af_key.c 100 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/xfrm.h>
  29. #include <net/sock.h>
  30. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  31. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  32. /* List of all pfkey sockets. */
  33. static HLIST_HEAD(pfkey_table);
  34. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  35. static DEFINE_RWLOCK(pfkey_table_lock);
  36. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  37. static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
  38. struct pfkey_sock {
  39. /* struct sock must be the first member of struct pfkey_sock */
  40. struct sock sk;
  41. int registered;
  42. int promisc;
  43. };
  44. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  45. {
  46. return (struct pfkey_sock *)sk;
  47. }
  48. static void pfkey_sock_destruct(struct sock *sk)
  49. {
  50. skb_queue_purge(&sk->sk_receive_queue);
  51. if (!sock_flag(sk, SOCK_DEAD)) {
  52. printk("Attempt to release alive pfkey socket: %p\n", sk);
  53. return;
  54. }
  55. BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
  56. BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
  57. atomic_dec(&pfkey_socks_nr);
  58. }
  59. static void pfkey_table_grab(void)
  60. {
  61. write_lock_bh(&pfkey_table_lock);
  62. if (atomic_read(&pfkey_table_users)) {
  63. DECLARE_WAITQUEUE(wait, current);
  64. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  65. for(;;) {
  66. set_current_state(TASK_UNINTERRUPTIBLE);
  67. if (atomic_read(&pfkey_table_users) == 0)
  68. break;
  69. write_unlock_bh(&pfkey_table_lock);
  70. schedule();
  71. write_lock_bh(&pfkey_table_lock);
  72. }
  73. __set_current_state(TASK_RUNNING);
  74. remove_wait_queue(&pfkey_table_wait, &wait);
  75. }
  76. }
  77. static __inline__ void pfkey_table_ungrab(void)
  78. {
  79. write_unlock_bh(&pfkey_table_lock);
  80. wake_up(&pfkey_table_wait);
  81. }
  82. static __inline__ void pfkey_lock_table(void)
  83. {
  84. /* read_lock() synchronizes us to pfkey_table_grab */
  85. read_lock(&pfkey_table_lock);
  86. atomic_inc(&pfkey_table_users);
  87. read_unlock(&pfkey_table_lock);
  88. }
  89. static __inline__ void pfkey_unlock_table(void)
  90. {
  91. if (atomic_dec_and_test(&pfkey_table_users))
  92. wake_up(&pfkey_table_wait);
  93. }
  94. static const struct proto_ops pfkey_ops;
  95. static void pfkey_insert(struct sock *sk)
  96. {
  97. pfkey_table_grab();
  98. sk_add_node(sk, &pfkey_table);
  99. pfkey_table_ungrab();
  100. }
  101. static void pfkey_remove(struct sock *sk)
  102. {
  103. pfkey_table_grab();
  104. sk_del_node_init(sk);
  105. pfkey_table_ungrab();
  106. }
  107. static struct proto key_proto = {
  108. .name = "KEY",
  109. .owner = THIS_MODULE,
  110. .obj_size = sizeof(struct pfkey_sock),
  111. };
  112. static int pfkey_create(struct socket *sock, int protocol)
  113. {
  114. struct sock *sk;
  115. int err;
  116. if (!capable(CAP_NET_ADMIN))
  117. return -EPERM;
  118. if (sock->type != SOCK_RAW)
  119. return -ESOCKTNOSUPPORT;
  120. if (protocol != PF_KEY_V2)
  121. return -EPROTONOSUPPORT;
  122. err = -ENOMEM;
  123. sk = sk_alloc(PF_KEY, GFP_KERNEL, &key_proto, 1);
  124. if (sk == NULL)
  125. goto out;
  126. sock->ops = &pfkey_ops;
  127. sock_init_data(sock, sk);
  128. sk->sk_family = PF_KEY;
  129. sk->sk_destruct = pfkey_sock_destruct;
  130. atomic_inc(&pfkey_socks_nr);
  131. pfkey_insert(sk);
  132. return 0;
  133. out:
  134. return err;
  135. }
  136. static int pfkey_release(struct socket *sock)
  137. {
  138. struct sock *sk = sock->sk;
  139. if (!sk)
  140. return 0;
  141. pfkey_remove(sk);
  142. sock_orphan(sk);
  143. sock->sk = NULL;
  144. skb_queue_purge(&sk->sk_write_queue);
  145. sock_put(sk);
  146. return 0;
  147. }
  148. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  149. gfp_t allocation, struct sock *sk)
  150. {
  151. int err = -ENOBUFS;
  152. sock_hold(sk);
  153. if (*skb2 == NULL) {
  154. if (atomic_read(&skb->users) != 1) {
  155. *skb2 = skb_clone(skb, allocation);
  156. } else {
  157. *skb2 = skb;
  158. atomic_inc(&skb->users);
  159. }
  160. }
  161. if (*skb2 != NULL) {
  162. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  163. skb_orphan(*skb2);
  164. skb_set_owner_r(*skb2, sk);
  165. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  166. sk->sk_data_ready(sk, (*skb2)->len);
  167. *skb2 = NULL;
  168. err = 0;
  169. }
  170. }
  171. sock_put(sk);
  172. return err;
  173. }
  174. /* Send SKB to all pfkey sockets matching selected criteria. */
  175. #define BROADCAST_ALL 0
  176. #define BROADCAST_ONE 1
  177. #define BROADCAST_REGISTERED 2
  178. #define BROADCAST_PROMISC_ONLY 4
  179. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  180. int broadcast_flags, struct sock *one_sk)
  181. {
  182. struct sock *sk;
  183. struct hlist_node *node;
  184. struct sk_buff *skb2 = NULL;
  185. int err = -ESRCH;
  186. /* XXX Do we need something like netlink_overrun? I think
  187. * XXX PF_KEY socket apps will not mind current behavior.
  188. */
  189. if (!skb)
  190. return -ENOMEM;
  191. pfkey_lock_table();
  192. sk_for_each(sk, node, &pfkey_table) {
  193. struct pfkey_sock *pfk = pfkey_sk(sk);
  194. int err2;
  195. /* Yes, it means that if you are meant to receive this
  196. * pfkey message you receive it twice as promiscuous
  197. * socket.
  198. */
  199. if (pfk->promisc)
  200. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  201. /* the exact target will be processed later */
  202. if (sk == one_sk)
  203. continue;
  204. if (broadcast_flags != BROADCAST_ALL) {
  205. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  206. continue;
  207. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  208. !pfk->registered)
  209. continue;
  210. if (broadcast_flags & BROADCAST_ONE)
  211. continue;
  212. }
  213. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  214. /* Error is cleare after succecful sending to at least one
  215. * registered KM */
  216. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  217. err = err2;
  218. }
  219. pfkey_unlock_table();
  220. if (one_sk != NULL)
  221. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  222. if (skb2)
  223. kfree_skb(skb2);
  224. kfree_skb(skb);
  225. return err;
  226. }
  227. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  228. {
  229. *new = *orig;
  230. }
  231. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  232. {
  233. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  234. struct sadb_msg *hdr;
  235. if (!skb)
  236. return -ENOBUFS;
  237. /* Woe be to the platform trying to support PFKEY yet
  238. * having normal errnos outside the 1-255 range, inclusive.
  239. */
  240. err = -err;
  241. if (err == ERESTARTSYS ||
  242. err == ERESTARTNOHAND ||
  243. err == ERESTARTNOINTR)
  244. err = EINTR;
  245. if (err >= 512)
  246. err = EINVAL;
  247. BUG_ON(err <= 0 || err >= 256);
  248. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  249. pfkey_hdr_dup(hdr, orig);
  250. hdr->sadb_msg_errno = (uint8_t) err;
  251. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  252. sizeof(uint64_t));
  253. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
  254. return 0;
  255. }
  256. static u8 sadb_ext_min_len[] = {
  257. [SADB_EXT_RESERVED] = (u8) 0,
  258. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  259. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  260. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  261. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  262. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  263. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  264. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  265. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  266. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  267. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  268. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  269. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  270. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  271. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  272. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  273. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  274. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  275. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  276. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  277. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  278. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  279. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  280. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  281. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  282. };
  283. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  284. static int verify_address_len(void *p)
  285. {
  286. struct sadb_address *sp = p;
  287. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  288. struct sockaddr_in *sin;
  289. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  290. struct sockaddr_in6 *sin6;
  291. #endif
  292. int len;
  293. switch (addr->sa_family) {
  294. case AF_INET:
  295. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  296. if (sp->sadb_address_len != len ||
  297. sp->sadb_address_prefixlen > 32)
  298. return -EINVAL;
  299. break;
  300. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  301. case AF_INET6:
  302. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  303. if (sp->sadb_address_len != len ||
  304. sp->sadb_address_prefixlen > 128)
  305. return -EINVAL;
  306. break;
  307. #endif
  308. default:
  309. /* It is user using kernel to keep track of security
  310. * associations for another protocol, such as
  311. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  312. * lengths.
  313. *
  314. * XXX Actually, association/policy database is not yet
  315. * XXX able to cope with arbitrary sockaddr families.
  316. * XXX When it can, remove this -EINVAL. -DaveM
  317. */
  318. return -EINVAL;
  319. break;
  320. }
  321. return 0;
  322. }
  323. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  324. {
  325. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  326. sec_ctx->sadb_x_ctx_len,
  327. sizeof(uint64_t));
  328. }
  329. static inline int verify_sec_ctx_len(void *p)
  330. {
  331. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  332. int len;
  333. if (sec_ctx->sadb_x_ctx_len > PAGE_SIZE)
  334. return -EINVAL;
  335. len = pfkey_sec_ctx_len(sec_ctx);
  336. if (sec_ctx->sadb_x_sec_len != len)
  337. return -EINVAL;
  338. return 0;
  339. }
  340. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  341. {
  342. struct xfrm_user_sec_ctx *uctx = NULL;
  343. int ctx_size = sec_ctx->sadb_x_ctx_len;
  344. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  345. if (!uctx)
  346. return NULL;
  347. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  348. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  349. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  350. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  351. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  352. memcpy(uctx + 1, sec_ctx + 1,
  353. uctx->ctx_len);
  354. return uctx;
  355. }
  356. static int present_and_same_family(struct sadb_address *src,
  357. struct sadb_address *dst)
  358. {
  359. struct sockaddr *s_addr, *d_addr;
  360. if (!src || !dst)
  361. return 0;
  362. s_addr = (struct sockaddr *)(src + 1);
  363. d_addr = (struct sockaddr *)(dst + 1);
  364. if (s_addr->sa_family != d_addr->sa_family)
  365. return 0;
  366. if (s_addr->sa_family != AF_INET
  367. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  368. && s_addr->sa_family != AF_INET6
  369. #endif
  370. )
  371. return 0;
  372. return 1;
  373. }
  374. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  375. {
  376. char *p = (char *) hdr;
  377. int len = skb->len;
  378. len -= sizeof(*hdr);
  379. p += sizeof(*hdr);
  380. while (len > 0) {
  381. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  382. uint16_t ext_type;
  383. int ext_len;
  384. ext_len = ehdr->sadb_ext_len;
  385. ext_len *= sizeof(uint64_t);
  386. ext_type = ehdr->sadb_ext_type;
  387. if (ext_len < sizeof(uint64_t) ||
  388. ext_len > len ||
  389. ext_type == SADB_EXT_RESERVED)
  390. return -EINVAL;
  391. if (ext_type <= SADB_EXT_MAX) {
  392. int min = (int) sadb_ext_min_len[ext_type];
  393. if (ext_len < min)
  394. return -EINVAL;
  395. if (ext_hdrs[ext_type-1] != NULL)
  396. return -EINVAL;
  397. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  398. ext_type == SADB_EXT_ADDRESS_DST ||
  399. ext_type == SADB_EXT_ADDRESS_PROXY ||
  400. ext_type == SADB_X_EXT_NAT_T_OA) {
  401. if (verify_address_len(p))
  402. return -EINVAL;
  403. }
  404. if (ext_type == SADB_X_EXT_SEC_CTX) {
  405. if (verify_sec_ctx_len(p))
  406. return -EINVAL;
  407. }
  408. ext_hdrs[ext_type-1] = p;
  409. }
  410. p += ext_len;
  411. len -= ext_len;
  412. }
  413. return 0;
  414. }
  415. static uint16_t
  416. pfkey_satype2proto(uint8_t satype)
  417. {
  418. switch (satype) {
  419. case SADB_SATYPE_UNSPEC:
  420. return IPSEC_PROTO_ANY;
  421. case SADB_SATYPE_AH:
  422. return IPPROTO_AH;
  423. case SADB_SATYPE_ESP:
  424. return IPPROTO_ESP;
  425. case SADB_X_SATYPE_IPCOMP:
  426. return IPPROTO_COMP;
  427. break;
  428. default:
  429. return 0;
  430. }
  431. /* NOTREACHED */
  432. }
  433. static uint8_t
  434. pfkey_proto2satype(uint16_t proto)
  435. {
  436. switch (proto) {
  437. case IPPROTO_AH:
  438. return SADB_SATYPE_AH;
  439. case IPPROTO_ESP:
  440. return SADB_SATYPE_ESP;
  441. case IPPROTO_COMP:
  442. return SADB_X_SATYPE_IPCOMP;
  443. break;
  444. default:
  445. return 0;
  446. }
  447. /* NOTREACHED */
  448. }
  449. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  450. * say specifically 'just raw sockets' as we encode them as 255.
