tcp_input.c 163 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <net/dst.h>
  69. #include <net/tcp.h>
  70. #include <net/inet_common.h>
  71. #include <linux/ipsec.h>
  72. #include <asm/unaligned.h>
  73. #include <net/netdma.h>
  74. int sysctl_tcp_timestamps __read_mostly = 1;
  75. int sysctl_tcp_window_scaling __read_mostly = 1;
  76. int sysctl_tcp_sack __read_mostly = 1;
  77. int sysctl_tcp_fack __read_mostly = 1;
  78. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  79. EXPORT_SYMBOL(sysctl_tcp_reordering);
  80. int sysctl_tcp_dsack __read_mostly = 1;
  81. int sysctl_tcp_app_win __read_mostly = 31;
  82. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  83. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  84. /* rfc5961 challenge ack rate limiting */
  85. int sysctl_tcp_challenge_ack_limit = 100;
  86. int sysctl_tcp_stdurg __read_mostly;
  87. int sysctl_tcp_rfc1337 __read_mostly;
  88. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  89. int sysctl_tcp_frto __read_mostly = 2;
  90. int sysctl_tcp_thin_dupack __read_mostly;
  91. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  92. int sysctl_tcp_early_retrans __read_mostly = 3;
  93. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  94. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  95. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  96. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  97. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  98. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  99. #define FLAG_ECE 0x40 /* ECE in this ACK */
  100. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  101. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  102. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  103. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  104. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  105. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  106. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  107. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  108. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  109. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  110. /* Adapt the MSS value used to make delayed ack decision to the
  111. * real world.
  112. */
  113. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  114. {
  115. struct inet_connection_sock *icsk = inet_csk(sk);
  116. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  117. unsigned int len;
  118. icsk->icsk_ack.last_seg_size = 0;
  119. /* skb->len may jitter because of SACKs, even if peer
  120. * sends good full-sized frames.
  121. */
  122. len = skb_shinfo(skb)->gso_size ? : skb->len;
  123. if (len >= icsk->icsk_ack.rcv_mss) {
  124. icsk->icsk_ack.rcv_mss = len;
  125. } else {
  126. /* Otherwise, we make more careful check taking into account,
  127. * that SACKs block is variable.
  128. *
  129. * "len" is invariant segment length, including TCP header.
  130. */
  131. len += skb->data - skb_transport_header(skb);
  132. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  133. /* If PSH is not set, packet should be
  134. * full sized, provided peer TCP is not badly broken.
  135. * This observation (if it is correct 8)) allows
  136. * to handle super-low mtu links fairly.
  137. */
  138. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  139. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  140. /* Subtract also invariant (if peer is RFC compliant),
  141. * tcp header plus fixed timestamp option length.
  142. * Resulting "len" is MSS free of SACK jitter.
  143. */
  144. len -= tcp_sk(sk)->tcp_header_len;
  145. icsk->icsk_ack.last_seg_size = len;
  146. if (len == lss) {
  147. icsk->icsk_ack.rcv_mss = len;
  148. return;
  149. }
  150. }
  151. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  152. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  153. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  154. }
  155. }
  156. static void tcp_incr_quickack(struct sock *sk)
  157. {
  158. struct inet_connection_sock *icsk = inet_csk(sk);
  159. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  160. if (quickacks == 0)
  161. quickacks = 2;
  162. if (quickacks > icsk->icsk_ack.quick)
  163. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  164. }
  165. static void tcp_enter_quickack_mode(struct sock *sk)
  166. {
  167. struct inet_connection_sock *icsk = inet_csk(sk);
  168. tcp_incr_quickack(sk);
  169. icsk->icsk_ack.pingpong = 0;
  170. icsk->icsk_ack.ato = TCP_ATO_MIN;
  171. }
  172. /* Send ACKs quickly, if "quick" count is not exhausted
  173. * and the session is not interactive.
  174. */
  175. static inline bool tcp_in_quickack_mode(const struct sock *sk)
  176. {
  177. const struct inet_connection_sock *icsk = inet_csk(sk);
  178. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  179. }
  180. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  181. {
  182. if (tp->ecn_flags & TCP_ECN_OK)
  183. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  184. }
  185. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  186. {
  187. if (tcp_hdr(skb)->cwr)
  188. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  189. }
  190. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  191. {
  192. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  193. }
  194. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  195. {
  196. if (!(tp->ecn_flags & TCP_ECN_OK))
  197. return;
  198. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  199. case INET_ECN_NOT_ECT:
  200. /* Funny extension: if ECT is not set on a segment,
  201. * and we already seen ECT on a previous segment,
  202. * it is probably a retransmit.
  203. */
  204. if (tp->ecn_flags & TCP_ECN_SEEN)
  205. tcp_enter_quickack_mode((struct sock *)tp);
  206. break;
  207. case INET_ECN_CE:
  208. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  209. /* Better not delay acks, sender can have a very low cwnd */
  210. tcp_enter_quickack_mode((struct sock *)tp);
  211. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  212. }
  213. /* fallinto */
  214. default:
  215. tp->ecn_flags |= TCP_ECN_SEEN;
  216. }
  217. }
  218. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  219. {
  220. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  221. tp->ecn_flags &= ~TCP_ECN_OK;
  222. }
  223. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  224. {
  225. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  226. tp->ecn_flags &= ~TCP_ECN_OK;
  227. }
  228. static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  229. {
  230. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  231. return true;
  232. return false;
  233. }
  234. /* Buffer size and advertised window tuning.
  235. *
  236. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  237. */
  238. static void tcp_fixup_sndbuf(struct sock *sk)
  239. {
  240. int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
  241. sndmem *= TCP_INIT_CWND;
  242. if (sk->sk_sndbuf < sndmem)
  243. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  244. }
  245. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  246. *
  247. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  248. * forward and advertised in receiver window (tp->rcv_wnd) and
  249. * "application buffer", required to isolate scheduling/application
  250. * latencies from network.
  251. * window_clamp is maximal advertised window. It can be less than
  252. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  253. * is reserved for "application" buffer. The less window_clamp is
  254. * the smoother our behaviour from viewpoint of network, but the lower
  255. * throughput and the higher sensitivity of the connection to losses. 8)
  256. *
  257. * rcv_ssthresh is more strict window_clamp used at "slow start"
  258. * phase to predict further behaviour of this connection.
  259. * It is used for two goals:
  260. * - to enforce header prediction at sender, even when application
  261. * requires some significant "application buffer". It is check #1.
  262. * - to prevent pruning of receive queue because of misprediction
  263. * of receiver window. Check #2.
  264. *
  265. * The scheme does not work when sender sends good segments opening
  266. * window and then starts to feed us spaghetti. But it should work
  267. * in common situations. Otherwise, we have to rely on queue collapsing.
  268. */
  269. /* Slow part of check#2. */
  270. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  271. {
  272. struct tcp_sock *tp = tcp_sk(sk);
  273. /* Optimize this! */
  274. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  275. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  276. while (tp->rcv_ssthresh <= window) {
  277. if (truesize <= skb->len)
  278. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  279. truesize >>= 1;
  280. window >>= 1;
  281. }
  282. return 0;
  283. }
  284. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  285. {
  286. struct tcp_sock *tp = tcp_sk(sk);
  287. /* Check #1 */
  288. if (tp->rcv_ssthresh < tp->window_clamp &&
  289. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  290. !sk_under_memory_pressure(sk)) {
  291. int incr;
  292. /* Check #2. Increase window, if skb with such overhead
  293. * will fit to rcvbuf in future.
  294. */
  295. if (tcp_win_from_space(skb->truesize) <= skb->len)
  296. incr = 2 * tp->advmss;
  297. else
  298. incr = __tcp_grow_window(sk, skb);
  299. if (incr) {
  300. incr = max_t(int, incr, 2 * skb->len);
  301. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  302. tp->window_clamp);
  303. inet_csk(sk)->icsk_ack.quick |= 1;
  304. }
  305. }
  306. }
  307. /* 3. Tuning rcvbuf, when connection enters established state. */
  308. static void tcp_fixup_rcvbuf(struct sock *sk)
  309. {
  310. u32 mss = tcp_sk(sk)->advmss;
  311. u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
  312. int rcvmem;
  313. /* Limit to 10 segments if mss <= 1460,
  314. * or 14600/mss segments, with a minimum of two segments.
  315. */
  316. if (mss > 1460)
  317. icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
  318. rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
  319. while (tcp_win_from_space(rcvmem) < mss)
  320. rcvmem += 128;
  321. rcvmem *= icwnd;
  322. if (sk->sk_rcvbuf < rcvmem)
  323. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  324. }
  325. /* 4. Try to fixup all. It is made immediately after connection enters
  326. * established state.
  327. */
  328. void tcp_init_buffer_space(struct sock *sk)
  329. {
  330. struct tcp_sock *tp = tcp_sk(sk);
  331. int maxwin;
  332. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  333. tcp_fixup_rcvbuf(sk);
  334. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  335. tcp_fixup_sndbuf(sk);
  336. tp->rcvq_space.space = tp->rcv_wnd;
  337. maxwin = tcp_full_space(sk);
  338. if (tp->window_clamp >= maxwin) {
  339. tp->window_clamp = maxwin;
  340. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  341. tp->window_clamp = max(maxwin -
  342. (maxwin >> sysctl_tcp_app_win),
  343. 4 * tp->advmss);
  344. }
  345. /* Force reservation of one segment. */
  346. if (sysctl_tcp_app_win &&
  347. tp->window_clamp > 2 * tp->advmss &&
  348. tp->window_clamp + tp->advmss > maxwin)
  349. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  350. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  351. tp->snd_cwnd_stamp = tcp_time_stamp;
  352. }
  353. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  354. static void tcp_clamp_window(struct sock *sk)
  355. {
  356. struct tcp_sock *tp = tcp_sk(sk);
  357. struct inet_connection_sock *icsk = inet_csk(sk);
  358. icsk->icsk_ack.quick = 0;
  359. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  360. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  361. !sk_under_memory_pressure(sk) &&
  362. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  363. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  364. sysctl_tcp_rmem[2]);
  365. }
  366. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  367. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  368. }
  369. /* Initialize RCV_MSS value.
  370. * RCV_MSS is an our guess about MSS used by the peer.
  371. * We haven't any direct information about the MSS.
  372. * It's better to underestimate the RCV_MSS rather than overestimate.
  373. * Overestimations make us ACKing less frequently than needed.
  374. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  375. */
  376. void tcp_initialize_rcv_mss(struct sock *sk)
  377. {
  378. const struct tcp_sock *tp = tcp_sk(sk);
  379. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  380. hint = min(hint, tp->rcv_wnd / 2);
  381. hint = min(hint, TCP_MSS_DEFAULT);
  382. hint = max(hint, TCP_MIN_MSS);
  383. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  384. }
  385. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  386. /* Receiver "autotuning" code.
  387. *
  388. * The algorithm for RTT estimation w/o timestamps is based on
  389. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  390. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  391. *
  392. * More detail on this code can be found at
  393. * <http://staff.psc.edu/jheffner/>,
  394. * though this reference is out of date. A new paper
  395. * is pending.
  396. */
  397. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  398. {
  399. u32 new_sample = tp->rcv_rtt_est.rtt;
  400. long m = sample;
  401. if (m == 0)
  402. m = 1;
  403. if (new_sample != 0) {
  404. /* If we sample in larger samples in the non-timestamp
  405. * case, we could grossly overestimate the RTT especially
  406. * with chatty applications or bulk transfer apps which
  407. * are stalled on filesystem I/O.
  408. *
  409. * Also, since we are only going for a minimum in the
  410. * non-timestamp case, we do not smooth things out
  411. * else with timestamps disabled convergence takes too
  412. * long.
  413. */
  414. if (!win_dep) {
  415. m -= (new_sample >> 3);
  416. new_sample += m;
  417. } else {
  418. m <<= 3;
  419. if (m < new_sample)
  420. new_sample = m;
  421. }
  422. } else {
  423. /* No previous measure. */
  424. new_sample = m << 3;
  425. }
  426. if (tp->rcv_rtt_est.rtt != new_sample)
  427. tp->rcv_rtt_est.rtt = new_sample;
  428. }
  429. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  430. {
  431. if (tp->rcv_rtt_est.time == 0)
  432. goto new_measure;
  433. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  434. return;
  435. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  436. new_measure:
  437. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  438. tp->rcv_rtt_est.time = tcp_time_stamp;
  439. }
  440. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  441. const struct sk_buff *skb)
  442. {
  443. struct tcp_sock *tp = tcp_sk(sk);
  444. if (tp->rx_opt.rcv_tsecr &&
  445. (TCP_SKB_CB(skb)->end_seq -
  446. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  447. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  448. }
  449. /*
  450. * This function should be called every time data is copied to user space.
  451. * It calculates the appropriate TCP receive buffer space.
  452. */
  453. void tcp_rcv_space_adjust(struct sock *sk)
  454. {
  455. struct tcp_sock *tp = tcp_sk(sk);
  456. int time;
  457. int space;
  458. if (tp->rcvq_space.time == 0)
  459. goto new_measure;
  460. time = tcp_time_stamp - tp->rcvq_space.time;
  461. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  462. return;
  463. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  464. space = max(tp->rcvq_space.space, space);
  465. if (tp->rcvq_space.space != space) {
  466. int rcvmem;
  467. tp->rcvq_space.space = space;
  468. if (sysctl_tcp_moderate_rcvbuf &&
  469. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  470. int new_clamp = space;
  471. /* Receive space grows, normalize in order to
  472. * take into account packet headers and sk_buff
  473. * structure overhead.
  474. */
  475. space /= tp->advmss;
  476. if (!space)
  477. space = 1;
  478. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  479. while (tcp_win_from_space(rcvmem) < tp->advmss)
  480. rcvmem += 128;
  481. space *= rcvmem;
  482. space = min(space, sysctl_tcp_rmem[2]);
  483. if (space > sk->sk_rcvbuf) {
  484. sk->sk_rcvbuf = space;
  485. /* Make the window clamp follow along. */
  486. tp->window_clamp = new_clamp;
  487. }
  488. }
  489. }
  490. new_measure:
  491. tp->rcvq_space.seq = tp->copied_seq;
  492. tp->rcvq_space.time = tcp_time_stamp;
  493. }
  494. /* There is something which you must keep in mind when you analyze the
  495. * behavior of the tp->ato delayed ack timeout interval. When a
  496. * connection starts up, we want to ack as quickly as possible. The
  497. * problem is that "good" TCP's do slow start at the beginning of data
  498. * transmission. The means that until we send the first few ACK's the
  499. * sender will sit on his end and only queue most of his data, because
  500. * he can only send snd_cwnd unacked packets at any given time. For
  501. * each ACK we send, he increments snd_cwnd and transmits more of his
  502. * queue. -DaveM
  503. */
  504. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  505. {
  506. struct tcp_sock *tp = tcp_sk(sk);
  507. struct inet_connection_sock *icsk = inet_csk(sk);
  508. u32 now;
  509. inet_csk_schedule_ack(sk);
  510. tcp_measure_rcv_mss(sk, skb);
  511. tcp_rcv_rtt_measure(tp);
  512. now = tcp_time_stamp;
  513. if (!icsk->icsk_ack.ato) {
  514. /* The _first_ data packet received, initialize
  515. * delayed ACK engine.
  516. */
  517. tcp_incr_quickack(sk);
  518. icsk->icsk_ack.ato = TCP_ATO_MIN;
  519. } else {
  520. int m = now - icsk->icsk_ack.lrcvtime;
  521. if (m <= TCP_ATO_MIN / 2) {
  522. /* The fastest case is the first. */
  523. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  524. } else if (m < icsk->icsk_ack.ato) {
  525. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  526. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  527. icsk->icsk_ack.ato = icsk->icsk_rto;
  528. } else if (m > icsk->icsk_rto) {
  529. /* Too long gap. Apparently sender failed to
  530. * restart window, so that we send ACKs quickly.
  531. */
  532. tcp_incr_quickack(sk);
  533. sk_mem_reclaim(sk);
  534. }
  535. }
  536. icsk->icsk_ack.lrcvtime = now;
  537. TCP_ECN_check_ce(tp, skb);
  538. if (skb->len >= 128)
  539. tcp_grow_window(sk, skb);
  540. }
  541. /* Called to compute a smoothed rtt estimate. The data fed to this
  542. * routine either comes from timestamps, or from segments that were
  543. * known _not_ to have been retransmitted [see Karn/Partridge
  544. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  545. * piece by Van Jacobson.
  546. * NOTE: the next three routines used to be one big routine.
  547. * To save cycles in the RFC 1323 implementation it was better to break
  548. * it up into three procedures. -- erics
  549. */
  550. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  551. {
  552. struct tcp_sock *tp = tcp_sk(sk);
  553. long m = mrtt; /* RTT */
  554. /* The following amusing code comes from Jacobson's
  555. * article in SIGCOMM '88. Note that rtt and mdev
  556. * are scaled versions of rtt and mean deviation.
  557. * This is designed to be as fast as possible
  558. * m stands for "measurement".
  559. *
  560. * On a 1990 paper the rto value is changed to:
  561. * RTO = rtt + 4 * mdev
  562. *
  563. * Funny. This algorithm seems to be very broken.
  564. * These formulae increase RTO, when it should be decreased, increase
  565. * too slowly, when it should be increased quickly, decrease too quickly
  566. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  567. * does not matter how to _calculate_ it. Seems, it was trap
  568. * that VJ failed to avoid. 8)
  569. */
  570. if (m == 0)
  571. m = 1;
  572. if (tp->srtt != 0) {
  573. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  574. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  575. if (m < 0) {
  576. m = -m; /* m is now abs(error) */
  577. m -= (tp->mdev >> 2); /* similar update on mdev */
  578. /* This is similar to one of Eifel findings.
  579. * Eifel blocks mdev updates when rtt decreases.
  580. * This solution is a bit different: we use finer gain
  581. * for mdev in this case (alpha*beta).
  582. * Like Eifel it also prevents growth of rto,
  583. * but also it limits too fast rto decreases,
  584. * happening in pure Eifel.
  585. */
  586. if (m > 0)
  587. m >>= 3;
  588. } else {
  589. m -= (tp->mdev >> 2); /* similar update on mdev */
  590. }
  591. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  592. if (tp->mdev > tp->mdev_max) {
  593. tp->mdev_max = tp->mdev;
  594. if (tp->mdev_max > tp->rttvar)
  595. tp->rttvar = tp->mdev_max;
  596. }
  597. if (after(tp->snd_una, tp->rtt_seq)) {
  598. if (tp->mdev_max < tp->rttvar)
  599. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  600. tp->rtt_seq = tp->snd_nxt;
  601. tp->mdev_max = tcp_rto_min(sk);
  602. }
  603. } else {
  604. /* no previous measure. */
  605. tp->srtt = m << 3; /* take the measured time to be rtt */
  606. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  607. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  608. tp->rtt_seq = tp->snd_nxt;
  609. }
  610. }
  611. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  612. * routine referred to above.
  613. */
  614. void tcp_set_rto(struct sock *sk)
  615. {
  616. const struct tcp_sock *tp = tcp_sk(sk);
  617. /* Old crap is replaced with new one. 8)
  618. *
  619. * More seriously:
  620. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  621. * It cannot be less due to utterly erratic ACK generation made
  622. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  623. * to do with delayed acks, because at cwnd>2 true delack timeout
  624. * is invisible. Actually, Linux-2.4 also generates erratic
  625. * ACKs in some circumstances.
  626. */
  627. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  628. /* 2. Fixups made earlier cannot be right.
  629. * If we do not estimate RTO correctly without them,
  630. * all the algo is pure shit and should be replaced
  631. * with correct one. It is exactly, which we pretend to do.
  632. */
  633. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  634. * guarantees that rto is higher.
  635. */
  636. tcp_bound_rto(sk);
  637. }
  638. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  639. {
  640. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  641. if (!cwnd)
  642. cwnd = TCP_INIT_CWND;
  643. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  644. }
  645. /*
  646. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  647. * disables it when reordering is detected
  648. */
  649. void tcp_disable_fack(struct tcp_sock *tp)
  650. {
  651. /* RFC3517 uses different metric in lost marker => reset on change */
  652. if (tcp_is_fack(tp))
  653. tp->lost_skb_hint = NULL;
  654. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  655. }
  656. /* Take a notice that peer is sending D-SACKs */
  657. static void tcp_dsack_seen(struct tcp_sock *tp)
  658. {
  659. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  660. }
  661. static void tcp_update_reordering(struct sock *sk, const int metric,
  662. const int ts)
  663. {
  664. struct tcp_sock *tp = tcp_sk(sk);
  665. if (metric > tp->reordering) {
  666. int mib_idx;
  667. tp->reordering = min(TCP_MAX_REORDERING, metric);
  668. /* This exciting event is worth to be remembered. 8) */
  669. if (ts)
  670. mib_idx = LINUX_MIB_TCPTSREORDER;
  671. else if (tcp_is_reno(tp))
  672. mib_idx = LINUX_MIB_TCPRENOREORDER;
  673. else if (tcp_is_fack(tp))
  674. mib_idx = LINUX_MIB_TCPFACKREORDER;
  675. else
  676. mib_idx = LINUX_MIB_TCPSACKREORDER;
  677. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  678. #if FASTRETRANS_DEBUG > 1
  679. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  680. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  681. tp->reordering,
  682. tp->fackets_out,
  683. tp->sacked_out,
  684. tp->undo_marker ? tp->undo_retrans : 0);
  685. #endif
  686. tcp_disable_fack(tp);
  687. }
  688. if (metric > 0)
  689. tcp_disable_early_retrans(tp);
  690. }
  691. /* This must be called before lost_out is incremented */
  692. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  693. {
  694. if ((tp->retransmit_skb_hint == NULL) ||
  695. before(TCP_SKB_CB(skb)->seq,
  696. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  697. tp->retransmit_skb_hint = skb;
  698. if (!tp->lost_out ||
  699. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  700. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  701. }
  702. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  703. {
  704. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  705. tcp_verify_retransmit_hint(tp, skb);
  706. tp->lost_out += tcp_skb_pcount(skb);
  707. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  708. }
  709. }
  710. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  711. struct sk_buff *skb)
  712. {
  713. tcp_verify_retransmit_hint(tp, skb);
  714. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  715. tp->lost_out += tcp_skb_pcount(skb);
  716. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  717. }
  718. }
  719. /* This procedure tags the retransmission queue when SACKs arrive.
