sched.c 227 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/stop_machine.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/debugfs.h>
  70. #include <linux/ctype.h>
  71. #include <linux/ftrace.h>
  72. #include <linux/slab.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include <asm/mutex.h>
  76. #ifdef CONFIG_PARAVIRT
  77. #include <asm/paravirt.h>
  78. #endif
  79. #include "sched_cpupri.h"
  80. #include "workqueue_sched.h"
  81. #include "sched_autogroup.h"
  82. #define CREATE_TRACE_POINTS
  83. #include <trace/events/sched.h>
  84. /*
  85. * Convert user-nice values [ -20 ... 0 ... 19 ]
  86. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  87. * and back.
  88. */
  89. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  90. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  91. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  92. /*
  93. * 'User priority' is the nice value converted to something we
  94. * can work with better when scaling various scheduler parameters,
  95. * it's a [ 0 ... 39 ] range.
  96. */
  97. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  98. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  99. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  100. /*
  101. * Helpers for converting nanosecond timing to jiffy resolution
  102. */
  103. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  104. #define NICE_0_LOAD SCHED_LOAD_SCALE
  105. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  106. /*
  107. * These are the 'tuning knobs' of the scheduler:
  108. *
  109. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  110. * Timeslices get refilled after they expire.
  111. */
  112. #define DEF_TIMESLICE (100 * HZ / 1000)
  113. /*
  114. * single value that denotes runtime == period, ie unlimited time.
  115. */
  116. #define RUNTIME_INF ((u64)~0ULL)
  117. static inline int rt_policy(int policy)
  118. {
  119. if (policy == SCHED_FIFO || policy == SCHED_RR)
  120. return 1;
  121. return 0;
  122. }
  123. static inline int task_has_rt_policy(struct task_struct *p)
  124. {
  125. return rt_policy(p->policy);
  126. }
  127. /*
  128. * This is the priority-queue data structure of the RT scheduling class:
  129. */
  130. struct rt_prio_array {
  131. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  132. struct list_head queue[MAX_RT_PRIO];
  133. };
  134. struct rt_bandwidth {
  135. /* nests inside the rq lock: */
  136. raw_spinlock_t rt_runtime_lock;
  137. ktime_t rt_period;
  138. u64 rt_runtime;
  139. struct hrtimer rt_period_timer;
  140. };
  141. static struct rt_bandwidth def_rt_bandwidth;
  142. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  143. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  144. {
  145. struct rt_bandwidth *rt_b =
  146. container_of(timer, struct rt_bandwidth, rt_period_timer);
  147. ktime_t now;
  148. int overrun;
  149. int idle = 0;
  150. for (;;) {
  151. now = hrtimer_cb_get_time(timer);
  152. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  153. if (!overrun)
  154. break;
  155. idle = do_sched_rt_period_timer(rt_b, overrun);
  156. }
  157. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  158. }
  159. static
  160. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  161. {
  162. rt_b->rt_period = ns_to_ktime(period);
  163. rt_b->rt_runtime = runtime;
  164. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  165. hrtimer_init(&rt_b->rt_period_timer,
  166. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  167. rt_b->rt_period_timer.function = sched_rt_period_timer;
  168. }
  169. static inline int rt_bandwidth_enabled(void)
  170. {
  171. return sysctl_sched_rt_runtime >= 0;
  172. }
  173. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  174. {
  175. ktime_t now;
  176. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  177. return;
  178. if (hrtimer_active(&rt_b->rt_period_timer))
  179. return;
  180. raw_spin_lock(&rt_b->rt_runtime_lock);
  181. for (;;) {
  182. unsigned long delta;
  183. ktime_t soft, hard;
  184. if (hrtimer_active(&rt_b->rt_period_timer))
  185. break;
  186. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  187. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  188. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  189. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  190. delta = ktime_to_ns(ktime_sub(hard, soft));
  191. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  192. HRTIMER_MODE_ABS_PINNED, 0);
  193. }
  194. raw_spin_unlock(&rt_b->rt_runtime_lock);
  195. }
  196. #ifdef CONFIG_RT_GROUP_SCHED
  197. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  198. {
  199. hrtimer_cancel(&rt_b->rt_period_timer);
  200. }
  201. #endif
  202. /*
  203. * sched_domains_mutex serializes calls to init_sched_domains,
  204. * detach_destroy_domains and partition_sched_domains.
  205. */
  206. static DEFINE_MUTEX(sched_domains_mutex);
  207. #ifdef CONFIG_CGROUP_SCHED
  208. #include <linux/cgroup.h>
  209. struct cfs_rq;
  210. static LIST_HEAD(task_groups);
  211. struct cfs_bandwidth {
  212. #ifdef CONFIG_CFS_BANDWIDTH
  213. raw_spinlock_t lock;
  214. ktime_t period;
  215. u64 quota;
  216. #endif
  217. };
  218. /* task group related information */
  219. struct task_group {
  220. struct cgroup_subsys_state css;
  221. #ifdef CONFIG_FAIR_GROUP_SCHED
  222. /* schedulable entities of this group on each cpu */
  223. struct sched_entity **se;
  224. /* runqueue "owned" by this group on each cpu */
  225. struct cfs_rq **cfs_rq;
  226. unsigned long shares;
  227. atomic_t load_weight;
  228. #endif
  229. #ifdef CONFIG_RT_GROUP_SCHED
  230. struct sched_rt_entity **rt_se;
  231. struct rt_rq **rt_rq;
  232. struct rt_bandwidth rt_bandwidth;
  233. #endif
  234. struct rcu_head rcu;
  235. struct list_head list;
  236. struct task_group *parent;
  237. struct list_head siblings;
  238. struct list_head children;
  239. #ifdef CONFIG_SCHED_AUTOGROUP
  240. struct autogroup *autogroup;
  241. #endif
  242. struct cfs_bandwidth cfs_bandwidth;
  243. };
  244. /* task_group_lock serializes the addition/removal of task groups */
  245. static DEFINE_SPINLOCK(task_group_lock);
  246. #ifdef CONFIG_FAIR_GROUP_SCHED
  247. # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
  248. /*
  249. * A weight of 0 or 1 can cause arithmetics problems.
  250. * A weight of a cfs_rq is the sum of weights of which entities
  251. * are queued on this cfs_rq, so a weight of a entity should not be
  252. * too large, so as the shares value of a task group.
  253. * (The default weight is 1024 - so there's no practical
  254. * limitation from this.)
  255. */
  256. #define MIN_SHARES (1UL << 1)
  257. #define MAX_SHARES (1UL << 18)
  258. static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
  259. #endif
  260. /* Default task group.
  261. * Every task in system belong to this group at bootup.
  262. */
  263. struct task_group root_task_group;
  264. #endif /* CONFIG_CGROUP_SCHED */
  265. /* CFS-related fields in a runqueue */
  266. struct cfs_rq {
  267. struct load_weight load;
  268. unsigned long nr_running, h_nr_running;
  269. u64 exec_clock;
  270. u64 min_vruntime;
  271. #ifndef CONFIG_64BIT
  272. u64 min_vruntime_copy;
  273. #endif
  274. struct rb_root tasks_timeline;
  275. struct rb_node *rb_leftmost;
  276. struct list_head tasks;
  277. struct list_head *balance_iterator;
  278. /*
  279. * 'curr' points to currently running entity on this cfs_rq.
  280. * It is set to NULL otherwise (i.e when none are currently running).
  281. */
  282. struct sched_entity *curr, *next, *last, *skip;
  283. #ifdef CONFIG_SCHED_DEBUG
  284. unsigned int nr_spread_over;
  285. #endif
  286. #ifdef CONFIG_FAIR_GROUP_SCHED
  287. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  288. /*
  289. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  290. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  291. * (like users, containers etc.)
  292. *
  293. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  294. * list is used during load balance.
  295. */
  296. int on_list;
  297. struct list_head leaf_cfs_rq_list;
  298. struct task_group *tg; /* group that "owns" this runqueue */
  299. #ifdef CONFIG_SMP
  300. /*
  301. * the part of load.weight contributed by tasks
  302. */
  303. unsigned long task_weight;
  304. /*
  305. * h_load = weight * f(tg)
  306. *
  307. * Where f(tg) is the recursive weight fraction assigned to
  308. * this group.
  309. */
  310. unsigned long h_load;
  311. /*
  312. * Maintaining per-cpu shares distribution for group scheduling
  313. *
  314. * load_stamp is the last time we updated the load average
  315. * load_last is the last time we updated the load average and saw load
  316. * load_unacc_exec_time is currently unaccounted execution time
  317. */
  318. u64 load_avg;
  319. u64 load_period;
  320. u64 load_stamp, load_last, load_unacc_exec_time;
  321. unsigned long load_contribution;
  322. #endif
  323. #ifdef CONFIG_CFS_BANDWIDTH
  324. int runtime_enabled;
  325. s64 runtime_remaining;
  326. #endif
  327. #endif
  328. };
  329. #ifdef CONFIG_FAIR_GROUP_SCHED
  330. #ifdef CONFIG_CFS_BANDWIDTH
  331. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  332. {
  333. return &tg->cfs_bandwidth;
  334. }
  335. static inline u64 default_cfs_period(void);
  336. static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  337. {
  338. raw_spin_lock_init(&cfs_b->lock);
  339. cfs_b->quota = RUNTIME_INF;
  340. cfs_b->period = ns_to_ktime(default_cfs_period());
  341. }
  342. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  343. {
  344. cfs_rq->runtime_enabled = 0;
  345. }
  346. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  347. {}
  348. #else
  349. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  350. static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  351. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  352. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  353. {
  354. return NULL;
  355. }
  356. #endif /* CONFIG_CFS_BANDWIDTH */
  357. #endif /* CONFIG_FAIR_GROUP_SCHED */
  358. /* Real-Time classes' related field in a runqueue: */
  359. struct rt_rq {
  360. struct rt_prio_array active;
  361. unsigned long rt_nr_running;
  362. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  363. struct {
  364. int curr; /* highest queued rt task prio */
  365. #ifdef CONFIG_SMP
  366. int next; /* next highest */
  367. #endif
  368. } highest_prio;
  369. #endif
  370. #ifdef CONFIG_SMP
  371. unsigned long rt_nr_migratory;
  372. unsigned long rt_nr_total;
  373. int overloaded;
  374. struct plist_head pushable_tasks;
  375. #endif
  376. int rt_throttled;
  377. u64 rt_time;
  378. u64 rt_runtime;
  379. /* Nests inside the rq lock: */
  380. raw_spinlock_t rt_runtime_lock;
  381. #ifdef CONFIG_RT_GROUP_SCHED
  382. unsigned long rt_nr_boosted;
  383. struct rq *rq;
  384. struct list_head leaf_rt_rq_list;
  385. struct task_group *tg;
  386. #endif
  387. };
  388. #ifdef CONFIG_SMP
  389. /*
  390. * We add the notion of a root-domain which will be used to define per-domain
  391. * variables. Each exclusive cpuset essentially defines an island domain by
  392. * fully partitioning the member cpus from any other cpuset. Whenever a new
  393. * exclusive cpuset is created, we also create and attach a new root-domain
  394. * object.
  395. *
  396. */
  397. struct root_domain {
  398. atomic_t refcount;
  399. atomic_t rto_count;
  400. struct rcu_head rcu;
  401. cpumask_var_t span;
  402. cpumask_var_t online;
  403. /*
  404. * The "RT overload" flag: it gets set if a CPU has more than
  405. * one runnable RT task.
  406. */
  407. cpumask_var_t rto_mask;
  408. struct cpupri cpupri;
  409. };
  410. /*
  411. * By default the system creates a single root-domain with all cpus as
  412. * members (mimicking the global state we have today).
  413. */
  414. static struct root_domain def_root_domain;
  415. #endif /* CONFIG_SMP */
  416. /*
  417. * This is the main, per-CPU runqueue data structure.
  418. *
  419. * Locking rule: those places that want to lock multiple runqueues
  420. * (such as the load balancing or the thread migration code), lock
  421. * acquire operations must be ordered by ascending &runqueue.
  422. */
  423. struct rq {
  424. /* runqueue lock: */
  425. raw_spinlock_t lock;
  426. /*
  427. * nr_running and cpu_load should be in the same cacheline because
  428. * remote CPUs use both these fields when doing load calculation.
  429. */
  430. unsigned long nr_running;
  431. #define CPU_LOAD_IDX_MAX 5
  432. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  433. unsigned long last_load_update_tick;
  434. #ifdef CONFIG_NO_HZ
  435. u64 nohz_stamp;
  436. unsigned char nohz_balance_kick;
  437. #endif
  438. int skip_clock_update;
  439. /* capture load from *all* tasks on this cpu: */
  440. struct load_weight load;
  441. unsigned long nr_load_updates;
  442. u64 nr_switches;
  443. struct cfs_rq cfs;
  444. struct rt_rq rt;
  445. #ifdef CONFIG_FAIR_GROUP_SCHED
  446. /* list of leaf cfs_rq on this cpu: */
  447. struct list_head leaf_cfs_rq_list;
  448. #endif
  449. #ifdef CONFIG_RT_GROUP_SCHED
  450. struct list_head leaf_rt_rq_list;
  451. #endif
  452. /*
  453. * This is part of a global counter where only the total sum
  454. * over all CPUs matters. A task can increase this counter on
  455. * one CPU and if it got migrated afterwards it may decrease
  456. * it on another CPU. Always updated under the runqueue lock:
  457. */
  458. unsigned long nr_uninterruptible;
  459. struct task_struct *curr, *idle, *stop;
  460. unsigned long next_balance;
  461. struct mm_struct *prev_mm;
  462. u64 clock;
  463. u64 clock_task;
  464. atomic_t nr_iowait;
  465. #ifdef CONFIG_SMP
  466. struct root_domain *rd;
  467. struct sched_domain *sd;
  468. unsigned long cpu_power;
  469. unsigned char idle_at_tick;
  470. /* For active balancing */
  471. int post_schedule;
  472. int active_balance;
  473. int push_cpu;
  474. struct cpu_stop_work active_balance_work;
  475. /* cpu of this runqueue: */
  476. int cpu;
  477. int online;
  478. u64 rt_avg;
  479. u64 age_stamp;
  480. u64 idle_stamp;
  481. u64 avg_idle;
  482. #endif
  483. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  484. u64 prev_irq_time;
  485. #endif
  486. #ifdef CONFIG_PARAVIRT
  487. u64 prev_steal_time;
  488. #endif
  489. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  490. u64 prev_steal_time_rq;
  491. #endif
  492. /* calc_load related fields */
  493. unsigned long calc_load_update;
  494. long calc_load_active;
  495. #ifdef CONFIG_SCHED_HRTICK
  496. #ifdef CONFIG_SMP
  497. int hrtick_csd_pending;
  498. struct call_single_data hrtick_csd;
  499. #endif
  500. struct hrtimer hrtick_timer;
  501. #endif
  502. #ifdef CONFIG_SCHEDSTATS
  503. /* latency stats */
  504. struct sched_info rq_sched_info;
  505. unsigned long long rq_cpu_time;
  506. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  507. /* sys_sched_yield() stats */
  508. unsigned int yld_count;
  509. /* schedule() stats */
  510. unsigned int sched_switch;
  511. unsigned int sched_count;
  512. unsigned int sched_goidle;
  513. /* try_to_wake_up() stats */
  514. unsigned int ttwu_count;
  515. unsigned int ttwu_local;
  516. #endif
  517. #ifdef CONFIG_SMP
  518. struct task_struct *wake_list;
  519. #endif
  520. };
  521. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  522. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
  523. static inline int cpu_of(struct rq *rq)
  524. {
  525. #ifdef CONFIG_SMP
  526. return rq->cpu;
  527. #else
  528. return 0;
  529. #endif
  530. }
  531. #define rcu_dereference_check_sched_domain(p) \
  532. rcu_dereference_check((p), \
  533. lockdep_is_held(&sched_domains_mutex))
  534. /*
  535. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  536. * See detach_destroy_domains: synchronize_sched for details.
  537. *
  538. * The domain tree of any CPU may only be accessed from within
  539. * preempt-disabled sections.
  540. */
  541. #define for_each_domain(cpu, __sd) \
  542. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  543. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  544. #define this_rq() (&__get_cpu_var(runqueues))
  545. #define task_rq(p) cpu_rq(task_cpu(p))
  546. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  547. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  548. #ifdef CONFIG_CGROUP_SCHED
  549. /*
  550. * Return the group to which this tasks belongs.
  551. *
  552. * We use task_subsys_state_check() and extend the RCU verification with
  553. * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
  554. * task it moves into the cgroup. Therefore by holding either of those locks,
  555. * we pin the task to the current cgroup.
  556. */
  557. static inline struct task_group *task_group(struct task_struct *p)
  558. {
  559. struct task_group *tg;
  560. struct cgroup_subsys_state *css;
  561. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  562. lockdep_is_held(&p->pi_lock) ||
  563. lockdep_is_held(&task_rq(p)->lock));
  564. tg = container_of(css, struct task_group, css);
  565. return autogroup_task_group(p, tg);
  566. }
  567. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  568. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  569. {
  570. #ifdef CONFIG_FAIR_GROUP_SCHED
  571. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  572. p->se.parent = task_group(p)->se[cpu];
  573. #endif
  574. #ifdef CONFIG_RT_GROUP_SCHED
  575. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  576. p->rt.parent = task_group(p)->rt_se[cpu];
  577. #endif
  578. }
  579. #else /* CONFIG_CGROUP_SCHED */
  580. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  581. static inline struct task_group *task_group(struct task_struct *p)
  582. {
  583. return NULL;
  584. }
  585. #endif /* CONFIG_CGROUP_SCHED */
  586. static void update_rq_clock_task(struct rq *rq, s64 delta);
  587. static void update_rq_clock(struct rq *rq)
  588. {
  589. s64 delta;
  590. if (rq->skip_clock_update > 0)
  591. return;
  592. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  593. rq->clock += delta;
  594. update_rq_clock_task(rq, delta);
  595. }
  596. /*
  597. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  598. */
  599. #ifdef CONFIG_SCHED_DEBUG
  600. # define const_debug __read_mostly
  601. #else
  602. # define const_debug static const
  603. #endif
  604. /**
  605. * runqueue_is_locked - Returns true if the current cpu runqueue is locked
  606. * @cpu: the processor in question.
  607. *
  608. * This interface allows printk to be called with the runqueue lock
  609. * held and know whether or not it is OK to wake up the klogd.
  610. */
  611. int runqueue_is_locked(int cpu)
  612. {
  613. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  614. }
  615. /*
  616. * Debugging: various feature bits
  617. */
  618. #define SCHED_FEAT(name, enabled) \
  619. __SCHED_FEAT_##name ,
  620. enum {
  621. #include "sched_features.h"
  622. };
  623. #undef SCHED_FEAT
  624. #define SCHED_FEAT(name, enabled) \
  625. (1UL << __SCHED_FEAT_##name) * enabled |
  626. const_debug unsigned int sysctl_sched_features =
  627. #include "sched_features.h"
  628. 0;
  629. #undef SCHED_FEAT
  630. #ifdef CONFIG_SCHED_DEBUG
  631. #define SCHED_FEAT(name, enabled) \
  632. #name ,
  633. static __read_mostly char *sched_feat_names[] = {
  634. #include "sched_features.h"
  635. NULL
  636. };
  637. #undef SCHED_FEAT
  638. static int sched_feat_show(struct seq_file *m, void *v)
  639. {
  640. int i;
  641. for (i = 0; sched_feat_names[i]; i++) {
  642. if (!(sysctl_sched_features & (1UL << i)))
  643. seq_puts(m, "NO_");
  644. seq_printf(m, "%s ", sched_feat_names[i]);
  645. }
  646. seq_puts(m, "\n");
  647. return 0;
  648. }
  649. static ssize_t
  650. sched_feat_write(struct file *filp, const char __user *ubuf,
  651. size_t cnt, loff_t *ppos)
  652. {
  653. char buf[64];
  654. char *cmp;
  655. int neg = 0;
  656. int i;
  657. if (cnt > 63)
  658. cnt = 63;
  659. if (copy_from_user(&buf, ubuf, cnt))
  660. return -EFAULT;
  661. buf[cnt] = 0;
  662. cmp = strstrip(buf);
  663. if (strncmp(cmp, "NO_", 3) == 0) {
  664. neg = 1;
  665. cmp += 3;
  666. }
  667. for (i = 0; sched_feat_names[i]; i++) {
  668. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  669. if (neg)
  670. sysctl_sched_features &= ~(1UL << i);
  671. else
  672. sysctl_sched_features |= (1UL << i);
  673. break;
  674. }
  675. }
  676. if (!sched_feat_names[i])
  677. return -EINVAL;
  678. *ppos += cnt;
  679. return cnt;
  680. }
  681. static int sched_feat_open(struct inode *inode, struct file *filp)
  682. {
  683. return single_open(filp, sched_feat_show, NULL);
  684. }
  685. static const struct file_operations sched_feat_fops = {
  686. .open = sched_feat_open,
  687. .write = sched_feat_write,
  688. .read = seq_read,
  689. .llseek = seq_lseek,
  690. .release = single_release,
  691. };
  692. static __init int sched_init_debug(void)
  693. {
  694. debugfs_create_file("sched_features", 0644, NULL, NULL,
  695. &sched_feat_fops);
  696. return 0;
  697. }
  698. late_initcall(sched_init_debug);
  699. #endif
  700. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  701. /*
  702. * Number of tasks to iterate in a single balance run.
  703. * Limited because this is done with IRQs disabled.
  704. */
  705. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  706. /*
  707. * period over which we average the RT time consumption, measured
  708. * in ms.
  709. *
  710. * default: 1s
  711. */
  712. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  713. /*
  714. * period over which we measure -rt task cpu usage in us.
  715. * default: 1s
  716. */
  717. unsigned int sysctl_sched_rt_period = 1000000;
  718. static __read_mostly int scheduler_running;
  719. /*
  720. * part of the period that we allow rt tasks to run in us.
  721. * default: 0.95s
  722. */
  723. int sysctl_sched_rt_runtime = 950000;
  724. static inline u64 global_rt_period(void)
  725. {
  726. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  727. }
  728. static inline u64 global_rt_runtime(void)
  729. {
  730. if (sysctl_sched_rt_runtime < 0)
  731. return RUNTIME_INF;
  732. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  733. }
  734. #ifndef prepare_arch_switch
  735. # define prepare_arch_switch(next) do { } while (0)
  736. #endif
  737. #ifndef finish_arch_switch
  738. # define finish_arch_switch(prev) do { } while (0)
  739. #endif
  740. static inline int task_current(struct rq *rq, struct task_struct *p)
  741. {
  742. return rq->curr == p;
  743. }
  744. static inline int task_running(struct rq *rq, struct task_struct *p)
  745. {
  746. #ifdef CONFIG_SMP
  747. return p->on_cpu;
  748. #else
  749. return task_current(rq, p);
  750. #endif
  751. }
  752. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  753. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  754. {
  755. #ifdef CONFIG_SMP
  756. /*
  757. * We can optimise this out completely for !SMP, because the
  758. * SMP rebalancing from interrupt is the only thing that cares
  759. * here.
  760. */
  761. next->on_cpu = 1;
  762. #endif
  763. }
  764. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  765. {
  766. #ifdef CONFIG_SMP
  767. /*
  768. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  769. * We must ensure this doesn't happen until the switch is completely
  770. * finished.
  771. */
  772. smp_wmb();
  773. prev->on_cpu = 0;
  774. #endif
  775. #ifdef CONFIG_DEBUG_SPINLOCK
  776. /* this is a valid case when another task releases the spinlock */
  777. rq->lock.owner = current;
  778. #endif
  779. /*
  780. * If we are tracking spinlock dependencies then we have to
  781. * fix up the runqueue lock - which gets 'carried over' from
  782. * prev into current:
  783. */
  784. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  785. raw_spin_unlock_irq(&rq->lock);
  786. }
  787. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  788. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  789. {
  790. #ifdef CONFIG_SMP
  791. /*
  792. * We can optimise this out completely for !SMP, because the
  793. * SMP rebalancing from interrupt is the only thing that cares
  794. * here.
  795. */
  796. next->on_cpu = 1;
  797. #endif
  798. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  799. raw_spin_unlock_irq(&rq->lock);
  800. #else
  801. raw_spin_unlock(&rq->lock);
  802. #endif
  803. }
  804. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  805. {
  806. #ifdef CONFIG_SMP
  807. /*
  808. * After ->on_cpu is cleared, the task can be moved to a different CPU.
  809. * We must ensure this doesn't happen until the switch is completely
  810. * finished.
  811. */
  812. smp_wmb();
  813. prev->on_cpu = 0;
  814. #endif
  815. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  816. local_irq_enable();
  817. #endif
  818. }
  819. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  820. /*
  821. * __task_rq_lock - lock the rq @p resides on.
  822. */
  823. static inline struct rq *__task_rq_lock(struct task_struct *p)
  824. __acquires(rq->lock)
  825. {
  826. struct rq *rq;
  827. lockdep_assert_held(&p->pi_lock);
  828. for (;;) {
  829. rq = task_rq(p);
  830. raw_spin_lock(&rq->lock);
  831. if (likely(rq == task_rq(p)))
  832. return rq;
  833. raw_spin_unlock(&rq->lock);
  834. }
  835. }
  836. /*
  837. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  838. */
  839. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  840. __acquires(p->pi_lock)
  841. __acquires(rq->lock)
  842. {
  843. struct rq *rq;
  844. for (;;) {
  845. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  846. rq = task_rq(p);
  847. raw_spin_lock(&rq->lock);
  848. if (likely(rq == task_rq(p)))
  849. return rq;
  850. raw_spin_unlock(&rq->lock);
  851. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  852. }
  853. }
  854. static void __task_rq_unlock(struct rq *rq)
  855. __releases(rq->lock)
  856. {
  857. raw_spin_unlock(&rq->lock);
  858. }
  859. static inline void
  860. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  861. __releases(rq->lock)
  862. __releases(p->pi_lock)
  863. {
  864. raw_spin_unlock(&rq->lock);
  865. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  866. }
  867. /*
  868. * this_rq_lock - lock this runqueue and disable interrupts.
  869. */
  870. static struct rq *this_rq_lock(void)
  871. __acquires(rq->lock)
  872. {
  873. struct rq *rq;
  874. local_irq_disable();
  875. rq = this_rq();
  876. raw_spin_lock(&rq->lock);
  877. return rq;
  878. }
  879. #ifdef CONFIG_SCHED_HRTICK
  880. /*
  881. * Use HR-timers to deliver accurate preemption points.
  882. *
  883. * Its all a bit involved since we cannot program an hrt while holding the
  884. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  885. * reschedule event.
  886. *
  887. * When we get rescheduled we reprogram the hrtick_timer outside of the
  888. * rq->lock.
  889. */
  890. /*
  891. * Use hrtick when:
  892. * - enabled by features
  893. * - hrtimer is actually high res
  894. */
  895. static inline int hrtick_enabled(struct rq *rq)
  896. {
  897. if (!sched_feat(HRTICK))
  898. return 0;
  899. if (!cpu_active(cpu_of(rq)))
  900. return 0;
  901. return hrtimer_is_hres_active(&rq->hrtick_timer);
  902. }
  903. static void hrtick_clear(struct rq *rq)
  904. {
  905. if (hrtimer_active(&rq->hrtick_timer))
  906. hrtimer_cancel(&rq->hrtick_timer);
  907. }
  908. /*
  909. * High-resolution timer tick.
  910. * Runs from hardirq context with interrupts disabled.
  911. */
  912. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  913. {
  914. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  915. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  916. raw_spin_lock(&rq->lock);
  917. update_rq_clock(rq);
  918. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  919. raw_spin_unlock(&rq->lock);
  920. return HRTIMER_NORESTART;
  921. }
  922. #ifdef CONFIG_SMP
  923. /*
  924. * called from hardirq (IPI) context
  925. */
  926. static void __hrtick_start(void *arg)
  927. {
  928. struct rq *rq = arg;
  929. raw_spin_lock(&rq->lock);
  930. hrtimer_restart(&rq->hrtick_timer);
  931. rq->hrtick_csd_pending = 0;
  932. raw_spin_unlock(&rq->lock);
  933. }
  934. /*
  935. * Called to set the hrtick timer state.
  936. *
  937. * called with rq->lock held and irqs disabled
  938. */
  939. static void hrtick_start(struct rq *rq, u64 delay)
  940. {
  941. struct hrtimer *timer = &rq->hrtick_timer;
  942. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  943. hrtimer_set_expires(timer, time);
  944. if (rq == this_rq()) {
  945. hrtimer_restart(timer);
  946. } else if (!rq->hrtick_csd_pending) {
  947. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  948. rq->hrtick_csd_pending = 1;
  949. }
  950. }
  951. static int
  952. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  953. {
  954. int cpu = (int)(long)hcpu;
  955. switch (action) {
  956. case CPU_UP_CANCELED:
  957. case CPU_UP_CANCELED_FROZEN:
  958. case CPU_DOWN_PREPARE:
  959. case CPU_DOWN_PREPARE_FROZEN:
  960. case CPU_DEAD:
  961. case CPU_DEAD_FROZEN:
  962. hrtick_clear(cpu_rq(cpu));
  963. return NOTIFY_OK;
  964. }
  965. return NOTIFY_DONE;
  966. }
  967. static __init void init_hrtick(void)
  968. {
  969. hotcpu_notifier(hotplug_hrtick, 0);
  970. }
  971. #else
  972. /*
  973. * Called to set the hrtick timer state.
  974. *
  975. * called with rq->lock held and irqs disabled
  976. */
  977. static void hrtick_start(struct rq *rq, u64 delay)
  978. {
  979. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  980. HRTIMER_MODE_REL_PINNED, 0);
  981. }
  982. static inline void init_hrtick(void)
  983. {
  984. }
  985. #endif /* CONFIG_SMP */
  986. static void init_rq_hrtick(struct rq *rq)
  987. {
  988. #ifdef CONFIG_SMP
  989. rq->hrtick_csd_pending = 0;
  990. rq->hrtick_csd.flags = 0;
  991. rq->hrtick_csd.func = __hrtick_start;
  992. rq->hrtick_csd.info = rq;
  993. #endif
  994. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  995. rq->hrtick_timer.function = hrtick;
  996. }
  997. #else /* CONFIG_SCHED_HRTICK */
  998. static inline void hrtick_clear(struct rq *rq)
  999. {
  1000. }
  1001. static inline void init_rq_hrtick(struct rq *rq)
  1002. {
  1003. }
  1004. static inline void init_hrtick(void)
  1005. {
  1006. }
  1007. #endif /* CONFIG_SCHED_HRTICK */
  1008. /*
  1009. * resched_task - mark a task 'to be rescheduled now'.
  1010. *
  1011. * On UP this means the setting of the need_resched flag, on SMP it
  1012. * might also involve a cross-CPU call to trigger the scheduler on
  1013. * the target CPU.
  1014. */
  1015. #ifdef CONFIG_SMP
  1016. #ifndef tsk_is_polling
  1017. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1018. #endif
  1019. static void resched_task(struct task_struct *p)
  1020. {
  1021. int cpu;
  1022. assert_raw_spin_locked(&task_rq(p)->lock);
  1023. if (test_tsk_need_resched(p))
  1024. return;
  1025. set_tsk_need_resched(p);
  1026. cpu = task_cpu(p);
  1027. if (cpu == smp_processor_id())
  1028. return;
  1029. /* NEED_RESCHED must be visible before we test polling */
  1030. smp_mb();
  1031. if (!tsk_is_polling(p))
  1032. smp_send_reschedule(cpu);
  1033. }
  1034. static void resched_cpu(int cpu)
  1035. {
  1036. struct rq *rq = cpu_rq(cpu);
  1037. unsigned long flags;
  1038. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  1039. return;
  1040. resched_task(cpu_curr(cpu));
  1041. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1042. }
  1043. #ifdef CONFIG_NO_HZ
  1044. /*
  1045. * In the semi idle case, use the nearest busy cpu for migrating timers
  1046. * from an idle cpu. This is good for power-savings.
  1047. *
  1048. * We don't do similar optimization for completely idle system, as
  1049. * selecting an idle cpu will add more delays to the timers than intended
  1050. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  1051. */
  1052. int get_nohz_timer_target(void)
  1053. {
  1054. int cpu = smp_processor_id();
  1055. int i;
  1056. struct sched_domain *sd;
  1057. rcu_read_lock();
  1058. for_each_domain(cpu, sd) {
  1059. for_each_cpu(i, sched_domain_span(sd)) {
  1060. if (!idle_cpu(i)) {
  1061. cpu = i;
  1062. goto unlock;
  1063. }
  1064. }
  1065. }
  1066. unlock:
  1067. rcu_read_unlock();
  1068. return cpu;
  1069. }
  1070. /*
  1071. * When add_timer_on() enqueues a timer into the timer wheel of an
  1072. * idle CPU then this timer might expire before the next timer event
  1073. * which is scheduled to wake up that CPU. In case of a completely
  1074. * idle system the next event might even be infinite time into the
  1075. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1076. * leaves the inner idle loop so the newly added timer is taken into
  1077. * account when the CPU goes back to idle and evaluates the timer
  1078. * wheel for the next timer event.
  1079. */
  1080. void wake_up_idle_cpu(int cpu)
  1081. {
  1082. struct rq *rq = cpu_rq(cpu);
  1083. if (cpu == smp_processor_id())
  1084. return;
  1085. /*
  1086. * This is safe, as this function is called with the timer
  1087. * wheel base lock of (cpu) held. When the CPU is on the way
  1088. * to idle and has not yet set rq->curr to idle then it will
  1089. * be serialized on the timer wheel base lock and take the new
  1090. * timer into account automatically.
