mmzone.h 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifndef __ASSEMBLY__
  4. #ifndef __GENERATING_BOUNDS_H
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/bitops.h>
  9. #include <linux/cache.h>
  10. #include <linux/threads.h>
  11. #include <linux/numa.h>
  12. #include <linux/init.h>
  13. #include <linux/seqlock.h>
  14. #include <linux/nodemask.h>
  15. #include <linux/pageblock-flags.h>
  16. #include <generated/bounds.h>
  17. #include <linux/atomic.h>
  18. #include <asm/page.h>
  19. /* Free memory management - zoned buddy allocator. */
  20. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  21. #define MAX_ORDER 11
  22. #else
  23. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  24. #endif
  25. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  26. /*
  27. * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  28. * costly to service. That is between allocation orders which should
  29. * coelesce naturally under reasonable reclaim pressure and those which
  30. * will not.
  31. */
  32. #define PAGE_ALLOC_COSTLY_ORDER 3
  33. #define MIGRATE_UNMOVABLE 0
  34. #define MIGRATE_RECLAIMABLE 1
  35. #define MIGRATE_MOVABLE 2
  36. #define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */
  37. #define MIGRATE_RESERVE 3
  38. #define MIGRATE_ISOLATE 4 /* can't allocate from here */
  39. #define MIGRATE_TYPES 5
  40. #define for_each_migratetype_order(order, type) \
  41. for (order = 0; order < MAX_ORDER; order++) \
  42. for (type = 0; type < MIGRATE_TYPES; type++)
  43. extern int page_group_by_mobility_disabled;
  44. static inline int get_pageblock_migratetype(struct page *page)
  45. {
  46. return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  47. }
  48. struct free_area {
  49. struct list_head free_list[MIGRATE_TYPES];
  50. unsigned long nr_free;
  51. };
  52. struct pglist_data;
  53. /*
  54. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  55. * So add a wild amount of padding here to ensure that they fall into separate
  56. * cachelines. There are very few zone structures in the machine, so space
  57. * consumption is not a concern here.
  58. */
  59. #if defined(CONFIG_SMP)
  60. struct zone_padding {
  61. char x[0];
  62. } ____cacheline_internodealigned_in_smp;
  63. #define ZONE_PADDING(name) struct zone_padding name;
  64. #else
  65. #define ZONE_PADDING(name)
  66. #endif
  67. enum zone_stat_item {
  68. /* First 128 byte cacheline (assuming 64 bit words) */
  69. NR_FREE_PAGES,
  70. NR_LRU_BASE,
  71. NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
  72. NR_ACTIVE_ANON, /* " " " " " */
  73. NR_INACTIVE_FILE, /* " " " " " */
  74. NR_ACTIVE_FILE, /* " " " " " */
  75. NR_UNEVICTABLE, /* " " " " " */
  76. NR_MLOCK, /* mlock()ed pages found and moved off LRU */
  77. NR_ANON_PAGES, /* Mapped anonymous pages */
  78. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  79. only modified from process context */
  80. NR_FILE_PAGES,
  81. NR_FILE_DIRTY,
  82. NR_WRITEBACK,
  83. NR_SLAB_RECLAIMABLE,
  84. NR_SLAB_UNRECLAIMABLE,
  85. NR_PAGETABLE, /* used for pagetables */
  86. NR_KERNEL_STACK,
  87. /* Second 128 byte cacheline */
  88. NR_UNSTABLE_NFS, /* NFS unstable pages */
  89. NR_BOUNCE,
  90. NR_VMSCAN_WRITE,
  91. NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
  92. NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
  93. NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
  94. NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
  95. NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
  96. NR_DIRTIED, /* page dirtyings since bootup */
  97. NR_WRITTEN, /* page writings since bootup */
  98. #ifdef CONFIG_NUMA
  99. NUMA_HIT, /* allocated in intended node */
  100. NUMA_MISS, /* allocated in non intended node */
  101. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  102. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  103. NUMA_LOCAL, /* allocation from local node */
  104. NUMA_OTHER, /* allocation from other node */
  105. #endif
  106. NR_ANON_TRANSPARENT_HUGEPAGES,
  107. NR_VM_ZONE_STAT_ITEMS };
  108. /*
  109. * We do arithmetic on the LRU lists in various places in the code,
  110. * so it is important to keep the active lists LRU_ACTIVE higher in
  111. * the array than the corresponding inactive lists, and to keep
  112. * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
  113. *
  114. * This has to be kept in sync with the statistics in zone_stat_item
  115. * above and the descriptions in vmstat_text in mm/vmstat.c
  116. */
  117. #define LRU_BASE 0
  118. #define LRU_ACTIVE 1
  119. #define LRU_FILE 2
  120. enum lru_list {
  121. LRU_INACTIVE_ANON = LRU_BASE,
  122. LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
  123. LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
