is some space between the
  1912. * end of the object and the free pointer. If not then add an
  1913. * additional word to have some bytes to store Redzone information.
  1914. */
  1915. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1916. size += sizeof(void *);
  1917. #endif
  1918. /*
  1919. * With that we have determined the number of bytes in actual use
  1920. * by the object. This is the potential offset to the free pointer.
  1921. */
  1922. s->inuse = size;
  1923. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1924. s->ctor)) {
  1925. /*
  1926. * Relocate free pointer after the object if it is not
  1927. * permitted to overwrite the first word of the object on
  1928. * kmem_cache_free.
  1929. *
  1930. * This is the case if we do RCU, have a constructor or
  1931. * destructor or are poisoning the objects.
  1932. */
  1933. s->offset = size;
  1934. size += sizeof(void *);
  1935. }
  1936. #ifdef CONFIG_SLUB_DEBUG
  1937. if (flags & SLAB_STORE_USER)
  1938. /*
  1939. * Need to store information about allocs and frees after
  1940. * the object.
  1941. */
  1942. size += 2 * sizeof(struct track);
  1943. if (flags & SLAB_RED_ZONE)
  1944. /*
  1945. * Add some empty padding so that we can catch
  1946. * overwrites from earlier objects rather than let
  1947. * tracking information or the free pointer be
  1948. * corrupted if a user writes before the start
  1949. * of the object.
  1950. */
  1951. size += sizeof(void *);
  1952. #endif
  1953. /*
  1954. * Determine the alignment based on various parameters that the
  1955. * user specified and the dynamic determination of cache line size
  1956. * on bootup.
  1957. */
  1958. align = calculate_alignment(flags, align, s->objsize);
  1959. s->align = align;
  1960. /*
  1961. * SLUB stores one object immediately after another beginning from
  1962. * offset 0. In order to align the objects we have to simply size
  1963. * each object to conform to the alignment.
  1964. */
  1965. size = ALIGN(size, align);
  1966. s->size = size;
  1967. if (forced_order >= 0)
  1968. order = forced_order;
  1969. else
  1970. order = calculate_order(size, s->reserved);
  1971. if (order < 0)
  1972. return 0;
  1973. s->allocflags = 0;
  1974. if (order)
  1975. s->allocflags |= __GFP_COMP;
  1976. if (s->flags & SLAB_CACHE_DMA)
  1977. s->allocflags |= SLUB_DMA;
  1978. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1979. s->allocflags |= __GFP_RECLAIMABLE;
  1980. /*
  1981. * Determine the number of objects per slab
  1982. */
  1983. s->oo = oo_make(order, size, s->reserved);
  1984. s->min = oo_make(get_order(size), size, s->reserved);
  1985. if (oo_objects(s->oo) > oo_objects(s->max))
  1986. s->max = s->oo;
  1987. return !!oo_objects(s->oo);
  1988. }
  1989. static int kmem_cache_open(struct kmem_cache *s,
  1990. const char *name, size_t size,
  1991. size_t align, unsigned long flags,
  1992. void (*ctor)(void *))
  1993. {
  1994. memset(s, 0, kmem_size);
  1995. s->name = name;
  1996. s->ctor = ctor;
  1997. s->objsize = size;
  1998. s->align = align;
  1999. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2000. s->reserved = 0;
  2001. if (!calculate_sizes(s, -1))
  2002. goto error;
  2003. if (disable_higher_order_debug) {
  2004. /*
  2005. * Disable debugging flags that store metadata if the min slab
  2006. * order increased.
  2007. */
  2008. if (get_order(s->size) > get_order(s->objsize)) {
  2009. s->flags &= ~DEBUG_METADATA_FLAGS;
  2010. s->offset = 0;
  2011. if (!calculate_sizes(s, -1))
  2012. goto error;
  2013. }
  2014. }
  2015. /*
  2016. * The larger the object size is, the more pages we want on the partial
  2017. * list to avoid pounding the page allocator excessively.
  2018. */
  2019. set_min_partial(s, ilog2(s->size));
  2020. s->refcount = 1;
  2021. #ifdef CONFIG_NUMA
  2022. s->remote_node_defrag_ratio = 1000;
  2023. #endif
  2024. if (!init_kmem_cache_nodes(s))
  2025. goto error;
  2026. if (alloc_kmem_cache_cpus(s))
  2027. return 1;
  2028. free_kmem_cache_nodes(s);
  2029. error:
  2030. if (flags & SLAB_PANIC)
  2031. panic("Cannot create slab %s size=%lu realsize=%u "
  2032. "order=%u offset=%u flags=%lx\n",
  2033. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2034. s->offset, flags);
  2035. return 0;
  2036. }
  2037. /*
  2038. * Determine the size of a slab object
  2039. */
  2040. unsigned int kmem_cache_size(struct kmem_cache *s)
  2041. {
  2042. return s->objsize;
  2043. }
  2044. EXPORT_SYMBOL(kmem_cache_size);
  2045. const char *kmem_cache_name(struct kmem_cache *s)
  2046. {
  2047. return s->name;
  2048. }
  2049. EXPORT_SYMBOL(kmem_cache_name);
  2050. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2051. const char *text)
  2052. {
  2053. #ifdef CONFIG_SLUB_DEBUG
  2054. void *addr = page_address(page);
  2055. void *p;
  2056. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2057. sizeof(long), GFP_ATOMIC);
  2058. if (!map)
  2059. return;
  2060. slab_err(s, page, "%s", text);
  2061. slab_lock(page);
  2062. for_each_free_object(p, s, page->freelist)
  2063. set_bit(slab_index(p, s, addr), map);
  2064. for_each_object(p, s, addr, page->objects) {
  2065. if (!test_bit(slab_index(p, s, addr), map)) {
  2066. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2067. p, p - addr);
  2068. print_tracking(s, p);
  2069. }
  2070. }
  2071. slab_unlock(page);
  2072. kfree(map);
  2073. #endif
  2074. }
  2075. /*
  2076. * Attempt to free all partial slabs on a node.
  2077. */
  2078. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2079. {
  2080. unsigned long flags;
  2081. struct page *page, *h;
  2082. spin_lock_irqsave(&n->list_lock, flags);
  2083. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2084. if (!page->inuse) {
  2085. __remove_partial(n, page);
  2086. discard_slab(s, page);
  2087. } else {
  2088. list_slab_objects(s, page,
  2089. "Objects remaining on kmem_cache_close()");
  2090. }
  2091. }
  2092. spin_unlock_irqrestore(&n->list_lock, flags);
  2093. }
  2094. /*
  2095. * Release all resources used by a slab cache.
  2096. */
  2097. static inline int kmem_cache_close(struct kmem_cache *s)
  2098. {
  2099. int node;
  2100. flush_all(s);
  2101. free_percpu(s->cpu_slab);
  2102. /* Attempt to free all objects */
  2103. for_each_node_state(node, N_NORMAL_MEMORY) {
  2104. struct kmem_cache_node *n = get_node(s, node);
  2105. free_partial(s, n);
  2106. if (n->nr_partial || slabs_node(s, node))
  2107. return 1;
  2108. }
  2109. free_kmem_cache_nodes(s);
  2110. return 0;
  2111. }
  2112. /*
  2113. * Close a cache and release the kmem_cache structure
  2114. * (must be used for caches created using kmem_cache_create)
  2115. */
  2116. void kmem_cache_destroy(struct kmem_cache *s)
  2117. {
  2118. down_write(&slub_lock);
  2119. s->refcount--;
  2120. if (!s->refcount) {
  2121. list_del(&s->list);
  2122. if (kmem_cache_close(s)) {
  2123. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2124. "still has objects.\n", s->name, __func__);
  2125. dump_stack();
  2126. }
  2127. if (s->flags & SLAB_DESTROY_BY_RCU)
  2128. rcu_barrier();
  2129. sysfs_slab_remove(s);
  2130. }
  2131. up_write(&slub_lock);
  2132. }
  2133. EXPORT_SYMBOL(kmem_cache_destroy);
  2134. /********************************************************************
  2135. * Kmalloc subsystem
  2136. *******************************************************************/
  2137. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2138. EXPORT_SYMBOL(kmalloc_caches);
  2139. static struct kmem_cache *kmem_cache;
  2140. #ifdef CONFIG_ZONE_DMA
  2141. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2142. #endif
  2143. static int __init setup_slub_min_order(char *str)
  2144. {
  2145. get_option(&str, &slub_min_order);
  2146. return 1;
  2147. }
  2148. __setup("slub_min_order=", setup_slub_min_order);
  2149. static int __init setup_slub_max_order(char *str)
  2150. {
  2151. get_option(&str, &slub_max_order);
  2152. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2153. return 1;
  2154. }
  2155. __setup("slub_max_order=", setup_slub_max_order);
  2156. static int __init setup_slub_min_objects(char *str)
  2157. {
  2158. get_option(&str, &slub_min_objects);
  2159. return 1;
  2160. }
  2161. __setup("slub_min_objects=", setup_slub_min_objects);
  2162. static int __init setup_slub_nomerge(char *str)
  2163. {
  2164. slub_nomerge = 1;
  2165. return 1;
  2166. }
  2167. __setup("slub_nomerge", setup_slub_nomerge);
  2168. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2169. int size, unsigned int flags)
  2170. {
  2171. struct kmem_cache *s;
  2172. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2173. /*
  2174. * This function is called with IRQs disabled during early-boot on
  2175. * single CPU so there's no need to take slub_lock here.