  1091. */
  1092. if (rq->curr != rq->idle)
  1093. return;
  1094. /*
  1095. * We can set TIF_RESCHED on the idle task of the other CPU
  1096. * lockless. The worst case is that the other CPU runs the
  1097. * idle task through an additional NOOP schedule()
  1098. */
  1099. set_tsk_need_resched(rq->idle);
  1100. /* NEED_RESCHED must be visible before we test polling */
  1101. smp_mb();
  1102. if (!tsk_is_polling(rq->idle))
  1103. smp_send_reschedule(cpu);
  1104. }
  1105. #endif /* CONFIG_NO_HZ */
  1106. static u64 sched_avg_period(void)
  1107. {
  1108. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1109. }
  1110. static void sched_avg_update(struct rq *rq)
  1111. {
  1112. s64 period = sched_avg_period();
  1113. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1114. /*
  1115. * Inline assembly required to prevent the compiler
  1116. * optimising this loop into a divmod call.
  1117. * See __iter_div_u64_rem() for another example of this.
  1118. */
  1119. asm("" : "+rm" (rq->age_stamp));
  1120. rq->age_stamp += period;
  1121. rq->rt_avg /= 2;
  1122. }
  1123. }
  1124. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1125. {
  1126. rq->rt_avg += rt_delta;
  1127. sched_avg_update(rq);
  1128. }
  1129. #else /* !CONFIG_SMP */
  1130. static void resched_task(struct task_struct *p)
  1131. {
  1132. assert_raw_spin_locked(&task_rq(p)->lock);
  1133. set_tsk_need_resched(p);
  1134. }
  1135. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1136. {
  1137. }
  1138. static void sched_avg_update(struct rq *rq)
  1139. {
  1140. }
  1141. #endif /* CONFIG_SMP */
  1142. #if BITS_PER_LONG == 32
  1143. # define WMULT_CONST (~0UL)
  1144. #else
  1145. # define WMULT_CONST (1UL << 32)
  1146. #endif
  1147. #define WMULT_SHIFT 32
  1148. /*
  1149. * Shift right and round:
  1150. */
  1151. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1152. /*
  1153. * delta *= weight / lw
  1154. */
  1155. static unsigned long
  1156. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1157. struct load_weight *lw)
  1158. {
  1159. u64 tmp;
  1160. /*
  1161. * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
  1162. * entities since MIN_SHARES = 2. Treat weight as 1 if less than
  1163. * 2^SCHED_LOAD_RESOLUTION.
  1164. */
  1165. if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
  1166. tmp = (u64)delta_exec * scale_load_down(weight);
  1167. else
  1168. tmp = (u64)delta_exec;
  1169. if (!lw->inv_weight) {
  1170. unsigned long w = scale_load_down(lw->weight);
  1171. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  1172. lw->inv_weight = 1;
  1173. else if (unlikely(!w))
  1174. lw->inv_weight = WMULT_CONST;
  1175. else
  1176. lw->inv_weight = WMULT_CONST / w;
  1177. }
  1178. /*
  1179. * Check whether we'd overflow the 64-bit multiplication:
  1180. */
  1181. if (unlikely(tmp > WMULT_CONST))
  1182. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1183. WMULT_SHIFT/2);
  1184. else
  1185. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1186. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1187. }
  1188. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1189. {
  1190. lw->weight += inc;
  1191. lw->inv_weight = 0;
  1192. }
  1193. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1194. {
  1195. lw->weight -= dec;
  1196. lw->inv_weight = 0;
  1197. }
  1198. static inline void update_load_set(struct load_weight *lw, unsigned long w)
  1199. {
  1200. lw->weight = w;
  1201. lw->inv_weight = 0;
  1202. }
  1203. /*
  1204. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1205. * of tasks with abnormal "nice" values across CPUs the contribution that
  1206. * each task makes to its run queue's load is weighted according to its
  1207. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1208. * scaled version of the new time slice allocation that they receive on time
  1209. * slice expiry etc.
  1210. */
  1211. #define WEIGHT_IDLEPRIO 3
  1212. #define WMULT_IDLEPRIO 1431655765
  1213. /*
  1214. * Nice levels are multiplicative, with a gentle 10% change for every
  1215. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1216. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1217. * that remained on nice 0.
  1218. *
  1219. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1220. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1221. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1222. * If a task goes up by ~10% and another task goes down by ~10% then
  1223. * the relative distance between them is ~25%.)
  1224. */
  1225. static const int prio_to_weight[40] = {
  1226. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1227. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1228. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1229. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1230. /* 0 */ 1024, 820, 655, 526, 423,
  1231. /* 5 */ 335, 272, 215, 172, 137,
  1232. /* 10 */ 110, 87, 70, 56, 45,
  1233. /* 15 */ 36, 29, 23, 18, 15,
  1234. };
  1235. /*
  1236. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1237. *
  1238. * In cases where the weight does not change often, we can use the
  1239. * precalculated inverse to speed up arithmetics by turning divisions
  1240. * into multiplications:
  1241. */
  1242. static const u32 prio_to_wmult[40] = {
  1243. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1244. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1245. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1246. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1247. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1248. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1249. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1250. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1251. };
  1252. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1253. enum cpuacct_stat_index {
  1254. CPUACCT_STAT_USER, /* ... user mode */
  1255. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1256. CPUACCT_STAT_NSTATS,
  1257. };
  1258. #ifdef CONFIG_CGROUP_CPUACCT
  1259. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1260. static void cpuacct_update_stats(struct task_struct *tsk,
  1261. enum cpuacct_stat_index idx, cputime_t val);
  1262. #else
  1263. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1264. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1265. enum cpuacct_stat_index idx, cputime_t val) {}
  1266. #endif
  1267. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1268. {
  1269. update_load_add(&rq->load, load);
  1270. }
  1271. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1272. {
  1273. update_load_sub(&rq->load, load);
  1274. }
  1275. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1276. typedef int (*tg_visitor)(struct task_group *, void *);
  1277. /*
  1278. * Iterate the full tree, calling @down when first entering a node and @up when
  1279. * leaving it for the final time.
  1280. */
  1281. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1282. {
  1283. struct task_group *parent, *child;
  1284. int ret;
  1285. rcu_read_lock();
  1286. parent = &root_task_group;
  1287. down:
  1288. ret = (*down)(parent, data);
  1289. if (ret)
  1290. goto out_unlock;
  1291. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1292. parent = child;
  1293. goto down;
  1294. up:
  1295. continue;
  1296. }
  1297. ret = (*up)(parent, data);
  1298. if (ret)
  1299. goto out_unlock;
  1300. child = parent;
  1301. parent = parent->parent;
  1302. if (parent)
  1303. goto up;
  1304. out_unlock:
  1305. rcu_read_unlock();
  1306. return ret;
  1307. }
  1308. static int tg_nop(struct task_group *tg, void *data)
  1309. {
  1310. return 0;
  1311. }
  1312. #endif
  1313. #ifdef CONFIG_SMP
  1314. /* Used instead of source_load when we know the type == 0 */
  1315. static unsigned long weighted_cpuload(const int cpu)
  1316. {
  1317. return cpu_rq(cpu)->load.weight;
  1318. }
  1319. /*
  1320. * Return a low guess at the load of a migration-source cpu weighted
  1321. * according to the scheduling class and "nice" value.
  1322. *
  1323. * We want to under-estimate the load of migration sources, to
  1324. * balance conservatively.
  1325. */
  1326. static unsigned long source_load(int cpu, int type)
  1327. {
  1328. struct rq *rq = cpu_rq(cpu);
  1329. unsigned long total = weighted_cpuload(cpu);
  1330. if (type == 0 || !sched_feat(LB_BIAS))
  1331. return total;
  1332. return min(rq->cpu_load[type-1], total);
  1333. }
  1334. /*
  1335. * Return a high guess at the load of a migration-target cpu weighted
  1336. * according to the scheduling class and "nice" value.
  1337. */
  1338. static unsigned long target_load(int cpu, int type)
  1339. {
  1340. struct rq *rq = cpu_rq(cpu);
  1341. unsigned long total = weighted_cpuload(cpu);
  1342. if (type == 0 || !sched_feat(LB_BIAS))
  1343. return total;
  1344. return max(rq->cpu_load[type-1], total);
  1345. }
  1346. static unsigned long power_of(int cpu)
  1347. {
  1348. return cpu_rq(cpu)->cpu_power;
  1349. }
  1350. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1351. static unsigned long cpu_avg_load_per_task(int cpu)
  1352. {
  1353. struct rq *rq = cpu_rq(cpu);
  1354. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1355. if (nr_running)
  1356. return rq->load.weight / nr_running;
  1357. return 0;
  1358. }
  1359. #ifdef CONFIG_PREEMPT
  1360. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1361. /*
  1362. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1363. * way at the expense of forcing extra atomic operations in all
  1364. * invocations. This assures that the double_lock is acquired using the
  1365. * same underlying policy as the spinlock_t on this architecture, which
  1366. * reduces latency compared to the unfair variant below. However, it
  1367. * also adds more overhead and therefore may reduce throughput.
  1368. */
  1369. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1370. __releases(this_rq->lock)
  1371. __acquires(busiest->lock)
  1372. __acquires(this_rq->lock)
  1373. {
  1374. raw_spin_unlock(&this_rq->lock);
  1375. double_rq_lock(this_rq, busiest);
  1376. return 1;
  1377. }
  1378. #else
  1379. /*
  1380. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1381. * latency by eliminating extra atomic operations when the locks are
  1382. * already in proper order on entry. This favors lower cpu-ids and will
  1383. * grant the double lock to lower cpus over higher ids under contention,
  1384. * regardless of entry order into the function.
  1385. */
  1386. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1387. __releases(this_rq->lock)
  1388. __acquires(busiest->lock)
  1389. __acquires(this_rq->lock)
  1390. {
  1391. int ret = 0;
  1392. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1393. if (busiest < this_rq) {
  1394. raw_spin_unlock(&this_rq->lock);
  1395. raw_spin_lock(&busiest->lock);
  1396. raw_spin_lock_nested(&this_rq->lock,
  1397. SINGLE_DEPTH_NESTING);
  1398. ret = 1;
  1399. } else
  1400. raw_spin_lock_nested(&busiest->lock,
  1401. SINGLE_DEPTH_NESTING);
  1402. }
  1403. return ret;
  1404. }
  1405. #endif /* CONFIG_PREEMPT */
  1406. /*
  1407. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1408. */
  1409. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1410. {
  1411. if (unlikely(!irqs_disabled())) {
  1412. /* printk() doesn't work good under rq->lock */
  1413. raw_spin_unlock(&this_rq->lock);
  1414. BUG_ON(1);
  1415. }
  1416. return _double_lock_balance(this_rq, busiest);
  1417. }
  1418. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1419. __releases(busiest->lock)
  1420. {
  1421. raw_spin_unlock(&busiest->lock);
  1422. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1423. }
  1424. /*
  1425. * double_rq_lock - safely lock two runqueues
  1426. *
  1427. * Note this does not disable interrupts like task_rq_lock,
  1428. * you need to do so manually before calling.
  1429. */
  1430. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1431. __acquires(rq1->lock)
  1432. __acquires(rq2->lock)
  1433. {
  1434. BUG_ON(!irqs_disabled());
  1435. if (rq1 == rq2) {
  1436. raw_spin_lock(&rq1->lock);
  1437. __acquire(rq2->lock); /* Fake it out ;) */
  1438. } else {
  1439. if (rq1 < rq2) {
  1440. raw_spin_lock(&rq1->lock);
  1441. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1442. } else {
  1443. raw_spin_lock(&rq2->lock);
  1444. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1445. }
  1446. }
  1447. }
  1448. /*
  1449. * double_rq_unlock - safely unlock two runqueues
  1450. *
  1451. * Note this does not restore interrupts like task_rq_unlock,
  1452. * you need to do so manually after calling.
  1453. */
  1454. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1455. __releases(rq1->lock)
  1456. __releases(rq2->lock)
  1457. {
  1458. raw_spin_unlock(&rq1->lock);
  1459. if (rq1 != rq2)
  1460. raw_spin_unlock(&rq2->lock);
  1461. else
  1462. __release(rq2->lock);
  1463. }
  1464. #else /* CONFIG_SMP */
  1465. /*
  1466. * double_rq_lock - safely lock two runqueues
  1467. *
  1468. * Note this does not disable interrupts like task_rq_lock,
  1469. * you need to do so manually before calling.
  1470. */
  1471. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1472. __acquires(rq1->lock)
  1473. __acquires(rq2->lock)
  1474. {
  1475. BUG_ON(!irqs_disabled());
  1476. BUG_ON(rq1 != rq2);
  1477. raw_spin_lock(&rq1->lock);
  1478. __acquire(rq2->lock); /* Fake it out ;) */
  1479. }
  1480. /*
  1481. * double_rq_unlock - safely unlock two runqueues
  1482. *
  1483. * Note this does not restore interrupts like task_rq_unlock,
  1484. * you need to do so manually after calling.
  1485. */
  1486. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1487. __releases(rq1->lock)
  1488. __releases(rq2->lock)
  1489. {
  1490. BUG_ON(rq1 != rq2);
  1491. raw_spin_unlock(&rq1->lock);
  1492. __release(rq2->lock);
  1493. }
  1494. #endif
  1495. static void calc_load_account_idle(struct rq *this_rq);
  1496. static void update_sysctl(void);
  1497. static int get_update_sysctl_factor(void);
  1498. static void update_cpu_load(struct rq *this_rq);
  1499. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1500. {
  1501. set_task_rq(p, cpu);
  1502. #ifdef CONFIG_SMP
  1503. /*
  1504. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1505. * successfuly executed on another CPU. We must ensure that updates of
  1506. * per-task data have been completed by this moment.
  1507. */
  1508. smp_wmb();
  1509. task_thread_info(p)->cpu = cpu;
  1510. #endif
  1511. }
  1512. static const struct sched_class rt_sched_class;
  1513. #define sched_class_highest (&stop_sched_class)
  1514. #define for_each_class(class) \
  1515. for (class = sched_class_highest; class; class = class->next)
  1516. #include "sched_stats.h"
  1517. static void inc_nr_running(struct rq *rq)
  1518. {
  1519. rq->nr_running++;
  1520. }
  1521. static void dec_nr_running(struct rq *rq)
  1522. {
  1523. rq->nr_running--;
  1524. }
  1525. static void set_load_weight(struct task_struct *p)
  1526. {
  1527. int prio = p->static_prio - MAX_RT_PRIO;
  1528. struct load_weight *load = &p->se.load;
  1529. /*
  1530. * SCHED_IDLE tasks get minimal weight:
  1531. */
  1532. if (p->policy == SCHED_IDLE) {
  1533. load->weight = scale_load(WEIGHT_IDLEPRIO);
  1534. load->inv_weight = WMULT_IDLEPRIO;
  1535. return;
  1536. }
  1537. load->weight = scale_load(prio_to_weight[prio]);
  1538. load->inv_weight = prio_to_wmult[prio];
  1539. }
  1540. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1541. {
  1542. update_rq_clock(rq);
  1543. sched_info_queued(p);
  1544. p->sched_class->enqueue_task(rq, p, flags);
  1545. }
  1546. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1547. {
  1548. update_rq_clock(rq);
  1549. sched_info_dequeued(p);
  1550. p->sched_class->dequeue_task(rq, p, flags);
  1551. }
  1552. /*
  1553. * activate_task - move a task to the runqueue.
  1554. */
  1555. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1556. {
  1557. if (task_contributes_to_load(p))
  1558. rq->nr_uninterruptible--;
  1559. enqueue_task(rq, p, flags);
  1560. }
  1561. /*
  1562. * deactivate_task - remove a task from the runqueue.
  1563. */
  1564. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1565. {
  1566. if (task_contributes_to_load(p))
  1567. rq->nr_uninterruptible++;
  1568. dequeue_task(rq, p, flags);
  1569. }
  1570. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1571. /*
  1572. * There are no locks covering percpu hardirq/softirq time.
  1573. * They are only modified in account_system_vtime, on corresponding CPU
  1574. * with interrupts disabled. So, writes are safe.
  1575. * They are read and saved off onto struct rq in update_rq_clock().
  1576. * This may result in other CPU reading this CPU's irq time and can
  1577. * race with irq/account_system_vtime on this CPU. We would either get old
  1578. * or new value with a side effect of accounting a slice of irq time to wrong
  1579. * task when irq is in progress while we read rq->clock. That is a worthy
  1580. * compromise in place of having locks on each irq in account_system_time.
  1581. */
  1582. static DEFINE_PER_CPU(u64, cpu_hardirq_time);
  1583. static DEFINE_PER_CPU(u64, cpu_softirq_time);
  1584. static DEFINE_PER_CPU(u64, irq_start_time);
  1585. static int sched_clock_irqtime;
  1586. void enable_sched_clock_irqtime(void)
  1587. {
  1588. sched_clock_irqtime = 1;
  1589. }
  1590. void disable_sched_clock_irqtime(void)
  1591. {
  1592. sched_clock_irqtime = 0;
  1593. }
  1594. #ifndef CONFIG_64BIT
  1595. static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  1596. static inline void irq_time_write_begin(void)
  1597. {
  1598. __this_cpu_inc(irq_time_seq.sequence);
  1599. smp_wmb();
  1600. }
  1601. static inline void irq_time_write_end(void)
  1602. {
  1603. smp_wmb();
  1604. __this_cpu_inc(irq_time_seq.sequence);
  1605. }
  1606. static inline u64 irq_time_read(int cpu)
  1607. {
  1608. u64 irq_time;
  1609. unsigned seq;
  1610. do {
  1611. seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
  1612. irq_time = per_cpu(cpu_softirq_time, cpu) +
  1613. per_cpu(cpu_hardirq_time, cpu);
  1614. } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
  1615. return irq_time;
  1616. }
  1617. #else /* CONFIG_64BIT */
  1618. static inline void irq_time_write_begin(void)
  1619. {
  1620. }
  1621. static inline void irq_time_write_end(void)
  1622. {
  1623. }
  1624. static inline u64 irq_time_read(int cpu)
  1625. {
  1626. return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
  1627. }
  1628. #endif /* CONFIG_64BIT */
  1629. /*
  1630. * Called before incrementing preempt_count on {soft,}irq_enter
  1631. * and before decrementing preempt_count on {soft,}irq_exit.
  1632. */
  1633. void account_system_vtime(struct task_struct *curr)
  1634. {
  1635. unsigned long flags;
  1636. s64 delta;
  1637. int cpu;
  1638. if (!sched_clock_irqtime)
  1639. return;
  1640. local_irq_save(flags);
  1641. cpu = smp_processor_id();
  1642. delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  1643. __this_cpu_add(irq_start_time, delta);
  1644. irq_time_write_begin();
  1645. /*
  1646. * We do not account for softirq time from ksoftirqd here.
  1647. * We want to continue accounting softirq time to ksoftirqd thread
  1648. * in that case, so as not to confuse scheduler with a special task
  1649. * that do not consume any time, but still wants to run.
  1650. */
  1651. if (hardirq_count())
  1652. __this_cpu_add(cpu_hardirq_time, delta);
  1653. else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  1654. __this_cpu_add(cpu_softirq_time, delta);
  1655. irq_time_write_end();
  1656. local_irq_restore(flags);
  1657. }
  1658. EXPORT_SYMBOL_GPL(account_system_vtime);
  1659. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  1660. #ifdef CONFIG_PARAVIRT
  1661. static inline u64 steal_ticks(u64 steal)
  1662. {
  1663. if (unlikely(steal > NSEC_PER_SEC))
  1664. return div_u64(steal, TICK_NSEC);
  1665. return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
  1666. }
  1667. #endif
  1668. static void update_rq_clock_task(struct rq *rq, s64 delta)
  1669. {
  1670. /*
  1671. * In theory, the compile should just see 0 here, and optimize out the call
  1672. * to sched_rt_avg_update. But I don't trust it...
  1673. */
  1674. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  1675. s64 steal = 0, irq_delta = 0;
  1676. #endif
  1677. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1678. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  1679. /*
  1680. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  1681. * this case when a previous update_rq_clock() happened inside a
  1682. * {soft,}irq region.
  1683. *
  1684. * When this happens, we stop ->clock_task and only update the
  1685. * prev_irq_time stamp to account for the part that fit, so that a next
  1686. * update will consume the rest. This ensures ->clock_task is
  1687. * monotonic.
  1688. *
  1689. * It does however cause some slight miss-attribution of {soft,}irq
  1690. * time, a more accurate solution would be to update the irq_time using
  1691. * the current rq->clock timestamp, except that would require using
  1692. * atomic ops.
  1693. */
  1694. if (irq_delta > delta)
  1695. irq_delta = delta;
  1696. rq->prev_irq_time += irq_delta;
  1697. delta -= irq_delta;
  1698. #endif
  1699. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  1700. if (static_branch((&paravirt_steal_rq_enabled))) {
  1701. u64 st;
  1702. steal = paravirt_steal_clock(cpu_of(rq));
  1703. steal -= rq->prev_steal_time_rq;
  1704. if (unlikely(steal > delta))
  1705. steal = delta;
  1706. st = steal_ticks(steal);
  1707. steal = st * TICK_NSEC;
  1708. rq->prev_steal_time_rq += steal;
  1709. delta -= steal;
  1710. }
  1711. #endif
  1712. rq->clock_task += delta;
  1713. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  1714. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  1715. sched_rt_avg_update(rq, irq_delta + steal);
  1716. #endif
  1717. }
  1718. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  1719. static int irqtime_account_hi_update(void)
  1720. {
  1721. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1722. unsigned long flags;
  1723. u64 latest_ns;
  1724. int ret = 0;
  1725. local_irq_save(flags);
  1726. latest_ns = this_cpu_read(cpu_hardirq_time);
  1727. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
  1728. ret = 1;
  1729. local_irq_restore(flags);
  1730. return ret;
  1731. }
  1732. static int irqtime_account_si_update(void)
  1733. {
  1734. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  1735. unsigned long flags;
  1736. u64 latest_ns;
  1737. int ret = 0;
  1738. local_irq_save(flags);
  1739. latest_ns = this_cpu_read(cpu_softirq_time);
  1740. if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
  1741. ret = 1;
  1742. local_irq_restore(flags);
  1743. return ret;
  1744. }
  1745. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  1746. #define sched_clock_irqtime (0)
  1747. #endif
  1748. #include "sched_idletask.c"
  1749. #include "sched_fair.c"
  1750. #include "sched_rt.c"
  1751. #include "sched_autogroup.c"
  1752. #include "sched_stoptask.c"
  1753. #ifdef CONFIG_SCHED_DEBUG
  1754. # include "sched_debug.c"
  1755. #endif
  1756. void sched_set_stop_task(int cpu, struct task_struct *stop)
  1757. {
  1758. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  1759. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  1760. if (stop) {
  1761. /*
  1762. * Make it appear like a SCHED_FIFO task, its something
  1763. * userspace knows about and won't get confused about.
  1764. *
  1765. * Also, it will make PI more or less work without too
  1766. * much confusion -- but then, stop work should not
  1767. * rely on PI working anyway.
  1768. */
  1769. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  1770. stop->sched_class = &stop_sched_class;
  1771. }
  1772. cpu_rq(cpu)->stop = stop;
  1773. if (old_stop) {
  1774. /*
  1775. * Reset it back to a normal scheduling class so that
  1776. * it can die in pieces.
  1777. */
  1778. old_stop->sched_class = &rt_sched_class;
  1779. }
  1780. }
  1781. /*
  1782. * __normal_prio - return the priority that is based on the static prio
  1783. */
  1784. static inline int __normal_prio(struct task_struct *p)
  1785. {
  1786. return p->static_prio;
  1787. }
  1788. /*
  1789. * Calculate the expected normal priority: i.e. priority
  1790. * without taking RT-inheritance into account. Might be
  1791. * boosted by interactivity modifiers. Changes upon fork,
  1792. * setprio syscalls, and whenever the interactivity
  1793. * estimator recalculates.
  1794. */
  1795. static inline int normal_prio(struct task_struct *p)
  1796. {
  1797. int prio;
  1798. if (task_has_rt_policy(p))
  1799. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1800. else
  1801. prio = __normal_prio(p);
  1802. return prio;
  1803. }
  1804. /*
  1805. * Calculate the current priority, i.e. the priority
  1806. * taken into account by the scheduler. This value might
  1807. * be boosted by RT tasks, or might be boosted by
  1808. * interactivity modifiers. Will be RT if the task got
  1809. * RT-boosted. If not then it returns p->normal_prio.
  1810. */
  1811. static int effective_prio(struct task_struct *p)
  1812. {
  1813. p->normal_prio = normal_prio(p);
  1814. /*
  1815. * If we are RT tasks or we were boosted to RT priority,
  1816. * keep the priority unchanged. Otherwise, update priority
  1817. * to the normal priority:
  1818. */
  1819. if (!rt_prio(p->prio))
  1820. return p->normal_prio;
  1821. return p->prio;
  1822. }
  1823. /**
  1824. * task_curr - is this task currently executing on a CPU?
  1825. * @p: the task in question.
  1826. */
  1827. inline int task_curr(const struct task_struct *p)
  1828. {
  1829. return cpu_curr(task_cpu(p)) == p;
  1830. }
  1831. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1832. const struct sched_class *prev_class,
  1833. int oldprio)
  1834. {
  1835. if (prev_class != p->sched_class) {
  1836. if (prev_class->switched_from)
  1837. prev_class->switched_from(rq, p);
  1838. p->sched_class->switched_to(rq, p);
  1839. } else if (oldprio != p->prio)
  1840. p->sched_class->prio_changed(rq, p, oldprio);
  1841. }
  1842. static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  1843. {
  1844. const struct sched_class *class;
  1845. if (p->sched_class == rq->curr->sched_class) {
  1846. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  1847. } else {
  1848. for_each_class(class) {
  1849. if (class == rq->curr->sched_class)
  1850. break;
  1851. if (class == p->sched_class) {
  1852. resched_task(rq->curr);
  1853. break;
  1854. }
  1855. }
  1856. }
  1857. /*
  1858. * A queue event has occurred, and we're going to schedule. In
  1859. * this case, we can save a useless back to back clock update.
  1860. */
  1861. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  1862. rq->skip_clock_update = 1;
  1863. }
  1864. #ifdef CONFIG_SMP
  1865. /*
  1866. * Is this task likely cache-hot:
  1867. */
  1868. static int
  1869. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1870. {
  1871. s64 delta;
  1872. if (p->sched_class != &fair_sched_class)
  1873. return 0;
  1874. if (unlikely(p->policy == SCHED_IDLE))
  1875. return 0;
  1876. /*
  1877. * Buddy candidates are cache hot:
  1878. */
  1879. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1880. (&p->se == cfs_rq_of(&p->se)->next ||
  1881. &p->se == cfs_rq_of(&p->se)->last))
  1882. return 1;
  1883. if (sysctl_sched_migration_cost == -1)
  1884. return 1;
  1885. if (sysctl_sched_migration_cost == 0)
  1886. return 0;
  1887. delta = now - p->se.exec_start;
  1888. return delta < (s64)sysctl_sched_migration_cost;
  1889. }
  1890. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1891. {
  1892. #ifdef CONFIG_SCHED_DEBUG
  1893. /*
  1894. * We should never call set_task_cpu() on a blocked task,
  1895. * ttwu() will sort out the placement.
  1896. */
  1897. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1898. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1899. #ifdef CONFIG_LOCKDEP
  1900. /*
  1901. * The caller should hold either p->pi_lock or rq->lock, when changing
  1902. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  1903. *
  1904. * sched_move_task() holds both and thus holding either pins the cgroup,
  1905. * see set_task_rq().
  1906. *
  1907. * Furthermore, all task_rq users should acquire both locks, see
  1908. * task_rq_lock().
  1909. */
  1910. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1911. lockdep_is_held(&task_rq(p)->lock)));
  1912. #endif
  1913. #endif
  1914. trace_sched_migrate_task(p, new_cpu);
  1915. if (task_cpu(p) != new_cpu) {
  1916. p->se.nr_migrations++;
  1917. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  1918. }
  1919. __set_task_cpu(p, new_cpu);
  1920. }
  1921. struct migration_arg {
  1922. struct task_struct *task;
  1923. int dest_cpu;
  1924. };
  1925. static int migration_cpu_stop(void *data);
  1926. /*
  1927. * wait_task_inactive - wait for a thread to unschedule.
  1928. *
  1929. * If @match_state is nonzero, it's the @p->state value just checked and
  1930. * not expected to change. If it changes, i.e. @p might have woken up,
  1931. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1932. * we return a positive number (its total switch count). If a second call
  1933. * a short while later returns the same number, the caller can be sure that
  1934. * @p has remained unscheduled the whole time.
  1935. *
  1936. * The caller must ensure that the task *will* unschedule sometime soon,
  1937. * else this function might spin for a *long* time. This function can't
  1938. * be called with interrupts off, or it may introduce deadlock with
  1939. * smp_call_function() if an IPI is sent by the same process we are
  1940. * waiting to become inactive.
  1941. */
  1942. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1943. {
  1944. unsigned long flags;
  1945. int running, on_rq;
  1946. unsigned long ncsw;
  1947. struct rq *rq;
  1948. for (;;) {
  1949. /*
  1950. * We do the initial early heuristics without holding
  1951. * any task-queue locks at all. We'll only try to get
  1952. * the runqueue lock when things look like they will
  1953. * work out!
  1954. */
  1955. rq = task_rq(p);
  1956. /*
  1957. * If the task is actively running on another CPU
  1958. * still, just relax and busy-wait without holding
  1959. * any locks.
  1960. *
  1961. * NOTE! Since we don't hold any locks, it's not
  1962. * even sure that "rq" stays as the right runqueue!
  1963. * But we don't care, since "task_running()" will
  1964. * return false if the runqueue has changed and p
  1965. * is actually now running somewhere else!
  1966. */
  1967. while (task_running(rq, p)) {
  1968. if (match_state && unlikely(p->state != match_state))
  1969. return 0;
  1970. cpu_relax();
  1971. }
  1972. /*
  1973. * Ok, time to look more closely! We need the rq
  1974. * lock now, to be *sure*. If we're wrong, we'll
  1975. * just go back and repeat.
  1976. */
  1977. rq = task_rq_lock(p, &flags);
  1978. trace_sched_wait_task(p);
  1979. running = task_running(rq, p);
  1980. on_rq = p->on_rq;
  1981. ncsw = 0;
  1982. if (!match_state || p->state == match_state)
  1983. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1984. task_rq_unlock(rq, p, &flags);
  1985. /*
  1986. * If it changed from the expected state, bail out now.
  1987. */
  1988. if (unlikely(!ncsw))
  1989. break;
  1990. /*
  1991. * Was it really running after all now that we
  1992. * checked with the proper locks actually held?
  1993. *
  1994. * Oops. Go back and try again..
  1995. */
  1996. if (unlikely(running)) {
  1997. cpu_relax();
  1998. continue;
  1999. }
  2000. /*
  2001. * It's not enough that it's not actively running,
  2002. * it must be off the runqueue _entirely_, and not
  2003. * preempted!
  2004. *
  2005. * So if it was still runnable (but just not actively
  2006. * running right now), it's preempted, and we should
  2007. * yield - it could be a while.
  2008. */
  2009. if (unlikely(on_rq)) {
  2010. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  2011. set_current_state(TASK_UNINTERRUPTIBLE);
  2012. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  2013. continue;
  2014. }
  2015. /*
  2016. * Ahh, all good. It wasn't running, and it wasn't
  2017. * runnable, which means that it will never become
  2018. * running in the future either. We're all done!
  2019. */
  2020. break;
  2021. }
  2022. return ncsw;
  2023. }
  2024. /***
  2025. * kick_process - kick a running thread to enter/exit the kernel
  2026. * @p: the to-be-kicked thread
  2027. *
  2028. * Cause a process which is running on another CPU to enter
  2029. * kernel-mode, without any delay. (to get signals handled.)
  2030. *
  2031. * NOTE: this function doesn't have to take the runqueue lock,
  2032. * because all it wants to ensure is that the remote task enters
  2033. * the kernel. If the IPI races and the task has been migrated
  2034. * to another CPU then no harm is done and the purpose has been
  2035. * achieved as well.
  2036. */
  2037. void kick_process(struct task_struct *p)
  2038. {
  2039. int cpu;
  2040. preempt_disable();
  2041. cpu = task_cpu(p);
  2042. if ((cpu != smp_processor_id()) && task_curr(p))
  2043. smp_send_reschedule(cpu);
  2044. preempt_enable();
  2045. }
  2046. EXPORT_SYMBOL_GPL(kick_process);
  2047. #endif /* CONFIG_SMP */
  2048. #ifdef CONFIG_SMP
  2049. /*
  2050. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  2051. */
  2052. static int select_fallback_rq(int cpu, struct task_struct *p)
  2053. {
  2054. int dest_cpu;
  2055. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  2056. /* Look for allowed, online CPU in same node. */
  2057. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  2058. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  2059. return dest_cpu;
  2060. /* Any allowed, online CPU? */
  2061. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  2062. if (dest_cpu < nr_cpu_ids)
  2063. return dest_cpu;
  2064. /* No more Mr. Nice Guy. */
  2065. dest_cpu = cpuset_cpus_allowed_fallback(p);
  2066. /*
  2067. * Don't tell them about moving exiting tasks or
  2068. * kernel threads (both mm NULL), since they never
  2069. * leave kernel.
  2070. */
  2071. if (p->mm && printk_ratelimit()) {
  2072. printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
  2073. task_pid_nr(p), p->comm, cpu);
  2074. }
  2075. return dest_cpu;
  2076. }
  2077. /*
  2078. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  2079. */
  2080. static inline
  2081. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  2082. {
  2083. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  2084. /*
  2085. * In order not to call set_task_cpu() on a blocking task we need
  2086. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  2087. * cpu.
  2088. *
  2089. * Since this is common to all placement strategies, this lives here.