  124. LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
  125. LRU_UNEVICTABLE,
  126. NR_LRU_LISTS
  127. };
  128. #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
  129. #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
  130. static inline int is_file_lru(enum lru_list l)
  131. {
  132. return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
  133. }
  134. static inline int is_active_lru(enum lru_list l)
  135. {
  136. return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
  137. }
  138. static inline int is_unevictable_lru(enum lru_list l)
  139. {
  140. return (l == LRU_UNEVICTABLE);
  141. }
  142. /* Mask used at gathering information at once (see memcontrol.c) */
  143. #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
  144. #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
  145. #define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON)
  146. #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
  147. /* Isolate inactive pages */
  148. #define ISOLATE_INACTIVE ((__force isolate_mode_t)0x1)
  149. /* Isolate active pages */
  150. #define ISOLATE_ACTIVE ((__force isolate_mode_t)0x2)
  151. /* Isolate clean file */
  152. #define ISOLATE_CLEAN ((__force isolate_mode_t)0x4)
  153. /* Isolate unmapped file */
  154. #define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x8)
  155. /* LRU Isolation modes. */
  156. typedef unsigned __bitwise__ isolate_mode_t;
  157. enum zone_watermarks {
  158. WMARK_MIN,
  159. WMARK_LOW,
  160. WMARK_HIGH,
  161. NR_WMARK
  162. };
  163. #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
  164. #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
  165. #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
  166. struct per_cpu_pages {
  167. int count; /* number of pages in the list */
  168. int high; /* high watermark, emptying needed */
  169. int batch; /* chunk size for buddy add/remove */
  170. /* Lists of pages, one per migrate type stored on the pcp-lists */
  171. struct list_head lists[MIGRATE_PCPTYPES];
  172. };
  173. struct per_cpu_pageset {
  174. struct per_cpu_pages pcp;
  175. #ifdef CONFIG_NUMA
  176. s8 expire;
  177. #endif
  178. #ifdef CONFIG_SMP
  179. s8 stat_threshold;
  180. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  181. #endif
  182. };
  183. #endif /* !__GENERATING_BOUNDS.H */
  184. enum zone_type {
  185. #ifdef CONFIG_ZONE_DMA
  186. /*
  187. * ZONE_DMA is used when there are devices that are not able
  188. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  189. * carve out the portion of memory that is needed for these devices.
  190. * The range is arch specific.
  191. *
  192. * Some examples
  193. *
  194. * Architecture Limit
  195. * ---------------------------
  196. * parisc, ia64, sparc <4G
  197. * s390 <2G
  198. * arm Various
  199. * alpha Unlimited or 0-16MB.
  200. *
  201. * i386, x86_64 and multiple other arches
  202. * <16M.
  203. */
  204. ZONE_DMA,
  205. #endif
  206. #ifdef CONFIG_ZONE_DMA32
  207. /*
  208. * x86_64 needs two ZONE_DMAs because it supports devices that are
  209. * only able to do DMA to the lower 16M but also 32 bit devices that
  210. * can only do DMA areas below 4G.
  211. */
  212. ZONE_DMA32,
  213. #endif
  214. /*
  215. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  216. * performed on pages in ZONE_NORMAL if the DMA devices support
  217. * transfers to all addressable memory.
  218. */
  219. ZONE_NORMAL,
  220. #ifdef CONFIG_HIGHMEM
  221. /*
  222. * A memory area that is only addressable by the kernel through
  223. * mapping portions into its own address space. This is for example
  224. * used by i386 to allow the kernel to address the memory beyond
  225. * 900MB. The kernel will set up special mappings (page
  226. * table entries on i386) for each page that the kernel needs to
  227. * access.
  228. */
  229. ZONE_HIGHMEM,
  230. #endif
  231. ZONE_MOVABLE,
  232. __MAX_NR_ZONES
  233. };
  234. #ifndef __GENERATING_BOUNDS_H
  235. /*
  236. * When a memory allocation must conform to specific limitations (such
  237. * as being suitable for DMA) the caller will pass in hints to the
  238. * allocator in the gfp_mask, in the zone modifier bits. These bits
  239. * are used to select a priority ordered list of memory zones which
  240. * match the requested limits. See gfp_zone() in include/linux/gfp.h
  241. */
  242. #if MAX_NR_ZONES < 2
  243. #define ZONES_SHIFT 0
  244. #elif MAX_NR_ZONES <= 2
  245. #define ZONES_SHIFT 1
  246. #elif MAX_NR_ZONES <= 4
  247. #define ZONES_SHIFT 2
  248. #else
  249. #error ZONES_SHIFT -- too many zones configured adjust calculation
  250. #endif
  251. struct zone_reclaim_stat {
  252. /*
  253. * The pageout code in vmscan.c keeps track of how many of the
  254. * mem/swap backed and file backed pages are refeferenced.
