tcp_input.c 139 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  13. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  14. * Florian La Roche, <flla@stud.uni-sb.de>
  15. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  16. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  17. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  18. * Matthew Dillon, <dillon@apollo.west.oic.com>
  19. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  20. * Jorge Cwik, <jorge@laser.satlink.net>
  21. */
  22. /*
  23. * Changes:
  24. * Pedro Roque : Fast Retransmit/Recovery.
  25. * Two receive queues.
  26. * Retransmit queue handled by TCP.
  27. * Better retransmit timer handling.
  28. * New congestion avoidance.
  29. * Header prediction.
  30. * Variable renaming.
  31. *
  32. * Eric : Fast Retransmit.
  33. * Randy Scott : MSS option defines.
  34. * Eric Schenk : Fixes to slow start algorithm.
  35. * Eric Schenk : Yet another double ACK bug.
  36. * Eric Schenk : Delayed ACK bug fixes.
  37. * Eric Schenk : Floyd style fast retrans war avoidance.
  38. * David S. Miller : Don't allow zero congestion window.
  39. * Eric Schenk : Fix retransmitter so that it sends
  40. * next packet on ack of previous packet.
  41. * Andi Kleen : Moved open_request checking here
  42. * and process RSTs for open_requests.
  43. * Andi Kleen : Better prune_queue, and other fixes.
  44. * Andrey Savochkin: Fix RTT measurements in the presnce of
  45. * timestamps.
  46. * Andrey Savochkin: Check sequence numbers correctly when
  47. * removing SACKs due to in sequence incoming
  48. * data segments.
  49. * Andi Kleen: Make sure we never ack data there is not
  50. * enough room for. Also make this condition
  51. * a fatal error if it might still happen.
  52. * Andi Kleen: Add tcp_measure_rcv_mss to make
  53. * connections with MSS<min(MTU,ann. MSS)
  54. * work without delayed acks.
  55. * Andi Kleen: Process packets with PSH set in the
  56. * fast path.
  57. * J Hadi Salim: ECN support
  58. * Andrei Gurtov,
  59. * Pasi Sarolahti,
  60. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  61. * engine. Lots of bugs are found.
  62. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  63. * Angelo Dell'Aera: TCP Westwood+ support
  64. */
  65. #include <linux/config.h>
  66. #include <linux/mm.h>
  67. #include <linux/module.h>
  68. #include <linux/sysctl.h>
  69. #include <net/tcp.h>
  70. #include <net/inet_common.h>
  71. #include <linux/ipsec.h>
  72. #include <asm/unaligned.h>
  73. int sysctl_tcp_timestamps = 1;
  74. int sysctl_tcp_window_scaling = 1;
  75. int sysctl_tcp_sack = 1;
  76. int sysctl_tcp_fack = 1;
  77. int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
  78. int sysctl_tcp_ecn;
  79. int sysctl_tcp_dsack = 1;
  80. int sysctl_tcp_app_win = 31;
  81. int sysctl_tcp_adv_win_scale = 2;
  82. int sysctl_tcp_stdurg;
  83. int sysctl_tcp_rfc1337;
  84. int sysctl_tcp_max_orphans = NR_FILE;
  85. int sysctl_tcp_frto;
  86. int sysctl_tcp_nometrics_save;
  87. int sysctl_tcp_westwood;
  88. int sysctl_tcp_vegas_cong_avoid;
  89. int sysctl_tcp_moderate_rcvbuf = 1;
  90. /* Default values of the Vegas variables, in fixed-point representation
  91. * with V_PARAM_SHIFT bits to the right of the binary point.
  92. */
  93. #define V_PARAM_SHIFT 1
  94. int sysctl_tcp_vegas_alpha = 1<<V_PARAM_SHIFT;
  95. int sysctl_tcp_vegas_beta = 3<<V_PARAM_SHIFT;
  96. int sysctl_tcp_vegas_gamma = 1<<V_PARAM_SHIFT;
  97. int sysctl_tcp_bic = 1;
  98. int sysctl_tcp_bic_fast_convergence = 1;
  99. int sysctl_tcp_bic_low_window = 14;
  100. int sysctl_tcp_bic_beta = 819; /* = 819/1024 (BICTCP_BETA_SCALE) */
  101. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  102. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  103. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  104. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  105. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  106. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  107. #define FLAG_ECE 0x40 /* ECE in this ACK */
  108. #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
  109. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  110. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  111. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  112. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  113. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  114. #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
  115. #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
  116. #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
  117. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  118. /* Adapt the MSS value used to make delayed ack decision to the
  119. * real world.
  120. */
  121. static inline void tcp_measure_rcv_mss(struct tcp_sock *tp,
  122. struct sk_buff *skb)
  123. {
  124. unsigned int len, lss;
  125. lss = tp->ack.last_seg_size;
  126. tp->ack.last_seg_size = 0;
  127. /* skb->len may jitter because of SACKs, even if peer
  128. * sends good full-sized frames.
  129. */
  130. len = skb->len;
  131. if (len >= tp->ack.rcv_mss) {
  132. tp->ack.rcv_mss = len;
  133. } else {
  134. /* Otherwise, we make more careful check taking into account,
  135. * that SACKs block is variable.
  136. *
  137. * "len" is invariant segment length, including TCP header.
  138. */
  139. len += skb->data - skb->h.raw;
  140. if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
  141. /* If PSH is not set, packet should be
  142. * full sized, provided peer TCP is not badly broken.
  143. * This observation (if it is correct 8)) allows
  144. * to handle super-low mtu links fairly.
  145. */
  146. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  147. !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
  148. /* Subtract also invariant (if peer is RFC compliant),
  149. * tcp header plus fixed timestamp option length.
  150. * Resulting "len" is MSS free of SACK jitter.
  151. */
  152. len -= tp->tcp_header_len;
  153. tp->ack.last_seg_size = len;
  154. if (len == lss) {
  155. tp->ack.rcv_mss = len;
  156. return;
  157. }
  158. }
  159. tp->ack.pending |= TCP_ACK_PUSHED;
  160. }
  161. }
  162. static void tcp_incr_quickack(struct tcp_sock *tp)
  163. {
  164. unsigned quickacks = tp->rcv_wnd/(2*tp->ack.rcv_mss);
  165. if (quickacks==0)
  166. quickacks=2;
  167. if (quickacks > tp->ack.quick)
  168. tp->ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  169. }
  170. void tcp_enter_quickack_mode(struct tcp_sock *tp)
  171. {
  172. tcp_incr_quickack(tp);
  173. tp->ack.pingpong = 0;
  174. tp->ack.ato = TCP_ATO_MIN;
  175. }
  176. /* Send ACKs quickly, if "quick" count is not exhausted
  177. * and the session is not interactive.
  178. */
  179. static __inline__ int tcp_in_quickack_mode(struct tcp_sock *tp)
  180. {
  181. return (tp->ack.quick && !tp->ack.pingpong);
  182. }
  183. /* Buffer size and advertised window tuning.
  184. *
  185. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  186. */
  187. static void tcp_fixup_sndbuf(struct sock *sk)
  188. {
  189. int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
  190. sizeof(struct sk_buff);
  191. if (sk->sk_sndbuf < 3 * sndmem)
  192. sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
  193. }
  194. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  195. *
  196. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  197. * forward and advertised in receiver window (tp->rcv_wnd) and
  198. * "application buffer", required to isolate scheduling/application
  199. * latencies from network.
  200. * window_clamp is maximal advertised window. It can be less than
  201. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  202. * is reserved for "application" buffer. The less window_clamp is
  203. * the smoother our behaviour from viewpoint of network, but the lower
  204. * throughput and the higher sensitivity of the connection to losses. 8)
  205. *
  206. * rcv_ssthresh is more strict window_clamp used at "slow start"
  207. * phase to predict further behaviour of this connection.
  208. * It is used for two goals:
  209. * - to enforce header prediction at sender, even when application
  210. * requires some significant "application buffer". It is check #1.
  211. * - to prevent pruning of receive queue because of misprediction
  212. * of receiver window. Check #2.
  213. *
  214. * The scheme does not work when sender sends good segments opening
  215. * window and then starts to feed us spagetti. But it should work
  216. * in common situations. Otherwise, we have to rely on queue collapsing.
  217. */
  218. /* Slow part of check#2. */
  219. static int __tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
  220. struct sk_buff *skb)
  221. {
  222. /* Optimize this! */
  223. int truesize = tcp_win_from_space(skb->truesize)/2;
  224. int window = tcp_full_space(sk)/2;
  225. while (tp->rcv_ssthresh <= window) {
  226. if (truesize <= skb->len)
  227. return 2*tp->ack.rcv_mss;
  228. truesize >>= 1;
  229. window >>= 1;
  230. }
  231. return 0;
  232. }
  233. static inline void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
  234. struct sk_buff *skb)
  235. {
  236. /* Check #1 */
  237. if (tp->rcv_ssthresh < tp->window_clamp &&
  238. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  239. !tcp_memory_pressure) {
  240. int incr;
  241. /* Check #2. Increase window, if skb with such overhead
  242. * will fit to rcvbuf in future.
  243. */
  244. if (tcp_win_from_space(skb->truesize) <= skb->len)
  245. incr = 2*tp->advmss;
  246. else
  247. incr = __tcp_grow_window(sk, tp, skb);
  248. if (incr) {
  249. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
  250. tp->ack.quick |= 1;
  251. }
  252. }
  253. }
  254. /* 3. Tuning rcvbuf, when connection enters established state. */
  255. static void tcp_fixup_rcvbuf(struct sock *sk)
  256. {
  257. struct tcp_sock *tp = tcp_sk(sk);
  258. int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
  259. /* Try to select rcvbuf so that 4 mss-sized segments
  260. * will fit to window and correspoding skbs will fit to our rcvbuf.
  261. * (was 3; 4 is minimum to allow fast retransmit to work.)
  262. */
  263. while (tcp_win_from_space(rcvmem) < tp->advmss)
  264. rcvmem += 128;
  265. if (sk->sk_rcvbuf < 4 * rcvmem)
  266. sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
  267. }
  268. /* 4. Try to fixup all. It is made iimediately after connection enters
  269. * established state.
  270. */
  271. static void tcp_init_buffer_space(struct sock *sk)
  272. {
  273. struct tcp_sock *tp = tcp_sk(sk);
  274. int maxwin;
  275. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  276. tcp_fixup_rcvbuf(sk);
  277. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  278. tcp_fixup_sndbuf(sk);
  279. tp->rcvq_space.space = tp->rcv_wnd;
  280. maxwin = tcp_full_space(sk);
  281. if (tp->window_clamp >= maxwin) {
  282. tp->window_clamp = maxwin;
  283. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  284. tp->window_clamp = max(maxwin -
  285. (maxwin >> sysctl_tcp_app_win),
  286. 4 * tp->advmss);
  287. }
  288. /* Force reservation of one segment. */
  289. if (sysctl_tcp_app_win &&
  290. tp->window_clamp > 2 * tp->advmss &&
  291. tp->window_clamp + tp->advmss > maxwin)
  292. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  293. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  294. tp->snd_cwnd_stamp = tcp_time_stamp;
  295. }
  296. static void init_bictcp(struct tcp_sock *tp)
  297. {
  298. tp->bictcp.cnt = 0;
  299. tp->bictcp.last_max_cwnd = 0;
  300. tp->bictcp.last_cwnd = 0;
  301. tp->bictcp.last_stamp = 0;
  302. }
  303. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  304. static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
  305. {
  306. struct sk_buff *skb;
  307. unsigned int app_win = tp->rcv_nxt - tp->copied_seq;
  308. int ofo_win = 0;
  309. tp->ack.quick = 0;
  310. skb_queue_walk(&tp->out_of_order_queue, skb) {
  311. ofo_win += skb->len;
  312. }
  313. /* If overcommit is due to out of order segments,
  314. * do not clamp window. Try to expand rcvbuf instead.
  315. */
  316. if (ofo_win) {
  317. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  318. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  319. !tcp_memory_pressure &&
  320. atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0])
  321. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  322. sysctl_tcp_rmem[2]);
  323. }
  324. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) {
  325. app_win += ofo_win;
  326. if (atomic_read(&sk->sk_rmem_alloc) >= 2 * sk->sk_rcvbuf)
  327. app_win >>= 1;
  328. if (app_win > tp->ack.rcv_mss)
  329. app_win -= tp->ack.rcv_mss;
  330. app_win = max(app_win, 2U*tp->advmss);
  331. if (!ofo_win)
  332. tp->window_clamp = min(tp->window_clamp, app_win);
  333. tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
  334. }
  335. }
  336. /* Receiver "autotuning" code.
  337. *
  338. * The algorithm for RTT estimation w/o timestamps is based on
  339. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  340. * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
  341. *
  342. * More detail on this code can be found at
  343. * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
  344. * though this reference is out of date. A new paper
  345. * is pending.
  346. */
  347. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  348. {
  349. u32 new_sample = tp->rcv_rtt_est.rtt;
  350. long m = sample;
  351. if (m == 0)
  352. m = 1;
  353. if (new_sample != 0) {
  354. /* If we sample in larger samples in the non-timestamp
  355. * case, we could grossly overestimate the RTT especially
  356. * with chatty applications or bulk transfer apps which
  357. * are stalled on filesystem I/O.
  358. *
  359. * Also, since we are only going for a minimum in the
  360. * non-timestamp case, we do not smoothe things out
  361. * else with timestamps disabled convergance takes too
  362. * long.
  363. */
  364. if (!win_dep) {
  365. m -= (new_sample >> 3);
  366. new_sample += m;
  367. } else if (m < new_sample)
  368. new_sample = m << 3;
  369. } else {
  370. /* No previous mesaure. */
  371. new_sample = m << 3;
  372. }
  373. if (tp->rcv_rtt_est.rtt != new_sample)
  374. tp->rcv_rtt_est.rtt = new_sample;
  375. }
  376. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  377. {
  378. if (tp->rcv_rtt_est.time == 0)
  379. goto new_measure;
  380. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  381. return;
  382. tcp_rcv_rtt_update(tp,
  383. jiffies - tp->rcv_rtt_est.time,
  384. 1);
  385. new_measure:
  386. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  387. tp->rcv_rtt_est.time = tcp_time_stamp;
  388. }
  389. static inline void tcp_rcv_rtt_measure_ts(struct tcp_sock *tp, struct sk_buff *skb)
  390. {
  391. if (tp->rx_opt.rcv_tsecr &&
  392. (TCP_SKB_CB(skb)->end_seq -
  393. TCP_SKB_CB(skb)->seq >= tp->ack.rcv_mss))
  394. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  395. }
  396. /*
  397. * This function should be called every time data is copied to user space.
  398. * It calculates the appropriate TCP receive buffer space.
  399. */
  400. void tcp_rcv_space_adjust(struct sock *sk)
  401. {
  402. struct tcp_sock *tp = tcp_sk(sk);
  403. int time;
  404. int space;
  405. if (tp->rcvq_space.time == 0)
  406. goto new_measure;
  407. time = tcp_time_stamp - tp->rcvq_space.time;
  408. if (time < (tp->rcv_rtt_est.rtt >> 3) ||
  409. tp->rcv_rtt_est.rtt == 0)
  410. return;
  411. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  412. space = max(tp->rcvq_space.space, space);
  413. if (tp->rcvq_space.space != space) {
  414. int rcvmem;
  415. tp->rcvq_space.space = space;
  416. if (sysctl_tcp_moderate_rcvbuf) {
  417. int new_clamp = space;
  418. /* Receive space grows, normalize in order to
  419. * take into account packet headers and sk_buff
  420. * structure overhead.
  421. */
  422. space /= tp->advmss;
  423. if (!space)
  424. space = 1;
  425. rcvmem = (tp->advmss + MAX_TCP_HEADER +
  426. 16 + sizeof(struct sk_buff));
  427. while (tcp_win_from_space(rcvmem) < tp->advmss)
  428. rcvmem += 128;
  429. space *= rcvmem;
  430. space = min(space, sysctl_tcp_rmem[2]);
  431. if (space > sk->sk_rcvbuf) {
  432. sk->sk_rcvbuf = space;
  433. /* Make the window clamp follow along. */
  434. tp->window_clamp = new_clamp;
  435. }
  436. }
  437. }
  438. new_measure:
  439. tp->rcvq_space.seq = tp->copied_seq;
  440. tp->rcvq_space.time = tcp_time_stamp;
  441. }
  442. /* There is something which you must keep in mind when you analyze the
  443. * behavior of the tp->ato delayed ack timeout interval. When a
  444. * connection starts up, we want to ack as quickly as possible. The
  445. * problem is that "good" TCP's do slow start at the beginning of data
  446. * transmission. The means that until we send the first few ACK's the
  447. * sender will sit on his end and only queue most of his data, because
  448. * he can only send snd_cwnd unacked packets at any given time. For
  449. * each ACK we send, he increments snd_cwnd and transmits more of his
  450. * queue. -DaveM
  451. */
  452. static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
  453. {
  454. u32 now;
  455. tcp_schedule_ack(tp);
  456. tcp_measure_rcv_mss(tp, skb);
  457. tcp_rcv_rtt_measure(tp);
  458. now = tcp_time_stamp;
  459. if (!tp->ack.ato) {
  460. /* The _first_ data packet received, initialize
  461. * delayed ACK engine.
  462. */
  463. tcp_incr_quickack(tp);
  464. tp->ack.ato = TCP_ATO_MIN;
  465. } else {
  466. int m = now - tp->ack.lrcvtime;
  467. if (m <= TCP_ATO_MIN/2) {
  468. /* The fastest case is the first. */
  469. tp->ack.ato = (tp->ack.ato>>1) + TCP_ATO_MIN/2;
  470. } else if (m < tp->ack.ato) {
  471. tp->ack.ato = (tp->ack.ato>>1) + m;
  472. if (tp->ack.ato > tp->rto)
  473. tp->ack.ato = tp->rto;
  474. } else if (m > tp->rto) {
  475. /* Too long gap. Apparently sender falled to
  476. * restart window, so that we send ACKs quickly.
  477. */
  478. tcp_incr_quickack(tp);
  479. sk_stream_mem_reclaim(sk);
  480. }
  481. }
  482. tp->ack.lrcvtime = now;
  483. TCP_ECN_check_ce(tp, skb);
  484. if (skb->len >= 128)
  485. tcp_grow_window(sk, tp, skb);
  486. }
  487. /* When starting a new connection, pin down the current choice of
  488. * congestion algorithm.
  489. */
  490. void tcp_ca_init(struct tcp_sock *tp)
  491. {
  492. if (sysctl_tcp_westwood)
  493. tp->adv_cong = TCP_WESTWOOD;
  494. else if (sysctl_tcp_bic)
  495. tp->adv_cong = TCP_BIC;
  496. else if (sysctl_tcp_vegas_cong_avoid) {
  497. tp->adv_cong = TCP_VEGAS;
  498. tp->vegas.baseRTT = 0x7fffffff;
  499. tcp_vegas_enable(tp);
  500. }
  501. }
  502. /* Do RTT sampling needed for Vegas.
  503. * Basically we:
  504. * o min-filter RTT samples from within an RTT to get the current
  505. * propagation delay + queuing delay (we are min-filtering to try to
  506. * avoid the effects of delayed ACKs)
  507. * o min-filter RTT samples from a much longer window (forever for now)
  508. * to find the propagation delay (baseRTT)
  509. */
  510. static inline void vegas_rtt_calc(struct tcp_sock *tp, __u32 rtt)
  511. {
  512. __u32 vrtt = rtt + 1; /* Never allow zero rtt or baseRTT */
  513. /* Filter to find propagation delay: */
  514. if (vrtt < tp->vegas.baseRTT)
  515. tp->vegas.baseRTT = vrtt;
  516. /* Find the min RTT during the last RTT to find
  517. * the current prop. delay + queuing delay:
  518. */
  519. tp->vegas.minRTT = min(tp->vegas.minRTT, vrtt);
  520. tp->vegas.cntRTT++;
  521. }
  522. /* Called to compute a smoothed rtt estimate. The data fed to this
  523. * routine either comes from timestamps, or from segments that were
  524. * known _not_ to have been retransmitted [see Karn/Partridge
  525. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  526. * piece by Van Jacobson.
  527. * NOTE: the next three routines used to be one big routine.
  528. * To save cycles in the RFC 1323 implementation it was better to break
  529. * it up into three procedures. -- erics
  530. */
  531. static void tcp_rtt_estimator(struct tcp_sock *tp, __u32 mrtt)
  532. {
  533. long m = mrtt; /* RTT */
  534. if (tcp_vegas_enabled(tp))
  535. vegas_rtt_calc(tp, mrtt);
  536. /* The following amusing code comes from Jacobson's
  537. * article in SIGCOMM '88. Note that rtt and mdev
  538. * are scaled versions of rtt and mean deviation.
  539. * This is designed to be as fast as possible
  540. * m stands for "measurement".
  541. *
  542. * On a 1990 paper the rto value is changed to:
  543. * RTO = rtt + 4 * mdev
  544. *
  545. * Funny. This algorithm seems to be very broken.
  546. * These formulae increase RTO, when it should be decreased, increase
  547. * too slowly, when it should be incresed fastly, decrease too fastly
  548. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  549. * does not matter how to _calculate_ it. Seems, it was trap
  550. * that VJ failed to avoid. 8)
  551. */
  552. if(m == 0)
  553. m = 1;
  554. if (tp->srtt != 0) {
  555. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  556. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  557. if (m < 0) {
  558. m = -m; /* m is now abs(error) */
  559. m -= (tp->mdev >> 2); /* similar update on mdev */
  560. /* This is similar to one of Eifel findings.
