kvm_main.c 77 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "x86_emulate.h"
  20. #include "segment_descriptor.h"
  21. #include "irq.h"
  22. #include <linux/kvm.h>
  23. #include <linux/module.h>
  24. #include <linux/errno.h>
  25. #include <linux/percpu.h>
  26. #include <linux/gfp.h>
  27. #include <linux/mm.h>
  28. #include <linux/miscdevice.h>
  29. #include <linux/vmalloc.h>
  30. #include <linux/reboot.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/highmem.h>
  33. #include <linux/file.h>
  34. #include <linux/sysdev.h>
  35. #include <linux/cpu.h>
  36. #include <linux/sched.h>
  37. #include <linux/cpumask.h>
  38. #include <linux/smp.h>
  39. #include <linux/anon_inodes.h>
  40. #include <linux/profile.h>
  41. #include <linux/kvm_para.h>
  42. #include <linux/pagemap.h>
  43. #include <asm/processor.h>
  44. #include <asm/msr.h>
  45. #include <asm/io.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/desc.h>
  48. MODULE_AUTHOR("Qumranet");
  49. MODULE_LICENSE("GPL");
  50. static DEFINE_SPINLOCK(kvm_lock);
  51. static LIST_HEAD(vm_list);
  52. static cpumask_t cpus_hardware_enabled;
  53. struct kvm_x86_ops *kvm_x86_ops;
  54. struct kmem_cache *kvm_vcpu_cache;
  55. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  56. static __read_mostly struct preempt_ops kvm_preempt_ops;
  57. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  58. static struct kvm_stats_debugfs_item {
  59. const char *name;
  60. int offset;
  61. struct dentry *dentry;
  62. } debugfs_entries[] = {
  63. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  64. { "pf_guest", STAT_OFFSET(pf_guest) },
  65. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  66. { "invlpg", STAT_OFFSET(invlpg) },
  67. { "exits", STAT_OFFSET(exits) },
  68. { "io_exits", STAT_OFFSET(io_exits) },
  69. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  70. { "signal_exits", STAT_OFFSET(signal_exits) },
  71. { "irq_window", STAT_OFFSET(irq_window_exits) },
  72. { "halt_exits", STAT_OFFSET(halt_exits) },
  73. { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
  74. { "request_irq", STAT_OFFSET(request_irq_exits) },
  75. { "irq_exits", STAT_OFFSET(irq_exits) },
  76. { "light_exits", STAT_OFFSET(light_exits) },
  77. { "efer_reload", STAT_OFFSET(efer_reload) },
  78. { NULL }
  79. };
  80. static struct dentry *debugfs_dir;
  81. #define CR0_RESERVED_BITS \
  82. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  83. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  84. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  85. #define CR4_RESERVED_BITS \
  86. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  87. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  88. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  89. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  90. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  91. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  92. #ifdef CONFIG_X86_64
  93. /* LDT or TSS descriptor in the GDT. 16 bytes. */
  94. struct segment_descriptor_64 {
  95. struct segment_descriptor s;
  96. u32 base_higher;
  97. u32 pad_zero;
  98. };
  99. #endif
  100. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  101. unsigned long arg);
  102. unsigned long segment_base(u16 selector)
  103. {
  104. struct descriptor_table gdt;
  105. struct segment_descriptor *d;
  106. unsigned long table_base;
  107. unsigned long v;
  108. if (selector == 0)
  109. return 0;
  110. asm("sgdt %0" : "=m"(gdt));
  111. table_base = gdt.base;
  112. if (selector & 4) { /* from ldt */
  113. u16 ldt_selector;
  114. asm("sldt %0" : "=g"(ldt_selector));
  115. table_base = segment_base(ldt_selector);
  116. }
  117. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  118. v = d->base_low | ((unsigned long)d->base_mid << 16) |
  119. ((unsigned long)d->base_high << 24);
  120. #ifdef CONFIG_X86_64
  121. if (d->system == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  122. v |= ((unsigned long) \
  123. ((struct segment_descriptor_64 *)d)->base_higher) << 32;
  124. #endif
  125. return v;
  126. }
  127. EXPORT_SYMBOL_GPL(segment_base);
  128. static inline int valid_vcpu(int n)
  129. {
  130. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  131. }
  132. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  133. {
  134. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  135. return;
  136. vcpu->guest_fpu_loaded = 1;
  137. fx_save(&vcpu->host_fx_image);
  138. fx_restore(&vcpu->guest_fx_image);
  139. }
  140. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  141. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  142. {
  143. if (!vcpu->guest_fpu_loaded)
  144. return;
  145. vcpu->guest_fpu_loaded = 0;
  146. fx_save(&vcpu->guest_fx_image);
  147. fx_restore(&vcpu->host_fx_image);
  148. }
  149. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  150. /*
  151. * Switches to specified vcpu, until a matching vcpu_put()
  152. */
  153. void vcpu_load(struct kvm_vcpu *vcpu)
  154. {
  155. int cpu;
  156. mutex_lock(&vcpu->mutex);
  157. cpu = get_cpu();
  158. preempt_notifier_register(&vcpu->preempt_notifier);
  159. kvm_arch_vcpu_load(vcpu, cpu);
  160. put_cpu();
  161. }
  162. void vcpu_put(struct kvm_vcpu *vcpu)
  163. {
  164. preempt_disable();
  165. kvm_arch_vcpu_put(vcpu);
  166. preempt_notifier_unregister(&vcpu->preempt_notifier);
  167. preempt_enable();
  168. mutex_unlock(&vcpu->mutex);
  169. }
  170. static void ack_flush(void *_completed)
  171. {
  172. }
  173. void kvm_flush_remote_tlbs(struct kvm *kvm)
  174. {
  175. int i, cpu;
  176. cpumask_t cpus;
  177. struct kvm_vcpu *vcpu;
  178. cpus_clear(cpus);
  179. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  180. vcpu = kvm->vcpus[i];
  181. if (!vcpu)
  182. continue;
  183. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  184. continue;
  185. cpu = vcpu->cpu;
  186. if (cpu != -1 && cpu != raw_smp_processor_id())
  187. cpu_set(cpu, cpus);
  188. }
  189. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  190. }
  191. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  192. {
  193. struct page *page;
  194. int r;
  195. mutex_init(&vcpu->mutex);
  196. vcpu->cpu = -1;
  197. vcpu->mmu.root_hpa = INVALID_PAGE;
  198. vcpu->kvm = kvm;
  199. vcpu->vcpu_id = id;
  200. if (!irqchip_in_kernel(kvm) || id == 0)
  201. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  202. else
  203. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  204. init_waitqueue_head(&vcpu->wq);
  205. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  206. if (!page) {
  207. r = -ENOMEM;
  208. goto fail;
  209. }
  210. vcpu->run = page_address(page);
  211. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  212. if (!page) {
  213. r = -ENOMEM;
  214. goto fail_free_run;
  215. }
  216. vcpu->pio_data = page_address(page);
  217. r = kvm_mmu_create(vcpu);
  218. if (r < 0)
  219. goto fail_free_pio_data;
  220. if (irqchip_in_kernel(kvm)) {
  221. r = kvm_create_lapic(vcpu);
  222. if (r < 0)
  223. goto fail_mmu_destroy;
  224. }
  225. return 0;
  226. fail_mmu_destroy:
  227. kvm_mmu_destroy(vcpu);
  228. fail_free_pio_data:
  229. free_page((unsigned long)vcpu->pio_data);
  230. fail_free_run:
  231. free_page((unsigned long)vcpu->run);
  232. fail:
  233. return r;
  234. }
  235. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  236. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  237. {
  238. kvm_free_lapic(vcpu);
  239. kvm_mmu_destroy(vcpu);
  240. free_page((unsigned long)vcpu->pio_data);
  241. free_page((unsigned long)vcpu->run);
  242. }
  243. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  244. static struct kvm *kvm_create_vm(void)
  245. {
  246. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  247. if (!kvm)
  248. return ERR_PTR(-ENOMEM);
  249. kvm_io_bus_init(&kvm->pio_bus);
  250. mutex_init(&kvm->lock);
  251. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  252. kvm_io_bus_init(&kvm->mmio_bus);
  253. spin_lock(&kvm_lock);
  254. list_add(&kvm->vm_list, &vm_list);
  255. spin_unlock(&kvm_lock);
  256. return kvm;
  257. }
  258. static void kvm_free_userspace_physmem(struct kvm_memory_slot *free)
  259. {
  260. int i;
  261. for (i = 0; i < free->npages; ++i) {
  262. if (free->phys_mem[i]) {
  263. if (!PageReserved(free->phys_mem[i]))
  264. SetPageDirty(free->phys_mem[i]);
  265. page_cache_release(free->phys_mem[i]);
  266. }
  267. }
  268. }
  269. static void kvm_free_kernel_physmem(struct kvm_memory_slot *free)
  270. {
  271. int i;
  272. for (i = 0; i < free->npages; ++i)
  273. if (free->phys_mem[i])
  274. __free_page(free->phys_mem[i]);
  275. }
  276. /*
  277. * Free any memory in @free but not in @dont.
  278. */
  279. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  280. struct kvm_memory_slot *dont)
  281. {
  282. if (!dont || free->phys_mem != dont->phys_mem)
  283. if (free->phys_mem) {
  284. if (free->user_alloc)
  285. kvm_free_userspace_physmem(free);
  286. else
  287. kvm_free_kernel_physmem(free);
  288. vfree(free->phys_mem);
  289. }
  290. if (!dont || free->rmap != dont->rmap)
  291. vfree(free->rmap);
  292. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  293. vfree(free->dirty_bitmap);
  294. free->phys_mem = NULL;
  295. free->npages = 0;
  296. free->dirty_bitmap = NULL;
  297. }
  298. static void kvm_free_physmem(struct kvm *kvm)
  299. {
  300. int i;
  301. for (i = 0; i < kvm->nmemslots; ++i)
  302. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  303. }
  304. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  305. {
  306. int i;
  307. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  308. if (vcpu->pio.guest_pages[i]) {
  309. __free_page(vcpu->pio.guest_pages[i]);
  310. vcpu->pio.guest_pages[i] = NULL;
  311. }
  312. }
  313. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  314. {
  315. vcpu_load(vcpu);
  316. kvm_mmu_unload(vcpu);
  317. vcpu_put(vcpu);
  318. }
  319. static void kvm_free_vcpus(struct kvm *kvm)
  320. {
  321. unsigned int i;
  322. /*
  323. * Unpin any mmu pages first.
  324. */
  325. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  326. if (kvm->vcpus[i])
  327. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  328. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  329. if (kvm->vcpus[i]) {
  330. kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
  331. kvm->vcpus[i] = NULL;
  332. }
  333. }
  334. }
  335. static void kvm_destroy_vm(struct kvm *kvm)
  336. {
  337. spin_lock(&kvm_lock);
  338. list_del(&kvm->vm_list);
  339. spin_unlock(&kvm_lock);
  340. kvm_io_bus_destroy(&kvm->pio_bus);
  341. kvm_io_bus_destroy(&kvm->mmio_bus);
  342. kfree(kvm->vpic);
  343. kfree(kvm->vioapic);
  344. kvm_free_vcpus(kvm);
  345. kvm_free_physmem(kvm);
  346. kfree(kvm);
  347. }
  348. static int kvm_vm_release(struct inode *inode, struct file *filp)
  349. {
  350. struct kvm *kvm = filp->private_data;
  351. kvm_destroy_vm(kvm);
  352. return 0;
  353. }
  354. static void inject_gp(struct kvm_vcpu *vcpu)
  355. {
  356. kvm_x86_ops->inject_gp(vcpu, 0);
  357. }
  358. /*
  359. * Load the pae pdptrs. Return true is they are all valid.