  2176. */
  2177. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2178. flags, NULL))
  2179. goto panic;
  2180. list_add(&s->list, &slab_caches);
  2181. return s;
  2182. panic:
  2183. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2184. return NULL;
  2185. }
  2186. /*
  2187. * Conversion table for small slabs sizes / 8 to the index in the
  2188. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2189. * of two cache sizes there. The size of larger slabs can be determined using
  2190. * fls.
  2191. */
  2192. static s8 size_index[24] = {
  2193. 3, /* 8 */
  2194. 4, /* 16 */
  2195. 5, /* 24 */
  2196. 5, /* 32 */
  2197. 6, /* 40 */
  2198. 6, /* 48 */
  2199. 6, /* 56 */
  2200. 6, /* 64 */
  2201. 1, /* 72 */
  2202. 1, /* 80 */
  2203. 1, /* 88 */
  2204. 1, /* 96 */
  2205. 7, /* 104 */
  2206. 7, /* 112 */
  2207. 7, /* 120 */
  2208. 7, /* 128 */
  2209. 2, /* 136 */
  2210. 2, /* 144 */
  2211. 2, /* 152 */
  2212. 2, /* 160 */
  2213. 2, /* 168 */
  2214. 2, /* 176 */
  2215. 2, /* 184 */
  2216. 2 /* 192 */
  2217. };
  2218. static inline int size_index_elem(size_t bytes)
  2219. {
  2220. return (bytes - 1) / 8;
  2221. }
  2222. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2223. {
  2224. int index;
  2225. if (size <= 192) {
  2226. if (!size)
  2227. return ZERO_SIZE_PTR;
  2228. index = size_index[size_index_elem(size)];
  2229. } else
  2230. index = fls(size - 1);
  2231. #ifdef CONFIG_ZONE_DMA
  2232. if (unlikely((flags & SLUB_DMA)))
  2233. return kmalloc_dma_caches[index];
  2234. #endif
  2235. return kmalloc_caches[index];
  2236. }
  2237. void *__kmalloc(size_t size, gfp_t flags)
  2238. {
  2239. struct kmem_cache *s;
  2240. void *ret;
  2241. if (unlikely(size > SLUB_MAX_SIZE))
  2242. return kmalloc_large(size, flags);
  2243. s = get_slab(size, flags);
  2244. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2245. return s;
  2246. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2247. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2248. return ret;
  2249. }
  2250. EXPORT_SYMBOL(__kmalloc);
  2251. #ifdef CONFIG_NUMA
  2252. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2253. {
  2254. struct page *page;
  2255. void *ptr = NULL;
  2256. flags |= __GFP_COMP | __GFP_NOTRACK;
  2257. page = alloc_pages_node(node, flags, get_order(size));
  2258. if (page)
  2259. ptr = page_address(page);
  2260. kmemleak_alloc(ptr, size, 1, flags);
  2261. return ptr;
  2262. }
  2263. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2264. {
  2265. struct kmem_cache *s;
  2266. void *ret;
  2267. if (unlikely(size > SLUB_MAX_SIZE)) {
  2268. ret = kmalloc_large_node(size, flags, node);
  2269. trace_kmalloc_node(_RET_IP_, ret,
  2270. size, PAGE_SIZE << get_order(size),
  2271. flags, node);
  2272. return ret;
  2273. }
  2274. s = get_slab(size, flags);
  2275. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2276. return s;
  2277. ret = slab_alloc(s, flags, node, _RET_IP_);
  2278. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2279. return ret;
  2280. }
  2281. EXPORT_SYMBOL(__kmalloc_node);
  2282. #endif
  2283. size_t ksize(const void *object)
  2284. {
  2285. struct page *page;
  2286. struct kmem_cache *s;
  2287. if (unlikely(object == ZERO_SIZE_PTR))
  2288. return 0;
  2289. page = virt_to_head_page(object);
  2290. if (unlikely(!PageSlab(page))) {
  2291. WARN_ON(!PageCompound(page));
  2292. return PAGE_SIZE << compound_order(page);
  2293. }
  2294. s = page->slab;
  2295. #ifdef CONFIG_SLUB_DEBUG
  2296. /*
  2297. * Debugging requires use of the padding between object
  2298. * and whatever may come after it.
  2299. */
  2300. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2301. return s->objsize;
  2302. #endif
  2303. /*
  2304. * If we have the need to store the freelist pointer
  2305. * back there or track user information then we can
  2306. * only use the space before that information.
  2307. */
  2308. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2309. return s->inuse;
  2310. /*
  2311. * Else we can use all the padding etc for the allocation
  2312. */
  2313. return s->size;
  2314. }
  2315. EXPORT_SYMBOL(ksize);
  2316. void kfree(const void *x)
  2317. {
  2318. struct page *page;
  2319. void *object = (void *)x;
  2320. trace_kfree(_RET_IP_, x);
  2321. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2322. return;
  2323. page = virt_to_head_page(x);
  2324. if (unlikely(!PageSlab(page))) {
  2325. BUG_ON(!PageCompound(page));
  2326. kmemleak_free(x);
  2327. put_page(page);
  2328. return;
  2329. }
  2330. slab_free(page->slab, page, object, _RET_IP_);
  2331. }
  2332. EXPORT_SYMBOL(kfree);
  2333. /*
  2334. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2335. * the remaining slabs by the number of items in use. The slabs with the
  2336. * most items in use come first. New allocations will then fill those up
  2337. * and thus they can be removed from the partial lists.
  2338. *
  2339. * The slabs with the least items are placed last. This results in them
  2340. * being allocated from last increasing the chance that the last objects
  2341. * are freed in them.
  2342. */
  2343. int kmem_cache_shrink(struct kmem_cache *s)
  2344. {
  2345. int node;
  2346. int i;
  2347. struct kmem_cache_node *n;
  2348. struct page *page;
  2349. struct page *t;
  2350. int objects = oo_objects(s->max);
  2351. struct list_head *slabs_by_inuse =
  2352. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2353. unsigned long flags;
  2354. if (!slabs_by_inuse)
  2355. return -ENOMEM;
  2356. flush_all(s);
  2357. for_each_node_state(node, N_NORMAL_MEMORY) {
  2358. n = get_node(s, node);
  2359. if (!n->nr_partial)
  2360. continue;
  2361. for (i = 0; i < objects; i++)
  2362. INIT_LIST_HEAD(slabs_by_inuse + i);
  2363. spin_lock_irqsave(&n->list_lock, flags);
  2364. /*
  2365. * Build lists indexed by the items in use in each slab.
  2366. *
  2367. * Note that concurrent frees may occur while we hold the
  2368. * list_lock. page->inuse here is the upper limit.
  2369. */
  2370. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2371. if (!page->inuse && slab_trylock(page)) {
  2372. /*
  2373. * Must hold slab lock here because slab_free
  2374. * may have freed the last object and be
  2375. * waiting to release the slab.
  2376. */
  2377. __remove_partial(n, page);
  2378. slab_unlock(page);
  2379. discard_slab(s, page);
  2380. } else {
  2381. list_move(&page->lru,
  2382. slabs_by_inuse + page->inuse);
  2383. }
  2384. }
  2385. /*
  2386. * Rebuild the partial list with the slabs filled up most
  2387. * first and the least used slabs at the end.
  2388. */
  2389. for (i = objects - 1; i >= 0; i--)
  2390. list_splice(slabs_by_inuse + i, n->partial.prev);
  2391. spin_unlock_irqrestore(&n->list_lock, flags);
  2392. }
  2393. kfree(slabs_by_inuse);
  2394. return 0;
  2395. }
  2396. EXPORT_SYMBOL(kmem_cache_shrink);
  2397. #if defined(CONFIG_MEMORY_HOTPLUG)
  2398. static int slab_mem_going_offline_callback(void *arg)
  2399. {
  2400. struct kmem_cache *s;
  2401. down_read(&slub_lock);
  2402. list_for_each_entry(s, &slab_caches, list)
  2403. kmem_cache_shrink(s);
  2404. up_read(&slub_lock);
  2405. return 0;
  2406. }
  2407. static void slab_mem_offline_callback(void *arg)
  2408. {
  2409. struct kmem_cache_node *n;
  2410. struct kmem_cache *s;
  2411. struct memory_notify *marg = arg;
  2412. int offline_node;
  2413. offline_node = marg->status_change_nid;
  2414. /*
  2415. * If the node still has available memory. we need kmem_cache_node
  2416. * for it yet.
