main.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625
  1. /*
  2. * Copyright (c) 2013 Johannes Berg <johannes@sipsolutions.net>
  3. *
  4. * This file is free software: you may copy, redistribute and/or modify it
  5. * under the terms of the GNU General Public License as published by the
  6. * Free Software Foundation, either version 2 of the License, or (at your
  7. * option) any later version.
  8. *
  9. * This file is distributed in the hope that it will be useful, but
  10. * WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  16. *
  17. * This file incorporates work covered by the following copyright and
  18. * permission notice:
  19. *
  20. * Copyright (c) 2012 Qualcomm Atheros, Inc.
  21. *
  22. * Permission to use, copy, modify, and/or distribute this software for any
  23. * purpose with or without fee is hereby granted, provided that the above
  24. * copyright notice and this permission notice appear in all copies.
  25. *
  26. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  27. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  28. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  29. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  30. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  31. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  32. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  33. */
  34. #include <linux/module.h>
  35. #include <linux/pci.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/ip.h>
  38. #include <linux/ipv6.h>
  39. #include <linux/if_vlan.h>
  40. #include <linux/mdio.h>
  41. #include <linux/aer.h>
  42. #include <linux/bitops.h>
  43. #include <linux/netdevice.h>
  44. #include <linux/etherdevice.h>
  45. #include <net/ip6_checksum.h>
  46. #include <linux/crc32.h>
  47. #include "alx.h"
  48. #include "hw.h"
  49. #include "reg.h"
  50. const char alx_drv_name[] = "alx";
  51. static void alx_free_txbuf(struct alx_priv *alx, int entry)
  52. {
  53. struct alx_buffer *txb = &alx->txq.bufs[entry];
  54. if (dma_unmap_len(txb, size)) {
  55. dma_unmap_single(&alx->hw.pdev->dev,
  56. dma_unmap_addr(txb, dma),
  57. dma_unmap_len(txb, size),
  58. DMA_TO_DEVICE);
  59. dma_unmap_len_set(txb, size, 0);
  60. }
  61. if (txb->skb) {
  62. dev_kfree_skb_any(txb->skb);
  63. txb->skb = NULL;
  64. }
  65. }
  66. static int alx_refill_rx_ring(struct alx_priv *alx, gfp_t gfp)
  67. {
  68. struct alx_rx_queue *rxq = &alx->rxq;
  69. struct sk_buff *skb;
  70. struct alx_buffer *cur_buf;
  71. dma_addr_t dma;
  72. u16 cur, next, count = 0;
  73. next = cur = rxq->write_idx;
  74. if (++next == alx->rx_ringsz)
  75. next = 0;
  76. cur_buf = &rxq->bufs[cur];
  77. while (!cur_buf->skb && next != rxq->read_idx) {
  78. struct alx_rfd *rfd = &rxq->rfd[cur];
  79. skb = __netdev_alloc_skb(alx->dev, alx->rxbuf_size, gfp);
  80. if (!skb)
  81. break;
  82. dma = dma_map_single(&alx->hw.pdev->dev,
  83. skb->data, alx->rxbuf_size,
  84. DMA_FROM_DEVICE);
  85. if (dma_mapping_error(&alx->hw.pdev->dev, dma)) {
  86. dev_kfree_skb(skb);
  87. break;
  88. }
  89. /* Unfortunately, RX descriptor buffers must be 4-byte
  90. * aligned, so we can't use IP alignment.
  91. */
  92. if (WARN_ON(dma & 3)) {
  93. dev_kfree_skb(skb);
  94. break;
  95. }
  96. cur_buf->skb = skb;
  97. dma_unmap_len_set(cur_buf, size, alx->rxbuf_size);
  98. dma_unmap_addr_set(cur_buf, dma, dma);
  99. rfd->addr = cpu_to_le64(dma);
  100. cur = next;
  101. if (++next == alx->rx_ringsz)
  102. next = 0;
  103. cur_buf = &rxq->bufs[cur];
  104. count++;
  105. }
  106. if (count) {
  107. /* flush all updates before updating hardware */
  108. wmb();
  109. rxq->write_idx = cur;
  110. alx_write_mem16(&alx->hw, ALX_RFD_PIDX, cur);
  111. }
  112. return count;
  113. }
  114. static inline int alx_tpd_avail(struct alx_priv *alx)
  115. {
  116. struct alx_tx_queue *txq = &alx->txq;
  117. if (txq->write_idx >= txq->read_idx)
  118. return alx->tx_ringsz + txq->read_idx - txq->write_idx - 1;
  119. return txq->read_idx - txq->write_idx - 1;
  120. }
  121. static bool alx_clean_tx_irq(struct alx_priv *alx)
  122. {
  123. struct alx_tx_queue *txq = &alx->txq;
  124. u16 hw_read_idx, sw_read_idx;
  125. unsigned int total_bytes = 0, total_packets = 0;
  126. int budget = ALX_DEFAULT_TX_WORK;
  127. sw_read_idx = txq->read_idx;
  128. hw_read_idx = alx_read_mem16(&alx->hw, ALX_TPD_PRI0_CIDX);
  129. if (sw_read_idx != hw_read_idx) {
  130. while (sw_read_idx != hw_read_idx && budget > 0) {
  131. struct sk_buff *skb;
  132. skb = txq->bufs[sw_read_idx].skb;
  133. if (skb) {
  134. total_bytes += skb->len;
  135. total_packets++;
  136. budget--;
  137. }
  138. alx_free_txbuf(alx, sw_read_idx);
  139. if (++sw_read_idx == alx->tx_ringsz)
  140. sw_read_idx = 0;
  141. }
  142. txq->read_idx = sw_read_idx;
  143. netdev_completed_queue(alx->dev, total_packets, total_bytes);
  144. }
  145. if (netif_queue_stopped(alx->dev) && netif_carrier_ok(alx->dev) &&
  146. alx_tpd_avail(alx) > alx->tx_ringsz/4)
  147. netif_wake_queue(alx->dev);
  148. return sw_read_idx == hw_read_idx;
  149. }
  150. static void alx_schedule_link_check(struct alx_priv *alx)
  151. {
  152. schedule_work(&alx->link_check_wk);
  153. }
  154. static void alx_schedule_reset(struct alx_priv *alx)
  155. {
  156. schedule_work(&alx->reset_wk);
  157. }
  158. static bool alx_clean_rx_irq(struct alx_priv *alx, int budget)
  159. {
  160. struct alx_rx_queue *rxq = &alx->rxq;
  161. struct alx_rrd *rrd;
  162. struct alx_buffer *rxb;
  163. struct sk_buff *skb;
  164. u16 length, rfd_cleaned = 0;
  165. while (budget > 0) {
  166. rrd = &rxq->rrd[rxq->rrd_read_idx];