  720. *
  721. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  722. * Packets in queue with these bits set are counted in variables
  723. * sacked_out, retrans_out and lost_out, correspondingly.
  724. *
  725. * Valid combinations are:
  726. * Tag InFlight Description
  727. * 0 1 - orig segment is in flight.
  728. * S 0 - nothing flies, orig reached receiver.
  729. * L 0 - nothing flies, orig lost by net.
  730. * R 2 - both orig and retransmit are in flight.
  731. * L|R 1 - orig is lost, retransmit is in flight.
  732. * S|R 1 - orig reached receiver, retrans is still in flight.
  733. * (L|S|R is logically valid, it could occur when L|R is sacked,
  734. * but it is equivalent to plain S and code short-curcuits it to S.
  735. * L|S is logically invalid, it would mean -1 packet in flight 8))
  736. *
  737. * These 6 states form finite state machine, controlled by the following events:
  738. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  739. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  740. * 3. Loss detection event of two flavors:
  741. * A. Scoreboard estimator decided the packet is lost.
  742. * A'. Reno "three dupacks" marks head of queue lost.
  743. * A''. Its FACK modification, head until snd.fack is lost.
  744. * B. SACK arrives sacking SND.NXT at the moment, when the
  745. * segment was retransmitted.
  746. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  747. *
  748. * It is pleasant to note, that state diagram turns out to be commutative,
  749. * so that we are allowed not to be bothered by order of our actions,
  750. * when multiple events arrive simultaneously. (see the function below).
  751. *
  752. * Reordering detection.
  753. * --------------------
  754. * Reordering metric is maximal distance, which a packet can be displaced
  755. * in packet stream. With SACKs we can estimate it:
  756. *
  757. * 1. SACK fills old hole and the corresponding segment was not
  758. * ever retransmitted -> reordering. Alas, we cannot use it
  759. * when segment was retransmitted.
  760. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  761. * for retransmitted and already SACKed segment -> reordering..
  762. * Both of these heuristics are not used in Loss state, when we cannot
  763. * account for retransmits accurately.
  764. *
  765. * SACK block validation.
  766. * ----------------------
  767. *
  768. * SACK block range validation checks that the received SACK block fits to
  769. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  770. * Note that SND.UNA is not included to the range though being valid because
  771. * it means that the receiver is rather inconsistent with itself reporting
  772. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  773. * perfectly valid, however, in light of RFC2018 which explicitly states
  774. * that "SACK block MUST reflect the newest segment. Even if the newest
  775. * segment is going to be discarded ...", not that it looks very clever
  776. * in case of head skb. Due to potentional receiver driven attacks, we
  777. * choose to avoid immediate execution of a walk in write queue due to
  778. * reneging and defer head skb's loss recovery to standard loss recovery
  779. * procedure that will eventually trigger (nothing forbids us doing this).
  780. *
  781. * Implements also blockage to start_seq wrap-around. Problem lies in the
  782. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  783. * there's no guarantee that it will be before snd_nxt (n). The problem
  784. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  785. * wrap (s_w):
  786. *
  787. * <- outs wnd -> <- wrapzone ->
  788. * u e n u_w e_w s n_w
  789. * | | | | | | |
  790. * |<------------+------+----- TCP seqno space --------------+---------->|
  791. * ...-- <2^31 ->| |<--------...
  792. * ...---- >2^31 ------>| |<--------...
  793. *
  794. * Current code wouldn't be vulnerable but it's better still to discard such
  795. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  796. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  797. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  798. * equal to the ideal case (infinite seqno space without wrap caused issues).
  799. *
  800. * With D-SACK the lower bound is extended to cover sequence space below
  801. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  802. * again, D-SACK block must not to go across snd_una (for the same reason as
  803. * for the normal SACK blocks, explained above). But there all simplicity
  804. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  805. * fully below undo_marker they do not affect behavior in anyway and can
  806. * therefore be safely ignored. In rare cases (which are more or less
  807. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  808. * fragmentation and packet reordering past skb's retransmission. To consider
  809. * them correctly, the acceptable range must be extended even more though
  810. * the exact amount is rather hard to quantify. However, tp->max_window can
  811. * be used as an exaggerated estimate.
  812. */
  813. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  814. u32 start_seq, u32 end_seq)
  815. {
  816. /* Too far in future, or reversed (interpretation is ambiguous) */
  817. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  818. return false;
  819. /* Nasty start_seq wrap-around check (see comments above) */
  820. if (!before(start_seq, tp->snd_nxt))
  821. return false;
  822. /* In outstanding window? ...This is valid exit for D-SACKs too.
  823. * start_seq == snd_una is non-sensical (see comments above)
  824. */
  825. if (after(start_seq, tp->snd_una))
  826. return true;
  827. if (!is_dsack || !tp->undo_marker)
  828. return false;
  829. /* ...Then it's D-SACK, and must reside below snd_una completely */
  830. if (after(end_seq, tp->snd_una))
  831. return false;
  832. if (!before(start_seq, tp->undo_marker))
  833. return true;
  834. /* Too old */
  835. if (!after(end_seq, tp->undo_marker))
  836. return false;
  837. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  838. * start_seq < undo_marker and end_seq >= undo_marker.
  839. */
  840. return !before(start_seq, end_seq - tp->max_window);
  841. }
  842. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  843. * Event "B". Later note: FACK people cheated me again 8), we have to account
  844. * for reordering! Ugly, but should help.
  845. *
  846. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  847. * less than what is now known to be received by the other end (derived from
  848. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  849. * retransmitted skbs to avoid some costly processing per ACKs.
  850. */
  851. static void tcp_mark_lost_retrans(struct sock *sk)
  852. {
  853. const struct inet_connection_sock *icsk = inet_csk(sk);
  854. struct tcp_sock *tp = tcp_sk(sk);
  855. struct sk_buff *skb;
  856. int cnt = 0;
  857. u32 new_low_seq = tp->snd_nxt;
  858. u32 received_upto = tcp_highest_sack_seq(tp);
  859. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  860. !after(received_upto, tp->lost_retrans_low) ||
  861. icsk->icsk_ca_state != TCP_CA_Recovery)
  862. return;
  863. tcp_for_write_queue(skb, sk) {
  864. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  865. if (skb == tcp_send_head(sk))
  866. break;
  867. if (cnt == tp->retrans_out)
  868. break;
  869. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  870. continue;
  871. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  872. continue;
  873. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  874. * constraint here (see above) but figuring out that at
  875. * least tp->reordering SACK blocks reside between ack_seq
  876. * and received_upto is not easy task to do cheaply with
  877. * the available datastructures.
  878. *
  879. * Whether FACK should check here for tp->reordering segs
  880. * in-between one could argue for either way (it would be
  881. * rather simple to implement as we could count fack_count
  882. * during the walk and do tp->fackets_out - fack_count).
  883. */
  884. if (after(received_upto, ack_seq)) {
  885. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  886. tp->retrans_out -= tcp_skb_pcount(skb);
  887. tcp_skb_mark_lost_uncond_verify(tp, skb);
  888. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  889. } else {
  890. if (before(ack_seq, new_low_seq))
  891. new_low_seq = ack_seq;
  892. cnt += tcp_skb_pcount(skb);
  893. }
  894. }
  895. if (tp->retrans_out)
  896. tp->lost_retrans_low = new_low_seq;
  897. }
  898. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  899. struct tcp_sack_block_wire *sp, int num_sacks,
  900. u32 prior_snd_una)
  901. {
  902. struct tcp_sock *tp = tcp_sk(sk);
  903. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  904. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  905. bool dup_sack = false;
  906. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  907. dup_sack = true;
  908. tcp_dsack_seen(tp);
  909. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  910. } else if (num_sacks > 1) {
  911. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  912. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  913. if (!after(end_seq_0, end_seq_1) &&
  914. !before(start_seq_0, start_seq_1)) {
  915. dup_sack = true;
  916. tcp_dsack_seen(tp);
  917. NET_INC_STATS_BH(sock_net(sk),
  918. LINUX_MIB_TCPDSACKOFORECV);
  919. }
  920. }
  921. /* D-SACK for already forgotten data... Do dumb counting. */
  922. if (dup_sack && tp->undo_marker && tp->undo_retrans &&
  923. !after(end_seq_0, prior_snd_una) &&
  924. after(end_seq_0, tp->undo_marker))
  925. tp->undo_retrans--;
  926. return dup_sack;
  927. }
  928. struct tcp_sacktag_state {
  929. int reord;
  930. int fack_count;
  931. int flag;
  932. };
  933. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  934. * the incoming SACK may not exactly match but we can find smaller MSS
  935. * aligned portion of it that matches. Therefore we might need to fragment
  936. * which may fail and creates some hassle (caller must handle error case
  937. * returns).
  938. *
  939. * FIXME: this could be merged to shift decision code
  940. */
  941. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  942. u32 start_seq, u32 end_seq)
  943. {
  944. int err;
  945. bool in_sack;
  946. unsigned int pkt_len;
  947. unsigned int mss;
  948. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  949. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  950. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  951. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  952. mss = tcp_skb_mss(skb);
  953. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  954. if (!in_sack) {
  955. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  956. if (pkt_len < mss)
  957. pkt_len = mss;
  958. } else {
  959. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  960. if (pkt_len < mss)
  961. return -EINVAL;
  962. }
  963. /* Round if necessary so that SACKs cover only full MSSes
  964. * and/or the remaining small portion (if present)
  965. */
  966. if (pkt_len > mss) {
  967. unsigned int new_len = (pkt_len / mss) * mss;
  968. if (!in_sack && new_len < pkt_len) {
  969. new_len += mss;
  970. if (new_len > skb->len)
  971. return 0;
  972. }
  973. pkt_len = new_len;
  974. }
  975. err = tcp_fragment(sk, skb, pkt_len, mss);
  976. if (err < 0)
  977. return err;
  978. }
  979. return in_sack;
  980. }
  981. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  982. static u8 tcp_sacktag_one(struct sock *sk,
  983. struct tcp_sacktag_state *state, u8 sacked,
  984. u32 start_seq, u32 end_seq,
  985. bool dup_sack, int pcount)
  986. {
  987. struct tcp_sock *tp = tcp_sk(sk);
  988. int fack_count = state->fack_count;
  989. /* Account D-SACK for retransmitted packet. */
  990. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  991. if (tp->undo_marker && tp->undo_retrans &&
  992. after(end_seq, tp->undo_marker))
  993. tp->undo_retrans--;
  994. if (sacked & TCPCB_SACKED_ACKED)
  995. state->reord = min(fack_count, state->reord);
  996. }
  997. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  998. if (!after(end_seq, tp->snd_una))
  999. return sacked;
  1000. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1001. if (sacked & TCPCB_SACKED_RETRANS) {
  1002. /* If the segment is not tagged as lost,
  1003. * we do not clear RETRANS, believing
  1004. * that retransmission is still in flight.
  1005. */
  1006. if (sacked & TCPCB_LOST) {
  1007. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1008. tp->lost_out -= pcount;
  1009. tp->retrans_out -= pcount;
  1010. }
  1011. } else {
  1012. if (!(sacked & TCPCB_RETRANS)) {
  1013. /* New sack for not retransmitted frame,
  1014. * which was in hole. It is reordering.
  1015. */
  1016. if (before(start_seq,
  1017. tcp_highest_sack_seq(tp)))
  1018. state->reord = min(fack_count,
  1019. state->reord);
  1020. }
  1021. if (sacked & TCPCB_LOST) {
  1022. sacked &= ~TCPCB_LOST;
  1023. tp->lost_out -= pcount;
  1024. }
  1025. }
  1026. sacked |= TCPCB_SACKED_ACKED;
  1027. state->flag |= FLAG_DATA_SACKED;
  1028. tp->sacked_out += pcount;
  1029. fack_count += pcount;
  1030. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1031. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1032. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1033. tp->lost_cnt_hint += pcount;
  1034. if (fack_count > tp->fackets_out)
  1035. tp->fackets_out = fack_count;
  1036. }
  1037. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1038. * frames and clear it. undo_retrans is decreased above, L|R frames
  1039. * are accounted above as well.
  1040. */
  1041. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1042. sacked &= ~TCPCB_SACKED_RETRANS;
  1043. tp->retrans_out -= pcount;
  1044. }
  1045. return sacked;
  1046. }
  1047. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1048. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1049. */
  1050. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1051. struct tcp_sacktag_state *state,
  1052. unsigned int pcount, int shifted, int mss,
  1053. bool dup_sack)
  1054. {
  1055. struct tcp_sock *tp = tcp_sk(sk);
  1056. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1057. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1058. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1059. BUG_ON(!pcount);
  1060. /* Adjust counters and hints for the newly sacked sequence
  1061. * range but discard the return value since prev is already
  1062. * marked. We must tag the range first because the seq
  1063. * advancement below implicitly advances
  1064. * tcp_highest_sack_seq() when skb is highest_sack.
  1065. */
  1066. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1067. start_seq, end_seq, dup_sack, pcount);
  1068. if (skb == tp->lost_skb_hint)
  1069. tp->lost_cnt_hint += pcount;
  1070. TCP_SKB_CB(prev)->end_seq += shifted;
  1071. TCP_SKB_CB(skb)->seq += shifted;
  1072. skb_shinfo(prev)->gso_segs += pcount;
  1073. BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
  1074. skb_shinfo(skb)->gso_segs -= pcount;
  1075. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1076. * in theory this shouldn't be necessary but as long as DSACK
  1077. * code can come after this skb later on it's better to keep
  1078. * setting gso_size to something.
  1079. */
  1080. if (!skb_shinfo(prev)->gso_size) {
  1081. skb_shinfo(prev)->gso_size = mss;
  1082. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1083. }
  1084. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1085. if (skb_shinfo(skb)->gso_segs <= 1) {
  1086. skb_shinfo(skb)->gso_size = 0;
  1087. skb_shinfo(skb)->gso_type = 0;
  1088. }
  1089. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1090. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1091. if (skb->len > 0) {
  1092. BUG_ON(!tcp_skb_pcount(skb));
  1093. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1094. return false;
  1095. }
  1096. /* Whole SKB was eaten :-) */
  1097. if (skb == tp->retransmit_skb_hint)
  1098. tp->retransmit_skb_hint = prev;
  1099. if (skb == tp->scoreboard_skb_hint)
  1100. tp->scoreboard_skb_hint = prev;
  1101. if (skb == tp->lost_skb_hint) {
  1102. tp->lost_skb_hint = prev;
  1103. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1104. }
  1105. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
  1106. if (skb == tcp_highest_sack(sk))
  1107. tcp_advance_highest_sack(sk, skb);
  1108. tcp_unlink_write_queue(skb, sk);
  1109. sk_wmem_free_skb(sk, skb);
  1110. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1111. return true;
  1112. }
  1113. /* I wish gso_size would have a bit more sane initialization than
  1114. * something-or-zero which complicates things
  1115. */
  1116. static int tcp_skb_seglen(const struct sk_buff *skb)
  1117. {
  1118. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1119. }
  1120. /* Shifting pages past head area doesn't work */
  1121. static int skb_can_shift(const struct sk_buff *skb)
  1122. {
  1123. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1124. }
  1125. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1126. * skb.
  1127. */
  1128. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1129. struct tcp_sacktag_state *state,
  1130. u32 start_seq, u32 end_seq,
  1131. bool dup_sack)
  1132. {
  1133. struct tcp_sock *tp = tcp_sk(sk);
  1134. struct sk_buff *prev;
  1135. int mss;
  1136. int pcount = 0;
  1137. int len;
  1138. int in_sack;
  1139. if (!sk_can_gso(sk))
  1140. goto fallback;
  1141. /* Normally R but no L won't result in plain S */
  1142. if (!dup_sack &&
  1143. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1144. goto fallback;
  1145. if (!skb_can_shift(skb))
  1146. goto fallback;
  1147. /* This frame is about to be dropped (was ACKed). */
  1148. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1149. goto fallback;
  1150. /* Can only happen with delayed DSACK + discard craziness */
  1151. if (unlikely(skb == tcp_write_queue_head(sk)))
  1152. goto fallback;
  1153. prev = tcp_write_queue_prev(sk, skb);
  1154. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1155. goto fallback;
  1156. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1157. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1158. if (in_sack) {
  1159. len = skb->len;
  1160. pcount = tcp_skb_pcount(skb);
  1161. mss = tcp_skb_seglen(skb);
  1162. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1163. * drop this restriction as unnecessary
  1164. */
  1165. if (mss != tcp_skb_seglen(prev))
  1166. goto fallback;
  1167. } else {
  1168. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1169. goto noop;
  1170. /* CHECKME: This is non-MSS split case only?, this will
  1171. * cause skipped skbs due to advancing loop btw, original
  1172. * has that feature too
  1173. */
  1174. if (tcp_skb_pcount(skb) <= 1)
  1175. goto noop;
  1176. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1177. if (!in_sack) {
  1178. /* TODO: head merge to next could be attempted here
  1179. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1180. * though it might not be worth of the additional hassle
  1181. *
  1182. * ...we can probably just fallback to what was done
  1183. * previously. We could try merging non-SACKed ones
  1184. * as well but it probably isn't going to buy off
  1185. * because later SACKs might again split them, and
  1186. * it would make skb timestamp tracking considerably
  1187. * harder problem.
  1188. */
  1189. goto fallback;
  1190. }
  1191. len = end_seq - TCP_SKB_CB(skb)->seq;
  1192. BUG_ON(len < 0);
  1193. BUG_ON(len > skb->len);
  1194. /* MSS boundaries should be honoured or else pcount will
  1195. * severely break even though it makes things bit trickier.
  1196. * Optimize common case to avoid most of the divides
  1197. */
  1198. mss = tcp_skb_mss(skb);
  1199. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1200. * drop this restriction as unnecessary
  1201. */
  1202. if (mss != tcp_skb_seglen(prev))
  1203. goto fallback;
  1204. if (len == mss) {
  1205. pcount = 1;
  1206. } else if (len < mss) {
  1207. goto noop;
  1208. } else {
  1209. pcount = len / mss;
  1210. len = pcount * mss;
  1211. }
  1212. }
  1213. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1214. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1215. goto fallback;
  1216. if (!skb_shift(prev, skb, len))
  1217. goto fallback;
  1218. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1219. goto out;
  1220. /* Hole filled allows collapsing with the next as well, this is very
  1221. * useful when hole on every nth skb pattern happens
  1222. */
  1223. if (prev == tcp_write_queue_tail(sk))
  1224. goto out;
  1225. skb = tcp_write_queue_next(sk, prev);
  1226. if (!skb_can_shift(skb) ||
  1227. (skb == tcp_send_head(sk)) ||
  1228. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1229. (mss != tcp_skb_seglen(skb)))
  1230. goto out;
  1231. len = skb->len;
  1232. if (skb_shift(prev, skb, len)) {
  1233. pcount += tcp_skb_pcount(skb);
  1234. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1235. }
  1236. out:
  1237. state->fack_count += pcount;
  1238. return prev;
  1239. noop:
  1240. return skb;
  1241. fallback:
  1242. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1243. return NULL;
  1244. }
  1245. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1246. struct tcp_sack_block *next_dup,
  1247. struct tcp_sacktag_state *state,
  1248. u32 start_seq, u32 end_seq,
  1249. bool dup_sack_in)
  1250. {
  1251. struct tcp_sock *tp = tcp_sk(sk);
  1252. struct sk_buff *tmp;
  1253. tcp_for_write_queue_from(skb, sk) {
  1254. int in_sack = 0;
  1255. bool dup_sack = dup_sack_in;
  1256. if (skb == tcp_send_head(sk))
  1257. break;
  1258. /* queue is in-order => we can short-circuit the walk early */
  1259. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1260. break;
  1261. if ((next_dup != NULL) &&
  1262. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1263. in_sack = tcp_match_skb_to_sack(sk, skb,
  1264. next_dup->start_seq,
  1265. next_dup->end_seq);
  1266. if (in_sack > 0)
  1267. dup_sack = true;
  1268. }
  1269. /* skb reference here is a bit tricky to get right, since
  1270. * shifting can eat and free both this skb and the next,
  1271. * so not even _safe variant of the loop is enough.
