af9013.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526
  1. /*
  2. * Afatech AF9013 demodulator driver
  3. *
  4. * Copyright (C) 2007 Antti Palosaari <crope@iki.fi>
  5. * Copyright (C) 2011 Antti Palosaari <crope@iki.fi>
  6. *
  7. * Thanks to Afatech who kindly provided information.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  22. *
  23. */
  24. #include "af9013_priv.h"
  25. int af9013_debug;
  26. module_param_named(debug, af9013_debug, int, 0644);
  27. MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
  28. struct af9013_state {
  29. struct i2c_adapter *i2c;
  30. struct dvb_frontend fe;
  31. struct af9013_config config;
  32. /* tuner/demod RF and IF AGC limits used for signal strength calc */
  33. u8 signal_strength_en, rf_50, rf_80, if_50, if_80;
  34. u16 signal_strength;
  35. u32 ber;
  36. u32 ucblocks;
  37. u16 snr;
  38. u32 bandwidth_hz;
  39. fe_status_t fe_status;
  40. unsigned long set_frontend_jiffies;
  41. unsigned long read_status_jiffies;
  42. bool first_tune;
  43. bool i2c_gate_state;
  44. unsigned int statistics_step:3;
  45. struct delayed_work statistics_work;
  46. };
  47. /* write multiple registers */
  48. static int af9013_wr_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
  49. const u8 *val, int len)
  50. {
  51. int ret;
  52. u8 buf[3+len];
  53. struct i2c_msg msg[1] = {
  54. {
  55. .addr = priv->config.i2c_addr,
  56. .flags = 0,
  57. .len = sizeof(buf),
  58. .buf = buf,
  59. }
  60. };
  61. buf[0] = (reg >> 8) & 0xff;
  62. buf[1] = (reg >> 0) & 0xff;
  63. buf[2] = mbox;
  64. memcpy(&buf[3], val, len);
  65. ret = i2c_transfer(priv->i2c, msg, 1);
  66. if (ret == 1) {
  67. ret = 0;
  68. } else {
  69. warn("i2c wr failed=%d reg=%04x len=%d", ret, reg, len);
  70. ret = -EREMOTEIO;
  71. }
  72. return ret;
  73. }
  74. /* read multiple registers */
  75. static int af9013_rd_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
  76. u8 *val, int len)
  77. {
  78. int ret;
  79. u8 buf[3];
  80. struct i2c_msg msg[2] = {
  81. {
  82. .addr = priv->config.i2c_addr,
  83. .flags = 0,
  84. .len = 3,
  85. .buf = buf,
  86. }, {
  87. .addr = priv->config.i2c_addr,
  88. .flags = I2C_M_RD,
  89. .len = len,
  90. .buf = val,
  91. }
  92. };
  93. buf[0] = (reg >> 8) & 0xff;
  94. buf[1] = (reg >> 0) & 0xff;
  95. buf[2] = mbox;
  96. ret = i2c_transfer(priv->i2c, msg, 2);
  97. if (ret == 2) {
  98. ret = 0;
  99. } else {
  100. warn("i2c rd failed=%d reg=%04x len=%d", ret, reg, len);
  101. ret = -EREMOTEIO;
  102. }
  103. return ret;
  104. }
  105. /* write multiple registers */
  106. static int af9013_wr_regs(struct af9013_state *priv, u16 reg, const u8 *val,
  107. int len)
  108. {
  109. int ret, i;
  110. u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(1 << 0);
  111. if ((priv->config.ts_mode == AF9013_TS_USB) &&
  112. ((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
  113. mbox |= ((len - 1) << 2);
  114. ret = af9013_wr_regs_i2c(priv, mbox, reg, val, len);
  115. } else {
  116. for (i = 0; i < len; i++) {
  117. ret = af9013_wr_regs_i2c(priv, mbox, reg+i, val+i, 1);
  118. if (ret)
  119. goto err;
  120. }
  121. }
  122. err:
  123. return 0;
  124. }
  125. /* read multiple registers */
  126. static int af9013_rd_regs(struct af9013_state *priv, u16 reg, u8 *val, int len)
  127. {
  128. int ret, i;
  129. u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(0 << 0);
  130. if ((priv->config.ts_mode == AF9013_TS_USB) &&
  131. ((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
  132. mbox |= ((len - 1) << 2);
  133. ret = af9013_rd_regs_i2c(priv, mbox, reg, val, len);
  134. } else {
  135. for (i = 0; i < len; i++) {
  136. ret = af9013_rd_regs_i2c(priv, mbox, reg+i, val+i, 1);
  137. if (ret)
  138. goto err;
  139. }
  140. }
  141. err:
  142. return 0;
  143. }
  144. /* write single register */
  145. static int af9013_wr_reg(struct af9013_state *priv, u16 reg, u8 val)
  146. {
  147. return af9013_wr_regs(priv, reg, &val, 1);
  148. }
  149. /* read single register */
  150. static int af9013_rd_reg(struct af9013_state *priv, u16 reg, u8 *val)
  151. {
  152. return af9013_rd_regs(priv, reg, val, 1);
  153. }
  154. static int af9013_write_ofsm_regs(struct af9013_state *state, u16 reg, u8 *val,
  155. u8 len)
  156. {
  157. u8 mbox = (1 << 7)|(1 << 6)|((len - 1) << 2)|(1 << 1)|(1 << 0);
  158. return af9013_wr_regs_i2c(state, mbox, reg, val, len);
  159. }
  160. static int af9013_wr_reg_bits(struct af9013_state *state, u16 reg, int pos,