  167. if (!(rrd->word3 & cpu_to_le32(1 << RRD_UPDATED_SHIFT)))
  168. break;
  169. rrd->word3 &= ~cpu_to_le32(1 << RRD_UPDATED_SHIFT);
  170. if (ALX_GET_FIELD(le32_to_cpu(rrd->word0),
  171. RRD_SI) != rxq->read_idx ||
  172. ALX_GET_FIELD(le32_to_cpu(rrd->word0),
  173. RRD_NOR) != 1) {
  174. alx_schedule_reset(alx);
  175. return 0;
  176. }
  177. rxb = &rxq->bufs[rxq->read_idx];
  178. dma_unmap_single(&alx->hw.pdev->dev,
  179. dma_unmap_addr(rxb, dma),
  180. dma_unmap_len(rxb, size),
  181. DMA_FROM_DEVICE);
  182. dma_unmap_len_set(rxb, size, 0);
  183. skb = rxb->skb;
  184. rxb->skb = NULL;
  185. if (rrd->word3 & cpu_to_le32(1 << RRD_ERR_RES_SHIFT) ||
  186. rrd->word3 & cpu_to_le32(1 << RRD_ERR_LEN_SHIFT)) {
  187. rrd->word3 = 0;
  188. dev_kfree_skb_any(skb);
  189. goto next_pkt;
  190. }
  191. length = ALX_GET_FIELD(le32_to_cpu(rrd->word3),
  192. RRD_PKTLEN) - ETH_FCS_LEN;
  193. skb_put(skb, length);
  194. skb->protocol = eth_type_trans(skb, alx->dev);
  195. skb_checksum_none_assert(skb);
  196. if (alx->dev->features & NETIF_F_RXCSUM &&
  197. !(rrd->word3 & (cpu_to_le32(1 << RRD_ERR_L4_SHIFT) |
  198. cpu_to_le32(1 << RRD_ERR_IPV4_SHIFT)))) {
  199. switch (ALX_GET_FIELD(le32_to_cpu(rrd->word2),
  200. RRD_PID)) {
  201. case RRD_PID_IPV6UDP:
  202. case RRD_PID_IPV4UDP:
  203. case RRD_PID_IPV4TCP:
  204. case RRD_PID_IPV6TCP:
  205. skb->ip_summed = CHECKSUM_UNNECESSARY;
  206. break;
  207. }
  208. }
  209. napi_gro_receive(&alx->napi, skb);
  210. budget--;
  211. next_pkt:
  212. if (++rxq->read_idx == alx->rx_ringsz)
  213. rxq->read_idx = 0;
  214. if (++rxq->rrd_read_idx == alx->rx_ringsz)
  215. rxq->rrd_read_idx = 0;
  216. if (++rfd_cleaned > ALX_RX_ALLOC_THRESH)
  217. rfd_cleaned -= alx_refill_rx_ring(alx, GFP_ATOMIC);
  218. }
  219. if (rfd_cleaned)
  220. alx_refill_rx_ring(alx, GFP_ATOMIC);
  221. return budget > 0;
  222. }
  223. static int alx_poll(struct napi_struct *napi, int budget)
  224. {
  225. struct alx_priv *alx = container_of(napi, struct alx_priv, napi);
  226. struct alx_hw *hw = &alx->hw;
  227. bool complete = true;
  228. unsigned long flags;
  229. complete = alx_clean_tx_irq(alx) &&
  230. alx_clean_rx_irq(alx, budget);
  231. if (!complete)
  232. return 1;
  233. napi_complete(&alx->napi);
  234. /* enable interrupt */
  235. spin_lock_irqsave(&alx->irq_lock, flags);
  236. alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
  237. alx_write_mem32(hw, ALX_IMR, alx->int_mask);
  238. spin_unlock_irqrestore(&alx->irq_lock, flags);
  239. alx_post_write(hw);
  240. return 0;
  241. }
  242. static irqreturn_t alx_intr_handle(struct alx_priv *alx, u32 intr)
  243. {
  244. struct alx_hw *hw = &alx->hw;
  245. bool write_int_mask = false;
  246. spin_lock(&alx->irq_lock);
  247. /* ACK interrupt */
  248. alx_write_mem32(hw, ALX_ISR, intr | ALX_ISR_DIS);
  249. intr &= alx->int_mask;
  250. if (intr & ALX_ISR_FATAL) {
  251. netif_warn(alx, hw, alx->dev,
  252. "fatal interrupt 0x%x, resetting\n", intr);
  253. alx_schedule_reset(alx);
  254. goto out;
  255. }
  256. if (intr & ALX_ISR_ALERT)
  257. netdev_warn(alx->dev, "alert interrupt: 0x%x\n", intr);
  258. if (intr & ALX_ISR_PHY) {
  259. /* suppress PHY interrupt, because the source
  260. * is from PHY internal. only the internal status
  261. * is cleared, the interrupt status could be cleared.
  262. */
  263. alx->int_mask &= ~ALX_ISR_PHY;
  264. write_int_mask = true;
  265. alx_schedule_link_check(alx);
  266. }
  267. if (intr & (ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0)) {
  268. napi_schedule(&alx->napi);
  269. /* mask rx/tx interrupt, enable them when napi complete */
  270. alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
  271. write_int_mask = true;
  272. }
  273. if (write_int_mask)
  274. alx_write_mem32(hw, ALX_IMR, alx->int_mask);
  275. alx_write_mem32(hw, ALX_ISR, 0);
  276. out:
  277. spin_unlock(&alx->irq_lock);
  278. return IRQ_HANDLED;
  279. }
  280. static irqreturn_t alx_intr_msi(int irq, void *data)
  281. {
  282. struct alx_priv *alx = data;
  283. return alx_intr_handle(alx, alx_read_mem32(&alx->hw, ALX_ISR));
  284. }
  285. static irqreturn_t alx_intr_legacy(int irq, void *data)
  286. {
  287. struct alx_priv *alx = data;
  288. struct alx_hw *hw = &alx->hw;
  289. u32 intr;
  290. intr = alx_read_mem32(hw, ALX_ISR);
  291. if (intr & ALX_ISR_DIS || !(intr & alx->int_mask))
  292. return IRQ_NONE;
  293. return alx_intr_handle(alx, intr);
  294. }
  295. static void alx_init_ring_ptrs(struct alx_priv *alx)
  296. {
  297. struct alx_hw *hw = &alx->hw;
  298. u32 addr_hi = ((u64)alx->descmem.dma) >> 32;
  299. alx->rxq.read_idx = 0;
  300. alx->rxq.write_idx = 0;
  301. alx->rxq.rrd_read_idx = 0;
  302. alx_write_mem32(hw, ALX_RX_BASE_ADDR_HI, addr_hi);
  303. alx_write_mem32(hw, ALX_RRD_ADDR_LO, alx->rxq.rrd_dma);
  304. alx_write_mem32(hw, ALX_RRD_RING_SZ, alx->rx_ringsz);
  305. alx_write_mem32(hw, ALX_RFD_ADDR_LO, alx->rxq.rfd_dma);
  306. alx_write_mem32(hw, ALX_RFD_RING_SZ, alx->rx_ringsz);
  307. alx_write_mem32(hw, ALX_RFD_BUF_SZ, alx->rxbuf_size);
  308. alx->txq.read_idx = 0;
  309. alx->txq.write_idx = 0;
  310. alx_write_mem32(hw, ALX_TX_BASE_ADDR_HI, addr_hi);
  311. alx_write_mem32(hw, ALX_TPD_PRI0_ADDR_LO, alx->txq.tpd_dma);
  312. alx_write_mem32(hw, ALX_TPD_RING_SZ, alx->tx_ringsz);
  313. /* load these pointers into the chip */
  314. alx_write_mem32(hw, ALX_SRAM9, ALX_SRAM_LOAD_PTR);
  315. }
  316. static void alx_free_txring_buf(struct alx_priv *alx)
  317. {
  318. struct alx_tx_queue *txq = &alx->txq;
  319. int i;
  320. if (!txq->bufs)
  321. return;
  322. for (i = 0; i < alx->tx_ringsz; i++)
  323. alx_free_txbuf(alx, i);