  451. */
  452. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  453. {
  454. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  455. }
  456. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  457. {
  458. return (proto ? proto : IPSEC_PROTO_ANY);
  459. }
  460. static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr,
  461. xfrm_address_t *xaddr)
  462. {
  463. switch (((struct sockaddr*)(addr + 1))->sa_family) {
  464. case AF_INET:
  465. xaddr->a4 =
  466. ((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr;
  467. return AF_INET;
  468. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  469. case AF_INET6:
  470. memcpy(xaddr->a6,
  471. &((struct sockaddr_in6 *)(addr + 1))->sin6_addr,
  472. sizeof(struct in6_addr));
  473. return AF_INET6;
  474. #endif
  475. default:
  476. return 0;
  477. }
  478. /* NOTREACHED */
  479. }
  480. static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
  481. {
  482. struct sadb_sa *sa;
  483. struct sadb_address *addr;
  484. uint16_t proto;
  485. unsigned short family;
  486. xfrm_address_t *xaddr;
  487. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  488. if (sa == NULL)
  489. return NULL;
  490. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  491. if (proto == 0)
  492. return NULL;
  493. /* sadb_address_len should be checked by caller */
  494. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  495. if (addr == NULL)
  496. return NULL;
  497. family = ((struct sockaddr *)(addr + 1))->sa_family;
  498. switch (family) {
  499. case AF_INET:
  500. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  501. break;
  502. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  503. case AF_INET6:
  504. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  505. break;
  506. #endif
  507. default:
  508. xaddr = NULL;
  509. }
  510. if (!xaddr)
  511. return NULL;
  512. return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
  513. }
  514. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  515. static int
  516. pfkey_sockaddr_size(sa_family_t family)
  517. {
  518. switch (family) {
  519. case AF_INET:
  520. return PFKEY_ALIGN8(sizeof(struct sockaddr_in));
  521. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  522. case AF_INET6:
  523. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6));
  524. #endif
  525. default:
  526. return 0;
  527. }
  528. /* NOTREACHED */
  529. }
  530. static inline int pfkey_mode_from_xfrm(int mode)
  531. {
  532. switch(mode) {
  533. case XFRM_MODE_TRANSPORT:
  534. return IPSEC_MODE_TRANSPORT;
  535. case XFRM_MODE_TUNNEL:
  536. return IPSEC_MODE_TUNNEL;
  537. case XFRM_MODE_BEET:
  538. return IPSEC_MODE_BEET;
  539. default:
  540. return -1;
  541. }
  542. }
  543. static inline int pfkey_mode_to_xfrm(int mode)
  544. {
  545. switch(mode) {
  546. case IPSEC_MODE_ANY: /*XXX*/
  547. case IPSEC_MODE_TRANSPORT:
  548. return XFRM_MODE_TRANSPORT;
  549. case IPSEC_MODE_TUNNEL:
  550. return XFRM_MODE_TUNNEL;
  551. case IPSEC_MODE_BEET:
  552. return XFRM_MODE_BEET;
  553. default:
  554. return -1;
  555. }
  556. }
  557. static struct sk_buff * pfkey_xfrm_state2msg(struct xfrm_state *x, int add_keys, int hsc)
  558. {
  559. struct sk_buff *skb;
  560. struct sadb_msg *hdr;
  561. struct sadb_sa *sa;
  562. struct sadb_lifetime *lifetime;
  563. struct sadb_address *addr;
  564. struct sadb_key *key;
  565. struct sadb_x_sa2 *sa2;
  566. struct sockaddr_in *sin;
  567. struct sadb_x_sec_ctx *sec_ctx;
  568. struct xfrm_sec_ctx *xfrm_ctx;
  569. int ctx_size = 0;
  570. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  571. struct sockaddr_in6 *sin6;
  572. #endif
  573. int size;
  574. int auth_key_size = 0;
  575. int encrypt_key_size = 0;
  576. int sockaddr_size;
  577. struct xfrm_encap_tmpl *natt = NULL;
  578. int mode;
  579. /* address family check */
  580. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  581. if (!sockaddr_size)
  582. return ERR_PTR(-EINVAL);
  583. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  584. key(AE), (identity(SD),) (sensitivity)> */
  585. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  586. sizeof(struct sadb_lifetime) +
  587. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  588. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  589. sizeof(struct sadb_address)*2 +
  590. sockaddr_size*2 +
  591. sizeof(struct sadb_x_sa2);
  592. if ((xfrm_ctx = x->security)) {
  593. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  594. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  595. }
  596. /* identity & sensitivity */
  597. if ((x->props.family == AF_INET &&
  598. x->sel.saddr.a4 != x->props.saddr.a4)
  599. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  600. || (x->props.family == AF_INET6 &&
  601. memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr)))
  602. #endif
  603. )
  604. size += sizeof(struct sadb_address) + sockaddr_size;
  605. if (add_keys) {
  606. if (x->aalg && x->aalg->alg_key_len) {
  607. auth_key_size =
  608. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  609. size += sizeof(struct sadb_key) + auth_key_size;
  610. }
  611. if (x->ealg && x->ealg->alg_key_len) {
  612. encrypt_key_size =
  613. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  614. size += sizeof(struct sadb_key) + encrypt_key_size;
  615. }
  616. }
  617. if (x->encap)
  618. natt = x->encap;
  619. if (natt && natt->encap_type) {
  620. size += sizeof(struct sadb_x_nat_t_type);
  621. size += sizeof(struct sadb_x_nat_t_port);
  622. size += sizeof(struct sadb_x_nat_t_port);
  623. }
  624. skb = alloc_skb(size + 16, GFP_ATOMIC);
  625. if (skb == NULL)
  626. return ERR_PTR(-ENOBUFS);
  627. /* call should fill header later */
  628. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  629. memset(hdr, 0, size); /* XXX do we need this ? */
  630. hdr->sadb_msg_len = size / sizeof(uint64_t);
  631. /* sa */
  632. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  633. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  634. sa->sadb_sa_exttype = SADB_EXT_SA;
  635. sa->sadb_sa_spi = x->id.spi;
  636. sa->sadb_sa_replay = x->props.replay_window;
  637. switch (x->km.state) {
  638. case XFRM_STATE_VALID:
  639. sa->sadb_sa_state = x->km.dying ?
  640. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  641. break;
  642. case XFRM_STATE_ACQ:
  643. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  644. break;
  645. default:
  646. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  647. break;
  648. }
  649. sa->sadb_sa_auth = 0;
  650. if (x->aalg) {
  651. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  652. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  653. }
  654. sa->sadb_sa_encrypt = 0;
  655. BUG_ON(x->ealg && x->calg);
  656. if (x->ealg) {
  657. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  658. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  659. }
  660. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  661. if (x->calg) {
  662. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  663. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  664. }
  665. sa->sadb_sa_flags = 0;
  666. if (x->props.flags & XFRM_STATE_NOECN)
  667. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  668. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  669. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  670. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  671. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  672. /* hard time */
  673. if (hsc & 2) {
  674. lifetime = (struct sadb_lifetime *) skb_put(skb,
  675. sizeof(struct sadb_lifetime));
  676. lifetime->sadb_lifetime_len =
  677. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  678. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  679. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  680. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  681. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  682. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  683. }
  684. /* soft time */
  685. if (hsc & 1) {
  686. lifetime = (struct sadb_lifetime *) skb_put(skb,
  687. sizeof(struct sadb_lifetime));
  688. lifetime->sadb_lifetime_len =
  689. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  690. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  691. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  692. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  693. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  694. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  695. }
  696. /* current time */
  697. lifetime = (struct sadb_lifetime *) skb_put(skb,
  698. sizeof(struct sadb_lifetime));
  699. lifetime->sadb_lifetime_len =
  700. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  701. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  702. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  703. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  704. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  705. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  706. /* src address */
  707. addr = (struct sadb_address*) skb_put(skb,
  708. sizeof(struct sadb_address)+sockaddr_size);
  709. addr->sadb_address_len =
  710. (sizeof(struct sadb_address)+sockaddr_size)/
  711. sizeof(uint64_t);
  712. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  713. /* "if the ports are non-zero, then the sadb_address_proto field,
  714. normally zero, MUST be filled in with the transport
  715. protocol's number." - RFC2367 */
  716. addr->sadb_address_proto = 0;
  717. addr->sadb_address_reserved = 0;
  718. if (x->props.family == AF_INET) {
  719. addr->sadb_address_prefixlen = 32;
  720. sin = (struct sockaddr_in *) (addr + 1);
  721. sin->sin_family = AF_INET;
  722. sin->sin_addr.s_addr = x->props.saddr.a4;
  723. sin->sin_port = 0;
  724. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  725. }
  726. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  727. else if (x->props.family == AF_INET6) {
  728. addr->sadb_address_prefixlen = 128;
  729. sin6 = (struct sockaddr_in6 *) (addr + 1);
  730. sin6->sin6_family = AF_INET6;
  731. sin6->sin6_port = 0;
  732. sin6->sin6_flowinfo = 0;
  733. memcpy(&sin6->sin6_addr, x->props.saddr.a6,
  734. sizeof(struct in6_addr));
  735. sin6->sin6_scope_id = 0;
  736. }
  737. #endif
  738. else
  739. BUG();
  740. /* dst address */
  741. addr = (struct sadb_address*) skb_put(skb,
  742. sizeof(struct sadb_address)+sockaddr_size);
  743. addr->sadb_address_len =
  744. (sizeof(struct sadb_address)+sockaddr_size)/
  745. sizeof(uint64_t);
  746. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  747. addr->sadb_address_proto = 0;
  748. addr->sadb_address_prefixlen = 32; /* XXX */
  749. addr->sadb_address_reserved = 0;
  750. if (x->props.family == AF_INET) {
  751. sin = (struct sockaddr_in *) (addr + 1);
  752. sin->sin_family = AF_INET;
  753. sin->sin_addr.s_addr = x->id.daddr.a4;
  754. sin->sin_port = 0;
  755. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  756. if (x->sel.saddr.a4 != x->props.saddr.a4) {
  757. addr = (struct sadb_address*) skb_put(skb,
  758. sizeof(struct sadb_address)+sockaddr_size);
  759. addr->sadb_address_len =
  760. (sizeof(struct sadb_address)+sockaddr_size)/
  761. sizeof(uint64_t);
  762. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  763. addr->sadb_address_proto =
  764. pfkey_proto_from_xfrm(x->sel.proto);
  765. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  766. addr->sadb_address_reserved = 0;
  767. sin = (struct sockaddr_in *) (addr + 1);
  768. sin->sin_family = AF_INET;
  769. sin->sin_addr.s_addr = x->sel.saddr.a4;
  770. sin->sin_port = x->sel.sport;
  771. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  772. }
  773. }
  774. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  775. else if (x->props.family == AF_INET6) {
  776. addr->sadb_address_prefixlen = 128;
  777. sin6 = (struct sockaddr_in6 *) (addr + 1);
  778. sin6->sin6_family = AF_INET6;
  779. sin6->sin6_port = 0;
  780. sin6->sin6_flowinfo = 0;
  781. memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr));
  782. sin6->sin6_scope_id = 0;
  783. if (memcmp (x->sel.saddr.a6, x->props.saddr.a6,
  784. sizeof(struct in6_addr))) {
  785. addr = (struct sadb_address *) skb_put(skb,
  786. sizeof(struct sadb_address)+sockaddr_size);
  787. addr->sadb_address_len =
  788. (sizeof(struct sadb_address)+sockaddr_size)/
  789. sizeof(uint64_t);
  790. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  791. addr->sadb_address_proto =
  792. pfkey_proto_from_xfrm(x->sel.proto);
  793. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  794. addr->sadb_address_reserved = 0;
  795. sin6 = (struct sockaddr_in6 *) (addr + 1);
  796. sin6->sin6_family = AF_INET6;
  797. sin6->sin6_port = x->sel.sport;
  798. sin6->sin6_flowinfo = 0;
  799. memcpy(&sin6->sin6_addr, x->sel.saddr.a6,
  800. sizeof(struct in6_addr));
  801. sin6->sin6_scope_id = 0;
  802. }
  803. }
  804. #endif
  805. else
  806. BUG();
  807. /* auth key */
  808. if (add_keys && auth_key_size) {
  809. key = (struct sadb_key *) skb_put(skb,
  810. sizeof(struct sadb_key)+auth_key_size);
  811. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  812. sizeof(uint64_t);
  813. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  814. key->sadb_key_bits = x->aalg->alg_key_len;
  815. key->sadb_key_reserved = 0;
  816. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  817. }
  818. /* encrypt key */
  819. if (add_keys && encrypt_key_size) {
  820. key = (struct sadb_key *) skb_put(skb,
  821. sizeof(struct sadb_key)+encrypt_key_size);
  822. key->sadb_key_len = (sizeof(struct sadb_key) +
  823. encrypt_key_size) / sizeof(uint64_t);
  824. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  825. key->sadb_key_bits = x->ealg->alg_key_len;
  826. key->sadb_key_reserved = 0;
  827. memcpy(key + 1, x->ealg->alg_key,
  828. (x->ealg->alg_key_len+7)/8);
  829. }
  830. /* sa */
  831. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  832. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  833. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  834. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  835. kfree_skb(skb);
  836. return ERR_PTR(-EINVAL);
  837. }
  838. sa2->sadb_x_sa2_mode = mode;
  839. sa2->sadb_x_sa2_reserved1 = 0;
  840. sa2->sadb_x_sa2_reserved2 = 0;
  841. sa2->sadb_x_sa2_sequence = 0;
  842. sa2->sadb_x_sa2_reqid = x->props.reqid;
  843. if (natt && natt->encap_type) {
  844. struct sadb_x_nat_t_type *n_type;
  845. struct sadb_x_nat_t_port *n_port;
  846. /* type */
  847. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  848. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  849. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  850. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  851. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  852. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  853. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  854. /* source port */
  855. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  856. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  857. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  858. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  859. n_port->sadb_x_nat_t_port_reserved = 0;
  860. /* dest port */
  861. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  862. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  863. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  864. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  865. n_port->sadb_x_nat_t_port_reserved = 0;
  866. }
  867. /* security context */
  868. if (xfrm_ctx) {
  869. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  870. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  871. sec_ctx->sadb_x_sec_len =
  872. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  873. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  874. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  875. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  876. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  877. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  878. xfrm_ctx->ctx_len);
  879. }
  880. return skb;
  881. }
  882. static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
  883. void **ext_hdrs)
  884. {
  885. struct xfrm_state *x;
  886. struct sadb_lifetime *lifetime;
  887. struct sadb_sa *sa;
  888. struct sadb_key *key;
  889. struct sadb_x_sec_ctx *sec_ctx;
  890. uint16_t proto;
  891. int err;
  892. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  893. if (!sa ||
  894. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  895. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  896. return ERR_PTR(-EINVAL);
  897. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  898. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  899. return ERR_PTR(-EINVAL);
  900. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  901. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  902. return ERR_PTR(-EINVAL);
  903. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  904. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  905. return ERR_PTR(-EINVAL);
  906. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  907. if (proto == 0)
  908. return ERR_PTR(-EINVAL);
  909. /* default error is no buffer space */
  910. err = -ENOBUFS;
  911. /* RFC2367:
  912. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  913. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  914. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  915. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  916. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  917. not true.