  2090. *
  2091. * [ this allows ->select_task() to simply return task_cpu(p) and
  2092. * not worry about this generic constraint ]
  2093. */
  2094. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  2095. !cpu_online(cpu)))
  2096. cpu = select_fallback_rq(task_cpu(p), p);
  2097. return cpu;
  2098. }
  2099. static void update_avg(u64 *avg, u64 sample)
  2100. {
  2101. s64 diff = sample - *avg;
  2102. *avg += diff >> 3;
  2103. }
  2104. #endif
  2105. static void
  2106. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  2107. {
  2108. #ifdef CONFIG_SCHEDSTATS
  2109. struct rq *rq = this_rq();
  2110. #ifdef CONFIG_SMP
  2111. int this_cpu = smp_processor_id();
  2112. if (cpu == this_cpu) {
  2113. schedstat_inc(rq, ttwu_local);
  2114. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2115. } else {
  2116. struct sched_domain *sd;
  2117. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2118. rcu_read_lock();
  2119. for_each_domain(this_cpu, sd) {
  2120. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2121. schedstat_inc(sd, ttwu_wake_remote);
  2122. break;
  2123. }
  2124. }
  2125. rcu_read_unlock();
  2126. }
  2127. if (wake_flags & WF_MIGRATED)
  2128. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2129. #endif /* CONFIG_SMP */
  2130. schedstat_inc(rq, ttwu_count);
  2131. schedstat_inc(p, se.statistics.nr_wakeups);
  2132. if (wake_flags & WF_SYNC)
  2133. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2134. #endif /* CONFIG_SCHEDSTATS */
  2135. }
  2136. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  2137. {
  2138. activate_task(rq, p, en_flags);
  2139. p->on_rq = 1;
  2140. /* if a worker is waking up, notify workqueue */
  2141. if (p->flags & PF_WQ_WORKER)
  2142. wq_worker_waking_up(p, cpu_of(rq));
  2143. }
  2144. /*
  2145. * Mark the task runnable and perform wakeup-preemption.
  2146. */
  2147. static void
  2148. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2149. {
  2150. trace_sched_wakeup(p, true);
  2151. check_preempt_curr(rq, p, wake_flags);
  2152. p->state = TASK_RUNNING;
  2153. #ifdef CONFIG_SMP
  2154. if (p->sched_class->task_woken)
  2155. p->sched_class->task_woken(rq, p);
  2156. if (rq->idle_stamp) {
  2157. u64 delta = rq->clock - rq->idle_stamp;
  2158. u64 max = 2*sysctl_sched_migration_cost;
  2159. if (delta > max)
  2160. rq->avg_idle = max;
  2161. else
  2162. update_avg(&rq->avg_idle, delta);
  2163. rq->idle_stamp = 0;
  2164. }
  2165. #endif
  2166. }
  2167. static void
  2168. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  2169. {
  2170. #ifdef CONFIG_SMP
  2171. if (p->sched_contributes_to_load)
  2172. rq->nr_uninterruptible--;
  2173. #endif
  2174. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  2175. ttwu_do_wakeup(rq, p, wake_flags);
  2176. }
  2177. /*
  2178. * Called in case the task @p isn't fully descheduled from its runqueue,
  2179. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  2180. * since all we need to do is flip p->state to TASK_RUNNING, since
  2181. * the task is still ->on_rq.
  2182. */
  2183. static int ttwu_remote(struct task_struct *p, int wake_flags)
  2184. {
  2185. struct rq *rq;
  2186. int ret = 0;
  2187. rq = __task_rq_lock(p);
  2188. if (p->on_rq) {
  2189. ttwu_do_wakeup(rq, p, wake_flags);
  2190. ret = 1;
  2191. }
  2192. __task_rq_unlock(rq);
  2193. return ret;
  2194. }
  2195. #ifdef CONFIG_SMP
  2196. static void sched_ttwu_do_pending(struct task_struct *list)
  2197. {
  2198. struct rq *rq = this_rq();
  2199. raw_spin_lock(&rq->lock);
  2200. while (list) {
  2201. struct task_struct *p = list;
  2202. list = list->wake_entry;
  2203. ttwu_do_activate(rq, p, 0);
  2204. }
  2205. raw_spin_unlock(&rq->lock);
  2206. }
  2207. #ifdef CONFIG_HOTPLUG_CPU
  2208. static void sched_ttwu_pending(void)
  2209. {
  2210. struct rq *rq = this_rq();
  2211. struct task_struct *list = xchg(&rq->wake_list, NULL);
  2212. if (!list)
  2213. return;
  2214. sched_ttwu_do_pending(list);
  2215. }
  2216. #endif /* CONFIG_HOTPLUG_CPU */
  2217. void scheduler_ipi(void)
  2218. {
  2219. struct rq *rq = this_rq();
  2220. struct task_struct *list = xchg(&rq->wake_list, NULL);
  2221. if (!list)
  2222. return;
  2223. /*
  2224. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  2225. * traditionally all their work was done from the interrupt return
  2226. * path. Now that we actually do some work, we need to make sure
  2227. * we do call them.
  2228. *
  2229. * Some archs already do call them, luckily irq_enter/exit nest
  2230. * properly.
  2231. *
  2232. * Arguably we should visit all archs and update all handlers,
  2233. * however a fair share of IPIs are still resched only so this would
  2234. * somewhat pessimize the simple resched case.
  2235. */
  2236. irq_enter();
  2237. sched_ttwu_do_pending(list);
  2238. irq_exit();
  2239. }
  2240. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  2241. {
  2242. struct rq *rq = cpu_rq(cpu);
  2243. struct task_struct *next = rq->wake_list;
  2244. for (;;) {
  2245. struct task_struct *old = next;
  2246. p->wake_entry = next;
  2247. next = cmpxchg(&rq->wake_list, old, p);
  2248. if (next == old)
  2249. break;
  2250. }
  2251. if (!next)
  2252. smp_send_reschedule(cpu);
  2253. }
  2254. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2255. static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
  2256. {
  2257. struct rq *rq;
  2258. int ret = 0;
  2259. rq = __task_rq_lock(p);
  2260. if (p->on_cpu) {
  2261. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2262. ttwu_do_wakeup(rq, p, wake_flags);
  2263. ret = 1;
  2264. }
  2265. __task_rq_unlock(rq);
  2266. return ret;
  2267. }
  2268. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2269. #endif /* CONFIG_SMP */
  2270. static void ttwu_queue(struct task_struct *p, int cpu)
  2271. {
  2272. struct rq *rq = cpu_rq(cpu);
  2273. #if defined(CONFIG_SMP)
  2274. if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
  2275. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  2276. ttwu_queue_remote(p, cpu);
  2277. return;
  2278. }
  2279. #endif
  2280. raw_spin_lock(&rq->lock);
  2281. ttwu_do_activate(rq, p, 0);
  2282. raw_spin_unlock(&rq->lock);
  2283. }
  2284. /**
  2285. * try_to_wake_up - wake up a thread
  2286. * @p: the thread to be awakened
  2287. * @state: the mask of task states that can be woken
  2288. * @wake_flags: wake modifier flags (WF_*)
  2289. *
  2290. * Put it on the run-queue if it's not already there. The "current"
  2291. * thread is always on the run-queue (except when the actual
  2292. * re-schedule is in progress), and as such you're allowed to do
  2293. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2294. * runnable without the overhead of this.
  2295. *
  2296. * Returns %true if @p was woken up, %false if it was already running
  2297. * or @state didn't match @p's state.
  2298. */
  2299. static int
  2300. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  2301. {
  2302. unsigned long flags;
  2303. int cpu, success = 0;
  2304. smp_wmb();
  2305. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2306. if (!(p->state & state))
  2307. goto out;
  2308. success = 1; /* we're going to change ->state */
  2309. cpu = task_cpu(p);
  2310. if (p->on_rq && ttwu_remote(p, wake_flags))
  2311. goto stat;
  2312. #ifdef CONFIG_SMP
  2313. /*
  2314. * If the owning (remote) cpu is still in the middle of schedule() with
  2315. * this task as prev, wait until its done referencing the task.
  2316. */
  2317. while (p->on_cpu) {
  2318. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2319. /*
  2320. * In case the architecture enables interrupts in
  2321. * context_switch(), we cannot busy wait, since that
  2322. * would lead to deadlocks when an interrupt hits and
  2323. * tries to wake up @prev. So bail and do a complete
  2324. * remote wakeup.
  2325. */
  2326. if (ttwu_activate_remote(p, wake_flags))
  2327. goto stat;
  2328. #else
  2329. cpu_relax();
  2330. #endif
  2331. }
  2332. /*
  2333. * Pairs with the smp_wmb() in finish_lock_switch().
  2334. */
  2335. smp_rmb();
  2336. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  2337. p->state = TASK_WAKING;
  2338. if (p->sched_class->task_waking)
  2339. p->sched_class->task_waking(p);
  2340. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2341. if (task_cpu(p) != cpu) {
  2342. wake_flags |= WF_MIGRATED;
  2343. set_task_cpu(p, cpu);
  2344. }
  2345. #endif /* CONFIG_SMP */
  2346. ttwu_queue(p, cpu);
  2347. stat:
  2348. ttwu_stat(p, cpu, wake_flags);
  2349. out:
  2350. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2351. return success;
  2352. }
  2353. /**
  2354. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2355. * @p: the thread to be awakened
  2356. *
  2357. * Put @p on the run-queue if it's not already there. The caller must
  2358. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2359. * the current task.
  2360. */
  2361. static void try_to_wake_up_local(struct task_struct *p)
  2362. {
  2363. struct rq *rq = task_rq(p);
  2364. BUG_ON(rq != this_rq());
  2365. BUG_ON(p == current);
  2366. lockdep_assert_held(&rq->lock);
  2367. if (!raw_spin_trylock(&p->pi_lock)) {
  2368. raw_spin_unlock(&rq->lock);
  2369. raw_spin_lock(&p->pi_lock);
  2370. raw_spin_lock(&rq->lock);
  2371. }
  2372. if (!(p->state & TASK_NORMAL))
  2373. goto out;
  2374. if (!p->on_rq)
  2375. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  2376. ttwu_do_wakeup(rq, p, 0);
  2377. ttwu_stat(p, smp_processor_id(), 0);
  2378. out:
  2379. raw_spin_unlock(&p->pi_lock);
  2380. }
  2381. /**
  2382. * wake_up_process - Wake up a specific process
  2383. * @p: The process to be woken up.
  2384. *
  2385. * Attempt to wake up the nominated process and move it to the set of runnable
  2386. * processes. Returns 1 if the process was woken up, 0 if it was already
  2387. * running.
  2388. *
  2389. * It may be assumed that this function implies a write memory barrier before
  2390. * changing the task state if and only if any tasks are woken up.
  2391. */
  2392. int wake_up_process(struct task_struct *p)
  2393. {
  2394. return try_to_wake_up(p, TASK_ALL, 0);
  2395. }
  2396. EXPORT_SYMBOL(wake_up_process);
  2397. int wake_up_state(struct task_struct *p, unsigned int state)
  2398. {
  2399. return try_to_wake_up(p, state, 0);
  2400. }
  2401. /*
  2402. * Perform scheduler related setup for a newly forked process p.
  2403. * p is forked by current.
  2404. *
  2405. * __sched_fork() is basic setup used by init_idle() too:
  2406. */
  2407. static void __sched_fork(struct task_struct *p)
  2408. {
  2409. p->on_rq = 0;
  2410. p->se.on_rq = 0;
  2411. p->se.exec_start = 0;
  2412. p->se.sum_exec_runtime = 0;
  2413. p->se.prev_sum_exec_runtime = 0;
  2414. p->se.nr_migrations = 0;
  2415. p->se.vruntime = 0;
  2416. INIT_LIST_HEAD(&p->se.group_node);
  2417. #ifdef CONFIG_SCHEDSTATS
  2418. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2419. #endif
  2420. INIT_LIST_HEAD(&p->rt.run_list);
  2421. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2422. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2423. #endif
  2424. }
  2425. /*
  2426. * fork()/clone()-time setup:
  2427. */
  2428. void sched_fork(struct task_struct *p)
  2429. {
  2430. unsigned long flags;
  2431. int cpu = get_cpu();
  2432. __sched_fork(p);
  2433. /*
  2434. * We mark the process as running here. This guarantees that
  2435. * nobody will actually run it, and a signal or other external
  2436. * event cannot wake it up and insert it on the runqueue either.
  2437. */
  2438. p->state = TASK_RUNNING;
  2439. /*
  2440. * Make sure we do not leak PI boosting priority to the child.
  2441. */
  2442. p->prio = current->normal_prio;
  2443. /*
  2444. * Revert to default priority/policy on fork if requested.
  2445. */
  2446. if (unlikely(p->sched_reset_on_fork)) {
  2447. if (task_has_rt_policy(p)) {
  2448. p->policy = SCHED_NORMAL;
  2449. p->static_prio = NICE_TO_PRIO(0);
  2450. p->rt_priority = 0;
  2451. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  2452. p->static_prio = NICE_TO_PRIO(0);
  2453. p->prio = p->normal_prio = __normal_prio(p);
  2454. set_load_weight(p);
  2455. /*
  2456. * We don't need the reset flag anymore after the fork. It has
  2457. * fulfilled its duty:
  2458. */
  2459. p->sched_reset_on_fork = 0;
  2460. }
  2461. if (!rt_prio(p->prio))
  2462. p->sched_class = &fair_sched_class;
  2463. if (p->sched_class->task_fork)
  2464. p->sched_class->task_fork(p);
  2465. /*
  2466. * The child is not yet in the pid-hash so no cgroup attach races,
  2467. * and the cgroup is pinned to this child due to cgroup_fork()
  2468. * is ran before sched_fork().
  2469. *
  2470. * Silence PROVE_RCU.
  2471. */
  2472. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2473. set_task_cpu(p, cpu);
  2474. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2475. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2476. if (likely(sched_info_on()))
  2477. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2478. #endif
  2479. #if defined(CONFIG_SMP)
  2480. p->on_cpu = 0;
  2481. #endif
  2482. #ifdef CONFIG_PREEMPT_COUNT
  2483. /* Want to start with kernel preemption disabled. */
  2484. task_thread_info(p)->preempt_count = 1;
  2485. #endif
  2486. #ifdef CONFIG_SMP
  2487. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2488. #endif
  2489. put_cpu();
  2490. }
  2491. /*
  2492. * wake_up_new_task - wake up a newly created task for the first time.
  2493. *
  2494. * This function will do some initial scheduler statistics housekeeping
  2495. * that must be done for every newly created context, then puts the task
  2496. * on the runqueue and wakes it.
  2497. */
  2498. void wake_up_new_task(struct task_struct *p)
  2499. {
  2500. unsigned long flags;
  2501. struct rq *rq;
  2502. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2503. #ifdef CONFIG_SMP
  2504. /*
  2505. * Fork balancing, do it here and not earlier because:
  2506. * - cpus_allowed can change in the fork path
  2507. * - any previously selected cpu might disappear through hotplug
  2508. */
  2509. set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
  2510. #endif
  2511. rq = __task_rq_lock(p);
  2512. activate_task(rq, p, 0);
  2513. p->on_rq = 1;
  2514. trace_sched_wakeup_new(p, true);
  2515. check_preempt_curr(rq, p, WF_FORK);
  2516. #ifdef CONFIG_SMP
  2517. if (p->sched_class->task_woken)
  2518. p->sched_class->task_woken(rq, p);
  2519. #endif
  2520. task_rq_unlock(rq, p, &flags);
  2521. }
  2522. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2523. /**
  2524. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2525. * @notifier: notifier struct to register
  2526. */
  2527. void preempt_notifier_register(struct preempt_notifier *notifier)
  2528. {
  2529. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2530. }
  2531. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2532. /**
  2533. * preempt_notifier_unregister - no longer interested in preemption notifications
  2534. * @notifier: notifier struct to unregister
  2535. *
  2536. * This is safe to call from within a preemption notifier.
  2537. */
  2538. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2539. {
  2540. hlist_del(&notifier->link);
  2541. }
  2542. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2543. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2544. {
  2545. struct preempt_notifier *notifier;
  2546. struct hlist_node *node;
  2547. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2548. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2549. }
  2550. static void
  2551. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2552. struct task_struct *next)
  2553. {
  2554. struct preempt_notifier *notifier;
  2555. struct hlist_node *node;
  2556. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2557. notifier->ops->sched_out(notifier, next);
  2558. }
  2559. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2560. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2561. {
  2562. }
  2563. static void
  2564. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2565. struct task_struct *next)
  2566. {
  2567. }
  2568. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2569. /**
  2570. * prepare_task_switch - prepare to switch tasks
  2571. * @rq: the runqueue preparing to switch
  2572. * @prev: the current task that is being switched out
  2573. * @next: the task we are going to switch to.
  2574. *
  2575. * This is called with the rq lock held and interrupts off. It must
  2576. * be paired with a subsequent finish_task_switch after the context
  2577. * switch.
  2578. *
  2579. * prepare_task_switch sets up locking and calls architecture specific
  2580. * hooks.
  2581. */
  2582. static inline void
  2583. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2584. struct task_struct *next)
  2585. {
  2586. sched_info_switch(prev, next);
  2587. perf_event_task_sched_out(prev, next);
  2588. fire_sched_out_preempt_notifiers(prev, next);
  2589. prepare_lock_switch(rq, next);
  2590. prepare_arch_switch(next);
  2591. trace_sched_switch(prev, next);
  2592. }
  2593. /**
  2594. * finish_task_switch - clean up after a task-switch
  2595. * @rq: runqueue associated with task-switch
  2596. * @prev: the thread we just switched away from.
  2597. *
  2598. * finish_task_switch must be called after the context switch, paired
  2599. * with a prepare_task_switch call before the context switch.
  2600. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2601. * and do any other architecture-specific cleanup actions.
  2602. *
  2603. * Note that we may have delayed dropping an mm in context_switch(). If
  2604. * so, we finish that here outside of the runqueue lock. (Doing it
  2605. * with the lock held can cause deadlocks; see schedule() for
  2606. * details.)
  2607. */
  2608. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2609. __releases(rq->lock)
  2610. {
  2611. struct mm_struct *mm = rq->prev_mm;
  2612. long prev_state;
  2613. rq->prev_mm = NULL;
  2614. /*
  2615. * A task struct has one reference for the use as "current".
  2616. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2617. * schedule one last time. The schedule call will never return, and
  2618. * the scheduled task must drop that reference.
  2619. * The test for TASK_DEAD must occur while the runqueue locks are
  2620. * still held, otherwise prev could be scheduled on another cpu, die
  2621. * there before we look at prev->state, and then the reference would
  2622. * be dropped twice.
  2623. * Manfred Spraul <manfred@colorfullife.com>
  2624. */
  2625. prev_state = prev->state;
  2626. finish_arch_switch(prev);
  2627. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2628. local_irq_disable();
  2629. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2630. perf_event_task_sched_in(current);
  2631. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2632. local_irq_enable();
  2633. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2634. finish_lock_switch(rq, prev);
  2635. fire_sched_in_preempt_notifiers(current);
  2636. if (mm)
  2637. mmdrop(mm);
  2638. if (unlikely(prev_state == TASK_DEAD)) {
  2639. /*
  2640. * Remove function-return probe instances associated with this
  2641. * task and put them back on the free list.
  2642. */
  2643. kprobe_flush_task(prev);
  2644. put_task_struct(prev);
  2645. }
  2646. }
  2647. #ifdef CONFIG_SMP
  2648. /* assumes rq->lock is held */
  2649. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2650. {
  2651. if (prev->sched_class->pre_schedule)
  2652. prev->sched_class->pre_schedule(rq, prev);
  2653. }
  2654. /* rq->lock is NOT held, but preemption is disabled */
  2655. static inline void post_schedule(struct rq *rq)
  2656. {
  2657. if (rq->post_schedule) {
  2658. unsigned long flags;
  2659. raw_spin_lock_irqsave(&rq->lock, flags);
  2660. if (rq->curr->sched_class->post_schedule)
  2661. rq->curr->sched_class->post_schedule(rq);
  2662. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2663. rq->post_schedule = 0;
  2664. }
  2665. }
  2666. #else
  2667. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2668. {
  2669. }
  2670. static inline void post_schedule(struct rq *rq)
  2671. {
  2672. }
  2673. #endif
  2674. /**
  2675. * schedule_tail - first thing a freshly forked thread must call.
  2676. * @prev: the thread we just switched away from.
  2677. */
  2678. asmlinkage void schedule_tail(struct task_struct *prev)
  2679. __releases(rq->lock)
  2680. {
  2681. struct rq *rq = this_rq();
  2682. finish_task_switch(rq, prev);
  2683. /*
  2684. * FIXME: do we need to worry about rq being invalidated by the
  2685. * task_switch?
  2686. */
  2687. post_schedule(rq);
  2688. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2689. /* In this case, finish_task_switch does not reenable preemption */
  2690. preempt_enable();
  2691. #endif
  2692. if (current->set_child_tid)
  2693. put_user(task_pid_vnr(current), current->set_child_tid);
  2694. }
  2695. /*
  2696. * context_switch - switch to the new MM and the new
  2697. * thread's register state.
  2698. */
  2699. static inline void
  2700. context_switch(struct rq *rq, struct task_struct *prev,
  2701. struct task_struct *next)
  2702. {
  2703. struct mm_struct *mm, *oldmm;
  2704. prepare_task_switch(rq, prev, next);
  2705. mm = next->mm;
  2706. oldmm = prev->active_mm;
  2707. /*
  2708. * For paravirt, this is coupled with an exit in switch_to to
  2709. * combine the page table reload and the switch backend into
  2710. * one hypercall.
  2711. */
  2712. arch_start_context_switch(prev);
  2713. if (!mm) {
  2714. next->active_mm = oldmm;
  2715. atomic_inc(&oldmm->mm_count);
  2716. enter_lazy_tlb(oldmm, next);
  2717. } else
  2718. switch_mm(oldmm, mm, next);
  2719. if (!prev->mm) {
  2720. prev->active_mm = NULL;
  2721. rq->prev_mm = oldmm;
  2722. }
  2723. /*
  2724. * Since the runqueue lock will be released by the next
  2725. * task (which is an invalid locking op but in the case
  2726. * of the scheduler it's an obvious special-case), so we
  2727. * do an early lockdep release here:
  2728. */
  2729. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2730. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2731. #endif
  2732. /* Here we just switch the register state and the stack. */
  2733. switch_to(prev, next, prev);
  2734. barrier();
  2735. /*
  2736. * this_rq must be evaluated again because prev may have moved
  2737. * CPUs since it called schedule(), thus the 'rq' on its stack
  2738. * frame will be invalid.
  2739. */
  2740. finish_task_switch(this_rq(), prev);
  2741. }
  2742. /*
  2743. * nr_running, nr_uninterruptible and nr_context_switches:
  2744. *
  2745. * externally visible scheduler statistics: current number of runnable
  2746. * threads, current number of uninterruptible-sleeping threads, total
  2747. * number of context switches performed since bootup.
  2748. */
  2749. unsigned long nr_running(void)
  2750. {
  2751. unsigned long i, sum = 0;
  2752. for_each_online_cpu(i)
  2753. sum += cpu_rq(i)->nr_running;
  2754. return sum;
  2755. }
  2756. unsigned long nr_uninterruptible(void)
  2757. {
  2758. unsigned long i, sum = 0;
  2759. for_each_possible_cpu(i)
  2760. sum += cpu_rq(i)->nr_uninterruptible;
  2761. /*
  2762. * Since we read the counters lockless, it might be slightly
  2763. * inaccurate. Do not allow it to go below zero though:
  2764. */
  2765. if (unlikely((long)sum < 0))
  2766. sum = 0;
  2767. return sum;
  2768. }
  2769. unsigned long long nr_context_switches(void)
  2770. {
  2771. int i;
  2772. unsigned long long sum = 0;
  2773. for_each_possible_cpu(i)
  2774. sum += cpu_rq(i)->nr_switches;
  2775. return sum;
  2776. }
  2777. unsigned long nr_iowait(void)
  2778. {
  2779. unsigned long i, sum = 0;
  2780. for_each_possible_cpu(i)
  2781. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2782. return sum;
  2783. }
  2784. unsigned long nr_iowait_cpu(int cpu)
  2785. {
  2786. struct rq *this = cpu_rq(cpu);
  2787. return atomic_read(&this->nr_iowait);
  2788. }
  2789. unsigned long this_cpu_load(void)
  2790. {
  2791. struct rq *this = this_rq();
  2792. return this->cpu_load[0];
  2793. }
  2794. /* Variables and functions for calc_load */
  2795. static atomic_long_t calc_load_tasks;
  2796. static unsigned long calc_load_update;
  2797. unsigned long avenrun[3];
  2798. EXPORT_SYMBOL(avenrun);
  2799. static long calc_load_fold_active(struct rq *this_rq)
  2800. {
  2801. long nr_active, delta = 0;
  2802. nr_active = this_rq->nr_running;
  2803. nr_active += (long) this_rq->nr_uninterruptible;
  2804. if (nr_active != this_rq->calc_load_active) {
  2805. delta = nr_active - this_rq->calc_load_active;
  2806. this_rq->calc_load_active = nr_active;
  2807. }
  2808. return delta;
  2809. }
  2810. static unsigned long
  2811. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2812. {
  2813. load *= exp;
  2814. load += active * (FIXED_1 - exp);
  2815. load += 1UL << (FSHIFT - 1);
  2816. return load >> FSHIFT;
  2817. }
  2818. #ifdef CONFIG_NO_HZ
  2819. /*
  2820. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2821. *
  2822. * When making the ILB scale, we should try to pull this in as well.
  2823. */
  2824. static atomic_long_t calc_load_tasks_idle;
  2825. static void calc_load_account_idle(struct rq *this_rq)
  2826. {
  2827. long delta;
  2828. delta = calc_load_fold_active(this_rq);
  2829. if (delta)
  2830. atomic_long_add(delta, &calc_load_tasks_idle);
  2831. }
  2832. static long calc_load_fold_idle(void)
  2833. {
  2834. long delta = 0;
  2835. /*
  2836. * Its got a race, we don't care...
  2837. */
  2838. if (atomic_long_read(&calc_load_tasks_idle))
  2839. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2840. return delta;
  2841. }
  2842. /**
  2843. * fixed_power_int - compute: x^n, in O(log n) time
  2844. *
  2845. * @x: base of the power
  2846. * @frac_bits: fractional bits of @x
  2847. * @n: power to raise @x to.
  2848. *
  2849. * By exploiting the relation between the definition of the natural power
  2850. * function: x^n := x*x*...*x (x multiplied by itself for n times), and
  2851. * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
  2852. * (where: n_i \elem {0, 1}, the binary vector representing n),
  2853. * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
  2854. * of course trivially computable in O(log_2 n), the length of our binary
  2855. * vector.
  2856. */
  2857. static unsigned long
  2858. fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
  2859. {
  2860. unsigned long result = 1UL << frac_bits;
  2861. if (n) for (;;) {
  2862. if (n & 1) {
  2863. result *= x;
  2864. result += 1UL << (frac_bits - 1);
  2865. result >>= frac_bits;
  2866. }
  2867. n >>= 1;
  2868. if (!n)
  2869. break;
  2870. x *= x;
  2871. x += 1UL << (frac_bits - 1);
  2872. x >>= frac_bits;
  2873. }
  2874. return result;
  2875. }
  2876. /*
  2877. * a1 = a0 * e + a * (1 - e)
  2878. *
  2879. * a2 = a1 * e + a * (1 - e)
  2880. * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
  2881. * = a0 * e^2 + a * (1 - e) * (1 + e)
  2882. *
  2883. * a3 = a2 * e + a * (1 - e)
  2884. * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
  2885. * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
  2886. *
  2887. * ...
  2888. *
  2889. * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
  2890. * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
  2891. * = a0 * e^n + a * (1 - e^n)
  2892. *
  2893. * [1] application of the geometric series:
  2894. *
  2895. * n 1 - x^(n+1)
  2896. * S_n := \Sum x^i = -------------
  2897. * i=0 1 - x
  2898. */
  2899. static unsigned long
  2900. calc_load_n(unsigned long load, unsigned long exp,
  2901. unsigned long active, unsigned int n)
  2902. {
  2903. return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
  2904. }
  2905. /*
  2906. * NO_HZ can leave us missing all per-cpu ticks calling
  2907. * calc_load_account_active(), but since an idle CPU folds its delta into
  2908. * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
  2909. * in the pending idle delta if our idle period crossed a load cycle boundary.
  2910. *
  2911. * Once we've updated the global active value, we need to apply the exponential
  2912. * weights adjusted to the number of cycles missed.
  2913. */
  2914. static void calc_global_nohz(unsigned long ticks)
  2915. {
  2916. long delta, active, n;
  2917. if (time_before(jiffies, calc_load_update))
  2918. return;
  2919. /*
  2920. * If we crossed a calc_load_update boundary, make sure to fold
  2921. * any pending idle changes, the respective CPUs might have
  2922. * missed the tick driven calc_load_account_active() update
  2923. * due to NO_HZ.
  2924. */
  2925. delta = calc_load_fold_idle();
  2926. if (delta)
  2927. atomic_long_add(delta, &calc_load_tasks);
  2928. /*
  2929. * If we were idle for multiple load cycles, apply them.
  2930. */
  2931. if (ticks >= LOAD_FREQ) {
  2932. n = ticks / LOAD_FREQ;
  2933. active = atomic_long_read(&calc_load_tasks);
  2934. active = active > 0 ? active * FIXED_1 : 0;
  2935. avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
  2936. avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
  2937. avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
  2938. calc_load_update += n * LOAD_FREQ;
  2939. }
  2940. /*
  2941. * Its possible the remainder of the above division also crosses
  2942. * a LOAD_FREQ period, the regular check in calc_global_load()
  2943. * which comes after this will take care of that.
  2944. *
  2945. * Consider us being 11 ticks before a cycle completion, and us
  2946. * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
  2947. * age us 4 cycles, and the test in calc_global_load() will
  2948. * pick up the final one.
  2949. */
  2950. }
  2951. #else
  2952. static void calc_load_account_idle(struct rq *this_rq)
  2953. {
  2954. }
  2955. static inline long calc_load_fold_idle(void)
  2956. {
  2957. return 0;
  2958. }
  2959. static void calc_global_nohz(unsigned long ticks)
  2960. {
  2961. }
  2962. #endif
  2963. /**
  2964. * get_avenrun - get the load average array
  2965. * @loads: pointer to dest load array
  2966. * @offset: offset to add
  2967. * @shift: shift count to shift the result left
  2968. *
  2969. * These values are estimates at best, so no need for locking.
  2970. */
  2971. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2972. {
  2973. loads[0] = (avenrun[0] + offset) << shift;
  2974. loads[1] = (avenrun[1] + offset) << shift;
  2975. loads[2] = (avenrun[2] + offset) << shift;
  2976. }
  2977. /*
  2978. * calc_load - update the avenrun load estimates 10 ticks after the
  2979. * CPUs have updated calc_load_tasks.
  2980. */
  2981. void calc_global_load(unsigned long ticks)
  2982. {
  2983. long active;
  2984. calc_global_nohz(ticks);
  2985. if (time_before(jiffies, calc_load_update + 10))
  2986. return;
  2987. active = atomic_long_read(&calc_load_tasks);
  2988. active = active > 0 ? active * FIXED_1 : 0;
  2989. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2990. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2991. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2992. calc_load_update += LOAD_FREQ;
  2993. }
  2994. /*
  2995. * Called from update_cpu_load() to periodically update this CPU's
  2996. * active count.
  2997. */
  2998. static void calc_load_account_active(struct rq *this_rq)
  2999. {
  3000. long delta;
  3001. if (time_before(jiffies, this_rq->calc_load_update))
  3002. return;
  3003. delta = calc_load_fold_active(this_rq);
  3004. delta += calc_load_fold_idle();
  3005. if (delta)
  3006. atomic_long_add(delta, &calc_load_tasks);
  3007. this_rq->calc_load_update += LOAD_FREQ;
  3008. }
  3009. /*
  3010. * The exact cpuload at various idx values, calculated at every tick would be
  3011. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  3012. *
  3013. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  3014. * on nth tick when cpu may be busy, then we have:
  3015. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  3016. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  3017. *
  3018. * decay_load_missed() below does efficient calculation of
  3019. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  3020. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  3021. *
  3022. * The calculation is approximated on a 128 point scale.
  3023. * degrade_zero_ticks is the number of ticks after which load at any
  3024. * particular idx is approximated to be zero.
  3025. * degrade_factor is a precomputed table, a row for each load idx.
  3026. * Each column corresponds to degradation factor for a power of two ticks,
  3027. * based on 128 point scale.
  3028. * Example:
  3029. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  3030. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  3031. *
  3032. * With this power of 2 load factors, we can degrade the load n times
  3033. * by looking at 1 bits in n and doing as many mult/shift instead of
  3034. * n mult/shifts needed by the exact degradation.
  3035. */
  3036. #define DEGRADE_SHIFT 7
  3037. static const unsigned char
  3038. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  3039. static const unsigned char
  3040. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  3041. {0, 0, 0, 0, 0, 0, 0, 0},
  3042. {64, 32, 8, 0, 0, 0, 0, 0},
  3043. {96, 72, 40, 12, 1, 0, 0},
  3044. {112, 98, 75, 43, 15, 1, 0},
  3045. {120, 112, 98, 76, 45, 16, 2} };
  3046. /*
  3047. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  3048. * would be when CPU is idle and so we just decay the old load without
  3049. * adding any new load.
  3050. */
  3051. static unsigned long
  3052. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  3053. {
  3054. int j = 0;
  3055. if (!missed_updates)
  3056. return load;
  3057. if (missed_updates >= degrade_zero_ticks[idx])
  3058. return 0;
  3059. if (idx == 1)
  3060. return load >> missed_updates;
  3061. while (missed_updates) {
  3062. if (missed_updates % 2)
  3063. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  3064. missed_updates >>= 1;
  3065. j++;
  3066. }
  3067. return load;
  3068. }
  3069. /*
  3070. * Update rq->cpu_load[] statistics. This function is usually called every
  3071. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  3072. * every tick. We fix it up based on jiffies.