  324. memset(txq->bufs, 0, alx->tx_ringsz * sizeof(struct alx_buffer));
  325. memset(txq->tpd, 0, alx->tx_ringsz * sizeof(struct alx_txd));
  326. txq->write_idx = 0;
  327. txq->read_idx = 0;
  328. netdev_reset_queue(alx->dev);
  329. }
  330. static void alx_free_rxring_buf(struct alx_priv *alx)
  331. {
  332. struct alx_rx_queue *rxq = &alx->rxq;
  333. struct alx_buffer *cur_buf;
  334. u16 i;
  335. if (rxq == NULL)
  336. return;
  337. for (i = 0; i < alx->rx_ringsz; i++) {
  338. cur_buf = rxq->bufs + i;
  339. if (cur_buf->skb) {
  340. dma_unmap_single(&alx->hw.pdev->dev,
  341. dma_unmap_addr(cur_buf, dma),
  342. dma_unmap_len(cur_buf, size),
  343. DMA_FROM_DEVICE);
  344. dev_kfree_skb(cur_buf->skb);
  345. cur_buf->skb = NULL;
  346. dma_unmap_len_set(cur_buf, size, 0);
  347. dma_unmap_addr_set(cur_buf, dma, 0);
  348. }
  349. }
  350. rxq->write_idx = 0;
  351. rxq->read_idx = 0;
  352. rxq->rrd_read_idx = 0;
  353. }
  354. static void alx_free_buffers(struct alx_priv *alx)
  355. {
  356. alx_free_txring_buf(alx);
  357. alx_free_rxring_buf(alx);
  358. }
  359. static int alx_reinit_rings(struct alx_priv *alx)
  360. {
  361. alx_free_buffers(alx);
  362. alx_init_ring_ptrs(alx);
  363. if (!alx_refill_rx_ring(alx, GFP_KERNEL))
  364. return -ENOMEM;
  365. return 0;
  366. }
  367. static void alx_add_mc_addr(struct alx_hw *hw, const u8 *addr, u32 *mc_hash)
  368. {
  369. u32 crc32, bit, reg;
  370. crc32 = ether_crc(ETH_ALEN, addr);
  371. reg = (crc32 >> 31) & 0x1;
  372. bit = (crc32 >> 26) & 0x1F;
  373. mc_hash[reg] |= BIT(bit);
  374. }
  375. static void __alx_set_rx_mode(struct net_device *netdev)
  376. {
  377. struct alx_priv *alx = netdev_priv(netdev);
  378. struct alx_hw *hw = &alx->hw;
  379. struct netdev_hw_addr *ha;
  380. u32 mc_hash[2] = {};
  381. if (!(netdev->flags & IFF_ALLMULTI)) {
  382. netdev_for_each_mc_addr(ha, netdev)
  383. alx_add_mc_addr(hw, ha->addr, mc_hash);
  384. alx_write_mem32(hw, ALX_HASH_TBL0, mc_hash[0]);
  385. alx_write_mem32(hw, ALX_HASH_TBL1, mc_hash[1]);
  386. }
  387. hw->rx_ctrl &= ~(ALX_MAC_CTRL_MULTIALL_EN | ALX_MAC_CTRL_PROMISC_EN);
  388. if (netdev->flags & IFF_PROMISC)
  389. hw->rx_ctrl |= ALX_MAC_CTRL_PROMISC_EN;
  390. if (netdev->flags & IFF_ALLMULTI)
  391. hw->rx_ctrl |= ALX_MAC_CTRL_MULTIALL_EN;
  392. alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
  393. }
  394. static void alx_set_rx_mode(struct net_device *netdev)
  395. {
  396. __alx_set_rx_mode(netdev);
  397. }
  398. static int alx_set_mac_address(struct net_device *netdev, void *data)
  399. {
  400. struct alx_priv *alx = netdev_priv(netdev);
  401. struct alx_hw *hw = &alx->hw;
  402. struct sockaddr *addr = data;
  403. if (!is_valid_ether_addr(addr->sa_data))
  404. return -EADDRNOTAVAIL;
  405. if (netdev->addr_assign_type & NET_ADDR_RANDOM)
  406. netdev->addr_assign_type ^= NET_ADDR_RANDOM;
  407. memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
  408. memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
  409. alx_set_macaddr(hw, hw->mac_addr);
  410. return 0;
  411. }
  412. static int alx_alloc_descriptors(struct alx_priv *alx)
  413. {
  414. alx->txq.bufs = kcalloc(alx->tx_ringsz,
  415. sizeof(struct alx_buffer),
  416. GFP_KERNEL);
  417. if (!alx->txq.bufs)
  418. return -ENOMEM;
  419. alx->rxq.bufs = kcalloc(alx->rx_ringsz,
  420. sizeof(struct alx_buffer),
  421. GFP_KERNEL);
  422. if (!alx->rxq.bufs)
  423. goto out_free;
  424. /* physical tx/rx ring descriptors
  425. *
  426. * Allocate them as a single chunk because they must not cross a
  427. * 4G boundary (hardware has a single register for high 32 bits
  428. * of addresses only)
  429. */
  430. alx->descmem.size = sizeof(struct alx_txd) * alx->tx_ringsz +
  431. sizeof(struct alx_rrd) * alx->rx_ringsz +
  432. sizeof(struct alx_rfd) * alx->rx_ringsz;
  433. alx->descmem.virt = dma_zalloc_coherent(&alx->hw.pdev->dev,
  434. alx->descmem.size,
  435. &alx->descmem.dma,
  436. GFP_KERNEL);
  437. if (!alx->descmem.virt)
  438. goto out_free;
  439. alx->txq.tpd = (void *)alx->descmem.virt;
  440. alx->txq.tpd_dma = alx->descmem.dma;
  441. /* alignment requirement for next block */
  442. BUILD_BUG_ON(sizeof(struct alx_txd) % 8);
  443. alx->rxq.rrd =
  444. (void *)((u8 *)alx->descmem.virt +
  445. sizeof(struct alx_txd) * alx->tx_ringsz);
  446. alx->rxq.rrd_dma = alx->descmem.dma +
  447. sizeof(struct alx_txd) * alx->tx_ringsz;
  448. /* alignment requirement for next block */
  449. BUILD_BUG_ON(sizeof(struct alx_rrd) % 8);
  450. alx->rxq.rfd =
  451. (void *)((u8 *)alx->descmem.virt +
  452. sizeof(struct alx_txd) * alx->tx_ringsz +
  453. sizeof(struct alx_rrd) * alx->rx_ringsz);
  454. alx->rxq.rfd_dma = alx->descmem.dma +
  455. sizeof(struct alx_txd) * alx->tx_ringsz +
  456. sizeof(struct alx_rrd) * alx->rx_ringsz;
  457. return 0;
  458. out_free:
  459. kfree(alx->txq.bufs);
  460. kfree(alx->rxq.bufs);
  461. return -ENOMEM;
  462. }
  463. static int alx_alloc_rings(struct alx_priv *alx)
  464. {
  465. int err;
  466. err = alx_alloc_descriptors(alx);
  467. if (err)
  468. return err;
  469. alx->int_mask &= ~ALX_ISR_ALL_QUEUES;
  470. alx->int_mask |= ALX_ISR_TX_Q0 | ALX_ISR_RX_Q0;
  471. alx->tx_ringsz = alx->tx_ringsz;
  472. netif_napi_add(alx->dev, &alx->napi, alx_poll, 64);
  473. alx_reinit_rings(alx);
  474. return 0;
  475. }
  476. static void alx_free_rings(struct alx_priv *alx)
  477. {
  478. netif_napi_del(&alx->napi);
  479. alx_free_buffers(alx);
  480. kfree(alx->txq.bufs);
  481. kfree(alx->rxq.bufs);
  482. dma_free_coherent(&alx->hw.pdev->dev,
  483. alx->descmem.size,
  484. alx->descmem.virt,
  485. alx->descmem.dma);
  486. }