  360. */
  361. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  362. {
  363. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  364. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  365. int i;
  366. int ret;
  367. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  368. mutex_lock(&vcpu->kvm->lock);
  369. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  370. offset * sizeof(u64), sizeof(pdpte));
  371. if (ret < 0) {
  372. ret = 0;
  373. goto out;
  374. }
  375. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  376. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  377. ret = 0;
  378. goto out;
  379. }
  380. }
  381. ret = 1;
  382. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  383. out:
  384. mutex_unlock(&vcpu->kvm->lock);
  385. return ret;
  386. }
  387. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  388. {
  389. if (cr0 & CR0_RESERVED_BITS) {
  390. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  391. cr0, vcpu->cr0);
  392. inject_gp(vcpu);
  393. return;
  394. }
  395. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  396. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  397. inject_gp(vcpu);
  398. return;
  399. }
  400. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  401. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  402. "and a clear PE flag\n");
  403. inject_gp(vcpu);
  404. return;
  405. }
  406. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  407. #ifdef CONFIG_X86_64
  408. if ((vcpu->shadow_efer & EFER_LME)) {
  409. int cs_db, cs_l;
  410. if (!is_pae(vcpu)) {
  411. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  412. "in long mode while PAE is disabled\n");
  413. inject_gp(vcpu);
  414. return;
  415. }
  416. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  417. if (cs_l) {
  418. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  419. "in long mode while CS.L == 1\n");
  420. inject_gp(vcpu);
  421. return;
  422. }
  423. } else
  424. #endif
  425. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  426. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  427. "reserved bits\n");
  428. inject_gp(vcpu);
  429. return;
  430. }
  431. }
  432. kvm_x86_ops->set_cr0(vcpu, cr0);
  433. vcpu->cr0 = cr0;
  434. mutex_lock(&vcpu->kvm->lock);
  435. kvm_mmu_reset_context(vcpu);
  436. mutex_unlock(&vcpu->kvm->lock);
  437. return;
  438. }
  439. EXPORT_SYMBOL_GPL(set_cr0);
  440. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  441. {
  442. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  443. }
  444. EXPORT_SYMBOL_GPL(lmsw);
  445. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  446. {
  447. if (cr4 & CR4_RESERVED_BITS) {
  448. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  449. inject_gp(vcpu);
  450. return;
  451. }
  452. if (is_long_mode(vcpu)) {
  453. if (!(cr4 & X86_CR4_PAE)) {
  454. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  455. "in long mode\n");
  456. inject_gp(vcpu);
  457. return;
  458. }
  459. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  460. && !load_pdptrs(vcpu, vcpu->cr3)) {
  461. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  462. inject_gp(vcpu);
  463. return;
  464. }
  465. if (cr4 & X86_CR4_VMXE) {
  466. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  467. inject_gp(vcpu);
  468. return;
  469. }
  470. kvm_x86_ops->set_cr4(vcpu, cr4);
  471. vcpu->cr4 = cr4;
  472. mutex_lock(&vcpu->kvm->lock);
  473. kvm_mmu_reset_context(vcpu);
  474. mutex_unlock(&vcpu->kvm->lock);
  475. }
  476. EXPORT_SYMBOL_GPL(set_cr4);
  477. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  478. {
  479. if (is_long_mode(vcpu)) {
  480. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  481. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  482. inject_gp(vcpu);
  483. return;
  484. }
  485. } else {
  486. if (is_pae(vcpu)) {
  487. if (cr3 & CR3_PAE_RESERVED_BITS) {
  488. printk(KERN_DEBUG
  489. "set_cr3: #GP, reserved bits\n");
  490. inject_gp(vcpu);
  491. return;
  492. }
  493. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  494. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  495. "reserved bits\n");
  496. inject_gp(vcpu);
  497. return;
  498. }
  499. }
  500. /*
  501. * We don't check reserved bits in nonpae mode, because
  502. * this isn't enforced, and VMware depends on this.
  503. */
  504. }
  505. mutex_lock(&vcpu->kvm->lock);
  506. /*
  507. * Does the new cr3 value map to physical memory? (Note, we
  508. * catch an invalid cr3 even in real-mode, because it would
  509. * cause trouble later on when we turn on paging anyway.)
  510. *
  511. * A real CPU would silently accept an invalid cr3 and would
  512. * attempt to use it - with largely undefined (and often hard
  513. * to debug) behavior on the guest side.
  514. */
  515. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  516. inject_gp(vcpu);
  517. else {
  518. vcpu->cr3 = cr3;
  519. vcpu->mmu.new_cr3(vcpu);
  520. }
  521. mutex_unlock(&vcpu->kvm->lock);
  522. }
  523. EXPORT_SYMBOL_GPL(set_cr3);
  524. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  525. {
  526. if (cr8 & CR8_RESERVED_BITS) {
  527. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  528. inject_gp(vcpu);
  529. return;
  530. }
  531. if (irqchip_in_kernel(vcpu->kvm))
  532. kvm_lapic_set_tpr(vcpu, cr8);
  533. else
  534. vcpu->cr8 = cr8;
  535. }
  536. EXPORT_SYMBOL_GPL(set_cr8);
  537. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  538. {
  539. if (irqchip_in_kernel(vcpu->kvm))
  540. return kvm_lapic_get_cr8(vcpu);
  541. else
  542. return vcpu->cr8;
  543. }
  544. EXPORT_SYMBOL_GPL(get_cr8);
  545. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  546. {
  547. if (irqchip_in_kernel(vcpu->kvm))
  548. return vcpu->apic_base;
  549. else
  550. return vcpu->apic_base;
  551. }
  552. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  553. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  554. {
  555. /* TODO: reserve bits check */
  556. if (irqchip_in_kernel(vcpu->kvm))
  557. kvm_lapic_set_base(vcpu, data);
  558. else
  559. vcpu->apic_base = data;
  560. }
  561. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  562. void fx_init(struct kvm_vcpu *vcpu)
  563. {
  564. unsigned after_mxcsr_mask;
  565. /* Initialize guest FPU by resetting ours and saving into guest's */
  566. preempt_disable();
  567. fx_save(&vcpu->host_fx_image);
  568. fpu_init();
  569. fx_save(&vcpu->guest_fx_image);
  570. fx_restore(&vcpu->host_fx_image);
  571. preempt_enable();
  572. vcpu->cr0 |= X86_CR0_ET;
  573. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  574. vcpu->guest_fx_image.mxcsr = 0x1f80;
  575. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  576. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  577. }
  578. EXPORT_SYMBOL_GPL(fx_init);
  579. /*
  580. * Allocate some memory and give it an address in the guest physical address
  581. * space.
  582. *
  583. * Discontiguous memory is allowed, mostly for framebuffers.
  584. */
  585. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  586. struct
  587. kvm_userspace_memory_region *mem,
  588. int user_alloc)
  589. {
  590. int r;
  591. gfn_t base_gfn;
  592. unsigned long npages;
  593. unsigned long i;
  594. struct kvm_memory_slot *memslot;
  595. struct kvm_memory_slot old, new;
  596. r = -EINVAL;
  597. /* General sanity checks */
  598. if (mem->memory_size & (PAGE_SIZE - 1))
  599. goto out;
  600. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  601. goto out;
  602. if (mem->slot >= KVM_MEMORY_SLOTS)
  603. goto out;
  604. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  605. goto out;
  606. memslot = &kvm->memslots[mem->slot];
  607. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  608. npages = mem->memory_size >> PAGE_SHIFT;
  609. if (!npages)
  610. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  611. mutex_lock(&kvm->lock);
  612. new = old = *memslot;
  613. new.base_gfn = base_gfn;
  614. new.npages = npages;
  615. new.flags = mem->flags;
  616. /* Disallow changing a memory slot's size. */
  617. r = -EINVAL;
  618. if (npages && old.npages && npages != old.npages)
  619. goto out_unlock;
  620. /* Check for overlaps */
  621. r = -EEXIST;
  622. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  623. struct kvm_memory_slot *s = &kvm->memslots[i];
  624. if (s == memslot)
  625. continue;
  626. if (!((base_gfn + npages <= s->base_gfn) ||
  627. (base_gfn >= s->base_gfn + s->npages)))
  628. goto out_unlock;
  629. }
  630. /* Deallocate if slot is being removed */
  631. if (!npages)
  632. new.phys_mem = NULL;
  633. /* Free page dirty bitmap if unneeded */
  634. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  635. new.dirty_bitmap = NULL;
  636. r = -ENOMEM;
  637. /* Allocate if a slot is being created */
  638. if (npages && !new.phys_mem) {
  639. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  640. if (!new.phys_mem)
  641. goto out_unlock;
  642. new.rmap = vmalloc(npages * sizeof(struct page *));
  643. if (!new.rmap)
  644. goto out_unlock;
  645. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  646. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  647. if (user_alloc) {
  648. unsigned long pages_num;
  649. new.user_alloc = 1;
  650. down_read(&current->mm->mmap_sem);
  651. pages_num = get_user_pages(current, current->mm,
  652. mem->userspace_addr,
  653. npages, 1, 1, new.phys_mem,
  654. NULL);
  655. up_read(&current->mm->mmap_sem);
  656. if (pages_num != npages)
  657. goto out_unlock;
  658. } else {
  659. for (i = 0; i < npages; ++i) {
  660. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  661. | __GFP_ZERO);
  662. if (!new.phys_mem[i])
  663. goto out_unlock;
  664. }
  665. }
  666. }
  667. /* Allocate page dirty bitmap if needed */
  668. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  669. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  670. new.dirty_bitmap = vmalloc(dirty_bytes);
  671. if (!new.dirty_bitmap)
  672. goto out_unlock;
  673. memset(new.dirty_bitmap, 0, dirty_bytes);
  674. }
  675. if (mem->slot >= kvm->nmemslots)
  676. kvm->nmemslots = mem->slot + 1;
  677. if (!kvm->n_requested_mmu_pages) {
  678. unsigned int n_pages;
  679. if (npages) {
  680. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  681. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  682. n_pages);
  683. } else {
  684. unsigned int nr_mmu_pages;
  685. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  686. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  687. nr_mmu_pages = max(nr_mmu_pages,
  688. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  689. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  690. }
  691. }
  692. *memslot = new;
  693. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  694. kvm_flush_remote_tlbs(kvm);
  695. mutex_unlock(&kvm->lock);
  696. kvm_free_physmem_slot(&old, &new);
  697. return 0;
  698. out_unlock:
  699. mutex_unlock(&kvm->lock);
  700. kvm_free_physmem_slot(&new, &old);
  701. out:
  702. return r;
  703. }
  704. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  705. u32 kvm_nr_mmu_pages)
  706. {
  707. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  708. return -EINVAL;
  709. mutex_lock(&kvm->lock);
  710. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  711. kvm->n_requested_mmu_pages = kvm_nr_mmu_pages;
  712. mutex_unlock(&kvm->lock);
  713. return 0;
  714. }
  715. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  716. {
  717. return kvm->n_alloc_mmu_pages;
  718. }
  719. /*
  720. * Get (and clear) the dirty memory log for a memory slot.
  721. */
  722. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  723. struct kvm_dirty_log *log)
  724. {
  725. struct kvm_memory_slot *memslot;
  726. int r, i;
  727. int n;
  728. unsigned long any = 0;
  729. mutex_lock(&kvm->lock);
  730. r = -EINVAL;
  731. if (log->slot >= KVM_MEMORY_SLOTS)
  732. goto out;
  733. memslot = &kvm->memslots[log->slot];
  734. r = -ENOENT;
  735. if (!memslot->dirty_bitmap)
  736. goto out;
  737. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  738. for (i = 0; !any && i < n/sizeof(long); ++i)
  739. any = memslot->dirty_bitmap[i];
  740. r = -EFAULT;
  741. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  742. goto out;
  743. /* If nothing is dirty, don't bother messing with page tables. */
  744. if (any) {
  745. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  746. kvm_flush_remote_tlbs(kvm);
  747. memset(memslot->dirty_bitmap, 0, n);
  748. }
  749. r = 0;
  750. out:
  751. mutex_unlock(&kvm->lock);
  752. return r;
  753. }
  754. /*
  755. * Set a new alias region. Aliases map a portion of physical memory into
  756. * another portion. This is useful for memory windows, for example the PC
  757. * VGA region.