  1272. */
  1273. if (in_sack <= 0) {
  1274. tmp = tcp_shift_skb_data(sk, skb, state,
  1275. start_seq, end_seq, dup_sack);
  1276. if (tmp != NULL) {
  1277. if (tmp != skb) {
  1278. skb = tmp;
  1279. continue;
  1280. }
  1281. in_sack = 0;
  1282. } else {
  1283. in_sack = tcp_match_skb_to_sack(sk, skb,
  1284. start_seq,
  1285. end_seq);
  1286. }
  1287. }
  1288. if (unlikely(in_sack < 0))
  1289. break;
  1290. if (in_sack) {
  1291. TCP_SKB_CB(skb)->sacked =
  1292. tcp_sacktag_one(sk,
  1293. state,
  1294. TCP_SKB_CB(skb)->sacked,
  1295. TCP_SKB_CB(skb)->seq,
  1296. TCP_SKB_CB(skb)->end_seq,
  1297. dup_sack,
  1298. tcp_skb_pcount(skb));
  1299. if (!before(TCP_SKB_CB(skb)->seq,
  1300. tcp_highest_sack_seq(tp)))
  1301. tcp_advance_highest_sack(sk, skb);
  1302. }
  1303. state->fack_count += tcp_skb_pcount(skb);
  1304. }
  1305. return skb;
  1306. }
  1307. /* Avoid all extra work that is being done by sacktag while walking in
  1308. * a normal way
  1309. */
  1310. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1311. struct tcp_sacktag_state *state,
  1312. u32 skip_to_seq)
  1313. {
  1314. tcp_for_write_queue_from(skb, sk) {
  1315. if (skb == tcp_send_head(sk))
  1316. break;
  1317. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1318. break;
  1319. state->fack_count += tcp_skb_pcount(skb);
  1320. }
  1321. return skb;
  1322. }
  1323. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1324. struct sock *sk,
  1325. struct tcp_sack_block *next_dup,
  1326. struct tcp_sacktag_state *state,
  1327. u32 skip_to_seq)
  1328. {
  1329. if (next_dup == NULL)
  1330. return skb;
  1331. if (before(next_dup->start_seq, skip_to_seq)) {
  1332. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1333. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1334. next_dup->start_seq, next_dup->end_seq,
  1335. 1);
  1336. }
  1337. return skb;
  1338. }
  1339. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1340. {
  1341. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1342. }
  1343. static int
  1344. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1345. u32 prior_snd_una)
  1346. {
  1347. struct tcp_sock *tp = tcp_sk(sk);
  1348. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1349. TCP_SKB_CB(ack_skb)->sacked);
  1350. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1351. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1352. struct tcp_sack_block *cache;
  1353. struct tcp_sacktag_state state;
  1354. struct sk_buff *skb;
  1355. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1356. int used_sacks;
  1357. bool found_dup_sack = false;
  1358. int i, j;
  1359. int first_sack_index;
  1360. state.flag = 0;
  1361. state.reord = tp->packets_out;
  1362. if (!tp->sacked_out) {
  1363. if (WARN_ON(tp->fackets_out))
  1364. tp->fackets_out = 0;
  1365. tcp_highest_sack_reset(sk);
  1366. }
  1367. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1368. num_sacks, prior_snd_una);
  1369. if (found_dup_sack)
  1370. state.flag |= FLAG_DSACKING_ACK;
  1371. /* Eliminate too old ACKs, but take into
  1372. * account more or less fresh ones, they can
  1373. * contain valid SACK info.
  1374. */
  1375. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1376. return 0;
  1377. if (!tp->packets_out)
  1378. goto out;
  1379. used_sacks = 0;
  1380. first_sack_index = 0;
  1381. for (i = 0; i < num_sacks; i++) {
  1382. bool dup_sack = !i && found_dup_sack;
  1383. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1384. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1385. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1386. sp[used_sacks].start_seq,
  1387. sp[used_sacks].end_seq)) {
  1388. int mib_idx;
  1389. if (dup_sack) {
  1390. if (!tp->undo_marker)
  1391. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1392. else
  1393. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1394. } else {
  1395. /* Don't count olds caused by ACK reordering */
  1396. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1397. !after(sp[used_sacks].end_seq, tp->snd_una))
  1398. continue;
  1399. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1400. }
  1401. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1402. if (i == 0)
  1403. first_sack_index = -1;
  1404. continue;
  1405. }
  1406. /* Ignore very old stuff early */
  1407. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1408. continue;
  1409. used_sacks++;
  1410. }
  1411. /* order SACK blocks to allow in order walk of the retrans queue */
  1412. for (i = used_sacks - 1; i > 0; i--) {
  1413. for (j = 0; j < i; j++) {
  1414. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1415. swap(sp[j], sp[j + 1]);
  1416. /* Track where the first SACK block goes to */
  1417. if (j == first_sack_index)
  1418. first_sack_index = j + 1;
  1419. }
  1420. }
  1421. }
  1422. skb = tcp_write_queue_head(sk);
  1423. state.fack_count = 0;
  1424. i = 0;
  1425. if (!tp->sacked_out) {
  1426. /* It's already past, so skip checking against it */
  1427. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1428. } else {
  1429. cache = tp->recv_sack_cache;
  1430. /* Skip empty blocks in at head of the cache */
  1431. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1432. !cache->end_seq)
  1433. cache++;
  1434. }
  1435. while (i < used_sacks) {
  1436. u32 start_seq = sp[i].start_seq;
  1437. u32 end_seq = sp[i].end_seq;
  1438. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1439. struct tcp_sack_block *next_dup = NULL;
  1440. if (found_dup_sack && ((i + 1) == first_sack_index))
  1441. next_dup = &sp[i + 1];
  1442. /* Skip too early cached blocks */
  1443. while (tcp_sack_cache_ok(tp, cache) &&
  1444. !before(start_seq, cache->end_seq))
  1445. cache++;
  1446. /* Can skip some work by looking recv_sack_cache? */
  1447. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1448. after(end_seq, cache->start_seq)) {
  1449. /* Head todo? */
  1450. if (before(start_seq, cache->start_seq)) {
  1451. skb = tcp_sacktag_skip(skb, sk, &state,
  1452. start_seq);
  1453. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1454. &state,
  1455. start_seq,
  1456. cache->start_seq,
  1457. dup_sack);
  1458. }
  1459. /* Rest of the block already fully processed? */
  1460. if (!after(end_seq, cache->end_seq))
  1461. goto advance_sp;
  1462. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1463. &state,
  1464. cache->end_seq);
  1465. /* ...tail remains todo... */
  1466. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1467. /* ...but better entrypoint exists! */
  1468. skb = tcp_highest_sack(sk);
  1469. if (skb == NULL)
  1470. break;
  1471. state.fack_count = tp->fackets_out;
  1472. cache++;
  1473. goto walk;
  1474. }
  1475. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1476. /* Check overlap against next cached too (past this one already) */
  1477. cache++;
  1478. continue;
  1479. }
  1480. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1481. skb = tcp_highest_sack(sk);
  1482. if (skb == NULL)
  1483. break;
  1484. state.fack_count = tp->fackets_out;
  1485. }
  1486. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1487. walk:
  1488. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1489. start_seq, end_seq, dup_sack);
  1490. advance_sp:
  1491. i++;
  1492. }
  1493. /* Clear the head of the cache sack blocks so we can skip it next time */
  1494. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1495. tp->recv_sack_cache[i].start_seq = 0;
  1496. tp->recv_sack_cache[i].end_seq = 0;
  1497. }
  1498. for (j = 0; j < used_sacks; j++)
  1499. tp->recv_sack_cache[i++] = sp[j];
  1500. tcp_mark_lost_retrans(sk);
  1501. tcp_verify_left_out(tp);
  1502. if ((state.reord < tp->fackets_out) &&
  1503. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1504. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1505. out:
  1506. #if FASTRETRANS_DEBUG > 0
  1507. WARN_ON((int)tp->sacked_out < 0);
  1508. WARN_ON((int)tp->lost_out < 0);
  1509. WARN_ON((int)tp->retrans_out < 0);
  1510. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1511. #endif
  1512. return state.flag;
  1513. }
  1514. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1515. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1516. */
  1517. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1518. {
  1519. u32 holes;
  1520. holes = max(tp->lost_out, 1U);
  1521. holes = min(holes, tp->packets_out);
  1522. if ((tp->sacked_out + holes) > tp->packets_out) {
  1523. tp->sacked_out = tp->packets_out - holes;
  1524. return true;
  1525. }
  1526. return false;
  1527. }
  1528. /* If we receive more dupacks than we expected counting segments
  1529. * in assumption of absent reordering, interpret this as reordering.
  1530. * The only another reason could be bug in receiver TCP.
  1531. */
  1532. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1533. {
  1534. struct tcp_sock *tp = tcp_sk(sk);
  1535. if (tcp_limit_reno_sacked(tp))
  1536. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1537. }
  1538. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1539. static void tcp_add_reno_sack(struct sock *sk)
  1540. {
  1541. struct tcp_sock *tp = tcp_sk(sk);
  1542. tp->sacked_out++;
  1543. tcp_check_reno_reordering(sk, 0);
  1544. tcp_verify_left_out(tp);
  1545. }
  1546. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1547. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1548. {
  1549. struct tcp_sock *tp = tcp_sk(sk);
  1550. if (acked > 0) {
  1551. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1552. if (acked - 1 >= tp->sacked_out)
  1553. tp->sacked_out = 0;
  1554. else
  1555. tp->sacked_out -= acked - 1;
  1556. }
  1557. tcp_check_reno_reordering(sk, acked);
  1558. tcp_verify_left_out(tp);
  1559. }
  1560. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1561. {
  1562. tp->sacked_out = 0;
  1563. }
  1564. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1565. {
  1566. tp->retrans_out = 0;
  1567. tp->lost_out = 0;
  1568. tp->undo_marker = 0;
  1569. tp->undo_retrans = 0;
  1570. }
  1571. void tcp_clear_retrans(struct tcp_sock *tp)
  1572. {
  1573. tcp_clear_retrans_partial(tp);
  1574. tp->fackets_out = 0;
  1575. tp->sacked_out = 0;
  1576. }
  1577. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1578. * and reset tags completely, otherwise preserve SACKs. If receiver
  1579. * dropped its ofo queue, we will know this due to reneging detection.
  1580. */
  1581. void tcp_enter_loss(struct sock *sk, int how)
  1582. {
  1583. const struct inet_connection_sock *icsk = inet_csk(sk);
  1584. struct tcp_sock *tp = tcp_sk(sk);
  1585. struct sk_buff *skb;
  1586. /* Reduce ssthresh if it has not yet been made inside this window. */
  1587. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1588. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1589. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1590. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1591. tcp_ca_event(sk, CA_EVENT_LOSS);
  1592. }
  1593. tp->snd_cwnd = 1;
  1594. tp->snd_cwnd_cnt = 0;
  1595. tp->snd_cwnd_stamp = tcp_time_stamp;
  1596. tcp_clear_retrans_partial(tp);
  1597. if (tcp_is_reno(tp))
  1598. tcp_reset_reno_sack(tp);
  1599. if (!how) {
  1600. /* Push undo marker, if it was plain RTO and nothing
  1601. * was retransmitted. */
  1602. tp->undo_marker = tp->snd_una;
  1603. } else {
  1604. tp->sacked_out = 0;
  1605. tp->fackets_out = 0;
  1606. }
  1607. tcp_clear_all_retrans_hints(tp);
  1608. tcp_for_write_queue(skb, sk) {
  1609. if (skb == tcp_send_head(sk))
  1610. break;
  1611. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1612. tp->undo_marker = 0;
  1613. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1614. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1615. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1616. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1617. tp->lost_out += tcp_skb_pcount(skb);
  1618. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1619. }
  1620. }
  1621. tcp_verify_left_out(tp);
  1622. tp->reordering = min_t(unsigned int, tp->reordering,
  1623. sysctl_tcp_reordering);
  1624. tcp_set_ca_state(sk, TCP_CA_Loss);
  1625. tp->high_seq = tp->snd_nxt;
  1626. TCP_ECN_queue_cwr(tp);
  1627. }
  1628. /* If ACK arrived pointing to a remembered SACK, it means that our
  1629. * remembered SACKs do not reflect real state of receiver i.e.
  1630. * receiver _host_ is heavily congested (or buggy).
  1631. *
  1632. * Do processing similar to RTO timeout.
  1633. */
  1634. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1635. {
  1636. if (flag & FLAG_SACK_RENEGING) {
  1637. struct inet_connection_sock *icsk = inet_csk(sk);
  1638. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1639. tcp_enter_loss(sk, 1);
  1640. icsk->icsk_retransmits++;
  1641. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1642. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1643. icsk->icsk_rto, TCP_RTO_MAX);
  1644. return true;
  1645. }
  1646. return false;
  1647. }
  1648. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1649. {
  1650. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1651. }
  1652. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1653. * counter when SACK is enabled (without SACK, sacked_out is used for
  1654. * that purpose).
  1655. *
  1656. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1657. * segments up to the highest received SACK block so far and holes in
  1658. * between them.
  1659. *
  1660. * With reordering, holes may still be in flight, so RFC3517 recovery
  1661. * uses pure sacked_out (total number of SACKed segments) even though
  1662. * it violates the RFC that uses duplicate ACKs, often these are equal
  1663. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1664. * they differ. Since neither occurs due to loss, TCP should really
  1665. * ignore them.
  1666. */
  1667. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1668. {
  1669. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1670. }
  1671. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  1672. {
  1673. struct tcp_sock *tp = tcp_sk(sk);
  1674. unsigned long delay;
  1675. /* Delay early retransmit and entering fast recovery for
  1676. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  1677. * available, or RTO is scheduled to fire first.
  1678. */
  1679. if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
  1680. (flag & FLAG_ECE) || !tp->srtt)
  1681. return false;
  1682. delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
  1683. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  1684. return false;
  1685. inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
  1686. TCP_RTO_MAX);
  1687. return true;
  1688. }
  1689. static inline int tcp_skb_timedout(const struct sock *sk,
  1690. const struct sk_buff *skb)
  1691. {
  1692. return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
  1693. }
  1694. static inline int tcp_head_timedout(const struct sock *sk)
  1695. {
  1696. const struct tcp_sock *tp = tcp_sk(sk);
  1697. return tp->packets_out &&
  1698. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  1699. }
  1700. /* Linux NewReno/SACK/FACK/ECN state machine.
  1701. * --------------------------------------
  1702. *
  1703. * "Open" Normal state, no dubious events, fast path.
  1704. * "Disorder" In all the respects it is "Open",
  1705. * but requires a bit more attention. It is entered when
  1706. * we see some SACKs or dupacks. It is split of "Open"
  1707. * mainly to move some processing from fast path to slow one.
  1708. * "CWR" CWND was reduced due to some Congestion Notification event.
  1709. * It can be ECN, ICMP source quench, local device congestion.
  1710. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1711. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1712. *
  1713. * tcp_fastretrans_alert() is entered:
  1714. * - each incoming ACK, if state is not "Open"
  1715. * - when arrived ACK is unusual, namely:
  1716. * * SACK
  1717. * * Duplicate ACK.
  1718. * * ECN ECE.
  1719. *
  1720. * Counting packets in flight is pretty simple.
  1721. *
  1722. * in_flight = packets_out - left_out + retrans_out
  1723. *
  1724. * packets_out is SND.NXT-SND.UNA counted in packets.
  1725. *
  1726. * retrans_out is number of retransmitted segments.
  1727. *
  1728. * left_out is number of segments left network, but not ACKed yet.
  1729. *
  1730. * left_out = sacked_out + lost_out
  1731. *
  1732. * sacked_out: Packets, which arrived to receiver out of order
  1733. * and hence not ACKed. With SACKs this number is simply
  1734. * amount of SACKed data. Even without SACKs
  1735. * it is easy to give pretty reliable estimate of this number,
  1736. * counting duplicate ACKs.
  1737. *
  1738. * lost_out: Packets lost by network. TCP has no explicit
  1739. * "loss notification" feedback from network (for now).
  1740. * It means that this number can be only _guessed_.
  1741. * Actually, it is the heuristics to predict lossage that
  1742. * distinguishes different algorithms.
  1743. *
  1744. * F.e. after RTO, when all the queue is considered as lost,
  1745. * lost_out = packets_out and in_flight = retrans_out.
  1746. *
  1747. * Essentially, we have now two algorithms counting
  1748. * lost packets.
  1749. *
  1750. * FACK: It is the simplest heuristics. As soon as we decided
  1751. * that something is lost, we decide that _all_ not SACKed
  1752. * packets until the most forward SACK are lost. I.e.
  1753. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1754. * It is absolutely correct estimate, if network does not reorder
  1755. * packets. And it loses any connection to reality when reordering
  1756. * takes place. We use FACK by default until reordering
  1757. * is suspected on the path to this destination.
  1758. *
  1759. * NewReno: when Recovery is entered, we assume that one segment
  1760. * is lost (classic Reno). While we are in Recovery and
  1761. * a partial ACK arrives, we assume that one more packet
  1762. * is lost (NewReno). This heuristics are the same in NewReno
  1763. * and SACK.
  1764. *
  1765. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1766. * deflation etc. CWND is real congestion window, never inflated, changes
  1767. * only according to classic VJ rules.
  1768. *
  1769. * Really tricky (and requiring careful tuning) part of algorithm
  1770. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1771. * The first determines the moment _when_ we should reduce CWND and,
  1772. * hence, slow down forward transmission. In fact, it determines the moment
  1773. * when we decide that hole is caused by loss, rather than by a reorder.
  1774. *
  1775. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1776. * holes, caused by lost packets.
  1777. *
  1778. * And the most logically complicated part of algorithm is undo
  1779. * heuristics. We detect false retransmits due to both too early
  1780. * fast retransmit (reordering) and underestimated RTO, analyzing
  1781. * timestamps and D-SACKs. When we detect that some segments were
  1782. * retransmitted by mistake and CWND reduction was wrong, we undo
  1783. * window reduction and abort recovery phase. This logic is hidden
  1784. * inside several functions named tcp_try_undo_<something>.
  1785. */
  1786. /* This function decides, when we should leave Disordered state
  1787. * and enter Recovery phase, reducing congestion window.
  1788. *
  1789. * Main question: may we further continue forward transmission
  1790. * with the same cwnd?
  1791. */
  1792. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1793. {
  1794. struct tcp_sock *tp = tcp_sk(sk);
  1795. __u32 packets_out;
  1796. /* Trick#1: The loss is proven. */
  1797. if (tp->lost_out)
  1798. return true;
  1799. /* Not-A-Trick#2 : Classic rule... */
  1800. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1801. return true;
  1802. /* Trick#3 : when we use RFC2988 timer restart, fast
  1803. * retransmit can be triggered by timeout of queue head.
  1804. */
  1805. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  1806. return true;
  1807. /* Trick#4: It is still not OK... But will it be useful to delay
  1808. * recovery more?
  1809. */
  1810. packets_out = tp->packets_out;
  1811. if (packets_out <= tp->reordering &&
  1812. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  1813. !tcp_may_send_now(sk)) {
  1814. /* We have nothing to send. This connection is limited
  1815. * either by receiver window or by application.
  1816. */
  1817. return true;
  1818. }
  1819. /* If a thin stream is detected, retransmit after first
  1820. * received dupack. Employ only if SACK is supported in order
  1821. * to avoid possible corner-case series of spurious retransmissions
  1822. * Use only if there are no unsent data.
  1823. */
  1824. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  1825. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  1826. tcp_is_sack(tp) && !tcp_send_head(sk))
  1827. return true;
  1828. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  1829. * retransmissions due to small network reorderings, we implement
  1830. * Mitigation A.3 in the RFC and delay the retransmission for a short
  1831. * interval if appropriate.
  1832. */
  1833. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  1834. (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
  1835. !tcp_may_send_now(sk))
  1836. return !tcp_pause_early_retransmit(sk, flag);
  1837. return false;
  1838. }
  1839. /* New heuristics: it is possible only after we switched to restart timer
  1840. * each time when something is ACKed. Hence, we can detect timed out packets
  1841. * during fast retransmit without falling to slow start.
  1842. *
  1843. * Usefulness of this as is very questionable, since we should know which of
  1844. * the segments is the next to timeout which is relatively expensive to find
  1845. * in general case unless we add some data structure just for that. The
  1846. * current approach certainly won't find the right one too often and when it
  1847. * finally does find _something_ it usually marks large part of the window
  1848. * right away (because a retransmission with a larger timestamp blocks the
  1849. * loop from advancing). -ij
  1850. */
  1851. static void tcp_timeout_skbs(struct sock *sk)
  1852. {
  1853. struct tcp_sock *tp = tcp_sk(sk);
  1854. struct sk_buff *skb;
  1855. if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
  1856. return;
  1857. skb = tp->scoreboard_skb_hint;
  1858. if (tp->scoreboard_skb_hint == NULL)
  1859. skb = tcp_write_queue_head(sk);
  1860. tcp_for_write_queue_from(skb, sk) {
  1861. if (skb == tcp_send_head(sk))
  1862. break;
  1863. if (!tcp_skb_timedout(sk, skb))
  1864. break;
  1865. tcp_skb_mark_lost(tp, skb);
  1866. }
  1867. tp->scoreboard_skb_hint = skb;
  1868. tcp_verify_left_out(tp);
  1869. }
  1870. /* Detect loss in event "A" above by marking head of queue up as lost.
  1871. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1872. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1873. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1874. * the maximum SACKed segments to pass before reaching this limit.
  1875. */
  1876. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1877. {
  1878. struct tcp_sock *tp = tcp_sk(sk);
  1879. struct sk_buff *skb;
  1880. int cnt, oldcnt;
  1881. int err;
  1882. unsigned int mss;
  1883. /* Use SACK to deduce losses of new sequences sent during recovery */
  1884. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1885. WARN_ON(packets > tp->packets_out);
  1886. if (tp->lost_skb_hint) {
  1887. skb = tp->lost_skb_hint;
  1888. cnt = tp->lost_cnt_hint;
  1889. /* Head already handled? */
  1890. if (mark_head && skb != tcp_write_queue_head(sk))
  1891. return;
  1892. } else {
  1893. skb = tcp_write_queue_head(sk);
  1894. cnt = 0;
  1895. }
  1896. tcp_for_write_queue_from(skb, sk) {
  1897. if (skb == tcp_send_head(sk))
  1898. break;
  1899. /* TODO: do this better */
  1900. /* this is not the most efficient way to do this... */
  1901. tp->lost_skb_hint = skb;
  1902. tp->lost_cnt_hint = cnt;
  1903. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1904. break;
  1905. oldcnt = cnt;
  1906. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1907. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1908. cnt += tcp_skb_pcount(skb);
  1909. if (cnt > packets) {
  1910. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1911. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1912. (oldcnt >= packets))
  1913. break;
  1914. mss = skb_shinfo(skb)->gso_size;
  1915. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  1916. if (err < 0)
  1917. break;
  1918. cnt = packets;
  1919. }
  1920. tcp_skb_mark_lost(tp, skb);
  1921. if (mark_head)
  1922. break;
  1923. }
  1924. tcp_verify_left_out(tp);
  1925. }
  1926. /* Account newly detected lost packet(s) */
  1927. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1928. {
  1929. struct tcp_sock *tp = tcp_sk(sk);
  1930. if (tcp_is_reno(tp)) {
  1931. tcp_mark_head_lost(sk, 1, 1);
  1932. } else if (tcp_is_fack(tp)) {
  1933. int lost = tp->fackets_out - tp->reordering;
  1934. if (lost <= 0)
  1935. lost = 1;
  1936. tcp_mark_head_lost(sk, lost, 0);
  1937. } else {
  1938. int sacked_upto = tp->sacked_out - tp->reordering;
  1939. if (sacked_upto >= 0)
  1940. tcp_mark_head_lost(sk, sacked_upto, 0);
  1941. else if (fast_rexmit)
  1942. tcp_mark_head_lost(sk, 1, 1);
  1943. }
  1944. tcp_timeout_skbs(sk);
  1945. }
  1946. /* CWND moderation, preventing bursts due to too big ACKs
  1947. * in dubious situations.