  918. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  919. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  920. */
  921. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  922. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  923. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  924. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  925. return ERR_PTR(-EINVAL);
  926. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  927. if (key != NULL &&
  928. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  929. ((key->sadb_key_bits+7) / 8 == 0 ||
  930. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  931. return ERR_PTR(-EINVAL);
  932. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  933. if (key != NULL &&
  934. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  935. ((key->sadb_key_bits+7) / 8 == 0 ||
  936. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  937. return ERR_PTR(-EINVAL);
  938. x = xfrm_state_alloc();
  939. if (x == NULL)
  940. return ERR_PTR(-ENOBUFS);
  941. x->id.proto = proto;
  942. x->id.spi = sa->sadb_sa_spi;
  943. x->props.replay_window = sa->sadb_sa_replay;
  944. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  945. x->props.flags |= XFRM_STATE_NOECN;
  946. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  947. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  948. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  949. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  950. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  951. if (lifetime != NULL) {
  952. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  953. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  954. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  955. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  956. }
  957. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  958. if (lifetime != NULL) {
  959. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  960. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  961. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  962. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  963. }
  964. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  965. if (sec_ctx != NULL) {
  966. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  967. if (!uctx)
  968. goto out;
  969. err = security_xfrm_state_alloc(x, uctx);
  970. kfree(uctx);
  971. if (err)
  972. goto out;
  973. }
  974. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  975. if (sa->sadb_sa_auth) {
  976. int keysize = 0;
  977. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  978. if (!a) {
  979. err = -ENOSYS;
  980. goto out;
  981. }
  982. if (key)
  983. keysize = (key->sadb_key_bits + 7) / 8;
  984. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  985. if (!x->aalg)
  986. goto out;
  987. strcpy(x->aalg->alg_name, a->name);
  988. x->aalg->alg_key_len = 0;
  989. if (key) {
  990. x->aalg->alg_key_len = key->sadb_key_bits;
  991. memcpy(x->aalg->alg_key, key+1, keysize);
  992. }
  993. x->props.aalgo = sa->sadb_sa_auth;
  994. /* x->algo.flags = sa->sadb_sa_flags; */
  995. }
  996. if (sa->sadb_sa_encrypt) {
  997. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  998. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  999. if (!a) {
  1000. err = -ENOSYS;
  1001. goto out;
  1002. }
  1003. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1004. if (!x->calg)
  1005. goto out;
  1006. strcpy(x->calg->alg_name, a->name);
  1007. x->props.calgo = sa->sadb_sa_encrypt;
  1008. } else {
  1009. int keysize = 0;
  1010. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1011. if (!a) {
  1012. err = -ENOSYS;
  1013. goto out;
  1014. }
  1015. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1016. if (key)
  1017. keysize = (key->sadb_key_bits + 7) / 8;
  1018. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1019. if (!x->ealg)
  1020. goto out;
  1021. strcpy(x->ealg->alg_name, a->name);
  1022. x->ealg->alg_key_len = 0;
  1023. if (key) {
  1024. x->ealg->alg_key_len = key->sadb_key_bits;
  1025. memcpy(x->ealg->alg_key, key+1, keysize);
  1026. }
  1027. x->props.ealgo = sa->sadb_sa_encrypt;
  1028. }
  1029. }
  1030. /* x->algo.flags = sa->sadb_sa_flags; */
  1031. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1032. &x->props.saddr);
  1033. if (!x->props.family) {
  1034. err = -EAFNOSUPPORT;
  1035. goto out;
  1036. }
  1037. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1038. &x->id.daddr);
  1039. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1040. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1041. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1042. if (mode < 0) {
  1043. err = -EINVAL;
  1044. goto out;
  1045. }
  1046. x->props.mode = mode;
  1047. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1048. }
  1049. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1050. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1051. /* Nobody uses this, but we try. */
  1052. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1053. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1054. }
  1055. if (!x->sel.family)
  1056. x->sel.family = x->props.family;
  1057. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1058. struct sadb_x_nat_t_type* n_type;
  1059. struct xfrm_encap_tmpl *natt;
  1060. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1061. if (!x->encap)
  1062. goto out;
  1063. natt = x->encap;
  1064. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1065. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1066. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1067. struct sadb_x_nat_t_port* n_port =
  1068. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1069. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1070. }
  1071. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1072. struct sadb_x_nat_t_port* n_port =
  1073. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1074. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1075. }
  1076. }
  1077. err = xfrm_init_state(x);
  1078. if (err)
  1079. goto out;
  1080. x->km.seq = hdr->sadb_msg_seq;
  1081. return x;
  1082. out:
  1083. x->km.state = XFRM_STATE_DEAD;
  1084. xfrm_state_put(x);
  1085. return ERR_PTR(err);
  1086. }
  1087. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1088. {
  1089. return -EOPNOTSUPP;
  1090. }
  1091. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1092. {
  1093. struct sk_buff *resp_skb;
  1094. struct sadb_x_sa2 *sa2;
  1095. struct sadb_address *saddr, *daddr;
  1096. struct sadb_msg *out_hdr;
  1097. struct xfrm_state *x = NULL;
  1098. int mode;
  1099. u32 reqid;
  1100. u8 proto;
  1101. unsigned short family;
  1102. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1103. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1104. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1105. return -EINVAL;
  1106. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1107. if (proto == 0)
  1108. return -EINVAL;
  1109. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1110. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1111. if (mode < 0)
  1112. return -EINVAL;
  1113. reqid = sa2->sadb_x_sa2_reqid;
  1114. } else {
  1115. mode = 0;
  1116. reqid = 0;
  1117. }
  1118. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1119. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1120. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1121. switch (family) {
  1122. case AF_INET:
  1123. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1124. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1125. break;
  1126. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1127. case AF_INET6:
  1128. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1129. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1130. break;
  1131. #endif
  1132. }
  1133. if (hdr->sadb_msg_seq) {
  1134. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1135. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1136. xfrm_state_put(x);
  1137. x = NULL;
  1138. }
  1139. }
  1140. if (!x)
  1141. x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1142. if (x == NULL)
  1143. return -ENOENT;
  1144. resp_skb = ERR_PTR(-ENOENT);
  1145. spin_lock_bh(&x->lock);
  1146. if (x->km.state != XFRM_STATE_DEAD) {
  1147. struct sadb_spirange *range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1148. u32 min_spi, max_spi;
  1149. if (range != NULL) {
  1150. min_spi = range->sadb_spirange_min;
  1151. max_spi = range->sadb_spirange_max;
  1152. } else {
  1153. min_spi = 0x100;
  1154. max_spi = 0x0fffffff;
  1155. }
  1156. xfrm_alloc_spi(x, htonl(min_spi), htonl(max_spi));
  1157. if (x->id.spi)
  1158. resp_skb = pfkey_xfrm_state2msg(x, 0, 3);
  1159. }
  1160. spin_unlock_bh(&x->lock);
  1161. if (IS_ERR(resp_skb)) {
  1162. xfrm_state_put(x);
  1163. return PTR_ERR(resp_skb);
  1164. }
  1165. out_hdr = (struct sadb_msg *) resp_skb->data;
  1166. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1167. out_hdr->sadb_msg_type = SADB_GETSPI;
  1168. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1169. out_hdr->sadb_msg_errno = 0;
  1170. out_hdr->sadb_msg_reserved = 0;
  1171. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1172. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1173. xfrm_state_put(x);
  1174. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
  1175. return 0;
  1176. }
  1177. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1178. {
  1179. struct xfrm_state *x;
  1180. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1181. return -EOPNOTSUPP;
  1182. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1183. return 0;
  1184. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1185. if (x == NULL)
  1186. return 0;
  1187. spin_lock_bh(&x->lock);
  1188. if (x->km.state == XFRM_STATE_ACQ) {
  1189. x->km.state = XFRM_STATE_ERROR;
  1190. wake_up(&km_waitq);
  1191. }
  1192. spin_unlock_bh(&x->lock);
  1193. xfrm_state_put(x);
  1194. return 0;
  1195. }
  1196. static inline int event2poltype(int event)
  1197. {
  1198. switch (event) {
  1199. case XFRM_MSG_DELPOLICY:
  1200. return SADB_X_SPDDELETE;
  1201. case XFRM_MSG_NEWPOLICY:
  1202. return SADB_X_SPDADD;
  1203. case XFRM_MSG_UPDPOLICY:
  1204. return SADB_X_SPDUPDATE;
  1205. case XFRM_MSG_POLEXPIRE:
  1206. // return SADB_X_SPDEXPIRE;
  1207. default:
  1208. printk("pfkey: Unknown policy event %d\n", event);
  1209. break;
  1210. }
  1211. return 0;
  1212. }
  1213. static inline int event2keytype(int event)
  1214. {
  1215. switch (event) {
  1216. case XFRM_MSG_DELSA:
  1217. return SADB_DELETE;
  1218. case XFRM_MSG_NEWSA:
  1219. return SADB_ADD;
  1220. case XFRM_MSG_UPDSA:
  1221. return SADB_UPDATE;
  1222. case XFRM_MSG_EXPIRE:
  1223. return SADB_EXPIRE;
  1224. default:
  1225. printk("pfkey: Unknown SA event %d\n", event);
  1226. break;
  1227. }
  1228. return 0;
  1229. }
  1230. /* ADD/UPD/DEL */
  1231. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1232. {
  1233. struct sk_buff *skb;
  1234. struct sadb_msg *hdr;
  1235. int hsc = 3;
  1236. if (c->event == XFRM_MSG_DELSA)
  1237. hsc = 0;
  1238. skb = pfkey_xfrm_state2msg(x, 0, hsc);
  1239. if (IS_ERR(skb))
  1240. return PTR_ERR(skb);
  1241. hdr = (struct sadb_msg *) skb->data;
  1242. hdr->sadb_msg_version = PF_KEY_V2;
  1243. hdr->sadb_msg_type = event2keytype(c->event);
  1244. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1245. hdr->sadb_msg_errno = 0;
  1246. hdr->sadb_msg_reserved = 0;
  1247. hdr->sadb_msg_seq = c->seq;
  1248. hdr->sadb_msg_pid = c->pid;
  1249. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1250. return 0;
  1251. }
  1252. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1253. {
  1254. struct xfrm_state *x;
  1255. int err;
  1256. struct km_event c;
  1257. x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
  1258. if (IS_ERR(x))
  1259. return PTR_ERR(x);
  1260. xfrm_state_hold(x);
  1261. if (hdr->sadb_msg_type == SADB_ADD)
  1262. err = xfrm_state_add(x);
  1263. else
  1264. err = xfrm_state_update(x);
  1265. xfrm_audit_state_add(x, err ? 0 : 1,
  1266. audit_get_loginuid(current->audit_context), 0);
  1267. if (err < 0) {
  1268. x->km.state = XFRM_STATE_DEAD;
  1269. __xfrm_state_put(x);
  1270. goto out;
  1271. }
  1272. if (hdr->sadb_msg_type == SADB_ADD)
  1273. c.event = XFRM_MSG_NEWSA;
  1274. else
  1275. c.event = XFRM_MSG_UPDSA;
  1276. c.seq = hdr->sadb_msg_seq;
  1277. c.pid = hdr->sadb_msg_pid;
  1278. km_state_notify(x, &c);
  1279. out:
  1280. xfrm_state_put(x);
  1281. return err;
  1282. }
  1283. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1284. {
  1285. struct xfrm_state *x;
  1286. struct km_event c;
  1287. int err;
  1288. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1289. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1290. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1291. return -EINVAL;
  1292. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1293. if (x == NULL)
  1294. return -ESRCH;
  1295. if ((err = security_xfrm_state_delete(x)))
  1296. goto out;
  1297. if (xfrm_state_kern(x)) {
  1298. err = -EPERM;
  1299. goto out;
  1300. }
  1301. err = xfrm_state_delete(x);
  1302. if (err < 0)
  1303. goto out;
  1304. c.seq = hdr->sadb_msg_seq;
  1305. c.pid = hdr->sadb_msg_pid;
  1306. c.event = XFRM_MSG_DELSA;
  1307. km_state_notify(x, &c);
  1308. out:
  1309. xfrm_audit_state_delete(x, err ? 0 : 1,
  1310. audit_get_loginuid(current->audit_context), 0);
  1311. xfrm_state_put(x);
  1312. return err;
  1313. }
  1314. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1315. {
  1316. __u8 proto;
  1317. struct sk_buff *out_skb;
  1318. struct sadb_msg *out_hdr;
  1319. struct xfrm_state *x;
  1320. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1321. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1322. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1323. return -EINVAL;
  1324. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1325. if (x == NULL)
  1326. return -ESRCH;
  1327. out_skb = pfkey_xfrm_state2msg(x, 1, 3);
  1328. proto = x->id.proto;
  1329. xfrm_state_put(x);
  1330. if (IS_ERR(out_skb))
  1331. return PTR_ERR(out_skb);
  1332. out_hdr = (struct sadb_msg *) out_skb->data;
  1333. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1334. out_hdr->sadb_msg_type = SADB_DUMP;
  1335. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1336. out_hdr->sadb_msg_errno = 0;
  1337. out_hdr->sadb_msg_reserved = 0;
  1338. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1339. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1340. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1341. return 0;
  1342. }
  1343. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1344. gfp_t allocation)
  1345. {
  1346. struct sk_buff *skb;
  1347. struct sadb_msg *hdr;
  1348. int len, auth_len, enc_len, i;
  1349. auth_len = xfrm_count_auth_supported();
  1350. if (auth_len) {
  1351. auth_len *= sizeof(struct sadb_alg);
  1352. auth_len += sizeof(struct sadb_supported);
  1353. }
  1354. enc_len = xfrm_count_enc_supported();
  1355. if (enc_len) {
  1356. enc_len *= sizeof(struct sadb_alg);
  1357. enc_len += sizeof(struct sadb_supported);
  1358. }
  1359. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1360. skb = alloc_skb(len + 16, allocation);