  255. * The higher the rotated/scanned ratio, the more valuable
  256. * that cache is.
  257. *
  258. * The anon LRU stats live in [0], file LRU stats in [1]
  259. */
  260. unsigned long recent_rotated[2];
  261. unsigned long recent_scanned[2];
  262. };
  263. struct zone {
  264. /* Fields commonly accessed by the page allocator */
  265. /* zone watermarks, access with *_wmark_pages(zone) macros */
  266. unsigned long watermark[NR_WMARK];
  267. /*
  268. * When free pages are below this point, additional steps are taken
  269. * when reading the number of free pages to avoid per-cpu counter
  270. * drift allowing watermarks to be breached
  271. */
  272. unsigned long percpu_drift_mark;
  273. /*
  274. * We don't know if the memory that we're going to allocate will be freeable
  275. * or/and it will be released eventually, so to avoid totally wasting several
  276. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  277. * to run OOM on the lower zones despite there's tons of freeable ram
  278. * on the higher zones). This array is recalculated at runtime if the
  279. * sysctl_lowmem_reserve_ratio sysctl changes.
  280. */
  281. unsigned long lowmem_reserve[MAX_NR_ZONES];
  282. /*
  283. * This is a per-zone reserve of pages that should not be
  284. * considered dirtyable memory.
  285. */
  286. unsigned long dirty_balance_reserve;
  287. #ifdef CONFIG_NUMA
  288. int node;
  289. /*
  290. * zone reclaim becomes active if more unmapped pages exist.
  291. */
  292. unsigned long min_unmapped_pages;
  293. unsigned long min_slab_pages;
  294. #endif
  295. struct per_cpu_pageset __percpu *pageset;
  296. /*
  297. * free areas of different sizes
  298. */
  299. spinlock_t lock;
  300. int all_unreclaimable; /* All pages pinned */
  301. #ifdef CONFIG_MEMORY_HOTPLUG
  302. /* see spanned/present_pages for more description */
  303. seqlock_t span_seqlock;
  304. #endif
  305. struct free_area free_area[MAX_ORDER];
  306. #ifndef CONFIG_SPARSEMEM
  307. /*
  308. * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
  309. * In SPARSEMEM, this map is stored in struct mem_section
  310. */
  311. unsigned long *pageblock_flags;
  312. #endif /* CONFIG_SPARSEMEM */
  313. #ifdef CONFIG_COMPACTION
  314. /*
  315. * On compaction failure, 1<<compact_defer_shift compactions
  316. * are skipped before trying again. The number attempted since
  317. * last failure is tracked with compact_considered.
  318. */
  319. unsigned int compact_considered;
  320. unsigned int compact_defer_shift;
  321. #endif
  322. ZONE_PADDING(_pad1_)
  323. /* Fields commonly accessed by the page reclaim scanner */
  324. spinlock_t lru_lock;
  325. struct zone_lru {
  326. struct list_head list;
  327. } lru[NR_LRU_LISTS];
  328. struct zone_reclaim_stat reclaim_stat;
  329. unsigned long pages_scanned; /* since last reclaim */
  330. unsigned long flags; /* zone flags, see below */
  331. /* Zone statistics */
  332. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  333. /*
  334. * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
  335. * this zone's LRU. Maintained by the pageout code.
  336. */
  337. unsigned int inactive_ratio;
  338. ZONE_PADDING(_pad2_)
  339. /* Rarely used or read-mostly fields */
  340. /*
  341. * wait_table -- the array holding the hash table
  342. * wait_table_hash_nr_entries -- the size of the hash table array
  343. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  344. *
  345. * The purpose of all these is to keep track of the people
  346. * waiting for a page to become available and make them
  347. * runnable again when possible. The trouble is that this
  348. * consumes a lot of space, especially when so few things
  349. * wait on pages at a given time. So instead of using
  350. * per-page waitqueues, we use a waitqueue hash table.
  351. *
  352. * The bucket discipline is to sleep on the same queue when
  353. * colliding and wake all in that wait queue when removing.
  354. * When something wakes, it must check to be sure its page is
  355. * truly available, a la thundering herd. The cost of a
  356. * collision is great, but given the expected load of the
  357. * table, they should be so rare as to be outweighed by the
  358. * benefits from the saved space.
  359. *
  360. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  361. * primary users of these fields, and in mm/page_alloc.c
  362. * free_area_init_core() performs the initialization of them.
  363. */
  364. wait_queue_head_t * wait_table;
  365. unsigned long wait_table_hash_nr_entries;
  366. unsigned long wait_table_bits;
  367. /*
  368. * Discontig memory support fields.