  1948. */
  1949. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  1950. {
  1951. tp->snd_cwnd = min(tp->snd_cwnd,
  1952. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  1953. tp->snd_cwnd_stamp = tcp_time_stamp;
  1954. }
  1955. /* Nothing was retransmitted or returned timestamp is less
  1956. * than timestamp of the first retransmission.
  1957. */
  1958. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  1959. {
  1960. return !tp->retrans_stamp ||
  1961. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1962. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  1963. }
  1964. /* Undo procedures. */
  1965. #if FASTRETRANS_DEBUG > 1
  1966. static void DBGUNDO(struct sock *sk, const char *msg)
  1967. {
  1968. struct tcp_sock *tp = tcp_sk(sk);
  1969. struct inet_sock *inet = inet_sk(sk);
  1970. if (sk->sk_family == AF_INET) {
  1971. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  1972. msg,
  1973. &inet->inet_daddr, ntohs(inet->inet_dport),
  1974. tp->snd_cwnd, tcp_left_out(tp),
  1975. tp->snd_ssthresh, tp->prior_ssthresh,
  1976. tp->packets_out);
  1977. }
  1978. #if IS_ENABLED(CONFIG_IPV6)
  1979. else if (sk->sk_family == AF_INET6) {
  1980. struct ipv6_pinfo *np = inet6_sk(sk);
  1981. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  1982. msg,
  1983. &np->daddr, ntohs(inet->inet_dport),
  1984. tp->snd_cwnd, tcp_left_out(tp),
  1985. tp->snd_ssthresh, tp->prior_ssthresh,
  1986. tp->packets_out);
  1987. }
  1988. #endif
  1989. }
  1990. #else
  1991. #define DBGUNDO(x...) do { } while (0)
  1992. #endif
  1993. static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
  1994. {
  1995. struct tcp_sock *tp = tcp_sk(sk);
  1996. if (tp->prior_ssthresh) {
  1997. const struct inet_connection_sock *icsk = inet_csk(sk);
  1998. if (icsk->icsk_ca_ops->undo_cwnd)
  1999. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2000. else
  2001. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2002. if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
  2003. tp->snd_ssthresh = tp->prior_ssthresh;
  2004. TCP_ECN_withdraw_cwr(tp);
  2005. }
  2006. } else {
  2007. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2008. }
  2009. tp->snd_cwnd_stamp = tcp_time_stamp;
  2010. }
  2011. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2012. {
  2013. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2014. }
  2015. /* People celebrate: "We love our President!" */
  2016. static bool tcp_try_undo_recovery(struct sock *sk)
  2017. {
  2018. struct tcp_sock *tp = tcp_sk(sk);
  2019. if (tcp_may_undo(tp)) {
  2020. int mib_idx;
  2021. /* Happy end! We did not retransmit anything
  2022. * or our original transmission succeeded.
  2023. */
  2024. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2025. tcp_undo_cwr(sk, true);
  2026. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2027. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2028. else
  2029. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2030. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2031. tp->undo_marker = 0;
  2032. }
  2033. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2034. /* Hold old state until something *above* high_seq
  2035. * is ACKed. For Reno it is MUST to prevent false
  2036. * fast retransmits (RFC2582). SACK TCP is safe. */
  2037. tcp_moderate_cwnd(tp);
  2038. return true;
  2039. }
  2040. tcp_set_ca_state(sk, TCP_CA_Open);
  2041. return false;
  2042. }
  2043. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2044. static void tcp_try_undo_dsack(struct sock *sk)
  2045. {
  2046. struct tcp_sock *tp = tcp_sk(sk);
  2047. if (tp->undo_marker && !tp->undo_retrans) {
  2048. DBGUNDO(sk, "D-SACK");
  2049. tcp_undo_cwr(sk, true);
  2050. tp->undo_marker = 0;
  2051. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2052. }
  2053. }
  2054. /* We can clear retrans_stamp when there are no retransmissions in the
  2055. * window. It would seem that it is trivially available for us in
  2056. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2057. * what will happen if errors occur when sending retransmission for the
  2058. * second time. ...It could the that such segment has only
  2059. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2060. * the head skb is enough except for some reneging corner cases that
  2061. * are not worth the effort.
  2062. *
  2063. * Main reason for all this complexity is the fact that connection dying
  2064. * time now depends on the validity of the retrans_stamp, in particular,
  2065. * that successive retransmissions of a segment must not advance
  2066. * retrans_stamp under any conditions.
  2067. */
  2068. static bool tcp_any_retrans_done(const struct sock *sk)
  2069. {
  2070. const struct tcp_sock *tp = tcp_sk(sk);
  2071. struct sk_buff *skb;
  2072. if (tp->retrans_out)
  2073. return true;
  2074. skb = tcp_write_queue_head(sk);
  2075. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2076. return true;
  2077. return false;
  2078. }
  2079. /* Undo during fast recovery after partial ACK. */
  2080. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2081. {
  2082. struct tcp_sock *tp = tcp_sk(sk);
  2083. /* Partial ACK arrived. Force Hoe's retransmit. */
  2084. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2085. if (tcp_may_undo(tp)) {
  2086. /* Plain luck! Hole if filled with delayed
  2087. * packet, rather than with a retransmit.
  2088. */
  2089. if (!tcp_any_retrans_done(sk))
  2090. tp->retrans_stamp = 0;
  2091. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2092. DBGUNDO(sk, "Hoe");
  2093. tcp_undo_cwr(sk, false);
  2094. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2095. /* So... Do not make Hoe's retransmit yet.
  2096. * If the first packet was delayed, the rest
  2097. * ones are most probably delayed as well.
  2098. */
  2099. failed = 0;
  2100. }
  2101. return failed;
  2102. }
  2103. /* Undo during loss recovery after partial ACK. */
  2104. static bool tcp_try_undo_loss(struct sock *sk)
  2105. {
  2106. struct tcp_sock *tp = tcp_sk(sk);
  2107. if (tcp_may_undo(tp)) {
  2108. struct sk_buff *skb;
  2109. tcp_for_write_queue(skb, sk) {
  2110. if (skb == tcp_send_head(sk))
  2111. break;
  2112. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2113. }
  2114. tcp_clear_all_retrans_hints(tp);
  2115. DBGUNDO(sk, "partial loss");
  2116. tp->lost_out = 0;
  2117. tcp_undo_cwr(sk, true);
  2118. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2119. inet_csk(sk)->icsk_retransmits = 0;
  2120. tp->undo_marker = 0;
  2121. if (tcp_is_sack(tp))
  2122. tcp_set_ca_state(sk, TCP_CA_Open);
  2123. return true;
  2124. }
  2125. return false;
  2126. }
  2127. /* The cwnd reduction in CWR and Recovery use the PRR algorithm
  2128. * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
  2129. * It computes the number of packets to send (sndcnt) based on packets newly
  2130. * delivered:
  2131. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2132. * cwnd reductions across a full RTT.
  2133. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2134. * losses and/or application stalls), do not perform any further cwnd
  2135. * reductions, but instead slow start up to ssthresh.
  2136. */
  2137. static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
  2138. {
  2139. struct tcp_sock *tp = tcp_sk(sk);
  2140. tp->high_seq = tp->snd_nxt;
  2141. tp->tlp_high_seq = 0;
  2142. tp->snd_cwnd_cnt = 0;
  2143. tp->prior_cwnd = tp->snd_cwnd;
  2144. tp->prr_delivered = 0;
  2145. tp->prr_out = 0;
  2146. if (set_ssthresh)
  2147. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2148. TCP_ECN_queue_cwr(tp);
  2149. }
  2150. static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
  2151. int fast_rexmit)
  2152. {
  2153. struct tcp_sock *tp = tcp_sk(sk);
  2154. int sndcnt = 0;
  2155. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2156. tp->prr_delivered += newly_acked_sacked;
  2157. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2158. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2159. tp->prior_cwnd - 1;
  2160. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2161. } else {
  2162. sndcnt = min_t(int, delta,
  2163. max_t(int, tp->prr_delivered - tp->prr_out,
  2164. newly_acked_sacked) + 1);
  2165. }
  2166. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2167. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2168. }
  2169. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2170. {
  2171. struct tcp_sock *tp = tcp_sk(sk);
  2172. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2173. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
  2174. (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
  2175. tp->snd_cwnd = tp->snd_ssthresh;
  2176. tp->snd_cwnd_stamp = tcp_time_stamp;
  2177. }
  2178. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2179. }
  2180. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2181. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  2182. {
  2183. struct tcp_sock *tp = tcp_sk(sk);
  2184. tp->prior_ssthresh = 0;
  2185. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2186. tp->undo_marker = 0;
  2187. tcp_init_cwnd_reduction(sk, set_ssthresh);
  2188. tcp_set_ca_state(sk, TCP_CA_CWR);
  2189. }
  2190. }
  2191. static void tcp_try_keep_open(struct sock *sk)
  2192. {
  2193. struct tcp_sock *tp = tcp_sk(sk);
  2194. int state = TCP_CA_Open;
  2195. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2196. state = TCP_CA_Disorder;
  2197. if (inet_csk(sk)->icsk_ca_state != state) {
  2198. tcp_set_ca_state(sk, state);
  2199. tp->high_seq = tp->snd_nxt;
  2200. }
  2201. }
  2202. static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
  2203. {
  2204. struct tcp_sock *tp = tcp_sk(sk);
  2205. tcp_verify_left_out(tp);
  2206. if (!tcp_any_retrans_done(sk))
  2207. tp->retrans_stamp = 0;
  2208. if (flag & FLAG_ECE)
  2209. tcp_enter_cwr(sk, 1);
  2210. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2211. tcp_try_keep_open(sk);
  2212. if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
  2213. tcp_moderate_cwnd(tp);
  2214. } else {
  2215. tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
  2216. }
  2217. }
  2218. static void tcp_mtup_probe_failed(struct sock *sk)
  2219. {
  2220. struct inet_connection_sock *icsk = inet_csk(sk);
  2221. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2222. icsk->icsk_mtup.probe_size = 0;
  2223. }
  2224. static void tcp_mtup_probe_success(struct sock *sk)
  2225. {
  2226. struct tcp_sock *tp = tcp_sk(sk);
  2227. struct inet_connection_sock *icsk = inet_csk(sk);
  2228. /* FIXME: breaks with very large cwnd */
  2229. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2230. tp->snd_cwnd = tp->snd_cwnd *
  2231. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2232. icsk->icsk_mtup.probe_size;
  2233. tp->snd_cwnd_cnt = 0;
  2234. tp->snd_cwnd_stamp = tcp_time_stamp;
  2235. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2236. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2237. icsk->icsk_mtup.probe_size = 0;
  2238. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2239. }
  2240. /* Do a simple retransmit without using the backoff mechanisms in
  2241. * tcp_timer. This is used for path mtu discovery.
  2242. * The socket is already locked here.
  2243. */
  2244. void tcp_simple_retransmit(struct sock *sk)
  2245. {
  2246. const struct inet_connection_sock *icsk = inet_csk(sk);
  2247. struct tcp_sock *tp = tcp_sk(sk);
  2248. struct sk_buff *skb;
  2249. unsigned int mss = tcp_current_mss(sk);
  2250. u32 prior_lost = tp->lost_out;
  2251. tcp_for_write_queue(skb, sk) {
  2252. if (skb == tcp_send_head(sk))
  2253. break;
  2254. if (tcp_skb_seglen(skb) > mss &&
  2255. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2256. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2257. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2258. tp->retrans_out -= tcp_skb_pcount(skb);
  2259. }
  2260. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2261. }
  2262. }
  2263. tcp_clear_retrans_hints_partial(tp);
  2264. if (prior_lost == tp->lost_out)
  2265. return;
  2266. if (tcp_is_reno(tp))
  2267. tcp_limit_reno_sacked(tp);
  2268. tcp_verify_left_out(tp);
  2269. /* Don't muck with the congestion window here.
  2270. * Reason is that we do not increase amount of _data_
  2271. * in network, but units changed and effective
  2272. * cwnd/ssthresh really reduced now.
  2273. */
  2274. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2275. tp->high_seq = tp->snd_nxt;
  2276. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2277. tp->prior_ssthresh = 0;
  2278. tp->undo_marker = 0;
  2279. tcp_set_ca_state(sk, TCP_CA_Loss);
  2280. }
  2281. tcp_xmit_retransmit_queue(sk);
  2282. }
  2283. EXPORT_SYMBOL(tcp_simple_retransmit);
  2284. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2285. {
  2286. struct tcp_sock *tp = tcp_sk(sk);
  2287. int mib_idx;
  2288. if (tcp_is_reno(tp))
  2289. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2290. else
  2291. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2292. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2293. tp->prior_ssthresh = 0;
  2294. tp->undo_marker = tp->snd_una;
  2295. tp->undo_retrans = tp->retrans_out;
  2296. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2297. if (!ece_ack)
  2298. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2299. tcp_init_cwnd_reduction(sk, true);
  2300. }
  2301. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2302. }
  2303. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2304. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2305. */
  2306. static void tcp_process_loss(struct sock *sk, int flag)
  2307. {
  2308. struct inet_connection_sock *icsk = inet_csk(sk);
  2309. struct tcp_sock *tp = tcp_sk(sk);
  2310. if (!before(tp->snd_una, tp->high_seq)) {
  2311. icsk->icsk_retransmits = 0;
  2312. tcp_try_undo_recovery(sk);
  2313. return;
  2314. }
  2315. if (flag & FLAG_DATA_ACKED)
  2316. icsk->icsk_retransmits = 0;
  2317. if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
  2318. tcp_reset_reno_sack(tp);
  2319. if (tcp_try_undo_loss(sk))
  2320. return;
  2321. tcp_moderate_cwnd(tp);
  2322. tcp_xmit_retransmit_queue(sk);
  2323. }
  2324. /* Process an event, which can update packets-in-flight not trivially.
  2325. * Main goal of this function is to calculate new estimate for left_out,
  2326. * taking into account both packets sitting in receiver's buffer and
  2327. * packets lost by network.
  2328. *
  2329. * Besides that it does CWND reduction, when packet loss is detected
  2330. * and changes state of machine.
  2331. *
  2332. * It does _not_ decide what to send, it is made in function
  2333. * tcp_xmit_retransmit_queue().
  2334. */
  2335. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
  2336. int prior_sacked, bool is_dupack,
  2337. int flag)
  2338. {
  2339. struct inet_connection_sock *icsk = inet_csk(sk);
  2340. struct tcp_sock *tp = tcp_sk(sk);
  2341. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2342. (tcp_fackets_out(tp) > tp->reordering));
  2343. int newly_acked_sacked = 0;
  2344. int fast_rexmit = 0;
  2345. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2346. tp->sacked_out = 0;
  2347. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2348. tp->fackets_out = 0;
  2349. /* Now state machine starts.
  2350. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2351. if (flag & FLAG_ECE)
  2352. tp->prior_ssthresh = 0;
  2353. /* B. In all the states check for reneging SACKs. */
  2354. if (tcp_check_sack_reneging(sk, flag))
  2355. return;
  2356. /* C. Check consistency of the current state. */
  2357. tcp_verify_left_out(tp);
  2358. /* D. Check state exit conditions. State can be terminated
  2359. * when high_seq is ACKed. */
  2360. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2361. WARN_ON(tp->retrans_out != 0);
  2362. tp->retrans_stamp = 0;
  2363. } else if (!before(tp->snd_una, tp->high_seq)) {
  2364. switch (icsk->icsk_ca_state) {
  2365. case TCP_CA_CWR:
  2366. /* CWR is to be held something *above* high_seq
  2367. * is ACKed for CWR bit to reach receiver. */
  2368. if (tp->snd_una != tp->high_seq) {
  2369. tcp_end_cwnd_reduction(sk);
  2370. tcp_set_ca_state(sk, TCP_CA_Open);
  2371. }
  2372. break;
  2373. case TCP_CA_Recovery:
  2374. if (tcp_is_reno(tp))
  2375. tcp_reset_reno_sack(tp);
  2376. if (tcp_try_undo_recovery(sk))
  2377. return;
  2378. tcp_end_cwnd_reduction(sk);
  2379. break;
  2380. }
  2381. }
  2382. /* E. Process state. */
  2383. switch (icsk->icsk_ca_state) {
  2384. case TCP_CA_Recovery:
  2385. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2386. if (tcp_is_reno(tp) && is_dupack)
  2387. tcp_add_reno_sack(sk);
  2388. } else
  2389. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2390. newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
  2391. break;
  2392. case TCP_CA_Loss:
  2393. tcp_process_loss(sk, flag);
  2394. if (icsk->icsk_ca_state != TCP_CA_Open)
  2395. return;
  2396. /* Fall through to processing in Open state. */
  2397. default:
  2398. if (tcp_is_reno(tp)) {
  2399. if (flag & FLAG_SND_UNA_ADVANCED)
  2400. tcp_reset_reno_sack(tp);
  2401. if (is_dupack)
  2402. tcp_add_reno_sack(sk);
  2403. }
  2404. newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
  2405. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2406. tcp_try_undo_dsack(sk);
  2407. if (!tcp_time_to_recover(sk, flag)) {
  2408. tcp_try_to_open(sk, flag, newly_acked_sacked);
  2409. return;
  2410. }
  2411. /* MTU probe failure: don't reduce cwnd */
  2412. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2413. icsk->icsk_mtup.probe_size &&
  2414. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2415. tcp_mtup_probe_failed(sk);
  2416. /* Restores the reduction we did in tcp_mtup_probe() */
  2417. tp->snd_cwnd++;
  2418. tcp_simple_retransmit(sk);
  2419. return;
  2420. }
  2421. /* Otherwise enter Recovery state */
  2422. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2423. fast_rexmit = 1;
  2424. }
  2425. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2426. tcp_update_scoreboard(sk, fast_rexmit);
  2427. tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
  2428. tcp_xmit_retransmit_queue(sk);
  2429. }
  2430. void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
  2431. {
  2432. tcp_rtt_estimator(sk, seq_rtt);
  2433. tcp_set_rto(sk);
  2434. inet_csk(sk)->icsk_backoff = 0;
  2435. }
  2436. EXPORT_SYMBOL(tcp_valid_rtt_meas);
  2437. /* Read draft-ietf-tcplw-high-performance before mucking
  2438. * with this code. (Supersedes RFC1323)
  2439. */
  2440. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2441. {
  2442. /* RTTM Rule: A TSecr value received in a segment is used to
  2443. * update the averaged RTT measurement only if the segment
  2444. * acknowledges some new data, i.e., only if it advances the
  2445. * left edge of the send window.
  2446. *
  2447. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2448. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2449. *
  2450. * Changed: reset backoff as soon as we see the first valid sample.
  2451. * If we do not, we get strongly overestimated rto. With timestamps
  2452. * samples are accepted even from very old segments: f.e., when rtt=1
  2453. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2454. * answer arrives rto becomes 120 seconds! If at least one of segments
  2455. * in window is lost... Voila. --ANK (010210)
  2456. */
  2457. struct tcp_sock *tp = tcp_sk(sk);
  2458. tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2459. }
  2460. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2461. {
  2462. /* We don't have a timestamp. Can only use
  2463. * packets that are not retransmitted to determine
  2464. * rtt estimates. Also, we must not reset the
  2465. * backoff for rto until we get a non-retransmitted
  2466. * packet. This allows us to deal with a situation
  2467. * where the network delay has increased suddenly.
  2468. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2469. */
  2470. if (flag & FLAG_RETRANS_DATA_ACKED)
  2471. return;
  2472. tcp_valid_rtt_meas(sk, seq_rtt);
  2473. }
  2474. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2475. const s32 seq_rtt)
  2476. {
  2477. const struct tcp_sock *tp = tcp_sk(sk);
  2478. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2479. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2480. tcp_ack_saw_tstamp(sk, flag);
  2481. else if (seq_rtt >= 0)
  2482. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2483. }
  2484. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2485. {
  2486. const struct inet_connection_sock *icsk = inet_csk(sk);
  2487. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2488. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2489. }
  2490. /* Restart timer after forward progress on connection.
  2491. * RFC2988 recommends to restart timer to now+rto.
  2492. */
  2493. void tcp_rearm_rto(struct sock *sk)
  2494. {
  2495. const struct inet_connection_sock *icsk = inet_csk(sk);
  2496. struct tcp_sock *tp = tcp_sk(sk);
  2497. /* If the retrans timer is currently being used by Fast Open
  2498. * for SYN-ACK retrans purpose, stay put.
  2499. */
  2500. if (tp->fastopen_rsk)
  2501. return;
  2502. if (!tp->packets_out) {
  2503. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2504. } else {
  2505. u32 rto = inet_csk(sk)->icsk_rto;
  2506. /* Offset the time elapsed after installing regular RTO */
  2507. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2508. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2509. struct sk_buff *skb = tcp_write_queue_head(sk);
  2510. const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
  2511. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2512. /* delta may not be positive if the socket is locked
  2513. * when the retrans timer fires and is rescheduled.
  2514. */
  2515. if (delta > 0)
  2516. rto = delta;
  2517. }
  2518. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2519. TCP_RTO_MAX);
  2520. }
  2521. }
  2522. /* This function is called when the delayed ER timer fires. TCP enters
  2523. * fast recovery and performs fast-retransmit.
