page_alloc.c 153 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/ratelimit.h>
  33. #include <linux/oom.h>
  34. #include <linux/notifier.h>
  35. #include <linux/topology.h>
  36. #include <linux/sysctl.h>
  37. #include <linux/cpu.h>
  38. #include <linux/cpuset.h>
  39. #include <linux/memory_hotplug.h>
  40. #include <linux/nodemask.h>
  41. #include <linux/vmalloc.h>
  42. #include <linux/vmstat.h>
  43. #include <linux/mempolicy.h>
  44. #include <linux/stop_machine.h>
  45. #include <linux/sort.h>
  46. #include <linux/pfn.h>
  47. #include <linux/backing-dev.h>
  48. #include <linux/fault-inject.h>
  49. #include <linux/page-isolation.h>
  50. #include <linux/page_cgroup.h>
  51. #include <linux/debugobjects.h>
  52. #include <linux/kmemleak.h>
  53. #include <linux/memory.h>
  54. #include <linux/compaction.h>
  55. #include <trace/events/kmem.h>
  56. #include <linux/ftrace_event.h>
  57. #include <linux/memcontrol.h>
  58. #include <linux/prefetch.h>
  59. #include <linux/page-debug-flags.h>
  60. #include <asm/tlbflush.h>
  61. #include <asm/div64.h>
  62. #include "internal.h"
  63. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  64. DEFINE_PER_CPU(int, numa_node);
  65. EXPORT_PER_CPU_SYMBOL(numa_node);
  66. #endif
  67. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  68. /*
  69. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  70. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  71. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  72. * defined in <linux/topology.h>.
  73. */
  74. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  75. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  76. #endif
  77. /*
  78. * Array of node states.
  79. */
  80. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  81. [N_POSSIBLE] = NODE_MASK_ALL,
  82. [N_ONLINE] = { { [0] = 1UL } },
  83. #ifndef CONFIG_NUMA
  84. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  85. #ifdef CONFIG_HIGHMEM
  86. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  87. #endif
  88. [N_CPU] = { { [0] = 1UL } },
  89. #endif /* NUMA */
  90. };
  91. EXPORT_SYMBOL(node_states);
  92. unsigned long totalram_pages __read_mostly;
  93. unsigned long totalreserve_pages __read_mostly;
  94. /*
  95. * When calculating the number of globally allowed dirty pages, there
  96. * is a certain number of per-zone reserves that should not be
  97. * considered dirtyable memory. This is the sum of those reserves
  98. * over all existing zones that contribute dirtyable memory.
  99. */
  100. unsigned long dirty_balance_reserve __read_mostly;
  101. int percpu_pagelist_fraction;
  102. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  103. #ifdef CONFIG_PM_SLEEP
  104. /*
  105. * The following functions are used by the suspend/hibernate code to temporarily
  106. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  107. * while devices are suspended. To avoid races with the suspend/hibernate code,
  108. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  109. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  110. * guaranteed not to run in parallel with that modification).
  111. */
  112. static gfp_t saved_gfp_mask;
  113. void pm_restore_gfp_mask(void)
  114. {
  115. WARN_ON(!mutex_is_locked(&pm_mutex));
  116. if (saved_gfp_mask) {
  117. gfp_allowed_mask = saved_gfp_mask;
  118. saved_gfp_mask = 0;
  119. }
  120. }
  121. void pm_restrict_gfp_mask(void)
  122. {
  123. WARN_ON(!mutex_is_locked(&pm_mutex));
  124. WARN_ON(saved_gfp_mask);
  125. saved_gfp_mask = gfp_allowed_mask;
  126. gfp_allowed_mask &= ~GFP_IOFS;
  127. }
  128. bool pm_suspended_storage(void)
  129. {
  130. if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
  131. return false;
  132. return true;
  133. }
  134. #endif /* CONFIG_PM_SLEEP */
  135. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  136. int pageblock_order __read_mostly;
  137. #endif
  138. static void __free_pages_ok(struct page *page, unsigned int order);
  139. /*
  140. * results with 256, 32 in the lowmem_reserve sysctl:
  141. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  142. * 1G machine -> (16M dma, 784M normal, 224M high)
  143. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  144. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  145. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  146. *
  147. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  148. * don't need any ZONE_NORMAL reservation
  149. */
  150. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  151. #ifdef CONFIG_ZONE_DMA
  152. 256,
  153. #endif
  154. #ifdef CONFIG_ZONE_DMA32
  155. 256,
  156. #endif
  157. #ifdef CONFIG_HIGHMEM
  158. 32,
  159. #endif
  160. 32,
  161. };
  162. EXPORT_SYMBOL(totalram_pages);
  163. static char * const zone_names[MAX_NR_ZONES] = {
  164. #ifdef CONFIG_ZONE_DMA
  165. "DMA",
  166. #endif
  167. #ifdef CONFIG_ZONE_DMA32
  168. "DMA32",
  169. #endif
  170. "Normal",
  171. #ifdef CONFIG_HIGHMEM
  172. "HighMem",
  173. #endif
  174. "Movable",
  175. };
  176. int min_free_kbytes = 1024;
  177. static unsigned long __meminitdata nr_kernel_pages;
  178. static unsigned long __meminitdata nr_all_pages;
  179. static unsigned long __meminitdata dma_reserve;
  180. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  181. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  182. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  183. static unsigned long __initdata required_kernelcore;
  184. static unsigned long __initdata required_movablecore;
  185. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  186. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  187. int movable_zone;
  188. EXPORT_SYMBOL(movable_zone);
  189. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  190. #if MAX_NUMNODES > 1
  191. int nr_node_ids __read_mostly = MAX_NUMNODES;
  192. int nr_online_nodes __read_mostly = 1;
  193. EXPORT_SYMBOL(nr_node_ids);
  194. EXPORT_SYMBOL(nr_online_nodes);
  195. #endif
  196. int page_group_by_mobility_disabled __read_mostly;
  197. static void set_pageblock_migratetype(struct page *page, int migratetype)
  198. {
  199. if (unlikely(page_group_by_mobility_disabled))
  200. migratetype = MIGRATE_UNMOVABLE;
  201. set_pageblock_flags_group(page, (unsigned long)migratetype,
  202. PB_migrate, PB_migrate_end);
  203. }
  204. bool oom_killer_disabled __read_mostly;
  205. #ifdef CONFIG_DEBUG_VM
  206. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  207. {
  208. int ret = 0;
  209. unsigned seq;
  210. unsigned long pfn = page_to_pfn(page);
  211. do {
  212. seq = zone_span_seqbegin(zone);
  213. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  214. ret = 1;
  215. else if (pfn < zone->zone_start_pfn)
  216. ret = 1;
  217. } while (zone_span_seqretry(zone, seq));
  218. return ret;
  219. }
  220. static int page_is_consistent(struct zone *zone, struct page *page)
  221. {
  222. if (!pfn_valid_within(page_to_pfn(page)))
  223. return 0;
  224. if (zone != page_zone(page))
  225. return 0;
  226. return 1;
  227. }
  228. /*
  229. * Temporary debugging check for pages not lying within a given zone.
  230. */
  231. static int bad_range(struct zone *zone, struct page *page)
  232. {
  233. if (page_outside_zone_boundaries(zone, page))
  234. return 1;
  235. if (!page_is_consistent(zone, page))
  236. return 1;
  237. return 0;
  238. }
  239. #else
  240. static inline int bad_range(struct zone *zone, struct page *page)
  241. {
  242. return 0;
  243. }
  244. #endif
  245. static void bad_page(struct page *page)
  246. {
  247. static unsigned long resume;
  248. static unsigned long nr_shown;
  249. static unsigned long nr_unshown;
  250. /* Don't complain about poisoned pages */
  251. if (PageHWPoison(page)) {
  252. reset_page_mapcount(page); /* remove PageBuddy */
  253. return;
  254. }
  255. /*
  256. * Allow a burst of 60 reports, then keep quiet for that minute;
  257. * or allow a steady drip of one report per second.
  258. */
  259. if (nr_shown == 60) {
  260. if (time_before(jiffies, resume)) {
  261. nr_unshown++;
  262. goto out;
  263. }
  264. if (nr_unshown) {
  265. printk(KERN_ALERT
  266. "BUG: Bad page state: %lu messages suppressed\n",
  267. nr_unshown);
  268. nr_unshown = 0;
  269. }
  270. nr_shown = 0;
  271. }
  272. if (nr_shown++ == 0)
  273. resume = jiffies + 60 * HZ;
  274. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  275. current->comm, page_to_pfn(page));
  276. dump_page(page);
  277. print_modules();
  278. dump_stack();
  279. out:
  280. /* Leave bad fields for debug, except PageBuddy could make trouble */
  281. reset_page_mapcount(page); /* remove PageBuddy */
  282. add_taint(TAINT_BAD_PAGE);
  283. }
  284. /*
  285. * Higher-order pages are called "compound pages". They are structured thusly:
  286. *
  287. * The first PAGE_SIZE page is called the "head page".
  288. *
  289. * The remaining PAGE_SIZE pages are called "tail pages".
  290. *
  291. * All pages have PG_compound set. All tail pages have their ->first_page
  292. * pointing at the head page.
  293. *
  294. * The first tail page's ->lru.next holds the address of the compound page's
  295. * put_page() function. Its ->lru.prev holds the order of allocation.
  296. * This usage means that zero-order pages may not be compound.
  297. */
  298. static void free_compound_page(struct page *page)
  299. {
  300. __free_pages_ok(page, compound_order(page));
  301. }
  302. void prep_compound_page(struct page *page, unsigned long order)
  303. {
  304. int i;
  305. int nr_pages = 1 << order;
  306. set_compound_page_dtor(page, free_compound_page);
  307. set_compound_order(page, order);
  308. __SetPageHead(page);
  309. for (i = 1; i < nr_pages; i++) {
  310. struct page *p = page + i;
  311. __SetPageTail(p);
  312. set_page_count(p, 0);
  313. p->first_page = page;
  314. }
  315. }
  316. /* update __split_huge_page_refcount if you change this function */
  317. static int destroy_compound_page(struct page *page, unsigned long order)
  318. {
  319. int i;
  320. int nr_pages = 1 << order;
  321. int bad = 0;
  322. if (unlikely(compound_order(page) != order) ||
  323. unlikely(!PageHead(page))) {
  324. bad_page(page);
  325. bad++;
  326. }
  327. __ClearPageHead(page);
  328. for (i = 1; i < nr_pages; i++) {
  329. struct page *p = page + i;
  330. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  331. bad_page(page);
  332. bad++;
  333. }
  334. __ClearPageTail(p);
  335. }
  336. return bad;
  337. }
  338. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  339. {
  340. int i;
  341. /*
  342. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  343. * and __GFP_HIGHMEM from hard or soft interrupt context.
  344. */
  345. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  346. for (i = 0; i < (1 << order); i++)
  347. clear_highpage(page + i);
  348. }
  349. #ifdef CONFIG_DEBUG_PAGEALLOC
  350. unsigned int _debug_guardpage_minorder;
  351. static int __init debug_guardpage_minorder_setup(char *buf)
  352. {
  353. unsigned long res;
  354. if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
  355. printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
  356. return 0;
  357. }
  358. _debug_guardpage_minorder = res;
  359. printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
  360. return 0;
  361. }
  362. __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
  363. static inline void set_page_guard_flag(struct page *page)
  364. {
  365. __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  366. }
  367. static inline void clear_page_guard_flag(struct page *page)
  368. {
  369. __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
  370. }
  371. #else
  372. static inline void set_page_guard_flag(struct page *page) { }
  373. static inline void clear_page_guard_flag(struct page *page) { }
  374. #endif
  375. static inline void set_page_order(struct page *page, int order)
  376. {
  377. set_page_private(page, order);
  378. __SetPageBuddy(page);
  379. }
  380. static inline void rmv_page_order(struct page *page)
  381. {
  382. __ClearPageBuddy(page);
  383. set_page_private(page, 0);
  384. }
  385. /*
  386. * Locate the struct page for both the matching buddy in our
  387. * pair (buddy1) and the combined O(n+1) page they form (page).
  388. *
  389. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  390. * the following equation:
  391. * B2 = B1 ^ (1 << O)
  392. * For example, if the starting buddy (buddy2) is #8 its order
  393. * 1 buddy is #10:
  394. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  395. *
  396. * 2) Any buddy B will have an order O+1 parent P which
  397. * satisfies the following equation:
  398. * P = B & ~(1 << O)
  399. *
  400. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  401. */
  402. static inline unsigned long
  403. __find_buddy_index(unsigned long page_idx, unsigned int order)
  404. {
  405. return page_idx ^ (1 << order);
  406. }
  407. /*
  408. * This function checks whether a page is free && is the buddy
  409. * we can do coalesce a page and its buddy if
  410. * (a) the buddy is not in a hole &&
  411. * (b) the buddy is in the buddy system &&
  412. * (c) a page and its buddy have the same order &&
  413. * (d) a page and its buddy are in the same zone.
  414. *
  415. * For recording whether a page is in the buddy system, we set ->_mapcount -2.
  416. * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
  417. *
  418. * For recording page's order, we use page_private(page).
  419. */
  420. static inline int page_is_buddy(struct page *page, struct page *buddy,
  421. int order)
  422. {
  423. if (!pfn_valid_within(page_to_pfn(buddy)))
  424. return 0;
  425. if (page_zone_id(page) != page_zone_id(buddy))
  426. return 0;
  427. if (page_is_guard(buddy) && page_order(buddy) == order) {
  428. VM_BUG_ON(page_count(buddy) != 0);
  429. return 1;
  430. }
  431. if (PageBuddy(buddy) && page_order(buddy) == order) {
  432. VM_BUG_ON(page_count(buddy) != 0);
  433. return 1;
  434. }
  435. return 0;
  436. }
  437. /*
  438. * Freeing function for a buddy system allocator.
  439. *
  440. * The concept of a buddy system is to maintain direct-mapped table
  441. * (containing bit values) for memory blocks of various "orders".
  442. * The bottom level table contains the map for the smallest allocatable
  443. * units of memory (here, pages), and each level above it describes
  444. * pairs of units from the levels below, hence, "buddies".
  445. * At a high level, all that happens here is marking the table entry
  446. * at the bottom level available, and propagating the changes upward
  447. * as necessary, plus some accounting needed to play nicely with other
  448. * parts of the VM system.
  449. * At each level, we keep a list of pages, which are heads of continuous
  450. * free pages of length of (1 << order) and marked with _mapcount -2. Page's
  451. * order is recorded in page_private(page) field.
  452. * So when we are allocating or freeing one, we can derive the state of the
  453. * other. That is, if we allocate a small block, and both were
  454. * free, the remainder of the region must be split into blocks.
  455. * If a block is freed, and its buddy is also free, then this
  456. * triggers coalescing into a block of larger size.
  457. *
  458. * -- wli
  459. */
  460. static inline void __free_one_page(struct page *page,
  461. struct zone *zone, unsigned int order,
  462. int migratetype)
  463. {
  464. unsigned long page_idx;
  465. unsigned long combined_idx;
  466. unsigned long uninitialized_var(buddy_idx);
  467. struct page *buddy;
  468. if (unlikely(PageCompound(page)))
  469. if (unlikely(destroy_compound_page(page, order)))
  470. return;
  471. VM_BUG_ON(migratetype == -1);
  472. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  473. VM_BUG_ON(page_idx & ((1 << order) - 1));
  474. VM_BUG_ON(bad_range(zone, page));
  475. while (order < MAX_ORDER-1) {
  476. buddy_idx = __find_buddy_index(page_idx, order);
  477. buddy = page + (buddy_idx - page_idx);
  478. if (!page_is_buddy(page, buddy, order))
  479. break;
  480. /*
  481. * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
  482. * merge with it and move up one order.
  483. */
  484. if (page_is_guard(buddy)) {
  485. clear_page_guard_flag(buddy);
  486. set_page_private(page, 0);
  487. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  488. } else {
  489. list_del(&buddy->lru);
  490. zone->free_area[order].nr_free--;
  491. rmv_page_order(buddy);
  492. }
  493. combined_idx = buddy_idx & page_idx;
  494. page = page + (combined_idx - page_idx);
  495. page_idx = combined_idx;
  496. order++;
  497. }
  498. set_page_order(page, order);
  499. /*
  500. * If this is not the largest possible page, check if the buddy
  501. * of the next-highest order is free. If it is, it's possible
  502. * that pages are being freed that will coalesce soon. In case,
  503. * that is happening, add the free page to the tail of the list
  504. * so it's less likely to be used soon and more likely to be merged
  505. * as a higher order page
  506. */
  507. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  508. struct page *higher_page, *higher_buddy;
  509. combined_idx = buddy_idx & page_idx;
  510. higher_page = page + (combined_idx - page_idx);
  511. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  512. higher_buddy = page + (buddy_idx - combined_idx);
  513. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  514. list_add_tail(&page->lru,
  515. &zone->free_area[order].free_list[migratetype]);
  516. goto out;
  517. }
  518. }
  519. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  520. out:
  521. zone->free_area[order].nr_free++;
  522. }
  523. /*
  524. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  525. * Page should not be on lru, so no need to fix that up.
  526. * free_pages_check() will verify...
  527. */
  528. static inline void free_page_mlock(struct page *page)
  529. {
  530. __dec_zone_page_state(page, NR_MLOCK);
  531. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  532. }
  533. static inline int free_pages_check(struct page *page)
  534. {
  535. if (unlikely(page_mapcount(page) |
  536. (page->mapping != NULL) |
  537. (atomic_read(&page->_count) != 0) |
  538. (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
  539. (mem_cgroup_bad_page_check(page)))) {
  540. bad_page(page);
  541. return 1;
  542. }
  543. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  544. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  545. return 0;
  546. }
  547. /*
  548. * Frees a number of pages from the PCP lists
  549. * Assumes all pages on list are in same zone, and of same order.
  550. * count is the number of pages to free.
  551. *
  552. * If the zone was previously in an "all pages pinned" state then look to
  553. * see if this freeing clears that state.
  554. *
  555. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  556. * pinned" detection logic.
  557. */
  558. static void free_pcppages_bulk(struct zone *zone, int count,
  559. struct per_cpu_pages *pcp)
  560. {
  561. int migratetype = 0;
  562. int batch_free = 0;
  563. int to_free = count;
  564. spin_lock(&zone->lock);
  565. zone->all_unreclaimable = 0;
  566. zone->pages_scanned = 0;
  567. while (to_free) {
  568. struct page *page;
  569. struct list_head *list;
  570. /*
  571. * Remove pages from lists in a round-robin fashion. A
  572. * batch_free count is maintained that is incremented when an
  573. * empty list is encountered. This is so more pages are freed
  574. * off fuller lists instead of spinning excessively around empty
  575. * lists
  576. */
  577. do {
  578. batch_free++;
  579. if (++migratetype == MIGRATE_PCPTYPES)
  580. migratetype = 0;
  581. list = &pcp->lists[migratetype];
  582. } while (list_empty(list));
  583. /* This is the only non-empty list. Free them all. */
  584. if (batch_free == MIGRATE_PCPTYPES)
  585. batch_free = to_free;
  586. do {
  587. page = list_entry(list->prev, struct page, lru);
  588. /* must delete as __free_one_page list manipulates */
  589. list_del(&page->lru);
  590. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  591. __free_one_page(page, zone, 0, page_private(page));
  592. trace_mm_page_pcpu_drain(page, 0, page_private(page));
  593. } while (--to_free && --batch_free && !list_empty(list));
  594. }
  595. __mod_zone_page_state(zone, NR_FREE_PAGES, count);
  596. spin_unlock(&zone->lock);
  597. }
  598. static void free_one_page(struct zone *zone, struct page *page, int order,
  599. int migratetype)
  600. {
  601. spin_lock(&zone->lock);
  602. zone->all_unreclaimable = 0;
  603. zone->pages_scanned = 0;
  604. __free_one_page(page, zone, order, migratetype);
  605. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  606. spin_unlock(&zone->lock);
  607. }
  608. static bool free_pages_prepare(struct page *page, unsigned int order)
  609. {
  610. int i;
  611. int bad = 0;
  612. trace_mm_page_free(page, order);
  613. kmemcheck_free_shadow(page, order);
  614. if (PageAnon(page))
  615. page->mapping = NULL;
  616. for (i = 0; i < (1 << order); i++)
  617. bad += free_pages_check(page + i);
  618. if (bad)
  619. return false;
  620. if (!PageHighMem(page)) {
  621. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  622. debug_check_no_obj_freed(page_address(page),
  623. PAGE_SIZE << order);
  624. }
  625. arch_free_page(page, order);
  626. kernel_map_pages(page, 1 << order, 0);
  627. return true;
  628. }
  629. static void __free_pages_ok(struct page *page, unsigned int order)
  630. {
  631. unsigned long flags;
  632. int wasMlocked = __TestClearPageMlocked(page);
  633. if (!free_pages_prepare(page, order))
  634. return;
  635. local_irq_save(flags);
  636. if (unlikely(wasMlocked))
  637. free_page_mlock(page);
  638. __count_vm_events(PGFREE, 1 << order);
  639. free_one_page(page_zone(page), page, order,
  640. get_pageblock_migratetype(page));
  641. local_irq_restore(flags);
  642. }
  643. /*
  644. * permit the bootmem allocator to evade page validation on high-order frees
  645. */
  646. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  647. {
  648. if (order == 0) {
  649. __ClearPageReserved(page);
  650. set_page_count(page, 0);
  651. set_page_refcounted(page);
  652. __free_page(page);
  653. } else {
  654. int loop;
  655. prefetchw(page);
  656. for (loop = 0; loop < (1 << order); loop++) {
  657. struct page *p = &page[loop];
  658. if (loop + 1 < (1 << order))
  659. prefetchw(p + 1);
  660. __ClearPageReserved(p);
  661. set_page_count(p, 0);
  662. }
  663. set_page_refcounted(page);
  664. __free_pages(page, order);
  665. }
  666. }
  667. /*
  668. * The order of subdivision here is critical for the IO subsystem.
