dmabounce.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656
  1. /*
  2. * arch/arm/common/dmabounce.c
  3. *
  4. * Special dma_{map/unmap/dma_sync}_* routines for systems that have
  5. * limited DMA windows. These functions utilize bounce buffers to
  6. * copy data to/from buffers located outside the DMA region. This
  7. * only works for systems in which DMA memory is at the bottom of
  8. * RAM, the remainder of memory is at the top and the DMA memory
  9. * can be marked as ZONE_DMA. Anything beyond that such as discontigous
  10. * DMA windows will require custom implementations that reserve memory
  11. * areas at early bootup.
  12. *
  13. * Original version by Brad Parker (brad@heeltoe.com)
  14. * Re-written by Christopher Hoover <ch@murgatroid.com>
  15. * Made generic by Deepak Saxena <dsaxena@plexity.net>
  16. *
  17. * Copyright (C) 2002 Hewlett Packard Company.
  18. * Copyright (C) 2004 MontaVista Software, Inc.
  19. *
  20. * This program is free software; you can redistribute it and/or
  21. * modify it under the terms of the GNU General Public License
  22. * version 2 as published by the Free Software Foundation.
  23. */
  24. #include <linux/module.h>
  25. #include <linux/init.h>
  26. #include <linux/slab.h>
  27. #include <linux/device.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/dmapool.h>
  30. #include <linux/list.h>
  31. #include <asm/cacheflush.h>
  32. #undef DEBUG
  33. #undef STATS
  34. #ifdef STATS
  35. #define DO_STATS(X) do { X ; } while (0)
  36. #else
  37. #define DO_STATS(X) do { } while (0)
  38. #endif
  39. /* ************************************************** */
  40. struct safe_buffer {
  41. struct list_head node;
  42. /* original request */
  43. void *ptr;
  44. size_t size;
  45. int direction;
  46. /* safe buffer info */
  47. struct dmabounce_pool *pool;
  48. void *safe;
  49. dma_addr_t safe_dma_addr;
  50. };
  51. struct dmabounce_pool {
  52. unsigned long size;
  53. struct dma_pool *pool;
  54. #ifdef STATS
  55. unsigned long allocs;
  56. #endif
  57. };
  58. struct dmabounce_device_info {
  59. struct device *dev;
  60. struct list_head safe_buffers;
  61. #ifdef STATS
  62. unsigned long total_allocs;
  63. unsigned long map_op_count;
  64. unsigned long bounce_count;
  65. #endif
  66. struct dmabounce_pool small;
  67. struct dmabounce_pool large;
  68. rwlock_t lock;
  69. };
  70. #ifdef STATS
  71. static void print_alloc_stats(struct dmabounce_device_info *device_info)
  72. {
  73. printk(KERN_INFO
  74. "%s: dmabounce: sbp: %lu, lbp: %lu, other: %lu, total: %lu\n",
  75. device_info->dev->bus_id,
  76. device_info->small.allocs, device_info->large.allocs,
  77. device_info->total_allocs - device_info->small.allocs -
  78. device_info->large.allocs,
  79. device_info->total_allocs);
  80. }
  81. #endif
  82. /* allocate a 'safe' buffer and keep track of it */
  83. static inline struct safe_buffer *
  84. alloc_safe_buffer(struct dmabounce_device_info *device_info, void *ptr,
  85. size_t size, enum dma_data_direction dir)
  86. {
  87. struct safe_buffer *buf;
  88. struct dmabounce_pool *pool;
  89. struct device *dev = device_info->dev;
  90. unsigned long flags;
  91. dev_dbg(dev, "%s(ptr=%p, size=%d, dir=%d)\n",
  92. __func__, ptr, size, dir);
  93. if (size <= device_info->small.size) {
  94. pool = &device_info->small;
  95. } else if (size <= device_info->large.size) {