  369. */
  370. struct pglist_data *zone_pgdat;
  371. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  372. unsigned long zone_start_pfn;
  373. /*
  374. * zone_start_pfn, spanned_pages and present_pages are all
  375. * protected by span_seqlock. It is a seqlock because it has
  376. * to be read outside of zone->lock, and it is done in the main
  377. * allocator path. But, it is written quite infrequently.
  378. *
  379. * The lock is declared along with zone->lock because it is
  380. * frequently read in proximity to zone->lock. It's good to
  381. * give them a chance of being in the same cacheline.
  382. */
  383. unsigned long spanned_pages; /* total size, including holes */
  384. unsigned long present_pages; /* amount of memory (excluding holes) */
  385. /*
  386. * rarely used fields:
  387. */
  388. const char *name;
  389. } ____cacheline_internodealigned_in_smp;
  390. typedef enum {
  391. ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
  392. ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
  393. ZONE_CONGESTED, /* zone has many dirty pages backed by
  394. * a congested BDI
  395. */
  396. } zone_flags_t;
  397. static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
  398. {
  399. set_bit(flag, &zone->flags);
  400. }
  401. static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
  402. {
  403. return test_and_set_bit(flag, &zone->flags);
  404. }
  405. static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
  406. {
  407. clear_bit(flag, &zone->flags);
  408. }
  409. static inline int zone_is_reclaim_congested(const struct zone *zone)
  410. {
  411. return test_bit(ZONE_CONGESTED, &zone->flags);
  412. }
  413. static inline int zone_is_reclaim_locked(const struct zone *zone)
  414. {
  415. return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
  416. }
  417. static inline int zone_is_oom_locked(const struct zone *zone)
  418. {
  419. return test_bit(ZONE_OOM_LOCKED, &zone->flags);
  420. }
  421. /*
  422. * The "priority" of VM scanning is how much of the queues we will scan in one
  423. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  424. * queues ("queue_length >> 12") during an aging round.
  425. */
  426. #define DEF_PRIORITY 12
  427. /* Maximum number of zones on a zonelist */
  428. #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
  429. #ifdef CONFIG_NUMA
  430. /*
  431. * The NUMA zonelists are doubled because we need zonelists that restrict the
  432. * allocations to a single node for GFP_THISNODE.
  433. *
  434. * [0] : Zonelist with fallback
  435. * [1] : No fallback (GFP_THISNODE)
  436. */
  437. #define MAX_ZONELISTS 2
  438. /*
  439. * We cache key information from each zonelist for smaller cache
  440. * footprint when scanning for free pages in get_page_from_freelist().
  441. *
  442. * 1) The BITMAP fullzones tracks which zones in a zonelist have come
  443. * up short of free memory since the last time (last_fullzone_zap)
  444. * we zero'd fullzones.
  445. * 2) The array z_to_n[] maps each zone in the zonelist to its node
  446. * id, so that we can efficiently evaluate whether that node is
  447. * set in the current tasks mems_allowed.
  448. *
  449. * Both fullzones and z_to_n[] are one-to-one with the zonelist,
  450. * indexed by a zones offset in the zonelist zones[] array.
  451. *
  452. * The get_page_from_freelist() routine does two scans. During the
  453. * first scan, we skip zones whose corresponding bit in 'fullzones'
  454. * is set or whose corresponding node in current->mems_allowed (which
  455. * comes from cpusets) is not set. During the second scan, we bypass
  456. * this zonelist_cache, to ensure we look methodically at each zone.
  457. *
  458. * Once per second, we zero out (zap) fullzones, forcing us to
  459. * reconsider nodes that might have regained more free memory.
  460. * The field last_full_zap is the time we last zapped fullzones.
  461. *
  462. * This mechanism reduces the amount of time we waste repeatedly
  463. * reexaming zones for free memory when they just came up low on
  464. * memory momentarilly ago.
  465. *
  466. * The zonelist_cache struct members logically belong in struct
  467. * zonelist. However, the mempolicy zonelists constructed for
  468. * MPOL_BIND are intentionally variable length (and usually much
  469. * shorter). A general purpose mechanism for handling structs with
  470. * multiple variable length members is more mechanism than we want
  471. * here. We resort to some special case hackery instead.
  472. *
  473. * The MPOL_BIND zonelists don't need this zonelist_cache (in good
  474. * part because they are shorter), so we put the fixed length stuff
  475. * at the front of the zonelist struct, ending in a variable length
  476. * zones[], as is needed by MPOL_BIND.
  477. *
  478. * Then we put the optional zonelist cache on the end of the zonelist
  479. * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
  480. * the fixed length portion at the front of the struct. This pointer
  481. * both enables us to find the zonelist cache, and in the case of
  482. * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
  483. * to know that the zonelist cache is not there.