  669. * Please do not alter this order without good reasons and regression
  670. * testing. Specifically, as large blocks of memory are subdivided,
  671. * the order in which smaller blocks are delivered depends on the order
  672. * they're subdivided in this function. This is the primary factor
  673. * influencing the order in which pages are delivered to the IO
  674. * subsystem according to empirical testing, and this is also justified
  675. * by considering the behavior of a buddy system containing a single
  676. * large block of memory acted on by a series of small allocations.
  677. * This behavior is a critical factor in sglist merging's success.
  678. *
  679. * -- wli
  680. */
  681. static inline void expand(struct zone *zone, struct page *page,
  682. int low, int high, struct free_area *area,
  683. int migratetype)
  684. {
  685. unsigned long size = 1 << high;
  686. while (high > low) {
  687. area--;
  688. high--;
  689. size >>= 1;
  690. VM_BUG_ON(bad_range(zone, &page[size]));
  691. #ifdef CONFIG_DEBUG_PAGEALLOC
  692. if (high < debug_guardpage_minorder()) {
  693. /*
  694. * Mark as guard pages (or page), that will allow to
  695. * merge back to allocator when buddy will be freed.
  696. * Corresponding page table entries will not be touched,
  697. * pages will stay not present in virtual address space
  698. */
  699. INIT_LIST_HEAD(&page[size].lru);
  700. set_page_guard_flag(&page[size]);
  701. set_page_private(&page[size], high);
  702. /* Guard pages are not available for any usage */
  703. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
  704. continue;
  705. }
  706. #endif
  707. list_add(&page[size].lru, &area->free_list[migratetype]);
  708. area->nr_free++;
  709. set_page_order(&page[size], high);
  710. }
  711. }
  712. /*
  713. * This page is about to be returned from the page allocator
  714. */
  715. static inline int check_new_page(struct page *page)
  716. {
  717. if (unlikely(page_mapcount(page) |
  718. (page->mapping != NULL) |
  719. (atomic_read(&page->_count) != 0) |
  720. (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
  721. (mem_cgroup_bad_page_check(page)))) {
  722. bad_page(page);
  723. return 1;
  724. }
  725. return 0;
  726. }
  727. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  728. {
  729. int i;
  730. for (i = 0; i < (1 << order); i++) {
  731. struct page *p = page + i;
  732. if (unlikely(check_new_page(p)))
  733. return 1;
  734. }
  735. set_page_private(page, 0);
  736. set_page_refcounted(page);
  737. arch_alloc_page(page, order);
  738. kernel_map_pages(page, 1 << order, 1);
  739. if (gfp_flags & __GFP_ZERO)
  740. prep_zero_page(page, order, gfp_flags);
  741. if (order && (gfp_flags & __GFP_COMP))
  742. prep_compound_page(page, order);
  743. return 0;
  744. }
  745. /*
  746. * Go through the free lists for the given migratetype and remove
  747. * the smallest available page from the freelists
  748. */
  749. static inline
  750. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  751. int migratetype)
  752. {
  753. unsigned int current_order;
  754. struct free_area * area;
  755. struct page *page;
  756. /* Find a page of the appropriate size in the preferred list */
  757. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  758. area = &(zone->free_area[current_order]);
  759. if (list_empty(&area->free_list[migratetype]))
  760. continue;
  761. page = list_entry(area->free_list[migratetype].next,
  762. struct page, lru);
  763. list_del(&page->lru);
  764. rmv_page_order(page);
  765. area->nr_free--;
  766. expand(zone, page, order, current_order, area, migratetype);
  767. return page;
  768. }
  769. return NULL;
  770. }
  771. /*
  772. * This array describes the order lists are fallen back to when
  773. * the free lists for the desirable migrate type are depleted
  774. */
  775. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  776. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  777. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  778. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  779. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  780. };
  781. /*
  782. * Move the free pages in a range to the free lists of the requested type.
  783. * Note that start_page and end_pages are not aligned on a pageblock
  784. * boundary. If alignment is required, use move_freepages_block()
  785. */
  786. static int move_freepages(struct zone *zone,
  787. struct page *start_page, struct page *end_page,
  788. int migratetype)
  789. {
  790. struct page *page;
  791. unsigned long order;
  792. int pages_moved = 0;
  793. #ifndef CONFIG_HOLES_IN_ZONE
  794. /*
  795. * page_zone is not safe to call in this context when
  796. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  797. * anyway as we check zone boundaries in move_freepages_block().
  798. * Remove at a later date when no bug reports exist related to
  799. * grouping pages by mobility
  800. */
  801. BUG_ON(page_zone(start_page) != page_zone(end_page));
  802. #endif
  803. for (page = start_page; page <= end_page;) {
  804. /* Make sure we are not inadvertently changing nodes */
  805. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  806. if (!pfn_valid_within(page_to_pfn(page))) {
  807. page++;
  808. continue;
  809. }
  810. if (!PageBuddy(page)) {
  811. page++;
  812. continue;
  813. }
  814. order = page_order(page);
  815. list_move(&page->lru,
  816. &zone->free_area[order].free_list[migratetype]);
  817. page += 1 << order;
  818. pages_moved += 1 << order;
  819. }
  820. return pages_moved;
  821. }
  822. static int move_freepages_block(struct zone *zone, struct page *page,
  823. int migratetype)
  824. {
  825. unsigned long start_pfn, end_pfn;
  826. struct page *start_page, *end_page;
  827. start_pfn = page_to_pfn(page);
  828. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  829. start_page = pfn_to_page(start_pfn);
  830. end_page = start_page + pageblock_nr_pages - 1;
  831. end_pfn = start_pfn + pageblock_nr_pages - 1;
  832. /* Do not cross zone boundaries */
  833. if (start_pfn < zone->zone_start_pfn)
  834. start_page = page;
  835. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  836. return 0;
  837. return move_freepages(zone, start_page, end_page, migratetype);
  838. }
  839. static void change_pageblock_range(struct page *pageblock_page,
  840. int start_order, int migratetype)
  841. {
  842. int nr_pageblocks = 1 << (start_order - pageblock_order);
  843. while (nr_pageblocks--) {
  844. set_pageblock_migratetype(pageblock_page, migratetype);
  845. pageblock_page += pageblock_nr_pages;
  846. }
  847. }
  848. /* Remove an element from the buddy allocator from the fallback list */
  849. static inline struct page *
  850. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  851. {
  852. struct free_area * area;
  853. int current_order;
  854. struct page *page;
  855. int migratetype, i;
  856. /* Find the largest possible block of pages in the other list */
  857. for (current_order = MAX_ORDER-1; current_order >= order;
  858. --current_order) {
  859. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  860. migratetype = fallbacks[start_migratetype][i];
  861. /* MIGRATE_RESERVE handled later if necessary */
  862. if (migratetype == MIGRATE_RESERVE)
  863. continue;
  864. area = &(zone->free_area[current_order]);
  865. if (list_empty(&area->free_list[migratetype]))
  866. continue;
  867. page = list_entry(area->free_list[migratetype].next,
  868. struct page, lru);
  869. area->nr_free--;
  870. /*
  871. * If breaking a large block of pages, move all free
  872. * pages to the preferred allocation list. If falling
  873. * back for a reclaimable kernel allocation, be more
  874. * aggressive about taking ownership of free pages
  875. */
  876. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  877. start_migratetype == MIGRATE_RECLAIMABLE ||
  878. page_group_by_mobility_disabled) {
  879. unsigned long pages;
  880. pages = move_freepages_block(zone, page,
  881. start_migratetype);
  882. /* Claim the whole block if over half of it is free */
  883. if (pages >= (1 << (pageblock_order-1)) ||
  884. page_group_by_mobility_disabled)
  885. set_pageblock_migratetype(page,
  886. start_migratetype);
  887. migratetype = start_migratetype;
  888. }
  889. /* Remove the page from the freelists */
  890. list_del(&page->lru);
  891. rmv_page_order(page);
  892. /* Take ownership for orders >= pageblock_order */
  893. if (current_order >= pageblock_order)
  894. change_pageblock_range(page, current_order,
  895. start_migratetype);
  896. expand(zone, page, order, current_order, area, migratetype);
  897. trace_mm_page_alloc_extfrag(page, order, current_order,
  898. start_migratetype, migratetype);
  899. return page;
  900. }
  901. }
  902. return NULL;
  903. }
  904. /*
  905. * Do the hard work of removing an element from the buddy allocator.
  906. * Call me with the zone->lock already held.
  907. */
  908. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  909. int migratetype)
  910. {
  911. struct page *page;
  912. retry_reserve:
  913. page = __rmqueue_smallest(zone, order, migratetype);
  914. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  915. page = __rmqueue_fallback(zone, order, migratetype);
  916. /*
  917. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  918. * is used because __rmqueue_smallest is an inline function
  919. * and we want just one call site
  920. */
  921. if (!page) {
  922. migratetype = MIGRATE_RESERVE;
  923. goto retry_reserve;
  924. }
  925. }
  926. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  927. return page;
  928. }
  929. /*
  930. * Obtain a specified number of elements from the buddy allocator, all under
  931. * a single hold of the lock, for efficiency. Add them to the supplied list.
  932. * Returns the number of new pages which were placed at *list.
  933. */
  934. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  935. unsigned long count, struct list_head *list,
  936. int migratetype, int cold)
  937. {
  938. int i;
  939. spin_lock(&zone->lock);
  940. for (i = 0; i < count; ++i) {
  941. struct page *page = __rmqueue(zone, order, migratetype);
  942. if (unlikely(page == NULL))
  943. break;
  944. /*
  945. * Split buddy pages returned by expand() are received here
  946. * in physical page order. The page is added to the callers and
  947. * list and the list head then moves forward. From the callers
  948. * perspective, the linked list is ordered by page number in
  949. * some conditions. This is useful for IO devices that can
  950. * merge IO requests if the physical pages are ordered
  951. * properly.
  952. */
  953. if (likely(cold == 0))
  954. list_add(&page->lru, list);
  955. else
  956. list_add_tail(&page->lru, list);
  957. set_page_private(page, migratetype);
  958. list = &page->lru;
  959. }
  960. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  961. spin_unlock(&zone->lock);
  962. return i;
  963. }
  964. #ifdef CONFIG_NUMA
  965. /*
  966. * Called from the vmstat counter updater to drain pagesets of this
  967. * currently executing processor on remote nodes after they have
  968. * expired.
  969. *
  970. * Note that this function must be called with the thread pinned to
  971. * a single processor.
  972. */
  973. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  974. {
  975. unsigned long flags;
  976. int to_drain;
  977. local_irq_save(flags);
  978. if (pcp->count >= pcp->batch)
  979. to_drain = pcp->batch;
  980. else
  981. to_drain = pcp->count;
  982. free_pcppages_bulk(zone, to_drain, pcp);
  983. pcp->count -= to_drain;
  984. local_irq_restore(flags);
  985. }
  986. #endif
  987. /*
  988. * Drain pages of the indicated processor.
  989. *
  990. * The processor must either be the current processor and the
  991. * thread pinned to the current processor or a processor that
  992. * is not online.
  993. */
  994. static void drain_pages(unsigned int cpu)
  995. {
  996. unsigned long flags;
  997. struct zone *zone;
  998. for_each_populated_zone(zone) {
  999. struct per_cpu_pageset *pset;
  1000. struct per_cpu_pages *pcp;
  1001. local_irq_save(flags);
  1002. pset = per_cpu_ptr(zone->pageset, cpu);
  1003. pcp = &pset->pcp;
  1004. if (pcp->count) {
  1005. free_pcppages_bulk(zone, pcp->count, pcp);
  1006. pcp->count = 0;
  1007. }
  1008. local_irq_restore(flags);
  1009. }
  1010. }
  1011. /*
  1012. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  1013. */
  1014. void drain_local_pages(void *arg)
  1015. {
  1016. drain_pages(smp_processor_id());
  1017. }
  1018. /*
  1019. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  1020. */
  1021. void drain_all_pages(void)
  1022. {
  1023. on_each_cpu(drain_local_pages, NULL, 1);
  1024. }
  1025. #ifdef CONFIG_HIBERNATION
  1026. void mark_free_pages(struct zone *zone)
  1027. {
  1028. unsigned long pfn, max_zone_pfn;
  1029. unsigned long flags;
  1030. int order, t;
  1031. struct list_head *curr;
  1032. if (!zone->spanned_pages)
  1033. return;
  1034. spin_lock_irqsave(&zone->lock, flags);
  1035. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  1036. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  1037. if (pfn_valid(pfn)) {
  1038. struct page *page = pfn_to_page(pfn);
  1039. if (!swsusp_page_is_forbidden(page))
  1040. swsusp_unset_page_free(page);
  1041. }
  1042. for_each_migratetype_order(order, t) {
  1043. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  1044. unsigned long i;
  1045. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  1046. for (i = 0; i < (1UL << order); i++)
  1047. swsusp_set_page_free(pfn_to_page(pfn + i));
  1048. }
  1049. }
  1050. spin_unlock_irqrestore(&zone->lock, flags);
  1051. }
  1052. #endif /* CONFIG_PM */
  1053. /*
  1054. * Free a 0-order page
  1055. * cold == 1 ? free a cold page : free a hot page
  1056. */
  1057. void free_hot_cold_page(struct page *page, int cold)
  1058. {
  1059. struct zone *zone = page_zone(page);
  1060. struct per_cpu_pages *pcp;
  1061. unsigned long flags;
  1062. int migratetype;
  1063. int wasMlocked = __TestClearPageMlocked(page);
  1064. if (!free_pages_prepare(page, 0))
  1065. return;
  1066. migratetype = get_pageblock_migratetype(page);
  1067. set_page_private(page, migratetype);
  1068. local_irq_save(flags);
  1069. if (unlikely(wasMlocked))
  1070. free_page_mlock(page);
  1071. __count_vm_event(PGFREE);
  1072. /*
  1073. * We only track unmovable, reclaimable and movable on pcp lists.
  1074. * Free ISOLATE pages back to the allocator because they are being
  1075. * offlined but treat RESERVE as movable pages so we can get those
  1076. * areas back if necessary. Otherwise, we may have to free
  1077. * excessively into the page allocator
  1078. */
  1079. if (migratetype >= MIGRATE_PCPTYPES) {
  1080. if (unlikely(migratetype == MIGRATE_ISOLATE)) {
  1081. free_one_page(zone, page, 0, migratetype);
  1082. goto out;
  1083. }
  1084. migratetype = MIGRATE_MOVABLE;
  1085. }
  1086. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1087. if (cold)
  1088. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1089. else
  1090. list_add(&page->lru, &pcp->lists[migratetype]);
  1091. pcp->count++;
  1092. if (pcp->count >= pcp->high) {
  1093. free_pcppages_bulk(zone, pcp->batch, pcp);
  1094. pcp->count -= pcp->batch;
  1095. }
  1096. out:
  1097. local_irq_restore(flags);
  1098. }
  1099. /*
  1100. * Free a list of 0-order pages
  1101. */
  1102. void free_hot_cold_page_list(struct list_head *list, int cold)
  1103. {
  1104. struct page *page, *next;
  1105. list_for_each_entry_safe(page, next, list, lru) {
  1106. trace_mm_page_free_batched(page, cold);
  1107. free_hot_cold_page(page, cold);
  1108. }
  1109. }
  1110. /*
  1111. * split_page takes a non-compound higher-order page, and splits it into
  1112. * n (1<<order) sub-pages: page[0..n]
  1113. * Each sub-page must be freed individually.
  1114. *
  1115. * Note: this is probably too low level an operation for use in drivers.
  1116. * Please consult with lkml before using this in your driver.
  1117. */
  1118. void split_page(struct page *page, unsigned int order)
  1119. {
  1120. int i;
  1121. VM_BUG_ON(PageCompound(page));
  1122. VM_BUG_ON(!page_count(page));
  1123. #ifdef CONFIG_KMEMCHECK
  1124. /*
  1125. * Split shadow pages too, because free(page[0]) would
  1126. * otherwise free the whole shadow.
  1127. */
  1128. if (kmemcheck_page_is_tracked(page))
  1129. split_page(virt_to_page(page[0].shadow), order);
  1130. #endif
  1131. for (i = 1; i < (1 << order); i++)
  1132. set_page_refcounted(page + i);
  1133. }
  1134. /*
  1135. * Similar to split_page except the page is already free. As this is only
  1136. * being used for migration, the migratetype of the block also changes.
  1137. * As this is called with interrupts disabled, the caller is responsible
  1138. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1139. * are enabled.
  1140. *
  1141. * Note: this is probably too low level an operation for use in drivers.
  1142. * Please consult with lkml before using this in your driver.
  1143. */
  1144. int split_free_page(struct page *page)
  1145. {
  1146. unsigned int order;
  1147. unsigned long watermark;
  1148. struct zone *zone;
  1149. BUG_ON(!PageBuddy(page));
  1150. zone = page_zone(page);
  1151. order = page_order(page);
  1152. /* Obey watermarks as if the page was being allocated */
  1153. watermark = low_wmark_pages(zone) + (1 << order);
  1154. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1155. return 0;
  1156. /* Remove page from free list */
  1157. list_del(&page->lru);
  1158. zone->free_area[order].nr_free--;
  1159. rmv_page_order(page);
  1160. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
  1161. /* Split into individual pages */
  1162. set_page_refcounted(page);
  1163. split_page(page, order);
  1164. if (order >= pageblock_order - 1) {
  1165. struct page *endpage = page + (1 << order) - 1;
  1166. for (; page < endpage; page += pageblock_nr_pages)
  1167. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1168. }
  1169. return 1 << order;
  1170. }
  1171. /*
  1172. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1173. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1174. * or two.
  1175. */
  1176. static inline
  1177. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1178. struct zone *zone, int order, gfp_t gfp_flags,
  1179. int migratetype)
  1180. {
  1181. unsigned long flags;
  1182. struct page *page;
  1183. int cold = !!(gfp_flags & __GFP_COLD);
  1184. again:
  1185. if (likely(order == 0)) {
  1186. struct per_cpu_pages *pcp;
  1187. struct list_head *list;
  1188. local_irq_save(flags);
  1189. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1190. list = &pcp->lists[migratetype];
  1191. if (list_empty(list)) {
  1192. pcp->count += rmqueue_bulk(zone, 0,
  1193. pcp->batch, list,
  1194. migratetype, cold);
  1195. if (unlikely(list_empty(list)))
  1196. goto failed;
  1197. }
  1198. if (cold)
  1199. page = list_entry(list->prev, struct page, lru);
  1200. else
  1201. page = list_entry(list->next, struct page, lru);
  1202. list_del(&page->lru);
  1203. pcp->count--;
  1204. } else {
  1205. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1206. /*
  1207. * __GFP_NOFAIL is not to be used in new code.
  1208. *
  1209. * All __GFP_NOFAIL callers should be fixed so that they
  1210. * properly detect and handle allocation failures.
  1211. *
  1212. * We most definitely don't want callers attempting to
  1213. * allocate greater than order-1 page units with
  1214. * __GFP_NOFAIL.
  1215. */
  1216. WARN_ON_ONCE(order > 1);
  1217. }
  1218. spin_lock_irqsave(&zone->lock, flags);
  1219. page = __rmqueue(zone, order, migratetype);
  1220. spin_unlock(&zone->lock);
  1221. if (!page)
  1222. goto failed;
  1223. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
  1224. }
  1225. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1226. zone_statistics(preferred_zone, zone, gfp_flags);
  1227. local_irq_restore(flags);
  1228. VM_BUG_ON(bad_range(zone, page));
  1229. if (prep_new_page(page, order, gfp_flags))
  1230. goto again;
  1231. return page;
  1232. failed:
  1233. local_irq_restore(flags);
  1234. return NULL;
  1235. }
  1236. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1237. #define ALLOC_WMARK_MIN WMARK_MIN
  1238. #define ALLOC_WMARK_LOW WMARK_LOW
  1239. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1240. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1241. /* Mask to get the watermark bits */
  1242. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1243. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1244. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1245. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1246. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1247. static struct {
  1248. struct fault_attr attr;
  1249. u32 ignore_gfp_highmem;
  1250. u32 ignore_gfp_wait;
  1251. u32 min_order;
  1252. } fail_page_alloc = {
  1253. .attr = FAULT_ATTR_INITIALIZER,
  1254. .ignore_gfp_wait = 1,
  1255. .ignore_gfp_highmem = 1,
  1256. .min_order = 1,
  1257. };
  1258. static int __init setup_fail_page_alloc(char *str)
  1259. {
  1260. return setup_fault_attr(&fail_page_alloc.attr, str);
  1261. }
  1262. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1263. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1264. {
  1265. if (order < fail_page_alloc.min_order)
  1266. return 0;
  1267. if (gfp_mask & __GFP_NOFAIL)
  1268. return 0;
  1269. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1270. return 0;
  1271. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1272. return 0;
  1273. return should_fail(&fail_page_alloc.attr, 1 << order);
  1274. }
  1275. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1276. static int __init fail_page_alloc_debugfs(void)
  1277. {
  1278. umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1279. struct dentry *dir;
  1280. dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
  1281. &fail_page_alloc.attr);
  1282. if (IS_ERR(dir))
  1283. return PTR_ERR(dir);
  1284. if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1285. &fail_page_alloc.ignore_gfp_wait))
  1286. goto fail;
  1287. if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1288. &fail_page_alloc.ignore_gfp_highmem))
  1289. goto fail;
  1290. if (!debugfs_create_u32("min-order", mode, dir,
  1291. &fail_page_alloc.min_order))
  1292. goto fail;
  1293. return 0;
  1294. fail:
  1295. debugfs_remove_recursive(dir);
  1296. return -ENOMEM;
  1297. }
  1298. late_initcall(fail_page_alloc_debugfs);
  1299. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1300. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1301. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1302. {
  1303. return 0;
  1304. }
  1305. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1306. /*
  1307. * Return true if free pages are above 'mark'. This takes into account the order
  1308. * of the allocation.