  161. int len, u8 val)
  162. {
  163. int ret;
  164. u8 tmp, mask;
  165. /* no need for read if whole reg is written */
  166. if (len != 8) {
  167. ret = af9013_rd_reg(state, reg, &tmp);
  168. if (ret)
  169. return ret;
  170. mask = (0xff >> (8 - len)) << pos;
  171. val <<= pos;
  172. tmp &= ~mask;
  173. val |= tmp;
  174. }
  175. return af9013_wr_reg(state, reg, val);
  176. }
  177. static int af9013_rd_reg_bits(struct af9013_state *state, u16 reg, int pos,
  178. int len, u8 *val)
  179. {
  180. int ret;
  181. u8 tmp;
  182. ret = af9013_rd_reg(state, reg, &tmp);
  183. if (ret)
  184. return ret;
  185. *val = (tmp >> pos);
  186. *val &= (0xff >> (8 - len));
  187. return 0;
  188. }
  189. static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval)
  190. {
  191. int ret;
  192. u8 pos;
  193. u16 addr;
  194. dbg("%s: gpio=%d gpioval=%02x", __func__, gpio, gpioval);
  195. /*
  196. * GPIO0 & GPIO1 0xd735
  197. * GPIO2 & GPIO3 0xd736
  198. */
  199. switch (gpio) {
  200. case 0:
  201. case 1:
  202. addr = 0xd735;
  203. break;
  204. case 2:
  205. case 3:
  206. addr = 0xd736;
  207. break;
  208. default:
  209. err("invalid gpio:%d\n", gpio);
  210. ret = -EINVAL;
  211. goto err;
  212. };
  213. switch (gpio) {
  214. case 0:
  215. case 2:
  216. pos = 0;
  217. break;
  218. case 1:
  219. case 3:
  220. default:
  221. pos = 4;
  222. break;
  223. };
  224. ret = af9013_wr_reg_bits(state, addr, pos, 4, gpioval);
  225. if (ret)
  226. goto err;
  227. return ret;
  228. err:
  229. dbg("%s: failed=%d", __func__, ret);
  230. return ret;
  231. }
  232. static u32 af913_div(u32 a, u32 b, u32 x)
  233. {
  234. u32 r = 0, c = 0, i;
  235. dbg("%s: a=%d b=%d x=%d", __func__, a, b, x);
  236. if (a > b) {
  237. c = a / b;
  238. a = a - c * b;
  239. }
  240. for (i = 0; i < x; i++) {
  241. if (a >= b) {
  242. r += 1;
  243. a -= b;
  244. }
  245. a <<= 1;
  246. r <<= 1;
  247. }
  248. r = (c << (u32)x) + r;
  249. dbg("%s: a=%d b=%d x=%d r=%x", __func__, a, b, x, r);
  250. return r;
  251. }
  252. static int af9013_power_ctrl(struct af9013_state *state, u8 onoff)
  253. {
  254. int ret, i;
  255. u8 tmp;
  256. dbg("%s: onoff=%d", __func__, onoff);
  257. /* enable reset */
  258. ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 1);
  259. if (ret)
  260. goto err;
  261. /* start reset mechanism */
  262. ret = af9013_wr_reg(state, 0xaeff, 1);
  263. if (ret)
  264. goto err;
  265. /* wait reset performs */
  266. for (i = 0; i < 150; i++) {
  267. ret = af9013_rd_reg_bits(state, 0xd417, 1, 1, &tmp);
  268. if (ret)
  269. goto err;
  270. if (tmp)
  271. break; /* reset done */
  272. usleep_range(5000, 25000);
  273. }
  274. if (!tmp)
  275. return -ETIMEDOUT;
  276. if (onoff) {
  277. /* clear reset */
  278. ret = af9013_wr_reg_bits(state, 0xd417, 1, 1, 0);
  279. if (ret)
  280. goto err;
  281. /* disable reset */
  282. ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 0);
  283. /* power on */
  284. ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 0);
  285. } else {
  286. /* power off */
  287. ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 1);
  288. }
  289. return ret;
  290. err:
  291. dbg("%s: failed=%d", __func__, ret);
  292. return ret;
  293. }
  294. static int af9013_statistics_ber_unc_start(struct dvb_frontend *fe)
  295. {
  296. struct af9013_state *state = fe->demodulator_priv;
  297. int ret;
  298. dbg("%s", __func__);
  299. /* reset and start BER counter */
  300. ret = af9013_wr_reg_bits(state, 0xd391, 4, 1, 1);
  301. if (ret)
  302. goto err;
  303. return ret;
  304. err:
  305. dbg("%s: failed=%d", __func__, ret);
  306. return ret;
  307. }
  308. static int af9013_statistics_ber_unc_result(struct dvb_frontend *fe)
  309. {
  310. struct af9013_state *state = fe->demodulator_priv;
  311. int ret;
  312. u8 buf[5];
  313. dbg("%s", __func__);
  314. /* check if error bit count is ready */
  315. ret = af9013_rd_reg_bits(state, 0xd391, 4, 1, &buf[0]);
  316. if (ret)
  317. goto err;
  318. if (!buf[0]) {
  319. dbg("%s: not ready", __func__);
  320. return 0;
  321. }
  322. ret = af9013_rd_regs(state, 0xd387, buf, 5);
  323. if (ret)
  324. goto err;
  325. state->ber = (buf[2] << 16) | (buf[1] << 8) | buf[0];
  326. state->ucblocks += (buf[4] << 8) | buf[3];
  327. return ret;
  328. err:
  329. dbg("%s: failed=%d", __func__, ret);
  330. return ret;
  331. }
  332. static int af9013_statistics_snr_start(struct dvb_frontend *fe)
  333. {