  484. *
  485. * The end result is that struct zonelists come in two flavors:
  486. * 1) The full, fixed length version, shown below, and
  487. * 2) The custom zonelists for MPOL_BIND.
  488. * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
  489. *
  490. * Even though there may be multiple CPU cores on a node modifying
  491. * fullzones or last_full_zap in the same zonelist_cache at the same
  492. * time, we don't lock it. This is just hint data - if it is wrong now
  493. * and then, the allocator will still function, perhaps a bit slower.
  494. */
  495. struct zonelist_cache {
  496. unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
  497. DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
  498. unsigned long last_full_zap; /* when last zap'd (jiffies) */
  499. };
  500. #else
  501. #define MAX_ZONELISTS 1
  502. struct zonelist_cache;
  503. #endif
  504. /*
  505. * This struct contains information about a zone in a zonelist. It is stored
  506. * here to avoid dereferences into large structures and lookups of tables
  507. */
  508. struct zoneref {
  509. struct zone *zone; /* Pointer to actual zone */
  510. int zone_idx; /* zone_idx(zoneref->zone) */
  511. };
  512. /*
  513. * One allocation request operates on a zonelist. A zonelist
  514. * is a list of zones, the first one is the 'goal' of the
  515. * allocation, the other zones are fallback zones, in decreasing
  516. * priority.
  517. *
  518. * If zlcache_ptr is not NULL, then it is just the address of zlcache,
  519. * as explained above. If zlcache_ptr is NULL, there is no zlcache.
  520. * *
  521. * To speed the reading of the zonelist, the zonerefs contain the zone index
  522. * of the entry being read. Helper functions to access information given
  523. * a struct zoneref are
  524. *
  525. * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
  526. * zonelist_zone_idx() - Return the index of the zone for an entry
  527. * zonelist_node_idx() - Return the index of the node for an entry
  528. */
  529. struct zonelist {
  530. struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
  531. struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
  532. #ifdef CONFIG_NUMA
  533. struct zonelist_cache zlcache; // optional ...
  534. #endif
  535. };
  536. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  537. struct node_active_region {
  538. unsigned long start_pfn;
  539. unsigned long end_pfn;
  540. int nid;
  541. };
  542. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  543. #ifndef CONFIG_DISCONTIGMEM
  544. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  545. extern struct page *mem_map;
  546. #endif
  547. /*
  548. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  549. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  550. * zone denotes.
  551. *
  552. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  553. * it's memory layout.
  554. *
  555. * Memory statistics and page replacement data structures are maintained on a
  556. * per-zone basis.
  557. */
  558. struct bootmem_data;
  559. typedef struct pglist_data {
  560. struct zone node_zones[MAX_NR_ZONES];
  561. struct zonelist node_zonelists[MAX_ZONELISTS];
  562. int nr_zones;
  563. #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
  564. struct page *node_mem_map;
  565. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  566. struct page_cgroup *node_page_cgroup;
  567. #endif
  568. #endif
  569. #ifndef CONFIG_NO_BOOTMEM
  570. struct bootmem_data *bdata;
  571. #endif
  572. #ifdef CONFIG_MEMORY_HOTPLUG
  573. /*
  574. * Must be held any time you expect node_start_pfn, node_present_pages
  575. * or node_spanned_pages stay constant. Holding this will also
  576. * guarantee that any pfn_valid() stays that way.
  577. *
  578. * Nests above zone->lock and zone->size_seqlock.