  1309. */
  1310. static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1311. int classzone_idx, int alloc_flags, long free_pages)
  1312. {
  1313. /* free_pages my go negative - that's OK */
  1314. long min = mark;
  1315. int o;
  1316. free_pages -= (1 << order) + 1;
  1317. if (alloc_flags & ALLOC_HIGH)
  1318. min -= min / 2;
  1319. if (alloc_flags & ALLOC_HARDER)
  1320. min -= min / 4;
  1321. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1322. return false;
  1323. for (o = 0; o < order; o++) {
  1324. /* At the next order, this order's pages become unavailable */
  1325. free_pages -= z->free_area[o].nr_free << o;
  1326. /* Require fewer higher order pages to be free */
  1327. min >>= 1;
  1328. if (free_pages <= min)
  1329. return false;
  1330. }
  1331. return true;
  1332. }
  1333. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1334. int classzone_idx, int alloc_flags)
  1335. {
  1336. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1337. zone_page_state(z, NR_FREE_PAGES));
  1338. }
  1339. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  1340. int classzone_idx, int alloc_flags)
  1341. {
  1342. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1343. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1344. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1345. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1346. free_pages);
  1347. }
  1348. #ifdef CONFIG_NUMA
  1349. /*
  1350. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1351. * skip over zones that are not allowed by the cpuset, or that have
  1352. * been recently (in last second) found to be nearly full. See further
  1353. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1354. * that have to skip over a lot of full or unallowed zones.
  1355. *
  1356. * If the zonelist cache is present in the passed in zonelist, then
  1357. * returns a pointer to the allowed node mask (either the current
  1358. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1359. *
  1360. * If the zonelist cache is not available for this zonelist, does
  1361. * nothing and returns NULL.
  1362. *
  1363. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1364. * a second since last zap'd) then we zap it out (clear its bits.)
  1365. *
  1366. * We hold off even calling zlc_setup, until after we've checked the
  1367. * first zone in the zonelist, on the theory that most allocations will
  1368. * be satisfied from that first zone, so best to examine that zone as
  1369. * quickly as we can.
  1370. */
  1371. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1372. {
  1373. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1374. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1375. zlc = zonelist->zlcache_ptr;
  1376. if (!zlc)
  1377. return NULL;
  1378. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1379. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1380. zlc->last_full_zap = jiffies;
  1381. }
  1382. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1383. &cpuset_current_mems_allowed :
  1384. &node_states[N_HIGH_MEMORY];
  1385. return allowednodes;
  1386. }
  1387. /*
  1388. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1389. * if it is worth looking at further for free memory:
  1390. * 1) Check that the zone isn't thought to be full (doesn't have its
  1391. * bit set in the zonelist_cache fullzones BITMAP).
  1392. * 2) Check that the zones node (obtained from the zonelist_cache
  1393. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1394. * Return true (non-zero) if zone is worth looking at further, or
  1395. * else return false (zero) if it is not.
  1396. *
  1397. * This check -ignores- the distinction between various watermarks,
  1398. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1399. * found to be full for any variation of these watermarks, it will
  1400. * be considered full for up to one second by all requests, unless
  1401. * we are so low on memory on all allowed nodes that we are forced
  1402. * into the second scan of the zonelist.
  1403. *
  1404. * In the second scan we ignore this zonelist cache and exactly
  1405. * apply the watermarks to all zones, even it is slower to do so.
  1406. * We are low on memory in the second scan, and should leave no stone
  1407. * unturned looking for a free page.
  1408. */
  1409. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1410. nodemask_t *allowednodes)
  1411. {
  1412. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1413. int i; /* index of *z in zonelist zones */
  1414. int n; /* node that zone *z is on */
  1415. zlc = zonelist->zlcache_ptr;
  1416. if (!zlc)
  1417. return 1;
  1418. i = z - zonelist->_zonerefs;
  1419. n = zlc->z_to_n[i];
  1420. /* This zone is worth trying if it is allowed but not full */
  1421. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1422. }
  1423. /*
  1424. * Given 'z' scanning a zonelist, set the corresponding bit in
  1425. * zlc->fullzones, so that subsequent attempts to allocate a page
  1426. * from that zone don't waste time re-examining it.
  1427. */
  1428. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1429. {
  1430. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1431. int i; /* index of *z in zonelist zones */
  1432. zlc = zonelist->zlcache_ptr;
  1433. if (!zlc)
  1434. return;
  1435. i = z - zonelist->_zonerefs;
  1436. set_bit(i, zlc->fullzones);
  1437. }
  1438. /*
  1439. * clear all zones full, called after direct reclaim makes progress so that
  1440. * a zone that was recently full is not skipped over for up to a second
  1441. */
  1442. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1443. {
  1444. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1445. zlc = zonelist->zlcache_ptr;
  1446. if (!zlc)
  1447. return;
  1448. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1449. }
  1450. #else /* CONFIG_NUMA */
  1451. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1452. {
  1453. return NULL;
  1454. }
  1455. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1456. nodemask_t *allowednodes)
  1457. {
  1458. return 1;
  1459. }
  1460. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1461. {
  1462. }
  1463. static void zlc_clear_zones_full(struct zonelist *zonelist)
  1464. {
  1465. }
  1466. #endif /* CONFIG_NUMA */
  1467. /*
  1468. * get_page_from_freelist goes through the zonelist trying to allocate
  1469. * a page.
  1470. */
  1471. static struct page *
  1472. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1473. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1474. struct zone *preferred_zone, int migratetype)
  1475. {
  1476. struct zoneref *z;
  1477. struct page *page = NULL;
  1478. int classzone_idx;
  1479. struct zone *zone;
  1480. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1481. int zlc_active = 0; /* set if using zonelist_cache */
  1482. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1483. classzone_idx = zone_idx(preferred_zone);
  1484. zonelist_scan:
  1485. /*
  1486. * Scan zonelist, looking for a zone with enough free.
  1487. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1488. */
  1489. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1490. high_zoneidx, nodemask) {
  1491. if (NUMA_BUILD && zlc_active &&
  1492. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1493. continue;
  1494. if ((alloc_flags & ALLOC_CPUSET) &&
  1495. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1496. continue;
  1497. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1498. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1499. unsigned long mark;
  1500. int ret;
  1501. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1502. if (zone_watermark_ok(zone, order, mark,
  1503. classzone_idx, alloc_flags))
  1504. goto try_this_zone;
  1505. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1506. /*
  1507. * we do zlc_setup if there are multiple nodes
  1508. * and before considering the first zone allowed
  1509. * by the cpuset.
  1510. */
  1511. allowednodes = zlc_setup(zonelist, alloc_flags);
  1512. zlc_active = 1;
  1513. did_zlc_setup = 1;
  1514. }
  1515. if (zone_reclaim_mode == 0)
  1516. goto this_zone_full;
  1517. /*
  1518. * As we may have just activated ZLC, check if the first
  1519. * eligible zone has failed zone_reclaim recently.
  1520. */
  1521. if (NUMA_BUILD && zlc_active &&
  1522. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1523. continue;
  1524. ret = zone_reclaim(zone, gfp_mask, order);
  1525. switch (ret) {
  1526. case ZONE_RECLAIM_NOSCAN:
  1527. /* did not scan */
  1528. continue;
  1529. case ZONE_RECLAIM_FULL:
  1530. /* scanned but unreclaimable */
  1531. continue;
  1532. default:
  1533. /* did we reclaim enough */
  1534. if (!zone_watermark_ok(zone, order, mark,
  1535. classzone_idx, alloc_flags))
  1536. goto this_zone_full;
  1537. }
  1538. }
  1539. try_this_zone:
  1540. page = buffered_rmqueue(preferred_zone, zone, order,
  1541. gfp_mask, migratetype);
  1542. if (page)
  1543. break;
  1544. this_zone_full:
  1545. if (NUMA_BUILD)
  1546. zlc_mark_zone_full(zonelist, z);
  1547. }
  1548. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1549. /* Disable zlc cache for second zonelist scan */
  1550. zlc_active = 0;
  1551. goto zonelist_scan;
  1552. }
  1553. return page;
  1554. }
  1555. /*
  1556. * Large machines with many possible nodes should not always dump per-node
  1557. * meminfo in irq context.
  1558. */
  1559. static inline bool should_suppress_show_mem(void)
  1560. {
  1561. bool ret = false;
  1562. #if NODES_SHIFT > 8
  1563. ret = in_interrupt();
  1564. #endif
  1565. return ret;
  1566. }
  1567. static DEFINE_RATELIMIT_STATE(nopage_rs,
  1568. DEFAULT_RATELIMIT_INTERVAL,
  1569. DEFAULT_RATELIMIT_BURST);
  1570. void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
  1571. {
  1572. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1573. if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
  1574. debug_guardpage_minorder() > 0)
  1575. return;
  1576. /*
  1577. * This documents exceptions given to allocations in certain
  1578. * contexts that are allowed to allocate outside current's set
  1579. * of allowed nodes.
  1580. */
  1581. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1582. if (test_thread_flag(TIF_MEMDIE) ||
  1583. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1584. filter &= ~SHOW_MEM_FILTER_NODES;
  1585. if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
  1586. filter &= ~SHOW_MEM_FILTER_NODES;
  1587. if (fmt) {
  1588. struct va_format vaf;
  1589. va_list args;
  1590. va_start(args, fmt);
  1591. vaf.fmt = fmt;
  1592. vaf.va = &args;
  1593. pr_warn("%pV", &vaf);
  1594. va_end(args);
  1595. }
  1596. pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
  1597. current->comm, order, gfp_mask);
  1598. dump_stack();
  1599. if (!should_suppress_show_mem())
  1600. show_mem(filter);
  1601. }
  1602. static inline int
  1603. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1604. unsigned long did_some_progress,
  1605. unsigned long pages_reclaimed)
  1606. {
  1607. /* Do not loop if specifically requested */
  1608. if (gfp_mask & __GFP_NORETRY)
  1609. return 0;
  1610. /* Always retry if specifically requested */
  1611. if (gfp_mask & __GFP_NOFAIL)
  1612. return 1;
  1613. /*
  1614. * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
  1615. * making forward progress without invoking OOM. Suspend also disables
  1616. * storage devices so kswapd will not help. Bail if we are suspending.
  1617. */
  1618. if (!did_some_progress && pm_suspended_storage())
  1619. return 0;
  1620. /*
  1621. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1622. * means __GFP_NOFAIL, but that may not be true in other
  1623. * implementations.
  1624. */
  1625. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1626. return 1;
  1627. /*
  1628. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1629. * specified, then we retry until we no longer reclaim any pages
  1630. * (above), or we've reclaimed an order of pages at least as
  1631. * large as the allocation's order. In both cases, if the
  1632. * allocation still fails, we stop retrying.
  1633. */
  1634. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1635. return 1;
  1636. return 0;
  1637. }
  1638. static inline struct page *
  1639. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1640. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1641. nodemask_t *nodemask, struct zone *preferred_zone,
  1642. int migratetype)
  1643. {
  1644. struct page *page;
  1645. /* Acquire the OOM killer lock for the zones in zonelist */
  1646. if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
  1647. schedule_timeout_uninterruptible(1);
  1648. return NULL;
  1649. }
  1650. /*
  1651. * Go through the zonelist yet one more time, keep very high watermark
  1652. * here, this is only to catch a parallel oom killing, we must fail if
  1653. * we're still under heavy pressure.
  1654. */
  1655. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1656. order, zonelist, high_zoneidx,
  1657. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1658. preferred_zone, migratetype);
  1659. if (page)
  1660. goto out;
  1661. if (!(gfp_mask & __GFP_NOFAIL)) {
  1662. /* The OOM killer will not help higher order allocs */
  1663. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1664. goto out;
  1665. /* The OOM killer does not needlessly kill tasks for lowmem */
  1666. if (high_zoneidx < ZONE_NORMAL)
  1667. goto out;
  1668. /*
  1669. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1670. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1671. * The caller should handle page allocation failure by itself if
  1672. * it specifies __GFP_THISNODE.
  1673. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1674. */
  1675. if (gfp_mask & __GFP_THISNODE)
  1676. goto out;
  1677. }
  1678. /* Exhausted what can be done so it's blamo time */
  1679. out_of_memory(zonelist, gfp_mask, order, nodemask);
  1680. out:
  1681. clear_zonelist_oom(zonelist, gfp_mask);
  1682. return page;
  1683. }
  1684. #ifdef CONFIG_COMPACTION
  1685. /* Try memory compaction for high-order allocations before reclaim */
  1686. static struct page *
  1687. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1688. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1689. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1690. int migratetype, unsigned long *did_some_progress,
  1691. bool sync_migration)
  1692. {
  1693. struct page *page;
  1694. if (!order || compaction_deferred(preferred_zone))
  1695. return NULL;
  1696. current->flags |= PF_MEMALLOC;
  1697. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1698. nodemask, sync_migration);
  1699. current->flags &= ~PF_MEMALLOC;
  1700. if (*did_some_progress != COMPACT_SKIPPED) {
  1701. /* Page migration frees to the PCP lists but we want merging */
  1702. drain_pages(get_cpu());
  1703. put_cpu();
  1704. page = get_page_from_freelist(gfp_mask, nodemask,
  1705. order, zonelist, high_zoneidx,
  1706. alloc_flags, preferred_zone,
  1707. migratetype);
  1708. if (page) {
  1709. preferred_zone->compact_considered = 0;
  1710. preferred_zone->compact_defer_shift = 0;
  1711. count_vm_event(COMPACTSUCCESS);
  1712. return page;
  1713. }
  1714. /*
  1715. * It's bad if compaction run occurs and fails.
  1716. * The most likely reason is that pages exist,
  1717. * but not enough to satisfy watermarks.
  1718. */
  1719. count_vm_event(COMPACTFAIL);
  1720. defer_compaction(preferred_zone);
  1721. cond_resched();
  1722. }
  1723. return NULL;
  1724. }
  1725. #else
  1726. static inline struct page *
  1727. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1728. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1729. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1730. int migratetype, unsigned long *did_some_progress,
  1731. bool sync_migration)
  1732. {
  1733. return NULL;
  1734. }
  1735. #endif /* CONFIG_COMPACTION */
  1736. /* The really slow allocator path where we enter direct reclaim */
  1737. static inline struct page *
  1738. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1739. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1740. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1741. int migratetype, unsigned long *did_some_progress)
  1742. {
  1743. struct page *page = NULL;
  1744. struct reclaim_state reclaim_state;
  1745. bool drained = false;
  1746. cond_resched();
  1747. /* We now go into synchronous reclaim */
  1748. cpuset_memory_pressure_bump();
  1749. current->flags |= PF_MEMALLOC;
  1750. lockdep_set_current_reclaim_state(gfp_mask);
  1751. reclaim_state.reclaimed_slab = 0;
  1752. current->reclaim_state = &reclaim_state;
  1753. *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1754. current->reclaim_state = NULL;
  1755. lockdep_clear_current_reclaim_state();
  1756. current->flags &= ~PF_MEMALLOC;
  1757. cond_resched();
  1758. if (unlikely(!(*did_some_progress)))
  1759. return NULL;
  1760. /* After successful reclaim, reconsider all zones for allocation */
  1761. if (NUMA_BUILD)
  1762. zlc_clear_zones_full(zonelist);
  1763. retry:
  1764. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1765. zonelist, high_zoneidx,
  1766. alloc_flags, preferred_zone,
  1767. migratetype);
  1768. /*
  1769. * If an allocation failed after direct reclaim, it could be because
  1770. * pages are pinned on the per-cpu lists. Drain them and try again
  1771. */
  1772. if (!page && !drained) {
  1773. drain_all_pages();
  1774. drained = true;
  1775. goto retry;
  1776. }
  1777. return page;
  1778. }
  1779. /*
  1780. * This is called in the allocator slow-path if the allocation request is of
  1781. * sufficient urgency to ignore watermarks and take other desperate measures
  1782. */
  1783. static inline struct page *
  1784. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1785. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1786. nodemask_t *nodemask, struct zone *preferred_zone,
  1787. int migratetype)
  1788. {
  1789. struct page *page;
  1790. do {
  1791. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1792. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1793. preferred_zone, migratetype);
  1794. if (!page && gfp_mask & __GFP_NOFAIL)
  1795. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1796. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1797. return page;
  1798. }
  1799. static inline
  1800. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1801. enum zone_type high_zoneidx,
  1802. enum zone_type classzone_idx)
  1803. {
  1804. struct zoneref *z;
  1805. struct zone *zone;
  1806. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1807. wakeup_kswapd(zone, order, classzone_idx);
  1808. }
  1809. static inline int
  1810. gfp_to_alloc_flags(gfp_t gfp_mask)
  1811. {
  1812. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1813. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1814. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1815. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  1816. /*
  1817. * The caller may dip into page reserves a bit more if the caller
  1818. * cannot run direct reclaim, or if the caller has realtime scheduling
  1819. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1820. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1821. */
  1822. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  1823. if (!wait) {
  1824. /*
  1825. * Not worth trying to allocate harder for
  1826. * __GFP_NOMEMALLOC even if it can't schedule.
  1827. */
  1828. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1829. alloc_flags |= ALLOC_HARDER;
  1830. /*
  1831. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1832. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1833. */
  1834. alloc_flags &= ~ALLOC_CPUSET;
  1835. } else if (unlikely(rt_task(current)) && !in_interrupt())
  1836. alloc_flags |= ALLOC_HARDER;
  1837. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1838. if (!in_interrupt() &&
  1839. ((current->flags & PF_MEMALLOC) ||
  1840. unlikely(test_thread_flag(TIF_MEMDIE))))
  1841. alloc_flags |= ALLOC_NO_WATERMARKS;
  1842. }
  1843. return alloc_flags;
  1844. }
  1845. static inline struct page *
  1846. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  1847. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1848. nodemask_t *nodemask, struct zone *preferred_zone,
  1849. int migratetype)
  1850. {
  1851. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1852. struct page *page = NULL;
  1853. int alloc_flags;
  1854. unsigned long pages_reclaimed = 0;
  1855. unsigned long did_some_progress;
  1856. bool sync_migration = false;
  1857. /*
  1858. * In the slowpath, we sanity check order to avoid ever trying to
  1859. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  1860. * be using allocators in order of preference for an area that is
  1861. * too large.
  1862. */
  1863. if (order >= MAX_ORDER) {
  1864. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  1865. return NULL;
  1866. }
  1867. /*
  1868. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1869. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1870. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1871. * using a larger set of nodes after it has established that the
  1872. * allowed per node queues are empty and that nodes are
  1873. * over allocated.
  1874. */
  1875. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1876. goto nopage;
  1877. restart:
  1878. if (!(gfp_mask & __GFP_NO_KSWAPD))
  1879. wake_all_kswapd(order, zonelist, high_zoneidx,
  1880. zone_idx(preferred_zone));
  1881. /*
  1882. * OK, we're below the kswapd watermark and have kicked background
  1883. * reclaim. Now things get more complex, so set up alloc_flags according
  1884. * to how we want to proceed.
  1885. */
  1886. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  1887. /*
  1888. * Find the true preferred zone if the allocation is unconstrained by
  1889. * cpusets.