  487. static void alx_config_vector_mapping(struct alx_priv *alx)
  488. {
  489. struct alx_hw *hw = &alx->hw;
  490. alx_write_mem32(hw, ALX_MSI_MAP_TBL1, 0);
  491. alx_write_mem32(hw, ALX_MSI_MAP_TBL2, 0);
  492. alx_write_mem32(hw, ALX_MSI_ID_MAP, 0);
  493. }
  494. static void alx_irq_enable(struct alx_priv *alx)
  495. {
  496. struct alx_hw *hw = &alx->hw;
  497. /* level-1 interrupt switch */
  498. alx_write_mem32(hw, ALX_ISR, 0);
  499. alx_write_mem32(hw, ALX_IMR, alx->int_mask);
  500. alx_post_write(hw);
  501. }
  502. static void alx_irq_disable(struct alx_priv *alx)
  503. {
  504. struct alx_hw *hw = &alx->hw;
  505. alx_write_mem32(hw, ALX_ISR, ALX_ISR_DIS);
  506. alx_write_mem32(hw, ALX_IMR, 0);
  507. alx_post_write(hw);
  508. synchronize_irq(alx->hw.pdev->irq);
  509. }
  510. static int alx_request_irq(struct alx_priv *alx)
  511. {
  512. struct pci_dev *pdev = alx->hw.pdev;
  513. struct alx_hw *hw = &alx->hw;
  514. int err;
  515. u32 msi_ctrl;
  516. msi_ctrl = (hw->imt >> 1) << ALX_MSI_RETRANS_TM_SHIFT;
  517. if (!pci_enable_msi(alx->hw.pdev)) {
  518. alx->msi = true;
  519. alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER,
  520. msi_ctrl | ALX_MSI_MASK_SEL_LINE);
  521. err = request_irq(pdev->irq, alx_intr_msi, 0,
  522. alx->dev->name, alx);
  523. if (!err)
  524. goto out;
  525. /* fall back to legacy interrupt */
  526. pci_disable_msi(alx->hw.pdev);
  527. }
  528. alx_write_mem32(hw, ALX_MSI_RETRANS_TIMER, 0);
  529. err = request_irq(pdev->irq, alx_intr_legacy, IRQF_SHARED,
  530. alx->dev->name, alx);
  531. out:
  532. if (!err)
  533. alx_config_vector_mapping(alx);
  534. return err;
  535. }
  536. static void alx_free_irq(struct alx_priv *alx)
  537. {
  538. struct pci_dev *pdev = alx->hw.pdev;
  539. free_irq(pdev->irq, alx);
  540. if (alx->msi) {
  541. pci_disable_msi(alx->hw.pdev);
  542. alx->msi = false;
  543. }
  544. }
  545. static int alx_identify_hw(struct alx_priv *alx)
  546. {
  547. struct alx_hw *hw = &alx->hw;
  548. int rev = alx_hw_revision(hw);
  549. if (rev > ALX_REV_C0)
  550. return -EINVAL;
  551. hw->max_dma_chnl = rev >= ALX_REV_B0 ? 4 : 2;
  552. return 0;
  553. }
  554. static int alx_init_sw(struct alx_priv *alx)
  555. {
  556. struct pci_dev *pdev = alx->hw.pdev;
  557. struct alx_hw *hw = &alx->hw;
  558. int err;
  559. err = alx_identify_hw(alx);
  560. if (err) {
  561. dev_err(&pdev->dev, "unrecognized chip, aborting\n");
  562. return err;
  563. }
  564. alx->hw.lnk_patch =
  565. pdev->device == ALX_DEV_ID_AR8161 &&
  566. pdev->subsystem_vendor == PCI_VENDOR_ID_ATTANSIC &&
  567. pdev->subsystem_device == 0x0091 &&
  568. pdev->revision == 0;
  569. hw->smb_timer = 400;
  570. hw->mtu = alx->dev->mtu;
  571. alx->rxbuf_size = ALIGN(ALX_RAW_MTU(hw->mtu), 8);
  572. alx->tx_ringsz = 256;
  573. alx->rx_ringsz = 512;
  574. hw->sleep_ctrl = ALX_SLEEP_WOL_MAGIC | ALX_SLEEP_WOL_PHY;
  575. hw->imt = 200;
  576. alx->int_mask = ALX_ISR_MISC;
  577. hw->dma_chnl = hw->max_dma_chnl;
  578. hw->ith_tpd = alx->tx_ringsz / 3;
  579. hw->link_speed = SPEED_UNKNOWN;
  580. hw->adv_cfg = ADVERTISED_Autoneg |
  581. ADVERTISED_10baseT_Half |
  582. ADVERTISED_10baseT_Full |
  583. ADVERTISED_100baseT_Full |
  584. ADVERTISED_100baseT_Half |
  585. ADVERTISED_1000baseT_Full;
  586. hw->flowctrl = ALX_FC_ANEG | ALX_FC_RX | ALX_FC_TX;
  587. hw->rx_ctrl = ALX_MAC_CTRL_WOLSPED_SWEN |
  588. ALX_MAC_CTRL_MHASH_ALG_HI5B |
  589. ALX_MAC_CTRL_BRD_EN |
  590. ALX_MAC_CTRL_PCRCE |
  591. ALX_MAC_CTRL_CRCE |
  592. ALX_MAC_CTRL_RXFC_EN |
  593. ALX_MAC_CTRL_TXFC_EN |
  594. 7 << ALX_MAC_CTRL_PRMBLEN_SHIFT;
  595. return err;
  596. }
  597. static netdev_features_t alx_fix_features(struct net_device *netdev,
  598. netdev_features_t features)
  599. {
  600. if (netdev->mtu > ALX_MAX_TSO_PKT_SIZE)
  601. features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
  602. return features;
  603. }
  604. static void alx_netif_stop(struct alx_priv *alx)
  605. {
  606. alx->dev->trans_start = jiffies;
  607. if (netif_carrier_ok(alx->dev)) {
  608. netif_carrier_off(alx->dev);
  609. netif_tx_disable(alx->dev);
  610. napi_disable(&alx->napi);
  611. }
  612. }
  613. static void alx_halt(struct alx_priv *alx)
  614. {
  615. struct alx_hw *hw = &alx->hw;
  616. alx_netif_stop(alx);
  617. hw->link_speed = SPEED_UNKNOWN;
  618. alx_reset_mac(hw);
  619. /* disable l0s/l1 */
  620. alx_enable_aspm(hw, false, false);
  621. alx_irq_disable(alx);
  622. alx_free_buffers(alx);
  623. }
  624. static void alx_configure(struct alx_priv *alx)
  625. {
  626. struct alx_hw *hw = &alx->hw;
  627. alx_configure_basic(hw);
  628. alx_disable_rss(hw);
  629. __alx_set_rx_mode(alx->dev);
  630. alx_write_mem32(hw, ALX_MAC_CTRL, hw->rx_ctrl);
  631. }
  632. static void alx_activate(struct alx_priv *alx)
  633. {
  634. /* hardware setting lost, restore it */
  635. alx_reinit_rings(alx);
  636. alx_configure(alx);
  637. /* clear old interrupts */
  638. alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
  639. alx_irq_enable(alx);
  640. alx_schedule_link_check(alx);
  641. }
  642. static void alx_reinit(struct alx_priv *alx)
  643. {
  644. ASSERT_RTNL();
  645. alx_halt(alx);
  646. alx_activate(alx);
  647. }
  648. static int alx_change_mtu(struct net_device *netdev, int mtu)
  649. {
  650. struct alx_priv *alx = netdev_priv(netdev);
  651. int max_frame = mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
  652. if ((max_frame < ALX_MIN_FRAME_SIZE) ||
  653. (max_frame > ALX_MAX_FRAME_SIZE))
  654. return -EINVAL;
  655. if (netdev->mtu == mtu)
  656. return 0;
  657. netdev->mtu = mtu;
  658. alx->hw.mtu = mtu;
  659. alx->rxbuf_size = mtu > ALX_DEF_RXBUF_SIZE ?