  2417. */
  2418. if (offline_node < 0)
  2419. return;
  2420. down_read(&slub_lock);
  2421. list_for_each_entry(s, &slab_caches, list) {
  2422. n = get_node(s, offline_node);
  2423. if (n) {
  2424. /*
  2425. * if n->nr_slabs > 0, slabs still exist on the node
  2426. * that is going down. We were unable to free them,
  2427. * and offline_pages() function shouldn't call this
  2428. * callback. So, we must fail.
  2429. */
  2430. BUG_ON(slabs_node(s, offline_node));
  2431. s->node[offline_node] = NULL;
  2432. kmem_cache_free(kmem_cache_node, n);
  2433. }
  2434. }
  2435. up_read(&slub_lock);
  2436. }
  2437. static int slab_mem_going_online_callback(void *arg)
  2438. {
  2439. struct kmem_cache_node *n;
  2440. struct kmem_cache *s;
  2441. struct memory_notify *marg = arg;
  2442. int nid = marg->status_change_nid;
  2443. int ret = 0;
  2444. /*
  2445. * If the node's memory is already available, then kmem_cache_node is
  2446. * already created. Nothing to do.
  2447. */
  2448. if (nid < 0)
  2449. return 0;
  2450. /*
  2451. * We are bringing a node online. No memory is available yet. We must
  2452. * allocate a kmem_cache_node structure in order to bring the node
  2453. * online.
  2454. */
  2455. down_read(&slub_lock);
  2456. list_for_each_entry(s, &slab_caches, list) {
  2457. /*
  2458. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2459. * since memory is not yet available from the node that
  2460. * is brought up.
  2461. */
  2462. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  2463. if (!n) {
  2464. ret = -ENOMEM;
  2465. goto out;
  2466. }
  2467. init_kmem_cache_node(n, s);
  2468. s->node[nid] = n;
  2469. }
  2470. out:
  2471. up_read(&slub_lock);
  2472. return ret;
  2473. }
  2474. static int slab_memory_callback(struct notifier_block *self,
  2475. unsigned long action, void *arg)
  2476. {
  2477. int ret = 0;
  2478. switch (action) {
  2479. case MEM_GOING_ONLINE:
  2480. ret = slab_mem_going_online_callback(arg);
  2481. break;
  2482. case MEM_GOING_OFFLINE:
  2483. ret = slab_mem_going_offline_callback(arg);
  2484. break;
  2485. case MEM_OFFLINE:
  2486. case MEM_CANCEL_ONLINE:
  2487. slab_mem_offline_callback(arg);
  2488. break;
  2489. case MEM_ONLINE:
  2490. case MEM_CANCEL_OFFLINE:
  2491. break;
  2492. }
  2493. if (ret)
  2494. ret = notifier_from_errno(ret);
  2495. else
  2496. ret = NOTIFY_OK;
  2497. return ret;
  2498. }
  2499. #endif /* CONFIG_MEMORY_HOTPLUG */
  2500. /********************************************************************
  2501. * Basic setup of slabs
  2502. *******************************************************************/
  2503. /*
  2504. * Used for early kmem_cache structures that were allocated using
  2505. * the page allocator
  2506. */
  2507. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  2508. {
  2509. int node;
  2510. list_add(&s->list, &slab_caches);
  2511. s->refcount = -1;
  2512. for_each_node_state(node, N_NORMAL_MEMORY) {
  2513. struct kmem_cache_node *n = get_node(s, node);
  2514. struct page *p;
  2515. if (n) {
  2516. list_for_each_entry(p, &n->partial, lru)
  2517. p->slab = s;
  2518. #ifdef CONFIG_SLAB_DEBUG
  2519. list_for_each_entry(p, &n->full, lru)
  2520. p->slab = s;
  2521. #endif
  2522. }
  2523. }
  2524. }
  2525. void __init kmem_cache_init(void)
  2526. {
  2527. int i;
  2528. int caches = 0;
  2529. struct kmem_cache *temp_kmem_cache;
  2530. int order;
  2531. struct kmem_cache *temp_kmem_cache_node;
  2532. unsigned long kmalloc_size;
  2533. kmem_size = offsetof(struct kmem_cache, node) +
  2534. nr_node_ids * sizeof(struct kmem_cache_node *);
  2535. /* Allocate two kmem_caches from the page allocator */
  2536. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  2537. order = get_order(2 * kmalloc_size);
  2538. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  2539. /*
  2540. * Must first have the slab cache available for the allocations of the
  2541. * struct kmem_cache_node's. There is special bootstrap code in
  2542. * kmem_cache_open for slab_state == DOWN.
  2543. */
  2544. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  2545. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  2546. sizeof(struct kmem_cache_node),
  2547. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2548. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2549. /* Able to allocate the per node structures */
  2550. slab_state = PARTIAL;
  2551. temp_kmem_cache = kmem_cache;
  2552. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  2553. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2554. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2555. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  2556. /*
  2557. * Allocate kmem_cache_node properly from the kmem_cache slab.
  2558. * kmem_cache_node is separately allocated so no need to
  2559. * update any list pointers.
  2560. */
  2561. temp_kmem_cache_node = kmem_cache_node;
  2562. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2563. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  2564. kmem_cache_bootstrap_fixup(kmem_cache_node);
  2565. caches++;
  2566. kmem_cache_bootstrap_fixup(kmem_cache);
  2567. caches++;
  2568. /* Free temporary boot structure */
  2569. free_pages((unsigned long)temp_kmem_cache, order);
  2570. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  2571. /*
  2572. * Patch up the size_index table if we have strange large alignment
  2573. * requirements for the kmalloc array. This is only the case for
  2574. * MIPS it seems. The standard arches will not generate any code here.
  2575. *
  2576. * Largest permitted alignment is 256 bytes due to the way we
  2577. * handle the index determination for the smaller caches.
  2578. *
  2579. * Make sure that nothing crazy happens if someone starts tinkering
  2580. * around with ARCH_KMALLOC_MINALIGN
  2581. */
  2582. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2583. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2584. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  2585. int elem = size_index_elem(i);
  2586. if (elem >= ARRAY_SIZE(size_index))
  2587. break;
  2588. size_index[elem] = KMALLOC_SHIFT_LOW;
  2589. }
  2590. if (KMALLOC_MIN_SIZE == 64) {
  2591. /*
  2592. * The 96 byte size cache is not used if the alignment
  2593. * is 64 byte.
  2594. */
  2595. for (i = 64 + 8; i <= 96; i += 8)
  2596. size_index[size_index_elem(i)] = 7;
  2597. } else if (KMALLOC_MIN_SIZE == 128) {
  2598. /*
  2599. * The 192 byte sized cache is not used if the alignment
  2600. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2601. * instead.
  2602. */
  2603. for (i = 128 + 8; i <= 192; i += 8)
  2604. size_index[size_index_elem(i)] = 8;
  2605. }
  2606. /* Caches that are not of the two-to-the-power-of size */
  2607. if (KMALLOC_MIN_SIZE <= 32) {
  2608. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  2609. caches++;
  2610. }
  2611. if (KMALLOC_MIN_SIZE <= 64) {
  2612. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  2613. caches++;
  2614. }
  2615. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2616. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  2617. caches++;
  2618. }
  2619. slab_state = UP;
  2620. /* Provide the correct kmalloc names now that the caches are up */
  2621. if (KMALLOC_MIN_SIZE <= 32) {
  2622. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  2623. BUG_ON(!kmalloc_caches[1]->name);
  2624. }
  2625. if (KMALLOC_MIN_SIZE <= 64) {
  2626. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  2627. BUG_ON(!kmalloc_caches[2]->name);
  2628. }
  2629. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2630. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  2631. BUG_ON(!s);
  2632. kmalloc_caches[i]->name = s;
  2633. }
  2634. #ifdef CONFIG_SMP
  2635. register_cpu_notifier(&slab_notifier);
  2636. #endif
  2637. #ifdef CONFIG_ZONE_DMA
  2638. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  2639. struct kmem_cache *s = kmalloc_caches[i];
  2640. if (s && s->size) {
  2641. char *name = kasprintf(GFP_NOWAIT,
  2642. "dma-kmalloc-%d", s->objsize);
  2643. BUG_ON(!name);
  2644. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  2645. s->objsize, SLAB_CACHE_DMA);
  2646. }
  2647. }
  2648. #endif
  2649. printk(KERN_INFO
  2650. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2651. " CPUs=%d, Nodes=%d\n",
  2652. caches, cache_line_size(),
  2653. slub_min_order, slub_max_order, slub_min_objects,
  2654. nr_cpu_ids, nr_node_ids);
  2655. }
  2656. void __init kmem_cache_init_late(void)
  2657. {
  2658. }
  2659. /*
  2660. * Find a mergeable slab cache
  2661. */
  2662. static int slab_unmergeable(struct kmem_cache *s)
  2663. {
  2664. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2665. return 1;
  2666. if (s->ctor)
  2667. return 1;
  2668. /*
  2669. * We may have set a slab to be unmergeable during bootstrap.