  579. */
  580. spinlock_t node_size_lock;
  581. #endif
  582. unsigned long node_start_pfn;
  583. unsigned long node_present_pages; /* total number of physical pages */
  584. unsigned long node_spanned_pages; /* total size of physical page
  585. range, including holes */
  586. int node_id;
  587. wait_queue_head_t kswapd_wait;
  588. struct task_struct *kswapd;
  589. int kswapd_max_order;
  590. enum zone_type classzone_idx;
  591. } pg_data_t;
  592. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  593. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  594. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  595. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  596. #else
  597. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  598. #endif
  599. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  600. #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
  601. #define node_end_pfn(nid) ({\
  602. pg_data_t *__pgdat = NODE_DATA(nid);\
  603. __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
  604. })
  605. #include <linux/memory_hotplug.h>
  606. extern struct mutex zonelists_mutex;
  607. void build_all_zonelists(void *data);
  608. void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
  609. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  610. int classzone_idx, int alloc_flags);
  611. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  612. int classzone_idx, int alloc_flags);
  613. enum memmap_context {
  614. MEMMAP_EARLY,
  615. MEMMAP_HOTPLUG,
  616. };
  617. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  618. unsigned long size,
  619. enum memmap_context context);
  620. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  621. void memory_present(int nid, unsigned long start, unsigned long end);
  622. #else
  623. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  624. #endif
  625. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  626. int local_memory_node(int node_id);
  627. #else
  628. static inline int local_memory_node(int node_id) { return node_id; };
  629. #endif
  630. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  631. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  632. #endif
  633. /*
  634. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  635. */
  636. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  637. static inline int populated_zone(struct zone *zone)
  638. {
  639. return (!!zone->present_pages);
  640. }
  641. extern int movable_zone;
  642. static inline int zone_movable_is_highmem(void)
  643. {
  644. #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE)
  645. return movable_zone == ZONE_HIGHMEM;
  646. #else
  647. return 0;
  648. #endif
  649. }
  650. static inline int is_highmem_idx(enum zone_type idx)
  651. {
  652. #ifdef CONFIG_HIGHMEM
  653. return (idx == ZONE_HIGHMEM ||
  654. (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
  655. #else
  656. return 0;
  657. #endif
  658. }
  659. static inline int is_normal_idx(enum zone_type idx)
  660. {
  661. return (idx == ZONE_NORMAL);
  662. }
  663. /**
  664. * is_highmem - helper function to quickly check if a struct zone is a
  665. * highmem zone or not. This is an attempt to keep references
  666. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  667. * @zone - pointer to struct zone variable
  668. */
  669. static inline int is_highmem(struct zone *zone)
  670. {
  671. #ifdef CONFIG_HIGHMEM
  672. int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
  673. return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
  674. (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
  675. zone_movable_is_highmem());
  676. #else
  677. return 0;
  678. #endif
  679. }
  680. static inline int is_normal(struct zone *zone)
  681. {
  682. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  683. }
  684. static inline int is_dma32(struct zone *zone)
  685. {
  686. #ifdef CONFIG_ZONE_DMA32
  687. return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
  688. #else
  689. return 0;
  690. #endif
  691. }
  692. static inline int is_dma(struct zone *zone)
  693. {
  694. #ifdef CONFIG_ZONE_DMA
  695. return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
  696. #else
  697. return 0;
  698. #endif
  699. }
  700. /* These two functions are used to setup the per zone pages min values */
  701. struct ctl_table;
  702. int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
  703. void __user *, size_t *, loff_t *);
  704. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  705. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
  706. void __user *, size_t *, loff_t *);
  707. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
  708. void __user *, size_t *, loff_t *);
  709. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  710. void __user *, size_t *, loff_t *);
  711. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  712. void __user *, size_t *, loff_t *);
  713. extern int numa_zonelist_order_handler(struct ctl_table *, int,
  714. void __user *, size_t *, loff_t *);
  715. extern char numa_zonelist_order[];
  716. #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
  717. #ifndef CONFIG_NEED_MULTIPLE_NODES
  718. extern struct pglist_data contig_page_data;
  719. #define NODE_DATA(nid) (&contig_page_data)
  720. #define NODE_MEM_MAP(nid) mem_map
  721. #else /* CONFIG_NEED_MULTIPLE_NODES */
  722. #include <asm/mmzone.h>
  723. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  724. extern struct pglist_data *first_online_pgdat(void);
  725. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  726. extern struct zone *next_zone(struct zone *zone);
  727. /**
  728. * for_each_online_pgdat - helper macro to iterate over all online nodes
  729. * @pgdat - pointer to a pg_data_t variable
  730. */
  731. #define for_each_online_pgdat(pgdat) \
  732. for (pgdat = first_online_pgdat(); \
  733. pgdat; \
  734. pgdat = next_online_pgdat(pgdat))
  735. /**
  736. * for_each_zone - helper macro to iterate over all memory zones
  737. * @zone - pointer to struct zone variable
  738. *
  739. * The user only needs to declare the zone variable, for_each_zone
  740. * fills it in.
  741. */
  742. #define for_each_zone(zone) \
  743. for (zone = (first_online_pgdat())->node_zones; \
  744. zone; \
  745. zone = next_zone(zone))
  746. #define for_each_populated_zone(zone) \
  747. for (zone = (first_online_pgdat())->node_zones; \
  748. zone; \
  749. zone = next_zone(zone)) \
  750. if (!populated_zone(zone)) \
  751. ; /* do nothing */ \
  752. else
  753. static inline struct zone *zonelist_zone(struct zoneref *zoneref)
  754. {
  755. return zoneref->zone;
  756. }
  757. static inline int zonelist_zone_idx(struct zoneref *zoneref)
  758. {
  759. return zoneref->zone_idx;
  760. }
  761. static inline int zonelist_node_idx(struct zoneref *zoneref)
  762. {
  763. #ifdef CONFIG_NUMA
  764. /* zone_to_nid not available in this context */
  765. return zoneref->zone->node;
  766. #else
  767. return 0;
  768. #endif /* CONFIG_NUMA */
  769. }
  770. /**
  771. * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
  772. * @z - The cursor used as a starting point for the search
  773. * @highest_zoneidx - The zone index of the highest zone to return
  774. * @nodes - An optional nodemask to filter the zonelist with
  775. * @zone - The first suitable zone found is returned via this parameter
  776. *
  777. * This function returns the next zone at or below a given zone index that is
  778. * within the allowed nodemask using a cursor as the starting point for the
  779. * search. The zoneref returned is a cursor that represents the current zone
  780. * being examined. It should be advanced by one before calling
  781. * next_zones_zonelist again.