  1890. */
  1891. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
  1892. first_zones_zonelist(zonelist, high_zoneidx, NULL,
  1893. &preferred_zone);
  1894. rebalance:
  1895. /* This is the last chance, in general, before the goto nopage. */
  1896. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1897. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  1898. preferred_zone, migratetype);
  1899. if (page)
  1900. goto got_pg;
  1901. /* Allocate without watermarks if the context allows */
  1902. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  1903. page = __alloc_pages_high_priority(gfp_mask, order,
  1904. zonelist, high_zoneidx, nodemask,
  1905. preferred_zone, migratetype);
  1906. if (page)
  1907. goto got_pg;
  1908. }
  1909. /* Atomic allocations - we can't balance anything */
  1910. if (!wait)
  1911. goto nopage;
  1912. /* Avoid recursion of direct reclaim */
  1913. if (current->flags & PF_MEMALLOC)
  1914. goto nopage;
  1915. /* Avoid allocations with no watermarks from looping endlessly */
  1916. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  1917. goto nopage;
  1918. /*
  1919. * Try direct compaction. The first pass is asynchronous. Subsequent
  1920. * attempts after direct reclaim are synchronous
  1921. */
  1922. page = __alloc_pages_direct_compact(gfp_mask, order,
  1923. zonelist, high_zoneidx,
  1924. nodemask,
  1925. alloc_flags, preferred_zone,
  1926. migratetype, &did_some_progress,
  1927. sync_migration);
  1928. if (page)
  1929. goto got_pg;
  1930. sync_migration = true;
  1931. /* Try direct reclaim and then allocating */
  1932. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  1933. zonelist, high_zoneidx,
  1934. nodemask,
  1935. alloc_flags, preferred_zone,
  1936. migratetype, &did_some_progress);
  1937. if (page)
  1938. goto got_pg;
  1939. /*
  1940. * If we failed to make any progress reclaiming, then we are
  1941. * running out of options and have to consider going OOM
  1942. */
  1943. if (!did_some_progress) {
  1944. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1945. if (oom_killer_disabled)
  1946. goto nopage;
  1947. page = __alloc_pages_may_oom(gfp_mask, order,
  1948. zonelist, high_zoneidx,
  1949. nodemask, preferred_zone,
  1950. migratetype);
  1951. if (page)
  1952. goto got_pg;
  1953. if (!(gfp_mask & __GFP_NOFAIL)) {
  1954. /*
  1955. * The oom killer is not called for high-order
  1956. * allocations that may fail, so if no progress
  1957. * is being made, there are no other options and
  1958. * retrying is unlikely to help.
  1959. */
  1960. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1961. goto nopage;
  1962. /*
  1963. * The oom killer is not called for lowmem
  1964. * allocations to prevent needlessly killing
  1965. * innocent tasks.
  1966. */
  1967. if (high_zoneidx < ZONE_NORMAL)
  1968. goto nopage;
  1969. }
  1970. goto restart;
  1971. }
  1972. }
  1973. /* Check if we should retry the allocation */
  1974. pages_reclaimed += did_some_progress;
  1975. if (should_alloc_retry(gfp_mask, order, did_some_progress,
  1976. pages_reclaimed)) {
  1977. /* Wait for some write requests to complete then retry */
  1978. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1979. goto rebalance;
  1980. } else {
  1981. /*
  1982. * High-order allocations do not necessarily loop after
  1983. * direct reclaim and reclaim/compaction depends on compaction
  1984. * being called after reclaim so call directly if necessary
  1985. */
  1986. page = __alloc_pages_direct_compact(gfp_mask, order,
  1987. zonelist, high_zoneidx,
  1988. nodemask,
  1989. alloc_flags, preferred_zone,
  1990. migratetype, &did_some_progress,
  1991. sync_migration);
  1992. if (page)
  1993. goto got_pg;
  1994. }
  1995. nopage:
  1996. warn_alloc_failed(gfp_mask, order, NULL);
  1997. return page;
  1998. got_pg:
  1999. if (kmemcheck_enabled)
  2000. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  2001. return page;
  2002. }
  2003. /*
  2004. * This is the 'heart' of the zoned buddy allocator.
  2005. */
  2006. struct page *
  2007. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  2008. struct zonelist *zonelist, nodemask_t *nodemask)
  2009. {
  2010. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  2011. struct zone *preferred_zone;
  2012. struct page *page;
  2013. int migratetype = allocflags_to_migratetype(gfp_mask);
  2014. gfp_mask &= gfp_allowed_mask;
  2015. lockdep_trace_alloc(gfp_mask);
  2016. might_sleep_if(gfp_mask & __GFP_WAIT);
  2017. if (should_fail_alloc_page(gfp_mask, order))
  2018. return NULL;
  2019. /*
  2020. * Check the zones suitable for the gfp_mask contain at least one
  2021. * valid zone. It's possible to have an empty zonelist as a result
  2022. * of GFP_THISNODE and a memoryless node
  2023. */
  2024. if (unlikely(!zonelist->_zonerefs->zone))
  2025. return NULL;
  2026. get_mems_allowed();
  2027. /* The preferred zone is used for statistics later */
  2028. first_zones_zonelist(zonelist, high_zoneidx,
  2029. nodemask ? : &cpuset_current_mems_allowed,
  2030. &preferred_zone);
  2031. if (!preferred_zone) {
  2032. put_mems_allowed();
  2033. return NULL;
  2034. }
  2035. /* First allocation attempt */
  2036. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  2037. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  2038. preferred_zone, migratetype);
  2039. if (unlikely(!page))
  2040. page = __alloc_pages_slowpath(gfp_mask, order,
  2041. zonelist, high_zoneidx, nodemask,
  2042. preferred_zone, migratetype);
  2043. put_mems_allowed();
  2044. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  2045. return page;
  2046. }
  2047. EXPORT_SYMBOL(__alloc_pages_nodemask);
  2048. /*
  2049. * Common helper functions.
  2050. */
  2051. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  2052. {
  2053. struct page *page;
  2054. /*
  2055. * __get_free_pages() returns a 32-bit address, which cannot represent
  2056. * a highmem page
  2057. */
  2058. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  2059. page = alloc_pages(gfp_mask, order);
  2060. if (!page)
  2061. return 0;
  2062. return (unsigned long) page_address(page);
  2063. }
  2064. EXPORT_SYMBOL(__get_free_pages);
  2065. unsigned long get_zeroed_page(gfp_t gfp_mask)
  2066. {
  2067. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  2068. }
  2069. EXPORT_SYMBOL(get_zeroed_page);
  2070. void __free_pages(struct page *page, unsigned int order)
  2071. {
  2072. if (put_page_testzero(page)) {
  2073. if (order == 0)
  2074. free_hot_cold_page(page, 0);
  2075. else
  2076. __free_pages_ok(page, order);
  2077. }
  2078. }
  2079. EXPORT_SYMBOL(__free_pages);
  2080. void free_pages(unsigned long addr, unsigned int order)
  2081. {
  2082. if (addr != 0) {
  2083. VM_BUG_ON(!virt_addr_valid((void *)addr));
  2084. __free_pages(virt_to_page((void *)addr), order);
  2085. }
  2086. }
  2087. EXPORT_SYMBOL(free_pages);
  2088. static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
  2089. {
  2090. if (addr) {
  2091. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2092. unsigned long used = addr + PAGE_ALIGN(size);
  2093. split_page(virt_to_page((void *)addr), order);
  2094. while (used < alloc_end) {
  2095. free_page(used);
  2096. used += PAGE_SIZE;
  2097. }
  2098. }
  2099. return (void *)addr;
  2100. }
  2101. /**
  2102. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  2103. * @size: the number of bytes to allocate
  2104. * @gfp_mask: GFP flags for the allocation
  2105. *
  2106. * This function is similar to alloc_pages(), except that it allocates the
  2107. * minimum number of pages to satisfy the request. alloc_pages() can only
  2108. * allocate memory in power-of-two pages.
  2109. *
  2110. * This function is also limited by MAX_ORDER.
  2111. *
  2112. * Memory allocated by this function must be released by free_pages_exact().
  2113. */
  2114. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2115. {
  2116. unsigned int order = get_order(size);
  2117. unsigned long addr;
  2118. addr = __get_free_pages(gfp_mask, order);
  2119. return make_alloc_exact(addr, order, size);
  2120. }
  2121. EXPORT_SYMBOL(alloc_pages_exact);
  2122. /**
  2123. * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
  2124. * pages on a node.
  2125. * @nid: the preferred node ID where memory should be allocated
  2126. * @size: the number of bytes to allocate
  2127. * @gfp_mask: GFP flags for the allocation
  2128. *
  2129. * Like alloc_pages_exact(), but try to allocate on node nid first before falling
  2130. * back.
  2131. * Note this is not alloc_pages_exact_node() which allocates on a specific node,
  2132. * but is not exact.
  2133. */
  2134. void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
  2135. {
  2136. unsigned order = get_order(size);
  2137. struct page *p = alloc_pages_node(nid, gfp_mask, order);
  2138. if (!p)
  2139. return NULL;
  2140. return make_alloc_exact((unsigned long)page_address(p), order, size);
  2141. }
  2142. EXPORT_SYMBOL(alloc_pages_exact_nid);
  2143. /**
  2144. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2145. * @virt: the value returned by alloc_pages_exact.
  2146. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2147. *
  2148. * Release the memory allocated by a previous call to alloc_pages_exact.
  2149. */
  2150. void free_pages_exact(void *virt, size_t size)
  2151. {
  2152. unsigned long addr = (unsigned long)virt;
  2153. unsigned long end = addr + PAGE_ALIGN(size);
  2154. while (addr < end) {
  2155. free_page(addr);
  2156. addr += PAGE_SIZE;
  2157. }
  2158. }
  2159. EXPORT_SYMBOL(free_pages_exact);
  2160. static unsigned int nr_free_zone_pages(int offset)
  2161. {
  2162. struct zoneref *z;
  2163. struct zone *zone;
  2164. /* Just pick one node, since fallback list is circular */
  2165. unsigned int sum = 0;
  2166. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2167. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2168. unsigned long size = zone->present_pages;
  2169. unsigned long high = high_wmark_pages(zone);
  2170. if (size > high)
  2171. sum += size - high;
  2172. }
  2173. return sum;
  2174. }
  2175. /*
  2176. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  2177. */
  2178. unsigned int nr_free_buffer_pages(void)
  2179. {
  2180. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2181. }
  2182. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2183. /*
  2184. * Amount of free RAM allocatable within all zones
  2185. */
  2186. unsigned int nr_free_pagecache_pages(void)
  2187. {
  2188. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2189. }
  2190. static inline void show_node(struct zone *zone)
  2191. {
  2192. if (NUMA_BUILD)
  2193. printk("Node %d ", zone_to_nid(zone));
  2194. }
  2195. void si_meminfo(struct sysinfo *val)
  2196. {
  2197. val->totalram = totalram_pages;
  2198. val->sharedram = 0;
  2199. val->freeram = global_page_state(NR_FREE_PAGES);
  2200. val->bufferram = nr_blockdev_pages();
  2201. val->totalhigh = totalhigh_pages;
  2202. val->freehigh = nr_free_highpages();
  2203. val->mem_unit = PAGE_SIZE;
  2204. }
  2205. EXPORT_SYMBOL(si_meminfo);
  2206. #ifdef CONFIG_NUMA
  2207. void si_meminfo_node(struct sysinfo *val, int nid)
  2208. {
  2209. pg_data_t *pgdat = NODE_DATA(nid);
  2210. val->totalram = pgdat->node_present_pages;
  2211. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2212. #ifdef CONFIG_HIGHMEM
  2213. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  2214. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2215. NR_FREE_PAGES);
  2216. #else
  2217. val->totalhigh = 0;
  2218. val->freehigh = 0;
  2219. #endif
  2220. val->mem_unit = PAGE_SIZE;
  2221. }
  2222. #endif
  2223. /*
  2224. * Determine whether the node should be displayed or not, depending on whether
  2225. * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
  2226. */
  2227. bool skip_free_areas_node(unsigned int flags, int nid)
  2228. {
  2229. bool ret = false;
  2230. if (!(flags & SHOW_MEM_FILTER_NODES))
  2231. goto out;
  2232. get_mems_allowed();
  2233. ret = !node_isset(nid, cpuset_current_mems_allowed);
  2234. put_mems_allowed();
  2235. out:
  2236. return ret;
  2237. }
  2238. #define K(x) ((x) << (PAGE_SHIFT-10))
  2239. /*
  2240. * Show free area list (used inside shift_scroll-lock stuff)
  2241. * We also calculate the percentage fragmentation. We do this by counting the
  2242. * memory on each free list with the exception of the first item on the list.
  2243. * Suppresses nodes that are not allowed by current's cpuset if
  2244. * SHOW_MEM_FILTER_NODES is passed.
  2245. */
  2246. void show_free_areas(unsigned int filter)
  2247. {
  2248. int cpu;
  2249. struct zone *zone;
  2250. for_each_populated_zone(zone) {
  2251. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2252. continue;
  2253. show_node(zone);
  2254. printk("%s per-cpu:\n", zone->name);
  2255. for_each_online_cpu(cpu) {
  2256. struct per_cpu_pageset *pageset;
  2257. pageset = per_cpu_ptr(zone->pageset, cpu);
  2258. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2259. cpu, pageset->pcp.high,
  2260. pageset->pcp.batch, pageset->pcp.count);
  2261. }
  2262. }
  2263. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2264. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2265. " unevictable:%lu"
  2266. " dirty:%lu writeback:%lu unstable:%lu\n"
  2267. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2268. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
  2269. global_page_state(NR_ACTIVE_ANON),
  2270. global_page_state(NR_INACTIVE_ANON),
  2271. global_page_state(NR_ISOLATED_ANON),
  2272. global_page_state(NR_ACTIVE_FILE),
  2273. global_page_state(NR_INACTIVE_FILE),
  2274. global_page_state(NR_ISOLATED_FILE),
  2275. global_page_state(NR_UNEVICTABLE),
  2276. global_page_state(NR_FILE_DIRTY),
  2277. global_page_state(NR_WRITEBACK),
  2278. global_page_state(NR_UNSTABLE_NFS),
  2279. global_page_state(NR_FREE_PAGES),
  2280. global_page_state(NR_SLAB_RECLAIMABLE),
  2281. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2282. global_page_state(NR_FILE_MAPPED),
  2283. global_page_state(NR_SHMEM),
  2284. global_page_state(NR_PAGETABLE),
  2285. global_page_state(NR_BOUNCE));
  2286. for_each_populated_zone(zone) {
  2287. int i;
  2288. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2289. continue;
  2290. show_node(zone);
  2291. printk("%s"
  2292. " free:%lukB"
  2293. " min:%lukB"
  2294. " low:%lukB"
  2295. " high:%lukB"
  2296. " active_anon:%lukB"
  2297. " inactive_anon:%lukB"
  2298. " active_file:%lukB"
  2299. " inactive_file:%lukB"
  2300. " unevictable:%lukB"
  2301. " isolated(anon):%lukB"
  2302. " isolated(file):%lukB"
  2303. " present:%lukB"
  2304. " mlocked:%lukB"
  2305. " dirty:%lukB"
  2306. " writeback:%lukB"
  2307. " mapped:%lukB"
  2308. " shmem:%lukB"
  2309. " slab_reclaimable:%lukB"
  2310. " slab_unreclaimable:%lukB"
  2311. " kernel_stack:%lukB"
  2312. " pagetables:%lukB"
  2313. " unstable:%lukB"
  2314. " bounce:%lukB"
  2315. " writeback_tmp:%lukB"
  2316. " pages_scanned:%lu"
  2317. " all_unreclaimable? %s"
  2318. "\n",
  2319. zone->name,
  2320. K(zone_page_state(zone, NR_FREE_PAGES)),
  2321. K(min_wmark_pages(zone)),
  2322. K(low_wmark_pages(zone)),
  2323. K(high_wmark_pages(zone)),
  2324. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2325. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2326. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2327. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2328. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2329. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2330. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2331. K(zone->present_pages),
  2332. K(zone_page_state(zone, NR_MLOCK)),
  2333. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2334. K(zone_page_state(zone, NR_WRITEBACK)),
  2335. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2336. K(zone_page_state(zone, NR_SHMEM)),
  2337. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2338. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2339. zone_page_state(zone, NR_KERNEL_STACK) *
  2340. THREAD_SIZE / 1024,
  2341. K(zone_page_state(zone, NR_PAGETABLE)),
  2342. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2343. K(zone_page_state(zone, NR_BOUNCE)),
  2344. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2345. zone->pages_scanned,
  2346. (zone->all_unreclaimable ? "yes" : "no")
  2347. );
  2348. printk("lowmem_reserve[]:");
  2349. for (i = 0; i < MAX_NR_ZONES; i++)
  2350. printk(" %lu", zone->lowmem_reserve[i]);
  2351. printk("\n");
  2352. }
  2353. for_each_populated_zone(zone) {
  2354. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2355. if (skip_free_areas_node(filter, zone_to_nid(zone)))
  2356. continue;
  2357. show_node(zone);
  2358. printk("%s: ", zone->name);
  2359. spin_lock_irqsave(&zone->lock, flags);
  2360. for (order = 0; order < MAX_ORDER; order++) {
  2361. nr[order] = zone->free_area[order].nr_free;
  2362. total += nr[order] << order;
  2363. }
  2364. spin_unlock_irqrestore(&zone->lock, flags);
  2365. for (order = 0; order < MAX_ORDER; order++)
  2366. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2367. printk("= %lukB\n", K(total));
  2368. }
  2369. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2370. show_swap_cache_info();
  2371. }
  2372. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2373. {
  2374. zoneref->zone = zone;
  2375. zoneref->zone_idx = zone_idx(zone);
  2376. }
  2377. /*
  2378. * Builds allocation fallback zone lists.
  2379. *
  2380. * Add all populated zones of a node to the zonelist.
  2381. */
  2382. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2383. int nr_zones, enum zone_type zone_type)
  2384. {
  2385. struct zone *zone;
  2386. BUG_ON(zone_type >= MAX_NR_ZONES);
  2387. zone_type++;
  2388. do {
  2389. zone_type--;
  2390. zone = pgdat->node_zones + zone_type;
  2391. if (populated_zone(zone)) {
  2392. zoneref_set_zone(zone,
  2393. &zonelist->_zonerefs[nr_zones++]);
  2394. check_highest_zone(zone_type);
  2395. }
  2396. } while (zone_type);
  2397. return nr_zones;
  2398. }
  2399. /*
  2400. * zonelist_order:
  2401. * 0 = automatic detection of better ordering.
  2402. * 1 = order by ([node] distance, -zonetype)
  2403. * 2 = order by (-zonetype, [node] distance)
  2404. *
  2405. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2406. * the same zonelist. So only NUMA can configure this param.
  2407. */
  2408. #define ZONELIST_ORDER_DEFAULT 0
  2409. #define ZONELIST_ORDER_NODE 1
  2410. #define ZONELIST_ORDER_ZONE 2
  2411. /* zonelist order in the kernel.
  2412. * set_zonelist_order() will set this to NODE or ZONE.
  2413. */
  2414. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2415. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2416. #ifdef CONFIG_NUMA
  2417. /* The value user specified ....changed by config */
  2418. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2419. /* string for sysctl */
  2420. #define NUMA_ZONELIST_ORDER_LEN 16
  2421. char numa_zonelist_order[16] = "default";
  2422. /*
  2423. * interface for configure zonelist ordering.
  2424. * command line option "numa_zonelist_order"
  2425. * = "[dD]efault - default, automatic configuration.
  2426. * = "[nN]ode - order by node locality, then by zone within node
  2427. * = "[zZ]one - order by zone, then by locality within zone
  2428. */
  2429. static int __parse_numa_zonelist_order(char *s)
  2430. {
  2431. if (*s == 'd' || *s == 'D') {
  2432. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2433. } else if (*s == 'n' || *s == 'N') {
  2434. user_zonelist_order = ZONELIST_ORDER_NODE;
  2435. } else if (*s == 'z' || *s == 'Z') {
  2436. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2437. } else {
  2438. printk(KERN_WARNING
  2439. "Ignoring invalid numa_zonelist_order value: "
  2440. "%s\n", s);
  2441. return -EINVAL;
  2442. }
  2443. return 0;
  2444. }
  2445. static __init int setup_numa_zonelist_order(char *s)
  2446. {
  2447. int ret;
  2448. if (!s)
  2449. return 0;
  2450. ret = __parse_numa_zonelist_order(s);
  2451. if (ret == 0)
  2452. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2453. return ret;
  2454. }
  2455. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2456. /*
  2457. * sysctl handler for numa_zonelist_order
  2458. */
  2459. int numa_zonelist_order_handler(ctl_table *table, int write,
  2460. void __user *buffer, size_t *length,
  2461. loff_t *ppos)
  2462. {
  2463. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2464. int ret;
  2465. static DEFINE_MUTEX(zl_order_mutex);
  2466. mutex_lock(&zl_order_mutex);
  2467. if (write)
  2468. strcpy(saved_string, (char*)table->data);
  2469. ret = proc_dostring(table, write, buffer, length, ppos);
  2470. if (ret)
  2471. goto out;
  2472. if (write) {
  2473. int oldval = user_zonelist_order;
  2474. if (__parse_numa_zonelist_order((char*)table->data)) {
  2475. /*
  2476. * bogus value. restore saved string
  2477. */
  2478. strncpy((char*)table->data, saved_string,
  2479. NUMA_ZONELIST_ORDER_LEN);
  2480. user_zonelist_order = oldval;
  2481. } else if (oldval != user_zonelist_order) {
  2482. mutex_lock(&zonelists_mutex);
  2483. build_all_zonelists(NULL);
  2484. mutex_unlock(&zonelists_mutex);
  2485. }
  2486. }
  2487. out:
  2488. mutex_unlock(&zl_order_mutex);
  2489. return ret;
  2490. }
  2491. #define MAX_NODE_LOAD (nr_online_nodes)
  2492. static int node_load[MAX_NUMNODES];
  2493. /**
  2494. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2495. * @node: node whose fallback list we're appending
  2496. * @used_node_mask: nodemask_t of already used nodes
  2497. *
  2498. * We use a number of factors to determine which is the next node that should
  2499. * appear on a given node's fallback list. The node should not have appeared
  2500. * already in @node's fallback list, and it should be the next closest node
  2501. * according to the distance array (which contains arbitrary distance values
  2502. * from each node to each node in the system), and should also prefer nodes
  2503. * with no CPUs, since presumably they'll have very little allocation pressure
  2504. * on them otherwise.