  561. * Eifel blocks mdev updates when rtt decreases.
  562. * This solution is a bit different: we use finer gain
  563. * for mdev in this case (alpha*beta).
  564. * Like Eifel it also prevents growth of rto,
  565. * but also it limits too fast rto decreases,
  566. * happening in pure Eifel.
  567. */
  568. if (m > 0)
  569. m >>= 3;
  570. } else {
  571. m -= (tp->mdev >> 2); /* similar update on mdev */
  572. }
  573. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  574. if (tp->mdev > tp->mdev_max) {
  575. tp->mdev_max = tp->mdev;
  576. if (tp->mdev_max > tp->rttvar)
  577. tp->rttvar = tp->mdev_max;
  578. }
  579. if (after(tp->snd_una, tp->rtt_seq)) {
  580. if (tp->mdev_max < tp->rttvar)
  581. tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
  582. tp->rtt_seq = tp->snd_nxt;
  583. tp->mdev_max = TCP_RTO_MIN;
  584. }
  585. } else {
  586. /* no previous measure. */
  587. tp->srtt = m<<3; /* take the measured time to be rtt */
  588. tp->mdev = m<<1; /* make sure rto = 3*rtt */
  589. tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
  590. tp->rtt_seq = tp->snd_nxt;
  591. }
  592. tcp_westwood_update_rtt(tp, tp->srtt >> 3);
  593. }
  594. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  595. * routine referred to above.
  596. */
  597. static inline void tcp_set_rto(struct tcp_sock *tp)
  598. {
  599. /* Old crap is replaced with new one. 8)
  600. *
  601. * More seriously:
  602. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  603. * It cannot be less due to utterly erratic ACK generation made
  604. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  605. * to do with delayed acks, because at cwnd>2 true delack timeout
  606. * is invisible. Actually, Linux-2.4 also generates erratic
  607. * ACKs in some curcumstances.
  608. */
  609. tp->rto = (tp->srtt >> 3) + tp->rttvar;
  610. /* 2. Fixups made earlier cannot be right.
  611. * If we do not estimate RTO correctly without them,
  612. * all the algo is pure shit and should be replaced
  613. * with correct one. It is exaclty, which we pretend to do.
  614. */
  615. }
  616. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  617. * guarantees that rto is higher.
  618. */
  619. static inline void tcp_bound_rto(struct tcp_sock *tp)
  620. {
  621. if (tp->rto > TCP_RTO_MAX)
  622. tp->rto = TCP_RTO_MAX;
  623. }
  624. /* Save metrics learned by this TCP session.
  625. This function is called only, when TCP finishes successfully
  626. i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
  627. */
  628. void tcp_update_metrics(struct sock *sk)
  629. {
  630. struct tcp_sock *tp = tcp_sk(sk);
  631. struct dst_entry *dst = __sk_dst_get(sk);
  632. if (sysctl_tcp_nometrics_save)
  633. return;
  634. dst_confirm(dst);
  635. if (dst && (dst->flags&DST_HOST)) {
  636. int m;
  637. if (tp->backoff || !tp->srtt) {
  638. /* This session failed to estimate rtt. Why?
  639. * Probably, no packets returned in time.
  640. * Reset our results.
  641. */
  642. if (!(dst_metric_locked(dst, RTAX_RTT)))
  643. dst->metrics[RTAX_RTT-1] = 0;
  644. return;
  645. }
  646. m = dst_metric(dst, RTAX_RTT) - tp->srtt;
  647. /* If newly calculated rtt larger than stored one,
  648. * store new one. Otherwise, use EWMA. Remember,
  649. * rtt overestimation is always better than underestimation.
  650. */
  651. if (!(dst_metric_locked(dst, RTAX_RTT))) {
  652. if (m <= 0)
  653. dst->metrics[RTAX_RTT-1] = tp->srtt;
  654. else
  655. dst->metrics[RTAX_RTT-1] -= (m>>3);
  656. }
  657. if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
  658. if (m < 0)
  659. m = -m;
  660. /* Scale deviation to rttvar fixed point */
  661. m >>= 1;
  662. if (m < tp->mdev)
  663. m = tp->mdev;
  664. if (m >= dst_metric(dst, RTAX_RTTVAR))
  665. dst->metrics[RTAX_RTTVAR-1] = m;
  666. else
  667. dst->metrics[RTAX_RTTVAR-1] -=
  668. (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
  669. }
  670. if (tp->snd_ssthresh >= 0xFFFF) {
  671. /* Slow start still did not finish. */
  672. if (dst_metric(dst, RTAX_SSTHRESH) &&
  673. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  674. (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
  675. dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
  676. if (!dst_metric_locked(dst, RTAX_CWND) &&
  677. tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
  678. dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
  679. } else if (tp->snd_cwnd > tp->snd_ssthresh &&
  680. tp->ca_state == TCP_CA_Open) {
  681. /* Cong. avoidance phase, cwnd is reliable. */
  682. if (!dst_metric_locked(dst, RTAX_SSTHRESH))
  683. dst->metrics[RTAX_SSTHRESH-1] =
  684. max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
  685. if (!dst_metric_locked(dst, RTAX_CWND))
  686. dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
  687. } else {
  688. /* Else slow start did not finish, cwnd is non-sense,
  689. ssthresh may be also invalid.
  690. */
  691. if (!dst_metric_locked(dst, RTAX_CWND))
  692. dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
  693. if (dst->metrics[RTAX_SSTHRESH-1] &&
  694. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  695. tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
  696. dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
  697. }
  698. if (!dst_metric_locked(dst, RTAX_REORDERING)) {
  699. if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
  700. tp->reordering != sysctl_tcp_reordering)
  701. dst->metrics[RTAX_REORDERING-1] = tp->reordering;
  702. }
  703. }
  704. }
  705. /* Numbers are taken from RFC2414. */
  706. __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
  707. {
  708. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  709. if (!cwnd) {
  710. if (tp->mss_cache_std > 1460)
  711. cwnd = 2;
  712. else
  713. cwnd = (tp->mss_cache_std > 1095) ? 3 : 4;
  714. }
  715. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  716. }
  717. /* Initialize metrics on socket. */
  718. static void tcp_init_metrics(struct sock *sk)
  719. {
  720. struct tcp_sock *tp = tcp_sk(sk);
  721. struct dst_entry *dst = __sk_dst_get(sk);
  722. if (dst == NULL)
  723. goto reset;
  724. dst_confirm(dst);
  725. if (dst_metric_locked(dst, RTAX_CWND))
  726. tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
  727. if (dst_metric(dst, RTAX_SSTHRESH)) {
  728. tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
  729. if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
  730. tp->snd_ssthresh = tp->snd_cwnd_clamp;
  731. }
  732. if (dst_metric(dst, RTAX_REORDERING) &&
  733. tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
  734. tp->rx_opt.sack_ok &= ~2;
  735. tp->reordering = dst_metric(dst, RTAX_REORDERING);
  736. }
  737. if (dst_metric(dst, RTAX_RTT) == 0)
  738. goto reset;
  739. if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
  740. goto reset;
  741. /* Initial rtt is determined from SYN,SYN-ACK.
  742. * The segment is small and rtt may appear much
  743. * less than real one. Use per-dst memory
  744. * to make it more realistic.
  745. *
  746. * A bit of theory. RTT is time passed after "normal" sized packet
  747. * is sent until it is ACKed. In normal curcumstances sending small
  748. * packets force peer to delay ACKs and calculation is correct too.
  749. * The algorithm is adaptive and, provided we follow specs, it
  750. * NEVER underestimate RTT. BUT! If peer tries to make some clever
  751. * tricks sort of "quick acks" for time long enough to decrease RTT
  752. * to low value, and then abruptly stops to do it and starts to delay
  753. * ACKs, wait for troubles.
  754. */
  755. if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
  756. tp->srtt = dst_metric(dst, RTAX_RTT);
  757. tp->rtt_seq = tp->snd_nxt;
  758. }
  759. if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
  760. tp->mdev = dst_metric(dst, RTAX_RTTVAR);
  761. tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
  762. }
  763. tcp_set_rto(tp);
  764. tcp_bound_rto(tp);
  765. if (tp->rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
  766. goto reset;
  767. tp->snd_cwnd = tcp_init_cwnd(tp, dst);
  768. tp->snd_cwnd_stamp = tcp_time_stamp;
  769. return;
  770. reset:
  771. /* Play conservative. If timestamps are not
  772. * supported, TCP will fail to recalculate correct
  773. * rtt, if initial rto is too small. FORGET ALL AND RESET!
  774. */
  775. if (!tp->rx_opt.saw_tstamp && tp->srtt) {
  776. tp->srtt = 0;
  777. tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
  778. tp->rto = TCP_TIMEOUT_INIT;
  779. }
  780. }
  781. static void tcp_update_reordering(struct tcp_sock *tp, int metric, int ts)
  782. {
  783. if (metric > tp->reordering) {
  784. tp->reordering = min(TCP_MAX_REORDERING, metric);
  785. /* This exciting event is worth to be remembered. 8) */
  786. if (ts)
  787. NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
  788. else if (IsReno(tp))
  789. NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
  790. else if (IsFack(tp))
  791. NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
  792. else
  793. NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
  794. #if FASTRETRANS_DEBUG > 1
  795. printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
  796. tp->rx_opt.sack_ok, tp->ca_state,
  797. tp->reordering,
  798. tp->fackets_out,
  799. tp->sacked_out,
  800. tp->undo_marker ? tp->undo_retrans : 0);
  801. #endif
  802. /* Disable FACK yet. */
  803. tp->rx_opt.sack_ok &= ~2;
  804. }
  805. }
  806. /* This procedure tags the retransmission queue when SACKs arrive.
  807. *
  808. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  809. * Packets in queue with these bits set are counted in variables
  810. * sacked_out, retrans_out and lost_out, correspondingly.
  811. *
  812. * Valid combinations are:
  813. * Tag InFlight Description
  814. * 0 1 - orig segment is in flight.
  815. * S 0 - nothing flies, orig reached receiver.
  816. * L 0 - nothing flies, orig lost by net.
  817. * R 2 - both orig and retransmit are in flight.
  818. * L|R 1 - orig is lost, retransmit is in flight.
  819. * S|R 1 - orig reached receiver, retrans is still in flight.
  820. * (L|S|R is logically valid, it could occur when L|R is sacked,
  821. * but it is equivalent to plain S and code short-curcuits it to S.
  822. * L|S is logically invalid, it would mean -1 packet in flight 8))
  823. *
  824. * These 6 states form finite state machine, controlled by the following events:
  825. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  826. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  827. * 3. Loss detection event of one of three flavors:
  828. * A. Scoreboard estimator decided the packet is lost.
  829. * A'. Reno "three dupacks" marks head of queue lost.
  830. * A''. Its FACK modfication, head until snd.fack is lost.
  831. * B. SACK arrives sacking data transmitted after never retransmitted
  832. * hole was sent out.
  833. * C. SACK arrives sacking SND.NXT at the moment, when the
  834. * segment was retransmitted.
  835. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  836. *
  837. * It is pleasant to note, that state diagram turns out to be commutative,
  838. * so that we are allowed not to be bothered by order of our actions,
  839. * when multiple events arrive simultaneously. (see the function below).
  840. *
  841. * Reordering detection.
  842. * --------------------
  843. * Reordering metric is maximal distance, which a packet can be displaced
  844. * in packet stream. With SACKs we can estimate it:
  845. *
  846. * 1. SACK fills old hole and the corresponding segment was not
  847. * ever retransmitted -> reordering. Alas, we cannot use it
  848. * when segment was retransmitted.
  849. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  850. * for retransmitted and already SACKed segment -> reordering..
  851. * Both of these heuristics are not used in Loss state, when we cannot
  852. * account for retransmits accurately.
  853. */
  854. static int
  855. tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
  856. {
  857. struct tcp_sock *tp = tcp_sk(sk);
  858. unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
  859. struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
  860. int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
  861. int reord = tp->packets_out;
  862. int prior_fackets;
  863. u32 lost_retrans = 0;
  864. int flag = 0;
  865. int i;
  866. /* So, SACKs for already sent large segments will be lost.
  867. * Not good, but alternative is to resegment the queue. */
  868. if (sk->sk_route_caps & NETIF_F_TSO) {
  869. sk->sk_route_caps &= ~NETIF_F_TSO;
  870. sock_set_flag(sk, SOCK_NO_LARGESEND);
  871. tp->mss_cache = tp->mss_cache_std;
  872. }
  873. if (!tp->sacked_out)
  874. tp->fackets_out = 0;
  875. prior_fackets = tp->fackets_out;
  876. for (i=0; i<num_sacks; i++, sp++) {
  877. struct sk_buff *skb;
  878. __u32 start_seq = ntohl(sp->start_seq);
  879. __u32 end_seq = ntohl(sp->end_seq);
  880. int fack_count = 0;
  881. int dup_sack = 0;
  882. /* Check for D-SACK. */
  883. if (i == 0) {
  884. u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
  885. if (before(start_seq, ack)) {
  886. dup_sack = 1;
  887. tp->rx_opt.sack_ok |= 4;
  888. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
  889. } else if (num_sacks > 1 &&
  890. !after(end_seq, ntohl(sp[1].end_seq)) &&
  891. !before(start_seq, ntohl(sp[1].start_seq))) {
  892. dup_sack = 1;
  893. tp->rx_opt.sack_ok |= 4;
  894. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
  895. }
  896. /* D-SACK for already forgotten data...
  897. * Do dumb counting. */
  898. if (dup_sack &&
  899. !after(end_seq, prior_snd_una) &&
  900. after(end_seq, tp->undo_marker))
  901. tp->undo_retrans--;
  902. /* Eliminate too old ACKs, but take into
  903. * account more or less fresh ones, they can
  904. * contain valid SACK info.
  905. */
  906. if (before(ack, prior_snd_una - tp->max_window))
  907. return 0;
  908. }
  909. /* Event "B" in the comment above. */
  910. if (after(end_seq, tp->high_seq))
  911. flag |= FLAG_DATA_LOST;
  912. sk_stream_for_retrans_queue(skb, sk) {
  913. u8 sacked = TCP_SKB_CB(skb)->sacked;
  914. int in_sack;
  915. /* The retransmission queue is always in order, so
  916. * we can short-circuit the walk early.
  917. */
  918. if(!before(TCP_SKB_CB(skb)->seq, end_seq))
  919. break;
  920. fack_count += tcp_skb_pcount(skb);
  921. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  922. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  923. /* Account D-SACK for retransmitted packet. */
  924. if ((dup_sack && in_sack) &&
  925. (sacked & TCPCB_RETRANS) &&
  926. after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
  927. tp->undo_retrans--;
  928. /* The frame is ACKed. */
  929. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
  930. if (sacked&TCPCB_RETRANS) {
  931. if ((dup_sack && in_sack) &&
  932. (sacked&TCPCB_SACKED_ACKED))
  933. reord = min(fack_count, reord);
  934. } else {
  935. /* If it was in a hole, we detected reordering. */
  936. if (fack_count < prior_fackets &&
  937. !(sacked&TCPCB_SACKED_ACKED))
  938. reord = min(fack_count, reord);
  939. }
  940. /* Nothing to do; acked frame is about to be dropped. */
  941. continue;
  942. }
  943. if ((sacked&TCPCB_SACKED_RETRANS) &&
  944. after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
  945. (!lost_retrans || after(end_seq, lost_retrans)))
  946. lost_retrans = end_seq;
  947. if (!in_sack)
  948. continue;
  949. if (!(sacked&TCPCB_SACKED_ACKED)) {
  950. if (sacked & TCPCB_SACKED_RETRANS) {
  951. /* If the segment is not tagged as lost,
  952. * we do not clear RETRANS, believing
  953. * that retransmission is still in flight.
  954. */
  955. if (sacked & TCPCB_LOST) {
  956. TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  957. tp->lost_out -= tcp_skb_pcount(skb);
  958. tp->retrans_out -= tcp_skb_pcount(skb);
  959. }
  960. } else {
  961. /* New sack for not retransmitted frame,
  962. * which was in hole. It is reordering.
  963. */
  964. if (!(sacked & TCPCB_RETRANS) &&
  965. fack_count < prior_fackets)
  966. reord = min(fack_count, reord);
  967. if (sacked & TCPCB_LOST) {
  968. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  969. tp->lost_out -= tcp_skb_pcount(skb);
  970. }
  971. }
  972. TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
  973. flag |= FLAG_DATA_SACKED;
  974. tp->sacked_out += tcp_skb_pcount(skb);
  975. if (fack_count > tp->fackets_out)
  976. tp->fackets_out = fack_count;
  977. } else {
  978. if (dup_sack && (sacked&TCPCB_RETRANS))
  979. reord = min(fack_count, reord);
  980. }
  981. /* D-SACK. We can detect redundant retransmission
  982. * in S|R and plain R frames and clear it.
  983. * undo_retrans is decreased above, L|R frames
  984. * are accounted above as well.
  985. */
  986. if (dup_sack &&
  987. (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
  988. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  989. tp->retrans_out -= tcp_skb_pcount(skb);
  990. }
  991. }
  992. }
  993. /* Check for lost retransmit. This superb idea is
  994. * borrowed from "ratehalving". Event "C".
  995. * Later note: FACK people cheated me again 8),
  996. * we have to account for reordering! Ugly,
  997. * but should help.
  998. */
  999. if (lost_retrans && tp->ca_state == TCP_CA_Recovery) {
  1000. struct sk_buff *skb;
  1001. sk_stream_for_retrans_queue(skb, sk) {
  1002. if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
  1003. break;
  1004. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1005. continue;
  1006. if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
  1007. after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
  1008. (IsFack(tp) ||
  1009. !before(lost_retrans,
  1010. TCP_SKB_CB(skb)->ack_seq + tp->reordering *
  1011. tp->mss_cache_std))) {
  1012. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1013. tp->retrans_out -= tcp_skb_pcount(skb);
  1014. if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  1015. tp->lost_out += tcp_skb_pcount(skb);
  1016. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1017. flag |= FLAG_DATA_SACKED;
  1018. NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
  1019. }
  1020. }
  1021. }
  1022. }
  1023. tp->left_out = tp->sacked_out + tp->lost_out;
  1024. if ((reord < tp->fackets_out) && tp->ca_state != TCP_CA_Loss)
  1025. tcp_update_reordering(tp, ((tp->fackets_out + 1) - reord), 0);
  1026. #if FASTRETRANS_DEBUG > 0
  1027. BUG_TRAP((int)tp->sacked_out >= 0);
  1028. BUG_TRAP((int)tp->lost_out >= 0);
  1029. BUG_TRAP((int)tp->retrans_out >= 0);
  1030. BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
  1031. #endif
  1032. return flag;
  1033. }
  1034. /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
  1035. * segments to see from the next ACKs whether any data was really missing.
  1036. * If the RTO was spurious, new ACKs should arrive.
  1037. */
  1038. void tcp_enter_frto(struct sock *sk)
  1039. {
  1040. struct tcp_sock *tp = tcp_sk(sk);
  1041. struct sk_buff *skb;
  1042. tp->frto_counter = 1;
  1043. if (tp->ca_state <= TCP_CA_Disorder ||
  1044. tp->snd_una == tp->high_seq ||
  1045. (tp->ca_state == TCP_CA_Loss && !tp->retransmits)) {
  1046. tp->prior_ssthresh = tcp_current_ssthresh(tp);
  1047. if (!tcp_westwood_ssthresh(tp))
  1048. tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
  1049. }
  1050. /* Have to clear retransmission markers here to keep the bookkeeping
  1051. * in shape, even though we are not yet in Loss state.
  1052. * If something was really lost, it is eventually caught up
  1053. * in tcp_enter_frto_loss.
  1054. */
  1055. tp->retrans_out = 0;
  1056. tp->undo_marker = tp->snd_una;
  1057. tp->undo_retrans = 0;
  1058. sk_stream_for_retrans_queue(skb, sk) {
  1059. TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
  1060. }
  1061. tcp_sync_left_out(tp);
  1062. tcp_set_ca_state(tp, TCP_CA_Open);
  1063. tp->frto_highmark = tp->snd_nxt;
  1064. }
  1065. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1066. * which indicates that we should follow the traditional RTO recovery,
  1067. * i.e. mark everything lost and do go-back-N retransmission.