  334. struct af9013_state *state = fe->demodulator_priv;
  335. int ret;
  336. dbg("%s", __func__);
  337. /* start SNR meas */
  338. ret = af9013_wr_reg_bits(state, 0xd2e1, 3, 1, 1);
  339. if (ret)
  340. goto err;
  341. return ret;
  342. err:
  343. dbg("%s: failed=%d", __func__, ret);
  344. return ret;
  345. }
  346. static int af9013_statistics_snr_result(struct dvb_frontend *fe)
  347. {
  348. struct af9013_state *state = fe->demodulator_priv;
  349. int ret, i, len;
  350. u8 buf[3], tmp;
  351. u32 snr_val;
  352. const struct af9013_snr *uninitialized_var(snr_lut);
  353. dbg("%s", __func__);
  354. /* check if SNR ready */
  355. ret = af9013_rd_reg_bits(state, 0xd2e1, 3, 1, &tmp);
  356. if (ret)
  357. goto err;
  358. if (!tmp) {
  359. dbg("%s: not ready", __func__);
  360. return 0;
  361. }
  362. /* read value */
  363. ret = af9013_rd_regs(state, 0xd2e3, buf, 3);
  364. if (ret)
  365. goto err;
  366. snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
  367. /* read current modulation */
  368. ret = af9013_rd_reg(state, 0xd3c1, &tmp);
  369. if (ret)
  370. goto err;
  371. switch ((tmp >> 6) & 3) {
  372. case 0:
  373. len = ARRAY_SIZE(qpsk_snr_lut);
  374. snr_lut = qpsk_snr_lut;
  375. break;
  376. case 1:
  377. len = ARRAY_SIZE(qam16_snr_lut);
  378. snr_lut = qam16_snr_lut;
  379. break;
  380. case 2:
  381. len = ARRAY_SIZE(qam64_snr_lut);
  382. snr_lut = qam64_snr_lut;
  383. break;
  384. default:
  385. goto err;
  386. break;
  387. }
  388. for (i = 0; i < len; i++) {
  389. tmp = snr_lut[i].snr;
  390. if (snr_val < snr_lut[i].val)
  391. break;
  392. }
  393. state->snr = tmp * 10; /* dB/10 */
  394. return ret;
  395. err:
  396. dbg("%s: failed=%d", __func__, ret);
  397. return ret;
  398. }
  399. static int af9013_statistics_signal_strength(struct dvb_frontend *fe)
  400. {
  401. struct af9013_state *state = fe->demodulator_priv;
  402. int ret = 0;
  403. u8 buf[2], rf_gain, if_gain;
  404. int signal_strength;
  405. dbg("%s", __func__);
  406. if (!state->signal_strength_en)
  407. return 0;
  408. ret = af9013_rd_regs(state, 0xd07c, buf, 2);
  409. if (ret)
  410. goto err;
  411. rf_gain = buf[0];
  412. if_gain = buf[1];
  413. signal_strength = (0xffff / \
  414. (9 * (state->rf_50 + state->if_50) - \
  415. 11 * (state->rf_80 + state->if_80))) * \
  416. (10 * (rf_gain + if_gain) - \
  417. 11 * (state->rf_80 + state->if_80));
  418. if (signal_strength < 0)
  419. signal_strength = 0;
  420. else if (signal_strength > 0xffff)
  421. signal_strength = 0xffff;
  422. state->signal_strength = signal_strength;
  423. return ret;
  424. err:
  425. dbg("%s: failed=%d", __func__, ret);
  426. return ret;
  427. }
  428. static void af9013_statistics_work(struct work_struct *work)
  429. {
  430. struct af9013_state *state = container_of(work,
  431. struct af9013_state, statistics_work.work);
  432. unsigned int next_msec;
  433. /* update only signal strength when demod is not locked */
  434. if (!(state->fe_status & FE_HAS_LOCK)) {
  435. state->statistics_step = 0;
  436. state->ber = 0;
  437. state->snr = 0;
  438. }
  439. switch (state->statistics_step) {
  440. default:
  441. state->statistics_step = 0;
  442. case 0:
  443. af9013_statistics_signal_strength(&state->fe);
  444. state->statistics_step++;
  445. next_msec = 300;
  446. break;
  447. case 1:
  448. af9013_statistics_snr_start(&state->fe);
  449. state->statistics_step++;
  450. next_msec = 200;
  451. break;
  452. case 2:
  453. af9013_statistics_ber_unc_start(&state->fe);
  454. state->statistics_step++;
  455. next_msec = 1000;
  456. break;
  457. case 3:
  458. af9013_statistics_snr_result(&state->fe);
  459. state->statistics_step++;
  460. next_msec = 400;
  461. break;
  462. case 4:
  463. af9013_statistics_ber_unc_result(&state->fe);
  464. state->statistics_step++;
  465. next_msec = 100;
  466. break;
  467. }
  468. schedule_delayed_work(&state->statistics_work,
  469. msecs_to_jiffies(next_msec));
  470. }
  471. static int af9013_get_tune_settings(struct dvb_frontend *fe,
  472. struct dvb_frontend_tune_settings *fesettings)
  473. {
  474. fesettings->min_delay_ms = 800;
  475. fesettings->step_size = 0;
  476. fesettings->max_drift = 0;
  477. return 0;
  478. }
  479. static int af9013_set_frontend(struct dvb_frontend *fe)
  480. {
  481. struct af9013_state *state = fe->demodulator_priv;
  482. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  483. int ret, i, sampling_freq;
  484. bool auto_mode, spec_inv;
  485. u8 buf[6];