  2505. * It returns -1 if no node is found.
  2506. */
  2507. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2508. {
  2509. int n, val;
  2510. int min_val = INT_MAX;
  2511. int best_node = -1;
  2512. const struct cpumask *tmp = cpumask_of_node(0);
  2513. /* Use the local node if we haven't already */
  2514. if (!node_isset(node, *used_node_mask)) {
  2515. node_set(node, *used_node_mask);
  2516. return node;
  2517. }
  2518. for_each_node_state(n, N_HIGH_MEMORY) {
  2519. /* Don't want a node to appear more than once */
  2520. if (node_isset(n, *used_node_mask))
  2521. continue;
  2522. /* Use the distance array to find the distance */
  2523. val = node_distance(node, n);
  2524. /* Penalize nodes under us ("prefer the next node") */
  2525. val += (n < node);
  2526. /* Give preference to headless and unused nodes */
  2527. tmp = cpumask_of_node(n);
  2528. if (!cpumask_empty(tmp))
  2529. val += PENALTY_FOR_NODE_WITH_CPUS;
  2530. /* Slight preference for less loaded node */
  2531. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2532. val += node_load[n];
  2533. if (val < min_val) {
  2534. min_val = val;
  2535. best_node = n;
  2536. }
  2537. }
  2538. if (best_node >= 0)
  2539. node_set(best_node, *used_node_mask);
  2540. return best_node;
  2541. }
  2542. /*
  2543. * Build zonelists ordered by node and zones within node.
  2544. * This results in maximum locality--normal zone overflows into local
  2545. * DMA zone, if any--but risks exhausting DMA zone.
  2546. */
  2547. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2548. {
  2549. int j;
  2550. struct zonelist *zonelist;
  2551. zonelist = &pgdat->node_zonelists[0];
  2552. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2553. ;
  2554. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2555. MAX_NR_ZONES - 1);
  2556. zonelist->_zonerefs[j].zone = NULL;
  2557. zonelist->_zonerefs[j].zone_idx = 0;
  2558. }
  2559. /*
  2560. * Build gfp_thisnode zonelists
  2561. */
  2562. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2563. {
  2564. int j;
  2565. struct zonelist *zonelist;
  2566. zonelist = &pgdat->node_zonelists[1];
  2567. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2568. zonelist->_zonerefs[j].zone = NULL;
  2569. zonelist->_zonerefs[j].zone_idx = 0;
  2570. }
  2571. /*
  2572. * Build zonelists ordered by zone and nodes within zones.
  2573. * This results in conserving DMA zone[s] until all Normal memory is
  2574. * exhausted, but results in overflowing to remote node while memory
  2575. * may still exist in local DMA zone.
  2576. */
  2577. static int node_order[MAX_NUMNODES];
  2578. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2579. {
  2580. int pos, j, node;
  2581. int zone_type; /* needs to be signed */
  2582. struct zone *z;
  2583. struct zonelist *zonelist;
  2584. zonelist = &pgdat->node_zonelists[0];
  2585. pos = 0;
  2586. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2587. for (j = 0; j < nr_nodes; j++) {
  2588. node = node_order[j];
  2589. z = &NODE_DATA(node)->node_zones[zone_type];
  2590. if (populated_zone(z)) {
  2591. zoneref_set_zone(z,
  2592. &zonelist->_zonerefs[pos++]);
  2593. check_highest_zone(zone_type);
  2594. }
  2595. }
  2596. }
  2597. zonelist->_zonerefs[pos].zone = NULL;
  2598. zonelist->_zonerefs[pos].zone_idx = 0;
  2599. }
  2600. static int default_zonelist_order(void)
  2601. {
  2602. int nid, zone_type;
  2603. unsigned long low_kmem_size,total_size;
  2604. struct zone *z;
  2605. int average_size;
  2606. /*
  2607. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  2608. * If they are really small and used heavily, the system can fall
  2609. * into OOM very easily.
  2610. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  2611. */
  2612. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2613. low_kmem_size = 0;
  2614. total_size = 0;
  2615. for_each_online_node(nid) {
  2616. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2617. z = &NODE_DATA(nid)->node_zones[zone_type];
  2618. if (populated_zone(z)) {
  2619. if (zone_type < ZONE_NORMAL)
  2620. low_kmem_size += z->present_pages;
  2621. total_size += z->present_pages;
  2622. } else if (zone_type == ZONE_NORMAL) {
  2623. /*
  2624. * If any node has only lowmem, then node order
  2625. * is preferred to allow kernel allocations
  2626. * locally; otherwise, they can easily infringe
  2627. * on other nodes when there is an abundance of
  2628. * lowmem available to allocate from.
  2629. */
  2630. return ZONELIST_ORDER_NODE;
  2631. }
  2632. }
  2633. }
  2634. if (!low_kmem_size || /* there are no DMA area. */
  2635. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2636. return ZONELIST_ORDER_NODE;
  2637. /*
  2638. * look into each node's config.
  2639. * If there is a node whose DMA/DMA32 memory is very big area on
  2640. * local memory, NODE_ORDER may be suitable.
  2641. */
  2642. average_size = total_size /
  2643. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2644. for_each_online_node(nid) {
  2645. low_kmem_size = 0;
  2646. total_size = 0;
  2647. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2648. z = &NODE_DATA(nid)->node_zones[zone_type];
  2649. if (populated_zone(z)) {
  2650. if (zone_type < ZONE_NORMAL)
  2651. low_kmem_size += z->present_pages;
  2652. total_size += z->present_pages;
  2653. }
  2654. }
  2655. if (low_kmem_size &&
  2656. total_size > average_size && /* ignore small node */
  2657. low_kmem_size > total_size * 70/100)
  2658. return ZONELIST_ORDER_NODE;
  2659. }
  2660. return ZONELIST_ORDER_ZONE;
  2661. }
  2662. static void set_zonelist_order(void)
  2663. {
  2664. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2665. current_zonelist_order = default_zonelist_order();
  2666. else
  2667. current_zonelist_order = user_zonelist_order;
  2668. }
  2669. static void build_zonelists(pg_data_t *pgdat)
  2670. {
  2671. int j, node, load;
  2672. enum zone_type i;
  2673. nodemask_t used_mask;
  2674. int local_node, prev_node;
  2675. struct zonelist *zonelist;
  2676. int order = current_zonelist_order;
  2677. /* initialize zonelists */
  2678. for (i = 0; i < MAX_ZONELISTS; i++) {
  2679. zonelist = pgdat->node_zonelists + i;
  2680. zonelist->_zonerefs[0].zone = NULL;
  2681. zonelist->_zonerefs[0].zone_idx = 0;
  2682. }
  2683. /* NUMA-aware ordering of nodes */
  2684. local_node = pgdat->node_id;
  2685. load = nr_online_nodes;
  2686. prev_node = local_node;
  2687. nodes_clear(used_mask);
  2688. memset(node_order, 0, sizeof(node_order));
  2689. j = 0;
  2690. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2691. int distance = node_distance(local_node, node);
  2692. /*
  2693. * If another node is sufficiently far away then it is better
  2694. * to reclaim pages in a zone before going off node.
  2695. */
  2696. if (distance > RECLAIM_DISTANCE)
  2697. zone_reclaim_mode = 1;
  2698. /*
  2699. * We don't want to pressure a particular node.
  2700. * So adding penalty to the first node in same
  2701. * distance group to make it round-robin.
  2702. */
  2703. if (distance != node_distance(local_node, prev_node))
  2704. node_load[node] = load;
  2705. prev_node = node;
  2706. load--;
  2707. if (order == ZONELIST_ORDER_NODE)
  2708. build_zonelists_in_node_order(pgdat, node);
  2709. else
  2710. node_order[j++] = node; /* remember order */
  2711. }
  2712. if (order == ZONELIST_ORDER_ZONE) {
  2713. /* calculate node order -- i.e., DMA last! */
  2714. build_zonelists_in_zone_order(pgdat, j);
  2715. }
  2716. build_thisnode_zonelists(pgdat);
  2717. }
  2718. /* Construct the zonelist performance cache - see further mmzone.h */
  2719. static void build_zonelist_cache(pg_data_t *pgdat)
  2720. {
  2721. struct zonelist *zonelist;
  2722. struct zonelist_cache *zlc;
  2723. struct zoneref *z;
  2724. zonelist = &pgdat->node_zonelists[0];
  2725. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2726. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2727. for (z = zonelist->_zonerefs; z->zone; z++)
  2728. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2729. }
  2730. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2731. /*
  2732. * Return node id of node used for "local" allocations.
  2733. * I.e., first node id of first zone in arg node's generic zonelist.
  2734. * Used for initializing percpu 'numa_mem', which is used primarily
  2735. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  2736. */
  2737. int local_memory_node(int node)
  2738. {
  2739. struct zone *zone;
  2740. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  2741. gfp_zone(GFP_KERNEL),
  2742. NULL,
  2743. &zone);
  2744. return zone->node;
  2745. }
  2746. #endif
  2747. #else /* CONFIG_NUMA */
  2748. static void set_zonelist_order(void)
  2749. {
  2750. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2751. }
  2752. static void build_zonelists(pg_data_t *pgdat)
  2753. {
  2754. int node, local_node;
  2755. enum zone_type j;
  2756. struct zonelist *zonelist;
  2757. local_node = pgdat->node_id;
  2758. zonelist = &pgdat->node_zonelists[0];
  2759. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2760. /*
  2761. * Now we build the zonelist so that it contains the zones
  2762. * of all the other nodes.
  2763. * We don't want to pressure a particular node, so when
  2764. * building the zones for node N, we make sure that the
  2765. * zones coming right after the local ones are those from
  2766. * node N+1 (modulo N)
  2767. */
  2768. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2769. if (!node_online(node))
  2770. continue;
  2771. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2772. MAX_NR_ZONES - 1);
  2773. }
  2774. for (node = 0; node < local_node; node++) {
  2775. if (!node_online(node))
  2776. continue;
  2777. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2778. MAX_NR_ZONES - 1);
  2779. }
  2780. zonelist->_zonerefs[j].zone = NULL;
  2781. zonelist->_zonerefs[j].zone_idx = 0;
  2782. }
  2783. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2784. static void build_zonelist_cache(pg_data_t *pgdat)
  2785. {
  2786. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2787. }
  2788. #endif /* CONFIG_NUMA */
  2789. /*
  2790. * Boot pageset table. One per cpu which is going to be used for all
  2791. * zones and all nodes. The parameters will be set in such a way
  2792. * that an item put on a list will immediately be handed over to
  2793. * the buddy list. This is safe since pageset manipulation is done
  2794. * with interrupts disabled.
  2795. *
  2796. * The boot_pagesets must be kept even after bootup is complete for
  2797. * unused processors and/or zones. They do play a role for bootstrapping
  2798. * hotplugged processors.
  2799. *
  2800. * zoneinfo_show() and maybe other functions do
  2801. * not check if the processor is online before following the pageset pointer.
  2802. * Other parts of the kernel may not check if the zone is available.
  2803. */
  2804. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  2805. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  2806. static void setup_zone_pageset(struct zone *zone);
  2807. /*
  2808. * Global mutex to protect against size modification of zonelists
  2809. * as well as to serialize pageset setup for the new populated zone.
  2810. */
  2811. DEFINE_MUTEX(zonelists_mutex);
  2812. /* return values int ....just for stop_machine() */
  2813. static __init_refok int __build_all_zonelists(void *data)
  2814. {
  2815. int nid;
  2816. int cpu;
  2817. #ifdef CONFIG_NUMA
  2818. memset(node_load, 0, sizeof(node_load));
  2819. #endif
  2820. for_each_online_node(nid) {
  2821. pg_data_t *pgdat = NODE_DATA(nid);
  2822. build_zonelists(pgdat);
  2823. build_zonelist_cache(pgdat);
  2824. }
  2825. /*
  2826. * Initialize the boot_pagesets that are going to be used
  2827. * for bootstrapping processors. The real pagesets for
  2828. * each zone will be allocated later when the per cpu
  2829. * allocator is available.
  2830. *
  2831. * boot_pagesets are used also for bootstrapping offline
  2832. * cpus if the system is already booted because the pagesets
  2833. * are needed to initialize allocators on a specific cpu too.
  2834. * F.e. the percpu allocator needs the page allocator which
  2835. * needs the percpu allocator in order to allocate its pagesets
  2836. * (a chicken-egg dilemma).
  2837. */
  2838. for_each_possible_cpu(cpu) {
  2839. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  2840. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2841. /*
  2842. * We now know the "local memory node" for each node--
  2843. * i.e., the node of the first zone in the generic zonelist.
  2844. * Set up numa_mem percpu variable for on-line cpus. During
  2845. * boot, only the boot cpu should be on-line; we'll init the
  2846. * secondary cpus' numa_mem as they come on-line. During
  2847. * node/memory hotplug, we'll fixup all on-line cpus.
  2848. */
  2849. if (cpu_online(cpu))
  2850. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  2851. #endif
  2852. }
  2853. return 0;
  2854. }
  2855. /*
  2856. * Called with zonelists_mutex held always
  2857. * unless system_state == SYSTEM_BOOTING.
  2858. */
  2859. void __ref build_all_zonelists(void *data)
  2860. {
  2861. set_zonelist_order();
  2862. if (system_state == SYSTEM_BOOTING) {
  2863. __build_all_zonelists(NULL);
  2864. mminit_verify_zonelist();
  2865. cpuset_init_current_mems_allowed();
  2866. } else {
  2867. /* we have to stop all cpus to guarantee there is no user
  2868. of zonelist */
  2869. #ifdef CONFIG_MEMORY_HOTPLUG
  2870. if (data)
  2871. setup_zone_pageset((struct zone *)data);
  2872. #endif
  2873. stop_machine(__build_all_zonelists, NULL, NULL);
  2874. /* cpuset refresh routine should be here */
  2875. }
  2876. vm_total_pages = nr_free_pagecache_pages();
  2877. /*
  2878. * Disable grouping by mobility if the number of pages in the
  2879. * system is too low to allow the mechanism to work. It would be
  2880. * more accurate, but expensive to check per-zone. This check is
  2881. * made on memory-hotadd so a system can start with mobility
  2882. * disabled and enable it later
  2883. */
  2884. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2885. page_group_by_mobility_disabled = 1;
  2886. else
  2887. page_group_by_mobility_disabled = 0;
  2888. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2889. "Total pages: %ld\n",
  2890. nr_online_nodes,
  2891. zonelist_order_name[current_zonelist_order],
  2892. page_group_by_mobility_disabled ? "off" : "on",
  2893. vm_total_pages);
  2894. #ifdef CONFIG_NUMA
  2895. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2896. #endif
  2897. }
  2898. /*
  2899. * Helper functions to size the waitqueue hash table.
  2900. * Essentially these want to choose hash table sizes sufficiently
  2901. * large so that collisions trying to wait on pages are rare.
  2902. * But in fact, the number of active page waitqueues on typical
  2903. * systems is ridiculously low, less than 200. So this is even
  2904. * conservative, even though it seems large.
  2905. *
  2906. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2907. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2908. */
  2909. #define PAGES_PER_WAITQUEUE 256
  2910. #ifndef CONFIG_MEMORY_HOTPLUG
  2911. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2912. {
  2913. unsigned long size = 1;
  2914. pages /= PAGES_PER_WAITQUEUE;
  2915. while (size < pages)
  2916. size <<= 1;
  2917. /*
  2918. * Once we have dozens or even hundreds of threads sleeping
  2919. * on IO we've got bigger problems than wait queue collision.
  2920. * Limit the size of the wait table to a reasonable size.
  2921. */
  2922. size = min(size, 4096UL);
  2923. return max(size, 4UL);
  2924. }
  2925. #else
  2926. /*
  2927. * A zone's size might be changed by hot-add, so it is not possible to determine
  2928. * a suitable size for its wait_table. So we use the maximum size now.
  2929. *
  2930. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2931. *
  2932. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2933. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2934. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2935. *
  2936. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2937. * or more by the traditional way. (See above). It equals:
  2938. *
  2939. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2940. * ia64(16K page size) : = ( 8G + 4M)byte.
  2941. * powerpc (64K page size) : = (32G +16M)byte.
  2942. */
  2943. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2944. {
  2945. return 4096UL;
  2946. }
  2947. #endif
  2948. /*
  2949. * This is an integer logarithm so that shifts can be used later
  2950. * to extract the more random high bits from the multiplicative
  2951. * hash function before the remainder is taken.
  2952. */
  2953. static inline unsigned long wait_table_bits(unsigned long size)
  2954. {
  2955. return ffz(~size);
  2956. }
  2957. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2958. /*
  2959. * Check if a pageblock contains reserved pages
  2960. */
  2961. static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
  2962. {
  2963. unsigned long pfn;
  2964. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2965. if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
  2966. return 1;
  2967. }
  2968. return 0;
  2969. }
  2970. /*
  2971. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2972. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  2973. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2974. * higher will lead to a bigger reserve which will get freed as contiguous
  2975. * blocks as reclaim kicks in
  2976. */
  2977. static void setup_zone_migrate_reserve(struct zone *zone)
  2978. {
  2979. unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
  2980. struct page *page;
  2981. unsigned long block_migratetype;
  2982. int reserve;
  2983. /*
  2984. * Get the start pfn, end pfn and the number of blocks to reserve
  2985. * We have to be careful to be aligned to pageblock_nr_pages to
  2986. * make sure that we always check pfn_valid for the first page in
  2987. * the block.
  2988. */
  2989. start_pfn = zone->zone_start_pfn;
  2990. end_pfn = start_pfn + zone->spanned_pages;
  2991. start_pfn = roundup(start_pfn, pageblock_nr_pages);
  2992. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  2993. pageblock_order;
  2994. /*
  2995. * Reserve blocks are generally in place to help high-order atomic
  2996. * allocations that are short-lived. A min_free_kbytes value that
  2997. * would result in more than 2 reserve blocks for atomic allocations
  2998. * is assumed to be in place to help anti-fragmentation for the
  2999. * future allocation of hugepages at runtime.
  3000. */
  3001. reserve = min(2, reserve);
  3002. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  3003. if (!pfn_valid(pfn))
  3004. continue;
  3005. page = pfn_to_page(pfn);
  3006. /* Watch out for overlapping nodes */
  3007. if (page_to_nid(page) != zone_to_nid(zone))
  3008. continue;
  3009. block_migratetype = get_pageblock_migratetype(page);
  3010. /* Only test what is necessary when the reserves are not met */
  3011. if (reserve > 0) {
  3012. /*
  3013. * Blocks with reserved pages will never free, skip
  3014. * them.
  3015. */
  3016. block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
  3017. if (pageblock_is_reserved(pfn, block_end_pfn))
  3018. continue;
  3019. /* If this block is reserved, account for it */
  3020. if (block_migratetype == MIGRATE_RESERVE) {
  3021. reserve--;
  3022. continue;
  3023. }
  3024. /* Suitable for reserving if this block is movable */
  3025. if (block_migratetype == MIGRATE_MOVABLE) {
  3026. set_pageblock_migratetype(page,
  3027. MIGRATE_RESERVE);
  3028. move_freepages_block(zone, page,
  3029. MIGRATE_RESERVE);
  3030. reserve--;
  3031. continue;
  3032. }
  3033. }
  3034. /*
  3035. * If the reserve is met and this is a previous reserved block,
  3036. * take it back
  3037. */
  3038. if (block_migratetype == MIGRATE_RESERVE) {
  3039. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3040. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3041. }
  3042. }
  3043. }
  3044. /*
  3045. * Initially all pages are reserved - free ones are freed
  3046. * up by free_all_bootmem() once the early boot process is
  3047. * done. Non-atomic initialization, single-pass.
  3048. */
  3049. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  3050. unsigned long start_pfn, enum memmap_context context)
  3051. {
  3052. struct page *page;
  3053. unsigned long end_pfn = start_pfn + size;
  3054. unsigned long pfn;
  3055. struct zone *z;
  3056. if (highest_memmap_pfn < end_pfn - 1)
  3057. highest_memmap_pfn = end_pfn - 1;
  3058. z = &NODE_DATA(nid)->node_zones[zone];
  3059. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  3060. /*
  3061. * There can be holes in boot-time mem_map[]s
  3062. * handed to this function. They do not
  3063. * exist on hotplugged memory.
  3064. */
  3065. if (context == MEMMAP_EARLY) {
  3066. if (!early_pfn_valid(pfn))
  3067. continue;
  3068. if (!early_pfn_in_nid(pfn, nid))
  3069. continue;
  3070. }
  3071. page = pfn_to_page(pfn);
  3072. set_page_links(page, zone, nid, pfn);
  3073. mminit_verify_page_links(page, zone, nid, pfn);
  3074. init_page_count(page);
  3075. reset_page_mapcount(page);
  3076. SetPageReserved(page);
  3077. /*
  3078. * Mark the block movable so that blocks are reserved for
  3079. * movable at startup. This will force kernel allocations
  3080. * to reserve their blocks rather than leaking throughout
  3081. * the address space during boot when many long-lived
  3082. * kernel allocations are made. Later some blocks near
  3083. * the start are marked MIGRATE_RESERVE by
  3084. * setup_zone_migrate_reserve()
  3085. *
  3086. * bitmap is created for zone's valid pfn range. but memmap
  3087. * can be created for invalid pages (for alignment)
  3088. * check here not to call set_pageblock_migratetype() against
  3089. * pfn out of zone.