  2524. */
  2525. void tcp_resume_early_retransmit(struct sock *sk)
  2526. {
  2527. struct tcp_sock *tp = tcp_sk(sk);
  2528. tcp_rearm_rto(sk);
  2529. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2530. if (!tp->do_early_retrans)
  2531. return;
  2532. tcp_enter_recovery(sk, false);
  2533. tcp_update_scoreboard(sk, 1);
  2534. tcp_xmit_retransmit_queue(sk);
  2535. }
  2536. /* If we get here, the whole TSO packet has not been acked. */
  2537. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2538. {
  2539. struct tcp_sock *tp = tcp_sk(sk);
  2540. u32 packets_acked;
  2541. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2542. packets_acked = tcp_skb_pcount(skb);
  2543. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2544. return 0;
  2545. packets_acked -= tcp_skb_pcount(skb);
  2546. if (packets_acked) {
  2547. BUG_ON(tcp_skb_pcount(skb) == 0);
  2548. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2549. }
  2550. return packets_acked;
  2551. }
  2552. /* Remove acknowledged frames from the retransmission queue. If our packet
  2553. * is before the ack sequence we can discard it as it's confirmed to have
  2554. * arrived at the other end.
  2555. */
  2556. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2557. u32 prior_snd_una)
  2558. {
  2559. struct tcp_sock *tp = tcp_sk(sk);
  2560. const struct inet_connection_sock *icsk = inet_csk(sk);
  2561. struct sk_buff *skb;
  2562. u32 now = tcp_time_stamp;
  2563. int fully_acked = true;
  2564. int flag = 0;
  2565. u32 pkts_acked = 0;
  2566. u32 reord = tp->packets_out;
  2567. u32 prior_sacked = tp->sacked_out;
  2568. s32 seq_rtt = -1;
  2569. s32 ca_seq_rtt = -1;
  2570. ktime_t last_ackt = net_invalid_timestamp();
  2571. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2572. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2573. u32 acked_pcount;
  2574. u8 sacked = scb->sacked;
  2575. /* Determine how many packets and what bytes were acked, tso and else */
  2576. if (after(scb->end_seq, tp->snd_una)) {
  2577. if (tcp_skb_pcount(skb) == 1 ||
  2578. !after(tp->snd_una, scb->seq))
  2579. break;
  2580. acked_pcount = tcp_tso_acked(sk, skb);
  2581. if (!acked_pcount)
  2582. break;
  2583. fully_acked = false;
  2584. } else {
  2585. acked_pcount = tcp_skb_pcount(skb);
  2586. }
  2587. if (sacked & TCPCB_RETRANS) {
  2588. if (sacked & TCPCB_SACKED_RETRANS)
  2589. tp->retrans_out -= acked_pcount;
  2590. flag |= FLAG_RETRANS_DATA_ACKED;
  2591. ca_seq_rtt = -1;
  2592. seq_rtt = -1;
  2593. } else {
  2594. ca_seq_rtt = now - scb->when;
  2595. last_ackt = skb->tstamp;
  2596. if (seq_rtt < 0) {
  2597. seq_rtt = ca_seq_rtt;
  2598. }
  2599. if (!(sacked & TCPCB_SACKED_ACKED))
  2600. reord = min(pkts_acked, reord);
  2601. }
  2602. if (sacked & TCPCB_SACKED_ACKED)
  2603. tp->sacked_out -= acked_pcount;
  2604. if (sacked & TCPCB_LOST)
  2605. tp->lost_out -= acked_pcount;
  2606. tp->packets_out -= acked_pcount;
  2607. pkts_acked += acked_pcount;
  2608. /* Initial outgoing SYN's get put onto the write_queue
  2609. * just like anything else we transmit. It is not
  2610. * true data, and if we misinform our callers that
  2611. * this ACK acks real data, we will erroneously exit
  2612. * connection startup slow start one packet too
  2613. * quickly. This is severely frowned upon behavior.
  2614. */
  2615. if (!(scb->tcp_flags & TCPHDR_SYN)) {
  2616. flag |= FLAG_DATA_ACKED;
  2617. } else {
  2618. flag |= FLAG_SYN_ACKED;
  2619. tp->retrans_stamp = 0;
  2620. }
  2621. if (!fully_acked)
  2622. break;
  2623. tcp_unlink_write_queue(skb, sk);
  2624. sk_wmem_free_skb(sk, skb);
  2625. tp->scoreboard_skb_hint = NULL;
  2626. if (skb == tp->retransmit_skb_hint)
  2627. tp->retransmit_skb_hint = NULL;
  2628. if (skb == tp->lost_skb_hint)
  2629. tp->lost_skb_hint = NULL;
  2630. }
  2631. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2632. tp->snd_up = tp->snd_una;
  2633. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2634. flag |= FLAG_SACK_RENEGING;
  2635. if (flag & FLAG_ACKED) {
  2636. const struct tcp_congestion_ops *ca_ops
  2637. = inet_csk(sk)->icsk_ca_ops;
  2638. if (unlikely(icsk->icsk_mtup.probe_size &&
  2639. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2640. tcp_mtup_probe_success(sk);
  2641. }
  2642. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2643. tcp_rearm_rto(sk);
  2644. if (tcp_is_reno(tp)) {
  2645. tcp_remove_reno_sacks(sk, pkts_acked);
  2646. } else {
  2647. int delta;
  2648. /* Non-retransmitted hole got filled? That's reordering */
  2649. if (reord < prior_fackets)
  2650. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2651. delta = tcp_is_fack(tp) ? pkts_acked :
  2652. prior_sacked - tp->sacked_out;
  2653. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2654. }
  2655. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2656. if (ca_ops->pkts_acked) {
  2657. s32 rtt_us = -1;
  2658. /* Is the ACK triggering packet unambiguous? */
  2659. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2660. /* High resolution needed and available? */
  2661. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2662. !ktime_equal(last_ackt,
  2663. net_invalid_timestamp()))
  2664. rtt_us = ktime_us_delta(ktime_get_real(),
  2665. last_ackt);
  2666. else if (ca_seq_rtt >= 0)
  2667. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2668. }
  2669. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2670. }
  2671. }
  2672. #if FASTRETRANS_DEBUG > 0
  2673. WARN_ON((int)tp->sacked_out < 0);
  2674. WARN_ON((int)tp->lost_out < 0);
  2675. WARN_ON((int)tp->retrans_out < 0);
  2676. if (!tp->packets_out && tcp_is_sack(tp)) {
  2677. icsk = inet_csk(sk);
  2678. if (tp->lost_out) {
  2679. pr_debug("Leak l=%u %d\n",
  2680. tp->lost_out, icsk->icsk_ca_state);
  2681. tp->lost_out = 0;
  2682. }
  2683. if (tp->sacked_out) {
  2684. pr_debug("Leak s=%u %d\n",
  2685. tp->sacked_out, icsk->icsk_ca_state);
  2686. tp->sacked_out = 0;
  2687. }
  2688. if (tp->retrans_out) {
  2689. pr_debug("Leak r=%u %d\n",
  2690. tp->retrans_out, icsk->icsk_ca_state);
  2691. tp->retrans_out = 0;
  2692. }
  2693. }
  2694. #endif
  2695. return flag;
  2696. }
  2697. static void tcp_ack_probe(struct sock *sk)
  2698. {
  2699. const struct tcp_sock *tp = tcp_sk(sk);
  2700. struct inet_connection_sock *icsk = inet_csk(sk);
  2701. /* Was it a usable window open? */
  2702. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2703. icsk->icsk_backoff = 0;
  2704. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2705. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2706. * This function is not for random using!
  2707. */
  2708. } else {
  2709. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2710. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2711. TCP_RTO_MAX);
  2712. }
  2713. }
  2714. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2715. {
  2716. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2717. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2718. }
  2719. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2720. {
  2721. const struct tcp_sock *tp = tcp_sk(sk);
  2722. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  2723. !tcp_in_cwnd_reduction(sk);
  2724. }
  2725. /* Check that window update is acceptable.
  2726. * The function assumes that snd_una<=ack<=snd_next.
  2727. */
  2728. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2729. const u32 ack, const u32 ack_seq,
  2730. const u32 nwin)
  2731. {
  2732. return after(ack, tp->snd_una) ||
  2733. after(ack_seq, tp->snd_wl1) ||
  2734. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2735. }
  2736. /* Update our send window.
  2737. *
  2738. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2739. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2740. */
  2741. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2742. u32 ack_seq)
  2743. {
  2744. struct tcp_sock *tp = tcp_sk(sk);
  2745. int flag = 0;
  2746. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2747. if (likely(!tcp_hdr(skb)->syn))
  2748. nwin <<= tp->rx_opt.snd_wscale;
  2749. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2750. flag |= FLAG_WIN_UPDATE;
  2751. tcp_update_wl(tp, ack_seq);
  2752. if (tp->snd_wnd != nwin) {
  2753. tp->snd_wnd = nwin;
  2754. /* Note, it is the only place, where
  2755. * fast path is recovered for sending TCP.
  2756. */
  2757. tp->pred_flags = 0;
  2758. tcp_fast_path_check(sk);
  2759. if (nwin > tp->max_window) {
  2760. tp->max_window = nwin;
  2761. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2762. }
  2763. }
  2764. }
  2765. tp->snd_una = ack;
  2766. return flag;
  2767. }
  2768. /* RFC 5961 7 [ACK Throttling] */
  2769. static void tcp_send_challenge_ack(struct sock *sk)
  2770. {
  2771. /* unprotected vars, we dont care of overwrites */
  2772. static u32 challenge_timestamp;
  2773. static unsigned int challenge_count;
  2774. u32 now = jiffies / HZ;
  2775. if (now != challenge_timestamp) {
  2776. challenge_timestamp = now;
  2777. challenge_count = 0;
  2778. }
  2779. if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
  2780. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  2781. tcp_send_ack(sk);
  2782. }
  2783. }
  2784. /* This routine deals with acks during a TLP episode.
  2785. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  2786. */
  2787. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  2788. {
  2789. struct tcp_sock *tp = tcp_sk(sk);
  2790. bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
  2791. !(flag & (FLAG_SND_UNA_ADVANCED |
  2792. FLAG_NOT_DUP | FLAG_DATA_SACKED));
  2793. /* Mark the end of TLP episode on receiving TLP dupack or when
  2794. * ack is after tlp_high_seq.
  2795. */
  2796. if (is_tlp_dupack) {
  2797. tp->tlp_high_seq = 0;
  2798. return;
  2799. }
  2800. if (after(ack, tp->tlp_high_seq)) {
  2801. tp->tlp_high_seq = 0;
  2802. /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
  2803. if (!(flag & FLAG_DSACKING_ACK)) {
  2804. tcp_init_cwnd_reduction(sk, true);
  2805. tcp_set_ca_state(sk, TCP_CA_CWR);
  2806. tcp_end_cwnd_reduction(sk);
  2807. tcp_set_ca_state(sk, TCP_CA_Open);
  2808. NET_INC_STATS_BH(sock_net(sk),
  2809. LINUX_MIB_TCPLOSSPROBERECOVERY);
  2810. }
  2811. }
  2812. }
  2813. /* This routine deals with incoming acks, but not outgoing ones. */
  2814. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  2815. {
  2816. struct inet_connection_sock *icsk = inet_csk(sk);
  2817. struct tcp_sock *tp = tcp_sk(sk);
  2818. u32 prior_snd_una = tp->snd_una;
  2819. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  2820. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  2821. bool is_dupack = false;
  2822. u32 prior_in_flight;
  2823. u32 prior_fackets;
  2824. int prior_packets;
  2825. int prior_sacked = tp->sacked_out;
  2826. int pkts_acked = 0;
  2827. /* If the ack is older than previous acks
  2828. * then we can probably ignore it.
  2829. */
  2830. if (before(ack, prior_snd_una)) {
  2831. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  2832. if (before(ack, prior_snd_una - tp->max_window)) {
  2833. tcp_send_challenge_ack(sk);
  2834. return -1;
  2835. }
  2836. goto old_ack;
  2837. }
  2838. /* If the ack includes data we haven't sent yet, discard
  2839. * this segment (RFC793 Section 3.9).
  2840. */
  2841. if (after(ack, tp->snd_nxt))
  2842. goto invalid_ack;
  2843. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2844. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  2845. tcp_rearm_rto(sk);
  2846. if (after(ack, prior_snd_una))
  2847. flag |= FLAG_SND_UNA_ADVANCED;
  2848. prior_fackets = tp->fackets_out;
  2849. prior_in_flight = tcp_packets_in_flight(tp);
  2850. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  2851. /* Window is constant, pure forward advance.
  2852. * No more checks are required.
  2853. * Note, we use the fact that SND.UNA>=SND.WL2.
  2854. */
  2855. tcp_update_wl(tp, ack_seq);
  2856. tp->snd_una = ack;
  2857. flag |= FLAG_WIN_UPDATE;
  2858. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  2859. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  2860. } else {
  2861. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  2862. flag |= FLAG_DATA;
  2863. else
  2864. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  2865. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  2866. if (TCP_SKB_CB(skb)->sacked)
  2867. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  2868. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  2869. flag |= FLAG_ECE;
  2870. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  2871. }
  2872. /* We passed data and got it acked, remove any soft error
  2873. * log. Something worked...
  2874. */
  2875. sk->sk_err_soft = 0;
  2876. icsk->icsk_probes_out = 0;
  2877. tp->rcv_tstamp = tcp_time_stamp;
  2878. prior_packets = tp->packets_out;
  2879. if (!prior_packets)
  2880. goto no_queue;
  2881. /* See if we can take anything off of the retransmit queue. */
  2882. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
  2883. pkts_acked = prior_packets - tp->packets_out;
  2884. if (tcp_ack_is_dubious(sk, flag)) {
  2885. /* Advance CWND, if state allows this. */
  2886. if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
  2887. tcp_cong_avoid(sk, ack, prior_in_flight);
  2888. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  2889. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  2890. is_dupack, flag);
  2891. } else {
  2892. if (flag & FLAG_DATA_ACKED)
  2893. tcp_cong_avoid(sk, ack, prior_in_flight);
  2894. }
  2895. if (tp->tlp_high_seq)
  2896. tcp_process_tlp_ack(sk, ack, flag);
  2897. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  2898. struct dst_entry *dst = __sk_dst_get(sk);
  2899. if (dst)
  2900. dst_confirm(dst);
  2901. }
  2902. if (icsk->icsk_pending == ICSK_TIME_RETRANS)
  2903. tcp_schedule_loss_probe(sk);
  2904. return 1;
  2905. no_queue:
  2906. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  2907. if (flag & FLAG_DSACKING_ACK)
  2908. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  2909. is_dupack, flag);
  2910. /* If this ack opens up a zero window, clear backoff. It was
  2911. * being used to time the probes, and is probably far higher than
  2912. * it needs to be for normal retransmission.
  2913. */
  2914. if (tcp_send_head(sk))
  2915. tcp_ack_probe(sk);
  2916. if (tp->tlp_high_seq)
  2917. tcp_process_tlp_ack(sk, ack, flag);
  2918. return 1;
  2919. invalid_ack:
  2920. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  2921. return -1;
  2922. old_ack:
  2923. /* If data was SACKed, tag it and see if we should send more data.
  2924. * If data was DSACKed, see if we can undo a cwnd reduction.
  2925. */
  2926. if (TCP_SKB_CB(skb)->sacked) {
  2927. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  2928. tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
  2929. is_dupack, flag);
  2930. }
  2931. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  2932. return 0;
  2933. }
  2934. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  2935. * But, this can also be called on packets in the established flow when
  2936. * the fast version below fails.
  2937. */
  2938. void tcp_parse_options(const struct sk_buff *skb,
  2939. struct tcp_options_received *opt_rx, int estab,
  2940. struct tcp_fastopen_cookie *foc)
  2941. {
  2942. const unsigned char *ptr;
  2943. const struct tcphdr *th = tcp_hdr(skb);
  2944. int length = (th->doff * 4) - sizeof(struct tcphdr);
  2945. ptr = (const unsigned char *)(th + 1);
  2946. opt_rx->saw_tstamp = 0;
  2947. while (length > 0) {
  2948. int opcode = *ptr++;
  2949. int opsize;
  2950. switch (opcode) {
  2951. case TCPOPT_EOL:
  2952. return;
  2953. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  2954. length--;
  2955. continue;
  2956. default:
  2957. opsize = *ptr++;
  2958. if (opsize < 2) /* "silly options" */
  2959. return;
  2960. if (opsize > length)
  2961. return; /* don't parse partial options */
  2962. switch (opcode) {
  2963. case TCPOPT_MSS:
  2964. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  2965. u16 in_mss = get_unaligned_be16(ptr);
  2966. if (in_mss) {
  2967. if (opt_rx->user_mss &&
  2968. opt_rx->user_mss < in_mss)
  2969. in_mss = opt_rx->user_mss;
  2970. opt_rx->mss_clamp = in_mss;
  2971. }
  2972. }
  2973. break;
  2974. case TCPOPT_WINDOW:
  2975. if (opsize == TCPOLEN_WINDOW && th->syn &&
  2976. !estab && sysctl_tcp_window_scaling) {
  2977. __u8 snd_wscale = *(__u8 *)ptr;
  2978. opt_rx->wscale_ok = 1;
  2979. if (snd_wscale > 14) {
  2980. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  2981. __func__,
  2982. snd_wscale);
  2983. snd_wscale = 14;
  2984. }
  2985. opt_rx->snd_wscale = snd_wscale;
  2986. }
  2987. break;
  2988. case TCPOPT_TIMESTAMP:
  2989. if ((opsize == TCPOLEN_TIMESTAMP) &&
  2990. ((estab && opt_rx->tstamp_ok) ||
  2991. (!estab && sysctl_tcp_timestamps))) {
  2992. opt_rx->saw_tstamp = 1;
  2993. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  2994. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  2995. }
  2996. break;
  2997. case TCPOPT_SACK_PERM:
  2998. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  2999. !estab && sysctl_tcp_sack) {
  3000. opt_rx->sack_ok = TCP_SACK_SEEN;
  3001. tcp_sack_reset(opt_rx);
  3002. }
  3003. break;
  3004. case TCPOPT_SACK:
  3005. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3006. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3007. opt_rx->sack_ok) {
  3008. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3009. }
  3010. break;
  3011. #ifdef CONFIG_TCP_MD5SIG
  3012. case TCPOPT_MD5SIG:
  3013. /*
  3014. * The MD5 Hash has already been
  3015. * checked (see tcp_v{4,6}_do_rcv()).
  3016. */
  3017. break;
  3018. #endif
  3019. case TCPOPT_EXP:
  3020. /* Fast Open option shares code 254 using a
  3021. * 16 bits magic number. It's valid only in
  3022. * SYN or SYN-ACK with an even size.
  3023. */
  3024. if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
  3025. get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
  3026. foc == NULL || !th->syn || (opsize & 1))
  3027. break;
  3028. foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
  3029. if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
  3030. foc->len <= TCP_FASTOPEN_COOKIE_MAX)
  3031. memcpy(foc->val, ptr + 2, foc->len);
  3032. else if (foc->len != 0)
  3033. foc->len = -1;
  3034. break;
  3035. }
  3036. ptr += opsize-2;
  3037. length -= opsize;
  3038. }
  3039. }
  3040. }
  3041. EXPORT_SYMBOL(tcp_parse_options);
  3042. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3043. {
  3044. const __be32 *ptr = (const __be32 *)(th + 1);
  3045. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3046. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3047. tp->rx_opt.saw_tstamp = 1;
  3048. ++ptr;
  3049. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3050. ++ptr;
  3051. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3052. return true;
  3053. }
  3054. return false;
  3055. }
  3056. /* Fast parse options. This hopes to only see timestamps.
  3057. * If it is wrong it falls back on tcp_parse_options().
  3058. */
  3059. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3060. const struct tcphdr *th, struct tcp_sock *tp)
  3061. {
  3062. /* In the spirit of fast parsing, compare doff directly to constant
  3063. * values. Because equality is used, short doff can be ignored here.
  3064. */
  3065. if (th->doff == (sizeof(*th) / 4)) {
  3066. tp->rx_opt.saw_tstamp = 0;
  3067. return false;
  3068. } else if (tp->rx_opt.tstamp_ok &&
  3069. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3070. if (tcp_parse_aligned_timestamp(tp, th))
  3071. return true;
  3072. }
  3073. tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
  3074. if (tp->rx_opt.saw_tstamp)
  3075. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3076. return true;
  3077. }
  3078. #ifdef CONFIG_TCP_MD5SIG
  3079. /*
  3080. * Parse MD5 Signature option
  3081. */
  3082. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3083. {
  3084. int length = (th->doff << 2) - sizeof(*th);
  3085. const u8 *ptr = (const u8 *)(th + 1);
  3086. /* If the TCP option is too short, we can short cut */
  3087. if (length < TCPOLEN_MD5SIG)
  3088. return NULL;
  3089. while (length > 0) {
  3090. int opcode = *ptr++;
  3091. int opsize;
  3092. switch(opcode) {
  3093. case TCPOPT_EOL:
  3094. return NULL;
  3095. case TCPOPT_NOP:
  3096. length--;
  3097. continue;
  3098. default:
  3099. opsize = *ptr++;
  3100. if (opsize < 2 || opsize > length)
  3101. return NULL;
  3102. if (opcode == TCPOPT_MD5SIG)
  3103. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3104. }
  3105. ptr += opsize - 2;
  3106. length -= opsize;
  3107. }
  3108. return NULL;
  3109. }
  3110. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3111. #endif
  3112. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  3113. {
  3114. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3115. tp->rx_opt.ts_recent_stamp = get_seconds();
  3116. }
  3117. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3118. {
  3119. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3120. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3121. * extra check below makes sure this can only happen
  3122. * for pure ACK frames. -DaveM
  3123. *
  3124. * Not only, also it occurs for expired timestamps.