  486. u32 if_frequency, freq_cw;
  487. dbg("%s: frequency=%d bandwidth_hz=%d", __func__,
  488. c->frequency, c->bandwidth_hz);
  489. /* program tuner */
  490. if (fe->ops.tuner_ops.set_params)
  491. fe->ops.tuner_ops.set_params(fe);
  492. /* program CFOE coefficients */
  493. if (c->bandwidth_hz != state->bandwidth_hz) {
  494. for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
  495. if (coeff_lut[i].clock == state->config.clock &&
  496. coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
  497. break;
  498. }
  499. }
  500. ret = af9013_wr_regs(state, 0xae00, coeff_lut[i].val,
  501. sizeof(coeff_lut[i].val));
  502. }
  503. /* program frequency control */
  504. if (c->bandwidth_hz != state->bandwidth_hz || state->first_tune) {
  505. /* get used IF frequency */
  506. if (fe->ops.tuner_ops.get_if_frequency)
  507. fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
  508. else
  509. if_frequency = state->config.if_frequency;
  510. dbg("%s: if_frequency=%d", __func__, if_frequency);
  511. sampling_freq = if_frequency;
  512. while (sampling_freq > (state->config.clock / 2))
  513. sampling_freq -= state->config.clock;
  514. if (sampling_freq < 0) {
  515. sampling_freq *= -1;
  516. spec_inv = state->config.spec_inv;
  517. } else {
  518. spec_inv = !state->config.spec_inv;
  519. }
  520. freq_cw = af913_div(sampling_freq, state->config.clock, 23);
  521. if (spec_inv)
  522. freq_cw = 0x800000 - freq_cw;
  523. buf[0] = (freq_cw >> 0) & 0xff;
  524. buf[1] = (freq_cw >> 8) & 0xff;
  525. buf[2] = (freq_cw >> 16) & 0x7f;
  526. freq_cw = 0x800000 - freq_cw;
  527. buf[3] = (freq_cw >> 0) & 0xff;
  528. buf[4] = (freq_cw >> 8) & 0xff;
  529. buf[5] = (freq_cw >> 16) & 0x7f;
  530. ret = af9013_wr_regs(state, 0xd140, buf, 3);
  531. if (ret)
  532. goto err;
  533. ret = af9013_wr_regs(state, 0x9be7, buf, 6);
  534. if (ret)
  535. goto err;
  536. }
  537. /* clear TPS lock flag */
  538. ret = af9013_wr_reg_bits(state, 0xd330, 3, 1, 1);
  539. if (ret)
  540. goto err;
  541. /* clear MPEG2 lock flag */
  542. ret = af9013_wr_reg_bits(state, 0xd507, 6, 1, 0);
  543. if (ret)
  544. goto err;
  545. /* empty channel function */
  546. ret = af9013_wr_reg_bits(state, 0x9bfe, 0, 1, 0);
  547. if (ret)
  548. goto err;
  549. /* empty DVB-T channel function */
  550. ret = af9013_wr_reg_bits(state, 0x9bc2, 0, 1, 0);
  551. if (ret)
  552. goto err;
  553. /* transmission parameters */
  554. auto_mode = false;
  555. memset(buf, 0, 3);
  556. switch (c->transmission_mode) {
  557. case TRANSMISSION_MODE_AUTO:
  558. auto_mode = 1;
  559. break;
  560. case TRANSMISSION_MODE_2K:
  561. break;
  562. case TRANSMISSION_MODE_8K:
  563. buf[0] |= (1 << 0);
  564. break;
  565. default:
  566. dbg("%s: invalid transmission_mode", __func__);
  567. auto_mode = 1;
  568. }
  569. switch (c->guard_interval) {
  570. case GUARD_INTERVAL_AUTO:
  571. auto_mode = 1;
  572. break;
  573. case GUARD_INTERVAL_1_32:
  574. break;
  575. case GUARD_INTERVAL_1_16:
  576. buf[0] |= (1 << 2);
  577. break;
  578. case GUARD_INTERVAL_1_8:
  579. buf[0] |= (2 << 2);
  580. break;
  581. case GUARD_INTERVAL_1_4:
  582. buf[0] |= (3 << 2);
  583. break;
  584. default:
  585. dbg("%s: invalid guard_interval", __func__);
  586. auto_mode = 1;
  587. }
  588. switch (c->hierarchy) {
  589. case HIERARCHY_AUTO:
  590. auto_mode = 1;
  591. break;
  592. case HIERARCHY_NONE:
  593. break;
  594. case HIERARCHY_1:
  595. buf[0] |= (1 << 4);
  596. break;
  597. case HIERARCHY_2:
  598. buf[0] |= (2 << 4);
  599. break;
  600. case HIERARCHY_4:
  601. buf[0] |= (3 << 4);
  602. break;
  603. default:
  604. dbg("%s: invalid hierarchy", __func__);
  605. auto_mode = 1;
  606. };
  607. switch (c->modulation) {
  608. case QAM_AUTO:
  609. auto_mode = 1;
  610. break;
  611. case QPSK:
  612. break;
  613. case QAM_16:
  614. buf[1] |= (1 << 6);
  615. break;
  616. case QAM_64:
  617. buf[1] |= (2 << 6);
  618. break;
  619. default:
  620. dbg("%s: invalid modulation", __func__);
  621. auto_mode = 1;
  622. }
  623. /* Use HP. How and which case we can switch to LP? */
  624. buf[1] |= (1 << 4);
  625. switch (c->code_rate_HP) {
  626. case FEC_AUTO:
  627. auto_mode = 1;
  628. break;
  629. case FEC_1_2:
  630. break;
  631. case FEC_2_3:
  632. buf[2] |= (1 << 0);
  633. break;
  634. case FEC_3_4:
  635. buf[2] |= (2 << 0);
  636. break;
  637. case FEC_5_6:
  638. buf[2] |= (3 << 0);
  639. break;
  640. case FEC_7_8:
  641. buf[2] |= (4 << 0);
  642. break;