  3090. */
  3091. if ((z->zone_start_pfn <= pfn)
  3092. && (pfn < z->zone_start_pfn + z->spanned_pages)
  3093. && !(pfn & (pageblock_nr_pages - 1)))
  3094. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3095. INIT_LIST_HEAD(&page->lru);
  3096. #ifdef WANT_PAGE_VIRTUAL
  3097. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  3098. if (!is_highmem_idx(zone))
  3099. set_page_address(page, __va(pfn << PAGE_SHIFT));
  3100. #endif
  3101. }
  3102. }
  3103. static void __meminit zone_init_free_lists(struct zone *zone)
  3104. {
  3105. int order, t;
  3106. for_each_migratetype_order(order, t) {
  3107. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  3108. zone->free_area[order].nr_free = 0;
  3109. }
  3110. }
  3111. #ifndef __HAVE_ARCH_MEMMAP_INIT
  3112. #define memmap_init(size, nid, zone, start_pfn) \
  3113. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  3114. #endif
  3115. static int zone_batchsize(struct zone *zone)
  3116. {
  3117. #ifdef CONFIG_MMU
  3118. int batch;
  3119. /*
  3120. * The per-cpu-pages pools are set to around 1000th of the
  3121. * size of the zone. But no more than 1/2 of a meg.
  3122. *
  3123. * OK, so we don't know how big the cache is. So guess.
  3124. */
  3125. batch = zone->present_pages / 1024;
  3126. if (batch * PAGE_SIZE > 512 * 1024)
  3127. batch = (512 * 1024) / PAGE_SIZE;
  3128. batch /= 4; /* We effectively *= 4 below */
  3129. if (batch < 1)
  3130. batch = 1;
  3131. /*
  3132. * Clamp the batch to a 2^n - 1 value. Having a power
  3133. * of 2 value was found to be more likely to have
  3134. * suboptimal cache aliasing properties in some cases.
  3135. *
  3136. * For example if 2 tasks are alternately allocating
  3137. * batches of pages, one task can end up with a lot
  3138. * of pages of one half of the possible page colors
  3139. * and the other with pages of the other colors.
  3140. */
  3141. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3142. return batch;
  3143. #else
  3144. /* The deferral and batching of frees should be suppressed under NOMMU
  3145. * conditions.
  3146. *
  3147. * The problem is that NOMMU needs to be able to allocate large chunks
  3148. * of contiguous memory as there's no hardware page translation to
  3149. * assemble apparent contiguous memory from discontiguous pages.
  3150. *
  3151. * Queueing large contiguous runs of pages for batching, however,
  3152. * causes the pages to actually be freed in smaller chunks. As there
  3153. * can be a significant delay between the individual batches being
  3154. * recycled, this leads to the once large chunks of space being
  3155. * fragmented and becoming unavailable for high-order allocations.
  3156. */
  3157. return 0;
  3158. #endif
  3159. }
  3160. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3161. {
  3162. struct per_cpu_pages *pcp;
  3163. int migratetype;
  3164. memset(p, 0, sizeof(*p));
  3165. pcp = &p->pcp;
  3166. pcp->count = 0;
  3167. pcp->high = 6 * batch;
  3168. pcp->batch = max(1UL, 1 * batch);
  3169. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3170. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3171. }
  3172. /*
  3173. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  3174. * to the value high for the pageset p.
  3175. */
  3176. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  3177. unsigned long high)
  3178. {
  3179. struct per_cpu_pages *pcp;
  3180. pcp = &p->pcp;
  3181. pcp->high = high;
  3182. pcp->batch = max(1UL, high/4);
  3183. if ((high/4) > (PAGE_SHIFT * 8))
  3184. pcp->batch = PAGE_SHIFT * 8;
  3185. }
  3186. static void setup_zone_pageset(struct zone *zone)
  3187. {
  3188. int cpu;
  3189. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3190. for_each_possible_cpu(cpu) {
  3191. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3192. setup_pageset(pcp, zone_batchsize(zone));
  3193. if (percpu_pagelist_fraction)
  3194. setup_pagelist_highmark(pcp,
  3195. (zone->present_pages /
  3196. percpu_pagelist_fraction));
  3197. }
  3198. }
  3199. /*
  3200. * Allocate per cpu pagesets and initialize them.
  3201. * Before this call only boot pagesets were available.
  3202. */
  3203. void __init setup_per_cpu_pageset(void)
  3204. {
  3205. struct zone *zone;
  3206. for_each_populated_zone(zone)
  3207. setup_zone_pageset(zone);
  3208. }
  3209. static noinline __init_refok
  3210. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3211. {
  3212. int i;
  3213. struct pglist_data *pgdat = zone->zone_pgdat;
  3214. size_t alloc_size;
  3215. /*
  3216. * The per-page waitqueue mechanism uses hashed waitqueues
  3217. * per zone.
  3218. */
  3219. zone->wait_table_hash_nr_entries =
  3220. wait_table_hash_nr_entries(zone_size_pages);
  3221. zone->wait_table_bits =
  3222. wait_table_bits(zone->wait_table_hash_nr_entries);
  3223. alloc_size = zone->wait_table_hash_nr_entries
  3224. * sizeof(wait_queue_head_t);
  3225. if (!slab_is_available()) {
  3226. zone->wait_table = (wait_queue_head_t *)
  3227. alloc_bootmem_node_nopanic(pgdat, alloc_size);
  3228. } else {
  3229. /*
  3230. * This case means that a zone whose size was 0 gets new memory
  3231. * via memory hot-add.
  3232. * But it may be the case that a new node was hot-added. In
  3233. * this case vmalloc() will not be able to use this new node's
  3234. * memory - this wait_table must be initialized to use this new
  3235. * node itself as well.
  3236. * To use this new node's memory, further consideration will be
  3237. * necessary.
  3238. */
  3239. zone->wait_table = vmalloc(alloc_size);
  3240. }
  3241. if (!zone->wait_table)
  3242. return -ENOMEM;
  3243. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3244. init_waitqueue_head(zone->wait_table + i);
  3245. return 0;
  3246. }
  3247. static int __zone_pcp_update(void *data)
  3248. {
  3249. struct zone *zone = data;
  3250. int cpu;
  3251. unsigned long batch = zone_batchsize(zone), flags;
  3252. for_each_possible_cpu(cpu) {
  3253. struct per_cpu_pageset *pset;
  3254. struct per_cpu_pages *pcp;
  3255. pset = per_cpu_ptr(zone->pageset, cpu);
  3256. pcp = &pset->pcp;
  3257. local_irq_save(flags);
  3258. free_pcppages_bulk(zone, pcp->count, pcp);
  3259. setup_pageset(pset, batch);
  3260. local_irq_restore(flags);
  3261. }
  3262. return 0;
  3263. }
  3264. void zone_pcp_update(struct zone *zone)
  3265. {
  3266. stop_machine(__zone_pcp_update, zone, NULL);
  3267. }
  3268. static __meminit void zone_pcp_init(struct zone *zone)
  3269. {
  3270. /*
  3271. * per cpu subsystem is not up at this point. The following code
  3272. * relies on the ability of the linker to provide the
  3273. * offset of a (static) per cpu variable into the per cpu area.
  3274. */
  3275. zone->pageset = &boot_pageset;
  3276. if (zone->present_pages)
  3277. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3278. zone->name, zone->present_pages,
  3279. zone_batchsize(zone));
  3280. }
  3281. __meminit int init_currently_empty_zone(struct zone *zone,
  3282. unsigned long zone_start_pfn,
  3283. unsigned long size,
  3284. enum memmap_context context)
  3285. {
  3286. struct pglist_data *pgdat = zone->zone_pgdat;
  3287. int ret;
  3288. ret = zone_wait_table_init(zone, size);
  3289. if (ret)
  3290. return ret;
  3291. pgdat->nr_zones = zone_idx(zone) + 1;
  3292. zone->zone_start_pfn = zone_start_pfn;
  3293. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3294. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3295. pgdat->node_id,
  3296. (unsigned long)zone_idx(zone),
  3297. zone_start_pfn, (zone_start_pfn + size));
  3298. zone_init_free_lists(zone);
  3299. return 0;
  3300. }
  3301. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3302. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3303. /*
  3304. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3305. * Architectures may implement their own version but if add_active_range()
  3306. * was used and there are no special requirements, this is a convenient
  3307. * alternative
  3308. */
  3309. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3310. {
  3311. unsigned long start_pfn, end_pfn;
  3312. int i, nid;
  3313. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  3314. if (start_pfn <= pfn && pfn < end_pfn)
  3315. return nid;
  3316. /* This is a memory hole */
  3317. return -1;
  3318. }
  3319. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3320. int __meminit early_pfn_to_nid(unsigned long pfn)
  3321. {
  3322. int nid;
  3323. nid = __early_pfn_to_nid(pfn);
  3324. if (nid >= 0)
  3325. return nid;
  3326. /* just returns 0 */
  3327. return 0;
  3328. }
  3329. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3330. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3331. {
  3332. int nid;
  3333. nid = __early_pfn_to_nid(pfn);
  3334. if (nid >= 0 && nid != node)
  3335. return false;
  3336. return true;
  3337. }
  3338. #endif
  3339. /**
  3340. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  3341. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3342. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  3343. *
  3344. * If an architecture guarantees that all ranges registered with
  3345. * add_active_ranges() contain no holes and may be freed, this
  3346. * this function may be used instead of calling free_bootmem() manually.
  3347. */
  3348. void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
  3349. {
  3350. unsigned long start_pfn, end_pfn;
  3351. int i, this_nid;
  3352. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
  3353. start_pfn = min(start_pfn, max_low_pfn);
  3354. end_pfn = min(end_pfn, max_low_pfn);
  3355. if (start_pfn < end_pfn)
  3356. free_bootmem_node(NODE_DATA(this_nid),
  3357. PFN_PHYS(start_pfn),
  3358. (end_pfn - start_pfn) << PAGE_SHIFT);
  3359. }
  3360. }
  3361. int __init add_from_early_node_map(struct range *range, int az,
  3362. int nr_range, int nid)
  3363. {
  3364. unsigned long start_pfn, end_pfn;
  3365. int i;
  3366. /* need to go over early_node_map to find out good range for node */
  3367. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL)
  3368. nr_range = add_range(range, az, nr_range, start_pfn, end_pfn);
  3369. return nr_range;
  3370. }
  3371. /**
  3372. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3373. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3374. *
  3375. * If an architecture guarantees that all ranges registered with
  3376. * add_active_ranges() contain no holes and may be freed, this
  3377. * function may be used instead of calling memory_present() manually.
  3378. */
  3379. void __init sparse_memory_present_with_active_regions(int nid)
  3380. {
  3381. unsigned long start_pfn, end_pfn;
  3382. int i, this_nid;
  3383. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
  3384. memory_present(this_nid, start_pfn, end_pfn);
  3385. }
  3386. /**
  3387. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3388. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3389. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3390. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3391. *
  3392. * It returns the start and end page frame of a node based on information
  3393. * provided by an arch calling add_active_range(). If called for a node
  3394. * with no available memory, a warning is printed and the start and end
  3395. * PFNs will be 0.
  3396. */
  3397. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3398. unsigned long *start_pfn, unsigned long *end_pfn)
  3399. {
  3400. unsigned long this_start_pfn, this_end_pfn;
  3401. int i;
  3402. *start_pfn = -1UL;
  3403. *end_pfn = 0;
  3404. for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
  3405. *start_pfn = min(*start_pfn, this_start_pfn);
  3406. *end_pfn = max(*end_pfn, this_end_pfn);
  3407. }
  3408. if (*start_pfn == -1UL)
  3409. *start_pfn = 0;
  3410. }
  3411. /*
  3412. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3413. * assumption is made that zones within a node are ordered in monotonic
  3414. * increasing memory addresses so that the "highest" populated zone is used
  3415. */
  3416. static void __init find_usable_zone_for_movable(void)
  3417. {
  3418. int zone_index;
  3419. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3420. if (zone_index == ZONE_MOVABLE)
  3421. continue;
  3422. if (arch_zone_highest_possible_pfn[zone_index] >
  3423. arch_zone_lowest_possible_pfn[zone_index])
  3424. break;
  3425. }
  3426. VM_BUG_ON(zone_index == -1);
  3427. movable_zone = zone_index;
  3428. }
  3429. /*
  3430. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3431. * because it is sized independent of architecture. Unlike the other zones,
  3432. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3433. * in each node depending on the size of each node and how evenly kernelcore
  3434. * is distributed. This helper function adjusts the zone ranges
  3435. * provided by the architecture for a given node by using the end of the
  3436. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3437. * zones within a node are in order of monotonic increases memory addresses
  3438. */
  3439. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3440. unsigned long zone_type,
  3441. unsigned long node_start_pfn,
  3442. unsigned long node_end_pfn,
  3443. unsigned long *zone_start_pfn,
  3444. unsigned long *zone_end_pfn)
  3445. {
  3446. /* Only adjust if ZONE_MOVABLE is on this node */
  3447. if (zone_movable_pfn[nid]) {
  3448. /* Size ZONE_MOVABLE */
  3449. if (zone_type == ZONE_MOVABLE) {
  3450. *zone_start_pfn = zone_movable_pfn[nid];
  3451. *zone_end_pfn = min(node_end_pfn,
  3452. arch_zone_highest_possible_pfn[movable_zone]);
  3453. /* Adjust for ZONE_MOVABLE starting within this range */
  3454. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3455. *zone_end_pfn > zone_movable_pfn[nid]) {
  3456. *zone_end_pfn = zone_movable_pfn[nid];
  3457. /* Check if this whole range is within ZONE_MOVABLE */
  3458. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3459. *zone_start_pfn = *zone_end_pfn;
  3460. }
  3461. }
  3462. /*
  3463. * Return the number of pages a zone spans in a node, including holes
  3464. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3465. */
  3466. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3467. unsigned long zone_type,
  3468. unsigned long *ignored)
  3469. {
  3470. unsigned long node_start_pfn, node_end_pfn;
  3471. unsigned long zone_start_pfn, zone_end_pfn;
  3472. /* Get the start and end of the node and zone */
  3473. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3474. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3475. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3476. adjust_zone_range_for_zone_movable(nid, zone_type,
  3477. node_start_pfn, node_end_pfn,
  3478. &zone_start_pfn, &zone_end_pfn);
  3479. /* Check that this node has pages within the zone's required range */
  3480. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3481. return 0;
  3482. /* Move the zone boundaries inside the node if necessary */
  3483. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3484. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3485. /* Return the spanned pages */
  3486. return zone_end_pfn - zone_start_pfn;
  3487. }
  3488. /*
  3489. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3490. * then all holes in the requested range will be accounted for.
  3491. */
  3492. unsigned long __meminit __absent_pages_in_range(int nid,
  3493. unsigned long range_start_pfn,
  3494. unsigned long range_end_pfn)
  3495. {
  3496. unsigned long nr_absent = range_end_pfn - range_start_pfn;
  3497. unsigned long start_pfn, end_pfn;
  3498. int i;
  3499. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  3500. start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
  3501. end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
  3502. nr_absent -= end_pfn - start_pfn;
  3503. }
  3504. return nr_absent;
  3505. }
  3506. /**
  3507. * absent_pages_in_range - Return number of page frames in holes within a range
  3508. * @start_pfn: The start PFN to start searching for holes
  3509. * @end_pfn: The end PFN to stop searching for holes
  3510. *
  3511. * It returns the number of pages frames in memory holes within a range.
  3512. */
  3513. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3514. unsigned long end_pfn)
  3515. {
  3516. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3517. }
  3518. /* Return the number of page frames in holes in a zone on a node */
  3519. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3520. unsigned long zone_type,
  3521. unsigned long *ignored)
  3522. {
  3523. unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
  3524. unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
  3525. unsigned long node_start_pfn, node_end_pfn;
  3526. unsigned long zone_start_pfn, zone_end_pfn;
  3527. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3528. zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
  3529. zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
  3530. adjust_zone_range_for_zone_movable(nid, zone_type,
  3531. node_start_pfn, node_end_pfn,
  3532. &zone_start_pfn, &zone_end_pfn);
  3533. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3534. }
  3535. #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3536. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3537. unsigned long zone_type,
  3538. unsigned long *zones_size)
  3539. {
  3540. return zones_size[zone_type];
  3541. }
  3542. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3543. unsigned long zone_type,
  3544. unsigned long *zholes_size)
  3545. {
  3546. if (!zholes_size)
  3547. return 0;
  3548. return zholes_size[zone_type];
  3549. }
  3550. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3551. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3552. unsigned long *zones_size, unsigned long *zholes_size)
  3553. {
  3554. unsigned long realtotalpages, totalpages = 0;
  3555. enum zone_type i;
  3556. for (i = 0; i < MAX_NR_ZONES; i++)
  3557. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3558. zones_size);
  3559. pgdat->node_spanned_pages = totalpages;
  3560. realtotalpages = totalpages;
  3561. for (i = 0; i < MAX_NR_ZONES; i++)
  3562. realtotalpages -=
  3563. zone_absent_pages_in_node(pgdat->node_id, i,
  3564. zholes_size);
  3565. pgdat->node_present_pages = realtotalpages;
  3566. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3567. realtotalpages);
  3568. }
  3569. #ifndef CONFIG_SPARSEMEM
  3570. /*
  3571. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3572. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3573. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3574. * round what is now in bits to nearest long in bits, then return it in
  3575. * bytes.
  3576. */
  3577. static unsigned long __init usemap_size(unsigned long zonesize)
  3578. {
  3579. unsigned long usemapsize;
  3580. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3581. usemapsize = usemapsize >> pageblock_order;
  3582. usemapsize *= NR_PAGEBLOCK_BITS;
  3583. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3584. return usemapsize / 8;
  3585. }
  3586. static void __init setup_usemap(struct pglist_data *pgdat,
  3587. struct zone *zone, unsigned long zonesize)
  3588. {
  3589. unsigned long usemapsize = usemap_size(zonesize);
  3590. zone->pageblock_flags = NULL;
  3591. if (usemapsize)
  3592. zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
  3593. usemapsize);
  3594. }
  3595. #else
  3596. static inline void setup_usemap(struct pglist_data *pgdat,
  3597. struct zone *zone, unsigned long zonesize) {}
  3598. #endif /* CONFIG_SPARSEMEM */
  3599. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3600. /* Return a sensible default order for the pageblock size. */
  3601. static inline int pageblock_default_order(void)
  3602. {
  3603. if (HPAGE_SHIFT > PAGE_SHIFT)
  3604. return HUGETLB_PAGE_ORDER;
  3605. return MAX_ORDER-1;
  3606. }
  3607. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3608. static inline void __init set_pageblock_order(unsigned int order)
  3609. {
  3610. /* Check that pageblock_nr_pages has not already been setup */
  3611. if (pageblock_order)
  3612. return;
  3613. /*
  3614. * Assume the largest contiguous order of interest is a huge page.
  3615. * This value may be variable depending on boot parameters on IA64
  3616. */
  3617. pageblock_order = order;
  3618. }
  3619. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3620. /*
  3621. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3622. * and pageblock_default_order() are unused as pageblock_order is set
  3623. * at compile-time. See include/linux/pageblock-flags.h for the values of
  3624. * pageblock_order based on the kernel config
  3625. */
  3626. static inline int pageblock_default_order(unsigned int order)
  3627. {
  3628. return MAX_ORDER-1;
  3629. }
  3630. #define set_pageblock_order(x) do {} while (0)
  3631. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3632. /*
  3633. * Set up the zone data structures:
  3634. * - mark all pages reserved
  3635. * - mark all memory queues empty
  3636. * - clear the memory bitmaps
  3637. */
  3638. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3639. unsigned long *zones_size, unsigned long *zholes_size)
  3640. {
  3641. enum zone_type j;
  3642. int nid = pgdat->node_id;
  3643. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3644. int ret;
  3645. pgdat_resize_init(pgdat);
  3646. pgdat->nr_zones = 0;
  3647. init_waitqueue_head(&pgdat->kswapd_wait);
  3648. pgdat->kswapd_max_order = 0;
  3649. pgdat_page_cgroup_init(pgdat);
  3650. for (j = 0; j < MAX_NR_ZONES; j++) {
  3651. struct zone *zone = pgdat->node_zones + j;
  3652. unsigned long size, realsize, memmap_pages;
  3653. enum lru_list l;
  3654. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3655. realsize = size - zone_absent_pages_in_node(nid, j,
  3656. zholes_size);
  3657. /*
  3658. * Adjust realsize so that it accounts for how much memory
  3659. * is used by this zone for memmap. This affects the watermark
  3660. * and per-cpu initialisations
  3661. */
  3662. memmap_pages =
  3663. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3664. if (realsize >= memmap_pages) {
  3665. realsize -= memmap_pages;
  3666. if (memmap_pages)
  3667. printk(KERN_DEBUG
  3668. " %s zone: %lu pages used for memmap\n",
  3669. zone_names[j], memmap_pages);
  3670. } else
  3671. printk(KERN_WARNING
  3672. " %s zone: %lu pages exceeds realsize %lu\n",
  3673. zone_names[j], memmap_pages, realsize);
  3674. /* Account for reserved pages */
  3675. if (j == 0 && realsize > dma_reserve) {
  3676. realsize -= dma_reserve;
  3677. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3678. zone_names[0], dma_reserve);
  3679. }
  3680. if (!is_highmem_idx(j))
  3681. nr_kernel_pages += realsize;
  3682. nr_all_pages += realsize;
  3683. zone->spanned_pages = size;
  3684. zone->present_pages = realsize;
  3685. #ifdef CONFIG_NUMA
  3686. zone->node = nid;
  3687. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3688. / 100;
  3689. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3690. #endif
  3691. zone->name = zone_names[j];
  3692. spin_lock_init(&zone->lock);
  3693. spin_lock_init(&zone->lru_lock);
  3694. zone_seqlock_init(zone);
  3695. zone->zone_pgdat = pgdat;
  3696. zone_pcp_init(zone);
  3697. for_each_lru(l)
  3698. INIT_LIST_HEAD(&zone->lru[l].list);
  3699. zone->reclaim_stat.recent_rotated[0] = 0;
  3700. zone->reclaim_stat.recent_rotated[1] = 0;
  3701. zone->reclaim_stat.recent_scanned[0] = 0;
  3702. zone->reclaim_stat.recent_scanned[1] = 0;
  3703. zap_zone_vm_stats(zone);
  3704. zone->flags = 0;
  3705. if (!size)
  3706. continue;
  3707. set_pageblock_order(pageblock_default_order());
  3708. setup_usemap(pgdat, zone, size);
  3709. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3710. size, MEMMAP_EARLY);
  3711. BUG_ON(ret);
  3712. memmap_init(size, nid, j, zone_start_pfn);
  3713. zone_start_pfn += size;
  3714. }
  3715. }
  3716. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3717. {
  3718. /* Skip empty nodes */
  3719. if (!pgdat->node_spanned_pages)
  3720. return;
  3721. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3722. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3723. if (!pgdat->node_mem_map) {
  3724. unsigned long size, start, end;
  3725. struct page *map;
  3726. /*
  3727. * The zone's endpoints aren't required to be MAX_ORDER
  3728. * aligned but the node_mem_map endpoints must be in order
  3729. * for the buddy allocator to function correctly.