  660. ALIGN(max_frame, 8) : ALX_DEF_RXBUF_SIZE;
  661. netdev_update_features(netdev);
  662. if (netif_running(netdev))
  663. alx_reinit(alx);
  664. return 0;
  665. }
  666. static void alx_netif_start(struct alx_priv *alx)
  667. {
  668. netif_tx_wake_all_queues(alx->dev);
  669. napi_enable(&alx->napi);
  670. netif_carrier_on(alx->dev);
  671. }
  672. static int __alx_open(struct alx_priv *alx, bool resume)
  673. {
  674. int err;
  675. if (!resume)
  676. netif_carrier_off(alx->dev);
  677. err = alx_alloc_rings(alx);
  678. if (err)
  679. return err;
  680. alx_configure(alx);
  681. err = alx_request_irq(alx);
  682. if (err)
  683. goto out_free_rings;
  684. /* clear old interrupts */
  685. alx_write_mem32(&alx->hw, ALX_ISR, ~(u32)ALX_ISR_DIS);
  686. alx_irq_enable(alx);
  687. if (!resume)
  688. netif_tx_start_all_queues(alx->dev);
  689. alx_schedule_link_check(alx);
  690. return 0;
  691. out_free_rings:
  692. alx_free_rings(alx);
  693. return err;
  694. }
  695. static void __alx_stop(struct alx_priv *alx)
  696. {
  697. alx_halt(alx);
  698. alx_free_irq(alx);
  699. alx_free_rings(alx);
  700. }
  701. static const char *alx_speed_desc(u16 speed)
  702. {
  703. switch (speed) {
  704. case SPEED_1000 + DUPLEX_FULL:
  705. return "1 Gbps Full";
  706. case SPEED_100 + DUPLEX_FULL:
  707. return "100 Mbps Full";
  708. case SPEED_100 + DUPLEX_HALF:
  709. return "100 Mbps Half";
  710. case SPEED_10 + DUPLEX_FULL:
  711. return "10 Mbps Full";
  712. case SPEED_10 + DUPLEX_HALF:
  713. return "10 Mbps Half";
  714. default:
  715. return "Unknown speed";
  716. }
  717. }
  718. static void alx_check_link(struct alx_priv *alx)
  719. {
  720. struct alx_hw *hw = &alx->hw;
  721. unsigned long flags;
  722. int speed, old_speed;
  723. int err;
  724. /* clear PHY internal interrupt status, otherwise the main
  725. * interrupt status will be asserted forever
  726. */
  727. alx_clear_phy_intr(hw);
  728. err = alx_get_phy_link(hw, &speed);
  729. if (err < 0)
  730. goto reset;
  731. spin_lock_irqsave(&alx->irq_lock, flags);
  732. alx->int_mask |= ALX_ISR_PHY;
  733. alx_write_mem32(hw, ALX_IMR, alx->int_mask);
  734. spin_unlock_irqrestore(&alx->irq_lock, flags);
  735. old_speed = hw->link_speed;
  736. if (old_speed == speed)
  737. return;
  738. hw->link_speed = speed;
  739. if (speed != SPEED_UNKNOWN) {
  740. netif_info(alx, link, alx->dev,
  741. "NIC Up: %s\n", alx_speed_desc(speed));
  742. alx_post_phy_link(hw);
  743. alx_enable_aspm(hw, true, true);
  744. alx_start_mac(hw);
  745. if (old_speed == SPEED_UNKNOWN)
  746. alx_netif_start(alx);
  747. } else {
  748. /* link is now down */
  749. alx_netif_stop(alx);
  750. netif_info(alx, link, alx->dev, "Link Down\n");
  751. err = alx_reset_mac(hw);
  752. if (err)
  753. goto reset;
  754. alx_irq_disable(alx);
  755. /* MAC reset causes all HW settings to be lost, restore all */
  756. err = alx_reinit_rings(alx);
  757. if (err)
  758. goto reset;
  759. alx_configure(alx);
  760. alx_enable_aspm(hw, false, true);
  761. alx_post_phy_link(hw);
  762. alx_irq_enable(alx);
  763. }
  764. return;
  765. reset:
  766. alx_schedule_reset(alx);
  767. }
  768. static int alx_open(struct net_device *netdev)
  769. {
  770. return __alx_open(netdev_priv(netdev), false);
  771. }
  772. static int alx_stop(struct net_device *netdev)
  773. {
  774. __alx_stop(netdev_priv(netdev));
  775. return 0;
  776. }
  777. static int __alx_shutdown(struct pci_dev *pdev, bool *wol_en)
  778. {
  779. struct alx_priv *alx = pci_get_drvdata(pdev);
  780. struct net_device *netdev = alx->dev;
  781. struct alx_hw *hw = &alx->hw;
  782. int err, speed;
  783. netif_device_detach(netdev);
  784. if (netif_running(netdev))
  785. __alx_stop(alx);
  786. #ifdef CONFIG_PM_SLEEP
  787. err = pci_save_state(pdev);
  788. if (err)
  789. return err;
  790. #endif
  791. err = alx_select_powersaving_speed(hw, &speed);
  792. if (err)
  793. return err;
  794. err = alx_clear_phy_intr(hw);
  795. if (err)
  796. return err;
  797. err = alx_pre_suspend(hw, speed);
  798. if (err)
  799. return err;
  800. err = alx_config_wol(hw);
  801. if (err)
  802. return err;
  803. *wol_en = false;
  804. if (hw->sleep_ctrl & ALX_SLEEP_ACTIVE) {
  805. netif_info(alx, wol, netdev,
  806. "wol: ctrl=%X, speed=%X\n",
  807. hw->sleep_ctrl, speed);
  808. device_set_wakeup_enable(&pdev->dev, true);
  809. *wol_en = true;
  810. }
  811. pci_disable_device(pdev);
  812. return 0;
  813. }
  814. static void alx_shutdown(struct pci_dev *pdev)
  815. {
  816. int err;
  817. bool wol_en;
  818. err = __alx_shutdown(pdev, &wol_en);
  819. if (!err) {
  820. pci_wake_from_d3(pdev, wol_en);
  821. pci_set_power_state(pdev, PCI_D3hot);
  822. } else {
  823. dev_err(&pdev->dev, "shutdown fail %d\n", err);
  824. }
  825. }
  826. static void alx_link_check(struct work_struct *work)
  827. {
  828. struct alx_priv *alx;
  829. alx = container_of(work, struct alx_priv, link_check_wk);
  830. rtnl_lock();
  831. alx_check_link(alx);
  832. rtnl_unlock();
  833. }
  834. static void alx_reset(struct work_struct *work)
  835. {
  836. struct alx_priv *alx = container_of(work, struct alx_priv, reset_wk);
  837. rtnl_lock();
  838. alx_reinit(alx);
  839. rtnl_unlock();
  840. }
  841. static int alx_tx_csum(struct sk_buff *skb, struct alx_txd *first)
  842. {
  843. u8 cso, css;
  844. if (skb->ip_summed != CHECKSUM_PARTIAL)
  845. return 0;
  846. cso = skb_checksum_start_offset(skb);
  847. if (cso & 1)
  848. return -EINVAL;
  849. css = cso + skb->csum_offset;
  850. first->word1 |= cpu_to_le32((cso >> 1) << TPD_CXSUMSTART_SHIFT);