  3125. */
  3126. if (tcp_paws_check(&tp->rx_opt, 0))
  3127. tcp_store_ts_recent(tp);
  3128. }
  3129. }
  3130. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3131. *
  3132. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3133. * it can pass through stack. So, the following predicate verifies that
  3134. * this segment is not used for anything but congestion avoidance or
  3135. * fast retransmit. Moreover, we even are able to eliminate most of such
  3136. * second order effects, if we apply some small "replay" window (~RTO)
  3137. * to timestamp space.
  3138. *
  3139. * All these measures still do not guarantee that we reject wrapped ACKs
  3140. * on networks with high bandwidth, when sequence space is recycled fastly,
  3141. * but it guarantees that such events will be very rare and do not affect
  3142. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3143. * buggy extension.
  3144. *
  3145. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3146. * states that events when retransmit arrives after original data are rare.
  3147. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3148. * the biggest problem on large power networks even with minor reordering.
  3149. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3150. * up to bandwidth of 18Gigabit/sec. 8) ]
  3151. */
  3152. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3153. {
  3154. const struct tcp_sock *tp = tcp_sk(sk);
  3155. const struct tcphdr *th = tcp_hdr(skb);
  3156. u32 seq = TCP_SKB_CB(skb)->seq;
  3157. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3158. return (/* 1. Pure ACK with correct sequence number. */
  3159. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3160. /* 2. ... and duplicate ACK. */
  3161. ack == tp->snd_una &&
  3162. /* 3. ... and does not update window. */
  3163. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3164. /* 4. ... and sits in replay window. */
  3165. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3166. }
  3167. static inline bool tcp_paws_discard(const struct sock *sk,
  3168. const struct sk_buff *skb)
  3169. {
  3170. const struct tcp_sock *tp = tcp_sk(sk);
  3171. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3172. !tcp_disordered_ack(sk, skb);
  3173. }
  3174. /* Check segment sequence number for validity.
  3175. *
  3176. * Segment controls are considered valid, if the segment
  3177. * fits to the window after truncation to the window. Acceptability
  3178. * of data (and SYN, FIN, of course) is checked separately.
  3179. * See tcp_data_queue(), for example.
  3180. *
  3181. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3182. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3183. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3184. * (borrowed from freebsd)
  3185. */
  3186. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3187. {
  3188. return !before(end_seq, tp->rcv_wup) &&
  3189. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3190. }
  3191. /* When we get a reset we do this. */
  3192. void tcp_reset(struct sock *sk)
  3193. {
  3194. /* We want the right error as BSD sees it (and indeed as we do). */
  3195. switch (sk->sk_state) {
  3196. case TCP_SYN_SENT:
  3197. sk->sk_err = ECONNREFUSED;
  3198. break;
  3199. case TCP_CLOSE_WAIT:
  3200. sk->sk_err = EPIPE;
  3201. break;
  3202. case TCP_CLOSE:
  3203. return;
  3204. default:
  3205. sk->sk_err = ECONNRESET;
  3206. }
  3207. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3208. smp_wmb();
  3209. if (!sock_flag(sk, SOCK_DEAD))
  3210. sk->sk_error_report(sk);
  3211. tcp_done(sk);
  3212. }
  3213. /*
  3214. * Process the FIN bit. This now behaves as it is supposed to work
  3215. * and the FIN takes effect when it is validly part of sequence
  3216. * space. Not before when we get holes.
  3217. *
  3218. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3219. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3220. * TIME-WAIT)
  3221. *
  3222. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3223. * close and we go into CLOSING (and later onto TIME-WAIT)
  3224. *
  3225. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3226. */
  3227. static void tcp_fin(struct sock *sk)
  3228. {
  3229. struct tcp_sock *tp = tcp_sk(sk);
  3230. inet_csk_schedule_ack(sk);
  3231. sk->sk_shutdown |= RCV_SHUTDOWN;
  3232. sock_set_flag(sk, SOCK_DONE);
  3233. switch (sk->sk_state) {
  3234. case TCP_SYN_RECV:
  3235. case TCP_ESTABLISHED:
  3236. /* Move to CLOSE_WAIT */
  3237. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3238. inet_csk(sk)->icsk_ack.pingpong = 1;
  3239. break;
  3240. case TCP_CLOSE_WAIT:
  3241. case TCP_CLOSING:
  3242. /* Received a retransmission of the FIN, do
  3243. * nothing.
  3244. */
  3245. break;
  3246. case TCP_LAST_ACK:
  3247. /* RFC793: Remain in the LAST-ACK state. */
  3248. break;
  3249. case TCP_FIN_WAIT1:
  3250. /* This case occurs when a simultaneous close
  3251. * happens, we must ack the received FIN and
  3252. * enter the CLOSING state.
  3253. */
  3254. tcp_send_ack(sk);
  3255. tcp_set_state(sk, TCP_CLOSING);
  3256. break;
  3257. case TCP_FIN_WAIT2:
  3258. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3259. tcp_send_ack(sk);
  3260. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3261. break;
  3262. default:
  3263. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3264. * cases we should never reach this piece of code.
  3265. */
  3266. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3267. __func__, sk->sk_state);
  3268. break;
  3269. }
  3270. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3271. * Probably, we should reset in this case. For now drop them.
  3272. */
  3273. __skb_queue_purge(&tp->out_of_order_queue);
  3274. if (tcp_is_sack(tp))
  3275. tcp_sack_reset(&tp->rx_opt);
  3276. sk_mem_reclaim(sk);
  3277. if (!sock_flag(sk, SOCK_DEAD)) {
  3278. sk->sk_state_change(sk);
  3279. /* Do not send POLL_HUP for half duplex close. */
  3280. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3281. sk->sk_state == TCP_CLOSE)
  3282. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3283. else
  3284. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3285. }
  3286. }
  3287. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3288. u32 end_seq)
  3289. {
  3290. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3291. if (before(seq, sp->start_seq))
  3292. sp->start_seq = seq;
  3293. if (after(end_seq, sp->end_seq))
  3294. sp->end_seq = end_seq;
  3295. return true;
  3296. }
  3297. return false;
  3298. }
  3299. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3300. {
  3301. struct tcp_sock *tp = tcp_sk(sk);
  3302. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3303. int mib_idx;
  3304. if (before(seq, tp->rcv_nxt))
  3305. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3306. else
  3307. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3308. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3309. tp->rx_opt.dsack = 1;
  3310. tp->duplicate_sack[0].start_seq = seq;
  3311. tp->duplicate_sack[0].end_seq = end_seq;
  3312. }
  3313. }
  3314. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3315. {
  3316. struct tcp_sock *tp = tcp_sk(sk);
  3317. if (!tp->rx_opt.dsack)
  3318. tcp_dsack_set(sk, seq, end_seq);
  3319. else
  3320. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3321. }
  3322. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3323. {
  3324. struct tcp_sock *tp = tcp_sk(sk);
  3325. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3326. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3327. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3328. tcp_enter_quickack_mode(sk);
  3329. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3330. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3331. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3332. end_seq = tp->rcv_nxt;
  3333. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3334. }
  3335. }
  3336. tcp_send_ack(sk);
  3337. }
  3338. /* These routines update the SACK block as out-of-order packets arrive or
  3339. * in-order packets close up the sequence space.
  3340. */
  3341. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3342. {
  3343. int this_sack;
  3344. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3345. struct tcp_sack_block *swalk = sp + 1;
  3346. /* See if the recent change to the first SACK eats into
  3347. * or hits the sequence space of other SACK blocks, if so coalesce.
  3348. */
  3349. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3350. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3351. int i;
  3352. /* Zap SWALK, by moving every further SACK up by one slot.
  3353. * Decrease num_sacks.
  3354. */
  3355. tp->rx_opt.num_sacks--;
  3356. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3357. sp[i] = sp[i + 1];
  3358. continue;
  3359. }
  3360. this_sack++, swalk++;
  3361. }
  3362. }
  3363. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3364. {
  3365. struct tcp_sock *tp = tcp_sk(sk);
  3366. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3367. int cur_sacks = tp->rx_opt.num_sacks;
  3368. int this_sack;
  3369. if (!cur_sacks)
  3370. goto new_sack;
  3371. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3372. if (tcp_sack_extend(sp, seq, end_seq)) {
  3373. /* Rotate this_sack to the first one. */
  3374. for (; this_sack > 0; this_sack--, sp--)
  3375. swap(*sp, *(sp - 1));
  3376. if (cur_sacks > 1)
  3377. tcp_sack_maybe_coalesce(tp);
  3378. return;
  3379. }
  3380. }
  3381. /* Could not find an adjacent existing SACK, build a new one,
  3382. * put it at the front, and shift everyone else down. We
  3383. * always know there is at least one SACK present already here.
  3384. *
  3385. * If the sack array is full, forget about the last one.
  3386. */
  3387. if (this_sack >= TCP_NUM_SACKS) {
  3388. this_sack--;
  3389. tp->rx_opt.num_sacks--;
  3390. sp--;
  3391. }
  3392. for (; this_sack > 0; this_sack--, sp--)
  3393. *sp = *(sp - 1);
  3394. new_sack:
  3395. /* Build the new head SACK, and we're done. */
  3396. sp->start_seq = seq;
  3397. sp->end_seq = end_seq;
  3398. tp->rx_opt.num_sacks++;
  3399. }
  3400. /* RCV.NXT advances, some SACKs should be eaten. */
  3401. static void tcp_sack_remove(struct tcp_sock *tp)
  3402. {
  3403. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3404. int num_sacks = tp->rx_opt.num_sacks;
  3405. int this_sack;
  3406. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3407. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3408. tp->rx_opt.num_sacks = 0;
  3409. return;
  3410. }
  3411. for (this_sack = 0; this_sack < num_sacks;) {
  3412. /* Check if the start of the sack is covered by RCV.NXT. */
  3413. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3414. int i;
  3415. /* RCV.NXT must cover all the block! */
  3416. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3417. /* Zap this SACK, by moving forward any other SACKS. */
  3418. for (i=this_sack+1; i < num_sacks; i++)
  3419. tp->selective_acks[i-1] = tp->selective_acks[i];
  3420. num_sacks--;
  3421. continue;
  3422. }
  3423. this_sack++;
  3424. sp++;
  3425. }
  3426. tp->rx_opt.num_sacks = num_sacks;
  3427. }
  3428. /* This one checks to see if we can put data from the
  3429. * out_of_order queue into the receive_queue.
  3430. */
  3431. static void tcp_ofo_queue(struct sock *sk)
  3432. {
  3433. struct tcp_sock *tp = tcp_sk(sk);
  3434. __u32 dsack_high = tp->rcv_nxt;
  3435. struct sk_buff *skb;
  3436. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3437. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3438. break;
  3439. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3440. __u32 dsack = dsack_high;
  3441. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3442. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3443. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3444. }
  3445. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3446. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3447. __skb_unlink(skb, &tp->out_of_order_queue);
  3448. __kfree_skb(skb);
  3449. continue;
  3450. }
  3451. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3452. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3453. TCP_SKB_CB(skb)->end_seq);
  3454. __skb_unlink(skb, &tp->out_of_order_queue);
  3455. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3456. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3457. if (tcp_hdr(skb)->fin)
  3458. tcp_fin(sk);
  3459. }
  3460. }
  3461. static bool tcp_prune_ofo_queue(struct sock *sk);
  3462. static int tcp_prune_queue(struct sock *sk);
  3463. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3464. unsigned int size)
  3465. {
  3466. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3467. !sk_rmem_schedule(sk, skb, size)) {
  3468. if (tcp_prune_queue(sk) < 0)
  3469. return -1;
  3470. if (!sk_rmem_schedule(sk, skb, size)) {
  3471. if (!tcp_prune_ofo_queue(sk))
  3472. return -1;
  3473. if (!sk_rmem_schedule(sk, skb, size))
  3474. return -1;
  3475. }
  3476. }
  3477. return 0;
  3478. }
  3479. /**
  3480. * tcp_try_coalesce - try to merge skb to prior one
  3481. * @sk: socket
  3482. * @to: prior buffer
  3483. * @from: buffer to add in queue
  3484. * @fragstolen: pointer to boolean
  3485. *
  3486. * Before queueing skb @from after @to, try to merge them
  3487. * to reduce overall memory use and queue lengths, if cost is small.
  3488. * Packets in ofo or receive queues can stay a long time.
  3489. * Better try to coalesce them right now to avoid future collapses.
  3490. * Returns true if caller should free @from instead of queueing it
  3491. */
  3492. static bool tcp_try_coalesce(struct sock *sk,
  3493. struct sk_buff *to,
  3494. struct sk_buff *from,
  3495. bool *fragstolen)
  3496. {
  3497. int delta;
  3498. *fragstolen = false;
  3499. if (tcp_hdr(from)->fin)
  3500. return false;
  3501. /* Its possible this segment overlaps with prior segment in queue */
  3502. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3503. return false;
  3504. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3505. return false;
  3506. atomic_add(delta, &sk->sk_rmem_alloc);
  3507. sk_mem_charge(sk, delta);
  3508. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3509. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3510. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3511. return true;
  3512. }
  3513. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3514. {
  3515. struct tcp_sock *tp = tcp_sk(sk);
  3516. struct sk_buff *skb1;
  3517. u32 seq, end_seq;
  3518. TCP_ECN_check_ce(tp, skb);
  3519. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3520. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3521. __kfree_skb(skb);
  3522. return;
  3523. }
  3524. /* Disable header prediction. */
  3525. tp->pred_flags = 0;
  3526. inet_csk_schedule_ack(sk);
  3527. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3528. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3529. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3530. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3531. if (!skb1) {
  3532. /* Initial out of order segment, build 1 SACK. */
  3533. if (tcp_is_sack(tp)) {
  3534. tp->rx_opt.num_sacks = 1;
  3535. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3536. tp->selective_acks[0].end_seq =
  3537. TCP_SKB_CB(skb)->end_seq;
  3538. }
  3539. __skb_queue_head(&tp->out_of_order_queue, skb);
  3540. goto end;
  3541. }
  3542. seq = TCP_SKB_CB(skb)->seq;
  3543. end_seq = TCP_SKB_CB(skb)->end_seq;
  3544. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3545. bool fragstolen;
  3546. if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  3547. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3548. } else {
  3549. kfree_skb_partial(skb, fragstolen);
  3550. skb = NULL;
  3551. }
  3552. if (!tp->rx_opt.num_sacks ||
  3553. tp->selective_acks[0].end_seq != seq)
  3554. goto add_sack;
  3555. /* Common case: data arrive in order after hole. */
  3556. tp->selective_acks[0].end_seq = end_seq;
  3557. goto end;
  3558. }
  3559. /* Find place to insert this segment. */
  3560. while (1) {
  3561. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3562. break;
  3563. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3564. skb1 = NULL;
  3565. break;
  3566. }
  3567. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3568. }
  3569. /* Do skb overlap to previous one? */
  3570. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3571. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3572. /* All the bits are present. Drop. */
  3573. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3574. __kfree_skb(skb);
  3575. skb = NULL;
  3576. tcp_dsack_set(sk, seq, end_seq);
  3577. goto add_sack;
  3578. }
  3579. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3580. /* Partial overlap. */
  3581. tcp_dsack_set(sk, seq,
  3582. TCP_SKB_CB(skb1)->end_seq);
  3583. } else {
  3584. if (skb_queue_is_first(&tp->out_of_order_queue,
  3585. skb1))
  3586. skb1 = NULL;
  3587. else
  3588. skb1 = skb_queue_prev(
  3589. &tp->out_of_order_queue,
  3590. skb1);
  3591. }
  3592. }
  3593. if (!skb1)
  3594. __skb_queue_head(&tp->out_of_order_queue, skb);
  3595. else
  3596. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3597. /* And clean segments covered by new one as whole. */
  3598. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3599. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3600. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3601. break;
  3602. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3603. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3604. end_seq);
  3605. break;
  3606. }
  3607. __skb_unlink(skb1, &tp->out_of_order_queue);
  3608. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3609. TCP_SKB_CB(skb1)->end_seq);
  3610. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3611. __kfree_skb(skb1);
  3612. }
  3613. add_sack:
  3614. if (tcp_is_sack(tp))
  3615. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3616. end:
  3617. if (skb)
  3618. skb_set_owner_r(skb, sk);
  3619. }
  3620. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3621. bool *fragstolen)
  3622. {
  3623. int eaten;
  3624. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3625. __skb_pull(skb, hdrlen);
  3626. eaten = (tail &&
  3627. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  3628. tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3629. if (!eaten) {
  3630. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3631. skb_set_owner_r(skb, sk);
  3632. }
  3633. return eaten;
  3634. }
  3635. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3636. {
  3637. struct sk_buff *skb = NULL;
  3638. struct tcphdr *th;
  3639. bool fragstolen;
  3640. if (size == 0)
  3641. return 0;
  3642. skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
  3643. if (!skb)
  3644. goto err;
  3645. if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
  3646. goto err_free;
  3647. th = (struct tcphdr *)skb_put(skb, sizeof(*th));
  3648. skb_reset_transport_header(skb);
  3649. memset(th, 0, sizeof(*th));
  3650. if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
  3651. goto err_free;
  3652. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3653. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3654. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3655. if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
  3656. WARN_ON_ONCE(fragstolen); /* should not happen */
  3657. __kfree_skb(skb);
  3658. }
  3659. return size;
  3660. err_free:
  3661. kfree_skb(skb);
  3662. err:
  3663. return -ENOMEM;
  3664. }
  3665. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3666. {
  3667. const struct tcphdr *th = tcp_hdr(skb);
  3668. struct tcp_sock *tp = tcp_sk(sk);
  3669. int eaten = -1;
  3670. bool fragstolen = false;
  3671. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3672. goto drop;
  3673. skb_dst_drop(skb);
  3674. __skb_pull(skb, th->doff * 4);
  3675. TCP_ECN_accept_cwr(tp, skb);
  3676. tp->rx_opt.dsack = 0;
  3677. /* Queue data for delivery to the user.
  3678. * Packets in sequence go to the receive queue.
  3679. * Out of sequence packets to the out_of_order_queue.
  3680. */
  3681. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3682. if (tcp_receive_window(tp) == 0)
  3683. goto out_of_window;
  3684. /* Ok. In sequence. In window. */
  3685. if (tp->ucopy.task == current &&
  3686. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3687. sock_owned_by_user(sk) && !tp->urg_data) {
  3688. int chunk = min_t(unsigned int, skb->len,
  3689. tp->ucopy.len);
  3690. __set_current_state(TASK_RUNNING);
  3691. local_bh_enable();
  3692. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  3693. tp->ucopy.len -= chunk;
  3694. tp->copied_seq += chunk;
  3695. eaten = (chunk == skb->len);
  3696. tcp_rcv_space_adjust(sk);
  3697. }
  3698. local_bh_disable();
  3699. }
  3700. if (eaten <= 0) {
  3701. queue_and_out:
  3702. if (eaten < 0 &&
  3703. tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3704. goto drop;
  3705. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  3706. }
  3707. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3708. if (skb->len)
  3709. tcp_event_data_recv(sk, skb);
  3710. if (th->fin)
  3711. tcp_fin(sk);
  3712. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3713. tcp_ofo_queue(sk);
  3714. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3715. * gap in queue is filled.
  3716. */
  3717. if (skb_queue_empty(&tp->out_of_order_queue))
  3718. inet_csk(sk)->icsk_ack.pingpong = 0;
  3719. }
  3720. if (tp->rx_opt.num_sacks)
  3721. tcp_sack_remove(tp);
  3722. tcp_fast_path_check(sk);
  3723. if (eaten > 0)
  3724. kfree_skb_partial(skb, fragstolen);
  3725. if (!sock_flag(sk, SOCK_DEAD))
  3726. sk->sk_data_ready(sk, 0);
  3727. return;
  3728. }
  3729. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3730. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3731. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3732. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3733. out_of_window:
  3734. tcp_enter_quickack_mode(sk);
  3735. inet_csk_schedule_ack(sk);
  3736. drop:
  3737. __kfree_skb(skb);
  3738. return;
  3739. }
  3740. /* Out of window. F.e. zero window probe. */
  3741. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3742. goto out_of_window;
  3743. tcp_enter_quickack_mode(sk);
  3744. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3745. /* Partial packet, seq < rcv_next < end_seq */
  3746. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3747. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3748. TCP_SKB_CB(skb)->end_seq);
  3749. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3750. /* If window is closed, drop tail of packet. But after
  3751. * remembering D-SACK for its head made in previous line.
  3752. */
  3753. if (!tcp_receive_window(tp))
  3754. goto out_of_window;
  3755. goto queue_and_out;
  3756. }
  3757. tcp_data_queue_ofo(sk, skb);
  3758. }
  3759. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  3760. struct sk_buff_head *list)
  3761. {
  3762. struct sk_buff *next = NULL;
  3763. if (!skb_queue_is_last(list, skb))
  3764. next = skb_queue_next(list, skb);
  3765. __skb_unlink(skb, list);
  3766. __kfree_skb(skb);
  3767. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  3768. return next;
  3769. }
  3770. /* Collapse contiguous sequence of skbs head..tail with
  3771. * sequence numbers start..end.
  3772. *
  3773. * If tail is NULL, this means until the end of the list.
  3774. *
  3775. * Segments with FIN/SYN are not collapsed (only because this
  3776. * simplifies code)
  3777. */
  3778. static void
  3779. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  3780. struct sk_buff *head, struct sk_buff *tail,
  3781. u32 start, u32 end)
  3782. {
  3783. struct sk_buff *skb, *n;
  3784. bool end_of_skbs;
  3785. /* First, check that queue is collapsible and find
  3786. * the point where collapsing can be useful. */
  3787. skb = head;
  3788. restart:
  3789. end_of_skbs = true;
  3790. skb_queue_walk_from_safe(list, skb, n) {
  3791. if (skb == tail)
  3792. break;
  3793. /* No new bits? It is possible on ofo queue. */
  3794. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3795. skb = tcp_collapse_one(sk, skb, list);
  3796. if (!skb)
  3797. break;
  3798. goto restart;
  3799. }
  3800. /* The first skb to collapse is:
  3801. * - not SYN/FIN and
  3802. * - bloated or contains data before "start" or
  3803. * overlaps to the next one.