  643. default:
  644. dbg("%s: invalid code_rate_HP", __func__);
  645. auto_mode = 1;
  646. }
  647. switch (c->code_rate_LP) {
  648. case FEC_AUTO:
  649. auto_mode = 1;
  650. break;
  651. case FEC_1_2:
  652. break;
  653. case FEC_2_3:
  654. buf[2] |= (1 << 3);
  655. break;
  656. case FEC_3_4:
  657. buf[2] |= (2 << 3);
  658. break;
  659. case FEC_5_6:
  660. buf[2] |= (3 << 3);
  661. break;
  662. case FEC_7_8:
  663. buf[2] |= (4 << 3);
  664. break;
  665. case FEC_NONE:
  666. break;
  667. default:
  668. dbg("%s: invalid code_rate_LP", __func__);
  669. auto_mode = 1;
  670. }
  671. switch (c->bandwidth_hz) {
  672. case 6000000:
  673. break;
  674. case 7000000:
  675. buf[1] |= (1 << 2);
  676. break;
  677. case 8000000:
  678. buf[1] |= (2 << 2);
  679. break;
  680. default:
  681. dbg("%s: invalid bandwidth_hz", __func__);
  682. ret = -EINVAL;
  683. goto err;
  684. }
  685. ret = af9013_wr_regs(state, 0xd3c0, buf, 3);
  686. if (ret)
  687. goto err;
  688. if (auto_mode) {
  689. /* clear easy mode flag */
  690. ret = af9013_wr_reg(state, 0xaefd, 0);
  691. if (ret)
  692. goto err;
  693. dbg("%s: auto params", __func__);
  694. } else {
  695. /* set easy mode flag */
  696. ret = af9013_wr_reg(state, 0xaefd, 1);
  697. if (ret)
  698. goto err;
  699. ret = af9013_wr_reg(state, 0xaefe, 0);
  700. if (ret)
  701. goto err;
  702. dbg("%s: manual params", __func__);
  703. }
  704. /* tune */
  705. ret = af9013_wr_reg(state, 0xffff, 0);
  706. if (ret)
  707. goto err;
  708. state->bandwidth_hz = c->bandwidth_hz;
  709. state->set_frontend_jiffies = jiffies;
  710. state->first_tune = false;
  711. return ret;
  712. err:
  713. dbg("%s: failed=%d", __func__, ret);
  714. return ret;
  715. }
  716. static int af9013_get_frontend(struct dvb_frontend *fe)
  717. {
  718. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  719. struct af9013_state *state = fe->demodulator_priv;
  720. int ret;
  721. u8 buf[3];
  722. dbg("%s", __func__);
  723. ret = af9013_rd_regs(state, 0xd3c0, buf, 3);
  724. if (ret)
  725. goto err;
  726. switch ((buf[1] >> 6) & 3) {
  727. case 0:
  728. c->modulation = QPSK;
  729. break;
  730. case 1:
  731. c->modulation = QAM_16;
  732. break;
  733. case 2:
  734. c->modulation = QAM_64;
  735. break;
  736. }
  737. switch ((buf[0] >> 0) & 3) {
  738. case 0:
  739. c->transmission_mode = TRANSMISSION_MODE_2K;
  740. break;
  741. case 1:
  742. c->transmission_mode = TRANSMISSION_MODE_8K;
  743. }
  744. switch ((buf[0] >> 2) & 3) {
  745. case 0:
  746. c->guard_interval = GUARD_INTERVAL_1_32;
  747. break;
  748. case 1:
  749. c->guard_interval = GUARD_INTERVAL_1_16;
  750. break;
  751. case 2:
  752. c->guard_interval = GUARD_INTERVAL_1_8;
  753. break;
  754. case 3:
  755. c->guard_interval = GUARD_INTERVAL_1_4;
  756. break;
  757. }
  758. switch ((buf[0] >> 4) & 7) {
  759. case 0:
  760. c->hierarchy = HIERARCHY_NONE;
  761. break;
  762. case 1:
  763. c->hierarchy = HIERARCHY_1;
  764. break;
  765. case 2:
  766. c->hierarchy = HIERARCHY_2;
  767. break;
  768. case 3:
  769. c->hierarchy = HIERARCHY_4;
  770. break;
  771. }
  772. switch ((buf[2] >> 0) & 7) {
  773. case 0:
  774. c->code_rate_HP = FEC_1_2;
  775. break;
  776. case 1:
  777. c->code_rate_HP = FEC_2_3;
  778. break;
  779. case 2:
  780. c->code_rate_HP = FEC_3_4;
  781. break;
  782. case 3:
  783. c->code_rate_HP = FEC_5_6;
  784. break;
  785. case 4:
  786. c->code_rate_HP = FEC_7_8;
  787. break;
  788. }
  789. switch ((buf[2] >> 3) & 7) {
  790. case 0:
  791. c->code_rate_LP = FEC_1_2;
  792. break;
  793. case 1:
  794. c->code_rate_LP = FEC_2_3;
  795. break;
  796. case 2:
  797. c->code_rate_LP = FEC_3_4;
  798. break;
  799. case 3:
  800. c->code_rate_LP = FEC_5_6;
  801. break;
  802. case 4:
  803. c->code_rate_LP = FEC_7_8;
  804. break;
  805. }
  806. switch ((buf[1] >> 2) & 3) {
  807. case 0:
  808. c->bandwidth_hz = 6000000;
  809. break;
  810. case 1:
  811. c->bandwidth_hz = 7000000;
  812. break;
  813. case 2:
  814. c->bandwidth_hz = 8000000;
  815. break;
  816. }
  817. return ret;
  818. err:
  819. dbg("%s: failed=%d", __func__, ret);
  820. return ret;
  821. }
  822. static int af9013_read_status(struct dvb_frontend *fe, fe_status_t *status)
  823. {
  824. struct af9013_state *state = fe->demodulator_priv;
  825. int ret;
  826. u8 tmp;
  827. /*
  828. * Return status from the cache if it is younger than 2000ms with the
  829. * exception of last tune is done during 4000ms.