  851. first->word1 |= cpu_to_le32((css >> 1) << TPD_CXSUMOFFSET_SHIFT);
  852. first->word1 |= cpu_to_le32(1 << TPD_CXSUM_EN_SHIFT);
  853. return 0;
  854. }
  855. static int alx_map_tx_skb(struct alx_priv *alx, struct sk_buff *skb)
  856. {
  857. struct alx_tx_queue *txq = &alx->txq;
  858. struct alx_txd *tpd, *first_tpd;
  859. dma_addr_t dma;
  860. int maplen, f, first_idx = txq->write_idx;
  861. first_tpd = &txq->tpd[txq->write_idx];
  862. tpd = first_tpd;
  863. maplen = skb_headlen(skb);
  864. dma = dma_map_single(&alx->hw.pdev->dev, skb->data, maplen,
  865. DMA_TO_DEVICE);
  866. if (dma_mapping_error(&alx->hw.pdev->dev, dma))
  867. goto err_dma;
  868. dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
  869. dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
  870. tpd->adrl.addr = cpu_to_le64(dma);
  871. tpd->len = cpu_to_le16(maplen);
  872. for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
  873. struct skb_frag_struct *frag;
  874. frag = &skb_shinfo(skb)->frags[f];
  875. if (++txq->write_idx == alx->tx_ringsz)
  876. txq->write_idx = 0;
  877. tpd = &txq->tpd[txq->write_idx];
  878. tpd->word1 = first_tpd->word1;
  879. maplen = skb_frag_size(frag);
  880. dma = skb_frag_dma_map(&alx->hw.pdev->dev, frag, 0,
  881. maplen, DMA_TO_DEVICE);
  882. if (dma_mapping_error(&alx->hw.pdev->dev, dma))
  883. goto err_dma;
  884. dma_unmap_len_set(&txq->bufs[txq->write_idx], size, maplen);
  885. dma_unmap_addr_set(&txq->bufs[txq->write_idx], dma, dma);
  886. tpd->adrl.addr = cpu_to_le64(dma);
  887. tpd->len = cpu_to_le16(maplen);
  888. }
  889. /* last TPD, set EOP flag and store skb */
  890. tpd->word1 |= cpu_to_le32(1 << TPD_EOP_SHIFT);
  891. txq->bufs[txq->write_idx].skb = skb;
  892. if (++txq->write_idx == alx->tx_ringsz)
  893. txq->write_idx = 0;
  894. return 0;
  895. err_dma:
  896. f = first_idx;
  897. while (f != txq->write_idx) {
  898. alx_free_txbuf(alx, f);
  899. if (++f == alx->tx_ringsz)
  900. f = 0;
  901. }
  902. return -ENOMEM;
  903. }
  904. static netdev_tx_t alx_start_xmit(struct sk_buff *skb,
  905. struct net_device *netdev)
  906. {
  907. struct alx_priv *alx = netdev_priv(netdev);
  908. struct alx_tx_queue *txq = &alx->txq;
  909. struct alx_txd *first;
  910. int tpdreq = skb_shinfo(skb)->nr_frags + 1;
  911. if (alx_tpd_avail(alx) < tpdreq) {
  912. netif_stop_queue(alx->dev);
  913. goto drop;
  914. }
  915. first = &txq->tpd[txq->write_idx];
  916. memset(first, 0, sizeof(*first));
  917. if (alx_tx_csum(skb, first))
  918. goto drop;
  919. if (alx_map_tx_skb(alx, skb) < 0)
  920. goto drop;
  921. netdev_sent_queue(alx->dev, skb->len);
  922. /* flush updates before updating hardware */
  923. wmb();
  924. alx_write_mem16(&alx->hw, ALX_TPD_PRI0_PIDX, txq->write_idx);
  925. if (alx_tpd_avail(alx) < alx->tx_ringsz/8)
  926. netif_stop_queue(alx->dev);
  927. return NETDEV_TX_OK;
  928. drop:
  929. dev_kfree_skb(skb);
  930. return NETDEV_TX_OK;
  931. }
  932. static void alx_tx_timeout(struct net_device *dev)
  933. {
  934. struct alx_priv *alx = netdev_priv(dev);
  935. alx_schedule_reset(alx);
  936. }
  937. static int alx_mdio_read(struct net_device *netdev,
  938. int prtad, int devad, u16 addr)
  939. {
  940. struct alx_priv *alx = netdev_priv(netdev);
  941. struct alx_hw *hw = &alx->hw;
  942. u16 val;
  943. int err;
  944. if (prtad != hw->mdio.prtad)
  945. return -EINVAL;
  946. if (devad == MDIO_DEVAD_NONE)
  947. err = alx_read_phy_reg(hw, addr, &val);
  948. else
  949. err = alx_read_phy_ext(hw, devad, addr, &val);
  950. if (err)
  951. return err;
  952. return val;
  953. }
  954. static int alx_mdio_write(struct net_device *netdev,
  955. int prtad, int devad, u16 addr, u16 val)
  956. {
  957. struct alx_priv *alx = netdev_priv(netdev);
  958. struct alx_hw *hw = &alx->hw;
  959. if (prtad != hw->mdio.prtad)
  960. return -EINVAL;
  961. if (devad == MDIO_DEVAD_NONE)
  962. return alx_write_phy_reg(hw, addr, val);
  963. return alx_write_phy_ext(hw, devad, addr, val);
  964. }
  965. static int alx_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  966. {
  967. struct alx_priv *alx = netdev_priv(netdev);
  968. if (!netif_running(netdev))
  969. return -EAGAIN;
  970. return mdio_mii_ioctl(&alx->hw.mdio, if_mii(ifr), cmd);
  971. }
  972. #ifdef CONFIG_NET_POLL_CONTROLLER
  973. static void alx_poll_controller(struct net_device *netdev)
  974. {
  975. struct alx_priv *alx = netdev_priv(netdev);
  976. if (alx->msi)
  977. alx_intr_msi(0, alx);
  978. else
  979. alx_intr_legacy(0, alx);
  980. }
  981. #endif
  982. static const struct net_device_ops alx_netdev_ops = {
  983. .ndo_open = alx_open,
  984. .ndo_stop = alx_stop,
  985. .ndo_start_xmit = alx_start_xmit,
  986. .ndo_set_rx_mode = alx_set_rx_mode,
  987. .ndo_validate_addr = eth_validate_addr,
  988. .ndo_set_mac_address = alx_set_mac_address,
  989. .ndo_change_mtu = alx_change_mtu,
  990. .ndo_do_ioctl = alx_ioctl,
  991. .ndo_tx_timeout = alx_tx_timeout,
  992. .ndo_fix_features = alx_fix_features,
  993. #ifdef CONFIG_NET_POLL_CONTROLLER
  994. .ndo_poll_controller = alx_poll_controller,
  995. #endif
  996. };
  997. static int alx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  998. {
  999. struct net_device *netdev;
  1000. struct alx_priv *alx;
  1001. struct alx_hw *hw;
  1002. bool phy_configured;
  1003. int bars, pm_cap, err;
  1004. err = pci_enable_device_mem(pdev);
  1005. if (err)
  1006. return err;
  1007. /* The alx chip can DMA to 64-bit addresses, but it uses a single
  1008. * shared register for the high 32 bits, so only a single, aligned,
  1009. * 4 GB physical address range can be used for descriptors.