  3804. */
  3805. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  3806. (tcp_win_from_space(skb->truesize) > skb->len ||
  3807. before(TCP_SKB_CB(skb)->seq, start))) {
  3808. end_of_skbs = false;
  3809. break;
  3810. }
  3811. if (!skb_queue_is_last(list, skb)) {
  3812. struct sk_buff *next = skb_queue_next(list, skb);
  3813. if (next != tail &&
  3814. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  3815. end_of_skbs = false;
  3816. break;
  3817. }
  3818. }
  3819. /* Decided to skip this, advance start seq. */
  3820. start = TCP_SKB_CB(skb)->end_seq;
  3821. }
  3822. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  3823. return;
  3824. while (before(start, end)) {
  3825. struct sk_buff *nskb;
  3826. unsigned int header = skb_headroom(skb);
  3827. int copy = SKB_MAX_ORDER(header, 0);
  3828. /* Too big header? This can happen with IPv6. */
  3829. if (copy < 0)
  3830. return;
  3831. if (end - start < copy)
  3832. copy = end - start;
  3833. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  3834. if (!nskb)
  3835. return;
  3836. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  3837. skb_set_network_header(nskb, (skb_network_header(skb) -
  3838. skb->head));
  3839. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  3840. skb->head));
  3841. skb_reserve(nskb, header);
  3842. memcpy(nskb->head, skb->head, header);
  3843. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  3844. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  3845. __skb_queue_before(list, skb, nskb);
  3846. skb_set_owner_r(nskb, sk);
  3847. /* Copy data, releasing collapsed skbs. */
  3848. while (copy > 0) {
  3849. int offset = start - TCP_SKB_CB(skb)->seq;
  3850. int size = TCP_SKB_CB(skb)->end_seq - start;
  3851. BUG_ON(offset < 0);
  3852. if (size > 0) {
  3853. size = min(copy, size);
  3854. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  3855. BUG();
  3856. TCP_SKB_CB(nskb)->end_seq += size;
  3857. copy -= size;
  3858. start += size;
  3859. }
  3860. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3861. skb = tcp_collapse_one(sk, skb, list);
  3862. if (!skb ||
  3863. skb == tail ||
  3864. tcp_hdr(skb)->syn ||
  3865. tcp_hdr(skb)->fin)
  3866. return;
  3867. }
  3868. }
  3869. }
  3870. }
  3871. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  3872. * and tcp_collapse() them until all the queue is collapsed.
  3873. */
  3874. static void tcp_collapse_ofo_queue(struct sock *sk)
  3875. {
  3876. struct tcp_sock *tp = tcp_sk(sk);
  3877. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  3878. struct sk_buff *head;
  3879. u32 start, end;
  3880. if (skb == NULL)
  3881. return;
  3882. start = TCP_SKB_CB(skb)->seq;
  3883. end = TCP_SKB_CB(skb)->end_seq;
  3884. head = skb;
  3885. for (;;) {
  3886. struct sk_buff *next = NULL;
  3887. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  3888. next = skb_queue_next(&tp->out_of_order_queue, skb);
  3889. skb = next;
  3890. /* Segment is terminated when we see gap or when
  3891. * we are at the end of all the queue. */
  3892. if (!skb ||
  3893. after(TCP_SKB_CB(skb)->seq, end) ||
  3894. before(TCP_SKB_CB(skb)->end_seq, start)) {
  3895. tcp_collapse(sk, &tp->out_of_order_queue,
  3896. head, skb, start, end);
  3897. head = skb;
  3898. if (!skb)
  3899. break;
  3900. /* Start new segment */
  3901. start = TCP_SKB_CB(skb)->seq;
  3902. end = TCP_SKB_CB(skb)->end_seq;
  3903. } else {
  3904. if (before(TCP_SKB_CB(skb)->seq, start))
  3905. start = TCP_SKB_CB(skb)->seq;
  3906. if (after(TCP_SKB_CB(skb)->end_seq, end))
  3907. end = TCP_SKB_CB(skb)->end_seq;
  3908. }
  3909. }
  3910. }
  3911. /*
  3912. * Purge the out-of-order queue.
  3913. * Return true if queue was pruned.
  3914. */
  3915. static bool tcp_prune_ofo_queue(struct sock *sk)
  3916. {
  3917. struct tcp_sock *tp = tcp_sk(sk);
  3918. bool res = false;
  3919. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3920. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  3921. __skb_queue_purge(&tp->out_of_order_queue);
  3922. /* Reset SACK state. A conforming SACK implementation will
  3923. * do the same at a timeout based retransmit. When a connection
  3924. * is in a sad state like this, we care only about integrity
  3925. * of the connection not performance.
  3926. */
  3927. if (tp->rx_opt.sack_ok)
  3928. tcp_sack_reset(&tp->rx_opt);
  3929. sk_mem_reclaim(sk);
  3930. res = true;
  3931. }
  3932. return res;
  3933. }
  3934. /* Reduce allocated memory if we can, trying to get
  3935. * the socket within its memory limits again.
  3936. *
  3937. * Return less than zero if we should start dropping frames
  3938. * until the socket owning process reads some of the data
  3939. * to stabilize the situation.
  3940. */
  3941. static int tcp_prune_queue(struct sock *sk)
  3942. {
  3943. struct tcp_sock *tp = tcp_sk(sk);
  3944. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  3945. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  3946. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  3947. tcp_clamp_window(sk);
  3948. else if (sk_under_memory_pressure(sk))
  3949. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  3950. tcp_collapse_ofo_queue(sk);
  3951. if (!skb_queue_empty(&sk->sk_receive_queue))
  3952. tcp_collapse(sk, &sk->sk_receive_queue,
  3953. skb_peek(&sk->sk_receive_queue),
  3954. NULL,
  3955. tp->copied_seq, tp->rcv_nxt);
  3956. sk_mem_reclaim(sk);
  3957. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3958. return 0;
  3959. /* Collapsing did not help, destructive actions follow.
  3960. * This must not ever occur. */
  3961. tcp_prune_ofo_queue(sk);
  3962. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3963. return 0;
  3964. /* If we are really being abused, tell the caller to silently
  3965. * drop receive data on the floor. It will get retransmitted
  3966. * and hopefully then we'll have sufficient space.
  3967. */
  3968. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  3969. /* Massive buffer overcommit. */
  3970. tp->pred_flags = 0;
  3971. return -1;
  3972. }
  3973. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  3974. * As additional protections, we do not touch cwnd in retransmission phases,
  3975. * and if application hit its sndbuf limit recently.
  3976. */
  3977. void tcp_cwnd_application_limited(struct sock *sk)
  3978. {
  3979. struct tcp_sock *tp = tcp_sk(sk);
  3980. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  3981. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  3982. /* Limited by application or receiver window. */
  3983. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  3984. u32 win_used = max(tp->snd_cwnd_used, init_win);
  3985. if (win_used < tp->snd_cwnd) {
  3986. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  3987. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  3988. }
  3989. tp->snd_cwnd_used = 0;
  3990. }
  3991. tp->snd_cwnd_stamp = tcp_time_stamp;
  3992. }
  3993. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  3994. {
  3995. const struct tcp_sock *tp = tcp_sk(sk);
  3996. /* If the user specified a specific send buffer setting, do
  3997. * not modify it.
  3998. */
  3999. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4000. return false;
  4001. /* If we are under global TCP memory pressure, do not expand. */
  4002. if (sk_under_memory_pressure(sk))
  4003. return false;
  4004. /* If we are under soft global TCP memory pressure, do not expand. */
  4005. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4006. return false;
  4007. /* If we filled the congestion window, do not expand. */
  4008. if (tp->packets_out >= tp->snd_cwnd)
  4009. return false;
  4010. return true;
  4011. }
  4012. /* When incoming ACK allowed to free some skb from write_queue,
  4013. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4014. * on the exit from tcp input handler.
  4015. *
  4016. * PROBLEM: sndbuf expansion does not work well with largesend.
  4017. */
  4018. static void tcp_new_space(struct sock *sk)
  4019. {
  4020. struct tcp_sock *tp = tcp_sk(sk);
  4021. if (tcp_should_expand_sndbuf(sk)) {
  4022. int sndmem = SKB_TRUESIZE(max_t(u32,
  4023. tp->rx_opt.mss_clamp,
  4024. tp->mss_cache) +
  4025. MAX_TCP_HEADER);
  4026. int demanded = max_t(unsigned int, tp->snd_cwnd,
  4027. tp->reordering + 1);
  4028. sndmem *= 2 * demanded;
  4029. if (sndmem > sk->sk_sndbuf)
  4030. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  4031. tp->snd_cwnd_stamp = tcp_time_stamp;
  4032. }
  4033. sk->sk_write_space(sk);
  4034. }
  4035. static void tcp_check_space(struct sock *sk)
  4036. {
  4037. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4038. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4039. if (sk->sk_socket &&
  4040. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4041. tcp_new_space(sk);
  4042. }
  4043. }
  4044. static inline void tcp_data_snd_check(struct sock *sk)
  4045. {
  4046. tcp_push_pending_frames(sk);
  4047. tcp_check_space(sk);
  4048. }
  4049. /*
  4050. * Check if sending an ack is needed.
  4051. */
  4052. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4053. {
  4054. struct tcp_sock *tp = tcp_sk(sk);
  4055. /* More than one full frame received... */
  4056. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4057. /* ... and right edge of window advances far enough.
  4058. * (tcp_recvmsg() will send ACK otherwise). Or...
  4059. */
  4060. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4061. /* We ACK each frame or... */
  4062. tcp_in_quickack_mode(sk) ||
  4063. /* We have out of order data. */
  4064. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4065. /* Then ack it now */
  4066. tcp_send_ack(sk);
  4067. } else {
  4068. /* Else, send delayed ack. */
  4069. tcp_send_delayed_ack(sk);
  4070. }
  4071. }
  4072. static inline void tcp_ack_snd_check(struct sock *sk)
  4073. {
  4074. if (!inet_csk_ack_scheduled(sk)) {
  4075. /* We sent a data segment already. */
  4076. return;
  4077. }
  4078. __tcp_ack_snd_check(sk, 1);
  4079. }
  4080. /*
  4081. * This routine is only called when we have urgent data
  4082. * signaled. Its the 'slow' part of tcp_urg. It could be
  4083. * moved inline now as tcp_urg is only called from one
  4084. * place. We handle URGent data wrong. We have to - as
  4085. * BSD still doesn't use the correction from RFC961.
  4086. * For 1003.1g we should support a new option TCP_STDURG to permit
  4087. * either form (or just set the sysctl tcp_stdurg).
  4088. */
  4089. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4090. {
  4091. struct tcp_sock *tp = tcp_sk(sk);
  4092. u32 ptr = ntohs(th->urg_ptr);
  4093. if (ptr && !sysctl_tcp_stdurg)
  4094. ptr--;
  4095. ptr += ntohl(th->seq);
  4096. /* Ignore urgent data that we've already seen and read. */
  4097. if (after(tp->copied_seq, ptr))
  4098. return;
  4099. /* Do not replay urg ptr.
  4100. *
  4101. * NOTE: interesting situation not covered by specs.
  4102. * Misbehaving sender may send urg ptr, pointing to segment,
  4103. * which we already have in ofo queue. We are not able to fetch
  4104. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4105. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4106. * situations. But it is worth to think about possibility of some
  4107. * DoSes using some hypothetical application level deadlock.
  4108. */
  4109. if (before(ptr, tp->rcv_nxt))
  4110. return;
  4111. /* Do we already have a newer (or duplicate) urgent pointer? */
  4112. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4113. return;
  4114. /* Tell the world about our new urgent pointer. */
  4115. sk_send_sigurg(sk);
  4116. /* We may be adding urgent data when the last byte read was
  4117. * urgent. To do this requires some care. We cannot just ignore
  4118. * tp->copied_seq since we would read the last urgent byte again
  4119. * as data, nor can we alter copied_seq until this data arrives
  4120. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4121. *
  4122. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4123. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4124. * and expect that both A and B disappear from stream. This is _wrong_.
  4125. * Though this happens in BSD with high probability, this is occasional.
  4126. * Any application relying on this is buggy. Note also, that fix "works"
  4127. * only in this artificial test. Insert some normal data between A and B and we will
  4128. * decline of BSD again. Verdict: it is better to remove to trap
  4129. * buggy users.
  4130. */
  4131. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4132. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4133. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4134. tp->copied_seq++;
  4135. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4136. __skb_unlink(skb, &sk->sk_receive_queue);
  4137. __kfree_skb(skb);
  4138. }
  4139. }
  4140. tp->urg_data = TCP_URG_NOTYET;
  4141. tp->urg_seq = ptr;
  4142. /* Disable header prediction. */
  4143. tp->pred_flags = 0;
  4144. }
  4145. /* This is the 'fast' part of urgent handling. */
  4146. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4147. {
  4148. struct tcp_sock *tp = tcp_sk(sk);
  4149. /* Check if we get a new urgent pointer - normally not. */
  4150. if (th->urg)
  4151. tcp_check_urg(sk, th);
  4152. /* Do we wait for any urgent data? - normally not... */
  4153. if (tp->urg_data == TCP_URG_NOTYET) {
  4154. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4155. th->syn;
  4156. /* Is the urgent pointer pointing into this packet? */
  4157. if (ptr < skb->len) {
  4158. u8 tmp;
  4159. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4160. BUG();
  4161. tp->urg_data = TCP_URG_VALID | tmp;
  4162. if (!sock_flag(sk, SOCK_DEAD))
  4163. sk->sk_data_ready(sk, 0);
  4164. }
  4165. }
  4166. }
  4167. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4168. {
  4169. struct tcp_sock *tp = tcp_sk(sk);
  4170. int chunk = skb->len - hlen;
  4171. int err;
  4172. local_bh_enable();
  4173. if (skb_csum_unnecessary(skb))
  4174. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4175. else
  4176. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4177. tp->ucopy.iov);
  4178. if (!err) {
  4179. tp->ucopy.len -= chunk;
  4180. tp->copied_seq += chunk;
  4181. tcp_rcv_space_adjust(sk);
  4182. }
  4183. local_bh_disable();
  4184. return err;
  4185. }
  4186. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4187. struct sk_buff *skb)
  4188. {
  4189. __sum16 result;
  4190. if (sock_owned_by_user(sk)) {
  4191. local_bh_enable();
  4192. result = __tcp_checksum_complete(skb);
  4193. local_bh_disable();
  4194. } else {
  4195. result = __tcp_checksum_complete(skb);
  4196. }
  4197. return result;
  4198. }
  4199. static inline bool tcp_checksum_complete_user(struct sock *sk,
  4200. struct sk_buff *skb)
  4201. {
  4202. return !skb_csum_unnecessary(skb) &&
  4203. __tcp_checksum_complete_user(sk, skb);
  4204. }
  4205. #ifdef CONFIG_NET_DMA
  4206. static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4207. int hlen)
  4208. {
  4209. struct tcp_sock *tp = tcp_sk(sk);
  4210. int chunk = skb->len - hlen;
  4211. int dma_cookie;
  4212. bool copied_early = false;
  4213. if (tp->ucopy.wakeup)
  4214. return false;
  4215. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4216. tp->ucopy.dma_chan = net_dma_find_channel();
  4217. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4218. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4219. skb, hlen,
  4220. tp->ucopy.iov, chunk,
  4221. tp->ucopy.pinned_list);
  4222. if (dma_cookie < 0)
  4223. goto out;
  4224. tp->ucopy.dma_cookie = dma_cookie;
  4225. copied_early = true;
  4226. tp->ucopy.len -= chunk;
  4227. tp->copied_seq += chunk;
  4228. tcp_rcv_space_adjust(sk);
  4229. if ((tp->ucopy.len == 0) ||
  4230. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4231. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4232. tp->ucopy.wakeup = 1;
  4233. sk->sk_data_ready(sk, 0);
  4234. }
  4235. } else if (chunk > 0) {
  4236. tp->ucopy.wakeup = 1;
  4237. sk->sk_data_ready(sk, 0);
  4238. }
  4239. out:
  4240. return copied_early;
  4241. }
  4242. #endif /* CONFIG_NET_DMA */
  4243. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4244. * play significant role here.
  4245. */
  4246. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4247. const struct tcphdr *th, int syn_inerr)
  4248. {
  4249. struct tcp_sock *tp = tcp_sk(sk);
  4250. /* RFC1323: H1. Apply PAWS check first. */
  4251. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4252. tcp_paws_discard(sk, skb)) {
  4253. if (!th->rst) {
  4254. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4255. tcp_send_dupack(sk, skb);
  4256. goto discard;
  4257. }
  4258. /* Reset is accepted even if it did not pass PAWS. */
  4259. }
  4260. /* Step 1: check sequence number */
  4261. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4262. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4263. * (RST) segments are validated by checking their SEQ-fields."
  4264. * And page 69: "If an incoming segment is not acceptable,
  4265. * an acknowledgment should be sent in reply (unless the RST
  4266. * bit is set, if so drop the segment and return)".
  4267. */
  4268. if (!th->rst) {
  4269. if (th->syn)
  4270. goto syn_challenge;
  4271. tcp_send_dupack(sk, skb);
  4272. }
  4273. goto discard;
  4274. }
  4275. /* Step 2: check RST bit */
  4276. if (th->rst) {
  4277. /* RFC 5961 3.2 :
  4278. * If sequence number exactly matches RCV.NXT, then
  4279. * RESET the connection
  4280. * else
  4281. * Send a challenge ACK
  4282. */
  4283. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
  4284. tcp_reset(sk);
  4285. else
  4286. tcp_send_challenge_ack(sk);
  4287. goto discard;
  4288. }
  4289. /* step 3: check security and precedence [ignored] */
  4290. /* step 4: Check for a SYN
  4291. * RFC 5691 4.2 : Send a challenge ack
  4292. */
  4293. if (th->syn) {
  4294. syn_challenge:
  4295. if (syn_inerr)
  4296. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4297. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4298. tcp_send_challenge_ack(sk);
  4299. goto discard;
  4300. }
  4301. return true;
  4302. discard:
  4303. __kfree_skb(skb);
  4304. return false;
  4305. }
  4306. /*
  4307. * TCP receive function for the ESTABLISHED state.
  4308. *
  4309. * It is split into a fast path and a slow path. The fast path is
  4310. * disabled when:
  4311. * - A zero window was announced from us - zero window probing
  4312. * is only handled properly in the slow path.
  4313. * - Out of order segments arrived.
  4314. * - Urgent data is expected.
  4315. * - There is no buffer space left
  4316. * - Unexpected TCP flags/window values/header lengths are received
  4317. * (detected by checking the TCP header against pred_flags)
  4318. * - Data is sent in both directions. Fast path only supports pure senders
  4319. * or pure receivers (this means either the sequence number or the ack
  4320. * value must stay constant)
  4321. * - Unexpected TCP option.
  4322. *
  4323. * When these conditions are not satisfied it drops into a standard
  4324. * receive procedure patterned after RFC793 to handle all cases.
  4325. * The first three cases are guaranteed by proper pred_flags setting,
  4326. * the rest is checked inline. Fast processing is turned on in
  4327. * tcp_data_queue when everything is OK.
  4328. */
  4329. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4330. const struct tcphdr *th, unsigned int len)
  4331. {
  4332. struct tcp_sock *tp = tcp_sk(sk);
  4333. if (unlikely(sk->sk_rx_dst == NULL))
  4334. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4335. /*
  4336. * Header prediction.
  4337. * The code loosely follows the one in the famous
  4338. * "30 instruction TCP receive" Van Jacobson mail.
  4339. *
  4340. * Van's trick is to deposit buffers into socket queue
  4341. * on a device interrupt, to call tcp_recv function
  4342. * on the receive process context and checksum and copy
  4343. * the buffer to user space. smart...
  4344. *
  4345. * Our current scheme is not silly either but we take the
  4346. * extra cost of the net_bh soft interrupt processing...
  4347. * We do checksum and copy also but from device to kernel.
  4348. */
  4349. tp->rx_opt.saw_tstamp = 0;
  4350. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4351. * if header_prediction is to be made
  4352. * 'S' will always be tp->tcp_header_len >> 2
  4353. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4354. * turn it off (when there are holes in the receive
  4355. * space for instance)
  4356. * PSH flag is ignored.
  4357. */
  4358. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4359. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4360. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4361. int tcp_header_len = tp->tcp_header_len;
  4362. /* Timestamp header prediction: tcp_header_len
  4363. * is automatically equal to th->doff*4 due to pred_flags
  4364. * match.
  4365. */
  4366. /* Check timestamp */
  4367. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4368. /* No? Slow path! */
  4369. if (!tcp_parse_aligned_timestamp(tp, th))
  4370. goto slow_path;
  4371. /* If PAWS failed, check it more carefully in slow path */
  4372. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4373. goto slow_path;
  4374. /* DO NOT update ts_recent here, if checksum fails
  4375. * and timestamp was corrupted part, it will result
  4376. * in a hung connection since we will drop all
  4377. * future packets due to the PAWS test.
  4378. */
  4379. }
  4380. if (len <= tcp_header_len) {
  4381. /* Bulk data transfer: sender */
  4382. if (len == tcp_header_len) {
  4383. /* Predicted packet is in window by definition.
  4384. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4385. * Hence, check seq<=rcv_wup reduces to:
  4386. */
  4387. if (tcp_header_len ==
  4388. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4389. tp->rcv_nxt == tp->rcv_wup)
  4390. tcp_store_ts_recent(tp);
  4391. /* We know that such packets are checksummed
  4392. * on entry.