  758. */
  759. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  760. struct kvm_memory_alias *alias)
  761. {
  762. int r, n;
  763. struct kvm_mem_alias *p;
  764. r = -EINVAL;
  765. /* General sanity checks */
  766. if (alias->memory_size & (PAGE_SIZE - 1))
  767. goto out;
  768. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  769. goto out;
  770. if (alias->slot >= KVM_ALIAS_SLOTS)
  771. goto out;
  772. if (alias->guest_phys_addr + alias->memory_size
  773. < alias->guest_phys_addr)
  774. goto out;
  775. if (alias->target_phys_addr + alias->memory_size
  776. < alias->target_phys_addr)
  777. goto out;
  778. mutex_lock(&kvm->lock);
  779. p = &kvm->aliases[alias->slot];
  780. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  781. p->npages = alias->memory_size >> PAGE_SHIFT;
  782. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  783. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  784. if (kvm->aliases[n - 1].npages)
  785. break;
  786. kvm->naliases = n;
  787. kvm_mmu_zap_all(kvm);
  788. mutex_unlock(&kvm->lock);
  789. return 0;
  790. out:
  791. return r;
  792. }
  793. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  794. {
  795. int r;
  796. r = 0;
  797. switch (chip->chip_id) {
  798. case KVM_IRQCHIP_PIC_MASTER:
  799. memcpy(&chip->chip.pic,
  800. &pic_irqchip(kvm)->pics[0],
  801. sizeof(struct kvm_pic_state));
  802. break;
  803. case KVM_IRQCHIP_PIC_SLAVE:
  804. memcpy(&chip->chip.pic,
  805. &pic_irqchip(kvm)->pics[1],
  806. sizeof(struct kvm_pic_state));
  807. break;
  808. case KVM_IRQCHIP_IOAPIC:
  809. memcpy(&chip->chip.ioapic,
  810. ioapic_irqchip(kvm),
  811. sizeof(struct kvm_ioapic_state));
  812. break;
  813. default:
  814. r = -EINVAL;
  815. break;
  816. }
  817. return r;
  818. }
  819. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  820. {
  821. int r;
  822. r = 0;
  823. switch (chip->chip_id) {
  824. case KVM_IRQCHIP_PIC_MASTER:
  825. memcpy(&pic_irqchip(kvm)->pics[0],
  826. &chip->chip.pic,
  827. sizeof(struct kvm_pic_state));
  828. break;
  829. case KVM_IRQCHIP_PIC_SLAVE:
  830. memcpy(&pic_irqchip(kvm)->pics[1],
  831. &chip->chip.pic,
  832. sizeof(struct kvm_pic_state));
  833. break;
  834. case KVM_IRQCHIP_IOAPIC:
  835. memcpy(ioapic_irqchip(kvm),
  836. &chip->chip.ioapic,
  837. sizeof(struct kvm_ioapic_state));
  838. break;
  839. default:
  840. r = -EINVAL;
  841. break;
  842. }
  843. kvm_pic_update_irq(pic_irqchip(kvm));
  844. return r;
  845. }
  846. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  847. {
  848. int i;
  849. struct kvm_mem_alias *alias;
  850. for (i = 0; i < kvm->naliases; ++i) {
  851. alias = &kvm->aliases[i];
  852. if (gfn >= alias->base_gfn
  853. && gfn < alias->base_gfn + alias->npages)
  854. return alias->target_gfn + gfn - alias->base_gfn;
  855. }
  856. return gfn;
  857. }
  858. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  859. {
  860. int i;
  861. for (i = 0; i < kvm->nmemslots; ++i) {
  862. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  863. if (gfn >= memslot->base_gfn
  864. && gfn < memslot->base_gfn + memslot->npages)
  865. return memslot;
  866. }
  867. return NULL;
  868. }
  869. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  870. {
  871. gfn = unalias_gfn(kvm, gfn);
  872. return __gfn_to_memslot(kvm, gfn);
  873. }
  874. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  875. {
  876. struct kvm_memory_slot *slot;
  877. gfn = unalias_gfn(kvm, gfn);
  878. slot = __gfn_to_memslot(kvm, gfn);
  879. if (!slot)
  880. return NULL;
  881. return slot->phys_mem[gfn - slot->base_gfn];
  882. }
  883. EXPORT_SYMBOL_GPL(gfn_to_page);
  884. static int next_segment(unsigned long len, int offset)
  885. {
  886. if (len > PAGE_SIZE - offset)
  887. return PAGE_SIZE - offset;
  888. else
  889. return len;
  890. }
  891. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  892. int len)
  893. {
  894. void *page_virt;
  895. struct page *page;
  896. page = gfn_to_page(kvm, gfn);
  897. if (!page)
  898. return -EFAULT;
  899. page_virt = kmap_atomic(page, KM_USER0);
  900. memcpy(data, page_virt + offset, len);
  901. kunmap_atomic(page_virt, KM_USER0);
  902. return 0;
  903. }
  904. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  905. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  906. {
  907. gfn_t gfn = gpa >> PAGE_SHIFT;
  908. int seg;
  909. int offset = offset_in_page(gpa);
  910. int ret;
  911. while ((seg = next_segment(len, offset)) != 0) {
  912. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  913. if (ret < 0)
  914. return ret;
  915. offset = 0;
  916. len -= seg;
  917. data += seg;
  918. ++gfn;
  919. }
  920. return 0;
  921. }
  922. EXPORT_SYMBOL_GPL(kvm_read_guest);
  923. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  924. int offset, int len)
  925. {
  926. void *page_virt;
  927. struct page *page;
  928. page = gfn_to_page(kvm, gfn);
  929. if (!page)
  930. return -EFAULT;
  931. page_virt = kmap_atomic(page, KM_USER0);
  932. memcpy(page_virt + offset, data, len);
  933. kunmap_atomic(page_virt, KM_USER0);
  934. mark_page_dirty(kvm, gfn);
  935. return 0;
  936. }
  937. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  938. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  939. unsigned long len)
  940. {
  941. gfn_t gfn = gpa >> PAGE_SHIFT;
  942. int seg;
  943. int offset = offset_in_page(gpa);
  944. int ret;
  945. while ((seg = next_segment(len, offset)) != 0) {
  946. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  947. if (ret < 0)
  948. return ret;
  949. offset = 0;
  950. len -= seg;
  951. data += seg;
  952. ++gfn;
  953. }
  954. return 0;
  955. }
  956. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  957. {
  958. void *page_virt;
  959. struct page *page;
  960. page = gfn_to_page(kvm, gfn);
  961. if (!page)
  962. return -EFAULT;
  963. page_virt = kmap_atomic(page, KM_USER0);
  964. memset(page_virt + offset, 0, len);
  965. kunmap_atomic(page_virt, KM_USER0);
  966. return 0;
  967. }
  968. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  969. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  970. {
  971. gfn_t gfn = gpa >> PAGE_SHIFT;
  972. int seg;
  973. int offset = offset_in_page(gpa);
  974. int ret;
  975. while ((seg = next_segment(len, offset)) != 0) {
  976. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  977. if (ret < 0)
  978. return ret;
  979. offset = 0;
  980. len -= seg;
  981. ++gfn;
  982. }
  983. return 0;
  984. }
  985. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  986. /* WARNING: Does not work on aliased pages. */
  987. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  988. {
  989. struct kvm_memory_slot *memslot;
  990. memslot = __gfn_to_memslot(kvm, gfn);
  991. if (memslot && memslot->dirty_bitmap) {
  992. unsigned long rel_gfn = gfn - memslot->base_gfn;
  993. /* avoid RMW */
  994. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  995. set_bit(rel_gfn, memslot->dirty_bitmap);
  996. }
  997. }
  998. int emulator_read_std(unsigned long addr,
  999. void *val,
  1000. unsigned int bytes,
  1001. struct kvm_vcpu *vcpu)
  1002. {
  1003. void *data = val;
  1004. while (bytes) {
  1005. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1006. unsigned offset = addr & (PAGE_SIZE-1);
  1007. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1008. int ret;
  1009. if (gpa == UNMAPPED_GVA)
  1010. return X86EMUL_PROPAGATE_FAULT;
  1011. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1012. if (ret < 0)
  1013. return X86EMUL_UNHANDLEABLE;
  1014. bytes -= tocopy;
  1015. data += tocopy;
  1016. addr += tocopy;
  1017. }
  1018. return X86EMUL_CONTINUE;
  1019. }
  1020. EXPORT_SYMBOL_GPL(emulator_read_std);
  1021. static int emulator_write_std(unsigned long addr,
  1022. const void *val,
  1023. unsigned int bytes,
  1024. struct kvm_vcpu *vcpu)
  1025. {
  1026. pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
  1027. return X86EMUL_UNHANDLEABLE;
  1028. }
  1029. /*
  1030. * Only apic need an MMIO device hook, so shortcut now..
  1031. */
  1032. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1033. gpa_t addr)
  1034. {
  1035. struct kvm_io_device *dev;
  1036. if (vcpu->apic) {
  1037. dev = &vcpu->apic->dev;
  1038. if (dev->in_range(dev, addr))
  1039. return dev;
  1040. }
  1041. return NULL;
  1042. }
  1043. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1044. gpa_t addr)
  1045. {
  1046. struct kvm_io_device *dev;
  1047. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  1048. if (dev == NULL)
  1049. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  1050. return dev;
  1051. }
  1052. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  1053. gpa_t addr)
  1054. {
  1055. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  1056. }
  1057. static int emulator_read_emulated(unsigned long addr,
  1058. void *val,
  1059. unsigned int bytes,
  1060. struct kvm_vcpu *vcpu)
  1061. {
  1062. struct kvm_io_device *mmio_dev;
  1063. gpa_t gpa;
  1064. if (vcpu->mmio_read_completed) {
  1065. memcpy(val, vcpu->mmio_data, bytes);
  1066. vcpu->mmio_read_completed = 0;
  1067. return X86EMUL_CONTINUE;
  1068. } else if (emulator_read_std(addr, val, bytes, vcpu)
  1069. == X86EMUL_CONTINUE)
  1070. return X86EMUL_CONTINUE;
  1071. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1072. if (gpa == UNMAPPED_GVA)
  1073. return X86EMUL_PROPAGATE_FAULT;
  1074. /*
  1075. * Is this MMIO handled locally?
  1076. */
  1077. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1078. if (mmio_dev) {
  1079. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1080. return X86EMUL_CONTINUE;
  1081. }
  1082. vcpu->mmio_needed = 1;
  1083. vcpu->mmio_phys_addr = gpa;
  1084. vcpu->mmio_size = bytes;
  1085. vcpu->mmio_is_write = 0;
  1086. return X86EMUL_UNHANDLEABLE;
  1087. }
  1088. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1089. const void *val, int bytes)
  1090. {
  1091. int ret;
  1092. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1093. if (ret < 0)
  1094. return 0;
  1095. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1096. return 1;
  1097. }
  1098. static int emulator_write_emulated_onepage(unsigned long addr,
  1099. const void *val,
  1100. unsigned int bytes,
  1101. struct kvm_vcpu *vcpu)
  1102. {
  1103. struct kvm_io_device *mmio_dev;
  1104. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  1105. if (gpa == UNMAPPED_GVA) {
  1106. kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
  1107. return X86EMUL_PROPAGATE_FAULT;
  1108. }
  1109. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1110. return X86EMUL_CONTINUE;
  1111. /*
  1112. * Is this MMIO handled locally?