  3730. */
  3731. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3732. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3733. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3734. size = (end - start) * sizeof(struct page);
  3735. map = alloc_remap(pgdat->node_id, size);
  3736. if (!map)
  3737. map = alloc_bootmem_node_nopanic(pgdat, size);
  3738. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3739. }
  3740. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3741. /*
  3742. * With no DISCONTIG, the global mem_map is just set as node 0's
  3743. */
  3744. if (pgdat == NODE_DATA(0)) {
  3745. mem_map = NODE_DATA(0)->node_mem_map;
  3746. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3747. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3748. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3749. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  3750. }
  3751. #endif
  3752. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3753. }
  3754. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3755. unsigned long node_start_pfn, unsigned long *zholes_size)
  3756. {
  3757. pg_data_t *pgdat = NODE_DATA(nid);
  3758. pgdat->node_id = nid;
  3759. pgdat->node_start_pfn = node_start_pfn;
  3760. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3761. alloc_node_mem_map(pgdat);
  3762. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3763. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3764. nid, (unsigned long)pgdat,
  3765. (unsigned long)pgdat->node_mem_map);
  3766. #endif
  3767. free_area_init_core(pgdat, zones_size, zholes_size);
  3768. }
  3769. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  3770. #if MAX_NUMNODES > 1
  3771. /*
  3772. * Figure out the number of possible node ids.
  3773. */
  3774. static void __init setup_nr_node_ids(void)
  3775. {
  3776. unsigned int node;
  3777. unsigned int highest = 0;
  3778. for_each_node_mask(node, node_possible_map)
  3779. highest = node;
  3780. nr_node_ids = highest + 1;
  3781. }
  3782. #else
  3783. static inline void setup_nr_node_ids(void)
  3784. {
  3785. }
  3786. #endif
  3787. /**
  3788. * node_map_pfn_alignment - determine the maximum internode alignment
  3789. *
  3790. * This function should be called after node map is populated and sorted.
  3791. * It calculates the maximum power of two alignment which can distinguish
  3792. * all the nodes.
  3793. *
  3794. * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
  3795. * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
  3796. * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
  3797. * shifted, 1GiB is enough and this function will indicate so.
  3798. *
  3799. * This is used to test whether pfn -> nid mapping of the chosen memory
  3800. * model has fine enough granularity to avoid incorrect mapping for the
  3801. * populated node map.
  3802. *
  3803. * Returns the determined alignment in pfn's. 0 if there is no alignment
  3804. * requirement (single node).
  3805. */
  3806. unsigned long __init node_map_pfn_alignment(void)
  3807. {
  3808. unsigned long accl_mask = 0, last_end = 0;
  3809. unsigned long start, end, mask;
  3810. int last_nid = -1;
  3811. int i, nid;
  3812. for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
  3813. if (!start || last_nid < 0 || last_nid == nid) {
  3814. last_nid = nid;
  3815. last_end = end;
  3816. continue;
  3817. }
  3818. /*
  3819. * Start with a mask granular enough to pin-point to the
  3820. * start pfn and tick off bits one-by-one until it becomes
  3821. * too coarse to separate the current node from the last.
  3822. */
  3823. mask = ~((1 << __ffs(start)) - 1);
  3824. while (mask && last_end <= (start & (mask << 1)))
  3825. mask <<= 1;
  3826. /* accumulate all internode masks */
  3827. accl_mask |= mask;
  3828. }
  3829. /* convert mask to number of pages */
  3830. return ~accl_mask + 1;
  3831. }
  3832. /* Find the lowest pfn for a node */
  3833. static unsigned long __init find_min_pfn_for_node(int nid)
  3834. {
  3835. unsigned long min_pfn = ULONG_MAX;
  3836. unsigned long start_pfn;
  3837. int i;
  3838. for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
  3839. min_pfn = min(min_pfn, start_pfn);
  3840. if (min_pfn == ULONG_MAX) {
  3841. printk(KERN_WARNING
  3842. "Could not find start_pfn for node %d\n", nid);
  3843. return 0;
  3844. }
  3845. return min_pfn;
  3846. }
  3847. /**
  3848. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3849. *
  3850. * It returns the minimum PFN based on information provided via
  3851. * add_active_range().
  3852. */
  3853. unsigned long __init find_min_pfn_with_active_regions(void)
  3854. {
  3855. return find_min_pfn_for_node(MAX_NUMNODES);
  3856. }
  3857. /*
  3858. * early_calculate_totalpages()
  3859. * Sum pages in active regions for movable zone.
  3860. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3861. */
  3862. static unsigned long __init early_calculate_totalpages(void)
  3863. {
  3864. unsigned long totalpages = 0;
  3865. unsigned long start_pfn, end_pfn;
  3866. int i, nid;
  3867. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
  3868. unsigned long pages = end_pfn - start_pfn;
  3869. totalpages += pages;
  3870. if (pages)
  3871. node_set_state(nid, N_HIGH_MEMORY);
  3872. }
  3873. return totalpages;
  3874. }
  3875. /*
  3876. * Find the PFN the Movable zone begins in each node. Kernel memory
  3877. * is spread evenly between nodes as long as the nodes have enough
  3878. * memory. When they don't, some nodes will have more kernelcore than
  3879. * others
  3880. */
  3881. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3882. {
  3883. int i, nid;
  3884. unsigned long usable_startpfn;
  3885. unsigned long kernelcore_node, kernelcore_remaining;
  3886. /* save the state before borrow the nodemask */
  3887. nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
  3888. unsigned long totalpages = early_calculate_totalpages();
  3889. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3890. /*
  3891. * If movablecore was specified, calculate what size of
  3892. * kernelcore that corresponds so that memory usable for
  3893. * any allocation type is evenly spread. If both kernelcore
  3894. * and movablecore are specified, then the value of kernelcore
  3895. * will be used for required_kernelcore if it's greater than
  3896. * what movablecore would have allowed.
  3897. */
  3898. if (required_movablecore) {
  3899. unsigned long corepages;
  3900. /*
  3901. * Round-up so that ZONE_MOVABLE is at least as large as what
  3902. * was requested by the user
  3903. */
  3904. required_movablecore =
  3905. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3906. corepages = totalpages - required_movablecore;
  3907. required_kernelcore = max(required_kernelcore, corepages);
  3908. }
  3909. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3910. if (!required_kernelcore)
  3911. goto out;
  3912. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3913. find_usable_zone_for_movable();
  3914. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3915. restart:
  3916. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3917. kernelcore_node = required_kernelcore / usable_nodes;
  3918. for_each_node_state(nid, N_HIGH_MEMORY) {
  3919. unsigned long start_pfn, end_pfn;
  3920. /*
  3921. * Recalculate kernelcore_node if the division per node
  3922. * now exceeds what is necessary to satisfy the requested
  3923. * amount of memory for the kernel
  3924. */
  3925. if (required_kernelcore < kernelcore_node)
  3926. kernelcore_node = required_kernelcore / usable_nodes;
  3927. /*
  3928. * As the map is walked, we track how much memory is usable
  3929. * by the kernel using kernelcore_remaining. When it is
  3930. * 0, the rest of the node is usable by ZONE_MOVABLE
  3931. */
  3932. kernelcore_remaining = kernelcore_node;
  3933. /* Go through each range of PFNs within this node */
  3934. for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
  3935. unsigned long size_pages;
  3936. start_pfn = max(start_pfn, zone_movable_pfn[nid]);
  3937. if (start_pfn >= end_pfn)
  3938. continue;
  3939. /* Account for what is only usable for kernelcore */
  3940. if (start_pfn < usable_startpfn) {
  3941. unsigned long kernel_pages;
  3942. kernel_pages = min(end_pfn, usable_startpfn)
  3943. - start_pfn;
  3944. kernelcore_remaining -= min(kernel_pages,
  3945. kernelcore_remaining);
  3946. required_kernelcore -= min(kernel_pages,
  3947. required_kernelcore);
  3948. /* Continue if range is now fully accounted */
  3949. if (end_pfn <= usable_startpfn) {
  3950. /*
  3951. * Push zone_movable_pfn to the end so
  3952. * that if we have to rebalance
  3953. * kernelcore across nodes, we will
  3954. * not double account here
  3955. */
  3956. zone_movable_pfn[nid] = end_pfn;
  3957. continue;
  3958. }
  3959. start_pfn = usable_startpfn;
  3960. }
  3961. /*
  3962. * The usable PFN range for ZONE_MOVABLE is from
  3963. * start_pfn->end_pfn. Calculate size_pages as the
  3964. * number of pages used as kernelcore
  3965. */
  3966. size_pages = end_pfn - start_pfn;
  3967. if (size_pages > kernelcore_remaining)
  3968. size_pages = kernelcore_remaining;
  3969. zone_movable_pfn[nid] = start_pfn + size_pages;
  3970. /*
  3971. * Some kernelcore has been met, update counts and
  3972. * break if the kernelcore for this node has been
  3973. * satisified
  3974. */
  3975. required_kernelcore -= min(required_kernelcore,
  3976. size_pages);
  3977. kernelcore_remaining -= size_pages;
  3978. if (!kernelcore_remaining)
  3979. break;
  3980. }
  3981. }
  3982. /*
  3983. * If there is still required_kernelcore, we do another pass with one
  3984. * less node in the count. This will push zone_movable_pfn[nid] further
  3985. * along on the nodes that still have memory until kernelcore is
  3986. * satisified
  3987. */
  3988. usable_nodes--;
  3989. if (usable_nodes && required_kernelcore > usable_nodes)
  3990. goto restart;
  3991. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3992. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3993. zone_movable_pfn[nid] =
  3994. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3995. out:
  3996. /* restore the node_state */
  3997. node_states[N_HIGH_MEMORY] = saved_node_state;
  3998. }
  3999. /* Any regular memory on that node ? */
  4000. static void check_for_regular_memory(pg_data_t *pgdat)
  4001. {
  4002. #ifdef CONFIG_HIGHMEM
  4003. enum zone_type zone_type;
  4004. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  4005. struct zone *zone = &pgdat->node_zones[zone_type];
  4006. if (zone->present_pages)
  4007. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  4008. }
  4009. #endif
  4010. }
  4011. /**
  4012. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4013. * @max_zone_pfn: an array of max PFNs for each zone
  4014. *
  4015. * This will call free_area_init_node() for each active node in the system.
  4016. * Using the page ranges provided by add_active_range(), the size of each
  4017. * zone in each node and their holes is calculated. If the maximum PFN
  4018. * between two adjacent zones match, it is assumed that the zone is empty.
  4019. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4020. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4021. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4022. * at arch_max_dma_pfn.
  4023. */
  4024. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4025. {
  4026. unsigned long start_pfn, end_pfn;
  4027. int i, nid;
  4028. /* Record where the zone boundaries are */
  4029. memset(arch_zone_lowest_possible_pfn, 0,
  4030. sizeof(arch_zone_lowest_possible_pfn));
  4031. memset(arch_zone_highest_possible_pfn, 0,
  4032. sizeof(arch_zone_highest_possible_pfn));
  4033. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4034. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4035. for (i = 1; i < MAX_NR_ZONES; i++) {
  4036. if (i == ZONE_MOVABLE)
  4037. continue;
  4038. arch_zone_lowest_possible_pfn[i] =
  4039. arch_zone_highest_possible_pfn[i-1];
  4040. arch_zone_highest_possible_pfn[i] =
  4041. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4042. }
  4043. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4044. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4045. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4046. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4047. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  4048. /* Print out the zone ranges */
  4049. printk("Zone PFN ranges:\n");
  4050. for (i = 0; i < MAX_NR_ZONES; i++) {
  4051. if (i == ZONE_MOVABLE)
  4052. continue;
  4053. printk(" %-8s ", zone_names[i]);
  4054. if (arch_zone_lowest_possible_pfn[i] ==
  4055. arch_zone_highest_possible_pfn[i])
  4056. printk("empty\n");
  4057. else
  4058. printk("%0#10lx -> %0#10lx\n",
  4059. arch_zone_lowest_possible_pfn[i],
  4060. arch_zone_highest_possible_pfn[i]);
  4061. }
  4062. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4063. printk("Movable zone start PFN for each node\n");
  4064. for (i = 0; i < MAX_NUMNODES; i++) {
  4065. if (zone_movable_pfn[i])
  4066. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  4067. }
  4068. /* Print out the early_node_map[] */
  4069. printk("Early memory PFN ranges\n");
  4070. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
  4071. printk(" %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn);
  4072. /* Initialise every node */
  4073. mminit_verify_pageflags_layout();
  4074. setup_nr_node_ids();
  4075. for_each_online_node(nid) {
  4076. pg_data_t *pgdat = NODE_DATA(nid);
  4077. free_area_init_node(nid, NULL,
  4078. find_min_pfn_for_node(nid), NULL);
  4079. /* Any memory on that node */
  4080. if (pgdat->node_present_pages)
  4081. node_set_state(nid, N_HIGH_MEMORY);
  4082. check_for_regular_memory(pgdat);
  4083. }
  4084. }
  4085. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4086. {
  4087. unsigned long long coremem;
  4088. if (!p)
  4089. return -EINVAL;
  4090. coremem = memparse(p, &p);
  4091. *core = coremem >> PAGE_SHIFT;
  4092. /* Paranoid check that UL is enough for the coremem value */
  4093. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4094. return 0;
  4095. }
  4096. /*
  4097. * kernelcore=size sets the amount of memory for use for allocations that
  4098. * cannot be reclaimed or migrated.
  4099. */
  4100. static int __init cmdline_parse_kernelcore(char *p)
  4101. {
  4102. return cmdline_parse_core(p, &required_kernelcore);
  4103. }
  4104. /*
  4105. * movablecore=size sets the amount of memory for use for allocations that
  4106. * can be reclaimed or migrated.
  4107. */
  4108. static int __init cmdline_parse_movablecore(char *p)
  4109. {
  4110. return cmdline_parse_core(p, &required_movablecore);
  4111. }
  4112. early_param("kernelcore", cmdline_parse_kernelcore);
  4113. early_param("movablecore", cmdline_parse_movablecore);
  4114. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  4115. /**
  4116. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4117. * @new_dma_reserve: The number of pages to mark reserved
  4118. *
  4119. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4120. * In the DMA zone, a significant percentage may be consumed by kernel image
  4121. * and other unfreeable allocations which can skew the watermarks badly. This
  4122. * function may optionally be used to account for unfreeable pages in the
  4123. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4124. * smaller per-cpu batchsize.
  4125. */
  4126. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4127. {
  4128. dma_reserve = new_dma_reserve;
  4129. }
  4130. void __init free_area_init(unsigned long *zones_size)
  4131. {
  4132. free_area_init_node(0, zones_size,
  4133. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4134. }
  4135. static int page_alloc_cpu_notify(struct notifier_block *self,
  4136. unsigned long action, void *hcpu)
  4137. {
  4138. int cpu = (unsigned long)hcpu;
  4139. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4140. drain_pages(cpu);
  4141. /*
  4142. * Spill the event counters of the dead processor
  4143. * into the current processors event counters.
  4144. * This artificially elevates the count of the current
  4145. * processor.
  4146. */
  4147. vm_events_fold_cpu(cpu);
  4148. /*
  4149. * Zero the differential counters of the dead processor
  4150. * so that the vm statistics are consistent.
  4151. *
  4152. * This is only okay since the processor is dead and cannot
  4153. * race with what we are doing.
  4154. */
  4155. refresh_cpu_vm_stats(cpu);
  4156. }
  4157. return NOTIFY_OK;
  4158. }
  4159. void __init page_alloc_init(void)
  4160. {
  4161. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4162. }
  4163. /*
  4164. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4165. * or min_free_kbytes changes.
  4166. */
  4167. static void calculate_totalreserve_pages(void)
  4168. {
  4169. struct pglist_data *pgdat;
  4170. unsigned long reserve_pages = 0;
  4171. enum zone_type i, j;
  4172. for_each_online_pgdat(pgdat) {
  4173. for (i = 0; i < MAX_NR_ZONES; i++) {
  4174. struct zone *zone = pgdat->node_zones + i;
  4175. unsigned long max = 0;
  4176. /* Find valid and maximum lowmem_reserve in the zone */
  4177. for (j = i; j < MAX_NR_ZONES; j++) {
  4178. if (zone->lowmem_reserve[j] > max)
  4179. max = zone->lowmem_reserve[j];
  4180. }
  4181. /* we treat the high watermark as reserved pages. */
  4182. max += high_wmark_pages(zone);
  4183. if (max > zone->present_pages)
  4184. max = zone->present_pages;
  4185. reserve_pages += max;
  4186. /*
  4187. * Lowmem reserves are not available to
  4188. * GFP_HIGHUSER page cache allocations and
  4189. * kswapd tries to balance zones to their high
  4190. * watermark. As a result, neither should be
  4191. * regarded as dirtyable memory, to prevent a
  4192. * situation where reclaim has to clean pages
  4193. * in order to balance the zones.
  4194. */
  4195. zone->dirty_balance_reserve = max;
  4196. }
  4197. }
  4198. dirty_balance_reserve = reserve_pages;
  4199. totalreserve_pages = reserve_pages;
  4200. }
  4201. /*
  4202. * setup_per_zone_lowmem_reserve - called whenever
  4203. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4204. * has a correct pages reserved value, so an adequate number of
  4205. * pages are left in the zone after a successful __alloc_pages().
  4206. */
  4207. static void setup_per_zone_lowmem_reserve(void)
  4208. {
  4209. struct pglist_data *pgdat;
  4210. enum zone_type j, idx;
  4211. for_each_online_pgdat(pgdat) {
  4212. for (j = 0; j < MAX_NR_ZONES; j++) {
  4213. struct zone *zone = pgdat->node_zones + j;
  4214. unsigned long present_pages = zone->present_pages;
  4215. zone->lowmem_reserve[j] = 0;
  4216. idx = j;
  4217. while (idx) {
  4218. struct zone *lower_zone;
  4219. idx--;
  4220. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4221. sysctl_lowmem_reserve_ratio[idx] = 1;
  4222. lower_zone = pgdat->node_zones + idx;
  4223. lower_zone->lowmem_reserve[j] = present_pages /
  4224. sysctl_lowmem_reserve_ratio[idx];
  4225. present_pages += lower_zone->present_pages;
  4226. }
  4227. }
  4228. }
  4229. /* update totalreserve_pages */
  4230. calculate_totalreserve_pages();
  4231. }
  4232. /**
  4233. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4234. * or when memory is hot-{added|removed}
  4235. *
  4236. * Ensures that the watermark[min,low,high] values for each zone are set
  4237. * correctly with respect to min_free_kbytes.
  4238. */
  4239. void setup_per_zone_wmarks(void)
  4240. {
  4241. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4242. unsigned long lowmem_pages = 0;
  4243. struct zone *zone;
  4244. unsigned long flags;
  4245. /* Calculate total number of !ZONE_HIGHMEM pages */
  4246. for_each_zone(zone) {
  4247. if (!is_highmem(zone))
  4248. lowmem_pages += zone->present_pages;
  4249. }
  4250. for_each_zone(zone) {
  4251. u64 tmp;
  4252. spin_lock_irqsave(&zone->lock, flags);
  4253. tmp = (u64)pages_min * zone->present_pages;
  4254. do_div(tmp, lowmem_pages);
  4255. if (is_highmem(zone)) {
  4256. /*
  4257. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4258. * need highmem pages, so cap pages_min to a small
  4259. * value here.
  4260. *
  4261. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4262. * deltas controls asynch page reclaim, and so should
  4263. * not be capped for highmem.