  1068. */
  1069. static void tcp_enter_frto_loss(struct sock *sk)
  1070. {
  1071. struct tcp_sock *tp = tcp_sk(sk);
  1072. struct sk_buff *skb;
  1073. int cnt = 0;
  1074. tp->sacked_out = 0;
  1075. tp->lost_out = 0;
  1076. tp->fackets_out = 0;
  1077. sk_stream_for_retrans_queue(skb, sk) {
  1078. cnt += tcp_skb_pcount(skb);
  1079. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1080. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
  1081. /* Do not mark those segments lost that were
  1082. * forward transmitted after RTO
  1083. */
  1084. if (!after(TCP_SKB_CB(skb)->end_seq,
  1085. tp->frto_highmark)) {
  1086. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1087. tp->lost_out += tcp_skb_pcount(skb);
  1088. }
  1089. } else {
  1090. tp->sacked_out += tcp_skb_pcount(skb);
  1091. tp->fackets_out = cnt;
  1092. }
  1093. }
  1094. tcp_sync_left_out(tp);
  1095. tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
  1096. tp->snd_cwnd_cnt = 0;
  1097. tp->snd_cwnd_stamp = tcp_time_stamp;
  1098. tp->undo_marker = 0;
  1099. tp->frto_counter = 0;
  1100. tp->reordering = min_t(unsigned int, tp->reordering,
  1101. sysctl_tcp_reordering);
  1102. tcp_set_ca_state(tp, TCP_CA_Loss);
  1103. tp->high_seq = tp->frto_highmark;
  1104. TCP_ECN_queue_cwr(tp);
  1105. init_bictcp(tp);
  1106. }
  1107. void tcp_clear_retrans(struct tcp_sock *tp)
  1108. {
  1109. tp->left_out = 0;
  1110. tp->retrans_out = 0;
  1111. tp->fackets_out = 0;
  1112. tp->sacked_out = 0;
  1113. tp->lost_out = 0;
  1114. tp->undo_marker = 0;
  1115. tp->undo_retrans = 0;
  1116. }
  1117. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1118. * and reset tags completely, otherwise preserve SACKs. If receiver
  1119. * dropped its ofo queue, we will know this due to reneging detection.
  1120. */
  1121. void tcp_enter_loss(struct sock *sk, int how)
  1122. {
  1123. struct tcp_sock *tp = tcp_sk(sk);
  1124. struct sk_buff *skb;
  1125. int cnt = 0;
  1126. /* Reduce ssthresh if it has not yet been made inside this window. */
  1127. if (tp->ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1128. (tp->ca_state == TCP_CA_Loss && !tp->retransmits)) {
  1129. tp->prior_ssthresh = tcp_current_ssthresh(tp);
  1130. tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
  1131. }
  1132. tp->snd_cwnd = 1;
  1133. tp->snd_cwnd_cnt = 0;
  1134. tp->snd_cwnd_stamp = tcp_time_stamp;
  1135. tcp_clear_retrans(tp);
  1136. /* Push undo marker, if it was plain RTO and nothing
  1137. * was retransmitted. */
  1138. if (!how)
  1139. tp->undo_marker = tp->snd_una;
  1140. sk_stream_for_retrans_queue(skb, sk) {
  1141. cnt += tcp_skb_pcount(skb);
  1142. if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
  1143. tp->undo_marker = 0;
  1144. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1145. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1146. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1147. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1148. tp->lost_out += tcp_skb_pcount(skb);
  1149. } else {
  1150. tp->sacked_out += tcp_skb_pcount(skb);
  1151. tp->fackets_out = cnt;
  1152. }
  1153. }
  1154. tcp_sync_left_out(tp);
  1155. tp->reordering = min_t(unsigned int, tp->reordering,
  1156. sysctl_tcp_reordering);
  1157. tcp_set_ca_state(tp, TCP_CA_Loss);
  1158. tp->high_seq = tp->snd_nxt;
  1159. TCP_ECN_queue_cwr(tp);
  1160. }
  1161. static int tcp_check_sack_reneging(struct sock *sk, struct tcp_sock *tp)
  1162. {
  1163. struct sk_buff *skb;
  1164. /* If ACK arrived pointing to a remembered SACK,
  1165. * it means that our remembered SACKs do not reflect
  1166. * real state of receiver i.e.
  1167. * receiver _host_ is heavily congested (or buggy).
  1168. * Do processing similar to RTO timeout.
  1169. */
  1170. if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
  1171. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1172. NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
  1173. tcp_enter_loss(sk, 1);
  1174. tp->retransmits++;
  1175. tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
  1176. tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
  1177. return 1;
  1178. }
  1179. return 0;
  1180. }
  1181. static inline int tcp_fackets_out(struct tcp_sock *tp)
  1182. {
  1183. return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
  1184. }
  1185. static inline int tcp_skb_timedout(struct tcp_sock *tp, struct sk_buff *skb)
  1186. {
  1187. return (tcp_time_stamp - TCP_SKB_CB(skb)->when > tp->rto);
  1188. }
  1189. static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
  1190. {
  1191. return tp->packets_out &&
  1192. tcp_skb_timedout(tp, skb_peek(&sk->sk_write_queue));
  1193. }
  1194. /* Linux NewReno/SACK/FACK/ECN state machine.
  1195. * --------------------------------------
  1196. *
  1197. * "Open" Normal state, no dubious events, fast path.
  1198. * "Disorder" In all the respects it is "Open",
  1199. * but requires a bit more attention. It is entered when
  1200. * we see some SACKs or dupacks. It is split of "Open"
  1201. * mainly to move some processing from fast path to slow one.
  1202. * "CWR" CWND was reduced due to some Congestion Notification event.
  1203. * It can be ECN, ICMP source quench, local device congestion.
  1204. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1205. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1206. *
  1207. * tcp_fastretrans_alert() is entered:
  1208. * - each incoming ACK, if state is not "Open"
  1209. * - when arrived ACK is unusual, namely:
  1210. * * SACK
  1211. * * Duplicate ACK.
  1212. * * ECN ECE.
  1213. *
  1214. * Counting packets in flight is pretty simple.
  1215. *
  1216. * in_flight = packets_out - left_out + retrans_out
  1217. *
  1218. * packets_out is SND.NXT-SND.UNA counted in packets.
  1219. *
  1220. * retrans_out is number of retransmitted segments.
  1221. *
  1222. * left_out is number of segments left network, but not ACKed yet.
  1223. *
  1224. * left_out = sacked_out + lost_out
  1225. *
  1226. * sacked_out: Packets, which arrived to receiver out of order
  1227. * and hence not ACKed. With SACKs this number is simply
  1228. * amount of SACKed data. Even without SACKs
  1229. * it is easy to give pretty reliable estimate of this number,
  1230. * counting duplicate ACKs.
  1231. *
  1232. * lost_out: Packets lost by network. TCP has no explicit
  1233. * "loss notification" feedback from network (for now).
  1234. * It means that this number can be only _guessed_.
  1235. * Actually, it is the heuristics to predict lossage that
  1236. * distinguishes different algorithms.
  1237. *
  1238. * F.e. after RTO, when all the queue is considered as lost,
  1239. * lost_out = packets_out and in_flight = retrans_out.
  1240. *
  1241. * Essentially, we have now two algorithms counting
  1242. * lost packets.
  1243. *
  1244. * FACK: It is the simplest heuristics. As soon as we decided
  1245. * that something is lost, we decide that _all_ not SACKed
  1246. * packets until the most forward SACK are lost. I.e.
  1247. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1248. * It is absolutely correct estimate, if network does not reorder
  1249. * packets. And it loses any connection to reality when reordering
  1250. * takes place. We use FACK by default until reordering
  1251. * is suspected on the path to this destination.
  1252. *
  1253. * NewReno: when Recovery is entered, we assume that one segment
  1254. * is lost (classic Reno). While we are in Recovery and
  1255. * a partial ACK arrives, we assume that one more packet
  1256. * is lost (NewReno). This heuristics are the same in NewReno
  1257. * and SACK.
  1258. *
  1259. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1260. * deflation etc. CWND is real congestion window, never inflated, changes
  1261. * only according to classic VJ rules.
  1262. *
  1263. * Really tricky (and requiring careful tuning) part of algorithm
  1264. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1265. * The first determines the moment _when_ we should reduce CWND and,
  1266. * hence, slow down forward transmission. In fact, it determines the moment
  1267. * when we decide that hole is caused by loss, rather than by a reorder.
  1268. *
  1269. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1270. * holes, caused by lost packets.
  1271. *
  1272. * And the most logically complicated part of algorithm is undo
  1273. * heuristics. We detect false retransmits due to both too early
  1274. * fast retransmit (reordering) and underestimated RTO, analyzing
  1275. * timestamps and D-SACKs. When we detect that some segments were
  1276. * retransmitted by mistake and CWND reduction was wrong, we undo
  1277. * window reduction and abort recovery phase. This logic is hidden
  1278. * inside several functions named tcp_try_undo_<something>.
  1279. */
  1280. /* This function decides, when we should leave Disordered state
  1281. * and enter Recovery phase, reducing congestion window.
  1282. *
  1283. * Main question: may we further continue forward transmission
  1284. * with the same cwnd?
  1285. */
  1286. static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
  1287. {
  1288. __u32 packets_out;
  1289. /* Trick#1: The loss is proven. */
  1290. if (tp->lost_out)
  1291. return 1;
  1292. /* Not-A-Trick#2 : Classic rule... */
  1293. if (tcp_fackets_out(tp) > tp->reordering)
  1294. return 1;
  1295. /* Trick#3 : when we use RFC2988 timer restart, fast
  1296. * retransmit can be triggered by timeout of queue head.
  1297. */
  1298. if (tcp_head_timedout(sk, tp))
  1299. return 1;
  1300. /* Trick#4: It is still not OK... But will it be useful to delay
  1301. * recovery more?
  1302. */
  1303. packets_out = tp->packets_out;
  1304. if (packets_out <= tp->reordering &&
  1305. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  1306. !tcp_may_send_now(sk, tp)) {
  1307. /* We have nothing to send. This connection is limited
  1308. * either by receiver window or by application.
  1309. */
  1310. return 1;
  1311. }
  1312. return 0;
  1313. }
  1314. /* If we receive more dupacks than we expected counting segments
  1315. * in assumption of absent reordering, interpret this as reordering.
  1316. * The only another reason could be bug in receiver TCP.
  1317. */
  1318. static void tcp_check_reno_reordering(struct tcp_sock *tp, int addend)
  1319. {
  1320. u32 holes;
  1321. holes = max(tp->lost_out, 1U);
  1322. holes = min(holes, tp->packets_out);
  1323. if ((tp->sacked_out + holes) > tp->packets_out) {
  1324. tp->sacked_out = tp->packets_out - holes;
  1325. tcp_update_reordering(tp, tp->packets_out+addend, 0);
  1326. }
  1327. }
  1328. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1329. static void tcp_add_reno_sack(struct tcp_sock *tp)
  1330. {
  1331. tp->sacked_out++;
  1332. tcp_check_reno_reordering(tp, 0);
  1333. tcp_sync_left_out(tp);
  1334. }
  1335. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1336. static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
  1337. {
  1338. if (acked > 0) {
  1339. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1340. if (acked-1 >= tp->sacked_out)
  1341. tp->sacked_out = 0;
  1342. else
  1343. tp->sacked_out -= acked-1;
  1344. }
  1345. tcp_check_reno_reordering(tp, acked);
  1346. tcp_sync_left_out(tp);
  1347. }
  1348. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1349. {
  1350. tp->sacked_out = 0;
  1351. tp->left_out = tp->lost_out;
  1352. }
  1353. /* Mark head of queue up as lost. */
  1354. static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
  1355. int packets, u32 high_seq)
  1356. {
  1357. struct sk_buff *skb;
  1358. int cnt = packets;
  1359. BUG_TRAP(cnt <= tp->packets_out);
  1360. sk_stream_for_retrans_queue(skb, sk) {
  1361. cnt -= tcp_skb_pcount(skb);
  1362. if (cnt < 0 || after(TCP_SKB_CB(skb)->end_seq, high_seq))
  1363. break;
  1364. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
  1365. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1366. tp->lost_out += tcp_skb_pcount(skb);
  1367. }
  1368. }
  1369. tcp_sync_left_out(tp);
  1370. }
  1371. /* Account newly detected lost packet(s) */
  1372. static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
  1373. {
  1374. if (IsFack(tp)) {
  1375. int lost = tp->fackets_out - tp->reordering;
  1376. if (lost <= 0)
  1377. lost = 1;
  1378. tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
  1379. } else {
  1380. tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
  1381. }
  1382. /* New heuristics: it is possible only after we switched
  1383. * to restart timer each time when something is ACKed.
  1384. * Hence, we can detect timed out packets during fast
  1385. * retransmit without falling to slow start.
  1386. */
  1387. if (tcp_head_timedout(sk, tp)) {
  1388. struct sk_buff *skb;
  1389. sk_stream_for_retrans_queue(skb, sk) {
  1390. if (tcp_skb_timedout(tp, skb) &&
  1391. !(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
  1392. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1393. tp->lost_out += tcp_skb_pcount(skb);
  1394. }
  1395. }
  1396. tcp_sync_left_out(tp);
  1397. }
  1398. }
  1399. /* CWND moderation, preventing bursts due to too big ACKs
  1400. * in dubious situations.
  1401. */
  1402. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  1403. {
  1404. tp->snd_cwnd = min(tp->snd_cwnd,
  1405. tcp_packets_in_flight(tp)+tcp_max_burst(tp));
  1406. tp->snd_cwnd_stamp = tcp_time_stamp;
  1407. }
  1408. /* Decrease cwnd each second ack. */
  1409. static void tcp_cwnd_down(struct tcp_sock *tp)
  1410. {
  1411. int decr = tp->snd_cwnd_cnt + 1;
  1412. __u32 limit;
  1413. /*
  1414. * TCP Westwood
  1415. * Here limit is evaluated as BWestimation*RTTmin (for obtaining it
  1416. * in packets we use mss_cache). If sysctl_tcp_westwood is off
  1417. * tcp_westwood_bw_rttmin() returns 0. In such case snd_ssthresh is
  1418. * still used as usual. It prevents other strange cases in which
  1419. * BWE*RTTmin could assume value 0. It should not happen but...
  1420. */
  1421. if (!(limit = tcp_westwood_bw_rttmin(tp)))
  1422. limit = tp->snd_ssthresh/2;
  1423. tp->snd_cwnd_cnt = decr&1;
  1424. decr >>= 1;
  1425. if (decr && tp->snd_cwnd > limit)
  1426. tp->snd_cwnd -= decr;
  1427. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
  1428. tp->snd_cwnd_stamp = tcp_time_stamp;
  1429. }
  1430. /* Nothing was retransmitted or returned timestamp is less
  1431. * than timestamp of the first retransmission.
  1432. */
  1433. static inline int tcp_packet_delayed(struct tcp_sock *tp)
  1434. {
  1435. return !tp->retrans_stamp ||
  1436. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1437. (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
  1438. }
  1439. /* Undo procedures. */
  1440. #if FASTRETRANS_DEBUG > 1
  1441. static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
  1442. {
  1443. struct inet_sock *inet = inet_sk(sk);
  1444. printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
  1445. msg,
  1446. NIPQUAD(inet->daddr), ntohs(inet->dport),
  1447. tp->snd_cwnd, tp->left_out,
  1448. tp->snd_ssthresh, tp->prior_ssthresh,
  1449. tp->packets_out);
  1450. }
  1451. #else
  1452. #define DBGUNDO(x...) do { } while (0)
  1453. #endif
  1454. static void tcp_undo_cwr(struct tcp_sock *tp, int undo)
  1455. {
  1456. if (tp->prior_ssthresh) {
  1457. if (tcp_is_bic(tp))
  1458. tp->snd_cwnd = max(tp->snd_cwnd, tp->bictcp.last_max_cwnd);
  1459. else
  1460. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
  1461. if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
  1462. tp->snd_ssthresh = tp->prior_ssthresh;
  1463. TCP_ECN_withdraw_cwr(tp);
  1464. }
  1465. } else {
  1466. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  1467. }
  1468. tcp_moderate_cwnd(tp);
  1469. tp->snd_cwnd_stamp = tcp_time_stamp;
  1470. }
  1471. static inline int tcp_may_undo(struct tcp_sock *tp)
  1472. {
  1473. return tp->undo_marker &&
  1474. (!tp->undo_retrans || tcp_packet_delayed(tp));
  1475. }
  1476. /* People celebrate: "We love our President!" */
  1477. static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
  1478. {
  1479. if (tcp_may_undo(tp)) {
  1480. /* Happy end! We did not retransmit anything
  1481. * or our original transmission succeeded.
  1482. */
  1483. DBGUNDO(sk, tp, tp->ca_state == TCP_CA_Loss ? "loss" : "retrans");
  1484. tcp_undo_cwr(tp, 1);
  1485. if (tp->ca_state == TCP_CA_Loss)
  1486. NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
  1487. else
  1488. NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
  1489. tp->undo_marker = 0;
  1490. }
  1491. if (tp->snd_una == tp->high_seq && IsReno(tp)) {
  1492. /* Hold old state until something *above* high_seq
  1493. * is ACKed. For Reno it is MUST to prevent false
  1494. * fast retransmits (RFC2582). SACK TCP is safe. */
  1495. tcp_moderate_cwnd(tp);
  1496. return 1;
  1497. }
  1498. tcp_set_ca_state(tp, TCP_CA_Open);
  1499. return 0;
  1500. }
  1501. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  1502. static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
  1503. {
  1504. if (tp->undo_marker && !tp->undo_retrans) {
  1505. DBGUNDO(sk, tp, "D-SACK");
  1506. tcp_undo_cwr(tp, 1);
  1507. tp->undo_marker = 0;
  1508. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
  1509. }
  1510. }
  1511. /* Undo during fast recovery after partial ACK. */
  1512. static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
  1513. int acked)
  1514. {
  1515. /* Partial ACK arrived. Force Hoe's retransmit. */
  1516. int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
  1517. if (tcp_may_undo(tp)) {
  1518. /* Plain luck! Hole if filled with delayed
  1519. * packet, rather than with a retransmit.
  1520. */
  1521. if (tp->retrans_out == 0)
  1522. tp->retrans_stamp = 0;
  1523. tcp_update_reordering(tp, tcp_fackets_out(tp)+acked, 1);
  1524. DBGUNDO(sk, tp, "Hoe");
  1525. tcp_undo_cwr(tp, 0);
  1526. NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
  1527. /* So... Do not make Hoe's retransmit yet.
  1528. * If the first packet was delayed, the rest
  1529. * ones are most probably delayed as well.
  1530. */
  1531. failed = 0;
  1532. }
  1533. return failed;
  1534. }
  1535. /* Undo during loss recovery after partial ACK. */
  1536. static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
  1537. {
  1538. if (tcp_may_undo(tp)) {
  1539. struct sk_buff *skb;
  1540. sk_stream_for_retrans_queue(skb, sk) {
  1541. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1542. }
  1543. DBGUNDO(sk, tp, "partial loss");
  1544. tp->lost_out = 0;
  1545. tp->left_out = tp->sacked_out;
  1546. tcp_undo_cwr(tp, 1);
  1547. NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
  1548. tp->retransmits = 0;
  1549. tp->undo_marker = 0;
  1550. if (!IsReno(tp))
  1551. tcp_set_ca_state(tp, TCP_CA_Open);
  1552. return 1;
  1553. }
  1554. return 0;
  1555. }
  1556. static inline void tcp_complete_cwr(struct tcp_sock *tp)
  1557. {
  1558. if (tcp_westwood_cwnd(tp))
  1559. tp->snd_ssthresh = tp->snd_cwnd;
  1560. else
  1561. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  1562. tp->snd_cwnd_stamp = tcp_time_stamp;
  1563. }
  1564. static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
  1565. {
  1566. tp->left_out = tp->sacked_out;
  1567. if (tp->retrans_out == 0)
  1568. tp->retrans_stamp = 0;
  1569. if (flag&FLAG_ECE)
  1570. tcp_enter_cwr(tp);
  1571. if (tp->ca_state != TCP_CA_CWR) {
  1572. int state = TCP_CA_Open;
  1573. if (tp->left_out || tp->retrans_out || tp->undo_marker)
  1574. state = TCP_CA_Disorder;
  1575. if (tp->ca_state != state) {
  1576. tcp_set_ca_state(tp, state);
  1577. tp->high_seq = tp->snd_nxt;
  1578. }
  1579. tcp_moderate_cwnd(tp);
  1580. } else {
  1581. tcp_cwnd_down(tp);
  1582. }
  1583. }
  1584. /* Process an event, which can update packets-in-flight not trivially.
  1585. * Main goal of this function is to calculate new estimate for left_out,
  1586. * taking into account both packets sitting in receiver's buffer and
  1587. * packets lost by network.
  1588. *
  1589. * Besides that it does CWND reduction, when packet loss is detected
  1590. * and changes state of machine.
  1591. *
  1592. * It does _not_ decide what to send, it is made in function
  1593. * tcp_xmit_retransmit_queue().
  1594. */
  1595. static void
  1596. tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
  1597. int prior_packets, int flag)
  1598. {
  1599. struct tcp_sock *tp = tcp_sk(sk);
  1600. int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
  1601. /* Some technical things:
  1602. * 1. Reno does not count dupacks (sacked_out) automatically. */
  1603. if (!tp->packets_out)
  1604. tp->sacked_out = 0;
  1605. /* 2. SACK counts snd_fack in packets inaccurately. */
  1606. if (tp->sacked_out == 0)
  1607. tp->fackets_out = 0;
  1608. /* Now state machine starts.