  1113. */
  1114. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1115. if (mmio_dev) {
  1116. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1117. return X86EMUL_CONTINUE;
  1118. }
  1119. vcpu->mmio_needed = 1;
  1120. vcpu->mmio_phys_addr = gpa;
  1121. vcpu->mmio_size = bytes;
  1122. vcpu->mmio_is_write = 1;
  1123. memcpy(vcpu->mmio_data, val, bytes);
  1124. return X86EMUL_CONTINUE;
  1125. }
  1126. int emulator_write_emulated(unsigned long addr,
  1127. const void *val,
  1128. unsigned int bytes,
  1129. struct kvm_vcpu *vcpu)
  1130. {
  1131. /* Crossing a page boundary? */
  1132. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1133. int rc, now;
  1134. now = -addr & ~PAGE_MASK;
  1135. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1136. if (rc != X86EMUL_CONTINUE)
  1137. return rc;
  1138. addr += now;
  1139. val += now;
  1140. bytes -= now;
  1141. }
  1142. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1143. }
  1144. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1145. static int emulator_cmpxchg_emulated(unsigned long addr,
  1146. const void *old,
  1147. const void *new,
  1148. unsigned int bytes,
  1149. struct kvm_vcpu *vcpu)
  1150. {
  1151. static int reported;
  1152. if (!reported) {
  1153. reported = 1;
  1154. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1155. }
  1156. return emulator_write_emulated(addr, new, bytes, vcpu);
  1157. }
  1158. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1159. {
  1160. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1161. }
  1162. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1163. {
  1164. return X86EMUL_CONTINUE;
  1165. }
  1166. int emulate_clts(struct kvm_vcpu *vcpu)
  1167. {
  1168. kvm_x86_ops->set_cr0(vcpu, vcpu->cr0 & ~X86_CR0_TS);
  1169. return X86EMUL_CONTINUE;
  1170. }
  1171. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1172. {
  1173. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1174. switch (dr) {
  1175. case 0 ... 3:
  1176. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1177. return X86EMUL_CONTINUE;
  1178. default:
  1179. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1180. return X86EMUL_UNHANDLEABLE;
  1181. }
  1182. }
  1183. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1184. {
  1185. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1186. int exception;
  1187. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1188. if (exception) {
  1189. /* FIXME: better handling */
  1190. return X86EMUL_UNHANDLEABLE;
  1191. }
  1192. return X86EMUL_CONTINUE;
  1193. }
  1194. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1195. {
  1196. static int reported;
  1197. u8 opcodes[4];
  1198. unsigned long rip = vcpu->rip;
  1199. unsigned long rip_linear;
  1200. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1201. if (reported)
  1202. return;
  1203. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1204. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1205. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1206. reported = 1;
  1207. }
  1208. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1209. struct x86_emulate_ops emulate_ops = {
  1210. .read_std = emulator_read_std,
  1211. .write_std = emulator_write_std,
  1212. .read_emulated = emulator_read_emulated,
  1213. .write_emulated = emulator_write_emulated,
  1214. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1215. };
  1216. int emulate_instruction(struct kvm_vcpu *vcpu,
  1217. struct kvm_run *run,
  1218. unsigned long cr2,
  1219. u16 error_code,
  1220. int no_decode)
  1221. {
  1222. int r;
  1223. vcpu->mmio_fault_cr2 = cr2;
  1224. kvm_x86_ops->cache_regs(vcpu);
  1225. vcpu->mmio_is_write = 0;
  1226. vcpu->pio.string = 0;
  1227. if (!no_decode) {
  1228. int cs_db, cs_l;
  1229. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1230. vcpu->emulate_ctxt.vcpu = vcpu;
  1231. vcpu->emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1232. vcpu->emulate_ctxt.cr2 = cr2;
  1233. vcpu->emulate_ctxt.mode =
  1234. (vcpu->emulate_ctxt.eflags & X86_EFLAGS_VM)
  1235. ? X86EMUL_MODE_REAL : cs_l
  1236. ? X86EMUL_MODE_PROT64 : cs_db
  1237. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1238. if (vcpu->emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1239. vcpu->emulate_ctxt.cs_base = 0;
  1240. vcpu->emulate_ctxt.ds_base = 0;
  1241. vcpu->emulate_ctxt.es_base = 0;
  1242. vcpu->emulate_ctxt.ss_base = 0;
  1243. } else {
  1244. vcpu->emulate_ctxt.cs_base =
  1245. get_segment_base(vcpu, VCPU_SREG_CS);
  1246. vcpu->emulate_ctxt.ds_base =
  1247. get_segment_base(vcpu, VCPU_SREG_DS);
  1248. vcpu->emulate_ctxt.es_base =
  1249. get_segment_base(vcpu, VCPU_SREG_ES);
  1250. vcpu->emulate_ctxt.ss_base =
  1251. get_segment_base(vcpu, VCPU_SREG_SS);
  1252. }
  1253. vcpu->emulate_ctxt.gs_base =
  1254. get_segment_base(vcpu, VCPU_SREG_GS);
  1255. vcpu->emulate_ctxt.fs_base =
  1256. get_segment_base(vcpu, VCPU_SREG_FS);
  1257. r = x86_decode_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1258. if (r) {
  1259. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1260. return EMULATE_DONE;
  1261. return EMULATE_FAIL;
  1262. }
  1263. }
  1264. r = x86_emulate_insn(&vcpu->emulate_ctxt, &emulate_ops);
  1265. if (vcpu->pio.string)
  1266. return EMULATE_DO_MMIO;
  1267. if ((r || vcpu->mmio_is_write) && run) {
  1268. run->exit_reason = KVM_EXIT_MMIO;
  1269. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1270. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1271. run->mmio.len = vcpu->mmio_size;
  1272. run->mmio.is_write = vcpu->mmio_is_write;
  1273. }
  1274. if (r) {
  1275. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1276. return EMULATE_DONE;
  1277. if (!vcpu->mmio_needed) {
  1278. kvm_report_emulation_failure(vcpu, "mmio");
  1279. return EMULATE_FAIL;
  1280. }
  1281. return EMULATE_DO_MMIO;
  1282. }
  1283. kvm_x86_ops->decache_regs(vcpu);
  1284. kvm_x86_ops->set_rflags(vcpu, vcpu->emulate_ctxt.eflags);
  1285. if (vcpu->mmio_is_write) {
  1286. vcpu->mmio_needed = 0;
  1287. return EMULATE_DO_MMIO;
  1288. }
  1289. return EMULATE_DONE;
  1290. }
  1291. EXPORT_SYMBOL_GPL(emulate_instruction);
  1292. /*
  1293. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1294. */
  1295. static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1296. {
  1297. DECLARE_WAITQUEUE(wait, current);
  1298. add_wait_queue(&vcpu->wq, &wait);
  1299. /*
  1300. * We will block until either an interrupt or a signal wakes us up
  1301. */
  1302. while (!kvm_cpu_has_interrupt(vcpu)
  1303. && !signal_pending(current)
  1304. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  1305. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  1306. set_current_state(TASK_INTERRUPTIBLE);
  1307. vcpu_put(vcpu);
  1308. schedule();
  1309. vcpu_load(vcpu);
  1310. }
  1311. __set_current_state(TASK_RUNNING);
  1312. remove_wait_queue(&vcpu->wq, &wait);
  1313. }
  1314. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1315. {
  1316. ++vcpu->stat.halt_exits;
  1317. if (irqchip_in_kernel(vcpu->kvm)) {
  1318. vcpu->mp_state = VCPU_MP_STATE_HALTED;
  1319. kvm_vcpu_block(vcpu);
  1320. if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
  1321. return -EINTR;
  1322. return 1;
  1323. } else {
  1324. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1325. return 0;
  1326. }
  1327. }
  1328. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1329. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  1330. {
  1331. unsigned long nr, a0, a1, a2, a3, ret;
  1332. kvm_x86_ops->cache_regs(vcpu);
  1333. nr = vcpu->regs[VCPU_REGS_RAX];
  1334. a0 = vcpu->regs[VCPU_REGS_RBX];
  1335. a1 = vcpu->regs[VCPU_REGS_RCX];
  1336. a2 = vcpu->regs[VCPU_REGS_RDX];
  1337. a3 = vcpu->regs[VCPU_REGS_RSI];
  1338. if (!is_long_mode(vcpu)) {
  1339. nr &= 0xFFFFFFFF;
  1340. a0 &= 0xFFFFFFFF;
  1341. a1 &= 0xFFFFFFFF;
  1342. a2 &= 0xFFFFFFFF;
  1343. a3 &= 0xFFFFFFFF;
  1344. }
  1345. switch (nr) {
  1346. default:
  1347. ret = -KVM_ENOSYS;
  1348. break;
  1349. }
  1350. vcpu->regs[VCPU_REGS_RAX] = ret;
  1351. kvm_x86_ops->decache_regs(vcpu);
  1352. return 0;
  1353. }
  1354. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  1355. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  1356. {
  1357. char instruction[3];
  1358. int ret = 0;
  1359. mutex_lock(&vcpu->kvm->lock);
  1360. /*
  1361. * Blow out the MMU to ensure that no other VCPU has an active mapping
  1362. * to ensure that the updated hypercall appears atomically across all
  1363. * VCPUs.
  1364. */
  1365. kvm_mmu_zap_all(vcpu->kvm);
  1366. kvm_x86_ops->cache_regs(vcpu);
  1367. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  1368. if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
  1369. != X86EMUL_CONTINUE)
  1370. ret = -EFAULT;
  1371. mutex_unlock(&vcpu->kvm->lock);
  1372. return ret;
  1373. }
  1374. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1375. {
  1376. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1377. }
  1378. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1379. {
  1380. struct descriptor_table dt = { limit, base };
  1381. kvm_x86_ops->set_gdt(vcpu, &dt);
  1382. }
  1383. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1384. {
  1385. struct descriptor_table dt = { limit, base };
  1386. kvm_x86_ops->set_idt(vcpu, &dt);
  1387. }
  1388. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1389. unsigned long *rflags)
  1390. {
  1391. lmsw(vcpu, msw);
  1392. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1393. }
  1394. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1395. {
  1396. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1397. switch (cr) {
  1398. case 0:
  1399. return vcpu->cr0;
  1400. case 2:
  1401. return vcpu->cr2;
  1402. case 3:
  1403. return vcpu->cr3;
  1404. case 4:
  1405. return vcpu->cr4;
  1406. default:
  1407. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1408. return 0;
  1409. }
  1410. }
  1411. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1412. unsigned long *rflags)
  1413. {
  1414. switch (cr) {
  1415. case 0:
  1416. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1417. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1418. break;
  1419. case 2:
  1420. vcpu->cr2 = val;
  1421. break;
  1422. case 3:
  1423. set_cr3(vcpu, val);
  1424. break;
  1425. case 4:
  1426. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1427. break;
  1428. default:
  1429. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1430. }
  1431. }
  1432. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1433. {
  1434. u64 data;
  1435. switch (msr) {
  1436. case 0xc0010010: /* SYSCFG */
  1437. case 0xc0010015: /* HWCR */
  1438. case MSR_IA32_PLATFORM_ID:
  1439. case MSR_IA32_P5_MC_ADDR:
  1440. case MSR_IA32_P5_MC_TYPE:
  1441. case MSR_IA32_MC0_CTL:
  1442. case MSR_IA32_MCG_STATUS:
  1443. case MSR_IA32_MCG_CAP:
  1444. case MSR_IA32_MC0_MISC:
  1445. case MSR_IA32_MC0_MISC+4:
  1446. case MSR_IA32_MC0_MISC+8:
  1447. case MSR_IA32_MC0_MISC+12:
  1448. case MSR_IA32_MC0_MISC+16:
  1449. case MSR_IA32_UCODE_REV:
  1450. case MSR_IA32_PERF_STATUS:
  1451. case MSR_IA32_EBL_CR_POWERON:
  1452. /* MTRR registers */
  1453. case 0xfe:
  1454. case 0x200 ... 0x2ff:
  1455. data = 0;
  1456. break;
  1457. case 0xcd: /* fsb frequency */
  1458. data = 3;
  1459. break;
  1460. case MSR_IA32_APICBASE:
  1461. data = kvm_get_apic_base(vcpu);
  1462. break;
  1463. case MSR_IA32_MISC_ENABLE:
  1464. data = vcpu->ia32_misc_enable_msr;
  1465. break;
  1466. #ifdef CONFIG_X86_64
  1467. case MSR_EFER:
  1468. data = vcpu->shadow_efer;
  1469. break;
  1470. #endif
  1471. default:
  1472. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1473. return 1;
  1474. }
  1475. *pdata = data;
  1476. return 0;
  1477. }
  1478. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1479. /*
  1480. * Reads an msr value (of 'msr_index') into 'pdata'.
  1481. * Returns 0 on success, non-0 otherwise.
  1482. * Assumes vcpu_load() was already called.
  1483. */
  1484. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1485. {
  1486. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1487. }
  1488. #ifdef CONFIG_X86_64
  1489. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1490. {
  1491. if (efer & EFER_RESERVED_BITS) {
  1492. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1493. efer);
  1494. inject_gp(vcpu);
  1495. return;
  1496. }
  1497. if (is_paging(vcpu)
  1498. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1499. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1500. inject_gp(vcpu);
  1501. return;
  1502. }
  1503. kvm_x86_ops->set_efer(vcpu, efer);
  1504. efer &= ~EFER_LMA;
  1505. efer |= vcpu->shadow_efer & EFER_LMA;
  1506. vcpu->shadow_efer = efer;
  1507. }
  1508. #endif
  1509. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1510. {
  1511. switch (msr) {
  1512. #ifdef CONFIG_X86_64
  1513. case MSR_EFER:
  1514. set_efer(vcpu, data);
  1515. break;
  1516. #endif
  1517. case MSR_IA32_MC0_STATUS:
  1518. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1519. __FUNCTION__, data);
  1520. break;
  1521. case MSR_IA32_MCG_STATUS:
  1522. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1523. __FUNCTION__, data);
  1524. break;
  1525. case MSR_IA32_UCODE_REV:
  1526. case MSR_IA32_UCODE_WRITE:
  1527. case 0x200 ... 0x2ff: /* MTRRs */
  1528. break;
  1529. case MSR_IA32_APICBASE:
  1530. kvm_set_apic_base(vcpu, data);
  1531. break;
  1532. case MSR_IA32_MISC_ENABLE:
  1533. vcpu->ia32_misc_enable_msr = data;
  1534. break;
  1535. default:
  1536. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  1537. return 1;
  1538. }
  1539. return 0;
  1540. }
  1541. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1542. /*
  1543. * Writes msr value into into the appropriate "register".