  2670. */
  2671. if (s->refcount < 0)
  2672. return 1;
  2673. return 0;
  2674. }
  2675. static struct kmem_cache *find_mergeable(size_t size,
  2676. size_t align, unsigned long flags, const char *name,
  2677. void (*ctor)(void *))
  2678. {
  2679. struct kmem_cache *s;
  2680. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2681. return NULL;
  2682. if (ctor)
  2683. return NULL;
  2684. size = ALIGN(size, sizeof(void *));
  2685. align = calculate_alignment(flags, align, size);
  2686. size = ALIGN(size, align);
  2687. flags = kmem_cache_flags(size, flags, name, NULL);
  2688. list_for_each_entry(s, &slab_caches, list) {
  2689. if (slab_unmergeable(s))
  2690. continue;
  2691. if (size > s->size)
  2692. continue;
  2693. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2694. continue;
  2695. /*
  2696. * Check if alignment is compatible.
  2697. * Courtesy of Adrian Drzewiecki
  2698. */
  2699. if ((s->size & ~(align - 1)) != s->size)
  2700. continue;
  2701. if (s->size - size >= sizeof(void *))
  2702. continue;
  2703. return s;
  2704. }
  2705. return NULL;
  2706. }
  2707. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2708. size_t align, unsigned long flags, void (*ctor)(void *))
  2709. {
  2710. struct kmem_cache *s;
  2711. char *n;
  2712. if (WARN_ON(!name))
  2713. return NULL;
  2714. down_write(&slub_lock);
  2715. s = find_mergeable(size, align, flags, name, ctor);
  2716. if (s) {
  2717. s->refcount++;
  2718. /*
  2719. * Adjust the object sizes so that we clear
  2720. * the complete object on kzalloc.
  2721. */
  2722. s->objsize = max(s->objsize, (int)size);
  2723. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2724. if (sysfs_slab_alias(s, name)) {
  2725. s->refcount--;
  2726. goto err;
  2727. }
  2728. up_write(&slub_lock);
  2729. return s;
  2730. }
  2731. n = kstrdup(name, GFP_KERNEL);
  2732. if (!n)
  2733. goto err;
  2734. s = kmalloc(kmem_size, GFP_KERNEL);
  2735. if (s) {
  2736. if (kmem_cache_open(s, n,
  2737. size, align, flags, ctor)) {
  2738. list_add(&s->list, &slab_caches);
  2739. if (sysfs_slab_add(s)) {
  2740. list_del(&s->list);
  2741. kfree(n);
  2742. kfree(s);
  2743. goto err;
  2744. }
  2745. up_write(&slub_lock);
  2746. return s;
  2747. }
  2748. kfree(n);
  2749. kfree(s);
  2750. }
  2751. err:
  2752. up_write(&slub_lock);
  2753. if (flags & SLAB_PANIC)
  2754. panic("Cannot create slabcache %s\n", name);
  2755. else
  2756. s = NULL;
  2757. return s;
  2758. }
  2759. EXPORT_SYMBOL(kmem_cache_create);
  2760. #ifdef CONFIG_SMP
  2761. /*
  2762. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2763. * necessary.
  2764. */
  2765. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2766. unsigned long action, void *hcpu)
  2767. {
  2768. long cpu = (long)hcpu;
  2769. struct kmem_cache *s;
  2770. unsigned long flags;
  2771. switch (action) {
  2772. case CPU_UP_CANCELED:
  2773. case CPU_UP_CANCELED_FROZEN:
  2774. case CPU_DEAD:
  2775. case CPU_DEAD_FROZEN:
  2776. down_read(&slub_lock);
  2777. list_for_each_entry(s, &slab_caches, list) {
  2778. local_irq_save(flags);
  2779. __flush_cpu_slab(s, cpu);
  2780. local_irq_restore(flags);
  2781. }
  2782. up_read(&slub_lock);
  2783. break;
  2784. default:
  2785. break;
  2786. }
  2787. return NOTIFY_OK;
  2788. }
  2789. static struct notifier_block __cpuinitdata slab_notifier = {
  2790. .notifier_call = slab_cpuup_callback
  2791. };
  2792. #endif
  2793. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  2794. {
  2795. struct kmem_cache *s;
  2796. void *ret;
  2797. if (unlikely(size > SLUB_MAX_SIZE))
  2798. return kmalloc_large(size, gfpflags);
  2799. s = get_slab(size, gfpflags);
  2800. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2801. return s;
  2802. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  2803. /* Honor the call site pointer we recieved. */
  2804. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  2805. return ret;
  2806. }
  2807. #ifdef CONFIG_NUMA
  2808. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2809. int node, unsigned long caller)
  2810. {
  2811. struct kmem_cache *s;
  2812. void *ret;
  2813. if (unlikely(size > SLUB_MAX_SIZE)) {
  2814. ret = kmalloc_large_node(size, gfpflags, node);
  2815. trace_kmalloc_node(caller, ret,
  2816. size, PAGE_SIZE << get_order(size),
  2817. gfpflags, node);
  2818. return ret;
  2819. }
  2820. s = get_slab(size, gfpflags);
  2821. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2822. return s;
  2823. ret = slab_alloc(s, gfpflags, node, caller);
  2824. /* Honor the call site pointer we recieved. */
  2825. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  2826. return ret;
  2827. }
  2828. #endif
  2829. #ifdef CONFIG_SYSFS
  2830. static int count_inuse(struct page *page)
  2831. {
  2832. return page->inuse;
  2833. }
  2834. static int count_total(struct page *page)
  2835. {
  2836. return page->objects;
  2837. }
  2838. #endif
  2839. #ifdef CONFIG_SLUB_DEBUG
  2840. static int validate_slab(struct kmem_cache *s, struct page *page,
  2841. unsigned long *map)
  2842. {
  2843. void *p;
  2844. void *addr = page_address(page);
  2845. if (!check_slab(s, page) ||
  2846. !on_freelist(s, page, NULL))
  2847. return 0;
  2848. /* Now we know that a valid freelist exists */
  2849. bitmap_zero(map, page->objects);
  2850. for_each_free_object(p, s, page->freelist) {
  2851. set_bit(slab_index(p, s, addr), map);
  2852. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  2853. return 0;
  2854. }
  2855. for_each_object(p, s, addr, page->objects)
  2856. if (!test_bit(slab_index(p, s, addr), map))
  2857. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  2858. return 0;
  2859. return 1;
  2860. }
  2861. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2862. unsigned long *map)
  2863. {
  2864. if (slab_trylock(page)) {
  2865. validate_slab(s, page, map);
  2866. slab_unlock(page);
  2867. } else
  2868. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2869. s->name, page);
  2870. }
  2871. static int validate_slab_node(struct kmem_cache *s,
  2872. struct kmem_cache_node *n, unsigned long *map)
  2873. {
  2874. unsigned long count = 0;
  2875. struct page *page;
  2876. unsigned long flags;
  2877. spin_lock_irqsave(&n->list_lock, flags);
  2878. list_for_each_entry(page, &n->partial, lru) {
  2879. validate_slab_slab(s, page, map);
  2880. count++;
  2881. }
  2882. if (count != n->nr_partial)
  2883. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2884. "counter=%ld\n", s->name, count, n->nr_partial);
  2885. if (!(s->flags & SLAB_STORE_USER))
  2886. goto out;
  2887. list_for_each_entry(page, &n->full, lru) {
  2888. validate_slab_slab(s, page, map);
  2889. count++;
  2890. }
  2891. if (count != atomic_long_read(&n->nr_slabs))
  2892. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2893. "counter=%ld\n", s->name, count,
  2894. atomic_long_read(&n->nr_slabs));
  2895. out:
  2896. spin_unlock_irqrestore(&n->list_lock, flags);
  2897. return count;
  2898. }
  2899. static long validate_slab_cache(struct kmem_cache *s)
  2900. {
  2901. int node;
  2902. unsigned long count = 0;
  2903. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2904. sizeof(unsigned long), GFP_KERNEL);
  2905. if (!map)
  2906. return -ENOMEM;
  2907. flush_all(s);
  2908. for_each_node_state(node, N_NORMAL_MEMORY) {
  2909. struct kmem_cache_node *n = get_node(s, node);
  2910. count += validate_slab_node(s, n, map);
  2911. }
  2912. kfree(map);
  2913. return count;
  2914. }
  2915. /*
  2916. * Generate lists of code addresses where slabcache objects are allocated
  2917. * and freed.