  1609. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  1610. if (flag&FLAG_ECE)
  1611. tp->prior_ssthresh = 0;
  1612. /* B. In all the states check for reneging SACKs. */
  1613. if (tp->sacked_out && tcp_check_sack_reneging(sk, tp))
  1614. return;
  1615. /* C. Process data loss notification, provided it is valid. */
  1616. if ((flag&FLAG_DATA_LOST) &&
  1617. before(tp->snd_una, tp->high_seq) &&
  1618. tp->ca_state != TCP_CA_Open &&
  1619. tp->fackets_out > tp->reordering) {
  1620. tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
  1621. NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
  1622. }
  1623. /* D. Synchronize left_out to current state. */
  1624. tcp_sync_left_out(tp);
  1625. /* E. Check state exit conditions. State can be terminated
  1626. * when high_seq is ACKed. */
  1627. if (tp->ca_state == TCP_CA_Open) {
  1628. if (!sysctl_tcp_frto)
  1629. BUG_TRAP(tp->retrans_out == 0);
  1630. tp->retrans_stamp = 0;
  1631. } else if (!before(tp->snd_una, tp->high_seq)) {
  1632. switch (tp->ca_state) {
  1633. case TCP_CA_Loss:
  1634. tp->retransmits = 0;
  1635. if (tcp_try_undo_recovery(sk, tp))
  1636. return;
  1637. break;
  1638. case TCP_CA_CWR:
  1639. /* CWR is to be held something *above* high_seq
  1640. * is ACKed for CWR bit to reach receiver. */
  1641. if (tp->snd_una != tp->high_seq) {
  1642. tcp_complete_cwr(tp);
  1643. tcp_set_ca_state(tp, TCP_CA_Open);
  1644. }
  1645. break;
  1646. case TCP_CA_Disorder:
  1647. tcp_try_undo_dsack(sk, tp);
  1648. if (!tp->undo_marker ||
  1649. /* For SACK case do not Open to allow to undo
  1650. * catching for all duplicate ACKs. */
  1651. IsReno(tp) || tp->snd_una != tp->high_seq) {
  1652. tp->undo_marker = 0;
  1653. tcp_set_ca_state(tp, TCP_CA_Open);
  1654. }
  1655. break;
  1656. case TCP_CA_Recovery:
  1657. if (IsReno(tp))
  1658. tcp_reset_reno_sack(tp);
  1659. if (tcp_try_undo_recovery(sk, tp))
  1660. return;
  1661. tcp_complete_cwr(tp);
  1662. break;
  1663. }
  1664. }
  1665. /* F. Process state. */
  1666. switch (tp->ca_state) {
  1667. case TCP_CA_Recovery:
  1668. if (prior_snd_una == tp->snd_una) {
  1669. if (IsReno(tp) && is_dupack)
  1670. tcp_add_reno_sack(tp);
  1671. } else {
  1672. int acked = prior_packets - tp->packets_out;
  1673. if (IsReno(tp))
  1674. tcp_remove_reno_sacks(sk, tp, acked);
  1675. is_dupack = tcp_try_undo_partial(sk, tp, acked);
  1676. }
  1677. break;
  1678. case TCP_CA_Loss:
  1679. if (flag&FLAG_DATA_ACKED)
  1680. tp->retransmits = 0;
  1681. if (!tcp_try_undo_loss(sk, tp)) {
  1682. tcp_moderate_cwnd(tp);
  1683. tcp_xmit_retransmit_queue(sk);
  1684. return;
  1685. }
  1686. if (tp->ca_state != TCP_CA_Open)
  1687. return;
  1688. /* Loss is undone; fall through to processing in Open state. */
  1689. default:
  1690. if (IsReno(tp)) {
  1691. if (tp->snd_una != prior_snd_una)
  1692. tcp_reset_reno_sack(tp);
  1693. if (is_dupack)
  1694. tcp_add_reno_sack(tp);
  1695. }
  1696. if (tp->ca_state == TCP_CA_Disorder)
  1697. tcp_try_undo_dsack(sk, tp);
  1698. if (!tcp_time_to_recover(sk, tp)) {
  1699. tcp_try_to_open(sk, tp, flag);
  1700. return;
  1701. }
  1702. /* Otherwise enter Recovery state */
  1703. if (IsReno(tp))
  1704. NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
  1705. else
  1706. NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
  1707. tp->high_seq = tp->snd_nxt;
  1708. tp->prior_ssthresh = 0;
  1709. tp->undo_marker = tp->snd_una;
  1710. tp->undo_retrans = tp->retrans_out;
  1711. if (tp->ca_state < TCP_CA_CWR) {
  1712. if (!(flag&FLAG_ECE))
  1713. tp->prior_ssthresh = tcp_current_ssthresh(tp);
  1714. tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
  1715. TCP_ECN_queue_cwr(tp);
  1716. }
  1717. tp->snd_cwnd_cnt = 0;
  1718. tcp_set_ca_state(tp, TCP_CA_Recovery);
  1719. }
  1720. if (is_dupack || tcp_head_timedout(sk, tp))
  1721. tcp_update_scoreboard(sk, tp);
  1722. tcp_cwnd_down(tp);
  1723. tcp_xmit_retransmit_queue(sk);
  1724. }
  1725. /* Read draft-ietf-tcplw-high-performance before mucking
  1726. * with this code. (Superceeds RFC1323)
  1727. */
  1728. static void tcp_ack_saw_tstamp(struct tcp_sock *tp, int flag)
  1729. {
  1730. __u32 seq_rtt;
  1731. /* RTTM Rule: A TSecr value received in a segment is used to
  1732. * update the averaged RTT measurement only if the segment
  1733. * acknowledges some new data, i.e., only if it advances the
  1734. * left edge of the send window.
  1735. *
  1736. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  1737. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  1738. *
  1739. * Changed: reset backoff as soon as we see the first valid sample.
  1740. * If we do not, we get strongly overstimated rto. With timestamps
  1741. * samples are accepted even from very old segments: f.e., when rtt=1
  1742. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  1743. * answer arrives rto becomes 120 seconds! If at least one of segments
  1744. * in window is lost... Voila. --ANK (010210)
  1745. */
  1746. seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
  1747. tcp_rtt_estimator(tp, seq_rtt);
  1748. tcp_set_rto(tp);
  1749. tp->backoff = 0;
  1750. tcp_bound_rto(tp);
  1751. }
  1752. static void tcp_ack_no_tstamp(struct tcp_sock *tp, u32 seq_rtt, int flag)
  1753. {
  1754. /* We don't have a timestamp. Can only use
  1755. * packets that are not retransmitted to determine
  1756. * rtt estimates. Also, we must not reset the
  1757. * backoff for rto until we get a non-retransmitted
  1758. * packet. This allows us to deal with a situation
  1759. * where the network delay has increased suddenly.
  1760. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  1761. */
  1762. if (flag & FLAG_RETRANS_DATA_ACKED)
  1763. return;
  1764. tcp_rtt_estimator(tp, seq_rtt);
  1765. tcp_set_rto(tp);
  1766. tp->backoff = 0;
  1767. tcp_bound_rto(tp);
  1768. }
  1769. static inline void tcp_ack_update_rtt(struct tcp_sock *tp,
  1770. int flag, s32 seq_rtt)
  1771. {
  1772. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  1773. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  1774. tcp_ack_saw_tstamp(tp, flag);
  1775. else if (seq_rtt >= 0)
  1776. tcp_ack_no_tstamp(tp, seq_rtt, flag);
  1777. }
  1778. /*
  1779. * Compute congestion window to use.
  1780. *
  1781. * This is from the implementation of BICTCP in
  1782. * Lison-Xu, Kahaled Harfoush, and Injog Rhee.
  1783. * "Binary Increase Congestion Control for Fast, Long Distance
  1784. * Networks" in InfoComm 2004
  1785. * Available from:
  1786. * http://www.csc.ncsu.edu/faculty/rhee/export/bitcp.pdf
  1787. *
  1788. * Unless BIC is enabled and congestion window is large
  1789. * this behaves the same as the original Reno.
  1790. */
  1791. static inline __u32 bictcp_cwnd(struct tcp_sock *tp)
  1792. {
  1793. /* orignal Reno behaviour */
  1794. if (!tcp_is_bic(tp))
  1795. return tp->snd_cwnd;
  1796. if (tp->bictcp.last_cwnd == tp->snd_cwnd &&
  1797. (s32)(tcp_time_stamp - tp->bictcp.last_stamp) <= (HZ>>5))
  1798. return tp->bictcp.cnt;
  1799. tp->bictcp.last_cwnd = tp->snd_cwnd;
  1800. tp->bictcp.last_stamp = tcp_time_stamp;
  1801. /* start off normal */
  1802. if (tp->snd_cwnd <= sysctl_tcp_bic_low_window)
  1803. tp->bictcp.cnt = tp->snd_cwnd;
  1804. /* binary increase */
  1805. else if (tp->snd_cwnd < tp->bictcp.last_max_cwnd) {
  1806. __u32 dist = (tp->bictcp.last_max_cwnd - tp->snd_cwnd)
  1807. / BICTCP_B;
  1808. if (dist > BICTCP_MAX_INCREMENT)
  1809. /* linear increase */
  1810. tp->bictcp.cnt = tp->snd_cwnd / BICTCP_MAX_INCREMENT;
  1811. else if (dist <= 1U)
  1812. /* binary search increase */
  1813. tp->bictcp.cnt = tp->snd_cwnd * BICTCP_FUNC_OF_MIN_INCR
  1814. / BICTCP_B;
  1815. else
  1816. /* binary search increase */
  1817. tp->bictcp.cnt = tp->snd_cwnd / dist;
  1818. } else {
  1819. /* slow start amd linear increase */
  1820. if (tp->snd_cwnd < tp->bictcp.last_max_cwnd + BICTCP_B)
  1821. /* slow start */
  1822. tp->bictcp.cnt = tp->snd_cwnd * BICTCP_FUNC_OF_MIN_INCR
  1823. / BICTCP_B;
  1824. else if (tp->snd_cwnd < tp->bictcp.last_max_cwnd
  1825. + BICTCP_MAX_INCREMENT*(BICTCP_B-1))
  1826. /* slow start */
  1827. tp->bictcp.cnt = tp->snd_cwnd * (BICTCP_B-1)
  1828. / (tp->snd_cwnd-tp->bictcp.last_max_cwnd);
  1829. else
  1830. /* linear increase */
  1831. tp->bictcp.cnt = tp->snd_cwnd / BICTCP_MAX_INCREMENT;
  1832. }
  1833. return tp->bictcp.cnt;
  1834. }
  1835. /* This is Jacobson's slow start and congestion avoidance.
  1836. * SIGCOMM '88, p. 328.
  1837. */
  1838. static inline void reno_cong_avoid(struct tcp_sock *tp)
  1839. {
  1840. if (tp->snd_cwnd <= tp->snd_ssthresh) {
  1841. /* In "safe" area, increase. */
  1842. if (tp->snd_cwnd < tp->snd_cwnd_clamp)
  1843. tp->snd_cwnd++;
  1844. } else {
  1845. /* In dangerous area, increase slowly.
  1846. * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
  1847. */
  1848. if (tp->snd_cwnd_cnt >= bictcp_cwnd(tp)) {
  1849. if (tp->snd_cwnd < tp->snd_cwnd_clamp)
  1850. tp->snd_cwnd++;
  1851. tp->snd_cwnd_cnt=0;
  1852. } else
  1853. tp->snd_cwnd_cnt++;
  1854. }
  1855. tp->snd_cwnd_stamp = tcp_time_stamp;
  1856. }
  1857. /* This is based on the congestion detection/avoidance scheme described in
  1858. * Lawrence S. Brakmo and Larry L. Peterson.
  1859. * "TCP Vegas: End to end congestion avoidance on a global internet."
  1860. * IEEE Journal on Selected Areas in Communication, 13(8):1465--1480,
  1861. * October 1995. Available from:
  1862. * ftp://ftp.cs.arizona.edu/xkernel/Papers/jsac.ps
  1863. *
  1864. * See http://www.cs.arizona.edu/xkernel/ for their implementation.
  1865. * The main aspects that distinguish this implementation from the
  1866. * Arizona Vegas implementation are:
  1867. * o We do not change the loss detection or recovery mechanisms of
  1868. * Linux in any way. Linux already recovers from losses quite well,
  1869. * using fine-grained timers, NewReno, and FACK.
  1870. * o To avoid the performance penalty imposed by increasing cwnd
  1871. * only every-other RTT during slow start, we increase during
  1872. * every RTT during slow start, just like Reno.
  1873. * o Largely to allow continuous cwnd growth during slow start,
  1874. * we use the rate at which ACKs come back as the "actual"
  1875. * rate, rather than the rate at which data is sent.
  1876. * o To speed convergence to the right rate, we set the cwnd
  1877. * to achieve the right ("actual") rate when we exit slow start.
  1878. * o To filter out the noise caused by delayed ACKs, we use the
  1879. * minimum RTT sample observed during the last RTT to calculate
  1880. * the actual rate.
  1881. * o When the sender re-starts from idle, it waits until it has
  1882. * received ACKs for an entire flight of new data before making
  1883. * a cwnd adjustment decision. The original Vegas implementation
  1884. * assumed senders never went idle.
  1885. */
  1886. static void vegas_cong_avoid(struct tcp_sock *tp, u32 ack, u32 seq_rtt)
  1887. {
  1888. /* The key players are v_beg_snd_una and v_beg_snd_nxt.
  1889. *
  1890. * These are so named because they represent the approximate values
  1891. * of snd_una and snd_nxt at the beginning of the current RTT. More
  1892. * precisely, they represent the amount of data sent during the RTT.
  1893. * At the end of the RTT, when we receive an ACK for v_beg_snd_nxt,
  1894. * we will calculate that (v_beg_snd_nxt - v_beg_snd_una) outstanding
  1895. * bytes of data have been ACKed during the course of the RTT, giving
  1896. * an "actual" rate of:
  1897. *
  1898. * (v_beg_snd_nxt - v_beg_snd_una) / (rtt duration)
  1899. *
  1900. * Unfortunately, v_beg_snd_una is not exactly equal to snd_una,
  1901. * because delayed ACKs can cover more than one segment, so they
  1902. * don't line up nicely with the boundaries of RTTs.
  1903. *
  1904. * Another unfortunate fact of life is that delayed ACKs delay the
  1905. * advance of the left edge of our send window, so that the number
  1906. * of bytes we send in an RTT is often less than our cwnd will allow.
  1907. * So we keep track of our cwnd separately, in v_beg_snd_cwnd.
  1908. */
  1909. if (after(ack, tp->vegas.beg_snd_nxt)) {
  1910. /* Do the Vegas once-per-RTT cwnd adjustment. */
  1911. u32 old_wnd, old_snd_cwnd;
  1912. /* Here old_wnd is essentially the window of data that was
  1913. * sent during the previous RTT, and has all
  1914. * been acknowledged in the course of the RTT that ended
  1915. * with the ACK we just received. Likewise, old_snd_cwnd
  1916. * is the cwnd during the previous RTT.
  1917. */
  1918. old_wnd = (tp->vegas.beg_snd_nxt - tp->vegas.beg_snd_una) /
  1919. tp->mss_cache_std;
  1920. old_snd_cwnd = tp->vegas.beg_snd_cwnd;
  1921. /* Save the extent of the current window so we can use this
  1922. * at the end of the next RTT.
  1923. */
  1924. tp->vegas.beg_snd_una = tp->vegas.beg_snd_nxt;
  1925. tp->vegas.beg_snd_nxt = tp->snd_nxt;
  1926. tp->vegas.beg_snd_cwnd = tp->snd_cwnd;
  1927. /* Take into account the current RTT sample too, to
  1928. * decrease the impact of delayed acks. This double counts
  1929. * this sample since we count it for the next window as well,
  1930. * but that's not too awful, since we're taking the min,
  1931. * rather than averaging.
  1932. */
  1933. vegas_rtt_calc(tp, seq_rtt);
  1934. /* We do the Vegas calculations only if we got enough RTT
  1935. * samples that we can be reasonably sure that we got
  1936. * at least one RTT sample that wasn't from a delayed ACK.
  1937. * If we only had 2 samples total,
  1938. * then that means we're getting only 1 ACK per RTT, which
  1939. * means they're almost certainly delayed ACKs.
  1940. * If we have 3 samples, we should be OK.
  1941. */
  1942. if (tp->vegas.cntRTT <= 2) {
  1943. /* We don't have enough RTT samples to do the Vegas
  1944. * calculation, so we'll behave like Reno.
  1945. */
  1946. if (tp->snd_cwnd > tp->snd_ssthresh)
  1947. tp->snd_cwnd++;
  1948. } else {
  1949. u32 rtt, target_cwnd, diff;
  1950. /* We have enough RTT samples, so, using the Vegas
  1951. * algorithm, we determine if we should increase or
  1952. * decrease cwnd, and by how much.
  1953. */
  1954. /* Pluck out the RTT we are using for the Vegas
  1955. * calculations. This is the min RTT seen during the
  1956. * last RTT. Taking the min filters out the effects
  1957. * of delayed ACKs, at the cost of noticing congestion
  1958. * a bit later.
  1959. */
  1960. rtt = tp->vegas.minRTT;
  1961. /* Calculate the cwnd we should have, if we weren't
  1962. * going too fast.
  1963. *
  1964. * This is:
  1965. * (actual rate in segments) * baseRTT
  1966. * We keep it as a fixed point number with
  1967. * V_PARAM_SHIFT bits to the right of the binary point.
  1968. */
  1969. target_cwnd = ((old_wnd * tp->vegas.baseRTT)
  1970. << V_PARAM_SHIFT) / rtt;
  1971. /* Calculate the difference between the window we had,
  1972. * and the window we would like to have. This quantity
  1973. * is the "Diff" from the Arizona Vegas papers.
  1974. *
  1975. * Again, this is a fixed point number with
  1976. * V_PARAM_SHIFT bits to the right of the binary
  1977. * point.
  1978. */
  1979. diff = (old_wnd << V_PARAM_SHIFT) - target_cwnd;
  1980. if (tp->snd_cwnd < tp->snd_ssthresh) {
  1981. /* Slow start. */
  1982. if (diff > sysctl_tcp_vegas_gamma) {
  1983. /* Going too fast. Time to slow down
  1984. * and switch to congestion avoidance.
  1985. */
  1986. tp->snd_ssthresh = 2;
  1987. /* Set cwnd to match the actual rate
  1988. * exactly:
  1989. * cwnd = (actual rate) * baseRTT
  1990. * Then we add 1 because the integer
  1991. * truncation robs us of full link
  1992. * utilization.
  1993. */
  1994. tp->snd_cwnd = min(tp->snd_cwnd,
  1995. (target_cwnd >>
  1996. V_PARAM_SHIFT)+1);
  1997. }
  1998. } else {
  1999. /* Congestion avoidance. */
  2000. u32 next_snd_cwnd;
  2001. /* Figure out where we would like cwnd
  2002. * to be.
  2003. */
  2004. if (diff > sysctl_tcp_vegas_beta) {
  2005. /* The old window was too fast, so
  2006. * we slow down.
  2007. */
  2008. next_snd_cwnd = old_snd_cwnd - 1;
  2009. } else if (diff < sysctl_tcp_vegas_alpha) {
  2010. /* We don't have enough extra packets
  2011. * in the network, so speed up.
  2012. */
  2013. next_snd_cwnd = old_snd_cwnd + 1;
  2014. } else {
  2015. /* Sending just as fast as we
  2016. * should be.
  2017. */
  2018. next_snd_cwnd = old_snd_cwnd;
  2019. }
  2020. /* Adjust cwnd upward or downward, toward the
  2021. * desired value.
  2022. */
  2023. if (next_snd_cwnd > tp->snd_cwnd)
  2024. tp->snd_cwnd++;
  2025. else if (next_snd_cwnd < tp->snd_cwnd)
  2026. tp->snd_cwnd--;
  2027. }
  2028. }
  2029. /* Wipe the slate clean for the next RTT. */
  2030. tp->vegas.cntRTT = 0;
  2031. tp->vegas.minRTT = 0x7fffffff;
  2032. }
  2033. /* The following code is executed for every ack we receive,
  2034. * except for conditions checked in should_advance_cwnd()
  2035. * before the call to tcp_cong_avoid(). Mainly this means that
  2036. * we only execute this code if the ack actually acked some
  2037. * data.
  2038. */
  2039. /* If we are in slow start, increase our cwnd in response to this ACK.
  2040. * (If we are not in slow start then we are in congestion avoidance,
  2041. * and adjust our congestion window only once per RTT. See the code
  2042. * above.)
  2043. */
  2044. if (tp->snd_cwnd <= tp->snd_ssthresh)
  2045. tp->snd_cwnd++;
  2046. /* to keep cwnd from growing without bound */
  2047. tp->snd_cwnd = min_t(u32, tp->snd_cwnd, tp->snd_cwnd_clamp);
  2048. /* Make sure that we are never so timid as to reduce our cwnd below
  2049. * 2 MSS.
  2050. *
  2051. * Going below 2 MSS would risk huge delayed ACKs from our receiver.
  2052. */
  2053. tp->snd_cwnd = max(tp->snd_cwnd, 2U);
  2054. tp->snd_cwnd_stamp = tcp_time_stamp;
  2055. }
  2056. static inline void tcp_cong_avoid(struct tcp_sock *tp, u32 ack, u32 seq_rtt)
  2057. {
  2058. if (tcp_vegas_enabled(tp))
  2059. vegas_cong_avoid(tp, ack, seq_rtt);
  2060. else
  2061. reno_cong_avoid(tp);
  2062. }
  2063. /* Restart timer after forward progress on connection.
  2064. * RFC2988 recommends to restart timer to now+rto.
  2065. */
  2066. static inline void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
  2067. {
  2068. if (!tp->packets_out) {
  2069. tcp_clear_xmit_timer(sk, TCP_TIME_RETRANS);
  2070. } else {
  2071. tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
  2072. }
  2073. }
  2074. /* There is one downside to this scheme. Although we keep the
  2075. * ACK clock ticking, adjusting packet counters and advancing
  2076. * congestion window, we do not liberate socket send buffer
  2077. * space.