  3073. */
  3074. static void update_cpu_load(struct rq *this_rq)
  3075. {
  3076. unsigned long this_load = this_rq->load.weight;
  3077. unsigned long curr_jiffies = jiffies;
  3078. unsigned long pending_updates;
  3079. int i, scale;
  3080. this_rq->nr_load_updates++;
  3081. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  3082. if (curr_jiffies == this_rq->last_load_update_tick)
  3083. return;
  3084. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  3085. this_rq->last_load_update_tick = curr_jiffies;
  3086. /* Update our load: */
  3087. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  3088. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  3089. unsigned long old_load, new_load;
  3090. /* scale is effectively 1 << i now, and >> i divides by scale */
  3091. old_load = this_rq->cpu_load[i];
  3092. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  3093. new_load = this_load;
  3094. /*
  3095. * Round up the averaging division if load is increasing. This
  3096. * prevents us from getting stuck on 9 if the load is 10, for
  3097. * example.
  3098. */
  3099. if (new_load > old_load)
  3100. new_load += scale - 1;
  3101. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  3102. }
  3103. sched_avg_update(this_rq);
  3104. }
  3105. static void update_cpu_load_active(struct rq *this_rq)
  3106. {
  3107. update_cpu_load(this_rq);
  3108. calc_load_account_active(this_rq);
  3109. }
  3110. #ifdef CONFIG_SMP
  3111. /*
  3112. * sched_exec - execve() is a valuable balancing opportunity, because at
  3113. * this point the task has the smallest effective memory and cache footprint.
  3114. */
  3115. void sched_exec(void)
  3116. {
  3117. struct task_struct *p = current;
  3118. unsigned long flags;
  3119. int dest_cpu;
  3120. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3121. dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
  3122. if (dest_cpu == smp_processor_id())
  3123. goto unlock;
  3124. if (likely(cpu_active(dest_cpu))) {
  3125. struct migration_arg arg = { p, dest_cpu };
  3126. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3127. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  3128. return;
  3129. }
  3130. unlock:
  3131. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3132. }
  3133. #endif
  3134. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3135. EXPORT_PER_CPU_SYMBOL(kstat);
  3136. /*
  3137. * Return any ns on the sched_clock that have not yet been accounted in
  3138. * @p in case that task is currently running.
  3139. *
  3140. * Called with task_rq_lock() held on @rq.
  3141. */
  3142. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  3143. {
  3144. u64 ns = 0;
  3145. if (task_current(rq, p)) {
  3146. update_rq_clock(rq);
  3147. ns = rq->clock_task - p->se.exec_start;
  3148. if ((s64)ns < 0)
  3149. ns = 0;
  3150. }
  3151. return ns;
  3152. }
  3153. unsigned long long task_delta_exec(struct task_struct *p)
  3154. {
  3155. unsigned long flags;
  3156. struct rq *rq;
  3157. u64 ns = 0;
  3158. rq = task_rq_lock(p, &flags);
  3159. ns = do_task_delta_exec(p, rq);
  3160. task_rq_unlock(rq, p, &flags);
  3161. return ns;
  3162. }
  3163. /*
  3164. * Return accounted runtime for the task.
  3165. * In case the task is currently running, return the runtime plus current's
  3166. * pending runtime that have not been accounted yet.
  3167. */
  3168. unsigned long long task_sched_runtime(struct task_struct *p)
  3169. {
  3170. unsigned long flags;
  3171. struct rq *rq;
  3172. u64 ns = 0;
  3173. rq = task_rq_lock(p, &flags);
  3174. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  3175. task_rq_unlock(rq, p, &flags);
  3176. return ns;
  3177. }
  3178. /*
  3179. * Return sum_exec_runtime for the thread group.
  3180. * In case the task is currently running, return the sum plus current's
  3181. * pending runtime that have not been accounted yet.
  3182. *
  3183. * Note that the thread group might have other running tasks as well,
  3184. * so the return value not includes other pending runtime that other
  3185. * running tasks might have.
  3186. */
  3187. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  3188. {
  3189. struct task_cputime totals;
  3190. unsigned long flags;
  3191. struct rq *rq;
  3192. u64 ns;
  3193. rq = task_rq_lock(p, &flags);
  3194. thread_group_cputime(p, &totals);
  3195. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  3196. task_rq_unlock(rq, p, &flags);
  3197. return ns;
  3198. }
  3199. /*
  3200. * Account user cpu time to a process.
  3201. * @p: the process that the cpu time gets accounted to
  3202. * @cputime: the cpu time spent in user space since the last update
  3203. * @cputime_scaled: cputime scaled by cpu frequency
  3204. */
  3205. void account_user_time(struct task_struct *p, cputime_t cputime,
  3206. cputime_t cputime_scaled)
  3207. {
  3208. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3209. cputime64_t tmp;
  3210. /* Add user time to process. */
  3211. p->utime = cputime_add(p->utime, cputime);
  3212. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3213. account_group_user_time(p, cputime);
  3214. /* Add user time to cpustat. */
  3215. tmp = cputime_to_cputime64(cputime);
  3216. if (TASK_NICE(p) > 0)
  3217. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3218. else
  3219. cpustat->user = cputime64_add(cpustat->user, tmp);
  3220. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  3221. /* Account for user time used */
  3222. acct_update_integrals(p);
  3223. }
  3224. /*
  3225. * Account guest cpu time to a process.
  3226. * @p: the process that the cpu time gets accounted to
  3227. * @cputime: the cpu time spent in virtual machine since the last update
  3228. * @cputime_scaled: cputime scaled by cpu frequency
  3229. */
  3230. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3231. cputime_t cputime_scaled)
  3232. {
  3233. cputime64_t tmp;
  3234. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3235. tmp = cputime_to_cputime64(cputime);
  3236. /* Add guest time to process. */
  3237. p->utime = cputime_add(p->utime, cputime);
  3238. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3239. account_group_user_time(p, cputime);
  3240. p->gtime = cputime_add(p->gtime, cputime);
  3241. /* Add guest time to cpustat. */
  3242. if (TASK_NICE(p) > 0) {
  3243. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3244. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  3245. } else {
  3246. cpustat->user = cputime64_add(cpustat->user, tmp);
  3247. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3248. }
  3249. }
  3250. /*
  3251. * Account system cpu time to a process and desired cpustat field
  3252. * @p: the process that the cpu time gets accounted to
  3253. * @cputime: the cpu time spent in kernel space since the last update
  3254. * @cputime_scaled: cputime scaled by cpu frequency
  3255. * @target_cputime64: pointer to cpustat field that has to be updated
  3256. */
  3257. static inline
  3258. void __account_system_time(struct task_struct *p, cputime_t cputime,
  3259. cputime_t cputime_scaled, cputime64_t *target_cputime64)
  3260. {
  3261. cputime64_t tmp = cputime_to_cputime64(cputime);
  3262. /* Add system time to process. */
  3263. p->stime = cputime_add(p->stime, cputime);
  3264. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3265. account_group_system_time(p, cputime);
  3266. /* Add system time to cpustat. */
  3267. *target_cputime64 = cputime64_add(*target_cputime64, tmp);
  3268. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  3269. /* Account for system time used */
  3270. acct_update_integrals(p);
  3271. }
  3272. /*
  3273. * Account system cpu time to a process.
  3274. * @p: the process that the cpu time gets accounted to
  3275. * @hardirq_offset: the offset to subtract from hardirq_count()
  3276. * @cputime: the cpu time spent in kernel space since the last update
  3277. * @cputime_scaled: cputime scaled by cpu frequency
  3278. */
  3279. void account_system_time(struct task_struct *p, int hardirq_offset,
  3280. cputime_t cputime, cputime_t cputime_scaled)
  3281. {
  3282. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3283. cputime64_t *target_cputime64;
  3284. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3285. account_guest_time(p, cputime, cputime_scaled);
  3286. return;
  3287. }
  3288. if (hardirq_count() - hardirq_offset)
  3289. target_cputime64 = &cpustat->irq;
  3290. else if (in_serving_softirq())
  3291. target_cputime64 = &cpustat->softirq;
  3292. else
  3293. target_cputime64 = &cpustat->system;
  3294. __account_system_time(p, cputime, cputime_scaled, target_cputime64);
  3295. }
  3296. /*
  3297. * Account for involuntary wait time.
  3298. * @cputime: the cpu time spent in involuntary wait
  3299. */
  3300. void account_steal_time(cputime_t cputime)
  3301. {
  3302. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3303. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3304. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3305. }
  3306. /*
  3307. * Account for idle time.
  3308. * @cputime: the cpu time spent in idle wait
  3309. */
  3310. void account_idle_time(cputime_t cputime)
  3311. {
  3312. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3313. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3314. struct rq *rq = this_rq();
  3315. if (atomic_read(&rq->nr_iowait) > 0)
  3316. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3317. else
  3318. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3319. }
  3320. static __always_inline bool steal_account_process_tick(void)
  3321. {
  3322. #ifdef CONFIG_PARAVIRT
  3323. if (static_branch(&paravirt_steal_enabled)) {
  3324. u64 steal, st = 0;
  3325. steal = paravirt_steal_clock(smp_processor_id());
  3326. steal -= this_rq()->prev_steal_time;
  3327. st = steal_ticks(steal);
  3328. this_rq()->prev_steal_time += st * TICK_NSEC;
  3329. account_steal_time(st);
  3330. return st;
  3331. }
  3332. #endif
  3333. return false;
  3334. }
  3335. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3336. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  3337. /*
  3338. * Account a tick to a process and cpustat
  3339. * @p: the process that the cpu time gets accounted to
  3340. * @user_tick: is the tick from userspace
  3341. * @rq: the pointer to rq
  3342. *
  3343. * Tick demultiplexing follows the order
  3344. * - pending hardirq update
  3345. * - pending softirq update
  3346. * - user_time
  3347. * - idle_time
  3348. * - system time
  3349. * - check for guest_time
  3350. * - else account as system_time
  3351. *
  3352. * Check for hardirq is done both for system and user time as there is
  3353. * no timer going off while we are on hardirq and hence we may never get an
  3354. * opportunity to update it solely in system time.
  3355. * p->stime and friends are only updated on system time and not on irq
  3356. * softirq as those do not count in task exec_runtime any more.
  3357. */
  3358. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3359. struct rq *rq)
  3360. {
  3361. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3362. cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
  3363. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3364. if (steal_account_process_tick())
  3365. return;
  3366. if (irqtime_account_hi_update()) {
  3367. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3368. } else if (irqtime_account_si_update()) {
  3369. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3370. } else if (this_cpu_ksoftirqd() == p) {
  3371. /*
  3372. * ksoftirqd time do not get accounted in cpu_softirq_time.
  3373. * So, we have to handle it separately here.
  3374. * Also, p->stime needs to be updated for ksoftirqd.
  3375. */
  3376. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3377. &cpustat->softirq);
  3378. } else if (user_tick) {
  3379. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3380. } else if (p == rq->idle) {
  3381. account_idle_time(cputime_one_jiffy);
  3382. } else if (p->flags & PF_VCPU) { /* System time or guest time */
  3383. account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3384. } else {
  3385. __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
  3386. &cpustat->system);
  3387. }
  3388. }
  3389. static void irqtime_account_idle_ticks(int ticks)
  3390. {
  3391. int i;
  3392. struct rq *rq = this_rq();
  3393. for (i = 0; i < ticks; i++)
  3394. irqtime_account_process_tick(current, 0, rq);
  3395. }
  3396. #else /* CONFIG_IRQ_TIME_ACCOUNTING */
  3397. static void irqtime_account_idle_ticks(int ticks) {}
  3398. static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
  3399. struct rq *rq) {}
  3400. #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
  3401. /*
  3402. * Account a single tick of cpu time.
  3403. * @p: the process that the cpu time gets accounted to
  3404. * @user_tick: indicates if the tick is a user or a system tick
  3405. */
  3406. void account_process_tick(struct task_struct *p, int user_tick)
  3407. {
  3408. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  3409. struct rq *rq = this_rq();
  3410. if (sched_clock_irqtime) {
  3411. irqtime_account_process_tick(p, user_tick, rq);
  3412. return;
  3413. }
  3414. if (steal_account_process_tick())
  3415. return;
  3416. if (user_tick)
  3417. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  3418. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  3419. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  3420. one_jiffy_scaled);
  3421. else
  3422. account_idle_time(cputime_one_jiffy);
  3423. }
  3424. /*
  3425. * Account multiple ticks of steal time.
  3426. * @p: the process from which the cpu time has been stolen
  3427. * @ticks: number of stolen ticks
  3428. */
  3429. void account_steal_ticks(unsigned long ticks)
  3430. {
  3431. account_steal_time(jiffies_to_cputime(ticks));
  3432. }
  3433. /*
  3434. * Account multiple ticks of idle time.
  3435. * @ticks: number of stolen ticks
  3436. */
  3437. void account_idle_ticks(unsigned long ticks)
  3438. {
  3439. if (sched_clock_irqtime) {
  3440. irqtime_account_idle_ticks(ticks);
  3441. return;
  3442. }
  3443. account_idle_time(jiffies_to_cputime(ticks));
  3444. }
  3445. #endif
  3446. /*
  3447. * Use precise platform statistics if available:
  3448. */
  3449. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3450. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3451. {
  3452. *ut = p->utime;
  3453. *st = p->stime;
  3454. }
  3455. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3456. {
  3457. struct task_cputime cputime;
  3458. thread_group_cputime(p, &cputime);
  3459. *ut = cputime.utime;
  3460. *st = cputime.stime;
  3461. }
  3462. #else
  3463. #ifndef nsecs_to_cputime
  3464. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  3465. #endif
  3466. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3467. {
  3468. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  3469. /*
  3470. * Use CFS's precise accounting:
  3471. */
  3472. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  3473. if (total) {
  3474. u64 temp = rtime;
  3475. temp *= utime;
  3476. do_div(temp, total);
  3477. utime = (cputime_t)temp;
  3478. } else
  3479. utime = rtime;
  3480. /*
  3481. * Compare with previous values, to keep monotonicity:
  3482. */
  3483. p->prev_utime = max(p->prev_utime, utime);
  3484. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  3485. *ut = p->prev_utime;
  3486. *st = p->prev_stime;
  3487. }
  3488. /*
  3489. * Must be called with siglock held.
  3490. */
  3491. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  3492. {
  3493. struct signal_struct *sig = p->signal;
  3494. struct task_cputime cputime;
  3495. cputime_t rtime, utime, total;
  3496. thread_group_cputime(p, &cputime);
  3497. total = cputime_add(cputime.utime, cputime.stime);
  3498. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  3499. if (total) {
  3500. u64 temp = rtime;
  3501. temp *= cputime.utime;
  3502. do_div(temp, total);
  3503. utime = (cputime_t)temp;
  3504. } else
  3505. utime = rtime;
  3506. sig->prev_utime = max(sig->prev_utime, utime);
  3507. sig->prev_stime = max(sig->prev_stime,
  3508. cputime_sub(rtime, sig->prev_utime));
  3509. *ut = sig->prev_utime;
  3510. *st = sig->prev_stime;
  3511. }
  3512. #endif
  3513. /*
  3514. * This function gets called by the timer code, with HZ frequency.
  3515. * We call it with interrupts disabled.
  3516. */
  3517. void scheduler_tick(void)
  3518. {
  3519. int cpu = smp_processor_id();
  3520. struct rq *rq = cpu_rq(cpu);
  3521. struct task_struct *curr = rq->curr;
  3522. sched_clock_tick();
  3523. raw_spin_lock(&rq->lock);
  3524. update_rq_clock(rq);
  3525. update_cpu_load_active(rq);
  3526. curr->sched_class->task_tick(rq, curr, 0);
  3527. raw_spin_unlock(&rq->lock);
  3528. perf_event_task_tick();
  3529. #ifdef CONFIG_SMP
  3530. rq->idle_at_tick = idle_cpu(cpu);
  3531. trigger_load_balance(rq, cpu);
  3532. #endif
  3533. }
  3534. notrace unsigned long get_parent_ip(unsigned long addr)
  3535. {
  3536. if (in_lock_functions(addr)) {
  3537. addr = CALLER_ADDR2;
  3538. if (in_lock_functions(addr))
  3539. addr = CALLER_ADDR3;
  3540. }
  3541. return addr;
  3542. }
  3543. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3544. defined(CONFIG_PREEMPT_TRACER))
  3545. void __kprobes add_preempt_count(int val)
  3546. {
  3547. #ifdef CONFIG_DEBUG_PREEMPT
  3548. /*
  3549. * Underflow?
  3550. */
  3551. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3552. return;
  3553. #endif
  3554. preempt_count() += val;
  3555. #ifdef CONFIG_DEBUG_PREEMPT
  3556. /*
  3557. * Spinlock count overflowing soon?
  3558. */
  3559. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3560. PREEMPT_MASK - 10);
  3561. #endif
  3562. if (preempt_count() == val)
  3563. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3564. }
  3565. EXPORT_SYMBOL(add_preempt_count);
  3566. void __kprobes sub_preempt_count(int val)
  3567. {
  3568. #ifdef CONFIG_DEBUG_PREEMPT
  3569. /*
  3570. * Underflow?
  3571. */
  3572. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3573. return;
  3574. /*
  3575. * Is the spinlock portion underflowing?
  3576. */
  3577. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3578. !(preempt_count() & PREEMPT_MASK)))
  3579. return;
  3580. #endif
  3581. if (preempt_count() == val)
  3582. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3583. preempt_count() -= val;
  3584. }
  3585. EXPORT_SYMBOL(sub_preempt_count);
  3586. #endif
  3587. /*
  3588. * Print scheduling while atomic bug:
  3589. */
  3590. static noinline void __schedule_bug(struct task_struct *prev)
  3591. {
  3592. struct pt_regs *regs = get_irq_regs();
  3593. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3594. prev->comm, prev->pid, preempt_count());
  3595. debug_show_held_locks(prev);
  3596. print_modules();
  3597. if (irqs_disabled())
  3598. print_irqtrace_events(prev);
  3599. if (regs)
  3600. show_regs(regs);
  3601. else
  3602. dump_stack();
  3603. }
  3604. /*
  3605. * Various schedule()-time debugging checks and statistics:
  3606. */
  3607. static inline void schedule_debug(struct task_struct *prev)
  3608. {
  3609. /*
  3610. * Test if we are atomic. Since do_exit() needs to call into
  3611. * schedule() atomically, we ignore that path for now.
  3612. * Otherwise, whine if we are scheduling when we should not be.
  3613. */
  3614. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3615. __schedule_bug(prev);
  3616. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3617. schedstat_inc(this_rq(), sched_count);
  3618. }
  3619. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3620. {
  3621. if (prev->on_rq || rq->skip_clock_update < 0)
  3622. update_rq_clock(rq);
  3623. prev->sched_class->put_prev_task(rq, prev);
  3624. }
  3625. /*
  3626. * Pick up the highest-prio task:
  3627. */
  3628. static inline struct task_struct *
  3629. pick_next_task(struct rq *rq)
  3630. {
  3631. const struct sched_class *class;
  3632. struct task_struct *p;
  3633. /*
  3634. * Optimization: we know that if all tasks are in
  3635. * the fair class we can call that function directly:
  3636. */
  3637. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  3638. p = fair_sched_class.pick_next_task(rq);
  3639. if (likely(p))
  3640. return p;
  3641. }
  3642. for_each_class(class) {
  3643. p = class->pick_next_task(rq);
  3644. if (p)
  3645. return p;
  3646. }
  3647. BUG(); /* the idle class will always have a runnable task */
  3648. }
  3649. /*
  3650. * schedule() is the main scheduler function.
  3651. */
  3652. asmlinkage void __sched schedule(void)
  3653. {
  3654. struct task_struct *prev, *next;
  3655. unsigned long *switch_count;
  3656. struct rq *rq;
  3657. int cpu;
  3658. need_resched:
  3659. preempt_disable();
  3660. cpu = smp_processor_id();
  3661. rq = cpu_rq(cpu);
  3662. rcu_note_context_switch(cpu);
  3663. prev = rq->curr;
  3664. schedule_debug(prev);
  3665. if (sched_feat(HRTICK))
  3666. hrtick_clear(rq);
  3667. raw_spin_lock_irq(&rq->lock);
  3668. switch_count = &prev->nivcsw;
  3669. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3670. if (unlikely(signal_pending_state(prev->state, prev))) {
  3671. prev->state = TASK_RUNNING;
  3672. } else {
  3673. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3674. prev->on_rq = 0;
  3675. /*
  3676. * If a worker went to sleep, notify and ask workqueue
  3677. * whether it wants to wake up a task to maintain
  3678. * concurrency.
  3679. */
  3680. if (prev->flags & PF_WQ_WORKER) {
  3681. struct task_struct *to_wakeup;
  3682. to_wakeup = wq_worker_sleeping(prev, cpu);
  3683. if (to_wakeup)
  3684. try_to_wake_up_local(to_wakeup);
  3685. }
  3686. /*
  3687. * If we are going to sleep and we have plugged IO
  3688. * queued, make sure to submit it to avoid deadlocks.
  3689. */
  3690. if (blk_needs_flush_plug(prev)) {
  3691. raw_spin_unlock(&rq->lock);
  3692. blk_schedule_flush_plug(prev);
  3693. raw_spin_lock(&rq->lock);
  3694. }
  3695. }
  3696. switch_count = &prev->nvcsw;
  3697. }
  3698. pre_schedule(rq, prev);
  3699. if (unlikely(!rq->nr_running))
  3700. idle_balance(cpu, rq);
  3701. put_prev_task(rq, prev);
  3702. next = pick_next_task(rq);
  3703. clear_tsk_need_resched(prev);
  3704. rq->skip_clock_update = 0;
  3705. if (likely(prev != next)) {
  3706. rq->nr_switches++;
  3707. rq->curr = next;
  3708. ++*switch_count;
  3709. context_switch(rq, prev, next); /* unlocks the rq */
  3710. /*
  3711. * The context switch have flipped the stack from under us
  3712. * and restored the local variables which were saved when
  3713. * this task called schedule() in the past. prev == current
  3714. * is still correct, but it can be moved to another cpu/rq.
  3715. */
  3716. cpu = smp_processor_id();
  3717. rq = cpu_rq(cpu);
  3718. } else
  3719. raw_spin_unlock_irq(&rq->lock);
  3720. post_schedule(rq);
  3721. preempt_enable_no_resched();
  3722. if (need_resched())
  3723. goto need_resched;
  3724. }
  3725. EXPORT_SYMBOL(schedule);
  3726. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3727. static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
  3728. {
  3729. if (lock->owner != owner)
  3730. return false;
  3731. /*
  3732. * Ensure we emit the owner->on_cpu, dereference _after_ checking
  3733. * lock->owner still matches owner, if that fails, owner might
  3734. * point to free()d memory, if it still matches, the rcu_read_lock()
  3735. * ensures the memory stays valid.
  3736. */
  3737. barrier();
  3738. return owner->on_cpu;
  3739. }
  3740. /*
  3741. * Look out! "owner" is an entirely speculative pointer
  3742. * access and not reliable.
  3743. */
  3744. int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
  3745. {
  3746. if (!sched_feat(OWNER_SPIN))
  3747. return 0;
  3748. rcu_read_lock();
  3749. while (owner_running(lock, owner)) {
  3750. if (need_resched())
  3751. break;
  3752. arch_mutex_cpu_relax();
  3753. }
  3754. rcu_read_unlock();
  3755. /*
  3756. * We break out the loop above on need_resched() and when the
  3757. * owner changed, which is a sign for heavy contention. Return
  3758. * success only when lock->owner is NULL.
  3759. */
  3760. return lock->owner == NULL;
  3761. }
  3762. #endif
  3763. #ifdef CONFIG_PREEMPT
  3764. /*
  3765. * this is the entry point to schedule() from in-kernel preemption
  3766. * off of preempt_enable. Kernel preemptions off return from interrupt
  3767. * occur there and call schedule directly.
  3768. */
  3769. asmlinkage void __sched notrace preempt_schedule(void)
  3770. {
  3771. struct thread_info *ti = current_thread_info();
  3772. /*
  3773. * If there is a non-zero preempt_count or interrupts are disabled,
  3774. * we do not want to preempt the current task. Just return..
  3775. */
  3776. if (likely(ti->preempt_count || irqs_disabled()))
  3777. return;
  3778. do {
  3779. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3780. schedule();
  3781. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3782. /*
  3783. * Check again in case we missed a preemption opportunity
  3784. * between schedule and now.
  3785. */
  3786. barrier();
  3787. } while (need_resched());
  3788. }
  3789. EXPORT_SYMBOL(preempt_schedule);
  3790. /*
  3791. * this is the entry point to schedule() from kernel preemption
  3792. * off of irq context.
  3793. * Note, that this is called and return with irqs disabled. This will
  3794. * protect us against recursive calling from irq.
  3795. */
  3796. asmlinkage void __sched preempt_schedule_irq(void)
  3797. {
  3798. struct thread_info *ti = current_thread_info();
  3799. /* Catch callers which need to be fixed */
  3800. BUG_ON(ti->preempt_count || !irqs_disabled());
  3801. do {
  3802. add_preempt_count(PREEMPT_ACTIVE);
  3803. local_irq_enable();
  3804. schedule();
  3805. local_irq_disable();
  3806. sub_preempt_count(PREEMPT_ACTIVE);
  3807. /*
  3808. * Check again in case we missed a preemption opportunity
  3809. * between schedule and now.
  3810. */
  3811. barrier();
  3812. } while (need_resched());
  3813. }
  3814. #endif /* CONFIG_PREEMPT */
  3815. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3816. void *key)
  3817. {
  3818. return try_to_wake_up(curr->private, mode, wake_flags);
  3819. }
  3820. EXPORT_SYMBOL(default_wake_function);
  3821. /*
  3822. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3823. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3824. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3825. *
  3826. * There are circumstances in which we can try to wake a task which has already
  3827. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3828. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3829. */
  3830. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3831. int nr_exclusive, int wake_flags, void *key)
  3832. {
  3833. wait_queue_t *curr, *next;
  3834. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3835. unsigned flags = curr->flags;
  3836. if (curr->func(curr, mode, wake_flags, key) &&
  3837. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3838. break;
  3839. }
  3840. }
  3841. /**
  3842. * __wake_up - wake up threads blocked on a waitqueue.
  3843. * @q: the waitqueue
  3844. * @mode: which threads
  3845. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3846. * @key: is directly passed to the wakeup function
  3847. *
  3848. * It may be assumed that this function implies a write memory barrier before
  3849. * changing the task state if and only if any tasks are woken up.
  3850. */
  3851. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3852. int nr_exclusive, void *key)
  3853. {
  3854. unsigned long flags;
  3855. spin_lock_irqsave(&q->lock, flags);
  3856. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3857. spin_unlock_irqrestore(&q->lock, flags);
  3858. }
  3859. EXPORT_SYMBOL(__wake_up);
  3860. /*
  3861. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3862. */
  3863. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3864. {
  3865. __wake_up_common(q, mode, 1, 0, NULL);
  3866. }
  3867. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3868. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3869. {
  3870. __wake_up_common(q, mode, 1, 0, key);
  3871. }
  3872. EXPORT_SYMBOL_GPL(__wake_up_locked_key);
  3873. /**
  3874. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3875. * @q: the waitqueue
  3876. * @mode: which threads
  3877. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3878. * @key: opaque value to be passed to wakeup targets
  3879. *
  3880. * The sync wakeup differs that the waker knows that it will schedule
  3881. * away soon, so while the target thread will be woken up, it will not
  3882. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3883. * with each other. This can prevent needless bouncing between CPUs.
  3884. *
  3885. * On UP it can prevent extra preemption.
  3886. *
  3887. * It may be assumed that this function implies a write memory barrier before
  3888. * changing the task state if and only if any tasks are woken up.
  3889. */
  3890. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3891. int nr_exclusive, void *key)
  3892. {
  3893. unsigned long flags;
  3894. int wake_flags = WF_SYNC;
  3895. if (unlikely(!q))
  3896. return;
  3897. if (unlikely(!nr_exclusive))
  3898. wake_flags = 0;
  3899. spin_lock_irqsave(&q->lock, flags);
  3900. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3901. spin_unlock_irqrestore(&q->lock, flags);
  3902. }
  3903. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3904. /*
  3905. * __wake_up_sync - see __wake_up_sync_key()
  3906. */
  3907. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3908. {
  3909. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3910. }
  3911. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3912. /**
  3913. * complete: - signals a single thread waiting on this completion
  3914. * @x: holds the state of this particular completion
  3915. *
  3916. * This will wake up a single thread waiting on this completion. Threads will be
  3917. * awakened in the same order in which they were queued.
  3918. *
  3919. * See also complete_all(), wait_for_completion() and related routines.
  3920. *
  3921. * It may be assumed that this function implies a write memory barrier before
  3922. * changing the task state if and only if any tasks are woken up.
  3923. */
  3924. void complete(struct completion *x)
  3925. {
  3926. unsigned long flags;
  3927. spin_lock_irqsave(&x->wait.lock, flags);
  3928. x->done++;
  3929. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3930. spin_unlock_irqrestore(&x->wait.lock, flags);
  3931. }
  3932. EXPORT_SYMBOL(complete);
  3933. /**
  3934. * complete_all: - signals all threads waiting on this completion
  3935. * @x: holds the state of this particular completion
  3936. *
  3937. * This will wake up all threads waiting on this particular completion event.
  3938. *
  3939. * It may be assumed that this function implies a write memory barrier before
  3940. * changing the task state if and only if any tasks are woken up.
  3941. */
  3942. void complete_all(struct completion *x)
  3943. {
  3944. unsigned long flags;
  3945. spin_lock_irqsave(&x->wait.lock, flags);
  3946. x->done += UINT_MAX/2;
  3947. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3948. spin_unlock_irqrestore(&x->wait.lock, flags);
  3949. }
  3950. EXPORT_SYMBOL(complete_all);
  3951. static inline long __sched
  3952. do_wait_for_common(struct completion *x, long timeout, int state)
  3953. {
  3954. if (!x->done) {
  3955. DECLARE_WAITQUEUE(wait, current);
  3956. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3957. do {
  3958. if (signal_pending_state(state, current)) {
  3959. timeout = -ERESTARTSYS;
  3960. break;
  3961. }
  3962. __set_current_state(state);
  3963. spin_unlock_irq(&x->wait.lock);
  3964. timeout = schedule_timeout(timeout);
  3965. spin_lock_irq(&x->wait.lock);
  3966. } while (!x->done && timeout);
  3967. __remove_wait_queue(&x->wait, &wait);
  3968. if (!x->done)
  3969. return timeout;
  3970. }
  3971. x->done--;
  3972. return timeout ?: 1;
  3973. }
  3974. static long __sched
  3975. wait_for_common(struct completion *x, long timeout, int state)
  3976. {
  3977. might_sleep();
  3978. spin_lock_irq(&x->wait.lock);
  3979. timeout = do_wait_for_common(x, timeout, state);
  3980. spin_unlock_irq(&x->wait.lock);
  3981. return timeout;
  3982. }
  3983. /**
  3984. * wait_for_completion: - waits for completion of a task
  3985. * @x: holds the state of this particular completion
  3986. *
  3987. * This waits to be signaled for completion of a specific task. It is NOT
  3988. * interruptible and there is no timeout.
  3989. *
  3990. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3991. * and interrupt capability. Also see complete().
  3992. */
  3993. void __sched wait_for_completion(struct completion *x)
  3994. {
  3995. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3996. }
  3997. EXPORT_SYMBOL(wait_for_completion);
  3998. /**
  3999. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4000. * @x: holds the state of this particular completion
  4001. * @timeout: timeout value in jiffies
  4002. *
  4003. * This waits for either a completion of a specific task to be signaled or for a
  4004. * specified timeout to expire. The timeout is in jiffies. It is not
  4005. * interruptible.
  4006. */
  4007. unsigned long __sched
  4008. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4009. {
  4010. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4011. }
  4012. EXPORT_SYMBOL(wait_for_completion_timeout);
  4013. /**
  4014. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4015. * @x: holds the state of this particular completion
  4016. *
  4017. * This waits for completion of a specific task to be signaled. It is
  4018. * interruptible.
  4019. */
  4020. int __sched wait_for_completion_interruptible(struct completion *x)
  4021. {
  4022. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4023. if (t == -ERESTARTSYS)
  4024. return t;
  4025. return 0;
  4026. }
  4027. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4028. /**
  4029. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4030. * @x: holds the state of this particular completion
  4031. * @timeout: timeout value in jiffies
  4032. *
  4033. * This waits for either a completion of a specific task to be signaled or for a
  4034. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4035. */
  4036. long __sched
  4037. wait_for_completion_interruptible_timeout(struct completion *x,
  4038. unsigned long timeout)
  4039. {
  4040. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4041. }
  4042. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4043. /**
  4044. * wait_for_completion_killable: - waits for completion of a task (killable)
  4045. * @x: holds the state of this particular completion
  4046. *
  4047. * This waits to be signaled for completion of a specific task. It can be
  4048. * interrupted by a kill signal.
  4049. */
  4050. int __sched wait_for_completion_killable(struct completion *x)
  4051. {
  4052. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4053. if (t == -ERESTARTSYS)
  4054. return t;
  4055. return 0;
  4056. }
  4057. EXPORT_SYMBOL(wait_for_completion_killable);
  4058. /**
  4059. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  4060. * @x: holds the state of this particular completion
  4061. * @timeout: timeout value in jiffies
  4062. *
  4063. * This waits for either a completion of a specific task to be
  4064. * signaled or for a specified timeout to expire. It can be
  4065. * interrupted by a kill signal. The timeout is in jiffies.