  1010. */
  1011. if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
  1012. !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
  1013. dev_dbg(&pdev->dev, "DMA to 64-BIT addresses\n");
  1014. } else {
  1015. err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
  1016. if (err) {
  1017. err = dma_set_coherent_mask(&pdev->dev,
  1018. DMA_BIT_MASK(32));
  1019. if (err) {
  1020. dev_err(&pdev->dev,
  1021. "No usable DMA config, aborting\n");
  1022. goto out_pci_disable;
  1023. }
  1024. }
  1025. }
  1026. bars = pci_select_bars(pdev, IORESOURCE_MEM);
  1027. err = pci_request_selected_regions(pdev, bars, alx_drv_name);
  1028. if (err) {
  1029. dev_err(&pdev->dev,
  1030. "pci_request_selected_regions failed(bars:%d)\n", bars);
  1031. goto out_pci_disable;
  1032. }
  1033. pci_enable_pcie_error_reporting(pdev);
  1034. pci_set_master(pdev);
  1035. pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  1036. if (pm_cap == 0) {
  1037. dev_err(&pdev->dev,
  1038. "Can't find power management capability, aborting\n");
  1039. err = -EIO;
  1040. goto out_pci_release;
  1041. }
  1042. err = pci_set_power_state(pdev, PCI_D0);
  1043. if (err)
  1044. goto out_pci_release;
  1045. netdev = alloc_etherdev(sizeof(*alx));
  1046. if (!netdev) {
  1047. err = -ENOMEM;
  1048. goto out_pci_release;
  1049. }
  1050. SET_NETDEV_DEV(netdev, &pdev->dev);
  1051. alx = netdev_priv(netdev);
  1052. alx->dev = netdev;
  1053. alx->hw.pdev = pdev;
  1054. alx->msg_enable = NETIF_MSG_LINK | NETIF_MSG_HW | NETIF_MSG_IFUP |
  1055. NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_WOL;
  1056. hw = &alx->hw;
  1057. pci_set_drvdata(pdev, alx);
  1058. hw->hw_addr = pci_ioremap_bar(pdev, 0);
  1059. if (!hw->hw_addr) {
  1060. dev_err(&pdev->dev, "cannot map device registers\n");
  1061. err = -EIO;
  1062. goto out_free_netdev;
  1063. }
  1064. netdev->netdev_ops = &alx_netdev_ops;
  1065. SET_ETHTOOL_OPS(netdev, &alx_ethtool_ops);
  1066. netdev->irq = pdev->irq;
  1067. netdev->watchdog_timeo = ALX_WATCHDOG_TIME;
  1068. if (ent->driver_data & ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG)
  1069. pdev->dev_flags |= PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG;
  1070. err = alx_init_sw(alx);
  1071. if (err) {
  1072. dev_err(&pdev->dev, "net device private data init failed\n");
  1073. goto out_unmap;
  1074. }
  1075. alx_reset_pcie(hw);
  1076. phy_configured = alx_phy_configured(hw);
  1077. if (!phy_configured)
  1078. alx_reset_phy(hw);
  1079. err = alx_reset_mac(hw);
  1080. if (err) {
  1081. dev_err(&pdev->dev, "MAC Reset failed, error = %d\n", err);
  1082. goto out_unmap;
  1083. }
  1084. /* setup link to put it in a known good starting state */
  1085. if (!phy_configured) {
  1086. err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
  1087. if (err) {
  1088. dev_err(&pdev->dev,
  1089. "failed to configure PHY speed/duplex (err=%d)\n",
  1090. err);
  1091. goto out_unmap;
  1092. }
  1093. }
  1094. netdev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
  1095. if (alx_get_perm_macaddr(hw, hw->perm_addr)) {
  1096. dev_warn(&pdev->dev,
  1097. "Invalid permanent address programmed, using random one\n");
  1098. eth_hw_addr_random(netdev);
  1099. memcpy(hw->perm_addr, netdev->dev_addr, netdev->addr_len);
  1100. }
  1101. memcpy(hw->mac_addr, hw->perm_addr, ETH_ALEN);
  1102. memcpy(netdev->dev_addr, hw->mac_addr, ETH_ALEN);
  1103. memcpy(netdev->perm_addr, hw->perm_addr, ETH_ALEN);
  1104. hw->mdio.prtad = 0;
  1105. hw->mdio.mmds = 0;
  1106. hw->mdio.dev = netdev;
  1107. hw->mdio.mode_support = MDIO_SUPPORTS_C45 |
  1108. MDIO_SUPPORTS_C22 |
  1109. MDIO_EMULATE_C22;
  1110. hw->mdio.mdio_read = alx_mdio_read;
  1111. hw->mdio.mdio_write = alx_mdio_write;
  1112. if (!alx_get_phy_info(hw)) {
  1113. dev_err(&pdev->dev, "failed to identify PHY\n");
  1114. err = -EIO;
  1115. goto out_unmap;
  1116. }
  1117. INIT_WORK(&alx->link_check_wk, alx_link_check);
  1118. INIT_WORK(&alx->reset_wk, alx_reset);
  1119. spin_lock_init(&alx->hw.mdio_lock);
  1120. spin_lock_init(&alx->irq_lock);
  1121. netif_carrier_off(netdev);
  1122. err = register_netdev(netdev);
  1123. if (err) {
  1124. dev_err(&pdev->dev, "register netdevice failed\n");
  1125. goto out_unmap;
  1126. }
  1127. device_set_wakeup_enable(&pdev->dev, hw->sleep_ctrl);
  1128. netdev_info(netdev,
  1129. "Qualcomm Atheros AR816x/AR817x Ethernet [%pM]\n",
  1130. netdev->dev_addr);
  1131. return 0;
  1132. out_unmap:
  1133. iounmap(hw->hw_addr);
  1134. out_free_netdev:
  1135. free_netdev(netdev);
  1136. out_pci_release:
  1137. pci_release_selected_regions(pdev, bars);
  1138. out_pci_disable:
  1139. pci_disable_device(pdev);
  1140. return err;
  1141. }
  1142. static void alx_remove(struct pci_dev *pdev)
  1143. {
  1144. struct alx_priv *alx = pci_get_drvdata(pdev);
  1145. struct alx_hw *hw = &alx->hw;
  1146. cancel_work_sync(&alx->link_check_wk);
  1147. cancel_work_sync(&alx->reset_wk);
  1148. /* restore permanent mac address */
  1149. alx_set_macaddr(hw, hw->perm_addr);
  1150. unregister_netdev(alx->dev);
  1151. iounmap(hw->hw_addr);
  1152. pci_release_selected_regions(pdev,
  1153. pci_select_bars(pdev, IORESOURCE_MEM));
  1154. pci_disable_pcie_error_reporting(pdev);