  830. */
  831. if (time_is_after_jiffies(
  832. state->read_status_jiffies + msecs_to_jiffies(2000)) &&
  833. time_is_before_jiffies(
  834. state->set_frontend_jiffies + msecs_to_jiffies(4000))
  835. ) {
  836. *status = state->fe_status;
  837. return 0;
  838. } else {
  839. *status = 0;
  840. }
  841. /* MPEG2 lock */
  842. ret = af9013_rd_reg_bits(state, 0xd507, 6, 1, &tmp);
  843. if (ret)
  844. goto err;
  845. if (tmp)
  846. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI |
  847. FE_HAS_SYNC | FE_HAS_LOCK;
  848. if (!*status) {
  849. /* TPS lock */
  850. ret = af9013_rd_reg_bits(state, 0xd330, 3, 1, &tmp);
  851. if (ret)
  852. goto err;
  853. if (tmp)
  854. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  855. FE_HAS_VITERBI;
  856. }
  857. state->fe_status = *status;
  858. state->read_status_jiffies = jiffies;
  859. return ret;
  860. err:
  861. dbg("%s: failed=%d", __func__, ret);
  862. return ret;
  863. }
  864. static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr)
  865. {
  866. struct af9013_state *state = fe->demodulator_priv;
  867. *snr = state->snr;
  868. return 0;
  869. }
  870. static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  871. {
  872. struct af9013_state *state = fe->demodulator_priv;
  873. *strength = state->signal_strength;
  874. return 0;
  875. }
  876. static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber)
  877. {
  878. struct af9013_state *state = fe->demodulator_priv;
  879. *ber = state->ber;
  880. return 0;
  881. }
  882. static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  883. {
  884. struct af9013_state *state = fe->demodulator_priv;
  885. *ucblocks = state->ucblocks;
  886. return 0;
  887. }
  888. static int af9013_init(struct dvb_frontend *fe)
  889. {
  890. struct af9013_state *state = fe->demodulator_priv;
  891. int ret, i, len;
  892. u8 buf[3], tmp;
  893. u32 adc_cw;
  894. const struct af9013_reg_bit *init;
  895. dbg("%s", __func__);
  896. /* power on */
  897. ret = af9013_power_ctrl(state, 1);
  898. if (ret)
  899. goto err;
  900. /* enable ADC */
  901. ret = af9013_wr_reg(state, 0xd73a, 0xa4);
  902. if (ret)
  903. goto err;
  904. /* write API version to firmware */
  905. ret = af9013_wr_regs(state, 0x9bf2, state->config.api_version, 4);
  906. if (ret)
  907. goto err;
  908. /* program ADC control */
  909. switch (state->config.clock) {
  910. case 28800000: /* 28.800 MHz */
  911. tmp = 0;
  912. break;
  913. case 20480000: /* 20.480 MHz */
  914. tmp = 1;
  915. break;
  916. case 28000000: /* 28.000 MHz */
  917. tmp = 2;
  918. break;
  919. case 25000000: /* 25.000 MHz */
  920. tmp = 3;
  921. break;
  922. default:
  923. err("invalid clock");
  924. return -EINVAL;
  925. }
  926. adc_cw = af913_div(state->config.clock, 1000000ul, 19);
  927. buf[0] = (adc_cw >> 0) & 0xff;
  928. buf[1] = (adc_cw >> 8) & 0xff;
  929. buf[2] = (adc_cw >> 16) & 0xff;
  930. ret = af9013_wr_regs(state, 0xd180, buf, 3);
  931. if (ret)
  932. goto err;
  933. ret = af9013_wr_reg_bits(state, 0x9bd2, 0, 4, tmp);
  934. if (ret)
  935. goto err;
  936. /* set I2C master clock */
  937. ret = af9013_wr_reg(state, 0xd416, 0x14);
  938. if (ret)
  939. goto err;
  940. /* set 16 embx */
  941. ret = af9013_wr_reg_bits(state, 0xd700, 1, 1, 1);
  942. if (ret)
  943. goto err;
  944. /* set no trigger */
  945. ret = af9013_wr_reg_bits(state, 0xd700, 2, 1, 0);
  946. if (ret)
  947. goto err;
  948. /* set read-update bit for constellation */
  949. ret = af9013_wr_reg_bits(state, 0xd371, 1, 1, 1);
  950. if (ret)
  951. goto err;
  952. /* settings for mp2if */
  953. if (state->config.ts_mode == AF9013_TS_USB) {
  954. /* AF9015 split PSB to 1.5k + 0.5k */
  955. ret = af9013_wr_reg_bits(state, 0xd50b, 2, 1, 1);
  956. if (ret)
  957. goto err;
  958. } else {
  959. /* AF9013 change the output bit to data7 */
  960. ret = af9013_wr_reg_bits(state, 0xd500, 3, 1, 1);
  961. if (ret)
  962. goto err;
  963. /* AF9013 set mpeg to full speed */
  964. ret = af9013_wr_reg_bits(state, 0xd502, 4, 1, 1);
  965. if (ret)
  966. goto err;
  967. }
  968. ret = af9013_wr_reg_bits(state, 0xd520, 4, 1, 1);
  969. if (ret)
  970. goto err;
  971. /* load OFSM settings */
  972. dbg("%s: load ofsm settings", __func__);
  973. len = ARRAY_SIZE(ofsm_init);
  974. init = ofsm_init;
  975. for (i = 0; i < len; i++) {
  976. ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
  977. init[i].len, init[i].val);
  978. if (ret)
  979. goto err;
  980. }
  981. /* load tuner specific settings */
  982. dbg("%s: load tuner specific settings", __func__);
  983. switch (state->config.tuner) {
  984. case AF9013_TUNER_MXL5003D:
  985. len = ARRAY_SIZE(tuner_init_mxl5003d);
  986. init = tuner_init_mxl5003d;
  987. break;
  988. case AF9013_TUNER_MXL5005D:
  989. case AF9013_TUNER_MXL5005R:
  990. case AF9013_TUNER_MXL5007T:
  991. len = ARRAY_SIZE(tuner_init_mxl5005);
  992. init = tuner_init_mxl5005;
  993. break;