  2918. */
  2919. struct location {
  2920. unsigned long count;
  2921. unsigned long addr;
  2922. long long sum_time;
  2923. long min_time;
  2924. long max_time;
  2925. long min_pid;
  2926. long max_pid;
  2927. DECLARE_BITMAP(cpus, NR_CPUS);
  2928. nodemask_t nodes;
  2929. };
  2930. struct loc_track {
  2931. unsigned long max;
  2932. unsigned long count;
  2933. struct location *loc;
  2934. };
  2935. static void free_loc_track(struct loc_track *t)
  2936. {
  2937. if (t->max)
  2938. free_pages((unsigned long)t->loc,
  2939. get_order(sizeof(struct location) * t->max));
  2940. }
  2941. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2942. {
  2943. struct location *l;
  2944. int order;
  2945. order = get_order(sizeof(struct location) * max);
  2946. l = (void *)__get_free_pages(flags, order);
  2947. if (!l)
  2948. return 0;
  2949. if (t->count) {
  2950. memcpy(l, t->loc, sizeof(struct location) * t->count);
  2951. free_loc_track(t);
  2952. }
  2953. t->max = max;
  2954. t->loc = l;
  2955. return 1;
  2956. }
  2957. static int add_location(struct loc_track *t, struct kmem_cache *s,
  2958. const struct track *track)
  2959. {
  2960. long start, end, pos;
  2961. struct location *l;
  2962. unsigned long caddr;
  2963. unsigned long age = jiffies - track->when;
  2964. start = -1;
  2965. end = t->count;
  2966. for ( ; ; ) {
  2967. pos = start + (end - start + 1) / 2;
  2968. /*
  2969. * There is nothing at "end". If we end up there
  2970. * we need to add something to before end.
  2971. */
  2972. if (pos == end)
  2973. break;
  2974. caddr = t->loc[pos].addr;
  2975. if (track->addr == caddr) {
  2976. l = &t->loc[pos];
  2977. l->count++;
  2978. if (track->when) {
  2979. l->sum_time += age;
  2980. if (age < l->min_time)
  2981. l->min_time = age;
  2982. if (age > l->max_time)
  2983. l->max_time = age;
  2984. if (track->pid < l->min_pid)
  2985. l->min_pid = track->pid;
  2986. if (track->pid > l->max_pid)
  2987. l->max_pid = track->pid;
  2988. cpumask_set_cpu(track->cpu,
  2989. to_cpumask(l->cpus));
  2990. }
  2991. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2992. return 1;
  2993. }
  2994. if (track->addr < caddr)
  2995. end = pos;
  2996. else
  2997. start = pos;
  2998. }
  2999. /*
  3000. * Not found. Insert new tracking element.
  3001. */
  3002. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3003. return 0;
  3004. l = t->loc + pos;
  3005. if (pos < t->count)
  3006. memmove(l + 1, l,
  3007. (t->count - pos) * sizeof(struct location));
  3008. t->count++;
  3009. l->count = 1;
  3010. l->addr = track->addr;
  3011. l->sum_time = age;
  3012. l->min_time = age;
  3013. l->max_time = age;
  3014. l->min_pid = track->pid;
  3015. l->max_pid = track->pid;
  3016. cpumask_clear(to_cpumask(l->cpus));
  3017. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3018. nodes_clear(l->nodes);
  3019. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3020. return 1;
  3021. }
  3022. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3023. struct page *page, enum track_item alloc,
  3024. unsigned long *map)
  3025. {
  3026. void *addr = page_address(page);
  3027. void *p;
  3028. bitmap_zero(map, page->objects);
  3029. for_each_free_object(p, s, page->freelist)
  3030. set_bit(slab_index(p, s, addr), map);
  3031. for_each_object(p, s, addr, page->objects)
  3032. if (!test_bit(slab_index(p, s, addr), map))
  3033. add_location(t, s, get_track(s, p, alloc));
  3034. }
  3035. static int list_locations(struct kmem_cache *s, char *buf,
  3036. enum track_item alloc)
  3037. {
  3038. int len = 0;
  3039. unsigned long i;
  3040. struct loc_track t = { 0, 0, NULL };
  3041. int node;
  3042. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3043. sizeof(unsigned long), GFP_KERNEL);
  3044. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3045. GFP_TEMPORARY)) {
  3046. kfree(map);
  3047. return sprintf(buf, "Out of memory\n");
  3048. }
  3049. /* Push back cpu slabs */
  3050. flush_all(s);
  3051. for_each_node_state(node, N_NORMAL_MEMORY) {
  3052. struct kmem_cache_node *n = get_node(s, node);
  3053. unsigned long flags;
  3054. struct page *page;
  3055. if (!atomic_long_read(&n->nr_slabs))
  3056. continue;
  3057. spin_lock_irqsave(&n->list_lock, flags);
  3058. list_for_each_entry(page, &n->partial, lru)
  3059. process_slab(&t, s, page, alloc, map);
  3060. list_for_each_entry(page, &n->full, lru)
  3061. process_slab(&t, s, page, alloc, map);
  3062. spin_unlock_irqrestore(&n->list_lock, flags);
  3063. }
  3064. for (i = 0; i < t.count; i++) {
  3065. struct location *l = &t.loc[i];
  3066. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3067. break;
  3068. len += sprintf(buf + len, "%7ld ", l->count);
  3069. if (l->addr)
  3070. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3071. else
  3072. len += sprintf(buf + len, "<not-available>");
  3073. if (l->sum_time != l->min_time) {
  3074. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3075. l->min_time,
  3076. (long)div_u64(l->sum_time, l->count),
  3077. l->max_time);
  3078. } else
  3079. len += sprintf(buf + len, " age=%ld",
  3080. l->min_time);
  3081. if (l->min_pid != l->max_pid)
  3082. len += sprintf(buf + len, " pid=%ld-%ld",
  3083. l->min_pid, l->max_pid);
  3084. else
  3085. len += sprintf(buf + len, " pid=%ld",
  3086. l->min_pid);
  3087. if (num_online_cpus() > 1 &&
  3088. !cpumask_empty(to_cpumask(l->cpus)) &&
  3089. len < PAGE_SIZE - 60) {
  3090. len += sprintf(buf + len, " cpus=");
  3091. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3092. to_cpumask(l->cpus));
  3093. }
  3094. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3095. len < PAGE_SIZE - 60) {
  3096. len += sprintf(buf + len, " nodes=");
  3097. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3098. l->nodes);
  3099. }
  3100. len += sprintf(buf + len, "\n");
  3101. }
  3102. free_loc_track(&t);
  3103. kfree(map);
  3104. if (!t.count)
  3105. len += sprintf(buf, "No data\n");
  3106. return len;
  3107. }
  3108. #endif
  3109. #ifdef SLUB_RESILIENCY_TEST
  3110. static void resiliency_test(void)
  3111. {
  3112. u8 *p;
  3113. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3114. printk(KERN_ERR "SLUB resiliency testing\n");
  3115. printk(KERN_ERR "-----------------------\n");
  3116. printk(KERN_ERR "A. Corruption after allocation\n");
  3117. p = kzalloc(16, GFP_KERNEL);
  3118. p[16] = 0x12;
  3119. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3120. " 0x12->0x%p\n\n", p + 16);
  3121. validate_slab_cache(kmalloc_caches[4]);
  3122. /* Hmmm... The next two are dangerous */
  3123. p = kzalloc(32, GFP_KERNEL);
  3124. p[32 + sizeof(void *)] = 0x34;
  3125. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3126. " 0x34 -> -0x%p\n", p);
  3127. printk(KERN_ERR
  3128. "If allocated object is overwritten then not detectable\n\n");
  3129. validate_slab_cache(kmalloc_caches[5]);
  3130. p = kzalloc(64, GFP_KERNEL);
  3131. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3132. *p = 0x56;
  3133. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3134. p);
  3135. printk(KERN_ERR
  3136. "If allocated object is overwritten then not detectable\n\n");
  3137. validate_slab_cache(kmalloc_caches[6]);
  3138. printk(KERN_ERR "\nB. Corruption after free\n");
  3139. p = kzalloc(128, GFP_KERNEL);
  3140. kfree(p);
  3141. *p = 0x78;
  3142. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3143. validate_slab_cache(kmalloc_caches[7]);
  3144. p = kzalloc(256, GFP_KERNEL);
  3145. kfree(p);
  3146. p[50] = 0x9a;
  3147. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3148. p);
  3149. validate_slab_cache(kmalloc_caches[8]);
  3150. p = kzalloc(512, GFP_KERNEL);
  3151. kfree(p);
  3152. p[512] = 0xab;
  3153. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3154. validate_slab_cache(kmalloc_caches[9]);
  3155. }
  3156. #else
  3157. #ifdef CONFIG_SYSFS
  3158. static void resiliency_test(void) {};
  3159. #endif
  3160. #endif
  3161. #ifdef CONFIG_SYSFS
  3162. enum slab_stat_type {
  3163. SL_ALL, /* All slabs */
  3164. SL_PARTIAL, /* Only partially allocated slabs */
  3165. SL_CPU, /* Only slabs used for cpu caches */
  3166. SL_OBJECTS, /* Determine allocated objects not slabs */
  3167. SL_TOTAL /* Determine object capacity not slabs */
  3168. };
  3169. #define SO_ALL (1 << SL_ALL)
  3170. #define SO_PARTIAL (1 << SL_PARTIAL)
  3171. #define SO_CPU (1 << SL_CPU)
  3172. #define SO_OBJECTS (1 << SL_OBJECTS)
  3173. #define SO_TOTAL (1 << SL_TOTAL)
  3174. static ssize_t show_slab_objects(struct kmem_cache *s,
  3175. char *buf, unsigned long flags)
  3176. {
  3177. unsigned long total = 0;
  3178. int node;
  3179. int x;
  3180. unsigned long *nodes;
  3181. unsigned long *per_cpu;
  3182. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3183. if (!nodes)
  3184. return -ENOMEM;
  3185. per_cpu = nodes + nr_node_ids;
  3186. if (flags & SO_CPU) {