  1544. * Returns 0 on success, non-0 otherwise.
  1545. * Assumes vcpu_load() was already called.
  1546. */
  1547. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1548. {
  1549. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  1550. }
  1551. void kvm_resched(struct kvm_vcpu *vcpu)
  1552. {
  1553. if (!need_resched())
  1554. return;
  1555. cond_resched();
  1556. }
  1557. EXPORT_SYMBOL_GPL(kvm_resched);
  1558. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1559. {
  1560. int i;
  1561. u32 function;
  1562. struct kvm_cpuid_entry *e, *best;
  1563. kvm_x86_ops->cache_regs(vcpu);
  1564. function = vcpu->regs[VCPU_REGS_RAX];
  1565. vcpu->regs[VCPU_REGS_RAX] = 0;
  1566. vcpu->regs[VCPU_REGS_RBX] = 0;
  1567. vcpu->regs[VCPU_REGS_RCX] = 0;
  1568. vcpu->regs[VCPU_REGS_RDX] = 0;
  1569. best = NULL;
  1570. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1571. e = &vcpu->cpuid_entries[i];
  1572. if (e->function == function) {
  1573. best = e;
  1574. break;
  1575. }
  1576. /*
  1577. * Both basic or both extended?
  1578. */
  1579. if (((e->function ^ function) & 0x80000000) == 0)
  1580. if (!best || e->function > best->function)
  1581. best = e;
  1582. }
  1583. if (best) {
  1584. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1585. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1586. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1587. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1588. }
  1589. kvm_x86_ops->decache_regs(vcpu);
  1590. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1591. }
  1592. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1593. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1594. {
  1595. void *p = vcpu->pio_data;
  1596. void *q;
  1597. unsigned bytes;
  1598. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1599. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1600. PAGE_KERNEL);
  1601. if (!q) {
  1602. free_pio_guest_pages(vcpu);
  1603. return -ENOMEM;
  1604. }
  1605. q += vcpu->pio.guest_page_offset;
  1606. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1607. if (vcpu->pio.in)
  1608. memcpy(q, p, bytes);
  1609. else
  1610. memcpy(p, q, bytes);
  1611. q -= vcpu->pio.guest_page_offset;
  1612. vunmap(q);
  1613. free_pio_guest_pages(vcpu);
  1614. return 0;
  1615. }
  1616. static int complete_pio(struct kvm_vcpu *vcpu)
  1617. {
  1618. struct kvm_pio_request *io = &vcpu->pio;
  1619. long delta;
  1620. int r;
  1621. kvm_x86_ops->cache_regs(vcpu);
  1622. if (!io->string) {
  1623. if (io->in)
  1624. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1625. io->size);
  1626. } else {
  1627. if (io->in) {
  1628. r = pio_copy_data(vcpu);
  1629. if (r) {
  1630. kvm_x86_ops->cache_regs(vcpu);
  1631. return r;
  1632. }
  1633. }
  1634. delta = 1;
  1635. if (io->rep) {
  1636. delta *= io->cur_count;
  1637. /*
  1638. * The size of the register should really depend on
  1639. * current address size.
  1640. */
  1641. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1642. }
  1643. if (io->down)
  1644. delta = -delta;
  1645. delta *= io->size;
  1646. if (io->in)
  1647. vcpu->regs[VCPU_REGS_RDI] += delta;
  1648. else
  1649. vcpu->regs[VCPU_REGS_RSI] += delta;
  1650. }
  1651. kvm_x86_ops->decache_regs(vcpu);
  1652. io->count -= io->cur_count;
  1653. io->cur_count = 0;
  1654. return 0;
  1655. }
  1656. static void kernel_pio(struct kvm_io_device *pio_dev,
  1657. struct kvm_vcpu *vcpu,
  1658. void *pd)
  1659. {
  1660. /* TODO: String I/O for in kernel device */
  1661. mutex_lock(&vcpu->kvm->lock);
  1662. if (vcpu->pio.in)
  1663. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1664. vcpu->pio.size,
  1665. pd);
  1666. else
  1667. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1668. vcpu->pio.size,
  1669. pd);
  1670. mutex_unlock(&vcpu->kvm->lock);
  1671. }
  1672. static void pio_string_write(struct kvm_io_device *pio_dev,
  1673. struct kvm_vcpu *vcpu)
  1674. {
  1675. struct kvm_pio_request *io = &vcpu->pio;
  1676. void *pd = vcpu->pio_data;
  1677. int i;
  1678. mutex_lock(&vcpu->kvm->lock);
  1679. for (i = 0; i < io->cur_count; i++) {
  1680. kvm_iodevice_write(pio_dev, io->port,
  1681. io->size,
  1682. pd);
  1683. pd += io->size;
  1684. }
  1685. mutex_unlock(&vcpu->kvm->lock);
  1686. }
  1687. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1688. int size, unsigned port)
  1689. {
  1690. struct kvm_io_device *pio_dev;
  1691. vcpu->run->exit_reason = KVM_EXIT_IO;
  1692. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1693. vcpu->run->io.size = vcpu->pio.size = size;
  1694. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1695. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1696. vcpu->run->io.port = vcpu->pio.port = port;
  1697. vcpu->pio.in = in;
  1698. vcpu->pio.string = 0;
  1699. vcpu->pio.down = 0;
  1700. vcpu->pio.guest_page_offset = 0;
  1701. vcpu->pio.rep = 0;
  1702. kvm_x86_ops->cache_regs(vcpu);
  1703. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1704. kvm_x86_ops->decache_regs(vcpu);
  1705. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1706. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1707. if (pio_dev) {
  1708. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1709. complete_pio(vcpu);
  1710. return 1;
  1711. }
  1712. return 0;
  1713. }
  1714. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1715. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1716. int size, unsigned long count, int down,
  1717. gva_t address, int rep, unsigned port)
  1718. {
  1719. unsigned now, in_page;
  1720. int i, ret = 0;
  1721. int nr_pages = 1;
  1722. struct page *page;
  1723. struct kvm_io_device *pio_dev;
  1724. vcpu->run->exit_reason = KVM_EXIT_IO;
  1725. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1726. vcpu->run->io.size = vcpu->pio.size = size;
  1727. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1728. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1729. vcpu->run->io.port = vcpu->pio.port = port;
  1730. vcpu->pio.in = in;
  1731. vcpu->pio.string = 1;
  1732. vcpu->pio.down = down;
  1733. vcpu->pio.guest_page_offset = offset_in_page(address);
  1734. vcpu->pio.rep = rep;
  1735. if (!count) {
  1736. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1737. return 1;
  1738. }
  1739. if (!down)
  1740. in_page = PAGE_SIZE - offset_in_page(address);
  1741. else
  1742. in_page = offset_in_page(address) + size;
  1743. now = min(count, (unsigned long)in_page / size);
  1744. if (!now) {
  1745. /*
  1746. * String I/O straddles page boundary. Pin two guest pages
  1747. * so that we satisfy atomicity constraints. Do just one
  1748. * transaction to avoid complexity.
  1749. */
  1750. nr_pages = 2;
  1751. now = 1;
  1752. }
  1753. if (down) {
  1754. /*
  1755. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1756. */
  1757. pr_unimpl(vcpu, "guest string pio down\n");
  1758. inject_gp(vcpu);
  1759. return 1;
  1760. }
  1761. vcpu->run->io.count = now;
  1762. vcpu->pio.cur_count = now;
  1763. if (vcpu->pio.cur_count == vcpu->pio.count)
  1764. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1765. for (i = 0; i < nr_pages; ++i) {
  1766. mutex_lock(&vcpu->kvm->lock);
  1767. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1768. if (page)
  1769. get_page(page);
  1770. vcpu->pio.guest_pages[i] = page;
  1771. mutex_unlock(&vcpu->kvm->lock);
  1772. if (!page) {
  1773. inject_gp(vcpu);
  1774. free_pio_guest_pages(vcpu);
  1775. return 1;
  1776. }
  1777. }
  1778. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1779. if (!vcpu->pio.in) {
  1780. /* string PIO write */
  1781. ret = pio_copy_data(vcpu);
  1782. if (ret >= 0 && pio_dev) {
  1783. pio_string_write(pio_dev, vcpu);
  1784. complete_pio(vcpu);
  1785. if (vcpu->pio.count == 0)
  1786. ret = 1;
  1787. }
  1788. } else if (pio_dev)
  1789. pr_unimpl(vcpu, "no string pio read support yet, "
  1790. "port %x size %d count %ld\n",
  1791. port, size, count);
  1792. return ret;
  1793. }
  1794. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1795. /*
  1796. * Check if userspace requested an interrupt window, and that the
  1797. * interrupt window is open.
  1798. *
  1799. * No need to exit to userspace if we already have an interrupt queued.
  1800. */
  1801. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1802. struct kvm_run *kvm_run)
  1803. {
  1804. return (!vcpu->irq_summary &&
  1805. kvm_run->request_interrupt_window &&
  1806. vcpu->interrupt_window_open &&
  1807. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  1808. }
  1809. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1810. struct kvm_run *kvm_run)
  1811. {
  1812. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  1813. kvm_run->cr8 = get_cr8(vcpu);
  1814. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  1815. if (irqchip_in_kernel(vcpu->kvm))
  1816. kvm_run->ready_for_interrupt_injection = 1;
  1817. else
  1818. kvm_run->ready_for_interrupt_injection =
  1819. (vcpu->interrupt_window_open &&
  1820. vcpu->irq_summary == 0);
  1821. }
  1822. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1823. {
  1824. int r;
  1825. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  1826. pr_debug("vcpu %d received sipi with vector # %x\n",
  1827. vcpu->vcpu_id, vcpu->sipi_vector);
  1828. kvm_lapic_reset(vcpu);
  1829. kvm_x86_ops->vcpu_reset(vcpu);
  1830. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  1831. }
  1832. preempted:
  1833. if (vcpu->guest_debug.enabled)
  1834. kvm_x86_ops->guest_debug_pre(vcpu);
  1835. again:
  1836. r = kvm_mmu_reload(vcpu);
  1837. if (unlikely(r))
  1838. goto out;
  1839. kvm_inject_pending_timer_irqs(vcpu);
  1840. preempt_disable();
  1841. kvm_x86_ops->prepare_guest_switch(vcpu);
  1842. kvm_load_guest_fpu(vcpu);
  1843. local_irq_disable();
  1844. if (signal_pending(current)) {
  1845. local_irq_enable();
  1846. preempt_enable();
  1847. r = -EINTR;
  1848. kvm_run->exit_reason = KVM_EXIT_INTR;
  1849. ++vcpu->stat.signal_exits;
  1850. goto out;
  1851. }
  1852. if (irqchip_in_kernel(vcpu->kvm))
  1853. kvm_x86_ops->inject_pending_irq(vcpu);
  1854. else if (!vcpu->mmio_read_completed)
  1855. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  1856. vcpu->guest_mode = 1;
  1857. kvm_guest_enter();
  1858. if (vcpu->requests)
  1859. if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
  1860. kvm_x86_ops->tlb_flush(vcpu);
  1861. kvm_x86_ops->run(vcpu, kvm_run);
  1862. vcpu->guest_mode = 0;
  1863. local_irq_enable();
  1864. ++vcpu->stat.exits;
  1865. /*
  1866. * We must have an instruction between local_irq_enable() and
  1867. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  1868. * the interrupt shadow. The stat.exits increment will do nicely.