  782. */
  783. struct zoneref *next_zones_zonelist(struct zoneref *z,
  784. enum zone_type highest_zoneidx,
  785. nodemask_t *nodes,
  786. struct zone **zone);
  787. /**
  788. * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
  789. * @zonelist - The zonelist to search for a suitable zone
  790. * @highest_zoneidx - The zone index of the highest zone to return
  791. * @nodes - An optional nodemask to filter the zonelist with
  792. * @zone - The first suitable zone found is returned via this parameter
  793. *
  794. * This function returns the first zone at or below a given zone index that is
  795. * within the allowed nodemask. The zoneref returned is a cursor that can be
  796. * used to iterate the zonelist with next_zones_zonelist by advancing it by
  797. * one before calling.
  798. */
  799. static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
  800. enum zone_type highest_zoneidx,
  801. nodemask_t *nodes,
  802. struct zone **zone)
  803. {
  804. return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
  805. zone);
  806. }
  807. /**
  808. * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
  809. * @zone - The current zone in the iterator
  810. * @z - The current pointer within zonelist->zones being iterated
  811. * @zlist - The zonelist being iterated
  812. * @highidx - The zone index of the highest zone to return
  813. * @nodemask - Nodemask allowed by the allocator
  814. *
  815. * This iterator iterates though all zones at or below a given zone index and
  816. * within a given nodemask
  817. */
  818. #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
  819. for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
  820. zone; \
  821. z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
  822. /**
  823. * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
  824. * @zone - The current zone in the iterator
  825. * @z - The current pointer within zonelist->zones being iterated
  826. * @zlist - The zonelist being iterated
  827. * @highidx - The zone index of the highest zone to return
  828. *
  829. * This iterator iterates though all zones at or below a given zone index.
  830. */
  831. #define for_each_zone_zonelist(zone, z, zlist, highidx) \
  832. for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
  833. #ifdef CONFIG_SPARSEMEM
  834. #include <asm/sparsemem.h>
  835. #endif
  836. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  837. !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
  838. static inline unsigned long early_pfn_to_nid(unsigned long pfn)
  839. {
  840. return 0;
  841. }
  842. #endif
  843. #ifdef CONFIG_FLATMEM
  844. #define pfn_to_nid(pfn) (0)
  845. #endif
  846. #ifdef CONFIG_SPARSEMEM
  847. /*
  848. * SECTION_SHIFT #bits space required to store a section #
  849. *
  850. * PA_SECTION_SHIFT physical address to/from section number
  851. * PFN_SECTION_SHIFT pfn to/from section number
  852. */
  853. #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
  854. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  855. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  856. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  857. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  858. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  859. #define SECTION_BLOCKFLAGS_BITS \
  860. ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
  861. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  862. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  863. #endif
  864. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  865. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  866. #define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
  867. #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
  868. struct page;
  869. struct page_cgroup;
  870. struct mem_section {
  871. /*
  872. * This is, logically, a pointer to an array of struct
  873. * pages. However, it is stored with some other magic.
  874. * (see sparse.c::sparse_init_one_section())
  875. *
  876. * Additionally during early boot we encode node id of
  877. * the location of the section here to guide allocation.
  878. * (see sparse.c::memory_present())
  879. *
  880. * Making it a UL at least makes someone do a cast
  881. * before using it wrong.
  882. */
  883. unsigned long section_mem_map;
  884. /* See declaration of similar field in struct zone */
  885. unsigned long *pageblock_flags;
  886. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  887. /*
  888. * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
  889. * section. (see memcontrol.h/page_cgroup.h about this.)