  4264. */
  4265. int min_pages;
  4266. min_pages = zone->present_pages / 1024;
  4267. if (min_pages < SWAP_CLUSTER_MAX)
  4268. min_pages = SWAP_CLUSTER_MAX;
  4269. if (min_pages > 128)
  4270. min_pages = 128;
  4271. zone->watermark[WMARK_MIN] = min_pages;
  4272. } else {
  4273. /*
  4274. * If it's a lowmem zone, reserve a number of pages
  4275. * proportionate to the zone's size.
  4276. */
  4277. zone->watermark[WMARK_MIN] = tmp;
  4278. }
  4279. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4280. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4281. setup_zone_migrate_reserve(zone);
  4282. spin_unlock_irqrestore(&zone->lock, flags);
  4283. }
  4284. /* update totalreserve_pages */
  4285. calculate_totalreserve_pages();
  4286. }
  4287. /*
  4288. * The inactive anon list should be small enough that the VM never has to
  4289. * do too much work, but large enough that each inactive page has a chance
  4290. * to be referenced again before it is swapped out.
  4291. *
  4292. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4293. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4294. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4295. * the anonymous pages are kept on the inactive list.
  4296. *
  4297. * total target max
  4298. * memory ratio inactive anon
  4299. * -------------------------------------
  4300. * 10MB 1 5MB
  4301. * 100MB 1 50MB
  4302. * 1GB 3 250MB
  4303. * 10GB 10 0.9GB
  4304. * 100GB 31 3GB
  4305. * 1TB 101 10GB
  4306. * 10TB 320 32GB
  4307. */
  4308. static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
  4309. {
  4310. unsigned int gb, ratio;
  4311. /* Zone size in gigabytes */
  4312. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  4313. if (gb)
  4314. ratio = int_sqrt(10 * gb);
  4315. else
  4316. ratio = 1;
  4317. zone->inactive_ratio = ratio;
  4318. }
  4319. static void __meminit setup_per_zone_inactive_ratio(void)
  4320. {
  4321. struct zone *zone;
  4322. for_each_zone(zone)
  4323. calculate_zone_inactive_ratio(zone);
  4324. }
  4325. /*
  4326. * Initialise min_free_kbytes.
  4327. *
  4328. * For small machines we want it small (128k min). For large machines
  4329. * we want it large (64MB max). But it is not linear, because network
  4330. * bandwidth does not increase linearly with machine size. We use
  4331. *
  4332. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4333. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4334. *
  4335. * which yields
  4336. *
  4337. * 16MB: 512k
  4338. * 32MB: 724k
  4339. * 64MB: 1024k
  4340. * 128MB: 1448k
  4341. * 256MB: 2048k
  4342. * 512MB: 2896k
  4343. * 1024MB: 4096k
  4344. * 2048MB: 5792k
  4345. * 4096MB: 8192k
  4346. * 8192MB: 11584k
  4347. * 16384MB: 16384k
  4348. */
  4349. int __meminit init_per_zone_wmark_min(void)
  4350. {
  4351. unsigned long lowmem_kbytes;
  4352. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4353. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4354. if (min_free_kbytes < 128)
  4355. min_free_kbytes = 128;
  4356. if (min_free_kbytes > 65536)
  4357. min_free_kbytes = 65536;
  4358. setup_per_zone_wmarks();
  4359. refresh_zone_stat_thresholds();
  4360. setup_per_zone_lowmem_reserve();
  4361. setup_per_zone_inactive_ratio();
  4362. return 0;
  4363. }
  4364. module_init(init_per_zone_wmark_min)
  4365. /*
  4366. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4367. * that we can call two helper functions whenever min_free_kbytes
  4368. * changes.
  4369. */
  4370. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4371. void __user *buffer, size_t *length, loff_t *ppos)
  4372. {
  4373. proc_dointvec(table, write, buffer, length, ppos);
  4374. if (write)
  4375. setup_per_zone_wmarks();
  4376. return 0;
  4377. }
  4378. #ifdef CONFIG_NUMA
  4379. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4380. void __user *buffer, size_t *length, loff_t *ppos)
  4381. {
  4382. struct zone *zone;
  4383. int rc;
  4384. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4385. if (rc)
  4386. return rc;
  4387. for_each_zone(zone)
  4388. zone->min_unmapped_pages = (zone->present_pages *
  4389. sysctl_min_unmapped_ratio) / 100;
  4390. return 0;
  4391. }
  4392. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4393. void __user *buffer, size_t *length, loff_t *ppos)
  4394. {
  4395. struct zone *zone;
  4396. int rc;
  4397. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4398. if (rc)
  4399. return rc;
  4400. for_each_zone(zone)
  4401. zone->min_slab_pages = (zone->present_pages *
  4402. sysctl_min_slab_ratio) / 100;
  4403. return 0;
  4404. }
  4405. #endif
  4406. /*
  4407. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4408. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4409. * whenever sysctl_lowmem_reserve_ratio changes.
  4410. *
  4411. * The reserve ratio obviously has absolutely no relation with the
  4412. * minimum watermarks. The lowmem reserve ratio can only make sense
  4413. * if in function of the boot time zone sizes.
  4414. */
  4415. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4416. void __user *buffer, size_t *length, loff_t *ppos)
  4417. {
  4418. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4419. setup_per_zone_lowmem_reserve();
  4420. return 0;
  4421. }
  4422. /*
  4423. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4424. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4425. * can have before it gets flushed back to buddy allocator.
  4426. */
  4427. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4428. void __user *buffer, size_t *length, loff_t *ppos)
  4429. {
  4430. struct zone *zone;
  4431. unsigned int cpu;
  4432. int ret;
  4433. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4434. if (!write || (ret == -EINVAL))
  4435. return ret;
  4436. for_each_populated_zone(zone) {
  4437. for_each_possible_cpu(cpu) {
  4438. unsigned long high;
  4439. high = zone->present_pages / percpu_pagelist_fraction;
  4440. setup_pagelist_highmark(
  4441. per_cpu_ptr(zone->pageset, cpu), high);
  4442. }
  4443. }
  4444. return 0;
  4445. }
  4446. int hashdist = HASHDIST_DEFAULT;
  4447. #ifdef CONFIG_NUMA
  4448. static int __init set_hashdist(char *str)
  4449. {
  4450. if (!str)
  4451. return 0;
  4452. hashdist = simple_strtoul(str, &str, 0);
  4453. return 1;
  4454. }
  4455. __setup("hashdist=", set_hashdist);
  4456. #endif
  4457. /*
  4458. * allocate a large system hash table from bootmem
  4459. * - it is assumed that the hash table must contain an exact power-of-2
  4460. * quantity of entries
  4461. * - limit is the number of hash buckets, not the total allocation size
  4462. */
  4463. void *__init alloc_large_system_hash(const char *tablename,
  4464. unsigned long bucketsize,
  4465. unsigned long numentries,
  4466. int scale,
  4467. int flags,
  4468. unsigned int *_hash_shift,
  4469. unsigned int *_hash_mask,
  4470. unsigned long limit)
  4471. {
  4472. unsigned long long max = limit;
  4473. unsigned long log2qty, size;
  4474. void *table = NULL;
  4475. /* allow the kernel cmdline to have a say */
  4476. if (!numentries) {
  4477. /* round applicable memory size up to nearest megabyte */
  4478. numentries = nr_kernel_pages;
  4479. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4480. numentries >>= 20 - PAGE_SHIFT;
  4481. numentries <<= 20 - PAGE_SHIFT;
  4482. /* limit to 1 bucket per 2^scale bytes of low memory */
  4483. if (scale > PAGE_SHIFT)
  4484. numentries >>= (scale - PAGE_SHIFT);
  4485. else
  4486. numentries <<= (PAGE_SHIFT - scale);
  4487. /* Make sure we've got at least a 0-order allocation.. */
  4488. if (unlikely(flags & HASH_SMALL)) {
  4489. /* Makes no sense without HASH_EARLY */
  4490. WARN_ON(!(flags & HASH_EARLY));
  4491. if (!(numentries >> *_hash_shift)) {
  4492. numentries = 1UL << *_hash_shift;
  4493. BUG_ON(!numentries);
  4494. }
  4495. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4496. numentries = PAGE_SIZE / bucketsize;
  4497. }
  4498. numentries = roundup_pow_of_two(numentries);
  4499. /* limit allocation size to 1/16 total memory by default */
  4500. if (max == 0) {
  4501. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4502. do_div(max, bucketsize);
  4503. }
  4504. if (numentries > max)
  4505. numentries = max;
  4506. log2qty = ilog2(numentries);
  4507. do {
  4508. size = bucketsize << log2qty;
  4509. if (flags & HASH_EARLY)
  4510. table = alloc_bootmem_nopanic(size);
  4511. else if (hashdist)
  4512. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4513. else {
  4514. /*
  4515. * If bucketsize is not a power-of-two, we may free
  4516. * some pages at the end of hash table which
  4517. * alloc_pages_exact() automatically does
  4518. */
  4519. if (get_order(size) < MAX_ORDER) {
  4520. table = alloc_pages_exact(size, GFP_ATOMIC);
  4521. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4522. }
  4523. }
  4524. } while (!table && size > PAGE_SIZE && --log2qty);
  4525. if (!table)
  4526. panic("Failed to allocate %s hash table\n", tablename);
  4527. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  4528. tablename,
  4529. (1UL << log2qty),
  4530. ilog2(size) - PAGE_SHIFT,
  4531. size);
  4532. if (_hash_shift)
  4533. *_hash_shift = log2qty;
  4534. if (_hash_mask)
  4535. *_hash_mask = (1 << log2qty) - 1;
  4536. return table;
  4537. }
  4538. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4539. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4540. unsigned long pfn)
  4541. {
  4542. #ifdef CONFIG_SPARSEMEM
  4543. return __pfn_to_section(pfn)->pageblock_flags;
  4544. #else
  4545. return zone->pageblock_flags;
  4546. #endif /* CONFIG_SPARSEMEM */
  4547. }
  4548. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4549. {
  4550. #ifdef CONFIG_SPARSEMEM
  4551. pfn &= (PAGES_PER_SECTION-1);
  4552. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4553. #else
  4554. pfn = pfn - zone->zone_start_pfn;
  4555. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4556. #endif /* CONFIG_SPARSEMEM */
  4557. }
  4558. /**
  4559. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4560. * @page: The page within the block of interest
  4561. * @start_bitidx: The first bit of interest to retrieve
  4562. * @end_bitidx: The last bit of interest
  4563. * returns pageblock_bits flags
  4564. */
  4565. unsigned long get_pageblock_flags_group(struct page *page,
  4566. int start_bitidx, int end_bitidx)
  4567. {
  4568. struct zone *zone;
  4569. unsigned long *bitmap;
  4570. unsigned long pfn, bitidx;
  4571. unsigned long flags = 0;
  4572. unsigned long value = 1;
  4573. zone = page_zone(page);
  4574. pfn = page_to_pfn(page);
  4575. bitmap = get_pageblock_bitmap(zone, pfn);
  4576. bitidx = pfn_to_bitidx(zone, pfn);
  4577. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4578. if (test_bit(bitidx + start_bitidx, bitmap))
  4579. flags |= value;
  4580. return flags;
  4581. }
  4582. /**
  4583. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4584. * @page: The page within the block of interest
  4585. * @start_bitidx: The first bit of interest
  4586. * @end_bitidx: The last bit of interest
  4587. * @flags: The flags to set
  4588. */
  4589. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4590. int start_bitidx, int end_bitidx)
  4591. {
  4592. struct zone *zone;
  4593. unsigned long *bitmap;
  4594. unsigned long pfn, bitidx;
  4595. unsigned long value = 1;
  4596. zone = page_zone(page);
  4597. pfn = page_to_pfn(page);
  4598. bitmap = get_pageblock_bitmap(zone, pfn);
  4599. bitidx = pfn_to_bitidx(zone, pfn);
  4600. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4601. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4602. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4603. if (flags & value)
  4604. __set_bit(bitidx + start_bitidx, bitmap);
  4605. else
  4606. __clear_bit(bitidx + start_bitidx, bitmap);
  4607. }
  4608. /*
  4609. * This is designed as sub function...plz see page_isolation.c also.
  4610. * set/clear page block's type to be ISOLATE.
  4611. * page allocater never alloc memory from ISOLATE block.
  4612. */
  4613. static int
  4614. __count_immobile_pages(struct zone *zone, struct page *page, int count)
  4615. {
  4616. unsigned long pfn, iter, found;
  4617. /*
  4618. * For avoiding noise data, lru_add_drain_all() should be called
  4619. * If ZONE_MOVABLE, the zone never contains immobile pages
  4620. */
  4621. if (zone_idx(zone) == ZONE_MOVABLE)
  4622. return true;
  4623. if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
  4624. return true;
  4625. pfn = page_to_pfn(page);
  4626. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  4627. unsigned long check = pfn + iter;
  4628. if (!pfn_valid_within(check))
  4629. continue;
  4630. page = pfn_to_page(check);
  4631. if (!page_count(page)) {
  4632. if (PageBuddy(page))
  4633. iter += (1 << page_order(page)) - 1;
  4634. continue;
  4635. }
  4636. if (!PageLRU(page))
  4637. found++;
  4638. /*
  4639. * If there are RECLAIMABLE pages, we need to check it.
  4640. * But now, memory offline itself doesn't call shrink_slab()
  4641. * and it still to be fixed.
  4642. */
  4643. /*
  4644. * If the page is not RAM, page_count()should be 0.
  4645. * we don't need more check. This is an _used_ not-movable page.
  4646. *
  4647. * The problematic thing here is PG_reserved pages. PG_reserved
  4648. * is set to both of a memory hole page and a _used_ kernel
  4649. * page at boot.
  4650. */
  4651. if (found > count)
  4652. return false;
  4653. }
  4654. return true;
  4655. }
  4656. bool is_pageblock_removable_nolock(struct page *page)
  4657. {
  4658. struct zone *zone = page_zone(page);
  4659. return __count_immobile_pages(zone, page, 0);
  4660. }
  4661. int set_migratetype_isolate(struct page *page)
  4662. {
  4663. struct zone *zone;
  4664. unsigned long flags, pfn;
  4665. struct memory_isolate_notify arg;
  4666. int notifier_ret;
  4667. int ret = -EBUSY;
  4668. zone = page_zone(page);
  4669. spin_lock_irqsave(&zone->lock, flags);
  4670. pfn = page_to_pfn(page);
  4671. arg.start_pfn = pfn;
  4672. arg.nr_pages = pageblock_nr_pages;
  4673. arg.pages_found = 0;
  4674. /*
  4675. * It may be possible to isolate a pageblock even if the
  4676. * migratetype is not MIGRATE_MOVABLE. The memory isolation
  4677. * notifier chain is used by balloon drivers to return the
  4678. * number of pages in a range that are held by the balloon
  4679. * driver to shrink memory. If all the pages are accounted for
  4680. * by balloons, are free, or on the LRU, isolation can continue.
  4681. * Later, for example, when memory hotplug notifier runs, these
  4682. * pages reported as "can be isolated" should be isolated(freed)
  4683. * by the balloon driver through the memory notifier chain.
  4684. */
  4685. notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
  4686. notifier_ret = notifier_to_errno(notifier_ret);
  4687. if (notifier_ret)
  4688. goto out;
  4689. /*
  4690. * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
  4691. * We just check MOVABLE pages.
  4692. */
  4693. if (__count_immobile_pages(zone, page, arg.pages_found))
  4694. ret = 0;
  4695. /*
  4696. * immobile means "not-on-lru" paes. If immobile is larger than
  4697. * removable-by-driver pages reported by notifier, we'll fail.
  4698. */
  4699. out:
  4700. if (!ret) {
  4701. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4702. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4703. }
  4704. spin_unlock_irqrestore(&zone->lock, flags);
  4705. if (!ret)
  4706. drain_all_pages();
  4707. return ret;
  4708. }
  4709. void unset_migratetype_isolate(struct page *page)
  4710. {
  4711. struct zone *zone;
  4712. unsigned long flags;
  4713. zone = page_zone(page);
  4714. spin_lock_irqsave(&zone->lock, flags);
  4715. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4716. goto out;
  4717. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4718. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4719. out:
  4720. spin_unlock_irqrestore(&zone->lock, flags);
  4721. }
  4722. #ifdef CONFIG_MEMORY_HOTREMOVE
  4723. /*
  4724. * All pages in the range must be isolated before calling this.
  4725. */
  4726. void
  4727. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4728. {
  4729. struct page *page;
  4730. struct zone *zone;
  4731. int order, i;
  4732. unsigned long pfn;
  4733. unsigned long flags;
  4734. /* find the first valid pfn */
  4735. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4736. if (pfn_valid(pfn))
  4737. break;
  4738. if (pfn == end_pfn)
  4739. return;
  4740. zone = page_zone(pfn_to_page(pfn));
  4741. spin_lock_irqsave(&zone->lock, flags);
  4742. pfn = start_pfn;
  4743. while (pfn < end_pfn) {
  4744. if (!pfn_valid(pfn)) {
  4745. pfn++;
  4746. continue;
  4747. }
  4748. page = pfn_to_page(pfn);
  4749. BUG_ON(page_count(page));
  4750. BUG_ON(!PageBuddy(page));
  4751. order = page_order(page);
  4752. #ifdef CONFIG_DEBUG_VM
  4753. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4754. pfn, 1 << order, end_pfn);
  4755. #endif
  4756. list_del(&page->lru);
  4757. rmv_page_order(page);
  4758. zone->free_area[order].nr_free--;
  4759. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4760. - (1UL << order));
  4761. for (i = 0; i < (1 << order); i++)
  4762. SetPageReserved((page+i));
  4763. pfn += (1 << order);
  4764. }
  4765. spin_unlock_irqrestore(&zone->lock, flags);
  4766. }
  4767. #endif
  4768. #ifdef CONFIG_MEMORY_FAILURE
  4769. bool is_free_buddy_page(struct page *page)
  4770. {
  4771. struct zone *zone = page_zone(page);
  4772. unsigned long pfn = page_to_pfn(page);
  4773. unsigned long flags;
  4774. int order;
  4775. spin_lock_irqsave(&zone->lock, flags);
  4776. for (order = 0; order < MAX_ORDER; order++) {
  4777. struct page *page_head = page - (pfn & ((1 << order) - 1));
  4778. if (PageBuddy(page_head) && page_order(page_head) >= order)
  4779. break;
  4780. }
  4781. spin_unlock_irqrestore(&zone->lock, flags);
  4782. return order < MAX_ORDER;
  4783. }
  4784. #endif
  4785. static struct trace_print_flags pageflag_names[] = {
  4786. {1UL << PG_locked, "locked" },
  4787. {1UL << PG_error, "error" },
  4788. {1UL << PG_referenced, "referenced" },
  4789. {1UL << PG_uptodate, "uptodate" },
  4790. {1UL << PG_dirty, "dirty" },
  4791. {1UL << PG_lru, "lru" },
  4792. {1UL << PG_active, "active" },
  4793. {1UL << PG_slab, "slab" },
  4794. {1UL << PG_owner_priv_1, "owner_priv_1" },
  4795. {1UL << PG_arch_1, "arch_1" },
  4796. {1UL << PG_reserved, "reserved" },
  4797. {1UL << PG_private, "private" },
  4798. {1UL << PG_private_2, "private_2" },
  4799. {1UL << PG_writeback, "writeback" },
  4800. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  4801. {1UL << PG_head, "head" },
  4802. {1UL << PG_tail, "tail" },
  4803. #else
  4804. {1UL << PG_compound, "compound" },
  4805. #endif
  4806. {1UL << PG_swapcache, "swapcache" },
  4807. {1UL << PG_mappedtodisk, "mappedtodisk" },
  4808. {1UL << PG_reclaim, "reclaim" },
  4809. {1UL << PG_swapbacked, "swapbacked" },
  4810. {1UL << PG_unevictable, "unevictable" },
  4811. #ifdef CONFIG_MMU
  4812. {1UL << PG_mlocked, "mlocked" },
  4813. #endif
  4814. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  4815. {1UL << PG_uncached, "uncached" },
  4816. #endif
  4817. #ifdef CONFIG_MEMORY_FAILURE
  4818. {1UL << PG_hwpoison, "hwpoison" },
  4819. #endif
  4820. {-1UL, NULL },
  4821. };
  4822. static void dump_page_flags(unsigned long flags)
  4823. {
  4824. const char *delim = "";
  4825. unsigned long mask;
  4826. int i;
  4827. printk(KERN_ALERT "page flags: %#lx(", flags);
  4828. /* remove zone id */
  4829. flags &= (1UL << NR_PAGEFLAGS) - 1;
  4830. for (i = 0; pageflag_names[i].name && flags; i++) {
  4831. mask = pageflag_names[i].mask;
  4832. if ((flags & mask) != mask)
  4833. continue;
  4834. flags &= ~mask;
  4835. printk("%s%s", delim, pageflag_names[i].name);
  4836. delim = "|";
  4837. }
  4838. /* check for left over flags */
  4839. if (flags)
  4840. printk("%s%#lx", delim, flags);
  4841. printk(")\n");
  4842. }
  4843. void dump_page(struct page *page)
  4844. {
  4845. printk(KERN_ALERT
  4846. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  4847. page, atomic_read(&page->_count), page_mapcount(page),
  4848. page->mapping, page->index);
  4849. dump_page_flags(page->flags);
  4850. mem_cgroup_print_bad_page(page);
  4851. }