  3187. int cpu;
  3188. for_each_possible_cpu(cpu) {
  3189. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3190. if (!c || c->node < 0)
  3191. continue;
  3192. if (c->page) {
  3193. if (flags & SO_TOTAL)
  3194. x = c->page->objects;
  3195. else if (flags & SO_OBJECTS)
  3196. x = c->page->inuse;
  3197. else
  3198. x = 1;
  3199. total += x;
  3200. nodes[c->node] += x;
  3201. }
  3202. per_cpu[c->node]++;
  3203. }
  3204. }
  3205. lock_memory_hotplug();
  3206. #ifdef CONFIG_SLUB_DEBUG
  3207. if (flags & SO_ALL) {
  3208. for_each_node_state(node, N_NORMAL_MEMORY) {
  3209. struct kmem_cache_node *n = get_node(s, node);
  3210. if (flags & SO_TOTAL)
  3211. x = atomic_long_read(&n->total_objects);
  3212. else if (flags & SO_OBJECTS)
  3213. x = atomic_long_read(&n->total_objects) -
  3214. count_partial(n, count_free);
  3215. else
  3216. x = atomic_long_read(&n->nr_slabs);
  3217. total += x;
  3218. nodes[node] += x;
  3219. }
  3220. } else
  3221. #endif
  3222. if (flags & SO_PARTIAL) {
  3223. for_each_node_state(node, N_NORMAL_MEMORY) {
  3224. struct kmem_cache_node *n = get_node(s, node);
  3225. if (flags & SO_TOTAL)
  3226. x = count_partial(n, count_total);
  3227. else if (flags & SO_OBJECTS)
  3228. x = count_partial(n, count_inuse);
  3229. else
  3230. x = n->nr_partial;
  3231. total += x;
  3232. nodes[node] += x;
  3233. }
  3234. }
  3235. x = sprintf(buf, "%lu", total);
  3236. #ifdef CONFIG_NUMA
  3237. for_each_node_state(node, N_NORMAL_MEMORY)
  3238. if (nodes[node])
  3239. x += sprintf(buf + x, " N%d=%lu",
  3240. node, nodes[node]);
  3241. #endif
  3242. unlock_memory_hotplug();
  3243. kfree(nodes);
  3244. return x + sprintf(buf + x, "\n");
  3245. }
  3246. #ifdef CONFIG_SLUB_DEBUG
  3247. static int any_slab_objects(struct kmem_cache *s)
  3248. {
  3249. int node;
  3250. for_each_online_node(node) {
  3251. struct kmem_cache_node *n = get_node(s, node);
  3252. if (!n)
  3253. continue;
  3254. if (atomic_long_read(&n->total_objects))
  3255. return 1;
  3256. }
  3257. return 0;
  3258. }
  3259. #endif
  3260. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3261. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3262. struct slab_attribute {
  3263. struct attribute attr;
  3264. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3265. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3266. };
  3267. #define SLAB_ATTR_RO(_name) \
  3268. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3269. #define SLAB_ATTR(_name) \
  3270. static struct slab_attribute _name##_attr = \
  3271. __ATTR(_name, 0644, _name##_show, _name##_store)
  3272. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3273. {
  3274. return sprintf(buf, "%d\n", s->size);
  3275. }
  3276. SLAB_ATTR_RO(slab_size);
  3277. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3278. {
  3279. return sprintf(buf, "%d\n", s->align);
  3280. }
  3281. SLAB_ATTR_RO(align);
  3282. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3283. {
  3284. return sprintf(buf, "%d\n", s->objsize);
  3285. }
  3286. SLAB_ATTR_RO(object_size);
  3287. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3288. {
  3289. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3290. }
  3291. SLAB_ATTR_RO(objs_per_slab);
  3292. static ssize_t order_store(struct kmem_cache *s,
  3293. const char *buf, size_t length)
  3294. {
  3295. unsigned long order;
  3296. int err;
  3297. err = strict_strtoul(buf, 10, &order);
  3298. if (err)
  3299. return err;
  3300. if (order > slub_max_order || order < slub_min_order)
  3301. return -EINVAL;
  3302. calculate_sizes(s, order);
  3303. return length;
  3304. }
  3305. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3306. {
  3307. return sprintf(buf, "%d\n", oo_order(s->oo));
  3308. }
  3309. SLAB_ATTR(order);
  3310. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3311. {
  3312. return sprintf(buf, "%lu\n", s->min_partial);
  3313. }
  3314. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3315. size_t length)
  3316. {
  3317. unsigned long min;
  3318. int err;
  3319. err = strict_strtoul(buf, 10, &min);
  3320. if (err)
  3321. return err;
  3322. set_min_partial(s, min);
  3323. return length;
  3324. }
  3325. SLAB_ATTR(min_partial);
  3326. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3327. {
  3328. if (!s->ctor)
  3329. return 0;
  3330. return sprintf(buf, "%pS\n", s->ctor);
  3331. }
  3332. SLAB_ATTR_RO(ctor);
  3333. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3334. {
  3335. return sprintf(buf, "%d\n", s->refcount - 1);
  3336. }
  3337. SLAB_ATTR_RO(aliases);
  3338. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3339. {
  3340. return show_slab_objects(s, buf, SO_PARTIAL);
  3341. }
  3342. SLAB_ATTR_RO(partial);
  3343. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3344. {
  3345. return show_slab_objects(s, buf, SO_CPU);
  3346. }
  3347. SLAB_ATTR_RO(cpu_slabs);
  3348. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3349. {
  3350. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3351. }
  3352. SLAB_ATTR_RO(objects);
  3353. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3354. {
  3355. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3356. }
  3357. SLAB_ATTR_RO(objects_partial);
  3358. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3359. {
  3360. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3361. }
  3362. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3363. const char *buf, size_t length)
  3364. {
  3365. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3366. if (buf[0] == '1')
  3367. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3368. return length;
  3369. }
  3370. SLAB_ATTR(reclaim_account);
  3371. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3372. {
  3373. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3374. }
  3375. SLAB_ATTR_RO(hwcache_align);
  3376. #ifdef CONFIG_ZONE_DMA
  3377. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3378. {
  3379. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3380. }
  3381. SLAB_ATTR_RO(cache_dma);
  3382. #endif
  3383. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3384. {
  3385. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3386. }
  3387. SLAB_ATTR_RO(destroy_by_rcu);
  3388. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  3389. {
  3390. return sprintf(buf, "%d\n", s->reserved);
  3391. }
  3392. SLAB_ATTR_RO(reserved);
  3393. #ifdef CONFIG_SLUB_DEBUG
  3394. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3395. {
  3396. return show_slab_objects(s, buf, SO_ALL);
  3397. }
  3398. SLAB_ATTR_RO(slabs);
  3399. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3400. {
  3401. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3402. }
  3403. SLAB_ATTR_RO(total_objects);
  3404. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3405. {
  3406. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3407. }
  3408. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3409. const char *buf, size_t length)
  3410. {
  3411. s->flags &= ~SLAB_DEBUG_FREE;
  3412. if (buf[0] == '1')
  3413. s->flags |= SLAB_DEBUG_FREE;
  3414. return length;
  3415. }
  3416. SLAB_ATTR(sanity_checks);
  3417. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3418. {
  3419. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3420. }
  3421. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3422. size_t length)
  3423. {
  3424. s->flags &= ~SLAB_TRACE;
  3425. if (buf[0] == '1')
  3426. s->flags |= SLAB_TRACE;
  3427. return length;
  3428. }
  3429. SLAB_ATTR(trace);
  3430. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3431. {
  3432. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3433. }
  3434. static ssize_t red_zone_store(struct kmem_cache *s,
  3435. const char *buf, size_t length)
  3436. {
  3437. if (any_slab_objects(s))
  3438. return -EBUSY;
  3439. s->flags &= ~SLAB_RED_ZONE;
  3440. if (buf[0] == '1')
  3441. s->flags |= SLAB_RED_ZONE;
  3442. calculate_sizes(s, -1);
  3443. return length;
  3444. }
  3445. SLAB_ATTR(red_zone);
  3446. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3447. {
  3448. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3449. }
  3450. static ssize_t poison_store(struct kmem_cache *s,
  3451. const char *buf, size_t length)
  3452. {
  3453. if (any_slab_objects(s))
  3454. return -EBUSY;
  3455. s->flags &= ~SLAB_POISON;
  3456. if (buf[0] == '1')
  3457. s->flags |= SLAB_POISON;
  3458. calculate_sizes(s, -1);
  3459. return length;
  3460. }
  3461. SLAB_ATTR(poison);
  3462. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3463. {
  3464. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3465. }
  3466. static ssize_t store_user_store(struct kmem_cache *s,
  3467. const char *buf, size_t length)
  3468. {
  3469. if (any_slab_objects(s))
  3470. return -EBUSY;
  3471. s->flags &= ~SLAB_STORE_USER;
  3472. if (buf[0] == '1')