  4066. */
  4067. long __sched
  4068. wait_for_completion_killable_timeout(struct completion *x,
  4069. unsigned long timeout)
  4070. {
  4071. return wait_for_common(x, timeout, TASK_KILLABLE);
  4072. }
  4073. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  4074. /**
  4075. * try_wait_for_completion - try to decrement a completion without blocking
  4076. * @x: completion structure
  4077. *
  4078. * Returns: 0 if a decrement cannot be done without blocking
  4079. * 1 if a decrement succeeded.
  4080. *
  4081. * If a completion is being used as a counting completion,
  4082. * attempt to decrement the counter without blocking. This
  4083. * enables us to avoid waiting if the resource the completion
  4084. * is protecting is not available.
  4085. */
  4086. bool try_wait_for_completion(struct completion *x)
  4087. {
  4088. unsigned long flags;
  4089. int ret = 1;
  4090. spin_lock_irqsave(&x->wait.lock, flags);
  4091. if (!x->done)
  4092. ret = 0;
  4093. else
  4094. x->done--;
  4095. spin_unlock_irqrestore(&x->wait.lock, flags);
  4096. return ret;
  4097. }
  4098. EXPORT_SYMBOL(try_wait_for_completion);
  4099. /**
  4100. * completion_done - Test to see if a completion has any waiters
  4101. * @x: completion structure
  4102. *
  4103. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4104. * 1 if there are no waiters.
  4105. *
  4106. */
  4107. bool completion_done(struct completion *x)
  4108. {
  4109. unsigned long flags;
  4110. int ret = 1;
  4111. spin_lock_irqsave(&x->wait.lock, flags);
  4112. if (!x->done)
  4113. ret = 0;
  4114. spin_unlock_irqrestore(&x->wait.lock, flags);
  4115. return ret;
  4116. }
  4117. EXPORT_SYMBOL(completion_done);
  4118. static long __sched
  4119. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4120. {
  4121. unsigned long flags;
  4122. wait_queue_t wait;
  4123. init_waitqueue_entry(&wait, current);
  4124. __set_current_state(state);
  4125. spin_lock_irqsave(&q->lock, flags);
  4126. __add_wait_queue(q, &wait);
  4127. spin_unlock(&q->lock);
  4128. timeout = schedule_timeout(timeout);
  4129. spin_lock_irq(&q->lock);
  4130. __remove_wait_queue(q, &wait);
  4131. spin_unlock_irqrestore(&q->lock, flags);
  4132. return timeout;
  4133. }
  4134. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4135. {
  4136. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4137. }
  4138. EXPORT_SYMBOL(interruptible_sleep_on);
  4139. long __sched
  4140. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4141. {
  4142. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4143. }
  4144. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4145. void __sched sleep_on(wait_queue_head_t *q)
  4146. {
  4147. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4148. }
  4149. EXPORT_SYMBOL(sleep_on);
  4150. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4151. {
  4152. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4153. }
  4154. EXPORT_SYMBOL(sleep_on_timeout);
  4155. #ifdef CONFIG_RT_MUTEXES
  4156. /*
  4157. * rt_mutex_setprio - set the current priority of a task
  4158. * @p: task
  4159. * @prio: prio value (kernel-internal form)
  4160. *
  4161. * This function changes the 'effective' priority of a task. It does
  4162. * not touch ->normal_prio like __setscheduler().
  4163. *
  4164. * Used by the rt_mutex code to implement priority inheritance logic.
  4165. */
  4166. void rt_mutex_setprio(struct task_struct *p, int prio)
  4167. {
  4168. int oldprio, on_rq, running;
  4169. struct rq *rq;
  4170. const struct sched_class *prev_class;
  4171. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4172. rq = __task_rq_lock(p);
  4173. trace_sched_pi_setprio(p, prio);
  4174. oldprio = p->prio;
  4175. prev_class = p->sched_class;
  4176. on_rq = p->on_rq;
  4177. running = task_current(rq, p);
  4178. if (on_rq)
  4179. dequeue_task(rq, p, 0);
  4180. if (running)
  4181. p->sched_class->put_prev_task(rq, p);
  4182. if (rt_prio(prio))
  4183. p->sched_class = &rt_sched_class;
  4184. else
  4185. p->sched_class = &fair_sched_class;
  4186. p->prio = prio;
  4187. if (running)
  4188. p->sched_class->set_curr_task(rq);
  4189. if (on_rq)
  4190. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  4191. check_class_changed(rq, p, prev_class, oldprio);
  4192. __task_rq_unlock(rq);
  4193. }
  4194. #endif
  4195. void set_user_nice(struct task_struct *p, long nice)
  4196. {
  4197. int old_prio, delta, on_rq;
  4198. unsigned long flags;
  4199. struct rq *rq;
  4200. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4201. return;
  4202. /*
  4203. * We have to be careful, if called from sys_setpriority(),
  4204. * the task might be in the middle of scheduling on another CPU.
  4205. */
  4206. rq = task_rq_lock(p, &flags);
  4207. /*
  4208. * The RT priorities are set via sched_setscheduler(), but we still
  4209. * allow the 'normal' nice value to be set - but as expected
  4210. * it wont have any effect on scheduling until the task is
  4211. * SCHED_FIFO/SCHED_RR:
  4212. */
  4213. if (task_has_rt_policy(p)) {
  4214. p->static_prio = NICE_TO_PRIO(nice);
  4215. goto out_unlock;
  4216. }
  4217. on_rq = p->on_rq;
  4218. if (on_rq)
  4219. dequeue_task(rq, p, 0);
  4220. p->static_prio = NICE_TO_PRIO(nice);
  4221. set_load_weight(p);
  4222. old_prio = p->prio;
  4223. p->prio = effective_prio(p);
  4224. delta = p->prio - old_prio;
  4225. if (on_rq) {
  4226. enqueue_task(rq, p, 0);
  4227. /*
  4228. * If the task increased its priority or is running and
  4229. * lowered its priority, then reschedule its CPU:
  4230. */
  4231. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4232. resched_task(rq->curr);
  4233. }
  4234. out_unlock:
  4235. task_rq_unlock(rq, p, &flags);
  4236. }
  4237. EXPORT_SYMBOL(set_user_nice);
  4238. /*
  4239. * can_nice - check if a task can reduce its nice value
  4240. * @p: task
  4241. * @nice: nice value
  4242. */
  4243. int can_nice(const struct task_struct *p, const int nice)
  4244. {
  4245. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4246. int nice_rlim = 20 - nice;
  4247. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  4248. capable(CAP_SYS_NICE));
  4249. }
  4250. #ifdef __ARCH_WANT_SYS_NICE
  4251. /*
  4252. * sys_nice - change the priority of the current process.
  4253. * @increment: priority increment
  4254. *
  4255. * sys_setpriority is a more generic, but much slower function that
  4256. * does similar things.
  4257. */
  4258. SYSCALL_DEFINE1(nice, int, increment)
  4259. {
  4260. long nice, retval;
  4261. /*
  4262. * Setpriority might change our priority at the same moment.
  4263. * We don't have to worry. Conceptually one call occurs first
  4264. * and we have a single winner.
  4265. */
  4266. if (increment < -40)
  4267. increment = -40;
  4268. if (increment > 40)
  4269. increment = 40;
  4270. nice = TASK_NICE(current) + increment;
  4271. if (nice < -20)
  4272. nice = -20;
  4273. if (nice > 19)
  4274. nice = 19;
  4275. if (increment < 0 && !can_nice(current, nice))
  4276. return -EPERM;
  4277. retval = security_task_setnice(current, nice);
  4278. if (retval)
  4279. return retval;
  4280. set_user_nice(current, nice);
  4281. return 0;
  4282. }
  4283. #endif
  4284. /**
  4285. * task_prio - return the priority value of a given task.
  4286. * @p: the task in question.
  4287. *
  4288. * This is the priority value as seen by users in /proc.
  4289. * RT tasks are offset by -200. Normal tasks are centered
  4290. * around 0, value goes from -16 to +15.
  4291. */
  4292. int task_prio(const struct task_struct *p)
  4293. {
  4294. return p->prio - MAX_RT_PRIO;
  4295. }
  4296. /**
  4297. * task_nice - return the nice value of a given task.
  4298. * @p: the task in question.
  4299. */
  4300. int task_nice(const struct task_struct *p)
  4301. {
  4302. return TASK_NICE(p);
  4303. }
  4304. EXPORT_SYMBOL(task_nice);
  4305. /**
  4306. * idle_cpu - is a given cpu idle currently?
  4307. * @cpu: the processor in question.
  4308. */
  4309. int idle_cpu(int cpu)
  4310. {
  4311. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4312. }
  4313. /**
  4314. * idle_task - return the idle task for a given cpu.
  4315. * @cpu: the processor in question.
  4316. */
  4317. struct task_struct *idle_task(int cpu)
  4318. {
  4319. return cpu_rq(cpu)->idle;
  4320. }
  4321. /**
  4322. * find_process_by_pid - find a process with a matching PID value.
  4323. * @pid: the pid in question.
  4324. */
  4325. static struct task_struct *find_process_by_pid(pid_t pid)
  4326. {
  4327. return pid ? find_task_by_vpid(pid) : current;
  4328. }
  4329. /* Actually do priority change: must hold rq lock. */
  4330. static void
  4331. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4332. {
  4333. p->policy = policy;
  4334. p->rt_priority = prio;
  4335. p->normal_prio = normal_prio(p);
  4336. /* we are holding p->pi_lock already */
  4337. p->prio = rt_mutex_getprio(p);
  4338. if (rt_prio(p->prio))
  4339. p->sched_class = &rt_sched_class;
  4340. else
  4341. p->sched_class = &fair_sched_class;
  4342. set_load_weight(p);
  4343. }
  4344. /*
  4345. * check the target process has a UID that matches the current process's
  4346. */
  4347. static bool check_same_owner(struct task_struct *p)
  4348. {
  4349. const struct cred *cred = current_cred(), *pcred;
  4350. bool match;
  4351. rcu_read_lock();
  4352. pcred = __task_cred(p);
  4353. if (cred->user->user_ns == pcred->user->user_ns)
  4354. match = (cred->euid == pcred->euid ||
  4355. cred->euid == pcred->uid);
  4356. else
  4357. match = false;
  4358. rcu_read_unlock();
  4359. return match;
  4360. }
  4361. static int __sched_setscheduler(struct task_struct *p, int policy,
  4362. const struct sched_param *param, bool user)
  4363. {
  4364. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4365. unsigned long flags;
  4366. const struct sched_class *prev_class;
  4367. struct rq *rq;
  4368. int reset_on_fork;
  4369. /* may grab non-irq protected spin_locks */
  4370. BUG_ON(in_interrupt());
  4371. recheck:
  4372. /* double check policy once rq lock held */
  4373. if (policy < 0) {
  4374. reset_on_fork = p->sched_reset_on_fork;
  4375. policy = oldpolicy = p->policy;
  4376. } else {
  4377. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  4378. policy &= ~SCHED_RESET_ON_FORK;
  4379. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4380. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4381. policy != SCHED_IDLE)
  4382. return -EINVAL;
  4383. }
  4384. /*
  4385. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4386. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4387. * SCHED_BATCH and SCHED_IDLE is 0.
  4388. */
  4389. if (param->sched_priority < 0 ||
  4390. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4391. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4392. return -EINVAL;
  4393. if (rt_policy(policy) != (param->sched_priority != 0))
  4394. return -EINVAL;
  4395. /*
  4396. * Allow unprivileged RT tasks to decrease priority:
  4397. */
  4398. if (user && !capable(CAP_SYS_NICE)) {
  4399. if (rt_policy(policy)) {
  4400. unsigned long rlim_rtprio =
  4401. task_rlimit(p, RLIMIT_RTPRIO);
  4402. /* can't set/change the rt policy */
  4403. if (policy != p->policy && !rlim_rtprio)
  4404. return -EPERM;
  4405. /* can't increase priority */
  4406. if (param->sched_priority > p->rt_priority &&
  4407. param->sched_priority > rlim_rtprio)
  4408. return -EPERM;
  4409. }
  4410. /*
  4411. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  4412. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  4413. */
  4414. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  4415. if (!can_nice(p, TASK_NICE(p)))
  4416. return -EPERM;
  4417. }
  4418. /* can't change other user's priorities */
  4419. if (!check_same_owner(p))
  4420. return -EPERM;
  4421. /* Normal users shall not reset the sched_reset_on_fork flag */
  4422. if (p->sched_reset_on_fork && !reset_on_fork)
  4423. return -EPERM;
  4424. }
  4425. if (user) {
  4426. retval = security_task_setscheduler(p);
  4427. if (retval)
  4428. return retval;
  4429. }
  4430. /*
  4431. * make sure no PI-waiters arrive (or leave) while we are
  4432. * changing the priority of the task:
  4433. *
  4434. * To be able to change p->policy safely, the appropriate
  4435. * runqueue lock must be held.
  4436. */
  4437. rq = task_rq_lock(p, &flags);
  4438. /*
  4439. * Changing the policy of the stop threads its a very bad idea
  4440. */
  4441. if (p == rq->stop) {
  4442. task_rq_unlock(rq, p, &flags);
  4443. return -EINVAL;
  4444. }
  4445. /*
  4446. * If not changing anything there's no need to proceed further:
  4447. */
  4448. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  4449. param->sched_priority == p->rt_priority))) {
  4450. __task_rq_unlock(rq);
  4451. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4452. return 0;
  4453. }
  4454. #ifdef CONFIG_RT_GROUP_SCHED
  4455. if (user) {
  4456. /*
  4457. * Do not allow realtime tasks into groups that have no runtime
  4458. * assigned.
  4459. */
  4460. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4461. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  4462. !task_group_is_autogroup(task_group(p))) {
  4463. task_rq_unlock(rq, p, &flags);
  4464. return -EPERM;
  4465. }
  4466. }
  4467. #endif
  4468. /* recheck policy now with rq lock held */
  4469. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4470. policy = oldpolicy = -1;
  4471. task_rq_unlock(rq, p, &flags);
  4472. goto recheck;
  4473. }
  4474. on_rq = p->on_rq;
  4475. running = task_current(rq, p);
  4476. if (on_rq)
  4477. deactivate_task(rq, p, 0);
  4478. if (running)
  4479. p->sched_class->put_prev_task(rq, p);
  4480. p->sched_reset_on_fork = reset_on_fork;
  4481. oldprio = p->prio;
  4482. prev_class = p->sched_class;
  4483. __setscheduler(rq, p, policy, param->sched_priority);
  4484. if (running)
  4485. p->sched_class->set_curr_task(rq);
  4486. if (on_rq)
  4487. activate_task(rq, p, 0);
  4488. check_class_changed(rq, p, prev_class, oldprio);
  4489. task_rq_unlock(rq, p, &flags);
  4490. rt_mutex_adjust_pi(p);
  4491. return 0;
  4492. }
  4493. /**
  4494. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4495. * @p: the task in question.
  4496. * @policy: new policy.
  4497. * @param: structure containing the new RT priority.
  4498. *
  4499. * NOTE that the task may be already dead.
  4500. */
  4501. int sched_setscheduler(struct task_struct *p, int policy,
  4502. const struct sched_param *param)
  4503. {
  4504. return __sched_setscheduler(p, policy, param, true);
  4505. }
  4506. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4507. /**
  4508. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4509. * @p: the task in question.
  4510. * @policy: new policy.
  4511. * @param: structure containing the new RT priority.
  4512. *
  4513. * Just like sched_setscheduler, only don't bother checking if the
  4514. * current context has permission. For example, this is needed in
  4515. * stop_machine(): we create temporary high priority worker threads,
  4516. * but our caller might not have that capability.
  4517. */
  4518. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4519. const struct sched_param *param)
  4520. {
  4521. return __sched_setscheduler(p, policy, param, false);
  4522. }
  4523. static int
  4524. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4525. {
  4526. struct sched_param lparam;
  4527. struct task_struct *p;
  4528. int retval;
  4529. if (!param || pid < 0)
  4530. return -EINVAL;
  4531. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4532. return -EFAULT;
  4533. rcu_read_lock();
  4534. retval = -ESRCH;
  4535. p = find_process_by_pid(pid);
  4536. if (p != NULL)
  4537. retval = sched_setscheduler(p, policy, &lparam);
  4538. rcu_read_unlock();
  4539. return retval;
  4540. }
  4541. /**
  4542. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4543. * @pid: the pid in question.
  4544. * @policy: new policy.
  4545. * @param: structure containing the new RT priority.
  4546. */
  4547. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4548. struct sched_param __user *, param)
  4549. {
  4550. /* negative values for policy are not valid */
  4551. if (policy < 0)
  4552. return -EINVAL;
  4553. return do_sched_setscheduler(pid, policy, param);
  4554. }
  4555. /**
  4556. * sys_sched_setparam - set/change the RT priority of a thread
  4557. * @pid: the pid in question.
  4558. * @param: structure containing the new RT priority.
  4559. */
  4560. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4561. {
  4562. return do_sched_setscheduler(pid, -1, param);
  4563. }
  4564. /**
  4565. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4566. * @pid: the pid in question.
  4567. */
  4568. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4569. {
  4570. struct task_struct *p;
  4571. int retval;
  4572. if (pid < 0)
  4573. return -EINVAL;
  4574. retval = -ESRCH;
  4575. rcu_read_lock();
  4576. p = find_process_by_pid(pid);
  4577. if (p) {
  4578. retval = security_task_getscheduler(p);
  4579. if (!retval)
  4580. retval = p->policy
  4581. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4582. }
  4583. rcu_read_unlock();
  4584. return retval;
  4585. }
  4586. /**
  4587. * sys_sched_getparam - get the RT priority of a thread
  4588. * @pid: the pid in question.
  4589. * @param: structure containing the RT priority.
  4590. */
  4591. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4592. {
  4593. struct sched_param lp;
  4594. struct task_struct *p;
  4595. int retval;
  4596. if (!param || pid < 0)
  4597. return -EINVAL;
  4598. rcu_read_lock();
  4599. p = find_process_by_pid(pid);
  4600. retval = -ESRCH;
  4601. if (!p)
  4602. goto out_unlock;
  4603. retval = security_task_getscheduler(p);
  4604. if (retval)
  4605. goto out_unlock;
  4606. lp.sched_priority = p->rt_priority;
  4607. rcu_read_unlock();
  4608. /*
  4609. * This one might sleep, we cannot do it with a spinlock held ...
  4610. */
  4611. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4612. return retval;
  4613. out_unlock:
  4614. rcu_read_unlock();
  4615. return retval;
  4616. }
  4617. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4618. {
  4619. cpumask_var_t cpus_allowed, new_mask;
  4620. struct task_struct *p;
  4621. int retval;
  4622. get_online_cpus();
  4623. rcu_read_lock();
  4624. p = find_process_by_pid(pid);
  4625. if (!p) {
  4626. rcu_read_unlock();
  4627. put_online_cpus();
  4628. return -ESRCH;
  4629. }
  4630. /* Prevent p going away */
  4631. get_task_struct(p);
  4632. rcu_read_unlock();
  4633. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4634. retval = -ENOMEM;
  4635. goto out_put_task;
  4636. }
  4637. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4638. retval = -ENOMEM;
  4639. goto out_free_cpus_allowed;
  4640. }
  4641. retval = -EPERM;
  4642. if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
  4643. goto out_unlock;
  4644. retval = security_task_setscheduler(p);
  4645. if (retval)
  4646. goto out_unlock;
  4647. cpuset_cpus_allowed(p, cpus_allowed);
  4648. cpumask_and(new_mask, in_mask, cpus_allowed);
  4649. again:
  4650. retval = set_cpus_allowed_ptr(p, new_mask);
  4651. if (!retval) {
  4652. cpuset_cpus_allowed(p, cpus_allowed);
  4653. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4654. /*
  4655. * We must have raced with a concurrent cpuset
  4656. * update. Just reset the cpus_allowed to the
  4657. * cpuset's cpus_allowed
  4658. */
  4659. cpumask_copy(new_mask, cpus_allowed);
  4660. goto again;
  4661. }
  4662. }
  4663. out_unlock:
  4664. free_cpumask_var(new_mask);
  4665. out_free_cpus_allowed:
  4666. free_cpumask_var(cpus_allowed);
  4667. out_put_task:
  4668. put_task_struct(p);
  4669. put_online_cpus();
  4670. return retval;
  4671. }
  4672. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4673. struct cpumask *new_mask)
  4674. {
  4675. if (len < cpumask_size())
  4676. cpumask_clear(new_mask);
  4677. else if (len > cpumask_size())
  4678. len = cpumask_size();
  4679. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4680. }
  4681. /**
  4682. * sys_sched_setaffinity - set the cpu affinity of a process
  4683. * @pid: pid of the process
  4684. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4685. * @user_mask_ptr: user-space pointer to the new cpu mask
  4686. */
  4687. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4688. unsigned long __user *, user_mask_ptr)
  4689. {
  4690. cpumask_var_t new_mask;
  4691. int retval;
  4692. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4693. return -ENOMEM;
  4694. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4695. if (retval == 0)
  4696. retval = sched_setaffinity(pid, new_mask);
  4697. free_cpumask_var(new_mask);
  4698. return retval;
  4699. }
  4700. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4701. {
  4702. struct task_struct *p;
  4703. unsigned long flags;
  4704. int retval;
  4705. get_online_cpus();
  4706. rcu_read_lock();
  4707. retval = -ESRCH;
  4708. p = find_process_by_pid(pid);
  4709. if (!p)
  4710. goto out_unlock;
  4711. retval = security_task_getscheduler(p);
  4712. if (retval)
  4713. goto out_unlock;
  4714. raw_spin_lock_irqsave(&p->pi_lock, flags);
  4715. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4716. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  4717. out_unlock:
  4718. rcu_read_unlock();
  4719. put_online_cpus();
  4720. return retval;
  4721. }
  4722. /**
  4723. * sys_sched_getaffinity - get the cpu affinity of a process
  4724. * @pid: pid of the process
  4725. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4726. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4727. */
  4728. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4729. unsigned long __user *, user_mask_ptr)
  4730. {
  4731. int ret;
  4732. cpumask_var_t mask;
  4733. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4734. return -EINVAL;
  4735. if (len & (sizeof(unsigned long)-1))
  4736. return -EINVAL;
  4737. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4738. return -ENOMEM;
  4739. ret = sched_getaffinity(pid, mask);
  4740. if (ret == 0) {
  4741. size_t retlen = min_t(size_t, len, cpumask_size());
  4742. if (copy_to_user(user_mask_ptr, mask, retlen))
  4743. ret = -EFAULT;
  4744. else
  4745. ret = retlen;
  4746. }
  4747. free_cpumask_var(mask);
  4748. return ret;
  4749. }
  4750. /**
  4751. * sys_sched_yield - yield the current processor to other threads.
  4752. *
  4753. * This function yields the current CPU to other tasks. If there are no
  4754. * other threads running on this CPU then this function will return.
  4755. */
  4756. SYSCALL_DEFINE0(sched_yield)
  4757. {
  4758. struct rq *rq = this_rq_lock();
  4759. schedstat_inc(rq, yld_count);
  4760. current->sched_class->yield_task(rq);
  4761. /*
  4762. * Since we are going to call schedule() anyway, there's
  4763. * no need to preempt or enable interrupts:
  4764. */
  4765. __release(rq->lock);
  4766. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4767. do_raw_spin_unlock(&rq->lock);
  4768. preempt_enable_no_resched();
  4769. schedule();
  4770. return 0;
  4771. }
  4772. static inline int should_resched(void)
  4773. {
  4774. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4775. }
  4776. static void __cond_resched(void)
  4777. {
  4778. add_preempt_count(PREEMPT_ACTIVE);
  4779. schedule();
  4780. sub_preempt_count(PREEMPT_ACTIVE);
  4781. }
  4782. int __sched _cond_resched(void)
  4783. {
  4784. if (should_resched()) {
  4785. __cond_resched();
  4786. return 1;
  4787. }
  4788. return 0;
  4789. }
  4790. EXPORT_SYMBOL(_cond_resched);
  4791. /*
  4792. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4793. * call schedule, and on return reacquire the lock.
  4794. *
  4795. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4796. * operations here to prevent schedule() from being called twice (once via
  4797. * spin_unlock(), once by hand).
  4798. */
  4799. int __cond_resched_lock(spinlock_t *lock)
  4800. {
  4801. int resched = should_resched();
  4802. int ret = 0;
  4803. lockdep_assert_held(lock);
  4804. if (spin_needbreak(lock) || resched) {
  4805. spin_unlock(lock);
  4806. if (resched)
  4807. __cond_resched();
  4808. else
  4809. cpu_relax();
  4810. ret = 1;
  4811. spin_lock(lock);
  4812. }
  4813. return ret;
  4814. }
  4815. EXPORT_SYMBOL(__cond_resched_lock);
  4816. int __sched __cond_resched_softirq(void)
  4817. {
  4818. BUG_ON(!in_softirq());
  4819. if (should_resched()) {
  4820. local_bh_enable();
  4821. __cond_resched();
  4822. local_bh_disable();
  4823. return 1;
  4824. }
  4825. return 0;
  4826. }
  4827. EXPORT_SYMBOL(__cond_resched_softirq);
  4828. /**
  4829. * yield - yield the current processor to other threads.
  4830. *
  4831. * This is a shortcut for kernel-space yielding - it marks the
  4832. * thread runnable and calls sys_sched_yield().
  4833. */
  4834. void __sched yield(void)
  4835. {
  4836. set_current_state(TASK_RUNNING);
  4837. sys_sched_yield();
  4838. }
  4839. EXPORT_SYMBOL(yield);
  4840. /**
  4841. * yield_to - yield the current processor to another thread in
  4842. * your thread group, or accelerate that thread toward the
  4843. * processor it's on.
  4844. * @p: target task
  4845. * @preempt: whether task preemption is allowed or not
  4846. *
  4847. * It's the caller's job to ensure that the target task struct
  4848. * can't go away on us before we can do any checks.
  4849. *
  4850. * Returns true if we indeed boosted the target task.
  4851. */
  4852. bool __sched yield_to(struct task_struct *p, bool preempt)
  4853. {
  4854. struct task_struct *curr = current;
  4855. struct rq *rq, *p_rq;
  4856. unsigned long flags;
  4857. bool yielded = 0;
  4858. local_irq_save(flags);
  4859. rq = this_rq();
  4860. again:
  4861. p_rq = task_rq(p);
  4862. double_rq_lock(rq, p_rq);
  4863. while (task_rq(p) != p_rq) {
  4864. double_rq_unlock(rq, p_rq);
  4865. goto again;
  4866. }
  4867. if (!curr->sched_class->yield_to_task)
  4868. goto out;
  4869. if (curr->sched_class != p->sched_class)
  4870. goto out;
  4871. if (task_running(p_rq, p) || p->state)
  4872. goto out;
  4873. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4874. if (yielded) {
  4875. schedstat_inc(rq, yld_count);
  4876. /*
  4877. * Make p's CPU reschedule; pick_next_entity takes care of
  4878. * fairness.
  4879. */
  4880. if (preempt && rq != p_rq)
  4881. resched_task(p_rq->curr);
  4882. }
  4883. out:
  4884. double_rq_unlock(rq, p_rq);
  4885. local_irq_restore(flags);
  4886. if (yielded)
  4887. schedule();
  4888. return yielded;
  4889. }
  4890. EXPORT_SYMBOL_GPL(yield_to);
  4891. /*
  4892. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4893. * that process accounting knows that this is a task in IO wait state.
  4894. */
  4895. void __sched io_schedule(void)
  4896. {
  4897. struct rq *rq = raw_rq();
  4898. delayacct_blkio_start();
  4899. atomic_inc(&rq->nr_iowait);
  4900. blk_flush_plug(current);
  4901. current->in_iowait = 1;
  4902. schedule();
  4903. current->in_iowait = 0;
  4904. atomic_dec(&rq->nr_iowait);
  4905. delayacct_blkio_end();
  4906. }
  4907. EXPORT_SYMBOL(io_schedule);
  4908. long __sched io_schedule_timeout(long timeout)
  4909. {
  4910. struct rq *rq = raw_rq();
  4911. long ret;
  4912. delayacct_blkio_start();
  4913. atomic_inc(&rq->nr_iowait);
  4914. blk_flush_plug(current);
  4915. current->in_iowait = 1;
  4916. ret = schedule_timeout(timeout);
  4917. current->in_iowait = 0;
  4918. atomic_dec(&rq->nr_iowait);
  4919. delayacct_blkio_end();
  4920. return ret;
  4921. }
  4922. /**
  4923. * sys_sched_get_priority_max - return maximum RT priority.
  4924. * @policy: scheduling class.
  4925. *
  4926. * this syscall returns the maximum rt_priority that can be used
  4927. * by a given scheduling class.
  4928. */
  4929. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4930. {
  4931. int ret = -EINVAL;
  4932. switch (policy) {
  4933. case SCHED_FIFO:
  4934. case SCHED_RR:
  4935. ret = MAX_USER_RT_PRIO-1;
  4936. break;
  4937. case SCHED_NORMAL:
  4938. case SCHED_BATCH:
  4939. case SCHED_IDLE:
  4940. ret = 0;
  4941. break;
  4942. }
  4943. return ret;
  4944. }
  4945. /**
  4946. * sys_sched_get_priority_min - return minimum RT priority.
  4947. * @policy: scheduling class.
  4948. *
  4949. * this syscall returns the minimum rt_priority that can be used
  4950. * by a given scheduling class.
  4951. */
  4952. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4953. {
  4954. int ret = -EINVAL;
  4955. switch (policy) {
  4956. case SCHED_FIFO:
  4957. case SCHED_RR:
  4958. ret = 1;
  4959. break;
  4960. case SCHED_NORMAL:
  4961. case SCHED_BATCH:
  4962. case SCHED_IDLE:
  4963. ret = 0;
  4964. }
  4965. return ret;
  4966. }
  4967. /**
  4968. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4969. * @pid: pid of the process.
  4970. * @interval: userspace pointer to the timeslice value.
  4971. *
  4972. * this syscall writes the default timeslice value of a given process
  4973. * into the user-space timespec buffer. A value of '0' means infinity.
  4974. */
  4975. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4976. struct timespec __user *, interval)
  4977. {
  4978. struct task_struct *p;
  4979. unsigned int time_slice;
  4980. unsigned long flags;
  4981. struct rq *rq;
  4982. int retval;
  4983. struct timespec t;
  4984. if (pid < 0)
  4985. return -EINVAL;
  4986. retval = -ESRCH;
  4987. rcu_read_lock();
  4988. p = find_process_by_pid(pid);
  4989. if (!p)
  4990. goto out_unlock;
  4991. retval = security_task_getscheduler(p);
  4992. if (retval)
  4993. goto out_unlock;
  4994. rq = task_rq_lock(p, &flags);
  4995. time_slice = p->sched_class->get_rr_interval(rq, p);
  4996. task_rq_unlock(rq, p, &flags);
  4997. rcu_read_unlock();
  4998. jiffies_to_timespec(time_slice, &t);
  4999. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5000. return retval;
  5001. out_unlock:
  5002. rcu_read_unlock();
  5003. return retval;
  5004. }
  5005. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5006. void sched_show_task(struct task_struct *p)
  5007. {
  5008. unsigned long free = 0;
  5009. unsigned state;
  5010. state = p->state ? __ffs(p->state) + 1 : 0;
  5011. printk(KERN_INFO "%-15.15s %c", p->comm,
  5012. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5013. #if BITS_PER_LONG == 32
  5014. if (state == TASK_RUNNING)
  5015. printk(KERN_CONT " running ");
  5016. else
  5017. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5018. #else
  5019. if (state == TASK_RUNNING)
  5020. printk(KERN_CONT " running task ");
  5021. else
  5022. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5023. #endif
  5024. #ifdef CONFIG_DEBUG_STACK_USAGE
  5025. free = stack_not_used(p);
  5026. #endif
  5027. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5028. task_pid_nr(p), task_pid_nr(p->real_parent),
  5029. (unsigned long)task_thread_info(p)->flags);
  5030. show_stack(p, NULL);
  5031. }
  5032. void show_state_filter(unsigned long state_filter)
  5033. {
  5034. struct task_struct *g, *p;
  5035. #if BITS_PER_LONG == 32
  5036. printk(KERN_INFO
  5037. " task PC stack pid father\n");
  5038. #else
  5039. printk(KERN_INFO
  5040. " task PC stack pid father\n");
  5041. #endif
  5042. read_lock(&tasklist_lock);
  5043. do_each_thread(g, p) {
  5044. /*
  5045. * reset the NMI-timeout, listing all files on a slow
  5046. * console might take a lot of time:
  5047. */
  5048. touch_nmi_watchdog();
  5049. if (!state_filter || (p->state & state_filter))
  5050. sched_show_task(p);
  5051. } while_each_thread(g, p);
  5052. touch_all_softlockup_watchdogs();
  5053. #ifdef CONFIG_SCHED_DEBUG
  5054. sysrq_sched_debug_show();
  5055. #endif
  5056. read_unlock(&tasklist_lock);
  5057. /*
  5058. * Only show locks if all tasks are dumped:
  5059. */
  5060. if (!state_filter)
  5061. debug_show_all_locks();
  5062. }
  5063. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5064. {
  5065. idle->sched_class = &idle_sched_class;
  5066. }
  5067. /**
  5068. * init_idle - set up an idle thread for a given CPU
  5069. * @idle: task in question
  5070. * @cpu: cpu the idle task belongs to
  5071. *
  5072. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5073. * flag, to make booting more robust.
  5074. */
  5075. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5076. {
  5077. struct rq *rq = cpu_rq(cpu);
  5078. unsigned long flags;
  5079. raw_spin_lock_irqsave(&rq->lock, flags);
  5080. __sched_fork(idle);
  5081. idle->state = TASK_RUNNING;
  5082. idle->se.exec_start = sched_clock();
  5083. do_set_cpus_allowed(idle, cpumask_of(cpu));
  5084. /*
  5085. * We're having a chicken and egg problem, even though we are
  5086. * holding rq->lock, the cpu isn't yet set to this cpu so the
  5087. * lockdep check in task_group() will fail.