  2078. *
  2079. * Mucking with skb->truesize and sk->sk_wmem_alloc et al.
  2080. * then making a write space wakeup callback is a possible
  2081. * future enhancement. WARNING: it is not trivial to make.
  2082. */
  2083. static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
  2084. __u32 now, __s32 *seq_rtt)
  2085. {
  2086. struct tcp_sock *tp = tcp_sk(sk);
  2087. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2088. __u32 seq = tp->snd_una;
  2089. __u32 packets_acked;
  2090. int acked = 0;
  2091. /* If we get here, the whole TSO packet has not been
  2092. * acked.
  2093. */
  2094. BUG_ON(!after(scb->end_seq, seq));
  2095. packets_acked = tcp_skb_pcount(skb);
  2096. if (tcp_trim_head(sk, skb, seq - scb->seq))
  2097. return 0;
  2098. packets_acked -= tcp_skb_pcount(skb);
  2099. if (packets_acked) {
  2100. __u8 sacked = scb->sacked;
  2101. acked |= FLAG_DATA_ACKED;
  2102. if (sacked) {
  2103. if (sacked & TCPCB_RETRANS) {
  2104. if (sacked & TCPCB_SACKED_RETRANS)
  2105. tp->retrans_out -= packets_acked;
  2106. acked |= FLAG_RETRANS_DATA_ACKED;
  2107. *seq_rtt = -1;
  2108. } else if (*seq_rtt < 0)
  2109. *seq_rtt = now - scb->when;
  2110. if (sacked & TCPCB_SACKED_ACKED)
  2111. tp->sacked_out -= packets_acked;
  2112. if (sacked & TCPCB_LOST)
  2113. tp->lost_out -= packets_acked;
  2114. if (sacked & TCPCB_URG) {
  2115. if (tp->urg_mode &&
  2116. !before(seq, tp->snd_up))
  2117. tp->urg_mode = 0;
  2118. }
  2119. } else if (*seq_rtt < 0)
  2120. *seq_rtt = now - scb->when;
  2121. if (tp->fackets_out) {
  2122. __u32 dval = min(tp->fackets_out, packets_acked);
  2123. tp->fackets_out -= dval;
  2124. }
  2125. tp->packets_out -= packets_acked;
  2126. BUG_ON(tcp_skb_pcount(skb) == 0);
  2127. BUG_ON(!before(scb->seq, scb->end_seq));
  2128. }
  2129. return acked;
  2130. }
  2131. /* Remove acknowledged frames from the retransmission queue. */
  2132. static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
  2133. {
  2134. struct tcp_sock *tp = tcp_sk(sk);
  2135. struct sk_buff *skb;
  2136. __u32 now = tcp_time_stamp;
  2137. int acked = 0;
  2138. __s32 seq_rtt = -1;
  2139. while ((skb = skb_peek(&sk->sk_write_queue)) &&
  2140. skb != sk->sk_send_head) {
  2141. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2142. __u8 sacked = scb->sacked;
  2143. /* If our packet is before the ack sequence we can
  2144. * discard it as it's confirmed to have arrived at
  2145. * the other end.
  2146. */
  2147. if (after(scb->end_seq, tp->snd_una)) {
  2148. if (tcp_skb_pcount(skb) > 1)
  2149. acked |= tcp_tso_acked(sk, skb,
  2150. now, &seq_rtt);
  2151. break;
  2152. }
  2153. /* Initial outgoing SYN's get put onto the write_queue
  2154. * just like anything else we transmit. It is not
  2155. * true data, and if we misinform our callers that
  2156. * this ACK acks real data, we will erroneously exit
  2157. * connection startup slow start one packet too
  2158. * quickly. This is severely frowned upon behavior.
  2159. */
  2160. if (!(scb->flags & TCPCB_FLAG_SYN)) {
  2161. acked |= FLAG_DATA_ACKED;
  2162. } else {
  2163. acked |= FLAG_SYN_ACKED;
  2164. tp->retrans_stamp = 0;
  2165. }
  2166. if (sacked) {
  2167. if (sacked & TCPCB_RETRANS) {
  2168. if(sacked & TCPCB_SACKED_RETRANS)
  2169. tp->retrans_out -= tcp_skb_pcount(skb);
  2170. acked |= FLAG_RETRANS_DATA_ACKED;
  2171. seq_rtt = -1;
  2172. } else if (seq_rtt < 0)
  2173. seq_rtt = now - scb->when;
  2174. if (sacked & TCPCB_SACKED_ACKED)
  2175. tp->sacked_out -= tcp_skb_pcount(skb);
  2176. if (sacked & TCPCB_LOST)
  2177. tp->lost_out -= tcp_skb_pcount(skb);
  2178. if (sacked & TCPCB_URG) {
  2179. if (tp->urg_mode &&
  2180. !before(scb->end_seq, tp->snd_up))
  2181. tp->urg_mode = 0;
  2182. }
  2183. } else if (seq_rtt < 0)
  2184. seq_rtt = now - scb->when;
  2185. tcp_dec_pcount_approx(&tp->fackets_out, skb);
  2186. tcp_packets_out_dec(tp, skb);
  2187. __skb_unlink(skb, skb->list);
  2188. sk_stream_free_skb(sk, skb);
  2189. }
  2190. if (acked&FLAG_ACKED) {
  2191. tcp_ack_update_rtt(tp, acked, seq_rtt);
  2192. tcp_ack_packets_out(sk, tp);
  2193. }
  2194. #if FASTRETRANS_DEBUG > 0
  2195. BUG_TRAP((int)tp->sacked_out >= 0);
  2196. BUG_TRAP((int)tp->lost_out >= 0);
  2197. BUG_TRAP((int)tp->retrans_out >= 0);
  2198. if (!tp->packets_out && tp->rx_opt.sack_ok) {
  2199. if (tp->lost_out) {
  2200. printk(KERN_DEBUG "Leak l=%u %d\n",
  2201. tp->lost_out, tp->ca_state);
  2202. tp->lost_out = 0;
  2203. }
  2204. if (tp->sacked_out) {
  2205. printk(KERN_DEBUG "Leak s=%u %d\n",
  2206. tp->sacked_out, tp->ca_state);
  2207. tp->sacked_out = 0;
  2208. }
  2209. if (tp->retrans_out) {
  2210. printk(KERN_DEBUG "Leak r=%u %d\n",
  2211. tp->retrans_out, tp->ca_state);
  2212. tp->retrans_out = 0;
  2213. }
  2214. }
  2215. #endif
  2216. *seq_rtt_p = seq_rtt;
  2217. return acked;
  2218. }
  2219. static void tcp_ack_probe(struct sock *sk)
  2220. {
  2221. struct tcp_sock *tp = tcp_sk(sk);
  2222. /* Was it a usable window open? */
  2223. if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
  2224. tp->snd_una + tp->snd_wnd)) {
  2225. tp->backoff = 0;
  2226. tcp_clear_xmit_timer(sk, TCP_TIME_PROBE0);
  2227. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2228. * This function is not for random using!
  2229. */
  2230. } else {
  2231. tcp_reset_xmit_timer(sk, TCP_TIME_PROBE0,
  2232. min(tp->rto << tp->backoff, TCP_RTO_MAX));
  2233. }
  2234. }
  2235. static inline int tcp_ack_is_dubious(struct tcp_sock *tp, int flag)
  2236. {
  2237. return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2238. tp->ca_state != TCP_CA_Open);
  2239. }
  2240. static inline int tcp_may_raise_cwnd(struct tcp_sock *tp, int flag)
  2241. {
  2242. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  2243. !((1<<tp->ca_state)&(TCPF_CA_Recovery|TCPF_CA_CWR));
  2244. }
  2245. /* Check that window update is acceptable.
  2246. * The function assumes that snd_una<=ack<=snd_next.
  2247. */
  2248. static inline int tcp_may_update_window(struct tcp_sock *tp, u32 ack,
  2249. u32 ack_seq, u32 nwin)
  2250. {
  2251. return (after(ack, tp->snd_una) ||
  2252. after(ack_seq, tp->snd_wl1) ||
  2253. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
  2254. }
  2255. /* Update our send window.
  2256. *
  2257. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2258. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2259. */
  2260. static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
  2261. struct sk_buff *skb, u32 ack, u32 ack_seq)
  2262. {
  2263. int flag = 0;
  2264. u32 nwin = ntohs(skb->h.th->window);
  2265. if (likely(!skb->h.th->syn))
  2266. nwin <<= tp->rx_opt.snd_wscale;
  2267. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2268. flag |= FLAG_WIN_UPDATE;
  2269. tcp_update_wl(tp, ack, ack_seq);
  2270. if (tp->snd_wnd != nwin) {
  2271. tp->snd_wnd = nwin;
  2272. /* Note, it is the only place, where
  2273. * fast path is recovered for sending TCP.
  2274. */
  2275. tcp_fast_path_check(sk, tp);
  2276. if (nwin > tp->max_window) {
  2277. tp->max_window = nwin;
  2278. tcp_sync_mss(sk, tp->pmtu_cookie);
  2279. }
  2280. }
  2281. }
  2282. tp->snd_una = ack;
  2283. return flag;
  2284. }
  2285. static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
  2286. {
  2287. struct tcp_sock *tp = tcp_sk(sk);
  2288. tcp_sync_left_out(tp);
  2289. if (tp->snd_una == prior_snd_una ||
  2290. !before(tp->snd_una, tp->frto_highmark)) {
  2291. /* RTO was caused by loss, start retransmitting in
  2292. * go-back-N slow start
  2293. */
  2294. tcp_enter_frto_loss(sk);
  2295. return;
  2296. }
  2297. if (tp->frto_counter == 1) {
  2298. /* First ACK after RTO advances the window: allow two new
  2299. * segments out.
  2300. */
  2301. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  2302. } else {
  2303. /* Also the second ACK after RTO advances the window.
  2304. * The RTO was likely spurious. Reduce cwnd and continue
  2305. * in congestion avoidance
  2306. */
  2307. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2308. tcp_moderate_cwnd(tp);
  2309. }
  2310. /* F-RTO affects on two new ACKs following RTO.
  2311. * At latest on third ACK the TCP behavor is back to normal.
  2312. */
  2313. tp->frto_counter = (tp->frto_counter + 1) % 3;
  2314. }
  2315. /*
  2316. * TCP Westwood+
  2317. */
  2318. /*
  2319. * @init_westwood
  2320. * This function initializes fields used in TCP Westwood+. We can't
  2321. * get no information about RTTmin at this time so we simply set it to
  2322. * TCP_WESTWOOD_INIT_RTT. This value was chosen to be too conservative
  2323. * since in this way we're sure it will be updated in a consistent
  2324. * way as soon as possible. It will reasonably happen within the first
  2325. * RTT period of the connection lifetime.
  2326. */
  2327. static void init_westwood(struct sock *sk)
  2328. {
  2329. struct tcp_sock *tp = tcp_sk(sk);
  2330. tp->westwood.bw_ns_est = 0;
  2331. tp->westwood.bw_est = 0;
  2332. tp->westwood.accounted = 0;
  2333. tp->westwood.cumul_ack = 0;
  2334. tp->westwood.rtt_win_sx = tcp_time_stamp;
  2335. tp->westwood.rtt = TCP_WESTWOOD_INIT_RTT;
  2336. tp->westwood.rtt_min = TCP_WESTWOOD_INIT_RTT;
  2337. tp->westwood.snd_una = tp->snd_una;
  2338. }
  2339. /*
  2340. * @westwood_do_filter
  2341. * Low-pass filter. Implemented using constant coeffients.
  2342. */
  2343. static inline __u32 westwood_do_filter(__u32 a, __u32 b)
  2344. {
  2345. return (((7 * a) + b) >> 3);
  2346. }
  2347. static void westwood_filter(struct sock *sk, __u32 delta)
  2348. {
  2349. struct tcp_sock *tp = tcp_sk(sk);
  2350. tp->westwood.bw_ns_est =
  2351. westwood_do_filter(tp->westwood.bw_ns_est,
  2352. tp->westwood.bk / delta);
  2353. tp->westwood.bw_est =
  2354. westwood_do_filter(tp->westwood.bw_est,
  2355. tp->westwood.bw_ns_est);
  2356. }
  2357. /*
  2358. * @westwood_update_rttmin
  2359. * It is used to update RTTmin. In this case we MUST NOT use
  2360. * WESTWOOD_RTT_MIN minimum bound since we could be on a LAN!
  2361. */
  2362. static inline __u32 westwood_update_rttmin(const struct sock *sk)
  2363. {
  2364. const struct tcp_sock *tp = tcp_sk(sk);
  2365. __u32 rttmin = tp->westwood.rtt_min;
  2366. if (tp->westwood.rtt != 0 &&
  2367. (tp->westwood.rtt < tp->westwood.rtt_min || !rttmin))
  2368. rttmin = tp->westwood.rtt;
  2369. return rttmin;
  2370. }
  2371. /*
  2372. * @westwood_acked
  2373. * Evaluate increases for dk.
  2374. */
  2375. static inline __u32 westwood_acked(const struct sock *sk)
  2376. {
  2377. const struct tcp_sock *tp = tcp_sk(sk);
  2378. return tp->snd_una - tp->westwood.snd_una;
  2379. }
  2380. /*
  2381. * @westwood_new_window
  2382. * It evaluates if we are receiving data inside the same RTT window as
  2383. * when we started.
  2384. * Return value:
  2385. * It returns 0 if we are still evaluating samples in the same RTT
  2386. * window, 1 if the sample has to be considered in the next window.
  2387. */
  2388. static int westwood_new_window(const struct sock *sk)
  2389. {
  2390. const struct tcp_sock *tp = tcp_sk(sk);
  2391. __u32 left_bound;
  2392. __u32 rtt;
  2393. int ret = 0;
  2394. left_bound = tp->westwood.rtt_win_sx;
  2395. rtt = max(tp->westwood.rtt, (u32) TCP_WESTWOOD_RTT_MIN);
  2396. /*
  2397. * A RTT-window has passed. Be careful since if RTT is less than
  2398. * 50ms we don't filter but we continue 'building the sample'.
  2399. * This minimum limit was choosen since an estimation on small
  2400. * time intervals is better to avoid...
  2401. * Obvioulsy on a LAN we reasonably will always have
  2402. * right_bound = left_bound + WESTWOOD_RTT_MIN
  2403. */
  2404. if ((left_bound + rtt) < tcp_time_stamp)
  2405. ret = 1;
  2406. return ret;
  2407. }
  2408. /*
  2409. * @westwood_update_window
  2410. * It updates RTT evaluation window if it is the right moment to do
  2411. * it. If so it calls filter for evaluating bandwidth.
  2412. */
  2413. static void __westwood_update_window(struct sock *sk, __u32 now)
  2414. {
  2415. struct tcp_sock *tp = tcp_sk(sk);
  2416. __u32 delta = now - tp->westwood.rtt_win_sx;
  2417. if (delta) {
  2418. if (tp->westwood.rtt)
  2419. westwood_filter(sk, delta);
  2420. tp->westwood.bk = 0;
  2421. tp->westwood.rtt_win_sx = tcp_time_stamp;
  2422. }
  2423. }
  2424. static void westwood_update_window(struct sock *sk, __u32 now)
  2425. {
  2426. if (westwood_new_window(sk))
  2427. __westwood_update_window(sk, now);
  2428. }
  2429. /*
  2430. * @__tcp_westwood_fast_bw
  2431. * It is called when we are in fast path. In particular it is called when
  2432. * header prediction is successfull. In such case infact update is
  2433. * straight forward and doesn't need any particular care.
  2434. */
  2435. static void __tcp_westwood_fast_bw(struct sock *sk, struct sk_buff *skb)
  2436. {
  2437. struct tcp_sock *tp = tcp_sk(sk);
  2438. westwood_update_window(sk, tcp_time_stamp);
  2439. tp->westwood.bk += westwood_acked(sk);
  2440. tp->westwood.snd_una = tp->snd_una;
  2441. tp->westwood.rtt_min = westwood_update_rttmin(sk);
  2442. }
  2443. static inline void tcp_westwood_fast_bw(struct sock *sk, struct sk_buff *skb)
  2444. {
  2445. if (tcp_is_westwood(tcp_sk(sk)))
  2446. __tcp_westwood_fast_bw(sk, skb);
  2447. }
  2448. /*
  2449. * @westwood_dupack_update
  2450. * It updates accounted and cumul_ack when receiving a dupack.
  2451. */
  2452. static void westwood_dupack_update(struct sock *sk)
  2453. {
  2454. struct tcp_sock *tp = tcp_sk(sk);
  2455. tp->westwood.accounted += tp->mss_cache_std;
  2456. tp->westwood.cumul_ack = tp->mss_cache_std;
  2457. }
  2458. static inline int westwood_may_change_cumul(struct tcp_sock *tp)
  2459. {
  2460. return (tp->westwood.cumul_ack > tp->mss_cache_std);
  2461. }
  2462. static inline void westwood_partial_update(struct tcp_sock *tp)
  2463. {
  2464. tp->westwood.accounted -= tp->westwood.cumul_ack;
  2465. tp->westwood.cumul_ack = tp->mss_cache_std;
  2466. }
  2467. static inline void westwood_complete_update(struct tcp_sock *tp)
  2468. {
  2469. tp->westwood.cumul_ack -= tp->westwood.accounted;
  2470. tp->westwood.accounted = 0;
  2471. }
  2472. /*
  2473. * @westwood_acked_count
  2474. * This function evaluates cumul_ack for evaluating dk in case of
  2475. * delayed or partial acks.
  2476. */
  2477. static inline __u32 westwood_acked_count(struct sock *sk)
  2478. {
  2479. struct tcp_sock *tp = tcp_sk(sk);
  2480. tp->westwood.cumul_ack = westwood_acked(sk);
  2481. /* If cumul_ack is 0 this is a dupack since it's not moving
  2482. * tp->snd_una.
  2483. */
  2484. if (!(tp->westwood.cumul_ack))
  2485. westwood_dupack_update(sk);
  2486. if (westwood_may_change_cumul(tp)) {
  2487. /* Partial or delayed ack */
  2488. if (tp->westwood.accounted >= tp->westwood.cumul_ack)
  2489. westwood_partial_update(tp);
  2490. else
  2491. westwood_complete_update(tp);
  2492. }
  2493. tp->westwood.snd_una = tp->snd_una;
  2494. return tp->westwood.cumul_ack;
  2495. }
  2496. /*
  2497. * @__tcp_westwood_slow_bw
  2498. * It is called when something is going wrong..even if there could
  2499. * be no problems! Infact a simple delayed packet may trigger a
  2500. * dupack. But we need to be careful in such case.
  2501. */
  2502. static void __tcp_westwood_slow_bw(struct sock *sk, struct sk_buff *skb)
  2503. {
  2504. struct tcp_sock *tp = tcp_sk(sk);
  2505. westwood_update_window(sk, tcp_time_stamp);
  2506. tp->westwood.bk += westwood_acked_count(sk);
  2507. tp->westwood.rtt_min = westwood_update_rttmin(sk);
  2508. }
  2509. static inline void tcp_westwood_slow_bw(struct sock *sk, struct sk_buff *skb)
  2510. {
  2511. if (tcp_is_westwood(tcp_sk(sk)))
  2512. __tcp_westwood_slow_bw(sk, skb);
  2513. }
  2514. /* This routine deals with incoming acks, but not outgoing ones. */
  2515. static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
  2516. {
  2517. struct tcp_sock *tp = tcp_sk(sk);
  2518. u32 prior_snd_una = tp->snd_una;
  2519. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  2520. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  2521. u32 prior_in_flight;
  2522. s32 seq_rtt;
  2523. int prior_packets;
  2524. /* If the ack is newer than sent or older than previous acks
  2525. * then we can probably ignore it.
  2526. */
  2527. if (after(ack, tp->snd_nxt))
  2528. goto uninteresting_ack;
  2529. if (before(ack, prior_snd_una))
  2530. goto old_ack;
  2531. if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  2532. /* Window is constant, pure forward advance.
  2533. * No more checks are required.
  2534. * Note, we use the fact that SND.UNA>=SND.WL2.
  2535. */
  2536. tcp_update_wl(tp, ack, ack_seq);
  2537. tp->snd_una = ack;
  2538. tcp_westwood_fast_bw(sk, skb);
  2539. flag |= FLAG_WIN_UPDATE;
  2540. NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
  2541. } else {
  2542. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  2543. flag |= FLAG_DATA;
  2544. else
  2545. NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
  2546. flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
  2547. if (TCP_SKB_CB(skb)->sacked)
  2548. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  2549. if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
  2550. flag |= FLAG_ECE;
  2551. tcp_westwood_slow_bw(sk,skb);
  2552. }
  2553. /* We passed data and got it acked, remove any soft error
  2554. * log. Something worked...