  1869. * But we need to prevent reordering, hence this barrier():
  1870. */
  1871. barrier();
  1872. kvm_guest_exit();
  1873. preempt_enable();
  1874. /*
  1875. * Profile KVM exit RIPs:
  1876. */
  1877. if (unlikely(prof_on == KVM_PROFILING)) {
  1878. kvm_x86_ops->cache_regs(vcpu);
  1879. profile_hit(KVM_PROFILING, (void *)vcpu->rip);
  1880. }
  1881. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  1882. if (r > 0) {
  1883. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1884. r = -EINTR;
  1885. kvm_run->exit_reason = KVM_EXIT_INTR;
  1886. ++vcpu->stat.request_irq_exits;
  1887. goto out;
  1888. }
  1889. if (!need_resched()) {
  1890. ++vcpu->stat.light_exits;
  1891. goto again;
  1892. }
  1893. }
  1894. out:
  1895. if (r > 0) {
  1896. kvm_resched(vcpu);
  1897. goto preempted;
  1898. }
  1899. post_kvm_run_save(vcpu, kvm_run);
  1900. return r;
  1901. }
  1902. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1903. {
  1904. int r;
  1905. sigset_t sigsaved;
  1906. vcpu_load(vcpu);
  1907. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  1908. kvm_vcpu_block(vcpu);
  1909. vcpu_put(vcpu);
  1910. return -EAGAIN;
  1911. }
  1912. if (vcpu->sigset_active)
  1913. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1914. /* re-sync apic's tpr */
  1915. if (!irqchip_in_kernel(vcpu->kvm))
  1916. set_cr8(vcpu, kvm_run->cr8);
  1917. if (vcpu->pio.cur_count) {
  1918. r = complete_pio(vcpu);
  1919. if (r)
  1920. goto out;
  1921. }
  1922. if (vcpu->mmio_needed) {
  1923. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1924. vcpu->mmio_read_completed = 1;
  1925. vcpu->mmio_needed = 0;
  1926. r = emulate_instruction(vcpu, kvm_run,
  1927. vcpu->mmio_fault_cr2, 0, 1);
  1928. if (r == EMULATE_DO_MMIO) {
  1929. /*
  1930. * Read-modify-write. Back to userspace.
  1931. */
  1932. r = 0;
  1933. goto out;
  1934. }
  1935. }
  1936. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1937. kvm_x86_ops->cache_regs(vcpu);
  1938. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1939. kvm_x86_ops->decache_regs(vcpu);
  1940. }
  1941. r = __vcpu_run(vcpu, kvm_run);
  1942. out:
  1943. if (vcpu->sigset_active)
  1944. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1945. vcpu_put(vcpu);
  1946. return r;
  1947. }
  1948. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1949. struct kvm_regs *regs)
  1950. {
  1951. vcpu_load(vcpu);
  1952. kvm_x86_ops->cache_regs(vcpu);
  1953. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1954. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1955. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1956. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1957. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1958. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1959. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1960. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1961. #ifdef CONFIG_X86_64
  1962. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1963. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1964. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1965. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1966. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1967. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1968. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1969. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1970. #endif
  1971. regs->rip = vcpu->rip;
  1972. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  1973. /*
  1974. * Don't leak debug flags in case they were set for guest debugging
  1975. */
  1976. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1977. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1978. vcpu_put(vcpu);
  1979. return 0;
  1980. }
  1981. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1982. struct kvm_regs *regs)
  1983. {
  1984. vcpu_load(vcpu);
  1985. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1986. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1987. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1988. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1989. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1990. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1991. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1992. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1993. #ifdef CONFIG_X86_64
  1994. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1995. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1996. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1997. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1998. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1999. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  2000. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  2001. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  2002. #endif
  2003. vcpu->rip = regs->rip;
  2004. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2005. kvm_x86_ops->decache_regs(vcpu);
  2006. vcpu_put(vcpu);
  2007. return 0;
  2008. }
  2009. static void get_segment(struct kvm_vcpu *vcpu,
  2010. struct kvm_segment *var, int seg)
  2011. {
  2012. return kvm_x86_ops->get_segment(vcpu, var, seg);
  2013. }
  2014. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2015. struct kvm_sregs *sregs)
  2016. {
  2017. struct descriptor_table dt;
  2018. int pending_vec;
  2019. vcpu_load(vcpu);
  2020. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2021. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2022. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2023. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2024. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2025. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2026. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2027. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2028. kvm_x86_ops->get_idt(vcpu, &dt);
  2029. sregs->idt.limit = dt.limit;
  2030. sregs->idt.base = dt.base;
  2031. kvm_x86_ops->get_gdt(vcpu, &dt);
  2032. sregs->gdt.limit = dt.limit;
  2033. sregs->gdt.base = dt.base;
  2034. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2035. sregs->cr0 = vcpu->cr0;
  2036. sregs->cr2 = vcpu->cr2;
  2037. sregs->cr3 = vcpu->cr3;
  2038. sregs->cr4 = vcpu->cr4;
  2039. sregs->cr8 = get_cr8(vcpu);
  2040. sregs->efer = vcpu->shadow_efer;
  2041. sregs->apic_base = kvm_get_apic_base(vcpu);
  2042. if (irqchip_in_kernel(vcpu->kvm)) {
  2043. memset(sregs->interrupt_bitmap, 0,
  2044. sizeof sregs->interrupt_bitmap);
  2045. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2046. if (pending_vec >= 0)
  2047. set_bit(pending_vec,
  2048. (unsigned long *)sregs->interrupt_bitmap);
  2049. } else
  2050. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  2051. sizeof sregs->interrupt_bitmap);
  2052. vcpu_put(vcpu);
  2053. return 0;
  2054. }
  2055. static void set_segment(struct kvm_vcpu *vcpu,
  2056. struct kvm_segment *var, int seg)
  2057. {
  2058. return kvm_x86_ops->set_segment(vcpu, var, seg);
  2059. }
  2060. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  2061. struct kvm_sregs *sregs)
  2062. {
  2063. int mmu_reset_needed = 0;
  2064. int i, pending_vec, max_bits;
  2065. struct descriptor_table dt;
  2066. vcpu_load(vcpu);
  2067. dt.limit = sregs->idt.limit;
  2068. dt.base = sregs->idt.base;
  2069. kvm_x86_ops->set_idt(vcpu, &dt);
  2070. dt.limit = sregs->gdt.limit;
  2071. dt.base = sregs->gdt.base;
  2072. kvm_x86_ops->set_gdt(vcpu, &dt);
  2073. vcpu->cr2 = sregs->cr2;
  2074. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  2075. vcpu->cr3 = sregs->cr3;
  2076. set_cr8(vcpu, sregs->cr8);
  2077. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  2078. #ifdef CONFIG_X86_64
  2079. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  2080. #endif
  2081. kvm_set_apic_base(vcpu, sregs->apic_base);
  2082. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2083. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  2084. vcpu->cr0 = sregs->cr0;
  2085. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  2086. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  2087. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  2088. if (!is_long_mode(vcpu) && is_pae(vcpu))
  2089. load_pdptrs(vcpu, vcpu->cr3);
  2090. if (mmu_reset_needed)
  2091. kvm_mmu_reset_context(vcpu);
  2092. if (!irqchip_in_kernel(vcpu->kvm)) {
  2093. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  2094. sizeof vcpu->irq_pending);
  2095. vcpu->irq_summary = 0;
  2096. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  2097. if (vcpu->irq_pending[i])
  2098. __set_bit(i, &vcpu->irq_summary);
  2099. } else {
  2100. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  2101. pending_vec = find_first_bit(
  2102. (const unsigned long *)sregs->interrupt_bitmap,
  2103. max_bits);
  2104. /* Only pending external irq is handled here */
  2105. if (pending_vec < max_bits) {
  2106. kvm_x86_ops->set_irq(vcpu, pending_vec);
  2107. pr_debug("Set back pending irq %d\n",
  2108. pending_vec);
  2109. }
  2110. }
  2111. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2112. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2113. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2114. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2115. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2116. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2117. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2118. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2119. vcpu_put(vcpu);
  2120. return 0;
  2121. }
  2122. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2123. {
  2124. struct kvm_segment cs;
  2125. get_segment(vcpu, &cs, VCPU_SREG_CS);
  2126. *db = cs.db;
  2127. *l = cs.l;
  2128. }
  2129. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2130. /*
  2131. * Translate a guest virtual address to a guest physical address.
  2132. */
  2133. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2134. struct kvm_translation *tr)
  2135. {
  2136. unsigned long vaddr = tr->linear_address;
  2137. gpa_t gpa;
  2138. vcpu_load(vcpu);
  2139. mutex_lock(&vcpu->kvm->lock);
  2140. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  2141. tr->physical_address = gpa;
  2142. tr->valid = gpa != UNMAPPED_GVA;
  2143. tr->writeable = 1;
  2144. tr->usermode = 0;
  2145. mutex_unlock(&vcpu->kvm->lock);
  2146. vcpu_put(vcpu);
  2147. return 0;
  2148. }
  2149. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2150. struct kvm_interrupt *irq)
  2151. {
  2152. if (irq->irq < 0 || irq->irq >= 256)
  2153. return -EINVAL;
  2154. if (irqchip_in_kernel(vcpu->kvm))
  2155. return -ENXIO;
  2156. vcpu_load(vcpu);
  2157. set_bit(irq->irq, vcpu->irq_pending);
  2158. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  2159. vcpu_put(vcpu);
  2160. return 0;
  2161. }
  2162. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2163. struct kvm_debug_guest *dbg)
  2164. {
  2165. int r;
  2166. vcpu_load(vcpu);
  2167. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  2168. vcpu_put(vcpu);
  2169. return r;
  2170. }
  2171. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  2172. unsigned long address,
  2173. int *type)
  2174. {
  2175. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  2176. unsigned long pgoff;
  2177. struct page *page;
  2178. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2179. if (pgoff == 0)
  2180. page = virt_to_page(vcpu->run);
  2181. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  2182. page = virt_to_page(vcpu->pio_data);
  2183. else
  2184. return NOPAGE_SIGBUS;
  2185. get_page(page);
  2186. if (type != NULL)
  2187. *type = VM_FAULT_MINOR;
  2188. return page;
  2189. }
  2190. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  2191. .nopage = kvm_vcpu_nopage,
  2192. };
  2193. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  2194. {
  2195. vma->vm_ops = &kvm_vcpu_vm_ops;
  2196. return 0;
  2197. }
  2198. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  2199. {
  2200. struct kvm_vcpu *vcpu = filp->private_data;
  2201. fput(vcpu->kvm->filp);
  2202. return 0;
  2203. }
  2204. static struct file_operations kvm_vcpu_fops = {
  2205. .release = kvm_vcpu_release,
  2206. .unlocked_ioctl = kvm_vcpu_ioctl,
  2207. .compat_ioctl = kvm_vcpu_ioctl,
  2208. .mmap = kvm_vcpu_mmap,
  2209. };
  2210. /*
  2211. * Allocates an inode for the vcpu.
  2212. */
  2213. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  2214. {
  2215. int fd, r;
  2216. struct inode *inode;
  2217. struct file *file;
  2218. r = anon_inode_getfd(&fd, &inode, &file,
  2219. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  2220. if (r)
  2221. return r;
  2222. atomic_inc(&vcpu->kvm->filp->f_count);
  2223. return fd;
  2224. }
  2225. /*
  2226. * Creates some virtual cpus. Good luck creating more than one.