  96. pool = &device_info->large;
  97. } else {
  98. pool = NULL;
  99. }
  100. buf = kmalloc(sizeof(struct safe_buffer), GFP_ATOMIC);
  101. if (buf == NULL) {
  102. dev_warn(dev, "%s: kmalloc failed\n", __func__);
  103. return NULL;
  104. }
  105. buf->ptr = ptr;
  106. buf->size = size;
  107. buf->direction = dir;
  108. buf->pool = pool;
  109. if (pool) {
  110. buf->safe = dma_pool_alloc(pool->pool, GFP_ATOMIC,
  111. &buf->safe_dma_addr);
  112. } else {
  113. buf->safe = dma_alloc_coherent(dev, size, &buf->safe_dma_addr,
  114. GFP_ATOMIC);
  115. }
  116. if (buf->safe == NULL) {
  117. dev_warn(dev,
  118. "%s: could not alloc dma memory (size=%d)\n",
  119. __func__, size);
  120. kfree(buf);
  121. return NULL;
  122. }
  123. #ifdef STATS
  124. if (pool)
  125. pool->allocs++;
  126. device_info->total_allocs++;
  127. if (device_info->total_allocs % 1000 == 0)
  128. print_alloc_stats(device_info);
  129. #endif
  130. write_lock_irqsave(&device_info->lock, flags);
  131. list_add(&buf->node, &device_info->safe_buffers);
  132. write_unlock_irqrestore(&device_info->lock, flags);
  133. return buf;
  134. }
  135. /* determine if a buffer is from our "safe" pool */
  136. static inline struct safe_buffer *
  137. find_safe_buffer(struct dmabounce_device_info *device_info, dma_addr_t safe_dma_addr)
  138. {
  139. struct safe_buffer *b, *rb = NULL;
  140. unsigned long flags;
  141. read_lock_irqsave(&device_info->lock, flags);
  142. list_for_each_entry(b, &device_info->safe_buffers, node)
  143. if (b->safe_dma_addr == safe_dma_addr) {
  144. rb = b;
  145. break;
  146. }
  147. read_unlock_irqrestore(&device_info->lock, flags);
  148. return rb;
  149. }
  150. static inline void
  151. free_safe_buffer(struct dmabounce_device_info *device_info, struct safe_buffer *buf)
  152. {
  153. unsigned long flags;
  154. dev_dbg(device_info->dev, "%s(buf=%p)\n", __func__, buf);
  155. write_lock_irqsave(&device_info->lock, flags);
  156. list_del(&buf->node);
  157. write_unlock_irqrestore(&device_info->lock, flags);
  158. if (buf->pool)
  159. dma_pool_free(buf->pool->pool, buf->safe, buf->safe_dma_addr);
  160. else
  161. dma_free_coherent(device_info->dev, buf->size, buf->safe,
  162. buf->safe_dma_addr);
  163. kfree(buf);
  164. }
  165. /* ************************************************** */
  166. #ifdef STATS
  167. static void print_map_stats(struct dmabounce_device_info *device_info)
  168. {
  169. dev_info(device_info->dev,
  170. "dmabounce: map_op_count=%lu, bounce_count=%lu\n",
  171. device_info->map_op_count, device_info->bounce_count);
  172. }
  173. #endif
  174. static inline dma_addr_t
  175. map_single(struct device *dev, void *ptr, size_t size,
  176. enum dma_data_direction dir)
  177. {
  178. struct dmabounce_device_info *device_info = dev->archdata.dmabounce;
  179. dma_addr_t dma_addr;
  180. int needs_bounce = 0;
  181. if (device_info)
  182. DO_STATS ( device_info->map_op_count++ );
  183. dma_addr = virt_to_dma(dev, ptr);
  184. if (dev->dma_mask) {
  185. unsigned long mask = *dev->dma_mask;
  186. unsigned long limit;
  187. limit = (mask + 1) & ~mask;
  188. if (limit && size > limit) {
  189. dev_err(dev, "DMA mapping too big (requested %#x "
  190. "mask %#Lx)\n", size, *dev->dma_mask);
  191. return ~0;
  192. }
  193. /*
  194. * Figure out if we need to bounce from the DMA mask.