  2555. */
  2556. sk->sk_err_soft = 0;
  2557. tp->rcv_tstamp = tcp_time_stamp;
  2558. prior_packets = tp->packets_out;
  2559. if (!prior_packets)
  2560. goto no_queue;
  2561. prior_in_flight = tcp_packets_in_flight(tp);
  2562. /* See if we can take anything off of the retransmit queue. */
  2563. flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
  2564. if (tp->frto_counter)
  2565. tcp_process_frto(sk, prior_snd_una);
  2566. if (tcp_ack_is_dubious(tp, flag)) {
  2567. /* Advanve CWND, if state allows this. */
  2568. if ((flag & FLAG_DATA_ACKED) &&
  2569. (tcp_vegas_enabled(tp) || prior_in_flight >= tp->snd_cwnd) &&
  2570. tcp_may_raise_cwnd(tp, flag))
  2571. tcp_cong_avoid(tp, ack, seq_rtt);
  2572. tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
  2573. } else {
  2574. if ((flag & FLAG_DATA_ACKED) &&
  2575. (tcp_vegas_enabled(tp) || prior_in_flight >= tp->snd_cwnd))
  2576. tcp_cong_avoid(tp, ack, seq_rtt);
  2577. }
  2578. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
  2579. dst_confirm(sk->sk_dst_cache);
  2580. return 1;
  2581. no_queue:
  2582. tp->probes_out = 0;
  2583. /* If this ack opens up a zero window, clear backoff. It was
  2584. * being used to time the probes, and is probably far higher than
  2585. * it needs to be for normal retransmission.
  2586. */
  2587. if (sk->sk_send_head)
  2588. tcp_ack_probe(sk);
  2589. return 1;
  2590. old_ack:
  2591. if (TCP_SKB_CB(skb)->sacked)
  2592. tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  2593. uninteresting_ack:
  2594. SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  2595. return 0;
  2596. }
  2597. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  2598. * But, this can also be called on packets in the established flow when
  2599. * the fast version below fails.
  2600. */
  2601. void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
  2602. {
  2603. unsigned char *ptr;
  2604. struct tcphdr *th = skb->h.th;
  2605. int length=(th->doff*4)-sizeof(struct tcphdr);
  2606. ptr = (unsigned char *)(th + 1);
  2607. opt_rx->saw_tstamp = 0;
  2608. while(length>0) {
  2609. int opcode=*ptr++;
  2610. int opsize;
  2611. switch (opcode) {
  2612. case TCPOPT_EOL:
  2613. return;
  2614. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  2615. length--;
  2616. continue;
  2617. default:
  2618. opsize=*ptr++;
  2619. if (opsize < 2) /* "silly options" */
  2620. return;
  2621. if (opsize > length)
  2622. return; /* don't parse partial options */
  2623. switch(opcode) {
  2624. case TCPOPT_MSS:
  2625. if(opsize==TCPOLEN_MSS && th->syn && !estab) {
  2626. u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
  2627. if (in_mss) {
  2628. if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
  2629. in_mss = opt_rx->user_mss;
  2630. opt_rx->mss_clamp = in_mss;
  2631. }
  2632. }
  2633. break;
  2634. case TCPOPT_WINDOW:
  2635. if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
  2636. if (sysctl_tcp_window_scaling) {
  2637. __u8 snd_wscale = *(__u8 *) ptr;
  2638. opt_rx->wscale_ok = 1;
  2639. if (snd_wscale > 14) {
  2640. if(net_ratelimit())
  2641. printk(KERN_INFO "tcp_parse_options: Illegal window "
  2642. "scaling value %d >14 received.\n",
  2643. snd_wscale);
  2644. snd_wscale = 14;
  2645. }
  2646. opt_rx->snd_wscale = snd_wscale;
  2647. }
  2648. break;
  2649. case TCPOPT_TIMESTAMP:
  2650. if(opsize==TCPOLEN_TIMESTAMP) {
  2651. if ((estab && opt_rx->tstamp_ok) ||
  2652. (!estab && sysctl_tcp_timestamps)) {
  2653. opt_rx->saw_tstamp = 1;
  2654. opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
  2655. opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
  2656. }
  2657. }
  2658. break;
  2659. case TCPOPT_SACK_PERM:
  2660. if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
  2661. if (sysctl_tcp_sack) {
  2662. opt_rx->sack_ok = 1;
  2663. tcp_sack_reset(opt_rx);
  2664. }
  2665. }
  2666. break;
  2667. case TCPOPT_SACK:
  2668. if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  2669. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  2670. opt_rx->sack_ok) {
  2671. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  2672. }
  2673. };
  2674. ptr+=opsize-2;
  2675. length-=opsize;
  2676. };
  2677. }
  2678. }
  2679. /* Fast parse options. This hopes to only see timestamps.
  2680. * If it is wrong it falls back on tcp_parse_options().
  2681. */
  2682. static inline int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
  2683. struct tcp_sock *tp)
  2684. {
  2685. if (th->doff == sizeof(struct tcphdr)>>2) {
  2686. tp->rx_opt.saw_tstamp = 0;
  2687. return 0;
  2688. } else if (tp->rx_opt.tstamp_ok &&
  2689. th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
  2690. __u32 *ptr = (__u32 *)(th + 1);
  2691. if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  2692. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  2693. tp->rx_opt.saw_tstamp = 1;
  2694. ++ptr;
  2695. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  2696. ++ptr;
  2697. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  2698. return 1;
  2699. }
  2700. }
  2701. tcp_parse_options(skb, &tp->rx_opt, 1);
  2702. return 1;
  2703. }
  2704. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  2705. {
  2706. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  2707. tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
  2708. }
  2709. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  2710. {
  2711. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  2712. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  2713. * extra check below makes sure this can only happen
  2714. * for pure ACK frames. -DaveM
  2715. *
  2716. * Not only, also it occurs for expired timestamps.
  2717. */
  2718. if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
  2719. xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
  2720. tcp_store_ts_recent(tp);
  2721. }
  2722. }
  2723. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  2724. *
  2725. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  2726. * it can pass through stack. So, the following predicate verifies that
  2727. * this segment is not used for anything but congestion avoidance or
  2728. * fast retransmit. Moreover, we even are able to eliminate most of such
  2729. * second order effects, if we apply some small "replay" window (~RTO)
  2730. * to timestamp space.
  2731. *
  2732. * All these measures still do not guarantee that we reject wrapped ACKs
  2733. * on networks with high bandwidth, when sequence space is recycled fastly,
  2734. * but it guarantees that such events will be very rare and do not affect
  2735. * connection seriously. This doesn't look nice, but alas, PAWS is really
  2736. * buggy extension.
  2737. *
  2738. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  2739. * states that events when retransmit arrives after original data are rare.
  2740. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  2741. * the biggest problem on large power networks even with minor reordering.
  2742. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  2743. * up to bandwidth of 18Gigabit/sec. 8) ]
  2744. */
  2745. static int tcp_disordered_ack(struct tcp_sock *tp, struct sk_buff *skb)
  2746. {
  2747. struct tcphdr *th = skb->h.th;
  2748. u32 seq = TCP_SKB_CB(skb)->seq;
  2749. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  2750. return (/* 1. Pure ACK with correct sequence number. */
  2751. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  2752. /* 2. ... and duplicate ACK. */
  2753. ack == tp->snd_una &&
  2754. /* 3. ... and does not update window. */
  2755. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  2756. /* 4. ... and sits in replay window. */
  2757. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (tp->rto*1024)/HZ);
  2758. }
  2759. static inline int tcp_paws_discard(struct tcp_sock *tp, struct sk_buff *skb)
  2760. {
  2761. return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
  2762. xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
  2763. !tcp_disordered_ack(tp, skb));
  2764. }
  2765. /* Check segment sequence number for validity.
  2766. *
  2767. * Segment controls are considered valid, if the segment
  2768. * fits to the window after truncation to the window. Acceptability
  2769. * of data (and SYN, FIN, of course) is checked separately.
  2770. * See tcp_data_queue(), for example.
  2771. *
  2772. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  2773. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  2774. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  2775. * (borrowed from freebsd)
  2776. */
  2777. static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
  2778. {
  2779. return !before(end_seq, tp->rcv_wup) &&
  2780. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  2781. }
  2782. /* When we get a reset we do this. */
  2783. static void tcp_reset(struct sock *sk)
  2784. {
  2785. /* We want the right error as BSD sees it (and indeed as we do). */
  2786. switch (sk->sk_state) {
  2787. case TCP_SYN_SENT:
  2788. sk->sk_err = ECONNREFUSED;
  2789. break;
  2790. case TCP_CLOSE_WAIT:
  2791. sk->sk_err = EPIPE;
  2792. break;
  2793. case TCP_CLOSE:
  2794. return;
  2795. default:
  2796. sk->sk_err = ECONNRESET;
  2797. }
  2798. if (!sock_flag(sk, SOCK_DEAD))
  2799. sk->sk_error_report(sk);
  2800. tcp_done(sk);
  2801. }
  2802. /*
  2803. * Process the FIN bit. This now behaves as it is supposed to work
  2804. * and the FIN takes effect when it is validly part of sequence
  2805. * space. Not before when we get holes.
  2806. *
  2807. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  2808. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  2809. * TIME-WAIT)
  2810. *
  2811. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  2812. * close and we go into CLOSING (and later onto TIME-WAIT)
  2813. *
  2814. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  2815. */
  2816. static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
  2817. {
  2818. struct tcp_sock *tp = tcp_sk(sk);
  2819. tcp_schedule_ack(tp);
  2820. sk->sk_shutdown |= RCV_SHUTDOWN;
  2821. sock_set_flag(sk, SOCK_DONE);
  2822. switch (sk->sk_state) {
  2823. case TCP_SYN_RECV:
  2824. case TCP_ESTABLISHED:
  2825. /* Move to CLOSE_WAIT */
  2826. tcp_set_state(sk, TCP_CLOSE_WAIT);
  2827. tp->ack.pingpong = 1;
  2828. break;
  2829. case TCP_CLOSE_WAIT:
  2830. case TCP_CLOSING:
  2831. /* Received a retransmission of the FIN, do
  2832. * nothing.
  2833. */
  2834. break;
  2835. case TCP_LAST_ACK:
  2836. /* RFC793: Remain in the LAST-ACK state. */
  2837. break;
  2838. case TCP_FIN_WAIT1:
  2839. /* This case occurs when a simultaneous close
  2840. * happens, we must ack the received FIN and
  2841. * enter the CLOSING state.
  2842. */
  2843. tcp_send_ack(sk);
  2844. tcp_set_state(sk, TCP_CLOSING);
  2845. break;
  2846. case TCP_FIN_WAIT2:
  2847. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  2848. tcp_send_ack(sk);
  2849. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  2850. break;
  2851. default:
  2852. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  2853. * cases we should never reach this piece of code.
  2854. */
  2855. printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
  2856. __FUNCTION__, sk->sk_state);
  2857. break;
  2858. };
  2859. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  2860. * Probably, we should reset in this case. For now drop them.
  2861. */
  2862. __skb_queue_purge(&tp->out_of_order_queue);
  2863. if (tp->rx_opt.sack_ok)
  2864. tcp_sack_reset(&tp->rx_opt);
  2865. sk_stream_mem_reclaim(sk);
  2866. if (!sock_flag(sk, SOCK_DEAD)) {
  2867. sk->sk_state_change(sk);
  2868. /* Do not send POLL_HUP for half duplex close. */
  2869. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  2870. sk->sk_state == TCP_CLOSE)
  2871. sk_wake_async(sk, 1, POLL_HUP);
  2872. else
  2873. sk_wake_async(sk, 1, POLL_IN);
  2874. }
  2875. }
  2876. static __inline__ int
  2877. tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
  2878. {
  2879. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  2880. if (before(seq, sp->start_seq))
  2881. sp->start_seq = seq;
  2882. if (after(end_seq, sp->end_seq))
  2883. sp->end_seq = end_seq;
  2884. return 1;
  2885. }
  2886. return 0;
  2887. }
  2888. static inline void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
  2889. {
  2890. if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
  2891. if (before(seq, tp->rcv_nxt))
  2892. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
  2893. else
  2894. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
  2895. tp->rx_opt.dsack = 1;
  2896. tp->duplicate_sack[0].start_seq = seq;
  2897. tp->duplicate_sack[0].end_seq = end_seq;
  2898. tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
  2899. }
  2900. }
  2901. static inline void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
  2902. {
  2903. if (!tp->rx_opt.dsack)
  2904. tcp_dsack_set(tp, seq, end_seq);
  2905. else
  2906. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  2907. }
  2908. static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
  2909. {
  2910. struct tcp_sock *tp = tcp_sk(sk);
  2911. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  2912. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  2913. NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
  2914. tcp_enter_quickack_mode(tp);
  2915. if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
  2916. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  2917. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  2918. end_seq = tp->rcv_nxt;
  2919. tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
  2920. }
  2921. }
  2922. tcp_send_ack(sk);
  2923. }
  2924. /* These routines update the SACK block as out-of-order packets arrive or
  2925. * in-order packets close up the sequence space.
  2926. */
  2927. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  2928. {
  2929. int this_sack;
  2930. struct tcp_sack_block *sp = &tp->selective_acks[0];
  2931. struct tcp_sack_block *swalk = sp+1;
  2932. /* See if the recent change to the first SACK eats into
  2933. * or hits the sequence space of other SACK blocks, if so coalesce.
  2934. */
  2935. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
  2936. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  2937. int i;
  2938. /* Zap SWALK, by moving every further SACK up by one slot.
  2939. * Decrease num_sacks.
  2940. */
  2941. tp->rx_opt.num_sacks--;
  2942. tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
  2943. for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
  2944. sp[i] = sp[i+1];
  2945. continue;
  2946. }
  2947. this_sack++, swalk++;
  2948. }
  2949. }
  2950. static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
  2951. {
  2952. __u32 tmp;
  2953. tmp = sack1->start_seq;
  2954. sack1->start_seq = sack2->start_seq;
  2955. sack2->start_seq = tmp;
  2956. tmp = sack1->end_seq;
  2957. sack1->end_seq = sack2->end_seq;
  2958. sack2->end_seq = tmp;
  2959. }
  2960. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  2961. {
  2962. struct tcp_sock *tp = tcp_sk(sk);
  2963. struct tcp_sack_block *sp = &tp->selective_acks[0];
  2964. int cur_sacks = tp->rx_opt.num_sacks;
  2965. int this_sack;
  2966. if (!cur_sacks)
  2967. goto new_sack;
  2968. for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
  2969. if (tcp_sack_extend(sp, seq, end_seq)) {
  2970. /* Rotate this_sack to the first one. */
  2971. for (; this_sack>0; this_sack--, sp--)
  2972. tcp_sack_swap(sp, sp-1);
  2973. if (cur_sacks > 1)
  2974. tcp_sack_maybe_coalesce(tp);
  2975. return;
  2976. }
  2977. }
  2978. /* Could not find an adjacent existing SACK, build a new one,
  2979. * put it at the front, and shift everyone else down. We
  2980. * always know there is at least one SACK present already here.
  2981. *
  2982. * If the sack array is full, forget about the last one.
  2983. */
  2984. if (this_sack >= 4) {
  2985. this_sack--;
  2986. tp->rx_opt.num_sacks--;
  2987. sp--;
  2988. }
  2989. for(; this_sack > 0; this_sack--, sp--)
  2990. *sp = *(sp-1);
  2991. new_sack:
  2992. /* Build the new head SACK, and we're done. */
  2993. sp->start_seq = seq;
  2994. sp->end_seq = end_seq;
  2995. tp->rx_opt.num_sacks++;
  2996. tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
  2997. }
  2998. /* RCV.NXT advances, some SACKs should be eaten. */
  2999. static void tcp_sack_remove(struct tcp_sock *tp)
  3000. {
  3001. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3002. int num_sacks = tp->rx_opt.num_sacks;
  3003. int this_sack;
  3004. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3005. if (skb_queue_len(&tp->out_of_order_queue) == 0) {
  3006. tp->rx_opt.num_sacks = 0;
  3007. tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
  3008. return;
  3009. }
  3010. for(this_sack = 0; this_sack < num_sacks; ) {
  3011. /* Check if the start of the sack is covered by RCV.NXT. */
  3012. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3013. int i;
  3014. /* RCV.NXT must cover all the block! */
  3015. BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
  3016. /* Zap this SACK, by moving forward any other SACKS. */
  3017. for (i=this_sack+1; i < num_sacks; i++)
  3018. tp->selective_acks[i-1] = tp->selective_acks[i];
  3019. num_sacks--;
  3020. continue;
  3021. }
  3022. this_sack++;
  3023. sp++;
  3024. }
  3025. if (num_sacks != tp->rx_opt.num_sacks) {
  3026. tp->rx_opt.num_sacks = num_sacks;
  3027. tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
  3028. }
  3029. }
  3030. /* This one checks to see if we can put data from the
  3031. * out_of_order queue into the receive_queue.
  3032. */
  3033. static void tcp_ofo_queue(struct sock *sk)
  3034. {
  3035. struct tcp_sock *tp = tcp_sk(sk);
  3036. __u32 dsack_high = tp->rcv_nxt;
  3037. struct sk_buff *skb;
  3038. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3039. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3040. break;
  3041. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3042. __u32 dsack = dsack_high;
  3043. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3044. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3045. tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
  3046. }
  3047. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3048. SOCK_DEBUG(sk, "ofo packet was already received \n");
  3049. __skb_unlink(skb, skb->list);
  3050. __kfree_skb(skb);
  3051. continue;
  3052. }
  3053. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3054. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3055. TCP_SKB_CB(skb)->end_seq);
  3056. __skb_unlink(skb, skb->list);
  3057. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3058. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3059. if(skb->h.th->fin)
  3060. tcp_fin(skb, sk, skb->h.th);
  3061. }
  3062. }
  3063. static int tcp_prune_queue(struct sock *sk);
  3064. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3065. {
  3066. struct tcphdr *th = skb->h.th;
  3067. struct tcp_sock *tp = tcp_sk(sk);
  3068. int eaten = -1;
  3069. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3070. goto drop;
  3071. __skb_pull(skb, th->doff*4);
  3072. TCP_ECN_accept_cwr(tp, skb);
  3073. if (tp->rx_opt.dsack) {
  3074. tp->rx_opt.dsack = 0;
  3075. tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
  3076. 4 - tp->rx_opt.tstamp_ok);
  3077. }
  3078. /* Queue data for delivery to the user.
  3079. * Packets in sequence go to the receive queue.
  3080. * Out of sequence packets to the out_of_order_queue.
  3081. */
  3082. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3083. if (tcp_receive_window(tp) == 0)
  3084. goto out_of_window;
  3085. /* Ok. In sequence. In window. */
  3086. if (tp->ucopy.task == current &&
  3087. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3088. sock_owned_by_user(sk) && !tp->urg_data) {
  3089. int chunk = min_t(unsigned int, skb->len,
  3090. tp->ucopy.len);
  3091. __set_current_state(TASK_RUNNING);
  3092. local_bh_enable();
  3093. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  3094. tp->ucopy.len -= chunk;
  3095. tp->copied_seq += chunk;
  3096. eaten = (chunk == skb->len && !th->fin);
  3097. tcp_rcv_space_adjust(sk);
  3098. }
  3099. local_bh_disable();
  3100. }
  3101. if (eaten <= 0) {
  3102. queue_and_out:
  3103. if (eaten < 0 &&
  3104. (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3105. !sk_stream_rmem_schedule(sk, skb))) {
  3106. if (tcp_prune_queue(sk) < 0 ||
  3107. !sk_stream_rmem_schedule(sk, skb))
  3108. goto drop;
  3109. }
  3110. sk_stream_set_owner_r(skb, sk);
  3111. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3112. }
  3113. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3114. if(skb->len)
  3115. tcp_event_data_recv(sk, tp, skb);
  3116. if(th->fin)
  3117. tcp_fin(skb, sk, th);
  3118. if (skb_queue_len(&tp->out_of_order_queue)) {
  3119. tcp_ofo_queue(sk);
  3120. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3121. * gap in queue is filled.
  3122. */
  3123. if (!skb_queue_len(&tp->out_of_order_queue))
  3124. tp->ack.pingpong = 0;
  3125. }
  3126. if (tp->rx_opt.num_sacks)
  3127. tcp_sack_remove(tp);
  3128. tcp_fast_path_check(sk, tp);
  3129. if (eaten > 0)
  3130. __kfree_skb(skb);
  3131. else if (!sock_flag(sk, SOCK_DEAD))
  3132. sk->sk_data_ready(sk, 0);
  3133. return;
  3134. }
  3135. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3136. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3137. NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
  3138. tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3139. out_of_window:
  3140. tcp_enter_quickack_mode(tp);
  3141. tcp_schedule_ack(tp);
  3142. drop:
  3143. __kfree_skb(skb);
  3144. return;
  3145. }
  3146. /* Out of window. F.e. zero window probe. */
  3147. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3148. goto out_of_window;
  3149. tcp_enter_quickack_mode(tp);
  3150. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3151. /* Partial packet, seq < rcv_next < end_seq */
  3152. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3153. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3154. TCP_SKB_CB(skb)->end_seq);
  3155. tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3156. /* If window is closed, drop tail of packet. But after
  3157. * remembering D-SACK for its head made in previous line.