  1361. if (!skb)
  1362. goto out_put_algs;
  1363. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1364. pfkey_hdr_dup(hdr, orig);
  1365. hdr->sadb_msg_errno = 0;
  1366. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1367. if (auth_len) {
  1368. struct sadb_supported *sp;
  1369. struct sadb_alg *ap;
  1370. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1371. ap = (struct sadb_alg *) (sp + 1);
  1372. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1373. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1374. for (i = 0; ; i++) {
  1375. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1376. if (!aalg)
  1377. break;
  1378. if (aalg->available)
  1379. *ap++ = aalg->desc;
  1380. }
  1381. }
  1382. if (enc_len) {
  1383. struct sadb_supported *sp;
  1384. struct sadb_alg *ap;
  1385. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1386. ap = (struct sadb_alg *) (sp + 1);
  1387. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1388. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1389. for (i = 0; ; i++) {
  1390. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1391. if (!ealg)
  1392. break;
  1393. if (ealg->available)
  1394. *ap++ = ealg->desc;
  1395. }
  1396. }
  1397. out_put_algs:
  1398. return skb;
  1399. }
  1400. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1401. {
  1402. struct pfkey_sock *pfk = pfkey_sk(sk);
  1403. struct sk_buff *supp_skb;
  1404. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1405. return -EINVAL;
  1406. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1407. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1408. return -EEXIST;
  1409. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1410. }
  1411. xfrm_probe_algs();
  1412. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1413. if (!supp_skb) {
  1414. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1415. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1416. return -ENOBUFS;
  1417. }
  1418. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
  1419. return 0;
  1420. }
  1421. static int key_notify_sa_flush(struct km_event *c)
  1422. {
  1423. struct sk_buff *skb;
  1424. struct sadb_msg *hdr;
  1425. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1426. if (!skb)
  1427. return -ENOBUFS;
  1428. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1429. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1430. hdr->sadb_msg_type = SADB_FLUSH;
  1431. hdr->sadb_msg_seq = c->seq;
  1432. hdr->sadb_msg_pid = c->pid;
  1433. hdr->sadb_msg_version = PF_KEY_V2;
  1434. hdr->sadb_msg_errno = (uint8_t) 0;
  1435. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1436. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1437. return 0;
  1438. }
  1439. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1440. {
  1441. unsigned proto;
  1442. struct km_event c;
  1443. struct xfrm_audit audit_info;
  1444. int err;
  1445. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1446. if (proto == 0)
  1447. return -EINVAL;
  1448. audit_info.loginuid = audit_get_loginuid(current->audit_context);
  1449. audit_info.secid = 0;
  1450. err = xfrm_state_flush(proto, &audit_info);
  1451. if (err)
  1452. return err;
  1453. c.data.proto = proto;
  1454. c.seq = hdr->sadb_msg_seq;
  1455. c.pid = hdr->sadb_msg_pid;
  1456. c.event = XFRM_MSG_FLUSHSA;
  1457. km_state_notify(NULL, &c);
  1458. return 0;
  1459. }
  1460. struct pfkey_dump_data
  1461. {
  1462. struct sk_buff *skb;
  1463. struct sadb_msg *hdr;
  1464. struct sock *sk;
  1465. };
  1466. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1467. {
  1468. struct pfkey_dump_data *data = ptr;
  1469. struct sk_buff *out_skb;
  1470. struct sadb_msg *out_hdr;
  1471. out_skb = pfkey_xfrm_state2msg(x, 1, 3);
  1472. if (IS_ERR(out_skb))
  1473. return PTR_ERR(out_skb);
  1474. out_hdr = (struct sadb_msg *) out_skb->data;
  1475. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  1476. out_hdr->sadb_msg_type = SADB_DUMP;
  1477. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1478. out_hdr->sadb_msg_errno = 0;
  1479. out_hdr->sadb_msg_reserved = 0;
  1480. out_hdr->sadb_msg_seq = count;
  1481. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  1482. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  1483. return 0;
  1484. }
  1485. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1486. {
  1487. u8 proto;
  1488. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  1489. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1490. if (proto == 0)
  1491. return -EINVAL;
  1492. return xfrm_state_walk(proto, dump_sa, &data);
  1493. }
  1494. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1495. {
  1496. struct pfkey_sock *pfk = pfkey_sk(sk);
  1497. int satype = hdr->sadb_msg_satype;
  1498. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1499. /* XXX we mangle packet... */
  1500. hdr->sadb_msg_errno = 0;
  1501. if (satype != 0 && satype != 1)
  1502. return -EINVAL;
  1503. pfk->promisc = satype;
  1504. }
  1505. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
  1506. return 0;
  1507. }
  1508. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1509. {
  1510. int i;
  1511. u32 reqid = *(u32*)ptr;
  1512. for (i=0; i<xp->xfrm_nr; i++) {
  1513. if (xp->xfrm_vec[i].reqid == reqid)
  1514. return -EEXIST;
  1515. }
  1516. return 0;
  1517. }
  1518. static u32 gen_reqid(void)
  1519. {
  1520. u32 start;
  1521. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1522. start = reqid;
  1523. do {
  1524. ++reqid;
  1525. if (reqid == 0)
  1526. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1527. if (xfrm_policy_walk(XFRM_POLICY_TYPE_MAIN, check_reqid,
  1528. (void*)&reqid) != -EEXIST)
  1529. return reqid;
  1530. } while (reqid != start);
  1531. return 0;
  1532. }
  1533. static int
  1534. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1535. {
  1536. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1537. struct sockaddr_in *sin;
  1538. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1539. struct sockaddr_in6 *sin6;
  1540. #endif
  1541. int mode;
  1542. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1543. return -ELOOP;
  1544. if (rq->sadb_x_ipsecrequest_mode == 0)
  1545. return -EINVAL;
  1546. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1547. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1548. return -EINVAL;
  1549. t->mode = mode;
  1550. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1551. t->optional = 1;
  1552. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1553. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1554. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1555. t->reqid = 0;
  1556. if (!t->reqid && !(t->reqid = gen_reqid()))
  1557. return -ENOBUFS;
  1558. }
  1559. /* addresses present only in tunnel mode */
  1560. if (t->mode == XFRM_MODE_TUNNEL) {
  1561. struct sockaddr *sa;
  1562. sa = (struct sockaddr *)(rq+1);
  1563. switch(sa->sa_family) {
  1564. case AF_INET:
  1565. sin = (struct sockaddr_in*)sa;
  1566. t->saddr.a4 = sin->sin_addr.s_addr;
  1567. sin++;
  1568. if (sin->sin_family != AF_INET)
  1569. return -EINVAL;
  1570. t->id.daddr.a4 = sin->sin_addr.s_addr;
  1571. break;
  1572. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1573. case AF_INET6:
  1574. sin6 = (struct sockaddr_in6*)sa;
  1575. memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1576. sin6++;
  1577. if (sin6->sin6_family != AF_INET6)
  1578. return -EINVAL;
  1579. memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1580. break;
  1581. #endif
  1582. default:
  1583. return -EINVAL;
  1584. }
  1585. t->encap_family = sa->sa_family;
  1586. } else
  1587. t->encap_family = xp->family;
  1588. /* No way to set this via kame pfkey */
  1589. t->aalgos = t->ealgos = t->calgos = ~0;
  1590. xp->xfrm_nr++;
  1591. return 0;
  1592. }
  1593. static int
  1594. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1595. {
  1596. int err;
  1597. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1598. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1599. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1600. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1601. return err;
  1602. len -= rq->sadb_x_ipsecrequest_len;
  1603. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1604. }
  1605. return 0;
  1606. }
  1607. static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
  1608. {
  1609. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1610. if (xfrm_ctx) {
  1611. int len = sizeof(struct sadb_x_sec_ctx);
  1612. len += xfrm_ctx->ctx_len;
  1613. return PFKEY_ALIGN8(len);
  1614. }
  1615. return 0;
  1616. }
  1617. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1618. {
  1619. struct xfrm_tmpl *t;
  1620. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1621. int socklen = 0;
  1622. int i;
  1623. for (i=0; i<xp->xfrm_nr; i++) {
  1624. t = xp->xfrm_vec + i;
  1625. socklen += (t->encap_family == AF_INET ?
  1626. sizeof(struct sockaddr_in) :
  1627. sizeof(struct sockaddr_in6));
  1628. }
  1629. return sizeof(struct sadb_msg) +
  1630. (sizeof(struct sadb_lifetime) * 3) +
  1631. (sizeof(struct sadb_address) * 2) +
  1632. (sockaddr_size * 2) +
  1633. sizeof(struct sadb_x_policy) +
  1634. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1635. (socklen * 2) +
  1636. pfkey_xfrm_policy2sec_ctx_size(xp);
  1637. }
  1638. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1639. {
  1640. struct sk_buff *skb;
  1641. int size;
  1642. size = pfkey_xfrm_policy2msg_size(xp);
  1643. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1644. if (skb == NULL)
  1645. return ERR_PTR(-ENOBUFS);
  1646. return skb;
  1647. }
  1648. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1649. {
  1650. struct sadb_msg *hdr;
  1651. struct sadb_address *addr;
  1652. struct sadb_lifetime *lifetime;
  1653. struct sadb_x_policy *pol;
  1654. struct sockaddr_in *sin;
  1655. struct sadb_x_sec_ctx *sec_ctx;
  1656. struct xfrm_sec_ctx *xfrm_ctx;
  1657. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1658. struct sockaddr_in6 *sin6;
  1659. #endif
  1660. int i;
  1661. int size;
  1662. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1663. int socklen = (xp->family == AF_INET ?
  1664. sizeof(struct sockaddr_in) :
  1665. sizeof(struct sockaddr_in6));
  1666. size = pfkey_xfrm_policy2msg_size(xp);
  1667. /* call should fill header later */
  1668. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1669. memset(hdr, 0, size); /* XXX do we need this ? */
  1670. /* src address */
  1671. addr = (struct sadb_address*) skb_put(skb,
  1672. sizeof(struct sadb_address)+sockaddr_size);
  1673. addr->sadb_address_len =
  1674. (sizeof(struct sadb_address)+sockaddr_size)/
  1675. sizeof(uint64_t);
  1676. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1677. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1678. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1679. addr->sadb_address_reserved = 0;
  1680. /* src address */
  1681. if (xp->family == AF_INET) {
  1682. sin = (struct sockaddr_in *) (addr + 1);
  1683. sin->sin_family = AF_INET;
  1684. sin->sin_addr.s_addr = xp->selector.saddr.a4;
  1685. sin->sin_port = xp->selector.sport;
  1686. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1687. }
  1688. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1689. else if (xp->family == AF_INET6) {
  1690. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1691. sin6->sin6_family = AF_INET6;
  1692. sin6->sin6_port = xp->selector.sport;
  1693. sin6->sin6_flowinfo = 0;
  1694. memcpy(&sin6->sin6_addr, xp->selector.saddr.a6,
  1695. sizeof(struct in6_addr));
  1696. sin6->sin6_scope_id = 0;
  1697. }
  1698. #endif
  1699. else
  1700. BUG();
  1701. /* dst address */
  1702. addr = (struct sadb_address*) skb_put(skb,
  1703. sizeof(struct sadb_address)+sockaddr_size);
  1704. addr->sadb_address_len =
  1705. (sizeof(struct sadb_address)+sockaddr_size)/
  1706. sizeof(uint64_t);
  1707. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1708. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1709. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1710. addr->sadb_address_reserved = 0;
  1711. if (xp->family == AF_INET) {
  1712. sin = (struct sockaddr_in *) (addr + 1);
  1713. sin->sin_family = AF_INET;
  1714. sin->sin_addr.s_addr = xp->selector.daddr.a4;
  1715. sin->sin_port = xp->selector.dport;
  1716. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1717. }
  1718. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1719. else if (xp->family == AF_INET6) {
  1720. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1721. sin6->sin6_family = AF_INET6;
  1722. sin6->sin6_port = xp->selector.dport;
  1723. sin6->sin6_flowinfo = 0;
  1724. memcpy(&sin6->sin6_addr, xp->selector.daddr.a6,
  1725. sizeof(struct in6_addr));
  1726. sin6->sin6_scope_id = 0;
  1727. }
  1728. #endif
  1729. else
  1730. BUG();
  1731. /* hard time */
  1732. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1733. sizeof(struct sadb_lifetime));
  1734. lifetime->sadb_lifetime_len =
  1735. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1736. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1737. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1738. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1739. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1740. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1741. /* soft time */
  1742. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1743. sizeof(struct sadb_lifetime));
  1744. lifetime->sadb_lifetime_len =
  1745. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1746. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1747. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1748. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1749. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1750. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1751. /* current time */
  1752. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1753. sizeof(struct sadb_lifetime));
  1754. lifetime->sadb_lifetime_len =
  1755. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1756. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1757. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1758. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1759. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1760. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1761. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1762. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1763. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1764. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1765. if (xp->action == XFRM_POLICY_ALLOW) {
  1766. if (xp->xfrm_nr)
  1767. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1768. else
  1769. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1770. }
  1771. pol->sadb_x_policy_dir = dir+1;
  1772. pol->sadb_x_policy_id = xp->index;
  1773. pol->sadb_x_policy_priority = xp->priority;
  1774. for (i=0; i<xp->xfrm_nr; i++) {
  1775. struct sadb_x_ipsecrequest *rq;
  1776. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1777. int req_size;
  1778. int mode;
  1779. req_size = sizeof(struct sadb_x_ipsecrequest);
  1780. if (t->mode == XFRM_MODE_TUNNEL)
  1781. req_size += ((t->encap_family == AF_INET ?