  195. */
  196. needs_bounce = (dma_addr | (dma_addr + size - 1)) & ~mask;
  197. }
  198. if (device_info && (needs_bounce || dma_needs_bounce(dev, dma_addr, size))) {
  199. struct safe_buffer *buf;
  200. buf = alloc_safe_buffer(device_info, ptr, size, dir);
  201. if (buf == 0) {
  202. dev_err(dev, "%s: unable to map unsafe buffer %p!\n",
  203. __func__, ptr);
  204. return 0;
  205. }
  206. dev_dbg(dev,
  207. "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
  208. __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
  209. buf->safe, (void *) buf->safe_dma_addr);
  210. if ((dir == DMA_TO_DEVICE) ||
  211. (dir == DMA_BIDIRECTIONAL)) {
  212. dev_dbg(dev, "%s: copy unsafe %p to safe %p, size %d\n",
  213. __func__, ptr, buf->safe, size);
  214. memcpy(buf->safe, ptr, size);
  215. }
  216. ptr = buf->safe;
  217. dma_addr = buf->safe_dma_addr;
  218. }
  219. consistent_sync(ptr, size, dir);
  220. return dma_addr;
  221. }
  222. static inline void
  223. unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
  224. enum dma_data_direction dir)
  225. {
  226. struct dmabounce_device_info *device_info = dev->archdata.dmabounce;
  227. struct safe_buffer *buf = NULL;
  228. /*
  229. * Trying to unmap an invalid mapping
  230. */
  231. if (dma_mapping_error(dma_addr)) {
  232. dev_err(dev, "Trying to unmap invalid mapping\n");
  233. return;
  234. }
  235. if (device_info)
  236. buf = find_safe_buffer(device_info, dma_addr);
  237. if (buf) {
  238. BUG_ON(buf->size != size);
  239. dev_dbg(dev,
  240. "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
  241. __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
  242. buf->safe, (void *) buf->safe_dma_addr);
  243. DO_STATS ( device_info->bounce_count++ );
  244. if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) {
  245. unsigned long ptr;
  246. dev_dbg(dev,
  247. "%s: copy back safe %p to unsafe %p size %d\n",
  248. __func__, buf->safe, buf->ptr, size);
  249. memcpy(buf->ptr, buf->safe, size);
  250. /*
  251. * DMA buffers must have the same cache properties
  252. * as if they were really used for DMA - which means
  253. * data must be written back to RAM. Note that
  254. * we don't use dmac_flush_range() here for the
  255. * bidirectional case because we know the cache
  256. * lines will be coherent with the data written.
  257. */
  258. ptr = (unsigned long)buf->ptr;
  259. dmac_clean_range(ptr, ptr + size);
  260. }
  261. free_safe_buffer(device_info, buf);
  262. }
  263. }
  264. static inline void
  265. sync_single(struct device *dev, dma_addr_t dma_addr, size_t size,
  266. enum dma_data_direction dir)
  267. {
  268. struct dmabounce_device_info *device_info = dev->archdata.dmabounce;
  269. struct safe_buffer *buf = NULL;
  270. if (device_info)
  271. buf = find_safe_buffer(device_info, dma_addr);
  272. if (buf) {
  273. /*
  274. * Both of these checks from original code need to be
  275. * commented out b/c some drivers rely on the following:
  276. *
  277. * 1) Drivers may map a large chunk of memory into DMA space
  278. * but only sync a small portion of it. Good example is
  279. * allocating a large buffer, mapping it, and then
  280. * breaking it up into small descriptors. No point
  281. * in syncing the whole buffer if you only have to
  282. * touch one descriptor.