  1155. pci_disable_device(pdev);
  1156. pci_set_drvdata(pdev, NULL);
  1157. free_netdev(alx->dev);
  1158. }
  1159. #ifdef CONFIG_PM_SLEEP
  1160. static int alx_suspend(struct device *dev)
  1161. {
  1162. struct pci_dev *pdev = to_pci_dev(dev);
  1163. int err;
  1164. bool wol_en;
  1165. err = __alx_shutdown(pdev, &wol_en);
  1166. if (err) {
  1167. dev_err(&pdev->dev, "shutdown fail in suspend %d\n", err);
  1168. return err;
  1169. }
  1170. if (wol_en) {
  1171. pci_prepare_to_sleep(pdev);
  1172. } else {
  1173. pci_wake_from_d3(pdev, false);
  1174. pci_set_power_state(pdev, PCI_D3hot);
  1175. }
  1176. return 0;
  1177. }
  1178. static int alx_resume(struct device *dev)
  1179. {
  1180. struct pci_dev *pdev = to_pci_dev(dev);
  1181. struct alx_priv *alx = pci_get_drvdata(pdev);
  1182. struct net_device *netdev = alx->dev;
  1183. struct alx_hw *hw = &alx->hw;
  1184. int err;
  1185. pci_set_power_state(pdev, PCI_D0);
  1186. pci_restore_state(pdev);
  1187. pci_save_state(pdev);
  1188. pci_enable_wake(pdev, PCI_D3hot, 0);
  1189. pci_enable_wake(pdev, PCI_D3cold, 0);
  1190. hw->link_speed = SPEED_UNKNOWN;
  1191. alx->int_mask = ALX_ISR_MISC;
  1192. alx_reset_pcie(hw);
  1193. alx_reset_phy(hw);
  1194. err = alx_reset_mac(hw);
  1195. if (err) {
  1196. netif_err(alx, hw, alx->dev,
  1197. "resume:reset_mac fail %d\n", err);
  1198. return -EIO;
  1199. }
  1200. err = alx_setup_speed_duplex(hw, hw->adv_cfg, hw->flowctrl);
  1201. if (err) {
  1202. netif_err(alx, hw, alx->dev,
  1203. "resume:setup_speed_duplex fail %d\n", err);
  1204. return -EIO;
  1205. }
  1206. if (netif_running(netdev)) {
  1207. err = __alx_open(alx, true);
  1208. if (err)
  1209. return err;
  1210. }
  1211. netif_device_attach(netdev);
  1212. return err;
  1213. }
  1214. #endif
  1215. static pci_ers_result_t alx_pci_error_detected(struct pci_dev *pdev,
  1216. pci_channel_state_t state)
  1217. {
  1218. struct alx_priv *alx = pci_get_drvdata(pdev);
  1219. struct net_device *netdev = alx->dev;
  1220. pci_ers_result_t rc = PCI_ERS_RESULT_NEED_RESET;
  1221. dev_info(&pdev->dev, "pci error detected\n");
  1222. rtnl_lock();
  1223. if (netif_running(netdev)) {
  1224. netif_device_detach(netdev);
  1225. alx_halt(alx);
  1226. }
  1227. if (state == pci_channel_io_perm_failure)
  1228. rc = PCI_ERS_RESULT_DISCONNECT;
  1229. else
  1230. pci_disable_device(pdev);
  1231. rtnl_unlock();
  1232. return rc;
  1233. }
  1234. static pci_ers_result_t alx_pci_error_slot_reset(struct pci_dev *pdev)
  1235. {
  1236. struct alx_priv *alx = pci_get_drvdata(pdev);
  1237. struct alx_hw *hw = &alx->hw;
  1238. pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT;
  1239. dev_info(&pdev->dev, "pci error slot reset\n");
  1240. rtnl_lock();
  1241. if (pci_enable_device(pdev)) {
  1242. dev_err(&pdev->dev, "Failed to re-enable PCI device after reset\n");
  1243. goto out;
  1244. }
  1245. pci_set_master(pdev);
  1246. pci_enable_wake(pdev, PCI_D3hot, 0);
  1247. pci_enable_wake(pdev, PCI_D3cold, 0);
  1248. alx_reset_pcie(hw);
  1249. if (!alx_reset_mac(hw))
  1250. rc = PCI_ERS_RESULT_RECOVERED;
  1251. out:
  1252. pci_cleanup_aer_uncorrect_error_status(pdev);
  1253. rtnl_unlock();
  1254. return rc;
  1255. }
  1256. static void alx_pci_error_resume(struct pci_dev *pdev)
  1257. {
  1258. struct alx_priv *alx = pci_get_drvdata(pdev);
  1259. struct net_device *netdev = alx->dev;
  1260. dev_info(&pdev->dev, "pci error resume\n");
  1261. rtnl_lock();
  1262. if (netif_running(netdev)) {
  1263. alx_activate(alx);
  1264. netif_device_attach(netdev);
  1265. }
  1266. rtnl_unlock();
  1267. }
  1268. static const struct pci_error_handlers alx_err_handlers = {
  1269. .error_detected = alx_pci_error_detected,
  1270. .slot_reset = alx_pci_error_slot_reset,
  1271. .resume = alx_pci_error_resume,
  1272. };
  1273. #ifdef CONFIG_PM_SLEEP
  1274. static SIMPLE_DEV_PM_OPS(alx_pm_ops, alx_suspend, alx_resume);
  1275. #define ALX_PM_OPS (&alx_pm_ops)
  1276. #else
  1277. #define ALX_PM_OPS NULL
  1278. #endif
  1279. static DEFINE_PCI_DEVICE_TABLE(alx_pci_tbl) = {
  1280. { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8161),
  1281. .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
  1282. { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_E2200),
  1283. .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
  1284. { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
  1285. .driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
  1286. { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
  1287. { PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
  1288. {}
  1289. };
  1290. static struct pci_driver alx_driver = {
  1291. .name = alx_drv_name,
  1292. .id_table = alx_pci_tbl,
  1293. .probe = alx_probe,
  1294. .remove = alx_remove,
  1295. .shutdown = alx_shutdown,
  1296. .err_handler = &alx_err_handlers,
  1297. .driver.pm = ALX_PM_OPS,
  1298. };
  1299. module_pci_driver(alx_driver);
  1300. MODULE_DEVICE_TABLE(pci, alx_pci_tbl);
  1301. MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
  1302. MODULE_AUTHOR("Qualcomm Corporation, <nic-devel@qualcomm.com>");
  1303. MODULE_DESCRIPTION(
  1304. "Qualcomm Atheros(R) AR816x/AR817x PCI-E Ethernet Network Driver");
  1305. MODULE_LICENSE("GPL");