  3158. */
  3159. if (!tcp_receive_window(tp))
  3160. goto out_of_window;
  3161. goto queue_and_out;
  3162. }
  3163. TCP_ECN_check_ce(tp, skb);
  3164. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3165. !sk_stream_rmem_schedule(sk, skb)) {
  3166. if (tcp_prune_queue(sk) < 0 ||
  3167. !sk_stream_rmem_schedule(sk, skb))
  3168. goto drop;
  3169. }
  3170. /* Disable header prediction. */
  3171. tp->pred_flags = 0;
  3172. tcp_schedule_ack(tp);
  3173. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3174. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3175. sk_stream_set_owner_r(skb, sk);
  3176. if (!skb_peek(&tp->out_of_order_queue)) {
  3177. /* Initial out of order segment, build 1 SACK. */
  3178. if (tp->rx_opt.sack_ok) {
  3179. tp->rx_opt.num_sacks = 1;
  3180. tp->rx_opt.dsack = 0;
  3181. tp->rx_opt.eff_sacks = 1;
  3182. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3183. tp->selective_acks[0].end_seq =
  3184. TCP_SKB_CB(skb)->end_seq;
  3185. }
  3186. __skb_queue_head(&tp->out_of_order_queue,skb);
  3187. } else {
  3188. struct sk_buff *skb1 = tp->out_of_order_queue.prev;
  3189. u32 seq = TCP_SKB_CB(skb)->seq;
  3190. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3191. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3192. __skb_append(skb1, skb);
  3193. if (!tp->rx_opt.num_sacks ||
  3194. tp->selective_acks[0].end_seq != seq)
  3195. goto add_sack;
  3196. /* Common case: data arrive in order after hole. */
  3197. tp->selective_acks[0].end_seq = end_seq;
  3198. return;
  3199. }
  3200. /* Find place to insert this segment. */
  3201. do {
  3202. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3203. break;
  3204. } while ((skb1 = skb1->prev) !=
  3205. (struct sk_buff*)&tp->out_of_order_queue);
  3206. /* Do skb overlap to previous one? */
  3207. if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
  3208. before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3209. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3210. /* All the bits are present. Drop. */
  3211. __kfree_skb(skb);
  3212. tcp_dsack_set(tp, seq, end_seq);
  3213. goto add_sack;
  3214. }
  3215. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3216. /* Partial overlap. */
  3217. tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
  3218. } else {
  3219. skb1 = skb1->prev;
  3220. }
  3221. }
  3222. __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
  3223. /* And clean segments covered by new one as whole. */
  3224. while ((skb1 = skb->next) !=
  3225. (struct sk_buff*)&tp->out_of_order_queue &&
  3226. after(end_seq, TCP_SKB_CB(skb1)->seq)) {
  3227. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3228. tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
  3229. break;
  3230. }
  3231. __skb_unlink(skb1, skb1->list);
  3232. tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
  3233. __kfree_skb(skb1);
  3234. }
  3235. add_sack:
  3236. if (tp->rx_opt.sack_ok)
  3237. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3238. }
  3239. }
  3240. /* Collapse contiguous sequence of skbs head..tail with
  3241. * sequence numbers start..end.
  3242. * Segments with FIN/SYN are not collapsed (only because this
  3243. * simplifies code)
  3244. */
  3245. static void
  3246. tcp_collapse(struct sock *sk, struct sk_buff *head,
  3247. struct sk_buff *tail, u32 start, u32 end)
  3248. {
  3249. struct sk_buff *skb;
  3250. /* First, check that queue is collapsable and find
  3251. * the point where collapsing can be useful. */
  3252. for (skb = head; skb != tail; ) {
  3253. /* No new bits? It is possible on ofo queue. */
  3254. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3255. struct sk_buff *next = skb->next;
  3256. __skb_unlink(skb, skb->list);
  3257. __kfree_skb(skb);
  3258. NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
  3259. skb = next;
  3260. continue;
  3261. }
  3262. /* The first skb to collapse is:
  3263. * - not SYN/FIN and
  3264. * - bloated or contains data before "start" or
  3265. * overlaps to the next one.
  3266. */
  3267. if (!skb->h.th->syn && !skb->h.th->fin &&
  3268. (tcp_win_from_space(skb->truesize) > skb->len ||
  3269. before(TCP_SKB_CB(skb)->seq, start) ||
  3270. (skb->next != tail &&
  3271. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
  3272. break;
  3273. /* Decided to skip this, advance start seq. */
  3274. start = TCP_SKB_CB(skb)->end_seq;
  3275. skb = skb->next;
  3276. }
  3277. if (skb == tail || skb->h.th->syn || skb->h.th->fin)
  3278. return;
  3279. while (before(start, end)) {
  3280. struct sk_buff *nskb;
  3281. int header = skb_headroom(skb);
  3282. int copy = SKB_MAX_ORDER(header, 0);
  3283. /* Too big header? This can happen with IPv6. */
  3284. if (copy < 0)
  3285. return;
  3286. if (end-start < copy)
  3287. copy = end-start;
  3288. nskb = alloc_skb(copy+header, GFP_ATOMIC);
  3289. if (!nskb)
  3290. return;
  3291. skb_reserve(nskb, header);
  3292. memcpy(nskb->head, skb->head, header);
  3293. nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
  3294. nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
  3295. nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
  3296. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  3297. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  3298. __skb_insert(nskb, skb->prev, skb, skb->list);
  3299. sk_stream_set_owner_r(nskb, sk);
  3300. /* Copy data, releasing collapsed skbs. */
  3301. while (copy > 0) {
  3302. int offset = start - TCP_SKB_CB(skb)->seq;
  3303. int size = TCP_SKB_CB(skb)->end_seq - start;
  3304. if (offset < 0) BUG();
  3305. if (size > 0) {
  3306. size = min(copy, size);
  3307. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  3308. BUG();
  3309. TCP_SKB_CB(nskb)->end_seq += size;
  3310. copy -= size;
  3311. start += size;
  3312. }
  3313. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3314. struct sk_buff *next = skb->next;
  3315. __skb_unlink(skb, skb->list);
  3316. __kfree_skb(skb);
  3317. NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
  3318. skb = next;
  3319. if (skb == tail || skb->h.th->syn || skb->h.th->fin)
  3320. return;
  3321. }
  3322. }
  3323. }
  3324. }
  3325. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  3326. * and tcp_collapse() them until all the queue is collapsed.
  3327. */
  3328. static void tcp_collapse_ofo_queue(struct sock *sk)
  3329. {
  3330. struct tcp_sock *tp = tcp_sk(sk);
  3331. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  3332. struct sk_buff *head;
  3333. u32 start, end;
  3334. if (skb == NULL)
  3335. return;
  3336. start = TCP_SKB_CB(skb)->seq;
  3337. end = TCP_SKB_CB(skb)->end_seq;
  3338. head = skb;
  3339. for (;;) {
  3340. skb = skb->next;
  3341. /* Segment is terminated when we see gap or when
  3342. * we are at the end of all the queue. */
  3343. if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
  3344. after(TCP_SKB_CB(skb)->seq, end) ||
  3345. before(TCP_SKB_CB(skb)->end_seq, start)) {
  3346. tcp_collapse(sk, head, skb, start, end);
  3347. head = skb;
  3348. if (skb == (struct sk_buff *)&tp->out_of_order_queue)
  3349. break;
  3350. /* Start new segment */
  3351. start = TCP_SKB_CB(skb)->seq;
  3352. end = TCP_SKB_CB(skb)->end_seq;
  3353. } else {
  3354. if (before(TCP_SKB_CB(skb)->seq, start))
  3355. start = TCP_SKB_CB(skb)->seq;
  3356. if (after(TCP_SKB_CB(skb)->end_seq, end))
  3357. end = TCP_SKB_CB(skb)->end_seq;
  3358. }
  3359. }
  3360. }
  3361. /* Reduce allocated memory if we can, trying to get
  3362. * the socket within its memory limits again.
  3363. *
  3364. * Return less than zero if we should start dropping frames
  3365. * until the socket owning process reads some of the data
  3366. * to stabilize the situation.
  3367. */
  3368. static int tcp_prune_queue(struct sock *sk)
  3369. {
  3370. struct tcp_sock *tp = tcp_sk(sk);
  3371. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  3372. NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
  3373. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  3374. tcp_clamp_window(sk, tp);
  3375. else if (tcp_memory_pressure)
  3376. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  3377. tcp_collapse_ofo_queue(sk);
  3378. tcp_collapse(sk, sk->sk_receive_queue.next,
  3379. (struct sk_buff*)&sk->sk_receive_queue,
  3380. tp->copied_seq, tp->rcv_nxt);
  3381. sk_stream_mem_reclaim(sk);
  3382. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3383. return 0;
  3384. /* Collapsing did not help, destructive actions follow.
  3385. * This must not ever occur. */
  3386. /* First, purge the out_of_order queue. */
  3387. if (skb_queue_len(&tp->out_of_order_queue)) {
  3388. NET_ADD_STATS_BH(LINUX_MIB_OFOPRUNED,
  3389. skb_queue_len(&tp->out_of_order_queue));
  3390. __skb_queue_purge(&tp->out_of_order_queue);
  3391. /* Reset SACK state. A conforming SACK implementation will
  3392. * do the same at a timeout based retransmit. When a connection
  3393. * is in a sad state like this, we care only about integrity
  3394. * of the connection not performance.
  3395. */
  3396. if (tp->rx_opt.sack_ok)
  3397. tcp_sack_reset(&tp->rx_opt);
  3398. sk_stream_mem_reclaim(sk);
  3399. }
  3400. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3401. return 0;
  3402. /* If we are really being abused, tell the caller to silently
  3403. * drop receive data on the floor. It will get retransmitted
  3404. * and hopefully then we'll have sufficient space.
  3405. */
  3406. NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
  3407. /* Massive buffer overcommit. */
  3408. tp->pred_flags = 0;
  3409. return -1;
  3410. }
  3411. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  3412. * As additional protections, we do not touch cwnd in retransmission phases,
  3413. * and if application hit its sndbuf limit recently.
  3414. */
  3415. void tcp_cwnd_application_limited(struct sock *sk)
  3416. {
  3417. struct tcp_sock *tp = tcp_sk(sk);
  3418. if (tp->ca_state == TCP_CA_Open &&
  3419. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  3420. /* Limited by application or receiver window. */
  3421. u32 win_used = max(tp->snd_cwnd_used, 2U);
  3422. if (win_used < tp->snd_cwnd) {
  3423. tp->snd_ssthresh = tcp_current_ssthresh(tp);
  3424. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  3425. }
  3426. tp->snd_cwnd_used = 0;
  3427. }
  3428. tp->snd_cwnd_stamp = tcp_time_stamp;
  3429. }
  3430. /* When incoming ACK allowed to free some skb from write_queue,
  3431. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  3432. * on the exit from tcp input handler.
  3433. *
  3434. * PROBLEM: sndbuf expansion does not work well with largesend.
  3435. */
  3436. static void tcp_new_space(struct sock *sk)
  3437. {
  3438. struct tcp_sock *tp = tcp_sk(sk);
  3439. if (tp->packets_out < tp->snd_cwnd &&
  3440. !(sk->sk_userlocks & SOCK_SNDBUF_LOCK) &&
  3441. !tcp_memory_pressure &&
  3442. atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
  3443. int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache_std) +
  3444. MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
  3445. demanded = max_t(unsigned int, tp->snd_cwnd,
  3446. tp->reordering + 1);
  3447. sndmem *= 2*demanded;
  3448. if (sndmem > sk->sk_sndbuf)
  3449. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  3450. tp->snd_cwnd_stamp = tcp_time_stamp;
  3451. }
  3452. sk->sk_write_space(sk);
  3453. }
  3454. static inline void tcp_check_space(struct sock *sk)
  3455. {
  3456. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  3457. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  3458. if (sk->sk_socket &&
  3459. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  3460. tcp_new_space(sk);
  3461. }
  3462. }
  3463. static void __tcp_data_snd_check(struct sock *sk, struct sk_buff *skb)
  3464. {
  3465. struct tcp_sock *tp = tcp_sk(sk);
  3466. if (after(TCP_SKB_CB(skb)->end_seq, tp->snd_una + tp->snd_wnd) ||
  3467. tcp_packets_in_flight(tp) >= tp->snd_cwnd ||
  3468. tcp_write_xmit(sk, tp->nonagle))
  3469. tcp_check_probe_timer(sk, tp);
  3470. }
  3471. static __inline__ void tcp_data_snd_check(struct sock *sk)
  3472. {
  3473. struct sk_buff *skb = sk->sk_send_head;
  3474. if (skb != NULL)
  3475. __tcp_data_snd_check(sk, skb);
  3476. tcp_check_space(sk);
  3477. }
  3478. /*
  3479. * Check if sending an ack is needed.
  3480. */
  3481. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  3482. {
  3483. struct tcp_sock *tp = tcp_sk(sk);
  3484. /* More than one full frame received... */
  3485. if (((tp->rcv_nxt - tp->rcv_wup) > tp->ack.rcv_mss
  3486. /* ... and right edge of window advances far enough.
  3487. * (tcp_recvmsg() will send ACK otherwise). Or...
  3488. */
  3489. && __tcp_select_window(sk) >= tp->rcv_wnd) ||
  3490. /* We ACK each frame or... */
  3491. tcp_in_quickack_mode(tp) ||
  3492. /* We have out of order data. */
  3493. (ofo_possible &&
  3494. skb_peek(&tp->out_of_order_queue))) {
  3495. /* Then ack it now */
  3496. tcp_send_ack(sk);
  3497. } else {
  3498. /* Else, send delayed ack. */
  3499. tcp_send_delayed_ack(sk);
  3500. }
  3501. }
  3502. static __inline__ void tcp_ack_snd_check(struct sock *sk)
  3503. {
  3504. struct tcp_sock *tp = tcp_sk(sk);
  3505. if (!tcp_ack_scheduled(tp)) {
  3506. /* We sent a data segment already. */
  3507. return;
  3508. }
  3509. __tcp_ack_snd_check(sk, 1);
  3510. }
  3511. /*
  3512. * This routine is only called when we have urgent data
  3513. * signalled. Its the 'slow' part of tcp_urg. It could be
  3514. * moved inline now as tcp_urg is only called from one
  3515. * place. We handle URGent data wrong. We have to - as
  3516. * BSD still doesn't use the correction from RFC961.
  3517. * For 1003.1g we should support a new option TCP_STDURG to permit
  3518. * either form (or just set the sysctl tcp_stdurg).
  3519. */
  3520. static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
  3521. {
  3522. struct tcp_sock *tp = tcp_sk(sk);
  3523. u32 ptr = ntohs(th->urg_ptr);
  3524. if (ptr && !sysctl_tcp_stdurg)
  3525. ptr--;
  3526. ptr += ntohl(th->seq);
  3527. /* Ignore urgent data that we've already seen and read. */
  3528. if (after(tp->copied_seq, ptr))
  3529. return;
  3530. /* Do not replay urg ptr.
  3531. *
  3532. * NOTE: interesting situation not covered by specs.
  3533. * Misbehaving sender may send urg ptr, pointing to segment,
  3534. * which we already have in ofo queue. We are not able to fetch
  3535. * such data and will stay in TCP_URG_NOTYET until will be eaten
  3536. * by recvmsg(). Seems, we are not obliged to handle such wicked
  3537. * situations. But it is worth to think about possibility of some
  3538. * DoSes using some hypothetical application level deadlock.
  3539. */
  3540. if (before(ptr, tp->rcv_nxt))
  3541. return;
  3542. /* Do we already have a newer (or duplicate) urgent pointer? */
  3543. if (tp->urg_data && !after(ptr, tp->urg_seq))
  3544. return;
  3545. /* Tell the world about our new urgent pointer. */
  3546. sk_send_sigurg(sk);
  3547. /* We may be adding urgent data when the last byte read was
  3548. * urgent. To do this requires some care. We cannot just ignore
  3549. * tp->copied_seq since we would read the last urgent byte again
  3550. * as data, nor can we alter copied_seq until this data arrives
  3551. * or we break the sematics of SIOCATMARK (and thus sockatmark())
  3552. *
  3553. * NOTE. Double Dutch. Rendering to plain English: author of comment
  3554. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  3555. * and expect that both A and B disappear from stream. This is _wrong_.
  3556. * Though this happens in BSD with high probability, this is occasional.
  3557. * Any application relying on this is buggy. Note also, that fix "works"
  3558. * only in this artificial test. Insert some normal data between A and B and we will
  3559. * decline of BSD again. Verdict: it is better to remove to trap
  3560. * buggy users.
  3561. */
  3562. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  3563. !sock_flag(sk, SOCK_URGINLINE) &&
  3564. tp->copied_seq != tp->rcv_nxt) {
  3565. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  3566. tp->copied_seq++;
  3567. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  3568. __skb_unlink(skb, skb->list);
  3569. __kfree_skb(skb);
  3570. }
  3571. }
  3572. tp->urg_data = TCP_URG_NOTYET;
  3573. tp->urg_seq = ptr;
  3574. /* Disable header prediction. */
  3575. tp->pred_flags = 0;
  3576. }
  3577. /* This is the 'fast' part of urgent handling. */
  3578. static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
  3579. {
  3580. struct tcp_sock *tp = tcp_sk(sk);
  3581. /* Check if we get a new urgent pointer - normally not. */
  3582. if (th->urg)
  3583. tcp_check_urg(sk,th);
  3584. /* Do we wait for any urgent data? - normally not... */
  3585. if (tp->urg_data == TCP_URG_NOTYET) {
  3586. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  3587. th->syn;
  3588. /* Is the urgent pointer pointing into this packet? */
  3589. if (ptr < skb->len) {
  3590. u8 tmp;
  3591. if (skb_copy_bits(skb, ptr, &tmp, 1))
  3592. BUG();
  3593. tp->urg_data = TCP_URG_VALID | tmp;
  3594. if (!sock_flag(sk, SOCK_DEAD))
  3595. sk->sk_data_ready(sk, 0);
  3596. }
  3597. }
  3598. }
  3599. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  3600. {
  3601. struct tcp_sock *tp = tcp_sk(sk);
  3602. int chunk = skb->len - hlen;
  3603. int err;
  3604. local_bh_enable();
  3605. if (skb->ip_summed==CHECKSUM_UNNECESSARY)
  3606. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  3607. else
  3608. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  3609. tp->ucopy.iov);
  3610. if (!err) {
  3611. tp->ucopy.len -= chunk;
  3612. tp->copied_seq += chunk;
  3613. tcp_rcv_space_adjust(sk);
  3614. }
  3615. local_bh_disable();
  3616. return err;
  3617. }
  3618. static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
  3619. {
  3620. int result;
  3621. if (sock_owned_by_user(sk)) {
  3622. local_bh_enable();
  3623. result = __tcp_checksum_complete(skb);
  3624. local_bh_disable();
  3625. } else {
  3626. result = __tcp_checksum_complete(skb);
  3627. }
  3628. return result;
  3629. }
  3630. static __inline__ int
  3631. tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
  3632. {
  3633. return skb->ip_summed != CHECKSUM_UNNECESSARY &&
  3634. __tcp_checksum_complete_user(sk, skb);
  3635. }
  3636. /*
  3637. * TCP receive function for the ESTABLISHED state.
  3638. *
  3639. * It is split into a fast path and a slow path. The fast path is
  3640. * disabled when:
  3641. * - A zero window was announced from us - zero window probing
  3642. * is only handled properly in the slow path.
  3643. * - Out of order segments arrived.
  3644. * - Urgent data is expected.
  3645. * - There is no buffer space left
  3646. * - Unexpected TCP flags/window values/header lengths are received
  3647. * (detected by checking the TCP header against pred_flags)
  3648. * - Data is sent in both directions. Fast path only supports pure senders
  3649. * or pure receivers (this means either the sequence number or the ack
  3650. * value must stay constant)
  3651. * - Unexpected TCP option.
  3652. *
  3653. * When these conditions are not satisfied it drops into a standard
  3654. * receive procedure patterned after RFC793 to handle all cases.
  3655. * The first three cases are guaranteed by proper pred_flags setting,
  3656. * the rest is checked inline. Fast processing is turned on in
  3657. * tcp_data_queue when everything is OK.
  3658. */
  3659. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  3660. struct tcphdr *th, unsigned len)
  3661. {
  3662. struct tcp_sock *tp = tcp_sk(sk);
  3663. /*
  3664. * Header prediction.
  3665. * The code loosely follows the one in the famous
  3666. * "30 instruction TCP receive" Van Jacobson mail.
  3667. *
  3668. * Van's trick is to deposit buffers into socket queue
  3669. * on a device interrupt, to call tcp_recv function
  3670. * on the receive process context and checksum and copy
  3671. * the buffer to user space. smart...
  3672. *
  3673. * Our current scheme is not silly either but we take the
  3674. * extra cost of the net_bh soft interrupt processing...
  3675. * We do checksum and copy also but from device to kernel.
  3676. */
  3677. tp->rx_opt.saw_tstamp = 0;
  3678. /* pred_flags is 0xS?10 << 16 + snd_wnd
  3679. * if header_predition is to be made
  3680. * 'S' will always be tp->tcp_header_len >> 2
  3681. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  3682. * turn it off (when there are holes in the receive
  3683. * space for instance)
  3684. * PSH flag is ignored.
  3685. */
  3686. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  3687. TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3688. int tcp_header_len = tp->tcp_header_len;
  3689. /* Timestamp header prediction: tcp_header_len
  3690. * is automatically equal to th->doff*4 due to pred_flags
  3691. * match.
  3692. */
  3693. /* Check timestamp */
  3694. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  3695. __u32 *ptr = (__u32 *)(th + 1);
  3696. /* No? Slow path! */
  3697. if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3698. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
  3699. goto slow_path;
  3700. tp->rx_opt.saw_tstamp = 1;
  3701. ++ptr;
  3702. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3703. ++ptr;
  3704. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  3705. /* If PAWS failed, check it more carefully in slow path */
  3706. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  3707. goto slow_path;
  3708. /* DO NOT update ts_recent here, if checksum fails
  3709. * and timestamp was corrupted part, it will result
  3710. * in a hung connection since we will drop all
  3711. * future packets due to the PAWS test.