  4393. */
  4394. tcp_ack(sk, skb, 0);
  4395. __kfree_skb(skb);
  4396. tcp_data_snd_check(sk);
  4397. return 0;
  4398. } else { /* Header too small */
  4399. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4400. goto discard;
  4401. }
  4402. } else {
  4403. int eaten = 0;
  4404. int copied_early = 0;
  4405. bool fragstolen = false;
  4406. if (tp->copied_seq == tp->rcv_nxt &&
  4407. len - tcp_header_len <= tp->ucopy.len) {
  4408. #ifdef CONFIG_NET_DMA
  4409. if (tp->ucopy.task == current &&
  4410. sock_owned_by_user(sk) &&
  4411. tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4412. copied_early = 1;
  4413. eaten = 1;
  4414. }
  4415. #endif
  4416. if (tp->ucopy.task == current &&
  4417. sock_owned_by_user(sk) && !copied_early) {
  4418. __set_current_state(TASK_RUNNING);
  4419. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4420. eaten = 1;
  4421. }
  4422. if (eaten) {
  4423. /* Predicted packet is in window by definition.
  4424. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4425. * Hence, check seq<=rcv_wup reduces to:
  4426. */
  4427. if (tcp_header_len ==
  4428. (sizeof(struct tcphdr) +
  4429. TCPOLEN_TSTAMP_ALIGNED) &&
  4430. tp->rcv_nxt == tp->rcv_wup)
  4431. tcp_store_ts_recent(tp);
  4432. tcp_rcv_rtt_measure_ts(sk, skb);
  4433. __skb_pull(skb, tcp_header_len);
  4434. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4435. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4436. }
  4437. if (copied_early)
  4438. tcp_cleanup_rbuf(sk, skb->len);
  4439. }
  4440. if (!eaten) {
  4441. if (tcp_checksum_complete_user(sk, skb))
  4442. goto csum_error;
  4443. if ((int)skb->truesize > sk->sk_forward_alloc)
  4444. goto step5;
  4445. /* Predicted packet is in window by definition.
  4446. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4447. * Hence, check seq<=rcv_wup reduces to:
  4448. */
  4449. if (tcp_header_len ==
  4450. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4451. tp->rcv_nxt == tp->rcv_wup)
  4452. tcp_store_ts_recent(tp);
  4453. tcp_rcv_rtt_measure_ts(sk, skb);
  4454. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4455. /* Bulk data transfer: receiver */
  4456. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4457. &fragstolen);
  4458. }
  4459. tcp_event_data_recv(sk, skb);
  4460. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4461. /* Well, only one small jumplet in fast path... */
  4462. tcp_ack(sk, skb, FLAG_DATA);
  4463. tcp_data_snd_check(sk);
  4464. if (!inet_csk_ack_scheduled(sk))
  4465. goto no_ack;
  4466. }
  4467. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4468. __tcp_ack_snd_check(sk, 0);
  4469. no_ack:
  4470. #ifdef CONFIG_NET_DMA
  4471. if (copied_early)
  4472. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4473. else
  4474. #endif
  4475. if (eaten)
  4476. kfree_skb_partial(skb, fragstolen);
  4477. sk->sk_data_ready(sk, 0);
  4478. return 0;
  4479. }
  4480. }
  4481. slow_path:
  4482. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4483. goto csum_error;
  4484. if (!th->ack && !th->rst)
  4485. goto discard;
  4486. /*
  4487. * Standard slow path.
  4488. */
  4489. if (!tcp_validate_incoming(sk, skb, th, 1))
  4490. return 0;
  4491. step5:
  4492. if (tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
  4493. goto discard;
  4494. /* ts_recent update must be made after we are sure that the packet
  4495. * is in window.
  4496. */
  4497. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4498. tcp_rcv_rtt_measure_ts(sk, skb);
  4499. /* Process urgent data. */
  4500. tcp_urg(sk, skb, th);
  4501. /* step 7: process the segment text */
  4502. tcp_data_queue(sk, skb);
  4503. tcp_data_snd_check(sk);
  4504. tcp_ack_snd_check(sk);
  4505. return 0;
  4506. csum_error:
  4507. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4508. discard:
  4509. __kfree_skb(skb);
  4510. return 0;
  4511. }
  4512. EXPORT_SYMBOL(tcp_rcv_established);
  4513. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4514. {
  4515. struct tcp_sock *tp = tcp_sk(sk);
  4516. struct inet_connection_sock *icsk = inet_csk(sk);
  4517. tcp_set_state(sk, TCP_ESTABLISHED);
  4518. if (skb != NULL) {
  4519. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4520. security_inet_conn_established(sk, skb);
  4521. }
  4522. /* Make sure socket is routed, for correct metrics. */
  4523. icsk->icsk_af_ops->rebuild_header(sk);
  4524. tcp_init_metrics(sk);
  4525. tcp_init_congestion_control(sk);
  4526. /* Prevent spurious tcp_cwnd_restart() on first data
  4527. * packet.
  4528. */
  4529. tp->lsndtime = tcp_time_stamp;
  4530. tcp_init_buffer_space(sk);
  4531. if (sock_flag(sk, SOCK_KEEPOPEN))
  4532. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4533. if (!tp->rx_opt.snd_wscale)
  4534. __tcp_fast_path_on(tp, tp->snd_wnd);
  4535. else
  4536. tp->pred_flags = 0;
  4537. if (!sock_flag(sk, SOCK_DEAD)) {
  4538. sk->sk_state_change(sk);
  4539. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4540. }
  4541. }
  4542. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4543. struct tcp_fastopen_cookie *cookie)
  4544. {
  4545. struct tcp_sock *tp = tcp_sk(sk);
  4546. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4547. u16 mss = tp->rx_opt.mss_clamp;
  4548. bool syn_drop;
  4549. if (mss == tp->rx_opt.user_mss) {
  4550. struct tcp_options_received opt;
  4551. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4552. tcp_clear_options(&opt);
  4553. opt.user_mss = opt.mss_clamp = 0;
  4554. tcp_parse_options(synack, &opt, 0, NULL);
  4555. mss = opt.mss_clamp;
  4556. }
  4557. if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
  4558. cookie->len = -1;
  4559. /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
  4560. * the remote receives only the retransmitted (regular) SYNs: either
  4561. * the original SYN-data or the corresponding SYN-ACK is lost.
  4562. */
  4563. syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
  4564. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
  4565. if (data) { /* Retransmit unacked data in SYN */
  4566. tcp_for_write_queue_from(data, sk) {
  4567. if (data == tcp_send_head(sk) ||
  4568. __tcp_retransmit_skb(sk, data))
  4569. break;
  4570. }
  4571. tcp_rearm_rto(sk);
  4572. return true;
  4573. }
  4574. tp->syn_data_acked = tp->syn_data;
  4575. return false;
  4576. }
  4577. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4578. const struct tcphdr *th, unsigned int len)
  4579. {
  4580. struct inet_connection_sock *icsk = inet_csk(sk);
  4581. struct tcp_sock *tp = tcp_sk(sk);
  4582. struct tcp_fastopen_cookie foc = { .len = -1 };
  4583. int saved_clamp = tp->rx_opt.mss_clamp;
  4584. tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
  4585. if (tp->rx_opt.saw_tstamp)
  4586. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4587. if (th->ack) {
  4588. /* rfc793:
  4589. * "If the state is SYN-SENT then
  4590. * first check the ACK bit
  4591. * If the ACK bit is set
  4592. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4593. * a reset (unless the RST bit is set, if so drop
  4594. * the segment and return)"
  4595. */
  4596. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4597. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4598. goto reset_and_undo;
  4599. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4600. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4601. tcp_time_stamp)) {
  4602. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4603. goto reset_and_undo;
  4604. }
  4605. /* Now ACK is acceptable.
  4606. *
  4607. * "If the RST bit is set
  4608. * If the ACK was acceptable then signal the user "error:
  4609. * connection reset", drop the segment, enter CLOSED state,
  4610. * delete TCB, and return."
  4611. */
  4612. if (th->rst) {
  4613. tcp_reset(sk);
  4614. goto discard;
  4615. }
  4616. /* rfc793:
  4617. * "fifth, if neither of the SYN or RST bits is set then
  4618. * drop the segment and return."
  4619. *
  4620. * See note below!
  4621. * --ANK(990513)
  4622. */
  4623. if (!th->syn)
  4624. goto discard_and_undo;
  4625. /* rfc793:
  4626. * "If the SYN bit is on ...
  4627. * are acceptable then ...
  4628. * (our SYN has been ACKed), change the connection
  4629. * state to ESTABLISHED..."
  4630. */
  4631. TCP_ECN_rcv_synack(tp, th);
  4632. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4633. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4634. /* Ok.. it's good. Set up sequence numbers and
  4635. * move to established.
  4636. */
  4637. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4638. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4639. /* RFC1323: The window in SYN & SYN/ACK segments is
  4640. * never scaled.
  4641. */
  4642. tp->snd_wnd = ntohs(th->window);
  4643. if (!tp->rx_opt.wscale_ok) {
  4644. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4645. tp->window_clamp = min(tp->window_clamp, 65535U);
  4646. }
  4647. if (tp->rx_opt.saw_tstamp) {
  4648. tp->rx_opt.tstamp_ok = 1;
  4649. tp->tcp_header_len =
  4650. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4651. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4652. tcp_store_ts_recent(tp);
  4653. } else {
  4654. tp->tcp_header_len = sizeof(struct tcphdr);
  4655. }
  4656. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4657. tcp_enable_fack(tp);
  4658. tcp_mtup_init(sk);
  4659. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4660. tcp_initialize_rcv_mss(sk);
  4661. /* Remember, tcp_poll() does not lock socket!
  4662. * Change state from SYN-SENT only after copied_seq
  4663. * is initialized. */
  4664. tp->copied_seq = tp->rcv_nxt;
  4665. smp_mb();
  4666. tcp_finish_connect(sk, skb);
  4667. if ((tp->syn_fastopen || tp->syn_data) &&
  4668. tcp_rcv_fastopen_synack(sk, skb, &foc))
  4669. return -1;
  4670. if (sk->sk_write_pending ||
  4671. icsk->icsk_accept_queue.rskq_defer_accept ||
  4672. icsk->icsk_ack.pingpong) {
  4673. /* Save one ACK. Data will be ready after
  4674. * several ticks, if write_pending is set.
  4675. *
  4676. * It may be deleted, but with this feature tcpdumps
  4677. * look so _wonderfully_ clever, that I was not able
  4678. * to stand against the temptation 8) --ANK
  4679. */
  4680. inet_csk_schedule_ack(sk);
  4681. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4682. tcp_enter_quickack_mode(sk);
  4683. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4684. TCP_DELACK_MAX, TCP_RTO_MAX);
  4685. discard:
  4686. __kfree_skb(skb);
  4687. return 0;
  4688. } else {
  4689. tcp_send_ack(sk);
  4690. }
  4691. return -1;
  4692. }
  4693. /* No ACK in the segment */
  4694. if (th->rst) {
  4695. /* rfc793:
  4696. * "If the RST bit is set
  4697. *
  4698. * Otherwise (no ACK) drop the segment and return."
  4699. */
  4700. goto discard_and_undo;
  4701. }
  4702. /* PAWS check. */
  4703. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4704. tcp_paws_reject(&tp->rx_opt, 0))
  4705. goto discard_and_undo;
  4706. if (th->syn) {
  4707. /* We see SYN without ACK. It is attempt of
  4708. * simultaneous connect with crossed SYNs.
  4709. * Particularly, it can be connect to self.
  4710. */
  4711. tcp_set_state(sk, TCP_SYN_RECV);
  4712. if (tp->rx_opt.saw_tstamp) {
  4713. tp->rx_opt.tstamp_ok = 1;
  4714. tcp_store_ts_recent(tp);
  4715. tp->tcp_header_len =
  4716. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4717. } else {
  4718. tp->tcp_header_len = sizeof(struct tcphdr);
  4719. }
  4720. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4721. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4722. /* RFC1323: The window in SYN & SYN/ACK segments is
  4723. * never scaled.
  4724. */
  4725. tp->snd_wnd = ntohs(th->window);
  4726. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4727. tp->max_window = tp->snd_wnd;
  4728. TCP_ECN_rcv_syn(tp, th);
  4729. tcp_mtup_init(sk);
  4730. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4731. tcp_initialize_rcv_mss(sk);
  4732. tcp_send_synack(sk);
  4733. #if 0
  4734. /* Note, we could accept data and URG from this segment.
  4735. * There are no obstacles to make this (except that we must
  4736. * either change tcp_recvmsg() to prevent it from returning data
  4737. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  4738. *
  4739. * However, if we ignore data in ACKless segments sometimes,
  4740. * we have no reasons to accept it sometimes.
  4741. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4742. * is not flawless. So, discard packet for sanity.
  4743. * Uncomment this return to process the data.
  4744. */
  4745. return -1;
  4746. #else
  4747. goto discard;
  4748. #endif
  4749. }
  4750. /* "fifth, if neither of the SYN or RST bits is set then
  4751. * drop the segment and return."
  4752. */
  4753. discard_and_undo:
  4754. tcp_clear_options(&tp->rx_opt);
  4755. tp->rx_opt.mss_clamp = saved_clamp;
  4756. goto discard;
  4757. reset_and_undo:
  4758. tcp_clear_options(&tp->rx_opt);
  4759. tp->rx_opt.mss_clamp = saved_clamp;
  4760. return 1;
  4761. }
  4762. /*
  4763. * This function implements the receiving procedure of RFC 793 for
  4764. * all states except ESTABLISHED and TIME_WAIT.
  4765. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4766. * address independent.
  4767. */
  4768. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  4769. const struct tcphdr *th, unsigned int len)
  4770. {
  4771. struct tcp_sock *tp = tcp_sk(sk);
  4772. struct inet_connection_sock *icsk = inet_csk(sk);
  4773. struct request_sock *req;
  4774. int queued = 0;
  4775. tp->rx_opt.saw_tstamp = 0;
  4776. switch (sk->sk_state) {
  4777. case TCP_CLOSE:
  4778. goto discard;
  4779. case TCP_LISTEN:
  4780. if (th->ack)
  4781. return 1;
  4782. if (th->rst)
  4783. goto discard;
  4784. if (th->syn) {
  4785. if (th->fin)
  4786. goto discard;
  4787. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  4788. return 1;
  4789. /* Now we have several options: In theory there is
  4790. * nothing else in the frame. KA9Q has an option to
  4791. * send data with the syn, BSD accepts data with the
  4792. * syn up to the [to be] advertised window and
  4793. * Solaris 2.1 gives you a protocol error. For now
  4794. * we just ignore it, that fits the spec precisely
  4795. * and avoids incompatibilities. It would be nice in
  4796. * future to drop through and process the data.
  4797. *
  4798. * Now that TTCP is starting to be used we ought to
  4799. * queue this data.
  4800. * But, this leaves one open to an easy denial of
  4801. * service attack, and SYN cookies can't defend
  4802. * against this problem. So, we drop the data
  4803. * in the interest of security over speed unless
  4804. * it's still in use.
  4805. */
  4806. kfree_skb(skb);
  4807. return 0;
  4808. }
  4809. goto discard;
  4810. case TCP_SYN_SENT:
  4811. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  4812. if (queued >= 0)
  4813. return queued;
  4814. /* Do step6 onward by hand. */
  4815. tcp_urg(sk, skb, th);
  4816. __kfree_skb(skb);
  4817. tcp_data_snd_check(sk);
  4818. return 0;
  4819. }
  4820. req = tp->fastopen_rsk;
  4821. if (req != NULL) {
  4822. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  4823. sk->sk_state != TCP_FIN_WAIT1);
  4824. if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
  4825. goto discard;
  4826. }
  4827. if (!th->ack && !th->rst)
  4828. goto discard;
  4829. if (!tcp_validate_incoming(sk, skb, th, 0))
  4830. return 0;
  4831. /* step 5: check the ACK field */
  4832. if (true) {
  4833. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
  4834. switch (sk->sk_state) {
  4835. case TCP_SYN_RECV:
  4836. if (acceptable) {
  4837. /* Once we leave TCP_SYN_RECV, we no longer
  4838. * need req so release it.
  4839. */
  4840. if (req) {
  4841. tcp_synack_rtt_meas(sk, req);
  4842. tp->total_retrans = req->num_retrans;
  4843. reqsk_fastopen_remove(sk, req, false);
  4844. } else {
  4845. /* Make sure socket is routed, for
  4846. * correct metrics.
  4847. */
  4848. icsk->icsk_af_ops->rebuild_header(sk);
  4849. tcp_init_congestion_control(sk);
  4850. tcp_mtup_init(sk);
  4851. tcp_init_buffer_space(sk);
  4852. tp->copied_seq = tp->rcv_nxt;
  4853. }
  4854. smp_mb();
  4855. tcp_set_state(sk, TCP_ESTABLISHED);
  4856. sk->sk_state_change(sk);
  4857. /* Note, that this wakeup is only for marginal
  4858. * crossed SYN case. Passively open sockets
  4859. * are not waked up, because sk->sk_sleep ==
  4860. * NULL and sk->sk_socket == NULL.
  4861. */
  4862. if (sk->sk_socket)
  4863. sk_wake_async(sk,
  4864. SOCK_WAKE_IO, POLL_OUT);
  4865. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  4866. tp->snd_wnd = ntohs(th->window) <<
  4867. tp->rx_opt.snd_wscale;
  4868. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4869. if (tp->rx_opt.tstamp_ok)
  4870. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4871. if (req) {
  4872. /* Re-arm the timer because data may
  4873. * have been sent out. This is similar
  4874. * to the regular data transmission case
  4875. * when new data has just been ack'ed.
  4876. *
  4877. * (TFO) - we could try to be more
  4878. * aggressive and retranmitting any data
  4879. * sooner based on when they were sent
  4880. * out.
  4881. */
  4882. tcp_rearm_rto(sk);
  4883. } else
  4884. tcp_init_metrics(sk);
  4885. /* Prevent spurious tcp_cwnd_restart() on
  4886. * first data packet.
  4887. */
  4888. tp->lsndtime = tcp_time_stamp;
  4889. tcp_initialize_rcv_mss(sk);
  4890. tcp_fast_path_on(tp);
  4891. } else {
  4892. return 1;
  4893. }
  4894. break;
  4895. case TCP_FIN_WAIT1:
  4896. /* If we enter the TCP_FIN_WAIT1 state and we are a
  4897. * Fast Open socket and this is the first acceptable
  4898. * ACK we have received, this would have acknowledged
  4899. * our SYNACK so stop the SYNACK timer.
  4900. */
  4901. if (req != NULL) {
  4902. /* Return RST if ack_seq is invalid.
  4903. * Note that RFC793 only says to generate a
  4904. * DUPACK for it but for TCP Fast Open it seems
  4905. * better to treat this case like TCP_SYN_RECV
  4906. * above.
  4907. */
  4908. if (!acceptable)
  4909. return 1;
  4910. /* We no longer need the request sock. */
  4911. reqsk_fastopen_remove(sk, req, false);
  4912. tcp_rearm_rto(sk);
  4913. }
  4914. if (tp->snd_una == tp->write_seq) {
  4915. struct dst_entry *dst;
  4916. tcp_set_state(sk, TCP_FIN_WAIT2);
  4917. sk->sk_shutdown |= SEND_SHUTDOWN;
  4918. dst = __sk_dst_get(sk);
  4919. if (dst)
  4920. dst_confirm(dst);
  4921. if (!sock_flag(sk, SOCK_DEAD))
  4922. /* Wake up lingering close() */
  4923. sk->sk_state_change(sk);
  4924. else {
  4925. int tmo;
  4926. if (tp->linger2 < 0 ||
  4927. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4928. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  4929. tcp_done(sk);
  4930. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  4931. return 1;
  4932. }
  4933. tmo = tcp_fin_time(sk);
  4934. if (tmo > TCP_TIMEWAIT_LEN) {
  4935. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  4936. } else if (th->fin || sock_owned_by_user(sk)) {
  4937. /* Bad case. We could lose such FIN otherwise.
  4938. * It is not a big problem, but it looks confusing
  4939. * and not so rare event. We still can lose it now,
  4940. * if it spins in bh_lock_sock(), but it is really
  4941. * marginal case.
  4942. */
  4943. inet_csk_reset_keepalive_timer(sk, tmo);
  4944. } else {
  4945. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  4946. goto discard;
  4947. }
  4948. }
  4949. }
  4950. break;
  4951. case TCP_CLOSING:
  4952. if (tp->snd_una == tp->write_seq) {
  4953. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  4954. goto discard;
  4955. }
  4956. break;
  4957. case TCP_LAST_ACK:
  4958. if (tp->snd_una == tp->write_seq) {
  4959. tcp_update_metrics(sk);
  4960. tcp_done(sk);
  4961. goto discard;
  4962. }
  4963. break;
  4964. }
  4965. }
  4966. /* ts_recent update must be made after we are sure that the packet
  4967. * is in window.
  4968. */
  4969. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4970. /* step 6: check the URG bit */
  4971. tcp_urg(sk, skb, th);
  4972. /* step 7: process the segment text */
  4973. switch (sk->sk_state) {
  4974. case TCP_CLOSE_WAIT:
  4975. case TCP_CLOSING:
  4976. case TCP_LAST_ACK:
  4977. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  4978. break;
  4979. case TCP_FIN_WAIT1:
  4980. case TCP_FIN_WAIT2:
  4981. /* RFC 793 says to queue data in these states,
  4982. * RFC 1122 says we MUST send a reset.
  4983. * BSD 4.4 also does reset.
  4984. */
  4985. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  4986. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4987. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  4988. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  4989. tcp_reset(sk);
  4990. return 1;
  4991. }
  4992. }
  4993. /* Fall through */
  4994. case TCP_ESTABLISHED:
  4995. tcp_data_queue(sk, skb);
  4996. queued = 1;
  4997. break;
  4998. }
  4999. /* tcp_data could move socket to TIME-WAIT */
  5000. if (sk->sk_state != TCP_CLOSE) {
  5001. tcp_data_snd_check(sk);
  5002. tcp_ack_snd_check(sk);
  5003. }
  5004. if (!queued) {
  5005. discard:
  5006. __kfree_skb(skb);
  5007. }
  5008. return 0;
  5009. }
  5010. EXPORT_SYMBOL(tcp_rcv_state_process);