  994. case AF9013_TUNER_ENV77H11D5:
  995. len = ARRAY_SIZE(tuner_init_env77h11d5);
  996. init = tuner_init_env77h11d5;
  997. break;
  998. case AF9013_TUNER_MT2060:
  999. len = ARRAY_SIZE(tuner_init_mt2060);
  1000. init = tuner_init_mt2060;
  1001. break;
  1002. case AF9013_TUNER_MC44S803:
  1003. len = ARRAY_SIZE(tuner_init_mc44s803);
  1004. init = tuner_init_mc44s803;
  1005. break;
  1006. case AF9013_TUNER_QT1010:
  1007. case AF9013_TUNER_QT1010A:
  1008. len = ARRAY_SIZE(tuner_init_qt1010);
  1009. init = tuner_init_qt1010;
  1010. break;
  1011. case AF9013_TUNER_MT2060_2:
  1012. len = ARRAY_SIZE(tuner_init_mt2060_2);
  1013. init = tuner_init_mt2060_2;
  1014. break;
  1015. case AF9013_TUNER_TDA18271:
  1016. case AF9013_TUNER_TDA18218:
  1017. len = ARRAY_SIZE(tuner_init_tda18271);
  1018. init = tuner_init_tda18271;
  1019. break;
  1020. case AF9013_TUNER_UNKNOWN:
  1021. default:
  1022. len = ARRAY_SIZE(tuner_init_unknown);
  1023. init = tuner_init_unknown;
  1024. break;
  1025. }
  1026. for (i = 0; i < len; i++) {
  1027. ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
  1028. init[i].len, init[i].val);
  1029. if (ret)
  1030. goto err;
  1031. }
  1032. /* TS mode */
  1033. ret = af9013_wr_reg_bits(state, 0xd500, 1, 2, state->config.ts_mode);
  1034. if (ret)
  1035. goto err;
  1036. /* enable lock led */
  1037. ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 1);
  1038. if (ret)
  1039. goto err;
  1040. /* check if we support signal strength */
  1041. if (!state->signal_strength_en) {
  1042. ret = af9013_rd_reg_bits(state, 0x9bee, 0, 1,
  1043. &state->signal_strength_en);
  1044. if (ret)
  1045. goto err;
  1046. }
  1047. /* read values needed for signal strength calculation */
  1048. if (state->signal_strength_en && !state->rf_50) {
  1049. ret = af9013_rd_reg(state, 0x9bbd, &state->rf_50);
  1050. if (ret)
  1051. goto err;
  1052. ret = af9013_rd_reg(state, 0x9bd0, &state->rf_80);
  1053. if (ret)
  1054. goto err;
  1055. ret = af9013_rd_reg(state, 0x9be2, &state->if_50);
  1056. if (ret)
  1057. goto err;
  1058. ret = af9013_rd_reg(state, 0x9be4, &state->if_80);
  1059. if (ret)
  1060. goto err;
  1061. }
  1062. /* SNR */
  1063. ret = af9013_wr_reg(state, 0xd2e2, 1);
  1064. if (ret)
  1065. goto err;
  1066. /* BER / UCB */
  1067. buf[0] = (10000 >> 0) & 0xff;
  1068. buf[1] = (10000 >> 8) & 0xff;
  1069. ret = af9013_wr_regs(state, 0xd385, buf, 2);
  1070. if (ret)
  1071. goto err;
  1072. /* enable FEC monitor */
  1073. ret = af9013_wr_reg_bits(state, 0xd392, 1, 1, 1);
  1074. if (ret)
  1075. goto err;
  1076. state->first_tune = true;
  1077. schedule_delayed_work(&state->statistics_work, msecs_to_jiffies(400));
  1078. return ret;
  1079. err:
  1080. dbg("%s: failed=%d", __func__, ret);
  1081. return ret;
  1082. }
  1083. static int af9013_sleep(struct dvb_frontend *fe)
  1084. {
  1085. struct af9013_state *state = fe->demodulator_priv;
  1086. int ret;
  1087. dbg("%s", __func__);
  1088. /* stop statistics polling */
  1089. cancel_delayed_work_sync(&state->statistics_work);
  1090. /* disable lock led */
  1091. ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 0);
  1092. if (ret)
  1093. goto err;
  1094. /* power off */
  1095. ret = af9013_power_ctrl(state, 0);
  1096. if (ret)
  1097. goto err;
  1098. return ret;
  1099. err:
  1100. dbg("%s: failed=%d", __func__, ret);
  1101. return ret;
  1102. }
  1103. static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  1104. {
  1105. int ret;
  1106. struct af9013_state *state = fe->demodulator_priv;
  1107. dbg("%s: enable=%d", __func__, enable);
  1108. /* gate already open or close */
  1109. if (state->i2c_gate_state == enable)
  1110. return 0;
  1111. if (state->config.ts_mode == AF9013_TS_USB)
  1112. ret = af9013_wr_reg_bits(state, 0xd417, 3, 1, enable);
  1113. else
  1114. ret = af9013_wr_reg_bits(state, 0xd607, 2, 1, enable);
  1115. if (ret)
  1116. goto err;
  1117. state->i2c_gate_state = enable;
  1118. return ret;
  1119. err:
  1120. dbg("%s: failed=%d", __func__, ret);
  1121. return ret;
  1122. }
  1123. static void af9013_release(struct dvb_frontend *fe)
  1124. {
  1125. struct af9013_state *state = fe->demodulator_priv;
  1126. kfree(state);
  1127. }
  1128. static struct dvb_frontend_ops af9013_ops;
  1129. static int af9013_download_firmware(struct af9013_state *state)
  1130. {
  1131. int i, len, remaining, ret;
  1132. const struct firmware *fw;
  1133. u16 checksum = 0;
  1134. u8 val;
  1135. u8 fw_params[4];
  1136. u8 *fw_file = AF9013_DEFAULT_FIRMWARE;
  1137. msleep(100);
  1138. /* check whether firmware is already running */
  1139. ret = af9013_rd_reg(state, 0x98be, &val);
  1140. if (ret)
  1141. goto err;
  1142. else
  1143. dbg("%s: firmware status=%02x", __func__, val);
  1144. if (val == 0x0c) /* fw is running, no need for download */
  1145. goto exit;
  1146. info("found a '%s' in cold state, will try to load a firmware",
  1147. af9013_ops.info.name);