  3473. s->flags |= SLAB_STORE_USER;
  3474. calculate_sizes(s, -1);
  3475. return length;
  3476. }
  3477. SLAB_ATTR(store_user);
  3478. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3479. {
  3480. return 0;
  3481. }
  3482. static ssize_t validate_store(struct kmem_cache *s,
  3483. const char *buf, size_t length)
  3484. {
  3485. int ret = -EINVAL;
  3486. if (buf[0] == '1') {
  3487. ret = validate_slab_cache(s);
  3488. if (ret >= 0)
  3489. ret = length;
  3490. }
  3491. return ret;
  3492. }
  3493. SLAB_ATTR(validate);
  3494. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3495. {
  3496. if (!(s->flags & SLAB_STORE_USER))
  3497. return -ENOSYS;
  3498. return list_locations(s, buf, TRACK_ALLOC);
  3499. }
  3500. SLAB_ATTR_RO(alloc_calls);
  3501. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3502. {
  3503. if (!(s->flags & SLAB_STORE_USER))
  3504. return -ENOSYS;
  3505. return list_locations(s, buf, TRACK_FREE);
  3506. }
  3507. SLAB_ATTR_RO(free_calls);
  3508. #endif /* CONFIG_SLUB_DEBUG */
  3509. #ifdef CONFIG_FAILSLAB
  3510. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3511. {
  3512. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3513. }
  3514. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3515. size_t length)
  3516. {
  3517. s->flags &= ~SLAB_FAILSLAB;
  3518. if (buf[0] == '1')
  3519. s->flags |= SLAB_FAILSLAB;
  3520. return length;
  3521. }
  3522. SLAB_ATTR(failslab);
  3523. #endif
  3524. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3525. {
  3526. return 0;
  3527. }
  3528. static ssize_t shrink_store(struct kmem_cache *s,
  3529. const char *buf, size_t length)
  3530. {
  3531. if (buf[0] == '1') {
  3532. int rc = kmem_cache_shrink(s);
  3533. if (rc)
  3534. return rc;
  3535. } else
  3536. return -EINVAL;
  3537. return length;
  3538. }
  3539. SLAB_ATTR(shrink);
  3540. #ifdef CONFIG_NUMA
  3541. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3542. {
  3543. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3544. }
  3545. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3546. const char *buf, size_t length)
  3547. {
  3548. unsigned long ratio;
  3549. int err;
  3550. err = strict_strtoul(buf, 10, &ratio);
  3551. if (err)
  3552. return err;
  3553. if (ratio <= 100)
  3554. s->remote_node_defrag_ratio = ratio * 10;
  3555. return length;
  3556. }
  3557. SLAB_ATTR(remote_node_defrag_ratio);
  3558. #endif
  3559. #ifdef CONFIG_SLUB_STATS
  3560. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3561. {
  3562. unsigned long sum = 0;
  3563. int cpu;
  3564. int len;
  3565. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3566. if (!data)
  3567. return -ENOMEM;
  3568. for_each_online_cpu(cpu) {
  3569. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  3570. data[cpu] = x;
  3571. sum += x;
  3572. }
  3573. len = sprintf(buf, "%lu", sum);
  3574. #ifdef CONFIG_SMP
  3575. for_each_online_cpu(cpu) {
  3576. if (data[cpu] && len < PAGE_SIZE - 20)
  3577. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3578. }
  3579. #endif
  3580. kfree(data);
  3581. return len + sprintf(buf + len, "\n");
  3582. }
  3583. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  3584. {
  3585. int cpu;
  3586. for_each_online_cpu(cpu)
  3587. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  3588. }
  3589. #define STAT_ATTR(si, text) \
  3590. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3591. { \
  3592. return show_stat(s, buf, si); \
  3593. } \
  3594. static ssize_t text##_store(struct kmem_cache *s, \
  3595. const char *buf, size_t length) \
  3596. { \
  3597. if (buf[0] != '0') \
  3598. return -EINVAL; \
  3599. clear_stat(s, si); \
  3600. return length; \
  3601. } \
  3602. SLAB_ATTR(text); \
  3603. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3604. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3605. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3606. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3607. STAT_ATTR(FREE_FROZEN, free_frozen);
  3608. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3609. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3610. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3611. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3612. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3613. STAT_ATTR(FREE_SLAB, free_slab);
  3614. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3615. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3616. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3617. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3618. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3619. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3620. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3621. #endif
  3622. static struct attribute *slab_attrs[] = {
  3623. &slab_size_attr.attr,
  3624. &object_size_attr.attr,
  3625. &objs_per_slab_attr.attr,
  3626. &order_attr.attr,
  3627. &min_partial_attr.attr,
  3628. &objects_attr.attr,
  3629. &objects_partial_attr.attr,
  3630. &partial_attr.attr,
  3631. &cpu_slabs_attr.attr,
  3632. &ctor_attr.attr,
  3633. &aliases_attr.attr,
  3634. &align_attr.attr,
  3635. &hwcache_align_attr.attr,
  3636. &reclaim_account_attr.attr,
  3637. &destroy_by_rcu_attr.attr,
  3638. &shrink_attr.attr,
  3639. &reserved_attr.attr,
  3640. #ifdef CONFIG_SLUB_DEBUG
  3641. &total_objects_attr.attr,
  3642. &slabs_attr.attr,
  3643. &sanity_checks_attr.attr,
  3644. &trace_attr.attr,
  3645. &red_zone_attr.attr,
  3646. &poison_attr.attr,
  3647. &store_user_attr.attr,
  3648. &validate_attr.attr,
  3649. &alloc_calls_attr.attr,
  3650. &free_calls_attr.attr,
  3651. #endif
  3652. #ifdef CONFIG_ZONE_DMA
  3653. &cache_dma_attr.attr,
  3654. #endif
  3655. #ifdef CONFIG_NUMA
  3656. &remote_node_defrag_ratio_attr.attr,
  3657. #endif
  3658. #ifdef CONFIG_SLUB_STATS
  3659. &alloc_fastpath_attr.attr,
  3660. &alloc_slowpath_attr.attr,
  3661. &free_fastpath_attr.attr,
  3662. &free_slowpath_attr.attr,
  3663. &free_frozen_attr.attr,
  3664. &free_add_partial_attr.attr,
  3665. &free_remove_partial_attr.attr,
  3666. &alloc_from_partial_attr.attr,
  3667. &alloc_slab_attr.attr,
  3668. &alloc_refill_attr.attr,
  3669. &free_slab_attr.attr,
  3670. &cpuslab_flush_attr.attr,
  3671. &deactivate_full_attr.attr,
  3672. &deactivate_empty_attr.attr,
  3673. &deactivate_to_head_attr.attr,
  3674. &deactivate_to_tail_attr.attr,
  3675. &deactivate_remote_frees_attr.attr,
  3676. &order_fallback_attr.attr,
  3677. #endif
  3678. #ifdef CONFIG_FAILSLAB
  3679. &failslab_attr.attr,
  3680. #endif
  3681. NULL
  3682. };
  3683. static struct attribute_group slab_attr_group = {
  3684. .attrs = slab_attrs,
  3685. };
  3686. static ssize_t slab_attr_show(struct kobject *kobj,
  3687. struct attribute *attr,
  3688. char *buf)
  3689. {
  3690. struct slab_attribute *attribute;
  3691. struct kmem_cache *s;
  3692. int err;
  3693. attribute = to_slab_attr(attr);
  3694. s = to_slab(kobj);
  3695. if (!attribute->show)
  3696. return -EIO;
  3697. err = attribute->show(s, buf);
  3698. return err;
  3699. }
  3700. static ssize_t slab_attr_store(struct kobject *kobj,
  3701. struct attribute *attr,
  3702. const char *buf, size_t len)
  3703. {
  3704. struct slab_attribute *attribute;
  3705. struct kmem_cache *s;
  3706. int err;
  3707. attribute = to_slab_attr(attr);
  3708. s = to_slab(kobj);
  3709. if (!attribute->store)
  3710. return -EIO;
  3711. err = attribute->store(s, buf, len);
  3712. return err;
  3713. }
  3714. static void kmem_cache_release(struct kobject *kobj)
  3715. {
  3716. struct kmem_cache *s = to_slab(kobj);
  3717. kfree(s->name);
  3718. kfree(s);
  3719. }
  3720. static const struct sysfs_ops slab_sysfs_ops = {
  3721. .show = slab_attr_show,
  3722. .store = slab_attr_store,
  3723. };
  3724. static struct kobj_type slab_ktype = {
  3725. .sysfs_ops = &slab_sysfs_ops,
  3726. .release = kmem_cache_release
  3727. };
  3728. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3729. {
  3730. struct kobj_type *ktype = get_ktype(kobj);
  3731. if (ktype == &slab_ktype)
  3732. return 1;
  3733. return 0;
  3734. }
  3735. static const struct kset_uevent_ops slab_uevent_ops = {
  3736. .filter = uevent_filter,
  3737. };
  3738. static struct kset *slab_kset;
  3739. #define ID_STR_LENGTH 64
  3740. /* Create a unique string id for a slab cache:
  3741. *
  3742. * Format :[flags-]size
  3743. */
  3744. static char *create_unique_id(struct kmem_cache *s)
  3745. {
  3746. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3747. char *p = name;
  3748. BUG_ON(!name);
  3749. *p++ = ':';
  3750. /*
  3751. * First flags affecting slabcache operations. We will only
  3752. * get here for aliasable slabs so we do not need to support
  3753. * too many flags. The flags here must cover all flags that
  3754. * are matched during merging to guarantee that the id is
  3755. * unique.