  1782. sizeof(struct sockaddr_in) :
  1783. sizeof(struct sockaddr_in6)) * 2);
  1784. else
  1785. size -= 2*socklen;
  1786. rq = (void*)skb_put(skb, req_size);
  1787. pol->sadb_x_policy_len += req_size/8;
  1788. memset(rq, 0, sizeof(*rq));
  1789. rq->sadb_x_ipsecrequest_len = req_size;
  1790. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1791. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1792. return -EINVAL;
  1793. rq->sadb_x_ipsecrequest_mode = mode;
  1794. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1795. if (t->reqid)
  1796. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1797. if (t->optional)
  1798. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1799. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1800. if (t->mode == XFRM_MODE_TUNNEL) {
  1801. switch (t->encap_family) {
  1802. case AF_INET:
  1803. sin = (void*)(rq+1);
  1804. sin->sin_family = AF_INET;
  1805. sin->sin_addr.s_addr = t->saddr.a4;
  1806. sin->sin_port = 0;
  1807. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1808. sin++;
  1809. sin->sin_family = AF_INET;
  1810. sin->sin_addr.s_addr = t->id.daddr.a4;
  1811. sin->sin_port = 0;
  1812. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1813. break;
  1814. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1815. case AF_INET6:
  1816. sin6 = (void*)(rq+1);
  1817. sin6->sin6_family = AF_INET6;
  1818. sin6->sin6_port = 0;
  1819. sin6->sin6_flowinfo = 0;
  1820. memcpy(&sin6->sin6_addr, t->saddr.a6,
  1821. sizeof(struct in6_addr));
  1822. sin6->sin6_scope_id = 0;
  1823. sin6++;
  1824. sin6->sin6_family = AF_INET6;
  1825. sin6->sin6_port = 0;
  1826. sin6->sin6_flowinfo = 0;
  1827. memcpy(&sin6->sin6_addr, t->id.daddr.a6,
  1828. sizeof(struct in6_addr));
  1829. sin6->sin6_scope_id = 0;
  1830. break;
  1831. #endif
  1832. default:
  1833. break;
  1834. }
  1835. }
  1836. }
  1837. /* security context */
  1838. if ((xfrm_ctx = xp->security)) {
  1839. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1840. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1841. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1842. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1843. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1844. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1845. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1846. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1847. xfrm_ctx->ctx_len);
  1848. }
  1849. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1850. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1851. return 0;
  1852. }
  1853. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1854. {
  1855. struct sk_buff *out_skb;
  1856. struct sadb_msg *out_hdr;
  1857. int err;
  1858. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1859. if (IS_ERR(out_skb)) {
  1860. err = PTR_ERR(out_skb);
  1861. goto out;
  1862. }
  1863. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1864. if (err < 0)
  1865. return err;
  1866. out_hdr = (struct sadb_msg *) out_skb->data;
  1867. out_hdr->sadb_msg_version = PF_KEY_V2;
  1868. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1869. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1870. else
  1871. out_hdr->sadb_msg_type = event2poltype(c->event);
  1872. out_hdr->sadb_msg_errno = 0;
  1873. out_hdr->sadb_msg_seq = c->seq;
  1874. out_hdr->sadb_msg_pid = c->pid;
  1875. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1876. out:
  1877. return 0;
  1878. }
  1879. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1880. {
  1881. int err = 0;
  1882. struct sadb_lifetime *lifetime;
  1883. struct sadb_address *sa;
  1884. struct sadb_x_policy *pol;
  1885. struct xfrm_policy *xp;
  1886. struct km_event c;
  1887. struct sadb_x_sec_ctx *sec_ctx;
  1888. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1889. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1890. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1891. return -EINVAL;
  1892. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1893. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1894. return -EINVAL;
  1895. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1896. return -EINVAL;
  1897. xp = xfrm_policy_alloc(GFP_KERNEL);
  1898. if (xp == NULL)
  1899. return -ENOBUFS;
  1900. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1901. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1902. xp->priority = pol->sadb_x_policy_priority;
  1903. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1904. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1905. if (!xp->family) {
  1906. err = -EINVAL;
  1907. goto out;
  1908. }
  1909. xp->selector.family = xp->family;
  1910. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1911. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1912. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1913. if (xp->selector.sport)
  1914. xp->selector.sport_mask = htons(0xffff);
  1915. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1916. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1917. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1918. /* Amusing, we set this twice. KAME apps appear to set same value
  1919. * in both addresses.
  1920. */
  1921. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1922. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1923. if (xp->selector.dport)
  1924. xp->selector.dport_mask = htons(0xffff);
  1925. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1926. if (sec_ctx != NULL) {
  1927. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1928. if (!uctx) {
  1929. err = -ENOBUFS;
  1930. goto out;
  1931. }
  1932. err = security_xfrm_policy_alloc(xp, uctx);
  1933. kfree(uctx);
  1934. if (err)
  1935. goto out;
  1936. }
  1937. xp->lft.soft_byte_limit = XFRM_INF;
  1938. xp->lft.hard_byte_limit = XFRM_INF;
  1939. xp->lft.soft_packet_limit = XFRM_INF;
  1940. xp->lft.hard_packet_limit = XFRM_INF;
  1941. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1942. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1943. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1944. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1945. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1946. }
  1947. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1948. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1949. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1950. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1951. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1952. }
  1953. xp->xfrm_nr = 0;
  1954. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1955. (err = parse_ipsecrequests(xp, pol)) < 0)
  1956. goto out;
  1957. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1958. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1959. xfrm_audit_policy_add(xp, err ? 0 : 1,
  1960. audit_get_loginuid(current->audit_context), 0);
  1961. if (err)
  1962. goto out;
  1963. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1964. c.event = XFRM_MSG_UPDPOLICY;
  1965. else
  1966. c.event = XFRM_MSG_NEWPOLICY;
  1967. c.seq = hdr->sadb_msg_seq;
  1968. c.pid = hdr->sadb_msg_pid;
  1969. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1970. xfrm_pol_put(xp);
  1971. return 0;
  1972. out:
  1973. security_xfrm_policy_free(xp);
  1974. kfree(xp);
  1975. return err;
  1976. }
  1977. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1978. {
  1979. int err;
  1980. struct sadb_address *sa;
  1981. struct sadb_x_policy *pol;
  1982. struct xfrm_policy *xp, tmp;
  1983. struct xfrm_selector sel;
  1984. struct km_event c;
  1985. struct sadb_x_sec_ctx *sec_ctx;
  1986. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1987. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1988. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1989. return -EINVAL;
  1990. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1991. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1992. return -EINVAL;
  1993. memset(&sel, 0, sizeof(sel));
  1994. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1995. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1996. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1997. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1998. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1999. if (sel.sport)
  2000. sel.sport_mask = htons(0xffff);
  2001. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  2002. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2003. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2004. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2005. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2006. if (sel.dport)
  2007. sel.dport_mask = htons(0xffff);
  2008. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  2009. memset(&tmp, 0, sizeof(struct xfrm_policy));
  2010. if (sec_ctx != NULL) {
  2011. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2012. if (!uctx)
  2013. return -ENOMEM;
  2014. err = security_xfrm_policy_alloc(&tmp, uctx);
  2015. kfree(uctx);
  2016. if (err)
  2017. return err;
  2018. }
  2019. xp = xfrm_policy_bysel_ctx(XFRM_POLICY_TYPE_MAIN, pol->sadb_x_policy_dir-1,
  2020. &sel, tmp.security, 1, &err);
  2021. security_xfrm_policy_free(&tmp);
  2022. if (xp == NULL)
  2023. return -ENOENT;
  2024. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2025. audit_get_loginuid(current->audit_context), 0);
  2026. if (err)
  2027. goto out;
  2028. c.seq = hdr->sadb_msg_seq;
  2029. c.pid = hdr->sadb_msg_pid;
  2030. c.event = XFRM_MSG_DELPOLICY;
  2031. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2032. out:
  2033. xfrm_pol_put(xp);
  2034. return err;
  2035. }
  2036. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  2037. {
  2038. int err;
  2039. struct sk_buff *out_skb;
  2040. struct sadb_msg *out_hdr;
  2041. err = 0;
  2042. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2043. if (IS_ERR(out_skb)) {
  2044. err = PTR_ERR(out_skb);
  2045. goto out;
  2046. }
  2047. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2048. if (err < 0)
  2049. goto out;
  2050. out_hdr = (struct sadb_msg *) out_skb->data;
  2051. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2052. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2053. out_hdr->sadb_msg_satype = 0;
  2054. out_hdr->sadb_msg_errno = 0;
  2055. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2056. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2057. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  2058. err = 0;
  2059. out:
  2060. return err;
  2061. }
  2062. #ifdef CONFIG_NET_KEY_MIGRATE
  2063. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2064. {
  2065. switch (family) {
  2066. case AF_INET:
  2067. return PFKEY_ALIGN8(sizeof(struct sockaddr_in) * 2);
  2068. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2069. case AF_INET6:
  2070. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6) * 2);
  2071. #endif
  2072. default:
  2073. return 0;
  2074. }
  2075. /* NOTREACHED */
  2076. }
  2077. static int parse_sockaddr_pair(struct sadb_x_ipsecrequest *rq,
  2078. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2079. u16 *family)
  2080. {
  2081. struct sockaddr *sa = (struct sockaddr *)(rq + 1);
  2082. if (rq->sadb_x_ipsecrequest_len <
  2083. pfkey_sockaddr_pair_size(sa->sa_family))
  2084. return -EINVAL;
  2085. switch (sa->sa_family) {
  2086. case AF_INET:
  2087. {
  2088. struct sockaddr_in *sin;
  2089. sin = (struct sockaddr_in *)sa;
  2090. if ((sin+1)->sin_family != AF_INET)
  2091. return -EINVAL;
  2092. memcpy(&saddr->a4, &sin->sin_addr, sizeof(saddr->a4));
  2093. sin++;
  2094. memcpy(&daddr->a4, &sin->sin_addr, sizeof(daddr->a4));
  2095. *family = AF_INET;
  2096. break;
  2097. }
  2098. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2099. case AF_INET6:
  2100. {
  2101. struct sockaddr_in6 *sin6;
  2102. sin6 = (struct sockaddr_in6 *)sa;
  2103. if ((sin6+1)->sin6_family != AF_INET6)
  2104. return -EINVAL;
  2105. memcpy(&saddr->a6, &sin6->sin6_addr,
  2106. sizeof(saddr->a6));
  2107. sin6++;
  2108. memcpy(&daddr->a6, &sin6->sin6_addr,
  2109. sizeof(daddr->a6));
  2110. *family = AF_INET6;
  2111. break;
  2112. }
  2113. #endif
  2114. default:
  2115. return -EINVAL;
  2116. }
  2117. return 0;
  2118. }
  2119. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2120. struct xfrm_migrate *m)
  2121. {
  2122. int err;
  2123. struct sadb_x_ipsecrequest *rq2;
  2124. int mode;
  2125. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2126. len < rq1->sadb_x_ipsecrequest_len)
  2127. return -EINVAL;
  2128. /* old endoints */
  2129. err = parse_sockaddr_pair(rq1, &m->old_saddr, &m->old_daddr,
  2130. &m->old_family);
  2131. if (err)
  2132. return err;
  2133. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2134. len -= rq1->sadb_x_ipsecrequest_len;
  2135. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2136. len < rq2->sadb_x_ipsecrequest_len)
  2137. return -EINVAL;
  2138. /* new endpoints */
  2139. err = parse_sockaddr_pair(rq2, &m->new_saddr, &m->new_daddr,
  2140. &m->new_family);
  2141. if (err)
  2142. return err;
  2143. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2144. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2145. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2146. return -EINVAL;
  2147. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2148. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2149. return -EINVAL;