  283. *
  284. * 2) Buffers that are mapped as DMA_BIDIRECTIONAL are
  285. * usually only synced in one dir at a time.
  286. *
  287. * See drivers/net/eepro100.c for examples of both cases.
  288. *
  289. * -ds
  290. *
  291. * BUG_ON(buf->size != size);
  292. * BUG_ON(buf->direction != dir);
  293. */
  294. dev_dbg(dev,
  295. "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
  296. __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
  297. buf->safe, (void *) buf->safe_dma_addr);
  298. DO_STATS ( device_info->bounce_count++ );
  299. switch (dir) {
  300. case DMA_FROM_DEVICE:
  301. dev_dbg(dev,
  302. "%s: copy back safe %p to unsafe %p size %d\n",
  303. __func__, buf->safe, buf->ptr, size);
  304. memcpy(buf->ptr, buf->safe, size);
  305. break;
  306. case DMA_TO_DEVICE:
  307. dev_dbg(dev,
  308. "%s: copy out unsafe %p to safe %p, size %d\n",
  309. __func__,buf->ptr, buf->safe, size);
  310. memcpy(buf->safe, buf->ptr, size);
  311. break;
  312. case DMA_BIDIRECTIONAL:
  313. BUG(); /* is this allowed? what does it mean? */
  314. default:
  315. BUG();
  316. }
  317. consistent_sync(buf->safe, size, dir);
  318. } else {
  319. consistent_sync(dma_to_virt(dev, dma_addr), size, dir);
  320. }
  321. }
  322. /* ************************************************** */
  323. /*
  324. * see if a buffer address is in an 'unsafe' range. if it is
  325. * allocate a 'safe' buffer and copy the unsafe buffer into it.
  326. * substitute the safe buffer for the unsafe one.
  327. * (basically move the buffer from an unsafe area to a safe one)
  328. */
  329. dma_addr_t
  330. dma_map_single(struct device *dev, void *ptr, size_t size,
  331. enum dma_data_direction dir)
  332. {
  333. dma_addr_t dma_addr;
  334. dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
  335. __func__, ptr, size, dir);
  336. BUG_ON(dir == DMA_NONE);
  337. dma_addr = map_single(dev, ptr, size, dir);
  338. return dma_addr;
  339. }
  340. /*
  341. * see if a mapped address was really a "safe" buffer and if so, copy
  342. * the data from the safe buffer back to the unsafe buffer and free up
  343. * the safe buffer. (basically return things back to the way they
  344. * should be)
  345. */
  346. void
  347. dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
  348. enum dma_data_direction dir)
  349. {
  350. dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
  351. __func__, (void *) dma_addr, size, dir);
  352. BUG_ON(dir == DMA_NONE);
  353. unmap_single(dev, dma_addr, size, dir);
  354. }
  355. int
  356. dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  357. enum dma_data_direction dir)
  358. {
  359. int i;
  360. dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
  361. __func__, sg, nents, dir);
  362. BUG_ON(dir == DMA_NONE);
  363. for (i = 0; i < nents; i++, sg++) {
  364. struct page *page = sg->page;
  365. unsigned int offset = sg->offset;
  366. unsigned int length = sg->length;
  367. void *ptr = page_address(page) + offset;
  368. sg->dma_address =
  369. map_single(dev, ptr, length, dir);
  370. }
  371. return nents;
  372. }
  373. void
  374. dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
  375. enum dma_data_direction dir)
  376. {
  377. int i;
  378. dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
  379. __func__, sg, nents, dir);
  380. BUG_ON(dir == DMA_NONE);
  381. for (i = 0; i < nents; i++, sg++) {
  382. dma_addr_t dma_addr = sg->dma_address;
  383. unsigned int length = sg->length;
  384. unmap_single(dev, dma_addr, length, dir);
  385. }
  386. }
  387. void