  3756. */
  3757. if (s->flags & SLAB_CACHE_DMA)
  3758. *p++ = 'd';
  3759. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3760. *p++ = 'a';
  3761. if (s->flags & SLAB_DEBUG_FREE)
  3762. *p++ = 'F';
  3763. if (!(s->flags & SLAB_NOTRACK))
  3764. *p++ = 't';
  3765. if (p != name + 1)
  3766. *p++ = '-';
  3767. p += sprintf(p, "%07d", s->size);
  3768. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3769. return name;
  3770. }
  3771. static int sysfs_slab_add(struct kmem_cache *s)
  3772. {
  3773. int err;
  3774. const char *name;
  3775. int unmergeable;
  3776. if (slab_state < SYSFS)
  3777. /* Defer until later */
  3778. return 0;
  3779. unmergeable = slab_unmergeable(s);
  3780. if (unmergeable) {
  3781. /*
  3782. * Slabcache can never be merged so we can use the name proper.
  3783. * This is typically the case for debug situations. In that
  3784. * case we can catch duplicate names easily.
  3785. */
  3786. sysfs_remove_link(&slab_kset->kobj, s->name);
  3787. name = s->name;
  3788. } else {
  3789. /*
  3790. * Create a unique name for the slab as a target
  3791. * for the symlinks.
  3792. */
  3793. name = create_unique_id(s);
  3794. }
  3795. s->kobj.kset = slab_kset;
  3796. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3797. if (err) {
  3798. kobject_put(&s->kobj);
  3799. return err;
  3800. }
  3801. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3802. if (err) {
  3803. kobject_del(&s->kobj);
  3804. kobject_put(&s->kobj);
  3805. return err;
  3806. }
  3807. kobject_uevent(&s->kobj, KOBJ_ADD);
  3808. if (!unmergeable) {
  3809. /* Setup first alias */
  3810. sysfs_slab_alias(s, s->name);
  3811. kfree(name);
  3812. }
  3813. return 0;
  3814. }
  3815. static void sysfs_slab_remove(struct kmem_cache *s)
  3816. {
  3817. if (slab_state < SYSFS)
  3818. /*
  3819. * Sysfs has not been setup yet so no need to remove the
  3820. * cache from sysfs.
  3821. */
  3822. return;
  3823. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3824. kobject_del(&s->kobj);
  3825. kobject_put(&s->kobj);
  3826. }
  3827. /*
  3828. * Need to buffer aliases during bootup until sysfs becomes
  3829. * available lest we lose that information.
  3830. */
  3831. struct saved_alias {
  3832. struct kmem_cache *s;
  3833. const char *name;
  3834. struct saved_alias *next;
  3835. };
  3836. static struct saved_alias *alias_list;
  3837. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3838. {
  3839. struct saved_alias *al;
  3840. if (slab_state == SYSFS) {
  3841. /*
  3842. * If we have a leftover link then remove it.
  3843. */
  3844. sysfs_remove_link(&slab_kset->kobj, name);
  3845. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3846. }
  3847. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3848. if (!al)
  3849. return -ENOMEM;
  3850. al->s = s;
  3851. al->name = name;
  3852. al->next = alias_list;
  3853. alias_list = al;
  3854. return 0;
  3855. }
  3856. static int __init slab_sysfs_init(void)
  3857. {
  3858. struct kmem_cache *s;
  3859. int err;
  3860. down_write(&slub_lock);
  3861. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3862. if (!slab_kset) {
  3863. up_write(&slub_lock);
  3864. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3865. return -ENOSYS;
  3866. }
  3867. slab_state = SYSFS;
  3868. list_for_each_entry(s, &slab_caches, list) {
  3869. err = sysfs_slab_add(s);
  3870. if (err)
  3871. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3872. " to sysfs\n", s->name);
  3873. }
  3874. while (alias_list) {
  3875. struct saved_alias *al = alias_list;
  3876. alias_list = alias_list->next;
  3877. err = sysfs_slab_alias(al->s, al->name);
  3878. if (err)
  3879. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3880. " %s to sysfs\n", s->name);
  3881. kfree(al);
  3882. }
  3883. up_write(&slub_lock);
  3884. resiliency_test();
  3885. return 0;
  3886. }
  3887. __initcall(slab_sysfs_init);
  3888. #endif /* CONFIG_SYSFS */
  3889. /*
  3890. * The /proc/slabinfo ABI
  3891. */
  3892. #ifdef CONFIG_SLABINFO
  3893. static void print_slabinfo_header(struct seq_file *m)
  3894. {
  3895. seq_puts(m, "slabinfo - version: 2.1\n");
  3896. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3897. "<objperslab> <pagesperslab>");
  3898. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3899. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3900. seq_putc(m, '\n');
  3901. }
  3902. static void *s_start(struct seq_file *m, loff_t *pos)
  3903. {
  3904. loff_t n = *pos;
  3905. down_read(&slub_lock);
  3906. if (!n)
  3907. print_slabinfo_header(m);
  3908. return seq_list_start(&slab_caches, *pos);
  3909. }
  3910. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3911. {
  3912. return seq_list_next(p, &slab_caches, pos);
  3913. }
  3914. static void s_stop(struct seq_file *m, void *p)
  3915. {
  3916. up_read(&slub_lock);
  3917. }
  3918. static int s_show(struct seq_file *m, void *p)
  3919. {
  3920. unsigned long nr_partials = 0;
  3921. unsigned long nr_slabs = 0;
  3922. unsigned long nr_inuse = 0;
  3923. unsigned long nr_objs = 0;
  3924. unsigned long nr_free = 0;
  3925. struct kmem_cache *s;
  3926. int node;
  3927. s = list_entry(p, struct kmem_cache, list);
  3928. for_each_online_node(node) {
  3929. struct kmem_cache_node *n = get_node(s, node);
  3930. if (!n)
  3931. continue;
  3932. nr_partials += n->nr_partial;
  3933. nr_slabs += atomic_long_read(&n->nr_slabs);
  3934. nr_objs += atomic_long_read(&n->total_objects);
  3935. nr_free += count_partial(n, count_free);
  3936. }
  3937. nr_inuse = nr_objs - nr_free;
  3938. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3939. nr_objs, s->size, oo_objects(s->oo),
  3940. (1 << oo_order(s->oo)));
  3941. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3942. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3943. 0UL);
  3944. seq_putc(m, '\n');
  3945. return 0;
  3946. }
  3947. static const struct seq_operations slabinfo_op = {
  3948. .start = s_start,
  3949. .next = s_next,
  3950. .stop = s_stop,
  3951. .show = s_show,
  3952. };
  3953. static int slabinfo_open(struct inode *inode, struct file *file)
  3954. {
  3955. return seq_open(file, &slabinfo_op);
  3956. }
  3957. static const struct file_operations proc_slabinfo_operations = {
  3958. .open = slabinfo_open,
  3959. .read = seq_read,
  3960. .llseek = seq_lseek,
  3961. .release = seq_release,
  3962. };
  3963. static int __init slab_proc_init(void)
  3964. {
  3965. proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
  3966. return 0;
  3967. }
  3968. module_init(slab_proc_init);
  3969. #endif /* CONFIG_SLABINFO */