  2150. m->mode = mode;
  2151. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2152. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2153. rq2->sadb_x_ipsecrequest_len));
  2154. }
  2155. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2156. struct sadb_msg *hdr, void **ext_hdrs)
  2157. {
  2158. int i, len, ret, err = -EINVAL;
  2159. u8 dir;
  2160. struct sadb_address *sa;
  2161. struct sadb_x_policy *pol;
  2162. struct sadb_x_ipsecrequest *rq;
  2163. struct xfrm_selector sel;
  2164. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2165. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2166. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2167. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2168. err = -EINVAL;
  2169. goto out;
  2170. }
  2171. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2172. if (!pol) {
  2173. err = -EINVAL;
  2174. goto out;
  2175. }
  2176. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2177. err = -EINVAL;
  2178. goto out;
  2179. }
  2180. dir = pol->sadb_x_policy_dir - 1;
  2181. memset(&sel, 0, sizeof(sel));
  2182. /* set source address info of selector */
  2183. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2184. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2185. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2186. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2187. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2188. if (sel.sport)
  2189. sel.sport_mask = htons(0xffff);
  2190. /* set destination address info of selector */
  2191. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2192. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2193. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2194. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2195. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2196. if (sel.dport)
  2197. sel.dport_mask = htons(0xffff);
  2198. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2199. /* extract ipsecrequests */
  2200. i = 0;
  2201. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2202. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2203. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2204. if (ret < 0) {
  2205. err = ret;
  2206. goto out;
  2207. } else {
  2208. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2209. len -= ret;
  2210. i++;
  2211. }
  2212. }
  2213. if (!i || len > 0) {
  2214. err = -EINVAL;
  2215. goto out;
  2216. }
  2217. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i);
  2218. out:
  2219. return err;
  2220. }
  2221. #else
  2222. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2223. struct sadb_msg *hdr, void **ext_hdrs)
  2224. {
  2225. return -ENOPROTOOPT;
  2226. }
  2227. #endif
  2228. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2229. {
  2230. unsigned int dir;
  2231. int err = 0, delete;
  2232. struct sadb_x_policy *pol;
  2233. struct xfrm_policy *xp;
  2234. struct km_event c;
  2235. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2236. return -EINVAL;
  2237. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2238. if (dir >= XFRM_POLICY_MAX)
  2239. return -EINVAL;
  2240. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2241. xp = xfrm_policy_byid(XFRM_POLICY_TYPE_MAIN, dir, pol->sadb_x_policy_id,
  2242. delete, &err);
  2243. if (xp == NULL)
  2244. return -ENOENT;
  2245. if (delete) {
  2246. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2247. audit_get_loginuid(current->audit_context), 0);
  2248. if (err)
  2249. goto out;
  2250. c.seq = hdr->sadb_msg_seq;
  2251. c.pid = hdr->sadb_msg_pid;
  2252. c.data.byid = 1;
  2253. c.event = XFRM_MSG_DELPOLICY;
  2254. km_policy_notify(xp, dir, &c);
  2255. } else {
  2256. err = key_pol_get_resp(sk, xp, hdr, dir);
  2257. }
  2258. out:
  2259. xfrm_pol_put(xp);
  2260. return err;
  2261. }
  2262. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2263. {
  2264. struct pfkey_dump_data *data = ptr;
  2265. struct sk_buff *out_skb;
  2266. struct sadb_msg *out_hdr;
  2267. int err;
  2268. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2269. if (IS_ERR(out_skb))
  2270. return PTR_ERR(out_skb);
  2271. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2272. if (err < 0)
  2273. return err;
  2274. out_hdr = (struct sadb_msg *) out_skb->data;
  2275. out_hdr->sadb_msg_version = data->hdr->sadb_msg_version;
  2276. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2277. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2278. out_hdr->sadb_msg_errno = 0;
  2279. out_hdr->sadb_msg_seq = count;
  2280. out_hdr->sadb_msg_pid = data->hdr->sadb_msg_pid;
  2281. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, data->sk);
  2282. return 0;
  2283. }
  2284. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2285. {
  2286. struct pfkey_dump_data data = { .skb = skb, .hdr = hdr, .sk = sk };
  2287. return xfrm_policy_walk(XFRM_POLICY_TYPE_MAIN, dump_sp, &data);
  2288. }
  2289. static int key_notify_policy_flush(struct km_event *c)
  2290. {
  2291. struct sk_buff *skb_out;
  2292. struct sadb_msg *hdr;
  2293. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2294. if (!skb_out)
  2295. return -ENOBUFS;
  2296. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2297. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2298. hdr->sadb_msg_seq = c->seq;
  2299. hdr->sadb_msg_pid = c->pid;
  2300. hdr->sadb_msg_version = PF_KEY_V2;
  2301. hdr->sadb_msg_errno = (uint8_t) 0;
  2302. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2303. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
  2304. return 0;
  2305. }
  2306. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2307. {
  2308. struct km_event c;
  2309. struct xfrm_audit audit_info;
  2310. int err;
  2311. audit_info.loginuid = audit_get_loginuid(current->audit_context);
  2312. audit_info.secid = 0;
  2313. err = xfrm_policy_flush(XFRM_POLICY_TYPE_MAIN, &audit_info);
  2314. if (err)
  2315. return err;
  2316. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2317. c.event = XFRM_MSG_FLUSHPOLICY;
  2318. c.pid = hdr->sadb_msg_pid;
  2319. c.seq = hdr->sadb_msg_seq;
  2320. km_policy_notify(NULL, 0, &c);
  2321. return 0;
  2322. }
  2323. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2324. struct sadb_msg *hdr, void **ext_hdrs);
  2325. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2326. [SADB_RESERVED] = pfkey_reserved,
  2327. [SADB_GETSPI] = pfkey_getspi,
  2328. [SADB_UPDATE] = pfkey_add,
  2329. [SADB_ADD] = pfkey_add,
  2330. [SADB_DELETE] = pfkey_delete,
  2331. [SADB_GET] = pfkey_get,
  2332. [SADB_ACQUIRE] = pfkey_acquire,
  2333. [SADB_REGISTER] = pfkey_register,
  2334. [SADB_EXPIRE] = NULL,
  2335. [SADB_FLUSH] = pfkey_flush,
  2336. [SADB_DUMP] = pfkey_dump,
  2337. [SADB_X_PROMISC] = pfkey_promisc,
  2338. [SADB_X_PCHANGE] = NULL,
  2339. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2340. [SADB_X_SPDADD] = pfkey_spdadd,
  2341. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2342. [SADB_X_SPDGET] = pfkey_spdget,
  2343. [SADB_X_SPDACQUIRE] = NULL,
  2344. [SADB_X_SPDDUMP] = pfkey_spddump,
  2345. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2346. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2347. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2348. [SADB_X_MIGRATE] = pfkey_migrate,
  2349. };
  2350. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  2351. {
  2352. void *ext_hdrs[SADB_EXT_MAX];
  2353. int err;
  2354. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2355. BROADCAST_PROMISC_ONLY, NULL);
  2356. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2357. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2358. if (!err) {
  2359. err = -EOPNOTSUPP;
  2360. if (pfkey_funcs[hdr->sadb_msg_type])
  2361. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2362. }
  2363. return err;
  2364. }
  2365. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2366. {
  2367. struct sadb_msg *hdr = NULL;
  2368. if (skb->len < sizeof(*hdr)) {
  2369. *errp = -EMSGSIZE;
  2370. } else {
  2371. hdr = (struct sadb_msg *) skb->data;
  2372. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2373. hdr->sadb_msg_reserved != 0 ||
  2374. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2375. hdr->sadb_msg_type > SADB_MAX)) {
  2376. hdr = NULL;
  2377. *errp = -EINVAL;
  2378. } else if (hdr->sadb_msg_len != (skb->len /
  2379. sizeof(uint64_t)) ||
  2380. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2381. sizeof(uint64_t))) {
  2382. hdr = NULL;
  2383. *errp = -EMSGSIZE;
  2384. } else {
  2385. *errp = 0;
  2386. }
  2387. }
  2388. return hdr;
  2389. }
  2390. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2391. {
  2392. return t->aalgos & (1 << d->desc.sadb_alg_id);
  2393. }
  2394. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2395. {
  2396. return t->ealgos & (1 << d->desc.sadb_alg_id);
  2397. }
  2398. static int count_ah_combs(struct xfrm_tmpl *t)
  2399. {
  2400. int i, sz = 0;
  2401. for (i = 0; ; i++) {
  2402. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2403. if (!aalg)
  2404. break;
  2405. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2406. sz += sizeof(struct sadb_comb);
  2407. }
  2408. return sz + sizeof(struct sadb_prop);
  2409. }
  2410. static int count_esp_combs(struct xfrm_tmpl *t)
  2411. {
  2412. int i, k, sz = 0;
  2413. for (i = 0; ; i++) {
  2414. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2415. if (!ealg)
  2416. break;
  2417. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2418. continue;
  2419. for (k = 1; ; k++) {
  2420. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2421. if (!aalg)
  2422. break;
  2423. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2424. sz += sizeof(struct sadb_comb);
  2425. }
  2426. }
  2427. return sz + sizeof(struct sadb_prop);
  2428. }
  2429. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2430. {
  2431. struct sadb_prop *p;
  2432. int i;
  2433. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2434. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2435. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2436. p->sadb_prop_replay = 32;
  2437. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2438. for (i = 0; ; i++) {
  2439. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2440. if (!aalg)
  2441. break;
  2442. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2443. struct sadb_comb *c;
  2444. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2445. memset(c, 0, sizeof(*c));
  2446. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2447. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2448. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2449. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2450. c->sadb_comb_hard_addtime = 24*60*60;
  2451. c->sadb_comb_soft_addtime = 20*60*60;
  2452. c->sadb_comb_hard_usetime = 8*60*60;
  2453. c->sadb_comb_soft_usetime = 7*60*60;
  2454. }
  2455. }
  2456. }
  2457. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2458. {
  2459. struct sadb_prop *p;
  2460. int i, k;
  2461. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2462. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2463. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2464. p->sadb_prop_replay = 32;
  2465. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2466. for (i=0; ; i++) {
  2467. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2468. if (!ealg)
  2469. break;
  2470. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2471. continue;
  2472. for (k = 1; ; k++) {
  2473. struct sadb_comb *c;
  2474. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2475. if (!aalg)
  2476. break;
  2477. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2478. continue;
  2479. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2480. memset(c, 0, sizeof(*c));
  2481. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2482. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2483. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2484. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2485. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2486. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2487. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2488. c->sadb_comb_hard_addtime = 24*60*60;
  2489. c->sadb_comb_soft_addtime = 20*60*60;
  2490. c->sadb_comb_hard_usetime = 8*60*60;
  2491. c->sadb_comb_soft_usetime = 7*60*60;
  2492. }
  2493. }
  2494. }
  2495. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2496. {
  2497. return 0;
  2498. }
  2499. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2500. {
  2501. struct sk_buff *out_skb;
  2502. struct sadb_msg *out_hdr;
  2503. int hard;
  2504. int hsc;
  2505. hard = c->data.hard;
  2506. if (hard)
  2507. hsc = 2;
  2508. else
  2509. hsc = 1;
  2510. out_skb = pfkey_xfrm_state2msg(x, 0, hsc);
  2511. if (IS_ERR(out_skb))
  2512. return PTR_ERR(out_skb);
  2513. out_hdr = (struct sadb_msg *) out_skb->data;
  2514. out_hdr->sadb_msg_version = PF_KEY_V2;
  2515. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2516. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2517. out_hdr->sadb_msg_errno = 0;
  2518. out_hdr->sadb_msg_reserved = 0;
  2519. out_hdr->sadb_msg_seq = 0;
  2520. out_hdr->sadb_msg_pid = 0;
  2521. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2522. return 0;
  2523. }
  2524. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2525. {
  2526. switch (c->event) {
  2527. case XFRM_MSG_EXPIRE:
  2528. return key_notify_sa_expire(x, c);
  2529. case XFRM_MSG_DELSA:
  2530. case XFRM_MSG_NEWSA:
  2531. case XFRM_MSG_UPDSA:
  2532. return key_notify_sa(x, c);
  2533. case XFRM_MSG_FLUSHSA:
  2534. return key_notify_sa_flush(c);
  2535. case XFRM_MSG_NEWAE: /* not yet supported */
  2536. break;
  2537. default:
  2538. printk("pfkey: Unknown SA event %d\n", c->event);
  2539. break;
  2540. }
  2541. return 0;
  2542. }
  2543. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2544. {
  2545. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2546. return 0;
  2547. switch (c->event) {
  2548. case XFRM_MSG_POLEXPIRE:
  2549. return key_notify_policy_expire(xp, c);
  2550. case XFRM_MSG_DELPOLICY:
  2551. case XFRM_MSG_NEWPOLICY:
  2552. case XFRM_MSG_UPDPOLICY:
  2553. return key_notify_policy(xp, dir, c);
  2554. case XFRM_MSG_FLUSHPOLICY:
  2555. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2556. break;
  2557. return key_notify_policy_flush(c);
  2558. default:
  2559. printk("pfkey: Unknown policy event %d\n", c->event);
  2560. break;
  2561. }
  2562. return 0;
  2563. }
  2564. static u32 get_acqseq(void)
  2565. {
  2566. u32 res;
  2567. static u32 acqseq;
  2568. static DEFINE_SPINLOCK(acqseq_lock);
  2569. spin_lock_bh(&acqseq_lock);
  2570. res = (++acqseq ? : ++acqseq);
  2571. spin_unlock_bh(&acqseq_lock);
  2572. return res;
  2573. }
  2574. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2575. {
  2576. struct sk_buff *skb;
  2577. struct sadb_msg *hdr;
  2578. struct sadb_address *addr;
  2579. struct sadb_x_policy *pol;
  2580. struct sockaddr_in *sin;
  2581. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2582. struct sockaddr_in6 *sin6;
  2583. #endif
  2584. int sockaddr_size;
  2585. int size;
  2586. struct sadb_x_sec_ctx *sec_ctx;
  2587. struct xfrm_sec_ctx *xfrm_ctx;
  2588. int ctx_size = 0;
  2589. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2590. if (!sockaddr_size)
  2591. return -EINVAL;
  2592. size = sizeof(struct sadb_msg) +
  2593. (sizeof(struct sadb_address) * 2) +
  2594. (sockaddr_size * 2) +
  2595. sizeof(struct sadb_x_policy);
  2596. if (x->id.proto == IPPROTO_AH)
  2597. size += count_ah_combs(t);
  2598. else if (x->id.proto == IPPROTO_ESP)
  2599. size += count_esp_combs(t);
  2600. if ((xfrm_ctx = x->security)) {
  2601. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2602. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2603. }
  2604. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2605. if (skb == NULL)
  2606. return -ENOMEM;
  2607. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2608. hdr->sadb_msg_version = PF_KEY_V2;
  2609. hdr->sadb_msg_type = SADB_ACQUIRE;
  2610. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2611. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2612. hdr->sadb_msg_errno = 0;
  2613. hdr->sadb_msg_reserved = 0;
  2614. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2615. hdr->sadb_msg_pid = 0;
  2616. /* src address */
  2617. addr = (struct sadb_address*) skb_put(skb,
  2618. sizeof(struct sadb_address)+sockaddr_size);
  2619. addr->sadb_address_len =
  2620. (sizeof(struct sadb_address)+sockaddr_size)/
  2621. sizeof(uint64_t);
  2622. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2623. addr->sadb_address_proto = 0;
  2624. addr->sadb_address_reserved = 0;
  2625. if (x->props.family == AF_INET) {
  2626. addr->sadb_address_prefixlen = 32;
  2627. sin = (struct sockaddr_in *) (addr + 1);
  2628. sin->sin_family = AF_INET;
  2629. sin->sin_addr.s_addr = x->props.saddr.a4;
  2630. sin->sin_port = 0;
  2631. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2632. }
  2633. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2634. else if (x->props.family == AF_INET6) {
  2635. addr->sadb_address_prefixlen = 128;
  2636. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2637. sin6->sin6_family = AF_INET6;
  2638. sin6->sin6_port = 0;
  2639. sin6->sin6_flowinfo = 0;
  2640. memcpy(&sin6->sin6_addr,
  2641. x->props.saddr.a6, sizeof(struct in6_addr));
  2642. sin6->sin6_scope_id = 0;
  2643. }
  2644. #endif
  2645. else
  2646. BUG();
  2647. /* dst address */
  2648. addr = (struct sadb_address*) skb_put(skb,
  2649. sizeof(struct sadb_address)+sockaddr_size);
  2650. addr->sadb_address_len =
  2651. (sizeof(struct sadb_address)+sockaddr_size)/
  2652. sizeof(uint64_t);
  2653. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2654. addr->sadb_address_proto = 0;
  2655. addr->sadb_address_reserved = 0;
  2656. if (x->props.family == AF_INET) {
  2657. addr->sadb_address_prefixlen = 32;
  2658. sin = (struct sockaddr_in *) (addr + 1);
  2659. sin->sin_family = AF_INET;
  2660. sin->sin_addr.s_addr = x->id.daddr.a4;
  2661. sin->sin_port = 0;
  2662. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2663. }
  2664. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2665. else if (x->props.family == AF_INET6) {
  2666. addr->sadb_address_prefixlen = 128;
  2667. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2668. sin6->sin6_family = AF_INET6;
  2669. sin6->sin6_port = 0;
  2670. sin6->sin6_flowinfo = 0;
  2671. memcpy(&sin6->sin6_addr,
  2672. x->id.daddr.a6, sizeof(struct in6_addr));
  2673. sin6->sin6_scope_id = 0;
  2674. }
  2675. #endif
  2676. else
  2677. BUG();
  2678. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2679. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2680. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2681. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2682. pol->sadb_x_policy_dir = dir+1;
  2683. pol->sadb_x_policy_id = xp->index;
  2684. /* Set sadb_comb's. */
  2685. if (x->id.proto == IPPROTO_AH)
  2686. dump_ah_combs(skb, t);
  2687. else if (x->id.proto == IPPROTO_ESP)
  2688. dump_esp_combs(skb, t);
  2689. /* security context */
  2690. if (xfrm_ctx) {
  2691. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2692. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2693. sec_ctx->sadb_x_sec_len =
  2694. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2695. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2696. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2697. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2698. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2699. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2700. xfrm_ctx->ctx_len);
  2701. }
  2702. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2703. }
  2704. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2705. u8 *data, int len, int *dir)
  2706. {
  2707. struct xfrm_policy *xp;
  2708. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2709. struct sadb_x_sec_ctx *sec_ctx;
  2710. switch (sk->sk_family) {
  2711. case AF_INET:
  2712. if (opt != IP_IPSEC_POLICY) {
  2713. *dir = -EOPNOTSUPP;
  2714. return NULL;
  2715. }
  2716. break;
  2717. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2718. case AF_INET6:
  2719. if (opt != IPV6_IPSEC_POLICY) {
  2720. *dir = -EOPNOTSUPP;
  2721. return NULL;
  2722. }
  2723. break;
  2724. #endif
  2725. default:
  2726. *dir = -EINVAL;
  2727. return NULL;
  2728. }
  2729. *dir = -EINVAL;
  2730. if (len < sizeof(struct sadb_x_policy) ||
  2731. pol->sadb_x_policy_len*8 > len ||
  2732. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2733. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2734. return NULL;
  2735. xp = xfrm_policy_alloc(GFP_ATOMIC);
  2736. if (xp == NULL) {
  2737. *dir = -ENOBUFS;
  2738. return NULL;
  2739. }
  2740. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2741. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2742. xp->lft.soft_byte_limit = XFRM_INF;
  2743. xp->lft.hard_byte_limit = XFRM_INF;
  2744. xp->lft.soft_packet_limit = XFRM_INF;
  2745. xp->lft.hard_packet_limit = XFRM_INF;
  2746. xp->family = sk->sk_family;
  2747. xp->xfrm_nr = 0;
  2748. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2749. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2750. goto out;
  2751. /* security context too */
  2752. if (len >= (pol->sadb_x_policy_len*8 +
  2753. sizeof(struct sadb_x_sec_ctx))) {
  2754. char *p = (char *)pol;
  2755. struct xfrm_user_sec_ctx *uctx;
  2756. p += pol->sadb_x_policy_len*8;
  2757. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2758. if (len < pol->sadb_x_policy_len*8 +
  2759. sec_ctx->sadb_x_sec_len) {
  2760. *dir = -EINVAL;
  2761. goto out;
  2762. }
  2763. if ((*dir = verify_sec_ctx_len(p)))
  2764. goto out;
  2765. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2766. *dir = security_xfrm_policy_alloc(xp, uctx);
  2767. kfree(uctx);
  2768. if (*dir)
  2769. goto out;
  2770. }
  2771. *dir = pol->sadb_x_policy_dir-1;
  2772. return xp;
  2773. out:
  2774. security_xfrm_policy_free(xp);
  2775. kfree(xp);
  2776. return NULL;
  2777. }
  2778. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2779. {
  2780. struct sk_buff *skb;
  2781. struct sadb_msg *hdr;
  2782. struct sadb_sa *sa;
  2783. struct sadb_address *addr;
  2784. struct sadb_x_nat_t_port *n_port;
  2785. struct sockaddr_in *sin;
  2786. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2787. struct sockaddr_in6 *sin6;
  2788. #endif
  2789. int sockaddr_size;
  2790. int size;
  2791. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2792. struct xfrm_encap_tmpl *natt = NULL;
  2793. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2794. if (!sockaddr_size)
  2795. return -EINVAL;
  2796. if (!satype)
  2797. return -EINVAL;
  2798. if (!x->encap)
  2799. return -EINVAL;
  2800. natt = x->encap;
  2801. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2802. *
  2803. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2804. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2805. */
  2806. size = sizeof(struct sadb_msg) +
  2807. sizeof(struct sadb_sa) +
  2808. (sizeof(struct sadb_address) * 2) +
  2809. (sockaddr_size * 2) +
  2810. (sizeof(struct sadb_x_nat_t_port) * 2);
  2811. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2812. if (skb == NULL)
  2813. return -ENOMEM;
  2814. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2815. hdr->sadb_msg_version = PF_KEY_V2;
  2816. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2817. hdr->sadb_msg_satype = satype;
  2818. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2819. hdr->sadb_msg_errno = 0;
  2820. hdr->sadb_msg_reserved = 0;
  2821. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2822. hdr->sadb_msg_pid = 0;
  2823. /* SA */
  2824. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2825. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2826. sa->sadb_sa_exttype = SADB_EXT_SA;
  2827. sa->sadb_sa_spi = x->id.spi;
  2828. sa->sadb_sa_replay = 0;
  2829. sa->sadb_sa_state = 0;
  2830. sa->sadb_sa_auth = 0;
  2831. sa->sadb_sa_encrypt = 0;
  2832. sa->sadb_sa_flags = 0;
  2833. /* ADDRESS_SRC (old addr) */
  2834. addr = (struct sadb_address*)
  2835. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2836. addr->sadb_address_len =
  2837. (sizeof(struct sadb_address)+sockaddr_size)/
  2838. sizeof(uint64_t);
  2839. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2840. addr->sadb_address_proto = 0;
  2841. addr->sadb_address_reserved = 0;
  2842. if (x->props.family == AF_INET) {
  2843. addr->sadb_address_prefixlen = 32;
  2844. sin = (struct sockaddr_in *) (addr + 1);
  2845. sin->sin_family = AF_INET;
  2846. sin->sin_addr.s_addr = x->props.saddr.a4;
  2847. sin->sin_port = 0;
  2848. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2849. }
  2850. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2851. else if (x->props.family == AF_INET6) {
  2852. addr->sadb_address_prefixlen = 128;
  2853. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2854. sin6->sin6_family = AF_INET6;
  2855. sin6->sin6_port = 0;
  2856. sin6->sin6_flowinfo = 0;
  2857. memcpy(&sin6->sin6_addr,
  2858. x->props.saddr.a6, sizeof(struct in6_addr));
  2859. sin6->sin6_scope_id = 0;
  2860. }
  2861. #endif
  2862. else
  2863. BUG();
  2864. /* NAT_T_SPORT (old port) */
  2865. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2866. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2867. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2868. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2869. n_port->sadb_x_nat_t_port_reserved = 0;
  2870. /* ADDRESS_DST (new addr) */
  2871. addr = (struct sadb_address*)
  2872. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2873. addr->sadb_address_len =
  2874. (sizeof(struct sadb_address)+sockaddr_size)/
  2875. sizeof(uint64_t);
  2876. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2877. addr->sadb_address_proto = 0;
  2878. addr->sadb_address_reserved = 0;
  2879. if (x->props.family == AF_INET) {
  2880. addr->sadb_address_prefixlen = 32;
  2881. sin = (struct sockaddr_in *) (addr + 1);
  2882. sin->sin_family = AF_INET;
  2883. sin->sin_addr.s_addr = ipaddr->a4;
  2884. sin->sin_port = 0;
  2885. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2886. }
  2887. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2888. else if (x->props.family == AF_INET6) {
  2889. addr->sadb_address_prefixlen = 128;
  2890. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2891. sin6->sin6_family = AF_INET6;
  2892. sin6->sin6_port = 0;
  2893. sin6->sin6_flowinfo = 0;
  2894. memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr));
  2895. sin6->sin6_scope_id = 0;
  2896. }
  2897. #endif
  2898. else
  2899. BUG();
  2900. /* NAT_T_DPORT (new port) */