  2227. */
  2228. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  2229. {
  2230. int r;
  2231. struct kvm_vcpu *vcpu;
  2232. if (!valid_vcpu(n))
  2233. return -EINVAL;
  2234. vcpu = kvm_x86_ops->vcpu_create(kvm, n);
  2235. if (IS_ERR(vcpu))
  2236. return PTR_ERR(vcpu);
  2237. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  2238. /* We do fxsave: this must be aligned. */
  2239. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  2240. vcpu_load(vcpu);
  2241. r = kvm_mmu_setup(vcpu);
  2242. vcpu_put(vcpu);
  2243. if (r < 0)
  2244. goto free_vcpu;
  2245. mutex_lock(&kvm->lock);
  2246. if (kvm->vcpus[n]) {
  2247. r = -EEXIST;
  2248. mutex_unlock(&kvm->lock);
  2249. goto mmu_unload;
  2250. }
  2251. kvm->vcpus[n] = vcpu;
  2252. mutex_unlock(&kvm->lock);
  2253. /* Now it's all set up, let userspace reach it */
  2254. r = create_vcpu_fd(vcpu);
  2255. if (r < 0)
  2256. goto unlink;
  2257. return r;
  2258. unlink:
  2259. mutex_lock(&kvm->lock);
  2260. kvm->vcpus[n] = NULL;
  2261. mutex_unlock(&kvm->lock);
  2262. mmu_unload:
  2263. vcpu_load(vcpu);
  2264. kvm_mmu_unload(vcpu);
  2265. vcpu_put(vcpu);
  2266. free_vcpu:
  2267. kvm_x86_ops->vcpu_free(vcpu);
  2268. return r;
  2269. }
  2270. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2271. {
  2272. if (sigset) {
  2273. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2274. vcpu->sigset_active = 1;
  2275. vcpu->sigset = *sigset;
  2276. } else
  2277. vcpu->sigset_active = 0;
  2278. return 0;
  2279. }
  2280. /*
  2281. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2282. * we have asm/x86/processor.h
  2283. */
  2284. struct fxsave {
  2285. u16 cwd;
  2286. u16 swd;
  2287. u16 twd;
  2288. u16 fop;
  2289. u64 rip;
  2290. u64 rdp;
  2291. u32 mxcsr;
  2292. u32 mxcsr_mask;
  2293. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2294. #ifdef CONFIG_X86_64
  2295. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2296. #else
  2297. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2298. #endif
  2299. };
  2300. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2301. {
  2302. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2303. vcpu_load(vcpu);
  2304. memcpy(fpu->fpr, fxsave->st_space, 128);
  2305. fpu->fcw = fxsave->cwd;
  2306. fpu->fsw = fxsave->swd;
  2307. fpu->ftwx = fxsave->twd;
  2308. fpu->last_opcode = fxsave->fop;
  2309. fpu->last_ip = fxsave->rip;
  2310. fpu->last_dp = fxsave->rdp;
  2311. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2312. vcpu_put(vcpu);
  2313. return 0;
  2314. }
  2315. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2316. {
  2317. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2318. vcpu_load(vcpu);
  2319. memcpy(fxsave->st_space, fpu->fpr, 128);
  2320. fxsave->cwd = fpu->fcw;
  2321. fxsave->swd = fpu->fsw;
  2322. fxsave->twd = fpu->ftwx;
  2323. fxsave->fop = fpu->last_opcode;
  2324. fxsave->rip = fpu->last_ip;
  2325. fxsave->rdp = fpu->last_dp;
  2326. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2327. vcpu_put(vcpu);
  2328. return 0;
  2329. }
  2330. static long kvm_vcpu_ioctl(struct file *filp,
  2331. unsigned int ioctl, unsigned long arg)
  2332. {
  2333. struct kvm_vcpu *vcpu = filp->private_data;
  2334. void __user *argp = (void __user *)arg;
  2335. int r;
  2336. switch (ioctl) {
  2337. case KVM_RUN:
  2338. r = -EINVAL;
  2339. if (arg)
  2340. goto out;
  2341. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2342. break;
  2343. case KVM_GET_REGS: {
  2344. struct kvm_regs kvm_regs;
  2345. memset(&kvm_regs, 0, sizeof kvm_regs);
  2346. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2347. if (r)
  2348. goto out;
  2349. r = -EFAULT;
  2350. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2351. goto out;
  2352. r = 0;
  2353. break;
  2354. }
  2355. case KVM_SET_REGS: {
  2356. struct kvm_regs kvm_regs;
  2357. r = -EFAULT;
  2358. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2359. goto out;
  2360. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2361. if (r)
  2362. goto out;
  2363. r = 0;
  2364. break;
  2365. }
  2366. case KVM_GET_SREGS: {
  2367. struct kvm_sregs kvm_sregs;
  2368. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2369. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2370. if (r)
  2371. goto out;
  2372. r = -EFAULT;
  2373. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2374. goto out;
  2375. r = 0;
  2376. break;
  2377. }
  2378. case KVM_SET_SREGS: {
  2379. struct kvm_sregs kvm_sregs;
  2380. r = -EFAULT;
  2381. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2382. goto out;
  2383. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2384. if (r)
  2385. goto out;
  2386. r = 0;
  2387. break;
  2388. }
  2389. case KVM_TRANSLATE: {
  2390. struct kvm_translation tr;
  2391. r = -EFAULT;
  2392. if (copy_from_user(&tr, argp, sizeof tr))
  2393. goto out;
  2394. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2395. if (r)
  2396. goto out;
  2397. r = -EFAULT;
  2398. if (copy_to_user(argp, &tr, sizeof tr))
  2399. goto out;
  2400. r = 0;
  2401. break;
  2402. }
  2403. case KVM_INTERRUPT: {
  2404. struct kvm_interrupt irq;
  2405. r = -EFAULT;
  2406. if (copy_from_user(&irq, argp, sizeof irq))
  2407. goto out;
  2408. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2409. if (r)
  2410. goto out;
  2411. r = 0;
  2412. break;
  2413. }
  2414. case KVM_DEBUG_GUEST: {
  2415. struct kvm_debug_guest dbg;
  2416. r = -EFAULT;
  2417. if (copy_from_user(&dbg, argp, sizeof dbg))
  2418. goto out;
  2419. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2420. if (r)
  2421. goto out;
  2422. r = 0;
  2423. break;
  2424. }
  2425. case KVM_SET_SIGNAL_MASK: {
  2426. struct kvm_signal_mask __user *sigmask_arg = argp;
  2427. struct kvm_signal_mask kvm_sigmask;
  2428. sigset_t sigset, *p;
  2429. p = NULL;
  2430. if (argp) {
  2431. r = -EFAULT;
  2432. if (copy_from_user(&kvm_sigmask, argp,
  2433. sizeof kvm_sigmask))
  2434. goto out;
  2435. r = -EINVAL;
  2436. if (kvm_sigmask.len != sizeof sigset)
  2437. goto out;
  2438. r = -EFAULT;
  2439. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2440. sizeof sigset))
  2441. goto out;
  2442. p = &sigset;
  2443. }
  2444. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2445. break;
  2446. }
  2447. case KVM_GET_FPU: {
  2448. struct kvm_fpu fpu;
  2449. memset(&fpu, 0, sizeof fpu);
  2450. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2451. if (r)
  2452. goto out;
  2453. r = -EFAULT;
  2454. if (copy_to_user(argp, &fpu, sizeof fpu))
  2455. goto out;
  2456. r = 0;
  2457. break;
  2458. }
  2459. case KVM_SET_FPU: {
  2460. struct kvm_fpu fpu;
  2461. r = -EFAULT;
  2462. if (copy_from_user(&fpu, argp, sizeof fpu))
  2463. goto out;
  2464. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2465. if (r)
  2466. goto out;
  2467. r = 0;
  2468. break;
  2469. }
  2470. default:
  2471. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  2472. }
  2473. out:
  2474. return r;
  2475. }
  2476. static long kvm_vm_ioctl(struct file *filp,
  2477. unsigned int ioctl, unsigned long arg)
  2478. {
  2479. struct kvm *kvm = filp->private_data;
  2480. void __user *argp = (void __user *)arg;
  2481. int r = -EINVAL;
  2482. switch (ioctl) {
  2483. case KVM_CREATE_VCPU:
  2484. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2485. if (r < 0)
  2486. goto out;
  2487. break;
  2488. case KVM_SET_MEMORY_REGION: {
  2489. struct kvm_memory_region kvm_mem;
  2490. struct kvm_userspace_memory_region kvm_userspace_mem;
  2491. r = -EFAULT;
  2492. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2493. goto out;
  2494. kvm_userspace_mem.slot = kvm_mem.slot;
  2495. kvm_userspace_mem.flags = kvm_mem.flags;
  2496. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2497. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2498. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2499. if (r)
  2500. goto out;
  2501. break;
  2502. }
  2503. case KVM_SET_USER_MEMORY_REGION: {
  2504. struct kvm_userspace_memory_region kvm_userspace_mem;
  2505. r = -EFAULT;
  2506. if (copy_from_user(&kvm_userspace_mem, argp,
  2507. sizeof kvm_userspace_mem))
  2508. goto out;
  2509. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  2510. if (r)
  2511. goto out;
  2512. break;
  2513. }
  2514. case KVM_SET_NR_MMU_PAGES:
  2515. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2516. if (r)
  2517. goto out;
  2518. break;
  2519. case KVM_GET_NR_MMU_PAGES:
  2520. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2521. break;
  2522. case KVM_GET_DIRTY_LOG: {
  2523. struct kvm_dirty_log log;
  2524. r = -EFAULT;
  2525. if (copy_from_user(&log, argp, sizeof log))
  2526. goto out;
  2527. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2528. if (r)
  2529. goto out;
  2530. break;
  2531. }
  2532. case KVM_SET_MEMORY_ALIAS: {
  2533. struct kvm_memory_alias alias;
  2534. r = -EFAULT;
  2535. if (copy_from_user(&alias, argp, sizeof alias))
  2536. goto out;
  2537. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2538. if (r)
  2539. goto out;
  2540. break;
  2541. }
  2542. case KVM_CREATE_IRQCHIP:
  2543. r = -ENOMEM;
  2544. kvm->vpic = kvm_create_pic(kvm);
  2545. if (kvm->vpic) {
  2546. r = kvm_ioapic_init(kvm);
  2547. if (r) {
  2548. kfree(kvm->vpic);
  2549. kvm->vpic = NULL;
  2550. goto out;
  2551. }
  2552. } else
  2553. goto out;
  2554. break;
  2555. case KVM_IRQ_LINE: {
  2556. struct kvm_irq_level irq_event;
  2557. r = -EFAULT;
  2558. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2559. goto out;
  2560. if (irqchip_in_kernel(kvm)) {
  2561. mutex_lock(&kvm->lock);
  2562. if (irq_event.irq < 16)
  2563. kvm_pic_set_irq(pic_irqchip(kvm),
  2564. irq_event.irq,
  2565. irq_event.level);
  2566. kvm_ioapic_set_irq(kvm->vioapic,
  2567. irq_event.irq,
  2568. irq_event.level);
  2569. mutex_unlock(&kvm->lock);
  2570. r = 0;
  2571. }
  2572. break;
  2573. }
  2574. case KVM_GET_IRQCHIP: {
  2575. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2576. struct kvm_irqchip chip;
  2577. r = -EFAULT;
  2578. if (copy_from_user(&chip, argp, sizeof chip))
  2579. goto out;
  2580. r = -ENXIO;
  2581. if (!irqchip_in_kernel(kvm))
  2582. goto out;
  2583. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  2584. if (r)
  2585. goto out;
  2586. r = -EFAULT;
  2587. if (copy_to_user(argp, &chip, sizeof chip))
  2588. goto out;
  2589. r = 0;
  2590. break;
  2591. }
  2592. case KVM_SET_IRQCHIP: {
  2593. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2594. struct kvm_irqchip chip;
  2595. r = -EFAULT;
  2596. if (copy_from_user(&chip, argp, sizeof chip))
  2597. goto out;
  2598. r = -ENXIO;
  2599. if (!irqchip_in_kernel(kvm))
  2600. goto out;
  2601. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  2602. if (r)
  2603. goto out;
  2604. r = 0;
  2605. break;
  2606. }
  2607. default:
  2608. ;
  2609. }
  2610. out:
  2611. return r;
  2612. }
  2613. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2614. unsigned long address,
  2615. int *type)
  2616. {
  2617. struct kvm *kvm = vma->vm_file->private_data;
  2618. unsigned long pgoff;
  2619. struct page *page;
  2620. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2621. page = gfn_to_page(kvm, pgoff);
  2622. if (!page)
  2623. return NOPAGE_SIGBUS;
  2624. get_page(page);
  2625. if (type != NULL)
  2626. *type = VM_FAULT_MINOR;
  2627. return page;
  2628. }
  2629. static struct vm_operations_struct kvm_vm_vm_ops = {
  2630. .nopage = kvm_vm_nopage,
  2631. };
  2632. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2633. {
  2634. vma->vm_ops = &kvm_vm_vm_ops;
  2635. return 0;
  2636. }
  2637. static struct file_operations kvm_vm_fops = {
  2638. .release = kvm_vm_release,
  2639. .unlocked_ioctl = kvm_vm_ioctl,
  2640. .compat_ioctl = kvm_vm_ioctl,
  2641. .mmap = kvm_vm_mmap,
  2642. };
  2643. static int kvm_dev_ioctl_create_vm(void)
  2644. {
  2645. int fd, r;
  2646. struct inode *inode;
  2647. struct file *file;
  2648. struct kvm *kvm;
  2649. kvm = kvm_create_vm();
  2650. if (IS_ERR(kvm))
  2651. return PTR_ERR(kvm);
  2652. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2653. if (r) {
  2654. kvm_destroy_vm(kvm);
  2655. return r;
  2656. }
  2657. kvm->filp = file;
  2658. return fd;
  2659. }
  2660. static long kvm_dev_ioctl(struct file *filp,
  2661. unsigned int ioctl, unsigned long arg)
  2662. {
  2663. void __user *argp = (void __user *)arg;
  2664. long r = -EINVAL;
  2665. switch (ioctl) {
  2666. case KVM_GET_API_VERSION:
  2667. r = -EINVAL;
  2668. if (arg)
  2669. goto out;
  2670. r = KVM_API_VERSION;
  2671. break;
  2672. case KVM_CREATE_VM:
  2673. r = -EINVAL;
  2674. if (arg)
  2675. goto out;
  2676. r = kvm_dev_ioctl_create_vm();
  2677. break;
  2678. case KVM_CHECK_EXTENSION: {
  2679. int ext = (long)argp;
  2680. switch (ext) {
  2681. case KVM_CAP_IRQCHIP:
  2682. case KVM_CAP_HLT:
  2683. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  2684. case KVM_CAP_USER_MEMORY:
  2685. r = 1;
  2686. break;
  2687. default:
  2688. r = 0;
  2689. break;
  2690. }
  2691. break;
  2692. }
  2693. case KVM_GET_VCPU_MMAP_SIZE:
  2694. r = -EINVAL;
  2695. if (arg)
  2696. goto out;
  2697. r = 2 * PAGE_SIZE;
  2698. break;
  2699. default:
  2700. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  2701. }
  2702. out:
  2703. return r;
  2704. }
  2705. static struct file_operations kvm_chardev_ops = {
  2706. .unlocked_ioctl = kvm_dev_ioctl,
  2707. .compat_ioctl = kvm_dev_ioctl,
  2708. };
  2709. static struct miscdevice kvm_dev = {
  2710. KVM_MINOR,
  2711. "kvm",
  2712. &kvm_chardev_ops,
  2713. };
  2714. /*
  2715. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2716. * cached on it.