  5088. *
  5089. * Similar case to sched_fork(). / Alternatively we could
  5090. * use task_rq_lock() here and obtain the other rq->lock.
  5091. *
  5092. * Silence PROVE_RCU
  5093. */
  5094. rcu_read_lock();
  5095. __set_task_cpu(idle, cpu);
  5096. rcu_read_unlock();
  5097. rq->curr = rq->idle = idle;
  5098. #if defined(CONFIG_SMP)
  5099. idle->on_cpu = 1;
  5100. #endif
  5101. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5102. /* Set the preempt count _outside_ the spinlocks! */
  5103. task_thread_info(idle)->preempt_count = 0;
  5104. /*
  5105. * The idle tasks have their own, simple scheduling class:
  5106. */
  5107. idle->sched_class = &idle_sched_class;
  5108. ftrace_graph_init_idle_task(idle, cpu);
  5109. }
  5110. /*
  5111. * In a system that switches off the HZ timer nohz_cpu_mask
  5112. * indicates which cpus entered this state. This is used
  5113. * in the rcu update to wait only for active cpus. For system
  5114. * which do not switch off the HZ timer nohz_cpu_mask should
  5115. * always be CPU_BITS_NONE.
  5116. */
  5117. cpumask_var_t nohz_cpu_mask;
  5118. /*
  5119. * Increase the granularity value when there are more CPUs,
  5120. * because with more CPUs the 'effective latency' as visible
  5121. * to users decreases. But the relationship is not linear,
  5122. * so pick a second-best guess by going with the log2 of the
  5123. * number of CPUs.
  5124. *
  5125. * This idea comes from the SD scheduler of Con Kolivas:
  5126. */
  5127. static int get_update_sysctl_factor(void)
  5128. {
  5129. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  5130. unsigned int factor;
  5131. switch (sysctl_sched_tunable_scaling) {
  5132. case SCHED_TUNABLESCALING_NONE:
  5133. factor = 1;
  5134. break;
  5135. case SCHED_TUNABLESCALING_LINEAR:
  5136. factor = cpus;
  5137. break;
  5138. case SCHED_TUNABLESCALING_LOG:
  5139. default:
  5140. factor = 1 + ilog2(cpus);
  5141. break;
  5142. }
  5143. return factor;
  5144. }
  5145. static void update_sysctl(void)
  5146. {
  5147. unsigned int factor = get_update_sysctl_factor();
  5148. #define SET_SYSCTL(name) \
  5149. (sysctl_##name = (factor) * normalized_sysctl_##name)
  5150. SET_SYSCTL(sched_min_granularity);
  5151. SET_SYSCTL(sched_latency);
  5152. SET_SYSCTL(sched_wakeup_granularity);
  5153. #undef SET_SYSCTL
  5154. }
  5155. static inline void sched_init_granularity(void)
  5156. {
  5157. update_sysctl();
  5158. }
  5159. #ifdef CONFIG_SMP
  5160. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  5161. {
  5162. if (p->sched_class && p->sched_class->set_cpus_allowed)
  5163. p->sched_class->set_cpus_allowed(p, new_mask);
  5164. else {
  5165. cpumask_copy(&p->cpus_allowed, new_mask);
  5166. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5167. }
  5168. }
  5169. /*
  5170. * This is how migration works:
  5171. *
  5172. * 1) we invoke migration_cpu_stop() on the target CPU using
  5173. * stop_one_cpu().
  5174. * 2) stopper starts to run (implicitly forcing the migrated thread
  5175. * off the CPU)
  5176. * 3) it checks whether the migrated task is still in the wrong runqueue.
  5177. * 4) if it's in the wrong runqueue then the migration thread removes
  5178. * it and puts it into the right queue.
  5179. * 5) stopper completes and stop_one_cpu() returns and the migration
  5180. * is done.
  5181. */
  5182. /*
  5183. * Change a given task's CPU affinity. Migrate the thread to a
  5184. * proper CPU and schedule it away if the CPU it's executing on
  5185. * is removed from the allowed bitmask.
  5186. *
  5187. * NOTE: the caller must have a valid reference to the task, the
  5188. * task must not exit() & deallocate itself prematurely. The
  5189. * call is not atomic; no spinlocks may be held.
  5190. */
  5191. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5192. {
  5193. unsigned long flags;
  5194. struct rq *rq;
  5195. unsigned int dest_cpu;
  5196. int ret = 0;
  5197. rq = task_rq_lock(p, &flags);
  5198. if (cpumask_equal(&p->cpus_allowed, new_mask))
  5199. goto out;
  5200. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  5201. ret = -EINVAL;
  5202. goto out;
  5203. }
  5204. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
  5205. ret = -EINVAL;
  5206. goto out;
  5207. }
  5208. do_set_cpus_allowed(p, new_mask);
  5209. /* Can the task run on the task's current CPU? If so, we're done */
  5210. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5211. goto out;
  5212. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  5213. if (p->on_rq) {
  5214. struct migration_arg arg = { p, dest_cpu };
  5215. /* Need help from migration thread: drop lock and wait. */
  5216. task_rq_unlock(rq, p, &flags);
  5217. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  5218. tlb_migrate_finish(p->mm);
  5219. return 0;
  5220. }
  5221. out:
  5222. task_rq_unlock(rq, p, &flags);
  5223. return ret;
  5224. }
  5225. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5226. /*
  5227. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5228. * this because either it can't run here any more (set_cpus_allowed()
  5229. * away from this CPU, or CPU going down), or because we're
  5230. * attempting to rebalance this task on exec (sched_exec).
  5231. *
  5232. * So we race with normal scheduler movements, but that's OK, as long
  5233. * as the task is no longer on this CPU.
  5234. *
  5235. * Returns non-zero if task was successfully migrated.
  5236. */
  5237. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5238. {
  5239. struct rq *rq_dest, *rq_src;
  5240. int ret = 0;
  5241. if (unlikely(!cpu_active(dest_cpu)))
  5242. return ret;
  5243. rq_src = cpu_rq(src_cpu);
  5244. rq_dest = cpu_rq(dest_cpu);
  5245. raw_spin_lock(&p->pi_lock);
  5246. double_rq_lock(rq_src, rq_dest);
  5247. /* Already moved. */
  5248. if (task_cpu(p) != src_cpu)
  5249. goto done;
  5250. /* Affinity changed (again). */
  5251. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5252. goto fail;
  5253. /*
  5254. * If we're not on a rq, the next wake-up will ensure we're
  5255. * placed properly.
  5256. */
  5257. if (p->on_rq) {
  5258. deactivate_task(rq_src, p, 0);
  5259. set_task_cpu(p, dest_cpu);
  5260. activate_task(rq_dest, p, 0);
  5261. check_preempt_curr(rq_dest, p, 0);
  5262. }
  5263. done:
  5264. ret = 1;
  5265. fail:
  5266. double_rq_unlock(rq_src, rq_dest);
  5267. raw_spin_unlock(&p->pi_lock);
  5268. return ret;
  5269. }
  5270. /*
  5271. * migration_cpu_stop - this will be executed by a highprio stopper thread
  5272. * and performs thread migration by bumping thread off CPU then
  5273. * 'pushing' onto another runqueue.
  5274. */
  5275. static int migration_cpu_stop(void *data)
  5276. {
  5277. struct migration_arg *arg = data;
  5278. /*
  5279. * The original target cpu might have gone down and we might
  5280. * be on another cpu but it doesn't matter.
  5281. */
  5282. local_irq_disable();
  5283. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  5284. local_irq_enable();
  5285. return 0;
  5286. }
  5287. #ifdef CONFIG_HOTPLUG_CPU
  5288. /*
  5289. * Ensures that the idle task is using init_mm right before its cpu goes
  5290. * offline.
  5291. */
  5292. void idle_task_exit(void)
  5293. {
  5294. struct mm_struct *mm = current->active_mm;
  5295. BUG_ON(cpu_online(smp_processor_id()));
  5296. if (mm != &init_mm)
  5297. switch_mm(mm, &init_mm, current);
  5298. mmdrop(mm);
  5299. }
  5300. /*
  5301. * While a dead CPU has no uninterruptible tasks queued at this point,
  5302. * it might still have a nonzero ->nr_uninterruptible counter, because
  5303. * for performance reasons the counter is not stricly tracking tasks to
  5304. * their home CPUs. So we just add the counter to another CPU's counter,
  5305. * to keep the global sum constant after CPU-down:
  5306. */
  5307. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5308. {
  5309. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  5310. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5311. rq_src->nr_uninterruptible = 0;
  5312. }
  5313. /*
  5314. * remove the tasks which were accounted by rq from calc_load_tasks.
  5315. */
  5316. static void calc_global_load_remove(struct rq *rq)
  5317. {
  5318. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  5319. rq->calc_load_active = 0;
  5320. }
  5321. /*
  5322. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  5323. * try_to_wake_up()->select_task_rq().
  5324. *
  5325. * Called with rq->lock held even though we'er in stop_machine() and
  5326. * there's no concurrency possible, we hold the required locks anyway
  5327. * because of lock validation efforts.
  5328. */
  5329. static void migrate_tasks(unsigned int dead_cpu)
  5330. {
  5331. struct rq *rq = cpu_rq(dead_cpu);
  5332. struct task_struct *next, *stop = rq->stop;
  5333. int dest_cpu;
  5334. /*
  5335. * Fudge the rq selection such that the below task selection loop
  5336. * doesn't get stuck on the currently eligible stop task.
  5337. *
  5338. * We're currently inside stop_machine() and the rq is either stuck
  5339. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  5340. * either way we should never end up calling schedule() until we're
  5341. * done here.
  5342. */
  5343. rq->stop = NULL;
  5344. for ( ; ; ) {
  5345. /*
  5346. * There's this thread running, bail when that's the only
  5347. * remaining thread.
  5348. */
  5349. if (rq->nr_running == 1)
  5350. break;
  5351. next = pick_next_task(rq);
  5352. BUG_ON(!next);
  5353. next->sched_class->put_prev_task(rq, next);
  5354. /* Find suitable destination for @next, with force if needed. */
  5355. dest_cpu = select_fallback_rq(dead_cpu, next);
  5356. raw_spin_unlock(&rq->lock);
  5357. __migrate_task(next, dead_cpu, dest_cpu);
  5358. raw_spin_lock(&rq->lock);
  5359. }
  5360. rq->stop = stop;
  5361. }
  5362. #endif /* CONFIG_HOTPLUG_CPU */
  5363. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5364. static struct ctl_table sd_ctl_dir[] = {
  5365. {
  5366. .procname = "sched_domain",
  5367. .mode = 0555,
  5368. },
  5369. {}
  5370. };
  5371. static struct ctl_table sd_ctl_root[] = {
  5372. {
  5373. .procname = "kernel",
  5374. .mode = 0555,
  5375. .child = sd_ctl_dir,
  5376. },
  5377. {}
  5378. };
  5379. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5380. {
  5381. struct ctl_table *entry =
  5382. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5383. return entry;
  5384. }
  5385. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5386. {
  5387. struct ctl_table *entry;
  5388. /*
  5389. * In the intermediate directories, both the child directory and
  5390. * procname are dynamically allocated and could fail but the mode
  5391. * will always be set. In the lowest directory the names are
  5392. * static strings and all have proc handlers.
  5393. */
  5394. for (entry = *tablep; entry->mode; entry++) {
  5395. if (entry->child)
  5396. sd_free_ctl_entry(&entry->child);
  5397. if (entry->proc_handler == NULL)
  5398. kfree(entry->procname);
  5399. }
  5400. kfree(*tablep);
  5401. *tablep = NULL;
  5402. }
  5403. static void
  5404. set_table_entry(struct ctl_table *entry,
  5405. const char *procname, void *data, int maxlen,
  5406. mode_t mode, proc_handler *proc_handler)
  5407. {
  5408. entry->procname = procname;
  5409. entry->data = data;
  5410. entry->maxlen = maxlen;
  5411. entry->mode = mode;
  5412. entry->proc_handler = proc_handler;
  5413. }
  5414. static struct ctl_table *
  5415. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5416. {
  5417. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5418. if (table == NULL)
  5419. return NULL;
  5420. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5421. sizeof(long), 0644, proc_doulongvec_minmax);
  5422. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5423. sizeof(long), 0644, proc_doulongvec_minmax);
  5424. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5425. sizeof(int), 0644, proc_dointvec_minmax);
  5426. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5427. sizeof(int), 0644, proc_dointvec_minmax);
  5428. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5429. sizeof(int), 0644, proc_dointvec_minmax);
  5430. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5431. sizeof(int), 0644, proc_dointvec_minmax);
  5432. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5433. sizeof(int), 0644, proc_dointvec_minmax);
  5434. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5435. sizeof(int), 0644, proc_dointvec_minmax);
  5436. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5437. sizeof(int), 0644, proc_dointvec_minmax);
  5438. set_table_entry(&table[9], "cache_nice_tries",
  5439. &sd->cache_nice_tries,
  5440. sizeof(int), 0644, proc_dointvec_minmax);
  5441. set_table_entry(&table[10], "flags", &sd->flags,
  5442. sizeof(int), 0644, proc_dointvec_minmax);
  5443. set_table_entry(&table[11], "name", sd->name,
  5444. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5445. /* &table[12] is terminator */
  5446. return table;
  5447. }
  5448. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5449. {
  5450. struct ctl_table *entry, *table;
  5451. struct sched_domain *sd;
  5452. int domain_num = 0, i;
  5453. char buf[32];
  5454. for_each_domain(cpu, sd)
  5455. domain_num++;
  5456. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5457. if (table == NULL)
  5458. return NULL;
  5459. i = 0;
  5460. for_each_domain(cpu, sd) {
  5461. snprintf(buf, 32, "domain%d", i);
  5462. entry->procname = kstrdup(buf, GFP_KERNEL);
  5463. entry->mode = 0555;
  5464. entry->child = sd_alloc_ctl_domain_table(sd);
  5465. entry++;
  5466. i++;
  5467. }
  5468. return table;
  5469. }
  5470. static struct ctl_table_header *sd_sysctl_header;
  5471. static void register_sched_domain_sysctl(void)
  5472. {
  5473. int i, cpu_num = num_possible_cpus();
  5474. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5475. char buf[32];
  5476. WARN_ON(sd_ctl_dir[0].child);
  5477. sd_ctl_dir[0].child = entry;
  5478. if (entry == NULL)
  5479. return;
  5480. for_each_possible_cpu(i) {
  5481. snprintf(buf, 32, "cpu%d", i);
  5482. entry->procname = kstrdup(buf, GFP_KERNEL);
  5483. entry->mode = 0555;
  5484. entry->child = sd_alloc_ctl_cpu_table(i);
  5485. entry++;
  5486. }
  5487. WARN_ON(sd_sysctl_header);
  5488. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5489. }
  5490. /* may be called multiple times per register */
  5491. static void unregister_sched_domain_sysctl(void)
  5492. {
  5493. if (sd_sysctl_header)
  5494. unregister_sysctl_table(sd_sysctl_header);
  5495. sd_sysctl_header = NULL;
  5496. if (sd_ctl_dir[0].child)
  5497. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5498. }
  5499. #else
  5500. static void register_sched_domain_sysctl(void)
  5501. {
  5502. }
  5503. static void unregister_sched_domain_sysctl(void)
  5504. {
  5505. }
  5506. #endif
  5507. static void set_rq_online(struct rq *rq)
  5508. {
  5509. if (!rq->online) {
  5510. const struct sched_class *class;
  5511. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5512. rq->online = 1;
  5513. for_each_class(class) {
  5514. if (class->rq_online)
  5515. class->rq_online(rq);
  5516. }
  5517. }
  5518. }
  5519. static void set_rq_offline(struct rq *rq)
  5520. {
  5521. if (rq->online) {
  5522. const struct sched_class *class;
  5523. for_each_class(class) {
  5524. if (class->rq_offline)
  5525. class->rq_offline(rq);
  5526. }
  5527. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5528. rq->online = 0;
  5529. }
  5530. }
  5531. /*
  5532. * migration_call - callback that gets triggered when a CPU is added.
  5533. * Here we can start up the necessary migration thread for the new CPU.
  5534. */
  5535. static int __cpuinit
  5536. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5537. {
  5538. int cpu = (long)hcpu;
  5539. unsigned long flags;
  5540. struct rq *rq = cpu_rq(cpu);
  5541. switch (action & ~CPU_TASKS_FROZEN) {
  5542. case CPU_UP_PREPARE:
  5543. rq->calc_load_update = calc_load_update;
  5544. break;
  5545. case CPU_ONLINE:
  5546. /* Update our root-domain */
  5547. raw_spin_lock_irqsave(&rq->lock, flags);
  5548. if (rq->rd) {
  5549. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5550. set_rq_online(rq);
  5551. }
  5552. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5553. break;
  5554. #ifdef CONFIG_HOTPLUG_CPU
  5555. case CPU_DYING:
  5556. sched_ttwu_pending();
  5557. /* Update our root-domain */
  5558. raw_spin_lock_irqsave(&rq->lock, flags);
  5559. if (rq->rd) {
  5560. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5561. set_rq_offline(rq);
  5562. }
  5563. migrate_tasks(cpu);
  5564. BUG_ON(rq->nr_running != 1); /* the migration thread */
  5565. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5566. migrate_nr_uninterruptible(rq);
  5567. calc_global_load_remove(rq);
  5568. break;
  5569. #endif
  5570. }
  5571. update_max_interval();
  5572. return NOTIFY_OK;
  5573. }
  5574. /*
  5575. * Register at high priority so that task migration (migrate_all_tasks)
  5576. * happens before everything else. This has to be lower priority than
  5577. * the notifier in the perf_event subsystem, though.
  5578. */
  5579. static struct notifier_block __cpuinitdata migration_notifier = {
  5580. .notifier_call = migration_call,
  5581. .priority = CPU_PRI_MIGRATION,
  5582. };
  5583. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5584. unsigned long action, void *hcpu)
  5585. {
  5586. switch (action & ~CPU_TASKS_FROZEN) {
  5587. case CPU_ONLINE:
  5588. case CPU_DOWN_FAILED:
  5589. set_cpu_active((long)hcpu, true);
  5590. return NOTIFY_OK;
  5591. default:
  5592. return NOTIFY_DONE;
  5593. }
  5594. }
  5595. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5596. unsigned long action, void *hcpu)
  5597. {
  5598. switch (action & ~CPU_TASKS_FROZEN) {
  5599. case CPU_DOWN_PREPARE:
  5600. set_cpu_active((long)hcpu, false);
  5601. return NOTIFY_OK;
  5602. default:
  5603. return NOTIFY_DONE;
  5604. }
  5605. }
  5606. static int __init migration_init(void)
  5607. {
  5608. void *cpu = (void *)(long)smp_processor_id();
  5609. int err;
  5610. /* Initialize migration for the boot CPU */
  5611. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5612. BUG_ON(err == NOTIFY_BAD);
  5613. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5614. register_cpu_notifier(&migration_notifier);
  5615. /* Register cpu active notifiers */
  5616. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5617. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5618. return 0;
  5619. }
  5620. early_initcall(migration_init);
  5621. #endif
  5622. #ifdef CONFIG_SMP
  5623. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  5624. #ifdef CONFIG_SCHED_DEBUG
  5625. static __read_mostly int sched_domain_debug_enabled;
  5626. static int __init sched_domain_debug_setup(char *str)
  5627. {
  5628. sched_domain_debug_enabled = 1;
  5629. return 0;
  5630. }
  5631. early_param("sched_debug", sched_domain_debug_setup);
  5632. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5633. struct cpumask *groupmask)
  5634. {
  5635. struct sched_group *group = sd->groups;
  5636. char str[256];
  5637. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5638. cpumask_clear(groupmask);
  5639. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5640. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5641. printk("does not load-balance\n");
  5642. if (sd->parent)
  5643. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5644. " has parent");
  5645. return -1;
  5646. }
  5647. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5648. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5649. printk(KERN_ERR "ERROR: domain->span does not contain "
  5650. "CPU%d\n", cpu);
  5651. }
  5652. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5653. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5654. " CPU%d\n", cpu);
  5655. }
  5656. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5657. do {
  5658. if (!group) {
  5659. printk("\n");
  5660. printk(KERN_ERR "ERROR: group is NULL\n");
  5661. break;
  5662. }
  5663. if (!group->sgp->power) {
  5664. printk(KERN_CONT "\n");
  5665. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5666. "set\n");
  5667. break;
  5668. }
  5669. if (!cpumask_weight(sched_group_cpus(group))) {
  5670. printk(KERN_CONT "\n");
  5671. printk(KERN_ERR "ERROR: empty group\n");
  5672. break;
  5673. }
  5674. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5675. printk(KERN_CONT "\n");
  5676. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5677. break;
  5678. }
  5679. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5680. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5681. printk(KERN_CONT " %s", str);
  5682. if (group->sgp->power != SCHED_POWER_SCALE) {
  5683. printk(KERN_CONT " (cpu_power = %d)",
  5684. group->sgp->power);
  5685. }
  5686. group = group->next;
  5687. } while (group != sd->groups);
  5688. printk(KERN_CONT "\n");
  5689. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5690. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5691. if (sd->parent &&
  5692. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5693. printk(KERN_ERR "ERROR: parent span is not a superset "
  5694. "of domain->span\n");
  5695. return 0;
  5696. }
  5697. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5698. {
  5699. int level = 0;
  5700. if (!sched_domain_debug_enabled)
  5701. return;
  5702. if (!sd) {
  5703. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5704. return;
  5705. }
  5706. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5707. for (;;) {
  5708. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  5709. break;
  5710. level++;
  5711. sd = sd->parent;
  5712. if (!sd)
  5713. break;
  5714. }
  5715. }
  5716. #else /* !CONFIG_SCHED_DEBUG */
  5717. # define sched_domain_debug(sd, cpu) do { } while (0)
  5718. #endif /* CONFIG_SCHED_DEBUG */
  5719. static int sd_degenerate(struct sched_domain *sd)
  5720. {
  5721. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5722. return 1;
  5723. /* Following flags need at least 2 groups */
  5724. if (sd->flags & (SD_LOAD_BALANCE |
  5725. SD_BALANCE_NEWIDLE |
  5726. SD_BALANCE_FORK |
  5727. SD_BALANCE_EXEC |
  5728. SD_SHARE_CPUPOWER |
  5729. SD_SHARE_PKG_RESOURCES)) {
  5730. if (sd->groups != sd->groups->next)
  5731. return 0;
  5732. }
  5733. /* Following flags don't use groups */
  5734. if (sd->flags & (SD_WAKE_AFFINE))
  5735. return 0;
  5736. return 1;
  5737. }
  5738. static int
  5739. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5740. {
  5741. unsigned long cflags = sd->flags, pflags = parent->flags;
  5742. if (sd_degenerate(parent))
  5743. return 1;
  5744. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5745. return 0;
  5746. /* Flags needing groups don't count if only 1 group in parent */
  5747. if (parent->groups == parent->groups->next) {
  5748. pflags &= ~(SD_LOAD_BALANCE |
  5749. SD_BALANCE_NEWIDLE |
  5750. SD_BALANCE_FORK |
  5751. SD_BALANCE_EXEC |
  5752. SD_SHARE_CPUPOWER |
  5753. SD_SHARE_PKG_RESOURCES);
  5754. if (nr_node_ids == 1)
  5755. pflags &= ~SD_SERIALIZE;
  5756. }
  5757. if (~cflags & pflags)
  5758. return 0;
  5759. return 1;
  5760. }
  5761. static void free_rootdomain(struct rcu_head *rcu)
  5762. {
  5763. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  5764. cpupri_cleanup(&rd->cpupri);
  5765. free_cpumask_var(rd->rto_mask);
  5766. free_cpumask_var(rd->online);
  5767. free_cpumask_var(rd->span);
  5768. kfree(rd);
  5769. }
  5770. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5771. {
  5772. struct root_domain *old_rd = NULL;
  5773. unsigned long flags;
  5774. raw_spin_lock_irqsave(&rq->lock, flags);
  5775. if (rq->rd) {
  5776. old_rd = rq->rd;
  5777. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5778. set_rq_offline(rq);
  5779. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5780. /*
  5781. * If we dont want to free the old_rt yet then
  5782. * set old_rd to NULL to skip the freeing later
  5783. * in this function:
  5784. */
  5785. if (!atomic_dec_and_test(&old_rd->refcount))
  5786. old_rd = NULL;
  5787. }
  5788. atomic_inc(&rd->refcount);
  5789. rq->rd = rd;
  5790. cpumask_set_cpu(rq->cpu, rd->span);
  5791. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5792. set_rq_online(rq);
  5793. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5794. if (old_rd)
  5795. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  5796. }
  5797. static int init_rootdomain(struct root_domain *rd)
  5798. {
  5799. memset(rd, 0, sizeof(*rd));
  5800. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5801. goto out;
  5802. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5803. goto free_span;
  5804. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5805. goto free_online;
  5806. if (cpupri_init(&rd->cpupri) != 0)
  5807. goto free_rto_mask;
  5808. return 0;
  5809. free_rto_mask:
  5810. free_cpumask_var(rd->rto_mask);
  5811. free_online:
  5812. free_cpumask_var(rd->online);
  5813. free_span:
  5814. free_cpumask_var(rd->span);
  5815. out:
  5816. return -ENOMEM;
  5817. }
  5818. static void init_defrootdomain(void)
  5819. {
  5820. init_rootdomain(&def_root_domain);
  5821. atomic_set(&def_root_domain.refcount, 1);
  5822. }
  5823. static struct root_domain *alloc_rootdomain(void)
  5824. {
  5825. struct root_domain *rd;
  5826. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5827. if (!rd)
  5828. return NULL;
  5829. if (init_rootdomain(rd) != 0) {
  5830. kfree(rd);
  5831. return NULL;
  5832. }
  5833. return rd;
  5834. }
  5835. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  5836. {
  5837. struct sched_group *tmp, *first;
  5838. if (!sg)
  5839. return;
  5840. first = sg;
  5841. do {
  5842. tmp = sg->next;
  5843. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  5844. kfree(sg->sgp);
  5845. kfree(sg);
  5846. sg = tmp;
  5847. } while (sg != first);
  5848. }
  5849. static void free_sched_domain(struct rcu_head *rcu)
  5850. {
  5851. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  5852. /*
  5853. * If its an overlapping domain it has private groups, iterate and
  5854. * nuke them all.
  5855. */
  5856. if (sd->flags & SD_OVERLAP) {
  5857. free_sched_groups(sd->groups, 1);
  5858. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  5859. kfree(sd->groups->sgp);
  5860. kfree(sd->groups);
  5861. }
  5862. kfree(sd);
  5863. }
  5864. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  5865. {
  5866. call_rcu(&sd->rcu, free_sched_domain);
  5867. }
  5868. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  5869. {
  5870. for (; sd; sd = sd->parent)
  5871. destroy_sched_domain(sd, cpu);
  5872. }
  5873. /*
  5874. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5875. * hold the hotplug lock.
  5876. */
  5877. static void
  5878. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5879. {
  5880. struct rq *rq = cpu_rq(cpu);
  5881. struct sched_domain *tmp;
  5882. /* Remove the sched domains which do not contribute to scheduling. */
  5883. for (tmp = sd; tmp; ) {
  5884. struct sched_domain *parent = tmp->parent;
  5885. if (!parent)
  5886. break;
  5887. if (sd_parent_degenerate(tmp, parent)) {
  5888. tmp->parent = parent->parent;
  5889. if (parent->parent)
  5890. parent->parent->child = tmp;
  5891. destroy_sched_domain(parent, cpu);
  5892. } else
  5893. tmp = tmp->parent;
  5894. }
  5895. if (sd && sd_degenerate(sd)) {
  5896. tmp = sd;
  5897. sd = sd->parent;
  5898. destroy_sched_domain(tmp, cpu);
  5899. if (sd)
  5900. sd->child = NULL;
  5901. }
  5902. sched_domain_debug(sd, cpu);
  5903. rq_attach_root(rq, rd);
  5904. tmp = rq->sd;
  5905. rcu_assign_pointer(rq->sd, sd);
  5906. destroy_sched_domains(tmp, cpu);
  5907. }
  5908. /* cpus with isolated domains */
  5909. static cpumask_var_t cpu_isolated_map;
  5910. /* Setup the mask of cpus configured for isolated domains */
  5911. static int __init isolated_cpu_setup(char *str)
  5912. {
  5913. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5914. cpulist_parse(str, cpu_isolated_map);
  5915. return 1;
  5916. }
  5917. __setup("isolcpus=", isolated_cpu_setup);
  5918. #define SD_NODES_PER_DOMAIN 16
  5919. #ifdef CONFIG_NUMA
  5920. /**
  5921. * find_next_best_node - find the next node to include in a sched_domain
  5922. * @node: node whose sched_domain we're building
  5923. * @used_nodes: nodes already in the sched_domain
  5924. *
  5925. * Find the next node to include in a given scheduling domain. Simply
  5926. * finds the closest node not already in the @used_nodes map.
  5927. *
  5928. * Should use nodemask_t.
  5929. */
  5930. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5931. {
  5932. int i, n, val, min_val, best_node = -1;
  5933. min_val = INT_MAX;
  5934. for (i = 0; i < nr_node_ids; i++) {
  5935. /* Start at @node */
  5936. n = (node + i) % nr_node_ids;
  5937. if (!nr_cpus_node(n))
  5938. continue;
  5939. /* Skip already used nodes */
  5940. if (node_isset(n, *used_nodes))
  5941. continue;
  5942. /* Simple min distance search */
  5943. val = node_distance(node, n);
  5944. if (val < min_val) {
  5945. min_val = val;
  5946. best_node = n;
  5947. }
  5948. }
  5949. if (best_node != -1)
  5950. node_set(best_node, *used_nodes);
  5951. return best_node;
  5952. }
  5953. /**
  5954. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5955. * @node: node whose cpumask we're constructing
  5956. * @span: resulting cpumask
  5957. *
  5958. * Given a node, construct a good cpumask for its sched_domain to span. It
  5959. * should be one that prevents unnecessary balancing, but also spreads tasks
  5960. * out optimally.
  5961. */
  5962. static void sched_domain_node_span(int node, struct cpumask *span)
  5963. {
  5964. nodemask_t used_nodes;
  5965. int i;
  5966. cpumask_clear(span);
  5967. nodes_clear(used_nodes);
  5968. cpumask_or(span, span, cpumask_of_node(node));
  5969. node_set(node, used_nodes);
  5970. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5971. int next_node = find_next_best_node(node, &used_nodes);
  5972. if (next_node < 0)
  5973. break;
  5974. cpumask_or(span, span, cpumask_of_node(next_node));
  5975. }
  5976. }
  5977. static const struct cpumask *cpu_node_mask(int cpu)
  5978. {
  5979. lockdep_assert_held(&sched_domains_mutex);
  5980. sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
  5981. return sched_domains_tmpmask;
  5982. }
  5983. static const struct cpumask *cpu_allnodes_mask(int cpu)
  5984. {
  5985. return cpu_possible_mask;
  5986. }
  5987. #endif /* CONFIG_NUMA */
  5988. static const struct cpumask *cpu_cpu_mask(int cpu)
  5989. {
  5990. return cpumask_of_node(cpu_to_node(cpu));
  5991. }
  5992. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5993. struct sd_data {
  5994. struct sched_domain **__percpu sd;
  5995. struct sched_group **__percpu sg;
  5996. struct sched_group_power **__percpu sgp;
  5997. };
  5998. struct s_data {
  5999. struct sched_domain ** __percpu sd;
  6000. struct root_domain *rd;
  6001. };
  6002. enum s_alloc {
  6003. sa_rootdomain,
  6004. sa_sd,
  6005. sa_sd_storage,
  6006. sa_none,
  6007. };
  6008. struct sched_domain_topology_level;
  6009. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  6010. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  6011. #define SDTL_OVERLAP 0x01
  6012. struct sched_domain_topology_level {
  6013. sched_domain_init_f init;
  6014. sched_domain_mask_f mask;
  6015. int flags;
  6016. struct sd_data data;
  6017. };
  6018. static int
  6019. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  6020. {
  6021. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  6022. const struct cpumask *span = sched_domain_span(sd);
  6023. struct cpumask *covered = sched_domains_tmpmask;
  6024. struct sd_data *sdd = sd->private;
  6025. struct sched_domain *child;
  6026. int i;
  6027. cpumask_clear(covered);
  6028. for_each_cpu(i, span) {
  6029. struct cpumask *sg_span;
  6030. if (cpumask_test_cpu(i, covered))
  6031. continue;
  6032. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6033. GFP_KERNEL, cpu_to_node(i));
  6034. if (!sg)
  6035. goto fail;
  6036. sg_span = sched_group_cpus(sg);
  6037. child = *per_cpu_ptr(sdd->sd, i);
  6038. if (child->child) {
  6039. child = child->child;
  6040. cpumask_copy(sg_span, sched_domain_span(child));
  6041. } else
  6042. cpumask_set_cpu(i, sg_span);
  6043. cpumask_or(covered, covered, sg_span);
  6044. sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
  6045. atomic_inc(&sg->sgp->ref);
  6046. if (cpumask_test_cpu(cpu, sg_span))
  6047. groups = sg;
  6048. if (!first)
  6049. first = sg;
  6050. if (last)
  6051. last->next = sg;
  6052. last = sg;
  6053. last->next = first;
  6054. }
  6055. sd->groups = groups;
  6056. return 0;
  6057. fail:
  6058. free_sched_groups(first, 0);
  6059. return -ENOMEM;
  6060. }
  6061. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  6062. {
  6063. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  6064. struct sched_domain *child = sd->child;
  6065. if (child)
  6066. cpu = cpumask_first(sched_domain_span(child));
  6067. if (sg) {
  6068. *sg = *per_cpu_ptr(sdd->sg, cpu);
  6069. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  6070. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  6071. }
  6072. return cpu;
  6073. }
  6074. /*
  6075. * build_sched_groups will build a circular linked list of the groups
  6076. * covered by the given span, and will set each group's ->cpumask correctly,
  6077. * and ->cpu_power to 0.