  2901. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2902. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2903. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2904. n_port->sadb_x_nat_t_port_port = sport;
  2905. n_port->sadb_x_nat_t_port_reserved = 0;
  2906. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2907. }
  2908. #ifdef CONFIG_NET_KEY_MIGRATE
  2909. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2910. struct xfrm_selector *sel)
  2911. {
  2912. struct sadb_address *addr;
  2913. struct sockaddr_in *sin;
  2914. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2915. struct sockaddr_in6 *sin6;
  2916. #endif
  2917. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2918. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2919. addr->sadb_address_exttype = type;
  2920. addr->sadb_address_proto = sel->proto;
  2921. addr->sadb_address_reserved = 0;
  2922. switch (type) {
  2923. case SADB_EXT_ADDRESS_SRC:
  2924. if (sel->family == AF_INET) {
  2925. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2926. sin = (struct sockaddr_in *)(addr + 1);
  2927. sin->sin_family = AF_INET;
  2928. memcpy(&sin->sin_addr.s_addr, &sel->saddr,
  2929. sizeof(sin->sin_addr.s_addr));
  2930. sin->sin_port = 0;
  2931. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2932. }
  2933. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2934. else if (sel->family == AF_INET6) {
  2935. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2936. sin6 = (struct sockaddr_in6 *)(addr + 1);
  2937. sin6->sin6_family = AF_INET6;
  2938. sin6->sin6_port = 0;
  2939. sin6->sin6_flowinfo = 0;
  2940. sin6->sin6_scope_id = 0;
  2941. memcpy(&sin6->sin6_addr.s6_addr, &sel->saddr,
  2942. sizeof(sin6->sin6_addr.s6_addr));
  2943. }
  2944. #endif
  2945. break;
  2946. case SADB_EXT_ADDRESS_DST:
  2947. if (sel->family == AF_INET) {
  2948. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2949. sin = (struct sockaddr_in *)(addr + 1);
  2950. sin->sin_family = AF_INET;
  2951. memcpy(&sin->sin_addr.s_addr, &sel->daddr,
  2952. sizeof(sin->sin_addr.s_addr));
  2953. sin->sin_port = 0;
  2954. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2955. }
  2956. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2957. else if (sel->family == AF_INET6) {
  2958. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2959. sin6 = (struct sockaddr_in6 *)(addr + 1);
  2960. sin6->sin6_family = AF_INET6;
  2961. sin6->sin6_port = 0;
  2962. sin6->sin6_flowinfo = 0;
  2963. sin6->sin6_scope_id = 0;
  2964. memcpy(&sin6->sin6_addr.s6_addr, &sel->daddr,
  2965. sizeof(sin6->sin6_addr.s6_addr));
  2966. }
  2967. #endif
  2968. break;
  2969. default:
  2970. return -EINVAL;
  2971. }
  2972. return 0;
  2973. }
  2974. static int set_ipsecrequest(struct sk_buff *skb,
  2975. uint8_t proto, uint8_t mode, int level,
  2976. uint32_t reqid, uint8_t family,
  2977. xfrm_address_t *src, xfrm_address_t *dst)
  2978. {
  2979. struct sadb_x_ipsecrequest *rq;
  2980. struct sockaddr_in *sin;
  2981. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2982. struct sockaddr_in6 *sin6;
  2983. #endif
  2984. int size_req;
  2985. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2986. pfkey_sockaddr_pair_size(family);
  2987. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  2988. memset(rq, 0, size_req);
  2989. rq->sadb_x_ipsecrequest_len = size_req;
  2990. rq->sadb_x_ipsecrequest_proto = proto;
  2991. rq->sadb_x_ipsecrequest_mode = mode;
  2992. rq->sadb_x_ipsecrequest_level = level;
  2993. rq->sadb_x_ipsecrequest_reqid = reqid;
  2994. switch (family) {
  2995. case AF_INET:
  2996. sin = (struct sockaddr_in *)(rq + 1);
  2997. sin->sin_family = AF_INET;
  2998. memcpy(&sin->sin_addr.s_addr, src,
  2999. sizeof(sin->sin_addr.s_addr));
  3000. sin++;
  3001. sin->sin_family = AF_INET;
  3002. memcpy(&sin->sin_addr.s_addr, dst,
  3003. sizeof(sin->sin_addr.s_addr));
  3004. break;
  3005. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  3006. case AF_INET6:
  3007. sin6 = (struct sockaddr_in6 *)(rq + 1);
  3008. sin6->sin6_family = AF_INET6;
  3009. sin6->sin6_port = 0;
  3010. sin6->sin6_flowinfo = 0;
  3011. sin6->sin6_scope_id = 0;
  3012. memcpy(&sin6->sin6_addr.s6_addr, src,
  3013. sizeof(sin6->sin6_addr.s6_addr));
  3014. sin6++;
  3015. sin6->sin6_family = AF_INET6;
  3016. sin6->sin6_port = 0;
  3017. sin6->sin6_flowinfo = 0;
  3018. sin6->sin6_scope_id = 0;
  3019. memcpy(&sin6->sin6_addr.s6_addr, dst,
  3020. sizeof(sin6->sin6_addr.s6_addr));
  3021. break;
  3022. #endif
  3023. default:
  3024. return -EINVAL;
  3025. }
  3026. return 0;
  3027. }
  3028. #endif
  3029. #ifdef CONFIG_NET_KEY_MIGRATE
  3030. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  3031. struct xfrm_migrate *m, int num_bundles)
  3032. {
  3033. int i;
  3034. int sasize_sel;
  3035. int size = 0;
  3036. int size_pol = 0;
  3037. struct sk_buff *skb;
  3038. struct sadb_msg *hdr;
  3039. struct sadb_x_policy *pol;
  3040. struct xfrm_migrate *mp;
  3041. if (type != XFRM_POLICY_TYPE_MAIN)
  3042. return 0;
  3043. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  3044. return -EINVAL;
  3045. /* selector */
  3046. sasize_sel = pfkey_sockaddr_size(sel->family);
  3047. if (!sasize_sel)
  3048. return -EINVAL;
  3049. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  3050. /* policy info */
  3051. size_pol += sizeof(struct sadb_x_policy);
  3052. /* ipsecrequests */
  3053. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3054. /* old locator pair */
  3055. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3056. pfkey_sockaddr_pair_size(mp->old_family);
  3057. /* new locator pair */
  3058. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3059. pfkey_sockaddr_pair_size(mp->new_family);
  3060. }
  3061. size += sizeof(struct sadb_msg) + size_pol;
  3062. /* alloc buffer */
  3063. skb = alloc_skb(size, GFP_ATOMIC);
  3064. if (skb == NULL)
  3065. return -ENOMEM;
  3066. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  3067. hdr->sadb_msg_version = PF_KEY_V2;
  3068. hdr->sadb_msg_type = SADB_X_MIGRATE;
  3069. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  3070. hdr->sadb_msg_len = size / 8;
  3071. hdr->sadb_msg_errno = 0;
  3072. hdr->sadb_msg_reserved = 0;
  3073. hdr->sadb_msg_seq = 0;
  3074. hdr->sadb_msg_pid = 0;
  3075. /* selector src */
  3076. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  3077. /* selector dst */
  3078. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  3079. /* policy information */
  3080. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  3081. pol->sadb_x_policy_len = size_pol / 8;
  3082. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  3083. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  3084. pol->sadb_x_policy_dir = dir + 1;
  3085. pol->sadb_x_policy_id = 0;
  3086. pol->sadb_x_policy_priority = 0;
  3087. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3088. /* old ipsecrequest */
  3089. int mode = pfkey_mode_from_xfrm(mp->mode);
  3090. if (mode < 0)
  3091. return -EINVAL;
  3092. if (set_ipsecrequest(skb, mp->proto, mode,
  3093. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3094. mp->reqid, mp->old_family,
  3095. &mp->old_saddr, &mp->old_daddr) < 0) {
  3096. return -EINVAL;
  3097. }
  3098. /* new ipsecrequest */
  3099. if (set_ipsecrequest(skb, mp->proto, mode,
  3100. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3101. mp->reqid, mp->new_family,
  3102. &mp->new_saddr, &mp->new_daddr) < 0) {
  3103. return -EINVAL;
  3104. }
  3105. }
  3106. /* broadcast migrate message to sockets */
  3107. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  3108. return 0;
  3109. }
  3110. #else
  3111. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  3112. struct xfrm_migrate *m, int num_bundles)
  3113. {
  3114. return -ENOPROTOOPT;
  3115. }
  3116. #endif
  3117. static int pfkey_sendmsg(struct kiocb *kiocb,
  3118. struct socket *sock, struct msghdr *msg, size_t len)
  3119. {
  3120. struct sock *sk = sock->sk;
  3121. struct sk_buff *skb = NULL;
  3122. struct sadb_msg *hdr = NULL;
  3123. int err;
  3124. err = -EOPNOTSUPP;
  3125. if (msg->msg_flags & MSG_OOB)
  3126. goto out;
  3127. err = -EMSGSIZE;
  3128. if ((unsigned)len > sk->sk_sndbuf - 32)
  3129. goto out;
  3130. err = -ENOBUFS;
  3131. skb = alloc_skb(len, GFP_KERNEL);
  3132. if (skb == NULL)
  3133. goto out;
  3134. err = -EFAULT;
  3135. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  3136. goto out;
  3137. hdr = pfkey_get_base_msg(skb, &err);
  3138. if (!hdr)
  3139. goto out;
  3140. mutex_lock(&xfrm_cfg_mutex);
  3141. err = pfkey_process(sk, skb, hdr);
  3142. mutex_unlock(&xfrm_cfg_mutex);
  3143. out:
  3144. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3145. err = 0;
  3146. if (skb)
  3147. kfree_skb(skb);
  3148. return err ? : len;
  3149. }
  3150. static int pfkey_recvmsg(struct kiocb *kiocb,
  3151. struct socket *sock, struct msghdr *msg, size_t len,
  3152. int flags)
  3153. {
  3154. struct sock *sk = sock->sk;
  3155. struct sk_buff *skb;
  3156. int copied, err;
  3157. err = -EINVAL;
  3158. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3159. goto out;
  3160. msg->msg_namelen = 0;
  3161. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3162. if (skb == NULL)
  3163. goto out;
  3164. copied = skb->len;
  3165. if (copied > len) {
  3166. msg->msg_flags |= MSG_TRUNC;
  3167. copied = len;
  3168. }
  3169. skb_reset_transport_header(skb);
  3170. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  3171. if (err)
  3172. goto out_free;
  3173. sock_recv_timestamp(msg, sk, skb);
  3174. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3175. out_free:
  3176. skb_free_datagram(sk, skb);
  3177. out:
  3178. return err;
  3179. }
  3180. static const struct proto_ops pfkey_ops = {
  3181. .family = PF_KEY,
  3182. .owner = THIS_MODULE,
  3183. /* Operations that make no sense on pfkey sockets. */
  3184. .bind = sock_no_bind,
  3185. .connect = sock_no_connect,
  3186. .socketpair = sock_no_socketpair,
  3187. .accept = sock_no_accept,
  3188. .getname = sock_no_getname,
  3189. .ioctl = sock_no_ioctl,
  3190. .listen = sock_no_listen,
  3191. .shutdown = sock_no_shutdown,
  3192. .setsockopt = sock_no_setsockopt,
  3193. .getsockopt = sock_no_getsockopt,
  3194. .mmap = sock_no_mmap,
  3195. .sendpage = sock_no_sendpage,
  3196. /* Now the operations that really occur. */
  3197. .release = pfkey_release,
  3198. .poll = datagram_poll,
  3199. .sendmsg = pfkey_sendmsg,
  3200. .recvmsg = pfkey_recvmsg,
  3201. };
  3202. static struct net_proto_family pfkey_family_ops = {
  3203. .family = PF_KEY,
  3204. .create = pfkey_create,
  3205. .owner = THIS_MODULE,
  3206. };
  3207. #ifdef CONFIG_PROC_FS
  3208. static int pfkey_read_proc(char *buffer, char **start, off_t offset,
  3209. int length, int *eof, void *data)
  3210. {
  3211. off_t pos = 0;
  3212. off_t begin = 0;
  3213. int len = 0;
  3214. struct sock *s;
  3215. struct hlist_node *node;
  3216. len += sprintf(buffer,"sk RefCnt Rmem Wmem User Inode\n");
  3217. read_lock(&pfkey_table_lock);
  3218. sk_for_each(s, node, &pfkey_table) {
  3219. len += sprintf(buffer+len,"%p %-6d %-6u %-6u %-6u %-6lu",
  3220. s,
  3221. atomic_read(&s->sk_refcnt),
  3222. atomic_read(&s->sk_rmem_alloc),
  3223. atomic_read(&s->sk_wmem_alloc),
  3224. sock_i_uid(s),
  3225. sock_i_ino(s)
  3226. );
  3227. buffer[len++] = '\n';
  3228. pos = begin + len;
  3229. if (pos < offset) {
  3230. len = 0;
  3231. begin = pos;
  3232. }
  3233. if(pos > offset + length)
  3234. goto done;
  3235. }
  3236. *eof = 1;
  3237. done:
  3238. read_unlock(&pfkey_table_lock);
  3239. *start = buffer + (offset - begin);
  3240. len -= (offset - begin);
  3241. if (len > length)
  3242. len = length;
  3243. if (len < 0)
  3244. len = 0;
  3245. return len;
  3246. }
  3247. #endif
  3248. static struct xfrm_mgr pfkeyv2_mgr =
  3249. {
  3250. .id = "pfkeyv2",
  3251. .notify = pfkey_send_notify,
  3252. .acquire = pfkey_send_acquire,
  3253. .compile_policy = pfkey_compile_policy,
  3254. .new_mapping = pfkey_send_new_mapping,
  3255. .notify_policy = pfkey_send_policy_notify,
  3256. .migrate = pfkey_send_migrate,
  3257. };
  3258. static void __exit ipsec_pfkey_exit(void)
  3259. {
  3260. xfrm_unregister_km(&pfkeyv2_mgr);
  3261. remove_proc_entry("net/pfkey", NULL);
  3262. sock_unregister(PF_KEY);
  3263. proto_unregister(&key_proto);
  3264. }
  3265. static int __init ipsec_pfkey_init(void)
  3266. {
  3267. int err = proto_register(&key_proto, 0);
  3268. if (err != 0)
  3269. goto out;
  3270. err = sock_register(&pfkey_family_ops);
  3271. if (err != 0)
  3272. goto out_unregister_key_proto;
  3273. #ifdef CONFIG_PROC_FS
  3274. err = -ENOMEM;
  3275. if (create_proc_read_entry("net/pfkey", 0, NULL, pfkey_read_proc, NULL) == NULL)
  3276. goto out_sock_unregister;
  3277. #endif
  3278. err = xfrm_register_km(&pfkeyv2_mgr);
  3279. if (err != 0)
  3280. goto out_remove_proc_entry;
  3281. out:
  3282. return err;
  3283. out_remove_proc_entry:
  3284. #ifdef CONFIG_PROC_FS
  3285. remove_proc_entry("net/pfkey", NULL);
  3286. out_sock_unregister:
  3287. #endif
  3288. sock_unregister(PF_KEY);
  3289. out_unregister_key_proto:
  3290. proto_unregister(&key_proto);
  3291. goto out;
  3292. }
  3293. module_init(ipsec_pfkey_init);
  3294. module_exit(ipsec_pfkey_exit);
  3295. MODULE_LICENSE("GPL");
  3296. MODULE_ALIAS_NETPROTO(PF_KEY);