  3712. */
  3713. }
  3714. if (len <= tcp_header_len) {
  3715. /* Bulk data transfer: sender */
  3716. if (len == tcp_header_len) {
  3717. /* Predicted packet is in window by definition.
  3718. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  3719. * Hence, check seq<=rcv_wup reduces to:
  3720. */
  3721. if (tcp_header_len ==
  3722. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  3723. tp->rcv_nxt == tp->rcv_wup)
  3724. tcp_store_ts_recent(tp);
  3725. tcp_rcv_rtt_measure_ts(tp, skb);
  3726. /* We know that such packets are checksummed
  3727. * on entry.
  3728. */
  3729. tcp_ack(sk, skb, 0);
  3730. __kfree_skb(skb);
  3731. tcp_data_snd_check(sk);
  3732. return 0;
  3733. } else { /* Header too small */
  3734. TCP_INC_STATS_BH(TCP_MIB_INERRS);
  3735. goto discard;
  3736. }
  3737. } else {
  3738. int eaten = 0;
  3739. if (tp->ucopy.task == current &&
  3740. tp->copied_seq == tp->rcv_nxt &&
  3741. len - tcp_header_len <= tp->ucopy.len &&
  3742. sock_owned_by_user(sk)) {
  3743. __set_current_state(TASK_RUNNING);
  3744. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
  3745. /* Predicted packet is in window by definition.
  3746. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  3747. * Hence, check seq<=rcv_wup reduces to:
  3748. */
  3749. if (tcp_header_len ==
  3750. (sizeof(struct tcphdr) +
  3751. TCPOLEN_TSTAMP_ALIGNED) &&
  3752. tp->rcv_nxt == tp->rcv_wup)
  3753. tcp_store_ts_recent(tp);
  3754. tcp_rcv_rtt_measure_ts(tp, skb);
  3755. __skb_pull(skb, tcp_header_len);
  3756. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3757. NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
  3758. eaten = 1;
  3759. }
  3760. }
  3761. if (!eaten) {
  3762. if (tcp_checksum_complete_user(sk, skb))
  3763. goto csum_error;
  3764. /* Predicted packet is in window by definition.
  3765. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  3766. * Hence, check seq<=rcv_wup reduces to:
  3767. */
  3768. if (tcp_header_len ==
  3769. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  3770. tp->rcv_nxt == tp->rcv_wup)
  3771. tcp_store_ts_recent(tp);
  3772. tcp_rcv_rtt_measure_ts(tp, skb);
  3773. if ((int)skb->truesize > sk->sk_forward_alloc)
  3774. goto step5;
  3775. NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
  3776. /* Bulk data transfer: receiver */
  3777. __skb_pull(skb,tcp_header_len);
  3778. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3779. sk_stream_set_owner_r(skb, sk);
  3780. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3781. }
  3782. tcp_event_data_recv(sk, tp, skb);
  3783. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  3784. /* Well, only one small jumplet in fast path... */
  3785. tcp_ack(sk, skb, FLAG_DATA);
  3786. tcp_data_snd_check(sk);
  3787. if (!tcp_ack_scheduled(tp))
  3788. goto no_ack;
  3789. }
  3790. __tcp_ack_snd_check(sk, 0);
  3791. no_ack:
  3792. if (eaten)
  3793. __kfree_skb(skb);
  3794. else
  3795. sk->sk_data_ready(sk, 0);
  3796. return 0;
  3797. }
  3798. }
  3799. slow_path:
  3800. if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
  3801. goto csum_error;
  3802. /*
  3803. * RFC1323: H1. Apply PAWS check first.
  3804. */
  3805. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  3806. tcp_paws_discard(tp, skb)) {
  3807. if (!th->rst) {
  3808. NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
  3809. tcp_send_dupack(sk, skb);
  3810. goto discard;
  3811. }
  3812. /* Resets are accepted even if PAWS failed.
  3813. ts_recent update must be made after we are sure
  3814. that the packet is in window.
  3815. */
  3816. }
  3817. /*
  3818. * Standard slow path.
  3819. */
  3820. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  3821. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  3822. * (RST) segments are validated by checking their SEQ-fields."
  3823. * And page 69: "If an incoming segment is not acceptable,
  3824. * an acknowledgment should be sent in reply (unless the RST bit
  3825. * is set, if so drop the segment and return)".
  3826. */
  3827. if (!th->rst)
  3828. tcp_send_dupack(sk, skb);
  3829. goto discard;
  3830. }
  3831. if(th->rst) {
  3832. tcp_reset(sk);
  3833. goto discard;
  3834. }
  3835. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3836. if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3837. TCP_INC_STATS_BH(TCP_MIB_INERRS);
  3838. NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
  3839. tcp_reset(sk);
  3840. return 1;
  3841. }
  3842. step5:
  3843. if(th->ack)
  3844. tcp_ack(sk, skb, FLAG_SLOWPATH);
  3845. tcp_rcv_rtt_measure_ts(tp, skb);
  3846. /* Process urgent data. */
  3847. tcp_urg(sk, skb, th);
  3848. /* step 7: process the segment text */
  3849. tcp_data_queue(sk, skb);
  3850. tcp_data_snd_check(sk);
  3851. tcp_ack_snd_check(sk);
  3852. return 0;
  3853. csum_error:
  3854. TCP_INC_STATS_BH(TCP_MIB_INERRS);
  3855. discard:
  3856. __kfree_skb(skb);
  3857. return 0;
  3858. }
  3859. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  3860. struct tcphdr *th, unsigned len)
  3861. {
  3862. struct tcp_sock *tp = tcp_sk(sk);
  3863. int saved_clamp = tp->rx_opt.mss_clamp;
  3864. tcp_parse_options(skb, &tp->rx_opt, 0);
  3865. if (th->ack) {
  3866. /* rfc793:
  3867. * "If the state is SYN-SENT then
  3868. * first check the ACK bit
  3869. * If the ACK bit is set
  3870. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  3871. * a reset (unless the RST bit is set, if so drop
  3872. * the segment and return)"
  3873. *
  3874. * We do not send data with SYN, so that RFC-correct
  3875. * test reduces to:
  3876. */
  3877. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
  3878. goto reset_and_undo;
  3879. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  3880. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  3881. tcp_time_stamp)) {
  3882. NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
  3883. goto reset_and_undo;
  3884. }
  3885. /* Now ACK is acceptable.
  3886. *
  3887. * "If the RST bit is set
  3888. * If the ACK was acceptable then signal the user "error:
  3889. * connection reset", drop the segment, enter CLOSED state,
  3890. * delete TCB, and return."
  3891. */
  3892. if (th->rst) {
  3893. tcp_reset(sk);
  3894. goto discard;
  3895. }
  3896. /* rfc793:
  3897. * "fifth, if neither of the SYN or RST bits is set then
  3898. * drop the segment and return."
  3899. *
  3900. * See note below!
  3901. * --ANK(990513)
  3902. */
  3903. if (!th->syn)
  3904. goto discard_and_undo;
  3905. /* rfc793:
  3906. * "If the SYN bit is on ...
  3907. * are acceptable then ...
  3908. * (our SYN has been ACKed), change the connection
  3909. * state to ESTABLISHED..."
  3910. */
  3911. TCP_ECN_rcv_synack(tp, th);
  3912. if (tp->ecn_flags&TCP_ECN_OK)
  3913. sock_set_flag(sk, SOCK_NO_LARGESEND);
  3914. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  3915. tcp_ack(sk, skb, FLAG_SLOWPATH);
  3916. /* Ok.. it's good. Set up sequence numbers and
  3917. * move to established.
  3918. */
  3919. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  3920. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  3921. /* RFC1323: The window in SYN & SYN/ACK segments is
  3922. * never scaled.
  3923. */
  3924. tp->snd_wnd = ntohs(th->window);
  3925. tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
  3926. if (!tp->rx_opt.wscale_ok) {
  3927. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  3928. tp->window_clamp = min(tp->window_clamp, 65535U);
  3929. }
  3930. if (tp->rx_opt.saw_tstamp) {
  3931. tp->rx_opt.tstamp_ok = 1;
  3932. tp->tcp_header_len =
  3933. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  3934. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  3935. tcp_store_ts_recent(tp);
  3936. } else {
  3937. tp->tcp_header_len = sizeof(struct tcphdr);
  3938. }
  3939. if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
  3940. tp->rx_opt.sack_ok |= 2;
  3941. tcp_sync_mss(sk, tp->pmtu_cookie);
  3942. tcp_initialize_rcv_mss(sk);
  3943. /* Remember, tcp_poll() does not lock socket!
  3944. * Change state from SYN-SENT only after copied_seq
  3945. * is initialized. */
  3946. tp->copied_seq = tp->rcv_nxt;
  3947. mb();
  3948. tcp_set_state(sk, TCP_ESTABLISHED);
  3949. /* Make sure socket is routed, for correct metrics. */
  3950. tp->af_specific->rebuild_header(sk);
  3951. tcp_init_metrics(sk);
  3952. /* Prevent spurious tcp_cwnd_restart() on first data
  3953. * packet.
  3954. */
  3955. tp->lsndtime = tcp_time_stamp;
  3956. tcp_init_buffer_space(sk);
  3957. if (sock_flag(sk, SOCK_KEEPOPEN))
  3958. tcp_reset_keepalive_timer(sk, keepalive_time_when(tp));
  3959. if (!tp->rx_opt.snd_wscale)
  3960. __tcp_fast_path_on(tp, tp->snd_wnd);
  3961. else
  3962. tp->pred_flags = 0;
  3963. if (!sock_flag(sk, SOCK_DEAD)) {
  3964. sk->sk_state_change(sk);
  3965. sk_wake_async(sk, 0, POLL_OUT);
  3966. }
  3967. if (sk->sk_write_pending || tp->defer_accept || tp->ack.pingpong) {
  3968. /* Save one ACK. Data will be ready after
  3969. * several ticks, if write_pending is set.
  3970. *
  3971. * It may be deleted, but with this feature tcpdumps
  3972. * look so _wonderfully_ clever, that I was not able
  3973. * to stand against the temptation 8) --ANK
  3974. */
  3975. tcp_schedule_ack(tp);
  3976. tp->ack.lrcvtime = tcp_time_stamp;
  3977. tp->ack.ato = TCP_ATO_MIN;
  3978. tcp_incr_quickack(tp);
  3979. tcp_enter_quickack_mode(tp);
  3980. tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX);
  3981. discard:
  3982. __kfree_skb(skb);
  3983. return 0;
  3984. } else {
  3985. tcp_send_ack(sk);
  3986. }
  3987. return -1;
  3988. }
  3989. /* No ACK in the segment */
  3990. if (th->rst) {
  3991. /* rfc793:
  3992. * "If the RST bit is set
  3993. *
  3994. * Otherwise (no ACK) drop the segment and return."
  3995. */
  3996. goto discard_and_undo;
  3997. }
  3998. /* PAWS check. */
  3999. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
  4000. goto discard_and_undo;
  4001. if (th->syn) {
  4002. /* We see SYN without ACK. It is attempt of
  4003. * simultaneous connect with crossed SYNs.
  4004. * Particularly, it can be connect to self.
  4005. */
  4006. tcp_set_state(sk, TCP_SYN_RECV);
  4007. if (tp->rx_opt.saw_tstamp) {
  4008. tp->rx_opt.tstamp_ok = 1;
  4009. tcp_store_ts_recent(tp);
  4010. tp->tcp_header_len =
  4011. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4012. } else {
  4013. tp->tcp_header_len = sizeof(struct tcphdr);
  4014. }
  4015. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4016. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4017. /* RFC1323: The window in SYN & SYN/ACK segments is
  4018. * never scaled.
  4019. */
  4020. tp->snd_wnd = ntohs(th->window);
  4021. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4022. tp->max_window = tp->snd_wnd;
  4023. TCP_ECN_rcv_syn(tp, th);
  4024. if (tp->ecn_flags&TCP_ECN_OK)
  4025. sock_set_flag(sk, SOCK_NO_LARGESEND);
  4026. tcp_sync_mss(sk, tp->pmtu_cookie);
  4027. tcp_initialize_rcv_mss(sk);
  4028. tcp_send_synack(sk);
  4029. #if 0
  4030. /* Note, we could accept data and URG from this segment.
  4031. * There are no obstacles to make this.
  4032. *
  4033. * However, if we ignore data in ACKless segments sometimes,
  4034. * we have no reasons to accept it sometimes.
  4035. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4036. * is not flawless. So, discard packet for sanity.
  4037. * Uncomment this return to process the data.
  4038. */
  4039. return -1;
  4040. #else
  4041. goto discard;
  4042. #endif
  4043. }
  4044. /* "fifth, if neither of the SYN or RST bits is set then
  4045. * drop the segment and return."
  4046. */
  4047. discard_and_undo:
  4048. tcp_clear_options(&tp->rx_opt);
  4049. tp->rx_opt.mss_clamp = saved_clamp;
  4050. goto discard;
  4051. reset_and_undo:
  4052. tcp_clear_options(&tp->rx_opt);
  4053. tp->rx_opt.mss_clamp = saved_clamp;
  4054. return 1;
  4055. }
  4056. /*
  4057. * This function implements the receiving procedure of RFC 793 for
  4058. * all states except ESTABLISHED and TIME_WAIT.
  4059. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4060. * address independent.
  4061. */
  4062. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  4063. struct tcphdr *th, unsigned len)
  4064. {
  4065. struct tcp_sock *tp = tcp_sk(sk);
  4066. int queued = 0;
  4067. tp->rx_opt.saw_tstamp = 0;
  4068. switch (sk->sk_state) {
  4069. case TCP_CLOSE:
  4070. goto discard;
  4071. case TCP_LISTEN:
  4072. if(th->ack)
  4073. return 1;
  4074. if(th->rst)
  4075. goto discard;
  4076. if(th->syn) {
  4077. if(tp->af_specific->conn_request(sk, skb) < 0)
  4078. return 1;
  4079. init_westwood(sk);
  4080. init_bictcp(tp);
  4081. /* Now we have several options: In theory there is
  4082. * nothing else in the frame. KA9Q has an option to
  4083. * send data with the syn, BSD accepts data with the
  4084. * syn up to the [to be] advertised window and
  4085. * Solaris 2.1 gives you a protocol error. For now
  4086. * we just ignore it, that fits the spec precisely
  4087. * and avoids incompatibilities. It would be nice in
  4088. * future to drop through and process the data.
  4089. *
  4090. * Now that TTCP is starting to be used we ought to
  4091. * queue this data.
  4092. * But, this leaves one open to an easy denial of
  4093. * service attack, and SYN cookies can't defend
  4094. * against this problem. So, we drop the data
  4095. * in the interest of security over speed.
  4096. */
  4097. goto discard;
  4098. }
  4099. goto discard;
  4100. case TCP_SYN_SENT:
  4101. init_westwood(sk);
  4102. init_bictcp(tp);
  4103. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  4104. if (queued >= 0)
  4105. return queued;
  4106. /* Do step6 onward by hand. */
  4107. tcp_urg(sk, skb, th);
  4108. __kfree_skb(skb);
  4109. tcp_data_snd_check(sk);
  4110. return 0;
  4111. }
  4112. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4113. tcp_paws_discard(tp, skb)) {
  4114. if (!th->rst) {
  4115. NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
  4116. tcp_send_dupack(sk, skb);
  4117. goto discard;
  4118. }
  4119. /* Reset is accepted even if it did not pass PAWS. */
  4120. }
  4121. /* step 1: check sequence number */
  4122. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4123. if (!th->rst)
  4124. tcp_send_dupack(sk, skb);
  4125. goto discard;
  4126. }
  4127. /* step 2: check RST bit */
  4128. if(th->rst) {
  4129. tcp_reset(sk);
  4130. goto discard;
  4131. }
  4132. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4133. /* step 3: check security and precedence [ignored] */
  4134. /* step 4:
  4135. *
  4136. * Check for a SYN in window.
  4137. */
  4138. if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4139. NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
  4140. tcp_reset(sk);
  4141. return 1;
  4142. }
  4143. /* step 5: check the ACK field */
  4144. if (th->ack) {
  4145. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
  4146. switch(sk->sk_state) {
  4147. case TCP_SYN_RECV:
  4148. if (acceptable) {
  4149. tp->copied_seq = tp->rcv_nxt;
  4150. mb();
  4151. tcp_set_state(sk, TCP_ESTABLISHED);
  4152. sk->sk_state_change(sk);
  4153. /* Note, that this wakeup is only for marginal
  4154. * crossed SYN case. Passively open sockets
  4155. * are not waked up, because sk->sk_sleep ==
  4156. * NULL and sk->sk_socket == NULL.
  4157. */
  4158. if (sk->sk_socket) {
  4159. sk_wake_async(sk,0,POLL_OUT);
  4160. }
  4161. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  4162. tp->snd_wnd = ntohs(th->window) <<
  4163. tp->rx_opt.snd_wscale;
  4164. tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
  4165. TCP_SKB_CB(skb)->seq);
  4166. /* tcp_ack considers this ACK as duplicate
  4167. * and does not calculate rtt.
  4168. * Fix it at least with timestamps.
  4169. */
  4170. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4171. !tp->srtt)
  4172. tcp_ack_saw_tstamp(tp, 0);
  4173. if (tp->rx_opt.tstamp_ok)
  4174. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4175. /* Make sure socket is routed, for
  4176. * correct metrics.
  4177. */
  4178. tp->af_specific->rebuild_header(sk);
  4179. tcp_init_metrics(sk);
  4180. /* Prevent spurious tcp_cwnd_restart() on
  4181. * first data packet.
  4182. */
  4183. tp->lsndtime = tcp_time_stamp;
  4184. tcp_initialize_rcv_mss(sk);
  4185. tcp_init_buffer_space(sk);
  4186. tcp_fast_path_on(tp);
  4187. } else {
  4188. return 1;
  4189. }
  4190. break;
  4191. case TCP_FIN_WAIT1:
  4192. if (tp->snd_una == tp->write_seq) {
  4193. tcp_set_state(sk, TCP_FIN_WAIT2);
  4194. sk->sk_shutdown |= SEND_SHUTDOWN;
  4195. dst_confirm(sk->sk_dst_cache);
  4196. if (!sock_flag(sk, SOCK_DEAD))
  4197. /* Wake up lingering close() */
  4198. sk->sk_state_change(sk);
  4199. else {
  4200. int tmo;
  4201. if (tp->linger2 < 0 ||
  4202. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4203. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  4204. tcp_done(sk);
  4205. NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
  4206. return 1;
  4207. }
  4208. tmo = tcp_fin_time(tp);
  4209. if (tmo > TCP_TIMEWAIT_LEN) {
  4210. tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  4211. } else if (th->fin || sock_owned_by_user(sk)) {
  4212. /* Bad case. We could lose such FIN otherwise.
  4213. * It is not a big problem, but it looks confusing
  4214. * and not so rare event. We still can lose it now,
  4215. * if it spins in bh_lock_sock(), but it is really
  4216. * marginal case.
  4217. */
  4218. tcp_reset_keepalive_timer(sk, tmo);
  4219. } else {
  4220. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  4221. goto discard;
  4222. }
  4223. }
  4224. }
  4225. break;
  4226. case TCP_CLOSING:
  4227. if (tp->snd_una == tp->write_seq) {
  4228. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  4229. goto discard;
  4230. }
  4231. break;
  4232. case TCP_LAST_ACK:
  4233. if (tp->snd_una == tp->write_seq) {
  4234. tcp_update_metrics(sk);
  4235. tcp_done(sk);
  4236. goto discard;
  4237. }
  4238. break;
  4239. }
  4240. } else
  4241. goto discard;
  4242. /* step 6: check the URG bit */
  4243. tcp_urg(sk, skb, th);
  4244. /* step 7: process the segment text */
  4245. switch (sk->sk_state) {
  4246. case TCP_CLOSE_WAIT:
  4247. case TCP_CLOSING:
  4248. case TCP_LAST_ACK:
  4249. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  4250. break;
  4251. case TCP_FIN_WAIT1:
  4252. case TCP_FIN_WAIT2:
  4253. /* RFC 793 says to queue data in these states,
  4254. * RFC 1122 says we MUST send a reset.
  4255. * BSD 4.4 also does reset.
  4256. */
  4257. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  4258. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4259. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  4260. NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
  4261. tcp_reset(sk);
  4262. return 1;
  4263. }
  4264. }
  4265. /* Fall through */
  4266. case TCP_ESTABLISHED:
  4267. tcp_data_queue(sk, skb);
  4268. queued = 1;
  4269. break;
  4270. }
  4271. /* tcp_data could move socket to TIME-WAIT */
  4272. if (sk->sk_state != TCP_CLOSE) {
  4273. tcp_data_snd_check(sk);
  4274. tcp_ack_snd_check(sk);
  4275. }
  4276. if (!queued) {
  4277. discard:
  4278. __kfree_skb(skb);
  4279. }
  4280. return 0;
  4281. }
  4282. EXPORT_SYMBOL(sysctl_tcp_ecn);
  4283. EXPORT_SYMBOL(sysctl_tcp_reordering);
  4284. EXPORT_SYMBOL(tcp_parse_options);
  4285. EXPORT_SYMBOL(tcp_rcv_established);
  4286. EXPORT_SYMBOL(tcp_rcv_state_process);