  6078. *
  6079. * Assumes the sched_domain tree is fully constructed
  6080. */
  6081. static int
  6082. build_sched_groups(struct sched_domain *sd, int cpu)
  6083. {
  6084. struct sched_group *first = NULL, *last = NULL;
  6085. struct sd_data *sdd = sd->private;
  6086. const struct cpumask *span = sched_domain_span(sd);
  6087. struct cpumask *covered;
  6088. int i;
  6089. get_group(cpu, sdd, &sd->groups);
  6090. atomic_inc(&sd->groups->ref);
  6091. if (cpu != cpumask_first(sched_domain_span(sd)))
  6092. return 0;
  6093. lockdep_assert_held(&sched_domains_mutex);
  6094. covered = sched_domains_tmpmask;
  6095. cpumask_clear(covered);
  6096. for_each_cpu(i, span) {
  6097. struct sched_group *sg;
  6098. int group = get_group(i, sdd, &sg);
  6099. int j;
  6100. if (cpumask_test_cpu(i, covered))
  6101. continue;
  6102. cpumask_clear(sched_group_cpus(sg));
  6103. sg->sgp->power = 0;
  6104. for_each_cpu(j, span) {
  6105. if (get_group(j, sdd, NULL) != group)
  6106. continue;
  6107. cpumask_set_cpu(j, covered);
  6108. cpumask_set_cpu(j, sched_group_cpus(sg));
  6109. }
  6110. if (!first)
  6111. first = sg;
  6112. if (last)
  6113. last->next = sg;
  6114. last = sg;
  6115. }
  6116. last->next = first;
  6117. return 0;
  6118. }
  6119. /*
  6120. * Initialize sched groups cpu_power.
  6121. *
  6122. * cpu_power indicates the capacity of sched group, which is used while
  6123. * distributing the load between different sched groups in a sched domain.
  6124. * Typically cpu_power for all the groups in a sched domain will be same unless
  6125. * there are asymmetries in the topology. If there are asymmetries, group
  6126. * having more cpu_power will pickup more load compared to the group having
  6127. * less cpu_power.
  6128. */
  6129. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6130. {
  6131. struct sched_group *sg = sd->groups;
  6132. WARN_ON(!sd || !sg);
  6133. do {
  6134. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  6135. sg = sg->next;
  6136. } while (sg != sd->groups);
  6137. if (cpu != group_first_cpu(sg))
  6138. return;
  6139. update_group_power(sd, cpu);
  6140. }
  6141. /*
  6142. * Initializers for schedule domains
  6143. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6144. */
  6145. #ifdef CONFIG_SCHED_DEBUG
  6146. # define SD_INIT_NAME(sd, type) sd->name = #type
  6147. #else
  6148. # define SD_INIT_NAME(sd, type) do { } while (0)
  6149. #endif
  6150. #define SD_INIT_FUNC(type) \
  6151. static noinline struct sched_domain * \
  6152. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  6153. { \
  6154. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  6155. *sd = SD_##type##_INIT; \
  6156. SD_INIT_NAME(sd, type); \
  6157. sd->private = &tl->data; \
  6158. return sd; \
  6159. }
  6160. SD_INIT_FUNC(CPU)
  6161. #ifdef CONFIG_NUMA
  6162. SD_INIT_FUNC(ALLNODES)
  6163. SD_INIT_FUNC(NODE)
  6164. #endif
  6165. #ifdef CONFIG_SCHED_SMT
  6166. SD_INIT_FUNC(SIBLING)
  6167. #endif
  6168. #ifdef CONFIG_SCHED_MC
  6169. SD_INIT_FUNC(MC)
  6170. #endif
  6171. #ifdef CONFIG_SCHED_BOOK
  6172. SD_INIT_FUNC(BOOK)
  6173. #endif
  6174. static int default_relax_domain_level = -1;
  6175. int sched_domain_level_max;
  6176. static int __init setup_relax_domain_level(char *str)
  6177. {
  6178. unsigned long val;
  6179. val = simple_strtoul(str, NULL, 0);
  6180. if (val < sched_domain_level_max)
  6181. default_relax_domain_level = val;
  6182. return 1;
  6183. }
  6184. __setup("relax_domain_level=", setup_relax_domain_level);
  6185. static void set_domain_attribute(struct sched_domain *sd,
  6186. struct sched_domain_attr *attr)
  6187. {
  6188. int request;
  6189. if (!attr || attr->relax_domain_level < 0) {
  6190. if (default_relax_domain_level < 0)
  6191. return;
  6192. else
  6193. request = default_relax_domain_level;
  6194. } else
  6195. request = attr->relax_domain_level;
  6196. if (request < sd->level) {
  6197. /* turn off idle balance on this domain */
  6198. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6199. } else {
  6200. /* turn on idle balance on this domain */
  6201. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  6202. }
  6203. }
  6204. static void __sdt_free(const struct cpumask *cpu_map);
  6205. static int __sdt_alloc(const struct cpumask *cpu_map);
  6206. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  6207. const struct cpumask *cpu_map)
  6208. {
  6209. switch (what) {
  6210. case sa_rootdomain:
  6211. if (!atomic_read(&d->rd->refcount))
  6212. free_rootdomain(&d->rd->rcu); /* fall through */
  6213. case sa_sd:
  6214. free_percpu(d->sd); /* fall through */
  6215. case sa_sd_storage:
  6216. __sdt_free(cpu_map); /* fall through */
  6217. case sa_none:
  6218. break;
  6219. }
  6220. }
  6221. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  6222. const struct cpumask *cpu_map)
  6223. {
  6224. memset(d, 0, sizeof(*d));
  6225. if (__sdt_alloc(cpu_map))
  6226. return sa_sd_storage;
  6227. d->sd = alloc_percpu(struct sched_domain *);
  6228. if (!d->sd)
  6229. return sa_sd_storage;
  6230. d->rd = alloc_rootdomain();
  6231. if (!d->rd)
  6232. return sa_sd;
  6233. return sa_rootdomain;
  6234. }
  6235. /*
  6236. * NULL the sd_data elements we've used to build the sched_domain and
  6237. * sched_group structure so that the subsequent __free_domain_allocs()
  6238. * will not free the data we're using.
  6239. */
  6240. static void claim_allocations(int cpu, struct sched_domain *sd)
  6241. {
  6242. struct sd_data *sdd = sd->private;
  6243. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  6244. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  6245. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  6246. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  6247. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  6248. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  6249. }
  6250. #ifdef CONFIG_SCHED_SMT
  6251. static const struct cpumask *cpu_smt_mask(int cpu)
  6252. {
  6253. return topology_thread_cpumask(cpu);
  6254. }
  6255. #endif
  6256. /*
  6257. * Topology list, bottom-up.
  6258. */
  6259. static struct sched_domain_topology_level default_topology[] = {
  6260. #ifdef CONFIG_SCHED_SMT
  6261. { sd_init_SIBLING, cpu_smt_mask, },
  6262. #endif
  6263. #ifdef CONFIG_SCHED_MC
  6264. { sd_init_MC, cpu_coregroup_mask, },
  6265. #endif
  6266. #ifdef CONFIG_SCHED_BOOK
  6267. { sd_init_BOOK, cpu_book_mask, },
  6268. #endif
  6269. { sd_init_CPU, cpu_cpu_mask, },
  6270. #ifdef CONFIG_NUMA
  6271. { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
  6272. { sd_init_ALLNODES, cpu_allnodes_mask, },
  6273. #endif
  6274. { NULL, },
  6275. };
  6276. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  6277. static int __sdt_alloc(const struct cpumask *cpu_map)
  6278. {
  6279. struct sched_domain_topology_level *tl;
  6280. int j;
  6281. for (tl = sched_domain_topology; tl->init; tl++) {
  6282. struct sd_data *sdd = &tl->data;
  6283. sdd->sd = alloc_percpu(struct sched_domain *);
  6284. if (!sdd->sd)
  6285. return -ENOMEM;
  6286. sdd->sg = alloc_percpu(struct sched_group *);
  6287. if (!sdd->sg)
  6288. return -ENOMEM;
  6289. sdd->sgp = alloc_percpu(struct sched_group_power *);
  6290. if (!sdd->sgp)
  6291. return -ENOMEM;
  6292. for_each_cpu(j, cpu_map) {
  6293. struct sched_domain *sd;
  6294. struct sched_group *sg;
  6295. struct sched_group_power *sgp;
  6296. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  6297. GFP_KERNEL, cpu_to_node(j));
  6298. if (!sd)
  6299. return -ENOMEM;
  6300. *per_cpu_ptr(sdd->sd, j) = sd;
  6301. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  6302. GFP_KERNEL, cpu_to_node(j));
  6303. if (!sg)
  6304. return -ENOMEM;
  6305. *per_cpu_ptr(sdd->sg, j) = sg;
  6306. sgp = kzalloc_node(sizeof(struct sched_group_power),
  6307. GFP_KERNEL, cpu_to_node(j));
  6308. if (!sgp)
  6309. return -ENOMEM;
  6310. *per_cpu_ptr(sdd->sgp, j) = sgp;
  6311. }
  6312. }
  6313. return 0;
  6314. }
  6315. static void __sdt_free(const struct cpumask *cpu_map)
  6316. {
  6317. struct sched_domain_topology_level *tl;
  6318. int j;
  6319. for (tl = sched_domain_topology; tl->init; tl++) {
  6320. struct sd_data *sdd = &tl->data;
  6321. for_each_cpu(j, cpu_map) {
  6322. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
  6323. if (sd && (sd->flags & SD_OVERLAP))
  6324. free_sched_groups(sd->groups, 0);
  6325. kfree(*per_cpu_ptr(sdd->sg, j));
  6326. kfree(*per_cpu_ptr(sdd->sgp, j));
  6327. }
  6328. free_percpu(sdd->sd);
  6329. free_percpu(sdd->sg);
  6330. free_percpu(sdd->sgp);
  6331. }
  6332. }
  6333. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  6334. struct s_data *d, const struct cpumask *cpu_map,
  6335. struct sched_domain_attr *attr, struct sched_domain *child,
  6336. int cpu)
  6337. {
  6338. struct sched_domain *sd = tl->init(tl, cpu);
  6339. if (!sd)
  6340. return child;
  6341. set_domain_attribute(sd, attr);
  6342. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  6343. if (child) {
  6344. sd->level = child->level + 1;
  6345. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  6346. child->parent = sd;
  6347. }
  6348. sd->child = child;
  6349. return sd;
  6350. }
  6351. /*
  6352. * Build sched domains for a given set of cpus and attach the sched domains
  6353. * to the individual cpus
  6354. */
  6355. static int build_sched_domains(const struct cpumask *cpu_map,
  6356. struct sched_domain_attr *attr)
  6357. {
  6358. enum s_alloc alloc_state = sa_none;
  6359. struct sched_domain *sd;
  6360. struct s_data d;
  6361. int i, ret = -ENOMEM;
  6362. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6363. if (alloc_state != sa_rootdomain)
  6364. goto error;
  6365. /* Set up domains for cpus specified by the cpu_map. */
  6366. for_each_cpu(i, cpu_map) {
  6367. struct sched_domain_topology_level *tl;
  6368. sd = NULL;
  6369. for (tl = sched_domain_topology; tl->init; tl++) {
  6370. sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
  6371. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  6372. sd->flags |= SD_OVERLAP;
  6373. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  6374. break;
  6375. }
  6376. while (sd->child)
  6377. sd = sd->child;
  6378. *per_cpu_ptr(d.sd, i) = sd;
  6379. }
  6380. /* Build the groups for the domains */
  6381. for_each_cpu(i, cpu_map) {
  6382. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6383. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  6384. if (sd->flags & SD_OVERLAP) {
  6385. if (build_overlap_sched_groups(sd, i))
  6386. goto error;
  6387. } else {
  6388. if (build_sched_groups(sd, i))
  6389. goto error;
  6390. }
  6391. }
  6392. }
  6393. /* Calculate CPU power for physical packages and nodes */
  6394. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  6395. if (!cpumask_test_cpu(i, cpu_map))
  6396. continue;
  6397. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6398. claim_allocations(i, sd);
  6399. init_sched_groups_power(i, sd);
  6400. }
  6401. }
  6402. /* Attach the domains */
  6403. rcu_read_lock();
  6404. for_each_cpu(i, cpu_map) {
  6405. sd = *per_cpu_ptr(d.sd, i);
  6406. cpu_attach_domain(sd, d.rd, i);
  6407. }
  6408. rcu_read_unlock();
  6409. ret = 0;
  6410. error:
  6411. __free_domain_allocs(&d, alloc_state, cpu_map);
  6412. return ret;
  6413. }
  6414. static cpumask_var_t *doms_cur; /* current sched domains */
  6415. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6416. static struct sched_domain_attr *dattr_cur;
  6417. /* attribues of custom domains in 'doms_cur' */
  6418. /*
  6419. * Special case: If a kmalloc of a doms_cur partition (array of
  6420. * cpumask) fails, then fallback to a single sched domain,
  6421. * as determined by the single cpumask fallback_doms.
  6422. */
  6423. static cpumask_var_t fallback_doms;
  6424. /*
  6425. * arch_update_cpu_topology lets virtualized architectures update the
  6426. * cpu core maps. It is supposed to return 1 if the topology changed
  6427. * or 0 if it stayed the same.
  6428. */
  6429. int __attribute__((weak)) arch_update_cpu_topology(void)
  6430. {
  6431. return 0;
  6432. }
  6433. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6434. {
  6435. int i;
  6436. cpumask_var_t *doms;
  6437. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6438. if (!doms)
  6439. return NULL;
  6440. for (i = 0; i < ndoms; i++) {
  6441. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6442. free_sched_domains(doms, i);
  6443. return NULL;
  6444. }
  6445. }
  6446. return doms;
  6447. }
  6448. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6449. {
  6450. unsigned int i;
  6451. for (i = 0; i < ndoms; i++)
  6452. free_cpumask_var(doms[i]);
  6453. kfree(doms);
  6454. }
  6455. /*
  6456. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6457. * For now this just excludes isolated cpus, but could be used to
  6458. * exclude other special cases in the future.
  6459. */
  6460. static int init_sched_domains(const struct cpumask *cpu_map)
  6461. {
  6462. int err;
  6463. arch_update_cpu_topology();
  6464. ndoms_cur = 1;
  6465. doms_cur = alloc_sched_domains(ndoms_cur);
  6466. if (!doms_cur)
  6467. doms_cur = &fallback_doms;
  6468. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6469. dattr_cur = NULL;
  6470. err = build_sched_domains(doms_cur[0], NULL);
  6471. register_sched_domain_sysctl();
  6472. return err;
  6473. }
  6474. /*
  6475. * Detach sched domains from a group of cpus specified in cpu_map
  6476. * These cpus will now be attached to the NULL domain
  6477. */
  6478. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6479. {
  6480. int i;
  6481. rcu_read_lock();
  6482. for_each_cpu(i, cpu_map)
  6483. cpu_attach_domain(NULL, &def_root_domain, i);
  6484. rcu_read_unlock();
  6485. }
  6486. /* handle null as "default" */
  6487. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6488. struct sched_domain_attr *new, int idx_new)
  6489. {
  6490. struct sched_domain_attr tmp;
  6491. /* fast path */
  6492. if (!new && !cur)
  6493. return 1;
  6494. tmp = SD_ATTR_INIT;
  6495. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6496. new ? (new + idx_new) : &tmp,
  6497. sizeof(struct sched_domain_attr));
  6498. }
  6499. /*
  6500. * Partition sched domains as specified by the 'ndoms_new'
  6501. * cpumasks in the array doms_new[] of cpumasks. This compares
  6502. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6503. * It destroys each deleted domain and builds each new domain.
  6504. *
  6505. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6506. * The masks don't intersect (don't overlap.) We should setup one
  6507. * sched domain for each mask. CPUs not in any of the cpumasks will
  6508. * not be load balanced. If the same cpumask appears both in the
  6509. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6510. * it as it is.
  6511. *
  6512. * The passed in 'doms_new' should be allocated using
  6513. * alloc_sched_domains. This routine takes ownership of it and will
  6514. * free_sched_domains it when done with it. If the caller failed the
  6515. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6516. * and partition_sched_domains() will fallback to the single partition
  6517. * 'fallback_doms', it also forces the domains to be rebuilt.
  6518. *
  6519. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6520. * ndoms_new == 0 is a special case for destroying existing domains,
  6521. * and it will not create the default domain.
  6522. *
  6523. * Call with hotplug lock held
  6524. */
  6525. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6526. struct sched_domain_attr *dattr_new)
  6527. {
  6528. int i, j, n;
  6529. int new_topology;
  6530. mutex_lock(&sched_domains_mutex);
  6531. /* always unregister in case we don't destroy any domains */
  6532. unregister_sched_domain_sysctl();
  6533. /* Let architecture update cpu core mappings. */
  6534. new_topology = arch_update_cpu_topology();
  6535. n = doms_new ? ndoms_new : 0;
  6536. /* Destroy deleted domains */
  6537. for (i = 0; i < ndoms_cur; i++) {
  6538. for (j = 0; j < n && !new_topology; j++) {
  6539. if (cpumask_equal(doms_cur[i], doms_new[j])
  6540. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6541. goto match1;
  6542. }
  6543. /* no match - a current sched domain not in new doms_new[] */
  6544. detach_destroy_domains(doms_cur[i]);
  6545. match1:
  6546. ;
  6547. }
  6548. if (doms_new == NULL) {
  6549. ndoms_cur = 0;
  6550. doms_new = &fallback_doms;
  6551. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6552. WARN_ON_ONCE(dattr_new);
  6553. }
  6554. /* Build new domains */
  6555. for (i = 0; i < ndoms_new; i++) {
  6556. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6557. if (cpumask_equal(doms_new[i], doms_cur[j])
  6558. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6559. goto match2;
  6560. }
  6561. /* no match - add a new doms_new */
  6562. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  6563. match2:
  6564. ;
  6565. }
  6566. /* Remember the new sched domains */
  6567. if (doms_cur != &fallback_doms)
  6568. free_sched_domains(doms_cur, ndoms_cur);
  6569. kfree(dattr_cur); /* kfree(NULL) is safe */
  6570. doms_cur = doms_new;
  6571. dattr_cur = dattr_new;
  6572. ndoms_cur = ndoms_new;
  6573. register_sched_domain_sysctl();
  6574. mutex_unlock(&sched_domains_mutex);
  6575. }
  6576. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6577. static void reinit_sched_domains(void)
  6578. {
  6579. get_online_cpus();
  6580. /* Destroy domains first to force the rebuild */
  6581. partition_sched_domains(0, NULL, NULL);
  6582. rebuild_sched_domains();
  6583. put_online_cpus();
  6584. }
  6585. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6586. {
  6587. unsigned int level = 0;
  6588. if (sscanf(buf, "%u", &level) != 1)
  6589. return -EINVAL;
  6590. /*
  6591. * level is always be positive so don't check for
  6592. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6593. * What happens on 0 or 1 byte write,
  6594. * need to check for count as well?
  6595. */
  6596. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6597. return -EINVAL;
  6598. if (smt)
  6599. sched_smt_power_savings = level;
  6600. else
  6601. sched_mc_power_savings = level;
  6602. reinit_sched_domains();
  6603. return count;
  6604. }
  6605. #ifdef CONFIG_SCHED_MC
  6606. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6607. struct sysdev_class_attribute *attr,
  6608. char *page)
  6609. {
  6610. return sprintf(page, "%u\n", sched_mc_power_savings);
  6611. }
  6612. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6613. struct sysdev_class_attribute *attr,
  6614. const char *buf, size_t count)
  6615. {
  6616. return sched_power_savings_store(buf, count, 0);
  6617. }
  6618. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6619. sched_mc_power_savings_show,
  6620. sched_mc_power_savings_store);
  6621. #endif
  6622. #ifdef CONFIG_SCHED_SMT
  6623. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6624. struct sysdev_class_attribute *attr,
  6625. char *page)
  6626. {
  6627. return sprintf(page, "%u\n", sched_smt_power_savings);
  6628. }
  6629. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6630. struct sysdev_class_attribute *attr,
  6631. const char *buf, size_t count)
  6632. {
  6633. return sched_power_savings_store(buf, count, 1);
  6634. }
  6635. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6636. sched_smt_power_savings_show,
  6637. sched_smt_power_savings_store);
  6638. #endif
  6639. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6640. {
  6641. int err = 0;
  6642. #ifdef CONFIG_SCHED_SMT
  6643. if (smt_capable())
  6644. err = sysfs_create_file(&cls->kset.kobj,
  6645. &attr_sched_smt_power_savings.attr);
  6646. #endif
  6647. #ifdef CONFIG_SCHED_MC
  6648. if (!err && mc_capable())
  6649. err = sysfs_create_file(&cls->kset.kobj,
  6650. &attr_sched_mc_power_savings.attr);
  6651. #endif
  6652. return err;
  6653. }
  6654. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6655. /*
  6656. * Update cpusets according to cpu_active mask. If cpusets are
  6657. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6658. * around partition_sched_domains().
  6659. */
  6660. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6661. void *hcpu)
  6662. {
  6663. switch (action & ~CPU_TASKS_FROZEN) {
  6664. case CPU_ONLINE:
  6665. case CPU_DOWN_FAILED:
  6666. cpuset_update_active_cpus();
  6667. return NOTIFY_OK;
  6668. default:
  6669. return NOTIFY_DONE;
  6670. }
  6671. }
  6672. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6673. void *hcpu)
  6674. {
  6675. switch (action & ~CPU_TASKS_FROZEN) {
  6676. case CPU_DOWN_PREPARE:
  6677. cpuset_update_active_cpus();
  6678. return NOTIFY_OK;
  6679. default:
  6680. return NOTIFY_DONE;
  6681. }
  6682. }
  6683. static int update_runtime(struct notifier_block *nfb,
  6684. unsigned long action, void *hcpu)
  6685. {
  6686. int cpu = (int)(long)hcpu;
  6687. switch (action) {
  6688. case CPU_DOWN_PREPARE:
  6689. case CPU_DOWN_PREPARE_FROZEN:
  6690. disable_runtime(cpu_rq(cpu));
  6691. return NOTIFY_OK;
  6692. case CPU_DOWN_FAILED:
  6693. case CPU_DOWN_FAILED_FROZEN:
  6694. case CPU_ONLINE:
  6695. case CPU_ONLINE_FROZEN:
  6696. enable_runtime(cpu_rq(cpu));
  6697. return NOTIFY_OK;
  6698. default:
  6699. return NOTIFY_DONE;
  6700. }
  6701. }
  6702. void __init sched_init_smp(void)
  6703. {
  6704. cpumask_var_t non_isolated_cpus;
  6705. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6706. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6707. get_online_cpus();
  6708. mutex_lock(&sched_domains_mutex);
  6709. init_sched_domains(cpu_active_mask);
  6710. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6711. if (cpumask_empty(non_isolated_cpus))
  6712. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6713. mutex_unlock(&sched_domains_mutex);
  6714. put_online_cpus();
  6715. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6716. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6717. /* RT runtime code needs to handle some hotplug events */
  6718. hotcpu_notifier(update_runtime, 0);
  6719. init_hrtick();
  6720. /* Move init over to a non-isolated CPU */
  6721. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6722. BUG();
  6723. sched_init_granularity();
  6724. free_cpumask_var(non_isolated_cpus);
  6725. init_sched_rt_class();
  6726. }
  6727. #else
  6728. void __init sched_init_smp(void)
  6729. {
  6730. sched_init_granularity();
  6731. }
  6732. #endif /* CONFIG_SMP */
  6733. const_debug unsigned int sysctl_timer_migration = 1;
  6734. int in_sched_functions(unsigned long addr)
  6735. {
  6736. return in_lock_functions(addr) ||
  6737. (addr >= (unsigned long)__sched_text_start
  6738. && addr < (unsigned long)__sched_text_end);
  6739. }
  6740. static void init_cfs_rq(struct cfs_rq *cfs_rq)
  6741. {
  6742. cfs_rq->tasks_timeline = RB_ROOT;
  6743. INIT_LIST_HEAD(&cfs_rq->tasks);
  6744. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6745. #ifndef CONFIG_64BIT
  6746. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  6747. #endif
  6748. }
  6749. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6750. {
  6751. struct rt_prio_array *array;
  6752. int i;
  6753. array = &rt_rq->active;
  6754. for (i = 0; i < MAX_RT_PRIO; i++) {
  6755. INIT_LIST_HEAD(array->queue + i);
  6756. __clear_bit(i, array->bitmap);
  6757. }
  6758. /* delimiter for bitsearch: */
  6759. __set_bit(MAX_RT_PRIO, array->bitmap);
  6760. #if defined CONFIG_SMP
  6761. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6762. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6763. rt_rq->rt_nr_migratory = 0;
  6764. rt_rq->overloaded = 0;
  6765. plist_head_init(&rt_rq->pushable_tasks);
  6766. #endif
  6767. rt_rq->rt_time = 0;
  6768. rt_rq->rt_throttled = 0;
  6769. rt_rq->rt_runtime = 0;
  6770. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6771. }
  6772. #ifdef CONFIG_FAIR_GROUP_SCHED
  6773. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6774. struct sched_entity *se, int cpu,
  6775. struct sched_entity *parent)
  6776. {
  6777. struct rq *rq = cpu_rq(cpu);
  6778. cfs_rq->tg = tg;
  6779. cfs_rq->rq = rq;
  6780. #ifdef CONFIG_SMP
  6781. /* allow initial update_cfs_load() to truncate */
  6782. cfs_rq->load_stamp = 1;
  6783. #endif
  6784. init_cfs_rq_runtime(cfs_rq);
  6785. tg->cfs_rq[cpu] = cfs_rq;
  6786. tg->se[cpu] = se;
  6787. /* se could be NULL for root_task_group */
  6788. if (!se)
  6789. return;
  6790. if (!parent)
  6791. se->cfs_rq = &rq->cfs;
  6792. else
  6793. se->cfs_rq = parent->my_q;
  6794. se->my_q = cfs_rq;
  6795. update_load_set(&se->load, 0);
  6796. se->parent = parent;
  6797. }
  6798. #endif
  6799. #ifdef CONFIG_RT_GROUP_SCHED
  6800. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6801. struct sched_rt_entity *rt_se, int cpu,
  6802. struct sched_rt_entity *parent)
  6803. {
  6804. struct rq *rq = cpu_rq(cpu);
  6805. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6806. rt_rq->rt_nr_boosted = 0;
  6807. rt_rq->rq = rq;
  6808. rt_rq->tg = tg;
  6809. tg->rt_rq[cpu] = rt_rq;
  6810. tg->rt_se[cpu] = rt_se;
  6811. if (!rt_se)
  6812. return;
  6813. if (!parent)
  6814. rt_se->rt_rq = &rq->rt;
  6815. else
  6816. rt_se->rt_rq = parent->my_q;
  6817. rt_se->my_q = rt_rq;
  6818. rt_se->parent = parent;
  6819. INIT_LIST_HEAD(&rt_se->run_list);
  6820. }
  6821. #endif
  6822. void __init sched_init(void)
  6823. {
  6824. int i, j;
  6825. unsigned long alloc_size = 0, ptr;
  6826. #ifdef CONFIG_FAIR_GROUP_SCHED
  6827. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6828. #endif
  6829. #ifdef CONFIG_RT_GROUP_SCHED
  6830. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6831. #endif
  6832. #ifdef CONFIG_CPUMASK_OFFSTACK
  6833. alloc_size += num_possible_cpus() * cpumask_size();
  6834. #endif
  6835. if (alloc_size) {
  6836. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6837. #ifdef CONFIG_FAIR_GROUP_SCHED
  6838. root_task_group.se = (struct sched_entity **)ptr;
  6839. ptr += nr_cpu_ids * sizeof(void **);
  6840. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6841. ptr += nr_cpu_ids * sizeof(void **);
  6842. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6843. #ifdef CONFIG_RT_GROUP_SCHED
  6844. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6845. ptr += nr_cpu_ids * sizeof(void **);
  6846. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6847. ptr += nr_cpu_ids * sizeof(void **);
  6848. #endif /* CONFIG_RT_GROUP_SCHED */
  6849. #ifdef CONFIG_CPUMASK_OFFSTACK
  6850. for_each_possible_cpu(i) {
  6851. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6852. ptr += cpumask_size();
  6853. }
  6854. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6855. }
  6856. #ifdef CONFIG_SMP
  6857. init_defrootdomain();
  6858. #endif
  6859. init_rt_bandwidth(&def_rt_bandwidth,
  6860. global_rt_period(), global_rt_runtime());
  6861. #ifdef CONFIG_RT_GROUP_SCHED
  6862. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6863. global_rt_period(), global_rt_runtime());
  6864. #endif /* CONFIG_RT_GROUP_SCHED */
  6865. #ifdef CONFIG_CGROUP_SCHED
  6866. list_add(&root_task_group.list, &task_groups);
  6867. INIT_LIST_HEAD(&root_task_group.children);
  6868. autogroup_init(&init_task);
  6869. #endif /* CONFIG_CGROUP_SCHED */
  6870. for_each_possible_cpu(i) {
  6871. struct rq *rq;
  6872. rq = cpu_rq(i);
  6873. raw_spin_lock_init(&rq->lock);
  6874. rq->nr_running = 0;
  6875. rq->calc_load_active = 0;
  6876. rq->calc_load_update = jiffies + LOAD_FREQ;
  6877. init_cfs_rq(&rq->cfs);
  6878. init_rt_rq(&rq->rt, rq);
  6879. #ifdef CONFIG_FAIR_GROUP_SCHED
  6880. root_task_group.shares = root_task_group_load;
  6881. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6882. /*
  6883. * How much cpu bandwidth does root_task_group get?
  6884. *
  6885. * In case of task-groups formed thr' the cgroup filesystem, it
  6886. * gets 100% of the cpu resources in the system. This overall
  6887. * system cpu resource is divided among the tasks of
  6888. * root_task_group and its child task-groups in a fair manner,
  6889. * based on each entity's (task or task-group's) weight
  6890. * (se->load.weight).
  6891. *
  6892. * In other words, if root_task_group has 10 tasks of weight
  6893. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6894. * then A0's share of the cpu resource is:
  6895. *
  6896. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6897. *
  6898. * We achieve this by letting root_task_group's tasks sit
  6899. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6900. */
  6901. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  6902. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6903. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6904. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6905. #ifdef CONFIG_RT_GROUP_SCHED
  6906. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6907. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6908. #endif
  6909. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6910. rq->cpu_load[j] = 0;
  6911. rq->last_load_update_tick = jiffies;
  6912. #ifdef CONFIG_SMP
  6913. rq->sd = NULL;
  6914. rq->rd = NULL;
  6915. rq->cpu_power = SCHED_POWER_SCALE;
  6916. rq->post_schedule = 0;
  6917. rq->active_balance = 0;
  6918. rq->next_balance = jiffies;
  6919. rq->push_cpu = 0;
  6920. rq->cpu = i;
  6921. rq->online = 0;
  6922. rq->idle_stamp = 0;
  6923. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6924. rq_attach_root(rq, &def_root_domain);
  6925. #ifdef CONFIG_NO_HZ
  6926. rq->nohz_balance_kick = 0;
  6927. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6928. #endif
  6929. #endif
  6930. init_rq_hrtick(rq);
  6931. atomic_set(&rq->nr_iowait, 0);
  6932. }
  6933. set_load_weight(&init_task);
  6934. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6935. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6936. #endif
  6937. #ifdef CONFIG_SMP
  6938. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6939. #endif
  6940. #ifdef CONFIG_RT_MUTEXES
  6941. plist_head_init(&init_task.pi_waiters);
  6942. #endif
  6943. /*
  6944. * The boot idle thread does lazy MMU switching as well:
  6945. */
  6946. atomic_inc(&init_mm.mm_count);
  6947. enter_lazy_tlb(&init_mm, current);
  6948. /*
  6949. * Make us the idle thread. Technically, schedule() should not be
  6950. * called from this thread, however somewhere below it might be,
  6951. * but because we are the idle thread, we just pick up running again
  6952. * when this runqueue becomes "idle".