  1148. /* request the firmware, this will block and timeout */
  1149. ret = request_firmware(&fw, fw_file, state->i2c->dev.parent);
  1150. if (ret) {
  1151. err("did not find the firmware file. (%s) "
  1152. "Please see linux/Documentation/dvb/ for more details" \
  1153. " on firmware-problems. (%d)",
  1154. fw_file, ret);
  1155. goto err;
  1156. }
  1157. info("downloading firmware from file '%s'", fw_file);
  1158. /* calc checksum */
  1159. for (i = 0; i < fw->size; i++)
  1160. checksum += fw->data[i];
  1161. fw_params[0] = checksum >> 8;
  1162. fw_params[1] = checksum & 0xff;
  1163. fw_params[2] = fw->size >> 8;
  1164. fw_params[3] = fw->size & 0xff;
  1165. /* write fw checksum & size */
  1166. ret = af9013_write_ofsm_regs(state, 0x50fc,
  1167. fw_params, sizeof(fw_params));
  1168. if (ret)
  1169. goto err_release;
  1170. #define FW_ADDR 0x5100 /* firmware start address */
  1171. #define LEN_MAX 16 /* max packet size */
  1172. for (remaining = fw->size; remaining > 0; remaining -= LEN_MAX) {
  1173. len = remaining;
  1174. if (len > LEN_MAX)
  1175. len = LEN_MAX;
  1176. ret = af9013_write_ofsm_regs(state,
  1177. FW_ADDR + fw->size - remaining,
  1178. (u8 *) &fw->data[fw->size - remaining], len);
  1179. if (ret) {
  1180. err("firmware download failed:%d", ret);
  1181. goto err_release;
  1182. }
  1183. }
  1184. /* request boot firmware */
  1185. ret = af9013_wr_reg(state, 0xe205, 1);
  1186. if (ret)
  1187. goto err_release;
  1188. for (i = 0; i < 15; i++) {
  1189. msleep(100);
  1190. /* check firmware status */
  1191. ret = af9013_rd_reg(state, 0x98be, &val);
  1192. if (ret)
  1193. goto err_release;
  1194. dbg("%s: firmware status=%02x", __func__, val);
  1195. if (val == 0x0c || val == 0x04) /* success or fail */
  1196. break;
  1197. }
  1198. if (val == 0x04) {
  1199. err("firmware did not run");
  1200. ret = -ENODEV;
  1201. } else if (val != 0x0c) {
  1202. err("firmware boot timeout");
  1203. ret = -ENODEV;
  1204. }
  1205. err_release:
  1206. release_firmware(fw);
  1207. err:
  1208. exit:
  1209. if (!ret)
  1210. info("found a '%s' in warm state.", af9013_ops.info.name);
  1211. return ret;
  1212. }
  1213. struct dvb_frontend *af9013_attach(const struct af9013_config *config,
  1214. struct i2c_adapter *i2c)
  1215. {
  1216. int ret;
  1217. struct af9013_state *state = NULL;
  1218. u8 buf[4], i;
  1219. /* allocate memory for the internal state */
  1220. state = kzalloc(sizeof(struct af9013_state), GFP_KERNEL);
  1221. if (state == NULL)
  1222. goto err;
  1223. /* setup the state */
  1224. state->i2c = i2c;
  1225. memcpy(&state->config, config, sizeof(struct af9013_config));
  1226. /* download firmware */
  1227. if (state->config.ts_mode != AF9013_TS_USB) {
  1228. ret = af9013_download_firmware(state);
  1229. if (ret)
  1230. goto err;
  1231. }
  1232. /* firmware version */
  1233. ret = af9013_rd_regs(state, 0x5103, buf, 4);
  1234. if (ret)
  1235. goto err;
  1236. info("firmware version %d.%d.%d.%d", buf[0], buf[1], buf[2], buf[3]);
  1237. /* set GPIOs */
  1238. for (i = 0; i < sizeof(state->config.gpio); i++) {
  1239. ret = af9013_set_gpio(state, i, state->config.gpio[i]);
  1240. if (ret)
  1241. goto err;
  1242. }
  1243. /* create dvb_frontend */
  1244. memcpy(&state->fe.ops, &af9013_ops,
  1245. sizeof(struct dvb_frontend_ops));
  1246. state->fe.demodulator_priv = state;
  1247. INIT_DELAYED_WORK(&state->statistics_work, af9013_statistics_work);
  1248. return &state->fe;
  1249. err:
  1250. kfree(state);
  1251. return NULL;
  1252. }
  1253. EXPORT_SYMBOL(af9013_attach);
  1254. static struct dvb_frontend_ops af9013_ops = {
  1255. .delsys = { SYS_DVBT },
  1256. .info = {
  1257. .name = "Afatech AF9013",
  1258. .frequency_min = 174000000,
  1259. .frequency_max = 862000000,
  1260. .frequency_stepsize = 250000,
  1261. .frequency_tolerance = 0,
  1262. .caps = FE_CAN_FEC_1_2 |
  1263. FE_CAN_FEC_2_3 |
  1264. FE_CAN_FEC_3_4 |
  1265. FE_CAN_FEC_5_6 |
  1266. FE_CAN_FEC_7_8 |
  1267. FE_CAN_FEC_AUTO |
  1268. FE_CAN_QPSK |
  1269. FE_CAN_QAM_16 |
  1270. FE_CAN_QAM_64 |
  1271. FE_CAN_QAM_AUTO |
  1272. FE_CAN_TRANSMISSION_MODE_AUTO |
  1273. FE_CAN_GUARD_INTERVAL_AUTO |
  1274. FE_CAN_HIERARCHY_AUTO |
  1275. FE_CAN_RECOVER |
  1276. FE_CAN_MUTE_TS
  1277. },
  1278. .release = af9013_release,
  1279. .init = af9013_init,
  1280. .sleep = af9013_sleep,
  1281. .get_tune_settings = af9013_get_tune_settings,
  1282. .set_frontend = af9013_set_frontend,
  1283. .get_frontend = af9013_get_frontend,
  1284. .read_status = af9013_read_status,
  1285. .read_snr = af9013_read_snr,
  1286. .read_signal_strength = af9013_read_signal_strength,
  1287. .read_ber = af9013_read_ber,
  1288. .read_ucblocks = af9013_read_ucblocks,
  1289. .i2c_gate_ctrl = af9013_i2c_gate_ctrl,
  1290. };
  1291. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  1292. MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver");
  1293. MODULE_LICENSE("GPL");