  2717. */
  2718. static void decache_vcpus_on_cpu(int cpu)
  2719. {
  2720. struct kvm *vm;
  2721. struct kvm_vcpu *vcpu;
  2722. int i;
  2723. spin_lock(&kvm_lock);
  2724. list_for_each_entry(vm, &vm_list, vm_list)
  2725. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2726. vcpu = vm->vcpus[i];
  2727. if (!vcpu)
  2728. continue;
  2729. /*
  2730. * If the vcpu is locked, then it is running on some
  2731. * other cpu and therefore it is not cached on the
  2732. * cpu in question.
  2733. *
  2734. * If it's not locked, check the last cpu it executed
  2735. * on.
  2736. */
  2737. if (mutex_trylock(&vcpu->mutex)) {
  2738. if (vcpu->cpu == cpu) {
  2739. kvm_x86_ops->vcpu_decache(vcpu);
  2740. vcpu->cpu = -1;
  2741. }
  2742. mutex_unlock(&vcpu->mutex);
  2743. }
  2744. }
  2745. spin_unlock(&kvm_lock);
  2746. }
  2747. static void hardware_enable(void *junk)
  2748. {
  2749. int cpu = raw_smp_processor_id();
  2750. if (cpu_isset(cpu, cpus_hardware_enabled))
  2751. return;
  2752. cpu_set(cpu, cpus_hardware_enabled);
  2753. kvm_x86_ops->hardware_enable(NULL);
  2754. }
  2755. static void hardware_disable(void *junk)
  2756. {
  2757. int cpu = raw_smp_processor_id();
  2758. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2759. return;
  2760. cpu_clear(cpu, cpus_hardware_enabled);
  2761. decache_vcpus_on_cpu(cpu);
  2762. kvm_x86_ops->hardware_disable(NULL);
  2763. }
  2764. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2765. void *v)
  2766. {
  2767. int cpu = (long)v;
  2768. switch (val) {
  2769. case CPU_DYING:
  2770. case CPU_DYING_FROZEN:
  2771. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2772. cpu);
  2773. hardware_disable(NULL);
  2774. break;
  2775. case CPU_UP_CANCELED:
  2776. case CPU_UP_CANCELED_FROZEN:
  2777. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2778. cpu);
  2779. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2780. break;
  2781. case CPU_ONLINE:
  2782. case CPU_ONLINE_FROZEN:
  2783. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2784. cpu);
  2785. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2786. break;
  2787. }
  2788. return NOTIFY_OK;
  2789. }
  2790. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2791. void *v)
  2792. {
  2793. if (val == SYS_RESTART) {
  2794. /*
  2795. * Some (well, at least mine) BIOSes hang on reboot if
  2796. * in vmx root mode.
  2797. */
  2798. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2799. on_each_cpu(hardware_disable, NULL, 0, 1);
  2800. }
  2801. return NOTIFY_OK;
  2802. }
  2803. static struct notifier_block kvm_reboot_notifier = {
  2804. .notifier_call = kvm_reboot,
  2805. .priority = 0,
  2806. };
  2807. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2808. {
  2809. memset(bus, 0, sizeof(*bus));
  2810. }
  2811. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2812. {
  2813. int i;
  2814. for (i = 0; i < bus->dev_count; i++) {
  2815. struct kvm_io_device *pos = bus->devs[i];
  2816. kvm_iodevice_destructor(pos);
  2817. }
  2818. }
  2819. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2820. {
  2821. int i;
  2822. for (i = 0; i < bus->dev_count; i++) {
  2823. struct kvm_io_device *pos = bus->devs[i];
  2824. if (pos->in_range(pos, addr))
  2825. return pos;
  2826. }
  2827. return NULL;
  2828. }
  2829. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2830. {
  2831. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2832. bus->devs[bus->dev_count++] = dev;
  2833. }
  2834. static struct notifier_block kvm_cpu_notifier = {
  2835. .notifier_call = kvm_cpu_hotplug,
  2836. .priority = 20, /* must be > scheduler priority */
  2837. };
  2838. static u64 stat_get(void *_offset)
  2839. {
  2840. unsigned offset = (long)_offset;
  2841. u64 total = 0;
  2842. struct kvm *kvm;
  2843. struct kvm_vcpu *vcpu;
  2844. int i;
  2845. spin_lock(&kvm_lock);
  2846. list_for_each_entry(kvm, &vm_list, vm_list)
  2847. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2848. vcpu = kvm->vcpus[i];
  2849. if (vcpu)
  2850. total += *(u32 *)((void *)vcpu + offset);
  2851. }
  2852. spin_unlock(&kvm_lock);
  2853. return total;
  2854. }
  2855. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  2856. static __init void kvm_init_debug(void)
  2857. {
  2858. struct kvm_stats_debugfs_item *p;
  2859. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2860. for (p = debugfs_entries; p->name; ++p)
  2861. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2862. (void *)(long)p->offset,
  2863. &stat_fops);
  2864. }
  2865. static void kvm_exit_debug(void)
  2866. {
  2867. struct kvm_stats_debugfs_item *p;
  2868. for (p = debugfs_entries; p->name; ++p)
  2869. debugfs_remove(p->dentry);
  2870. debugfs_remove(debugfs_dir);
  2871. }
  2872. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2873. {
  2874. hardware_disable(NULL);
  2875. return 0;
  2876. }
  2877. static int kvm_resume(struct sys_device *dev)
  2878. {
  2879. hardware_enable(NULL);
  2880. return 0;
  2881. }
  2882. static struct sysdev_class kvm_sysdev_class = {
  2883. .name = "kvm",
  2884. .suspend = kvm_suspend,
  2885. .resume = kvm_resume,
  2886. };
  2887. static struct sys_device kvm_sysdev = {
  2888. .id = 0,
  2889. .cls = &kvm_sysdev_class,
  2890. };
  2891. hpa_t bad_page_address;
  2892. static inline
  2893. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2894. {
  2895. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2896. }
  2897. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2898. {
  2899. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2900. kvm_x86_ops->vcpu_load(vcpu, cpu);
  2901. }
  2902. static void kvm_sched_out(struct preempt_notifier *pn,
  2903. struct task_struct *next)
  2904. {
  2905. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2906. kvm_x86_ops->vcpu_put(vcpu);
  2907. }
  2908. int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
  2909. struct module *module)
  2910. {
  2911. int r;
  2912. int cpu;
  2913. if (kvm_x86_ops) {
  2914. printk(KERN_ERR "kvm: already loaded the other module\n");
  2915. return -EEXIST;
  2916. }
  2917. if (!ops->cpu_has_kvm_support()) {
  2918. printk(KERN_ERR "kvm: no hardware support\n");
  2919. return -EOPNOTSUPP;
  2920. }
  2921. if (ops->disabled_by_bios()) {
  2922. printk(KERN_ERR "kvm: disabled by bios\n");
  2923. return -EOPNOTSUPP;
  2924. }
  2925. kvm_x86_ops = ops;
  2926. r = kvm_x86_ops->hardware_setup();
  2927. if (r < 0)
  2928. goto out;
  2929. for_each_online_cpu(cpu) {
  2930. smp_call_function_single(cpu,
  2931. kvm_x86_ops->check_processor_compatibility,
  2932. &r, 0, 1);
  2933. if (r < 0)
  2934. goto out_free_0;
  2935. }
  2936. on_each_cpu(hardware_enable, NULL, 0, 1);
  2937. r = register_cpu_notifier(&kvm_cpu_notifier);
  2938. if (r)
  2939. goto out_free_1;
  2940. register_reboot_notifier(&kvm_reboot_notifier);
  2941. r = sysdev_class_register(&kvm_sysdev_class);
  2942. if (r)
  2943. goto out_free_2;
  2944. r = sysdev_register(&kvm_sysdev);
  2945. if (r)
  2946. goto out_free_3;
  2947. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2948. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2949. __alignof__(struct kvm_vcpu), 0, 0);
  2950. if (!kvm_vcpu_cache) {
  2951. r = -ENOMEM;
  2952. goto out_free_4;
  2953. }
  2954. kvm_chardev_ops.owner = module;
  2955. r = misc_register(&kvm_dev);
  2956. if (r) {
  2957. printk(KERN_ERR "kvm: misc device register failed\n");
  2958. goto out_free;
  2959. }
  2960. kvm_preempt_ops.sched_in = kvm_sched_in;
  2961. kvm_preempt_ops.sched_out = kvm_sched_out;
  2962. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2963. return 0;
  2964. out_free:
  2965. kmem_cache_destroy(kvm_vcpu_cache);
  2966. out_free_4:
  2967. sysdev_unregister(&kvm_sysdev);
  2968. out_free_3:
  2969. sysdev_class_unregister(&kvm_sysdev_class);
  2970. out_free_2:
  2971. unregister_reboot_notifier(&kvm_reboot_notifier);
  2972. unregister_cpu_notifier(&kvm_cpu_notifier);
  2973. out_free_1:
  2974. on_each_cpu(hardware_disable, NULL, 0, 1);
  2975. out_free_0:
  2976. kvm_x86_ops->hardware_unsetup();
  2977. out:
  2978. kvm_x86_ops = NULL;
  2979. return r;
  2980. }
  2981. EXPORT_SYMBOL_GPL(kvm_init_x86);
  2982. void kvm_exit_x86(void)
  2983. {
  2984. misc_deregister(&kvm_dev);
  2985. kmem_cache_destroy(kvm_vcpu_cache);
  2986. sysdev_unregister(&kvm_sysdev);
  2987. sysdev_class_unregister(&kvm_sysdev_class);
  2988. unregister_reboot_notifier(&kvm_reboot_notifier);
  2989. unregister_cpu_notifier(&kvm_cpu_notifier);
  2990. on_each_cpu(hardware_disable, NULL, 0, 1);
  2991. kvm_x86_ops->hardware_unsetup();
  2992. kvm_x86_ops = NULL;
  2993. }
  2994. EXPORT_SYMBOL_GPL(kvm_exit_x86);
  2995. static __init int kvm_init(void)
  2996. {
  2997. static struct page *bad_page;
  2998. int r;
  2999. r = kvm_mmu_module_init();
  3000. if (r)
  3001. goto out4;
  3002. kvm_init_debug();
  3003. kvm_arch_init();
  3004. bad_page = alloc_page(GFP_KERNEL);
  3005. if (bad_page == NULL) {
  3006. r = -ENOMEM;
  3007. goto out;
  3008. }
  3009. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  3010. memset(__va(bad_page_address), 0, PAGE_SIZE);
  3011. return 0;
  3012. out:
  3013. kvm_exit_debug();
  3014. kvm_mmu_module_exit();
  3015. out4:
  3016. return r;
  3017. }
  3018. static __exit void kvm_exit(void)
  3019. {
  3020. kvm_exit_debug();
  3021. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  3022. kvm_mmu_module_exit();
  3023. }
  3024. module_init(kvm_init)
  3025. module_exit(kvm_exit)