  6953. */
  6954. init_idle(current, smp_processor_id());
  6955. calc_load_update = jiffies + LOAD_FREQ;
  6956. /*
  6957. * During early bootup we pretend to be a normal task:
  6958. */
  6959. current->sched_class = &fair_sched_class;
  6960. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6961. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6962. #ifdef CONFIG_SMP
  6963. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6964. #ifdef CONFIG_NO_HZ
  6965. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6966. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  6967. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  6968. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  6969. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  6970. #endif
  6971. /* May be allocated at isolcpus cmdline parse time */
  6972. if (cpu_isolated_map == NULL)
  6973. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6974. #endif /* SMP */
  6975. scheduler_running = 1;
  6976. }
  6977. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6978. static inline int preempt_count_equals(int preempt_offset)
  6979. {
  6980. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6981. return (nested == preempt_offset);
  6982. }
  6983. void __might_sleep(const char *file, int line, int preempt_offset)
  6984. {
  6985. static unsigned long prev_jiffy; /* ratelimiting */
  6986. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6987. system_state != SYSTEM_RUNNING || oops_in_progress)
  6988. return;
  6989. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6990. return;
  6991. prev_jiffy = jiffies;
  6992. printk(KERN_ERR
  6993. "BUG: sleeping function called from invalid context at %s:%d\n",
  6994. file, line);
  6995. printk(KERN_ERR
  6996. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6997. in_atomic(), irqs_disabled(),
  6998. current->pid, current->comm);
  6999. debug_show_held_locks(current);
  7000. if (irqs_disabled())
  7001. print_irqtrace_events(current);
  7002. dump_stack();
  7003. }
  7004. EXPORT_SYMBOL(__might_sleep);
  7005. #endif
  7006. #ifdef CONFIG_MAGIC_SYSRQ
  7007. static void normalize_task(struct rq *rq, struct task_struct *p)
  7008. {
  7009. const struct sched_class *prev_class = p->sched_class;
  7010. int old_prio = p->prio;
  7011. int on_rq;
  7012. on_rq = p->on_rq;
  7013. if (on_rq)
  7014. deactivate_task(rq, p, 0);
  7015. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7016. if (on_rq) {
  7017. activate_task(rq, p, 0);
  7018. resched_task(rq->curr);
  7019. }
  7020. check_class_changed(rq, p, prev_class, old_prio);
  7021. }
  7022. void normalize_rt_tasks(void)
  7023. {
  7024. struct task_struct *g, *p;
  7025. unsigned long flags;
  7026. struct rq *rq;
  7027. read_lock_irqsave(&tasklist_lock, flags);
  7028. do_each_thread(g, p) {
  7029. /*
  7030. * Only normalize user tasks:
  7031. */
  7032. if (!p->mm)
  7033. continue;
  7034. p->se.exec_start = 0;
  7035. #ifdef CONFIG_SCHEDSTATS
  7036. p->se.statistics.wait_start = 0;
  7037. p->se.statistics.sleep_start = 0;
  7038. p->se.statistics.block_start = 0;
  7039. #endif
  7040. if (!rt_task(p)) {
  7041. /*
  7042. * Renice negative nice level userspace
  7043. * tasks back to 0:
  7044. */
  7045. if (TASK_NICE(p) < 0 && p->mm)
  7046. set_user_nice(p, 0);
  7047. continue;
  7048. }
  7049. raw_spin_lock(&p->pi_lock);
  7050. rq = __task_rq_lock(p);
  7051. normalize_task(rq, p);
  7052. __task_rq_unlock(rq);
  7053. raw_spin_unlock(&p->pi_lock);
  7054. } while_each_thread(g, p);
  7055. read_unlock_irqrestore(&tasklist_lock, flags);
  7056. }
  7057. #endif /* CONFIG_MAGIC_SYSRQ */
  7058. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  7059. /*
  7060. * These functions are only useful for the IA64 MCA handling, or kdb.
  7061. *
  7062. * They can only be called when the whole system has been
  7063. * stopped - every CPU needs to be quiescent, and no scheduling
  7064. * activity can take place. Using them for anything else would
  7065. * be a serious bug, and as a result, they aren't even visible
  7066. * under any other configuration.
  7067. */
  7068. /**
  7069. * curr_task - return the current task for a given cpu.
  7070. * @cpu: the processor in question.
  7071. *
  7072. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7073. */
  7074. struct task_struct *curr_task(int cpu)
  7075. {
  7076. return cpu_curr(cpu);
  7077. }
  7078. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  7079. #ifdef CONFIG_IA64
  7080. /**
  7081. * set_curr_task - set the current task for a given cpu.
  7082. * @cpu: the processor in question.
  7083. * @p: the task pointer to set.
  7084. *
  7085. * Description: This function must only be used when non-maskable interrupts
  7086. * are serviced on a separate stack. It allows the architecture to switch the
  7087. * notion of the current task on a cpu in a non-blocking manner. This function
  7088. * must be called with all CPU's synchronized, and interrupts disabled, the
  7089. * and caller must save the original value of the current task (see
  7090. * curr_task() above) and restore that value before reenabling interrupts and
  7091. * re-starting the system.
  7092. *
  7093. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7094. */
  7095. void set_curr_task(int cpu, struct task_struct *p)
  7096. {
  7097. cpu_curr(cpu) = p;
  7098. }
  7099. #endif
  7100. #ifdef CONFIG_FAIR_GROUP_SCHED
  7101. static void free_fair_sched_group(struct task_group *tg)
  7102. {
  7103. int i;
  7104. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  7105. for_each_possible_cpu(i) {
  7106. if (tg->cfs_rq)
  7107. kfree(tg->cfs_rq[i]);
  7108. if (tg->se)
  7109. kfree(tg->se[i]);
  7110. }
  7111. kfree(tg->cfs_rq);
  7112. kfree(tg->se);
  7113. }
  7114. static
  7115. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7116. {
  7117. struct cfs_rq *cfs_rq;
  7118. struct sched_entity *se;
  7119. int i;
  7120. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7121. if (!tg->cfs_rq)
  7122. goto err;
  7123. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7124. if (!tg->se)
  7125. goto err;
  7126. tg->shares = NICE_0_LOAD;
  7127. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  7128. for_each_possible_cpu(i) {
  7129. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7130. GFP_KERNEL, cpu_to_node(i));
  7131. if (!cfs_rq)
  7132. goto err;
  7133. se = kzalloc_node(sizeof(struct sched_entity),
  7134. GFP_KERNEL, cpu_to_node(i));
  7135. if (!se)
  7136. goto err_free_rq;
  7137. init_cfs_rq(cfs_rq);
  7138. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  7139. }
  7140. return 1;
  7141. err_free_rq:
  7142. kfree(cfs_rq);
  7143. err:
  7144. return 0;
  7145. }
  7146. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7147. {
  7148. struct rq *rq = cpu_rq(cpu);
  7149. unsigned long flags;
  7150. /*
  7151. * Only empty task groups can be destroyed; so we can speculatively
  7152. * check on_list without danger of it being re-added.
  7153. */
  7154. if (!tg->cfs_rq[cpu]->on_list)
  7155. return;
  7156. raw_spin_lock_irqsave(&rq->lock, flags);
  7157. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  7158. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7159. }
  7160. #else /* !CONFIG_FAIR_GROUP_SCHED */
  7161. static inline void free_fair_sched_group(struct task_group *tg)
  7162. {
  7163. }
  7164. static inline
  7165. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7166. {
  7167. return 1;
  7168. }
  7169. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7170. {
  7171. }
  7172. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7173. #ifdef CONFIG_RT_GROUP_SCHED
  7174. static void free_rt_sched_group(struct task_group *tg)
  7175. {
  7176. int i;
  7177. if (tg->rt_se)
  7178. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7179. for_each_possible_cpu(i) {
  7180. if (tg->rt_rq)
  7181. kfree(tg->rt_rq[i]);
  7182. if (tg->rt_se)
  7183. kfree(tg->rt_se[i]);
  7184. }
  7185. kfree(tg->rt_rq);
  7186. kfree(tg->rt_se);
  7187. }
  7188. static
  7189. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7190. {
  7191. struct rt_rq *rt_rq;
  7192. struct sched_rt_entity *rt_se;
  7193. int i;
  7194. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7195. if (!tg->rt_rq)
  7196. goto err;
  7197. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7198. if (!tg->rt_se)
  7199. goto err;
  7200. init_rt_bandwidth(&tg->rt_bandwidth,
  7201. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7202. for_each_possible_cpu(i) {
  7203. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7204. GFP_KERNEL, cpu_to_node(i));
  7205. if (!rt_rq)
  7206. goto err;
  7207. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7208. GFP_KERNEL, cpu_to_node(i));
  7209. if (!rt_se)
  7210. goto err_free_rq;
  7211. init_rt_rq(rt_rq, cpu_rq(i));
  7212. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7213. init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
  7214. }
  7215. return 1;
  7216. err_free_rq:
  7217. kfree(rt_rq);
  7218. err:
  7219. return 0;
  7220. }
  7221. #else /* !CONFIG_RT_GROUP_SCHED */
  7222. static inline void free_rt_sched_group(struct task_group *tg)
  7223. {
  7224. }
  7225. static inline
  7226. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7227. {
  7228. return 1;
  7229. }
  7230. #endif /* CONFIG_RT_GROUP_SCHED */
  7231. #ifdef CONFIG_CGROUP_SCHED
  7232. static void free_sched_group(struct task_group *tg)
  7233. {
  7234. free_fair_sched_group(tg);
  7235. free_rt_sched_group(tg);
  7236. autogroup_free(tg);
  7237. kfree(tg);
  7238. }
  7239. /* allocate runqueue etc for a new task group */
  7240. struct task_group *sched_create_group(struct task_group *parent)
  7241. {
  7242. struct task_group *tg;
  7243. unsigned long flags;
  7244. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7245. if (!tg)
  7246. return ERR_PTR(-ENOMEM);
  7247. if (!alloc_fair_sched_group(tg, parent))
  7248. goto err;
  7249. if (!alloc_rt_sched_group(tg, parent))
  7250. goto err;
  7251. spin_lock_irqsave(&task_group_lock, flags);
  7252. list_add_rcu(&tg->list, &task_groups);
  7253. WARN_ON(!parent); /* root should already exist */
  7254. tg->parent = parent;
  7255. INIT_LIST_HEAD(&tg->children);
  7256. list_add_rcu(&tg->siblings, &parent->children);
  7257. spin_unlock_irqrestore(&task_group_lock, flags);
  7258. return tg;
  7259. err:
  7260. free_sched_group(tg);
  7261. return ERR_PTR(-ENOMEM);
  7262. }
  7263. /* rcu callback to free various structures associated with a task group */
  7264. static void free_sched_group_rcu(struct rcu_head *rhp)
  7265. {
  7266. /* now it should be safe to free those cfs_rqs */
  7267. free_sched_group(container_of(rhp, struct task_group, rcu));
  7268. }
  7269. /* Destroy runqueue etc associated with a task group */
  7270. void sched_destroy_group(struct task_group *tg)
  7271. {
  7272. unsigned long flags;
  7273. int i;
  7274. /* end participation in shares distribution */
  7275. for_each_possible_cpu(i)
  7276. unregister_fair_sched_group(tg, i);
  7277. spin_lock_irqsave(&task_group_lock, flags);
  7278. list_del_rcu(&tg->list);
  7279. list_del_rcu(&tg->siblings);
  7280. spin_unlock_irqrestore(&task_group_lock, flags);
  7281. /* wait for possible concurrent references to cfs_rqs complete */
  7282. call_rcu(&tg->rcu, free_sched_group_rcu);
  7283. }
  7284. /* change task's runqueue when it moves between groups.
  7285. * The caller of this function should have put the task in its new group
  7286. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7287. * reflect its new group.
  7288. */
  7289. void sched_move_task(struct task_struct *tsk)
  7290. {
  7291. int on_rq, running;
  7292. unsigned long flags;
  7293. struct rq *rq;
  7294. rq = task_rq_lock(tsk, &flags);
  7295. running = task_current(rq, tsk);
  7296. on_rq = tsk->on_rq;
  7297. if (on_rq)
  7298. dequeue_task(rq, tsk, 0);
  7299. if (unlikely(running))
  7300. tsk->sched_class->put_prev_task(rq, tsk);
  7301. #ifdef CONFIG_FAIR_GROUP_SCHED
  7302. if (tsk->sched_class->task_move_group)
  7303. tsk->sched_class->task_move_group(tsk, on_rq);
  7304. else
  7305. #endif
  7306. set_task_rq(tsk, task_cpu(tsk));
  7307. if (unlikely(running))
  7308. tsk->sched_class->set_curr_task(rq);
  7309. if (on_rq)
  7310. enqueue_task(rq, tsk, 0);
  7311. task_rq_unlock(rq, tsk, &flags);
  7312. }
  7313. #endif /* CONFIG_CGROUP_SCHED */
  7314. #ifdef CONFIG_FAIR_GROUP_SCHED
  7315. static DEFINE_MUTEX(shares_mutex);
  7316. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7317. {
  7318. int i;
  7319. unsigned long flags;
  7320. /*
  7321. * We can't change the weight of the root cgroup.
  7322. */
  7323. if (!tg->se[0])
  7324. return -EINVAL;
  7325. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  7326. mutex_lock(&shares_mutex);
  7327. if (tg->shares == shares)
  7328. goto done;
  7329. tg->shares = shares;
  7330. for_each_possible_cpu(i) {
  7331. struct rq *rq = cpu_rq(i);
  7332. struct sched_entity *se;
  7333. se = tg->se[i];
  7334. /* Propagate contribution to hierarchy */
  7335. raw_spin_lock_irqsave(&rq->lock, flags);
  7336. for_each_sched_entity(se)
  7337. update_cfs_shares(group_cfs_rq(se));
  7338. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7339. }
  7340. done:
  7341. mutex_unlock(&shares_mutex);
  7342. return 0;
  7343. }
  7344. unsigned long sched_group_shares(struct task_group *tg)
  7345. {
  7346. return tg->shares;
  7347. }
  7348. #endif
  7349. #ifdef CONFIG_RT_GROUP_SCHED
  7350. /*
  7351. * Ensure that the real time constraints are schedulable.
  7352. */
  7353. static DEFINE_MUTEX(rt_constraints_mutex);
  7354. static unsigned long to_ratio(u64 period, u64 runtime)
  7355. {
  7356. if (runtime == RUNTIME_INF)
  7357. return 1ULL << 20;
  7358. return div64_u64(runtime << 20, period);
  7359. }
  7360. /* Must be called with tasklist_lock held */
  7361. static inline int tg_has_rt_tasks(struct task_group *tg)
  7362. {
  7363. struct task_struct *g, *p;
  7364. do_each_thread(g, p) {
  7365. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7366. return 1;
  7367. } while_each_thread(g, p);
  7368. return 0;
  7369. }
  7370. struct rt_schedulable_data {
  7371. struct task_group *tg;
  7372. u64 rt_period;
  7373. u64 rt_runtime;
  7374. };
  7375. static int tg_schedulable(struct task_group *tg, void *data)
  7376. {
  7377. struct rt_schedulable_data *d = data;
  7378. struct task_group *child;
  7379. unsigned long total, sum = 0;
  7380. u64 period, runtime;
  7381. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7382. runtime = tg->rt_bandwidth.rt_runtime;
  7383. if (tg == d->tg) {
  7384. period = d->rt_period;
  7385. runtime = d->rt_runtime;
  7386. }
  7387. /*
  7388. * Cannot have more runtime than the period.
  7389. */
  7390. if (runtime > period && runtime != RUNTIME_INF)
  7391. return -EINVAL;
  7392. /*
  7393. * Ensure we don't starve existing RT tasks.
  7394. */
  7395. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7396. return -EBUSY;
  7397. total = to_ratio(period, runtime);
  7398. /*
  7399. * Nobody can have more than the global setting allows.
  7400. */
  7401. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7402. return -EINVAL;
  7403. /*
  7404. * The sum of our children's runtime should not exceed our own.
  7405. */
  7406. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7407. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7408. runtime = child->rt_bandwidth.rt_runtime;
  7409. if (child == d->tg) {
  7410. period = d->rt_period;
  7411. runtime = d->rt_runtime;
  7412. }
  7413. sum += to_ratio(period, runtime);
  7414. }
  7415. if (sum > total)
  7416. return -EINVAL;
  7417. return 0;
  7418. }
  7419. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7420. {
  7421. struct rt_schedulable_data data = {
  7422. .tg = tg,
  7423. .rt_period = period,
  7424. .rt_runtime = runtime,
  7425. };
  7426. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7427. }
  7428. static int tg_set_rt_bandwidth(struct task_group *tg,
  7429. u64 rt_period, u64 rt_runtime)
  7430. {
  7431. int i, err = 0;
  7432. mutex_lock(&rt_constraints_mutex);
  7433. read_lock(&tasklist_lock);
  7434. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7435. if (err)
  7436. goto unlock;
  7437. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7438. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7439. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7440. for_each_possible_cpu(i) {
  7441. struct rt_rq *rt_rq = tg->rt_rq[i];
  7442. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7443. rt_rq->rt_runtime = rt_runtime;
  7444. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7445. }
  7446. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7447. unlock:
  7448. read_unlock(&tasklist_lock);
  7449. mutex_unlock(&rt_constraints_mutex);
  7450. return err;
  7451. }
  7452. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7453. {
  7454. u64 rt_runtime, rt_period;
  7455. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7456. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7457. if (rt_runtime_us < 0)
  7458. rt_runtime = RUNTIME_INF;
  7459. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  7460. }
  7461. long sched_group_rt_runtime(struct task_group *tg)
  7462. {
  7463. u64 rt_runtime_us;
  7464. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7465. return -1;
  7466. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7467. do_div(rt_runtime_us, NSEC_PER_USEC);
  7468. return rt_runtime_us;
  7469. }
  7470. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7471. {
  7472. u64 rt_runtime, rt_period;
  7473. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7474. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7475. if (rt_period == 0)
  7476. return -EINVAL;
  7477. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  7478. }
  7479. long sched_group_rt_period(struct task_group *tg)
  7480. {
  7481. u64 rt_period_us;
  7482. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7483. do_div(rt_period_us, NSEC_PER_USEC);
  7484. return rt_period_us;
  7485. }
  7486. static int sched_rt_global_constraints(void)
  7487. {
  7488. u64 runtime, period;
  7489. int ret = 0;
  7490. if (sysctl_sched_rt_period <= 0)
  7491. return -EINVAL;
  7492. runtime = global_rt_runtime();
  7493. period = global_rt_period();
  7494. /*
  7495. * Sanity check on the sysctl variables.
  7496. */
  7497. if (runtime > period && runtime != RUNTIME_INF)
  7498. return -EINVAL;
  7499. mutex_lock(&rt_constraints_mutex);
  7500. read_lock(&tasklist_lock);
  7501. ret = __rt_schedulable(NULL, 0, 0);
  7502. read_unlock(&tasklist_lock);
  7503. mutex_unlock(&rt_constraints_mutex);
  7504. return ret;
  7505. }
  7506. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7507. {
  7508. /* Don't accept realtime tasks when there is no way for them to run */
  7509. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7510. return 0;
  7511. return 1;
  7512. }
  7513. #else /* !CONFIG_RT_GROUP_SCHED */
  7514. static int sched_rt_global_constraints(void)
  7515. {
  7516. unsigned long flags;
  7517. int i;
  7518. if (sysctl_sched_rt_period <= 0)
  7519. return -EINVAL;
  7520. /*
  7521. * There's always some RT tasks in the root group
  7522. * -- migration, kstopmachine etc..
  7523. */
  7524. if (sysctl_sched_rt_runtime == 0)
  7525. return -EBUSY;
  7526. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7527. for_each_possible_cpu(i) {
  7528. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7529. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7530. rt_rq->rt_runtime = global_rt_runtime();
  7531. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7532. }
  7533. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7534. return 0;
  7535. }
  7536. #endif /* CONFIG_RT_GROUP_SCHED */
  7537. int sched_rt_handler(struct ctl_table *table, int write,
  7538. void __user *buffer, size_t *lenp,
  7539. loff_t *ppos)
  7540. {
  7541. int ret;
  7542. int old_period, old_runtime;
  7543. static DEFINE_MUTEX(mutex);
  7544. mutex_lock(&mutex);
  7545. old_period = sysctl_sched_rt_period;
  7546. old_runtime = sysctl_sched_rt_runtime;
  7547. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7548. if (!ret && write) {
  7549. ret = sched_rt_global_constraints();
  7550. if (ret) {
  7551. sysctl_sched_rt_period = old_period;
  7552. sysctl_sched_rt_runtime = old_runtime;
  7553. } else {
  7554. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7555. def_rt_bandwidth.rt_period =
  7556. ns_to_ktime(global_rt_period());
  7557. }
  7558. }
  7559. mutex_unlock(&mutex);
  7560. return ret;
  7561. }
  7562. #ifdef CONFIG_CGROUP_SCHED
  7563. /* return corresponding task_group object of a cgroup */
  7564. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7565. {
  7566. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7567. struct task_group, css);
  7568. }
  7569. static struct cgroup_subsys_state *
  7570. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7571. {
  7572. struct task_group *tg, *parent;
  7573. if (!cgrp->parent) {
  7574. /* This is early initialization for the top cgroup */
  7575. return &root_task_group.css;
  7576. }
  7577. parent = cgroup_tg(cgrp->parent);
  7578. tg = sched_create_group(parent);
  7579. if (IS_ERR(tg))
  7580. return ERR_PTR(-ENOMEM);
  7581. return &tg->css;
  7582. }
  7583. static void
  7584. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7585. {
  7586. struct task_group *tg = cgroup_tg(cgrp);
  7587. sched_destroy_group(tg);
  7588. }
  7589. static int
  7590. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7591. {
  7592. #ifdef CONFIG_RT_GROUP_SCHED
  7593. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7594. return -EINVAL;
  7595. #else
  7596. /* We don't support RT-tasks being in separate groups */
  7597. if (tsk->sched_class != &fair_sched_class)
  7598. return -EINVAL;
  7599. #endif
  7600. return 0;
  7601. }
  7602. static void
  7603. cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7604. {
  7605. sched_move_task(tsk);
  7606. }
  7607. static void
  7608. cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7609. struct cgroup *old_cgrp, struct task_struct *task)
  7610. {
  7611. /*
  7612. * cgroup_exit() is called in the copy_process() failure path.
  7613. * Ignore this case since the task hasn't ran yet, this avoids
  7614. * trying to poke a half freed task state from generic code.
  7615. */
  7616. if (!(task->flags & PF_EXITING))
  7617. return;
  7618. sched_move_task(task);
  7619. }
  7620. #ifdef CONFIG_FAIR_GROUP_SCHED
  7621. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7622. u64 shareval)
  7623. {
  7624. return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
  7625. }
  7626. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7627. {
  7628. struct task_group *tg = cgroup_tg(cgrp);
  7629. return (u64) scale_load_down(tg->shares);
  7630. }
  7631. #ifdef CONFIG_CFS_BANDWIDTH
  7632. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  7633. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  7634. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  7635. {
  7636. int i;
  7637. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  7638. static DEFINE_MUTEX(mutex);
  7639. if (tg == &root_task_group)
  7640. return -EINVAL;
  7641. /*
  7642. * Ensure we have at some amount of bandwidth every period. This is
  7643. * to prevent reaching a state of large arrears when throttled via
  7644. * entity_tick() resulting in prolonged exit starvation.
  7645. */
  7646. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  7647. return -EINVAL;
  7648. /*
  7649. * Likewise, bound things on the otherside by preventing insane quota
  7650. * periods. This also allows us to normalize in computing quota
  7651. * feasibility.
  7652. */
  7653. if (period > max_cfs_quota_period)
  7654. return -EINVAL;
  7655. mutex_lock(&mutex);
  7656. raw_spin_lock_irq(&cfs_b->lock);
  7657. cfs_b->period = ns_to_ktime(period);
  7658. cfs_b->quota = quota;
  7659. raw_spin_unlock_irq(&cfs_b->lock);
  7660. for_each_possible_cpu(i) {
  7661. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  7662. struct rq *rq = rq_of(cfs_rq);
  7663. raw_spin_lock_irq(&rq->lock);
  7664. cfs_rq->runtime_enabled = quota != RUNTIME_INF;
  7665. cfs_rq->runtime_remaining = 0;
  7666. raw_spin_unlock_irq(&rq->lock);
  7667. }
  7668. mutex_unlock(&mutex);
  7669. return 0;
  7670. }
  7671. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  7672. {
  7673. u64 quota, period;
  7674. period = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
  7675. if (cfs_quota_us < 0)
  7676. quota = RUNTIME_INF;
  7677. else
  7678. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  7679. return tg_set_cfs_bandwidth(tg, period, quota);
  7680. }
  7681. long tg_get_cfs_quota(struct task_group *tg)
  7682. {
  7683. u64 quota_us;
  7684. if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF)
  7685. return -1;
  7686. quota_us = tg_cfs_bandwidth(tg)->quota;
  7687. do_div(quota_us, NSEC_PER_USEC);
  7688. return quota_us;
  7689. }
  7690. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  7691. {
  7692. u64 quota, period;
  7693. period = (u64)cfs_period_us * NSEC_PER_USEC;
  7694. quota = tg_cfs_bandwidth(tg)->quota;
  7695. if (period <= 0)
  7696. return -EINVAL;
  7697. return tg_set_cfs_bandwidth(tg, period, quota);
  7698. }
  7699. long tg_get_cfs_period(struct task_group *tg)
  7700. {
  7701. u64 cfs_period_us;
  7702. cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
  7703. do_div(cfs_period_us, NSEC_PER_USEC);
  7704. return cfs_period_us;
  7705. }
  7706. static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
  7707. {
  7708. return tg_get_cfs_quota(cgroup_tg(cgrp));
  7709. }
  7710. static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
  7711. s64 cfs_quota_us)
  7712. {
  7713. return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
  7714. }
  7715. static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7716. {
  7717. return tg_get_cfs_period(cgroup_tg(cgrp));
  7718. }
  7719. static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7720. u64 cfs_period_us)
  7721. {
  7722. return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
  7723. }
  7724. #endif /* CONFIG_CFS_BANDWIDTH */
  7725. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7726. #ifdef CONFIG_RT_GROUP_SCHED
  7727. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7728. s64 val)
  7729. {
  7730. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7731. }
  7732. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7733. {
  7734. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7735. }
  7736. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7737. u64 rt_period_us)
  7738. {
  7739. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7740. }
  7741. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7742. {
  7743. return sched_group_rt_period(cgroup_tg(cgrp));
  7744. }
  7745. #endif /* CONFIG_RT_GROUP_SCHED */
  7746. static struct cftype cpu_files[] = {
  7747. #ifdef CONFIG_FAIR_GROUP_SCHED
  7748. {
  7749. .name = "shares",
  7750. .read_u64 = cpu_shares_read_u64,
  7751. .write_u64 = cpu_shares_write_u64,
  7752. },
  7753. #endif
  7754. #ifdef CONFIG_CFS_BANDWIDTH
  7755. {
  7756. .name = "cfs_quota_us",
  7757. .read_s64 = cpu_cfs_quota_read_s64,
  7758. .write_s64 = cpu_cfs_quota_write_s64,
  7759. },
  7760. {
  7761. .name = "cfs_period_us",
  7762. .read_u64 = cpu_cfs_period_read_u64,
  7763. .write_u64 = cpu_cfs_period_write_u64,
  7764. },
  7765. #endif
  7766. #ifdef CONFIG_RT_GROUP_SCHED
  7767. {
  7768. .name = "rt_runtime_us",
  7769. .read_s64 = cpu_rt_runtime_read,
  7770. .write_s64 = cpu_rt_runtime_write,
  7771. },
  7772. {
  7773. .name = "rt_period_us",
  7774. .read_u64 = cpu_rt_period_read_uint,
  7775. .write_u64 = cpu_rt_period_write_uint,
  7776. },
  7777. #endif
  7778. };
  7779. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7780. {
  7781. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7782. }
  7783. struct cgroup_subsys cpu_cgroup_subsys = {
  7784. .name = "cpu",
  7785. .create = cpu_cgroup_create,
  7786. .destroy = cpu_cgroup_destroy,
  7787. .can_attach_task = cpu_cgroup_can_attach_task,
  7788. .attach_task = cpu_cgroup_attach_task,
  7789. .exit = cpu_cgroup_exit,
  7790. .populate = cpu_cgroup_populate,
  7791. .subsys_id = cpu_cgroup_subsys_id,
  7792. .early_init = 1,
  7793. };
  7794. #endif /* CONFIG_CGROUP_SCHED */
  7795. #ifdef CONFIG_CGROUP_CPUACCT
  7796. /*
  7797. * CPU accounting code for task groups.
  7798. *
  7799. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7800. * (balbir@in.ibm.com).
  7801. */
  7802. /* track cpu usage of a group of tasks and its child groups */
  7803. struct cpuacct {
  7804. struct cgroup_subsys_state css;
  7805. /* cpuusage holds pointer to a u64-type object on every cpu */
  7806. u64 __percpu *cpuusage;
  7807. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7808. struct cpuacct *parent;
  7809. };
  7810. struct cgroup_subsys cpuacct_subsys;
  7811. /* return cpu accounting group corresponding to this container */
  7812. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7813. {
  7814. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7815. struct cpuacct, css);
  7816. }
  7817. /* return cpu accounting group to which this task belongs */
  7818. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7819. {
  7820. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7821. struct cpuacct, css);
  7822. }
  7823. /* create a new cpu accounting group */
  7824. static struct cgroup_subsys_state *cpuacct_create(
  7825. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7826. {
  7827. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7828. int i;
  7829. if (!ca)
  7830. goto out;
  7831. ca->cpuusage = alloc_percpu(u64);
  7832. if (!ca->cpuusage)
  7833. goto out_free_ca;
  7834. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7835. if (percpu_counter_init(&ca->cpustat[i], 0))
  7836. goto out_free_counters;
  7837. if (cgrp->parent)
  7838. ca->parent = cgroup_ca(cgrp->parent);
  7839. return &ca->css;
  7840. out_free_counters:
  7841. while (--i >= 0)
  7842. percpu_counter_destroy(&ca->cpustat[i]);
  7843. free_percpu(ca->cpuusage);
  7844. out_free_ca:
  7845. kfree(ca);
  7846. out:
  7847. return ERR_PTR(-ENOMEM);
  7848. }
  7849. /* destroy an existing cpu accounting group */
  7850. static void
  7851. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7852. {
  7853. struct cpuacct *ca = cgroup_ca(cgrp);
  7854. int i;
  7855. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7856. percpu_counter_destroy(&ca->cpustat[i]);
  7857. free_percpu(ca->cpuusage);
  7858. kfree(ca);
  7859. }
  7860. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7861. {
  7862. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7863. u64 data;
  7864. #ifndef CONFIG_64BIT
  7865. /*
  7866. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7867. */
  7868. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7869. data = *cpuusage;
  7870. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7871. #else
  7872. data = *cpuusage;
  7873. #endif
  7874. return data;
  7875. }
  7876. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7877. {
  7878. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7879. #ifndef CONFIG_64BIT
  7880. /*
  7881. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7882. */
  7883. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7884. *cpuusage = val;
  7885. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7886. #else
  7887. *cpuusage = val;
  7888. #endif
  7889. }
  7890. /* return total cpu usage (in nanoseconds) of a group */
  7891. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7892. {
  7893. struct cpuacct *ca = cgroup_ca(cgrp);
  7894. u64 totalcpuusage = 0;
  7895. int i;
  7896. for_each_present_cpu(i)
  7897. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7898. return totalcpuusage;
  7899. }
  7900. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7901. u64 reset)
  7902. {
  7903. struct cpuacct *ca = cgroup_ca(cgrp);
  7904. int err = 0;
  7905. int i;
  7906. if (reset) {
  7907. err = -EINVAL;
  7908. goto out;
  7909. }
  7910. for_each_present_cpu(i)
  7911. cpuacct_cpuusage_write(ca, i, 0);
  7912. out:
  7913. return err;
  7914. }
  7915. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7916. struct seq_file *m)
  7917. {
  7918. struct cpuacct *ca = cgroup_ca(cgroup);
  7919. u64 percpu;
  7920. int i;
  7921. for_each_present_cpu(i) {
  7922. percpu = cpuacct_cpuusage_read(ca, i);
  7923. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7924. }
  7925. seq_printf(m, "\n");
  7926. return 0;
  7927. }
  7928. static const char *cpuacct_stat_desc[] = {
  7929. [CPUACCT_STAT_USER] = "user",
  7930. [CPUACCT_STAT_SYSTEM] = "system",
  7931. };
  7932. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7933. struct cgroup_map_cb *cb)
  7934. {
  7935. struct cpuacct *ca = cgroup_ca(cgrp);
  7936. int i;
  7937. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7938. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7939. val = cputime64_to_clock_t(val);
  7940. cb->fill(cb, cpuacct_stat_desc[i], val);
  7941. }
  7942. return 0;
  7943. }
  7944. static struct cftype files[] = {
  7945. {
  7946. .name = "usage",
  7947. .read_u64 = cpuusage_read,
  7948. .write_u64 = cpuusage_write,
  7949. },
  7950. {
  7951. .name = "usage_percpu",
  7952. .read_seq_string = cpuacct_percpu_seq_read,
  7953. },
  7954. {
  7955. .name = "stat",
  7956. .read_map = cpuacct_stats_show,
  7957. },
  7958. };
  7959. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7960. {
  7961. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7962. }
  7963. /*
  7964. * charge this task's execution time to its accounting group.
  7965. *
  7966. * called with rq->lock held.
  7967. */
  7968. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7969. {
  7970. struct cpuacct *ca;
  7971. int cpu;
  7972. if (unlikely(!cpuacct_subsys.active))
  7973. return;
  7974. cpu = task_cpu(tsk);
  7975. rcu_read_lock();
  7976. ca = task_ca(tsk);
  7977. for (; ca; ca = ca->parent) {
  7978. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7979. *cpuusage += cputime;
  7980. }
  7981. rcu_read_unlock();
  7982. }
  7983. /*
  7984. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7985. * in cputime_t units. As a result, cpuacct_update_stats calls
  7986. * percpu_counter_add with values large enough to always overflow the
  7987. * per cpu batch limit causing bad SMP scalability.
  7988. *
  7989. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7990. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7991. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7992. */
  7993. #ifdef CONFIG_SMP
  7994. #define CPUACCT_BATCH \
  7995. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7996. #else
  7997. #define CPUACCT_BATCH 0
  7998. #endif
  7999. /*
  8000. * Charge the system/user time to the task's accounting group.
  8001. */
  8002. static void cpuacct_update_stats(struct task_struct *tsk,
  8003. enum cpuacct_stat_index idx, cputime_t val)
  8004. {
  8005. struct cpuacct *ca;
  8006. int batch = CPUACCT_BATCH;
  8007. if (unlikely(!cpuacct_subsys.active))
  8008. return;
  8009. rcu_read_lock();
  8010. ca = task_ca(tsk);
  8011. do {
  8012. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  8013. ca = ca->parent;
  8014. } while (ca);
  8015. rcu_read_unlock();
  8016. }
  8017. struct cgroup_subsys cpuacct_subsys = {
  8018. .name = "cpuacct",
  8019. .create = cpuacct_create,
  8020. .destroy = cpuacct_destroy,
  8021. .populate = cpuacct_populate,
  8022. .subsys_id = cpuacct_subsys_id,
  8023. };
  8024. #endif /* CONFIG_CGROUP_CPUACCT */