  890. */
  891. struct page_cgroup *page_cgroup;
  892. unsigned long pad;
  893. #endif
  894. };
  895. #ifdef CONFIG_SPARSEMEM_EXTREME
  896. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  897. #else
  898. #define SECTIONS_PER_ROOT 1
  899. #endif
  900. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  901. #define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
  902. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  903. #ifdef CONFIG_SPARSEMEM_EXTREME
  904. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  905. #else
  906. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  907. #endif
  908. static inline struct mem_section *__nr_to_section(unsigned long nr)
  909. {
  910. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  911. return NULL;
  912. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  913. }
  914. extern int __section_nr(struct mem_section* ms);
  915. extern unsigned long usemap_size(void);
  916. /*
  917. * We use the lower bits of the mem_map pointer to store
  918. * a little bit of information. There should be at least
  919. * 3 bits here due to 32-bit alignment.
  920. */
  921. #define SECTION_MARKED_PRESENT (1UL<<0)
  922. #define SECTION_HAS_MEM_MAP (1UL<<1)
  923. #define SECTION_MAP_LAST_BIT (1UL<<2)
  924. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  925. #define SECTION_NID_SHIFT 2
  926. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  927. {
  928. unsigned long map = section->section_mem_map;
  929. map &= SECTION_MAP_MASK;
  930. return (struct page *)map;
  931. }
  932. static inline int present_section(struct mem_section *section)
  933. {
  934. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  935. }
  936. static inline int present_section_nr(unsigned long nr)
  937. {
  938. return present_section(__nr_to_section(nr));
  939. }
  940. static inline int valid_section(struct mem_section *section)
  941. {
  942. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  943. }
  944. static inline int valid_section_nr(unsigned long nr)
  945. {
  946. return valid_section(__nr_to_section(nr));
  947. }
  948. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  949. {
  950. return __nr_to_section(pfn_to_section_nr(pfn));
  951. }
  952. #ifndef CONFIG_HAVE_ARCH_PFN_VALID
  953. static inline int pfn_valid(unsigned long pfn)
  954. {
  955. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  956. return 0;
  957. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  958. }
  959. #endif
  960. static inline int pfn_present(unsigned long pfn)
  961. {
  962. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  963. return 0;
  964. return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
  965. }
  966. /*
  967. * These are _only_ used during initialisation, therefore they
  968. * can use __initdata ... They could have names to indicate
  969. * this restriction.
  970. */
  971. #ifdef CONFIG_NUMA
  972. #define pfn_to_nid(pfn) \
  973. ({ \
  974. unsigned long __pfn_to_nid_pfn = (pfn); \
  975. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  976. })
  977. #else
  978. #define pfn_to_nid(pfn) (0)
  979. #endif
  980. #define early_pfn_valid(pfn) pfn_valid(pfn)
  981. void sparse_init(void);
  982. #else
  983. #define sparse_init() do {} while (0)
  984. #define sparse_index_init(_sec, _nid) do {} while (0)
  985. #endif /* CONFIG_SPARSEMEM */
  986. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  987. bool early_pfn_in_nid(unsigned long pfn, int nid);
  988. #else
  989. #define early_pfn_in_nid(pfn, nid) (1)
  990. #endif
  991. #ifndef early_pfn_valid
  992. #define early_pfn_valid(pfn) (1)
  993. #endif
  994. void memory_present(int nid, unsigned long start, unsigned long end);
  995. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  996. /*
  997. * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
  998. * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
  999. * pfn_valid_within() should be used in this case; we optimise this away
  1000. * when we have no holes within a MAX_ORDER_NR_PAGES block.
  1001. */
  1002. #ifdef CONFIG_HOLES_IN_ZONE
  1003. #define pfn_valid_within(pfn) pfn_valid(pfn)
  1004. #else
  1005. #define pfn_valid_within(pfn) (1)
  1006. #endif
  1007. #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
  1008. /*
  1009. * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
  1010. * associated with it or not. In FLATMEM, it is expected that holes always
  1011. * have valid memmap as long as there is valid PFNs either side of the hole.
  1012. * In SPARSEMEM, it is assumed that a valid section has a memmap for the
  1013. * entire section.
  1014. *
  1015. * However, an ARM, and maybe other embedded architectures in the future
  1016. * free memmap backing holes to save memory on the assumption the memmap is
  1017. * never used. The page_zone linkages are then broken even though pfn_valid()
  1018. * returns true. A walker of the full memmap must then do this additional
  1019. * check to ensure the memmap they are looking at is sane by making sure
  1020. * the zone and PFN linkages are still valid. This is expensive, but walkers
  1021. * of the full memmap are extremely rare.
  1022. */
  1023. int memmap_valid_within(unsigned long pfn,
  1024. struct page *page, struct zone *zone);
  1025. #else
  1026. static inline int memmap_valid_within(unsigned long pfn,
  1027. struct page *page, struct zone *zone)
  1028. {
  1029. return 1;
  1030. }
  1031. #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
  1032. #endif /* !__GENERATING_BOUNDS.H */
  1033. #endif /* !__ASSEMBLY__ */
  1034. #endif /* _LINUX_MMZONE_H */