  388. dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr, size_t size,
  389. enum dma_data_direction dir)
  390. {
  391. dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
  392. __func__, (void *) dma_addr, size, dir);
  393. sync_single(dev, dma_addr, size, dir);
  394. }
  395. void
  396. dma_sync_single_for_device(struct device *dev, dma_addr_t dma_addr, size_t size,
  397. enum dma_data_direction dir)
  398. {
  399. dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
  400. __func__, (void *) dma_addr, size, dir);
  401. sync_single(dev, dma_addr, size, dir);
  402. }
  403. void
  404. dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents,
  405. enum dma_data_direction dir)
  406. {
  407. int i;
  408. dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
  409. __func__, sg, nents, dir);
  410. BUG_ON(dir == DMA_NONE);
  411. for (i = 0; i < nents; i++, sg++) {
  412. dma_addr_t dma_addr = sg->dma_address;
  413. unsigned int length = sg->length;
  414. sync_single(dev, dma_addr, length, dir);
  415. }
  416. }
  417. void
  418. dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents,
  419. enum dma_data_direction dir)
  420. {
  421. int i;
  422. dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
  423. __func__, sg, nents, dir);
  424. BUG_ON(dir == DMA_NONE);
  425. for (i = 0; i < nents; i++, sg++) {
  426. dma_addr_t dma_addr = sg->dma_address;
  427. unsigned int length = sg->length;
  428. sync_single(dev, dma_addr, length, dir);
  429. }
  430. }
  431. static int
  432. dmabounce_init_pool(struct dmabounce_pool *pool, struct device *dev, const char *name,
  433. unsigned long size)
  434. {
  435. pool->size = size;
  436. DO_STATS(pool->allocs = 0);
  437. pool->pool = dma_pool_create(name, dev, size,
  438. 0 /* byte alignment */,
  439. 0 /* no page-crossing issues */);
  440. return pool->pool ? 0 : -ENOMEM;
  441. }
  442. int
  443. dmabounce_register_dev(struct device *dev, unsigned long small_buffer_size,
  444. unsigned long large_buffer_size)
  445. {
  446. struct dmabounce_device_info *device_info;
  447. int ret;
  448. device_info = kmalloc(sizeof(struct dmabounce_device_info), GFP_ATOMIC);
  449. if (!device_info) {
  450. printk(KERN_ERR
  451. "Could not allocated dmabounce_device_info for %s",
  452. dev->bus_id);
  453. return -ENOMEM;
  454. }
  455. ret = dmabounce_init_pool(&device_info->small, dev,
  456. "small_dmabounce_pool", small_buffer_size);
  457. if (ret) {
  458. dev_err(dev,
  459. "dmabounce: could not allocate DMA pool for %ld byte objects\n",
  460. small_buffer_size);
  461. goto err_free;
  462. }
  463. if (large_buffer_size) {
  464. ret = dmabounce_init_pool(&device_info->large, dev,
  465. "large_dmabounce_pool",
  466. large_buffer_size);
  467. if (ret) {
  468. dev_err(dev,
  469. "dmabounce: could not allocate DMA pool for %ld byte objects\n",
  470. large_buffer_size);
  471. goto err_destroy;
  472. }
  473. }
  474. device_info->dev = dev;
  475. INIT_LIST_HEAD(&device_info->safe_buffers);
  476. rwlock_init(&device_info->lock);
  477. #ifdef STATS
  478. device_info->total_allocs = 0;
  479. device_info->map_op_count = 0;
  480. device_info->bounce_count = 0;
  481. #endif
  482. dev->archdata.dmabounce = device_info;
  483. printk(KERN_INFO "dmabounce: registered device %s on %s bus\n",
  484. dev->bus_id, dev->bus->name);
  485. return 0;
  486. err_destroy:
  487. dma_pool_destroy(device_info->small.pool);
  488. err_free:
  489. kfree(device_info);
  490. return ret;
  491. }
  492. void
  493. dmabounce_unregister_dev(struct device *dev)
  494. {
  495. struct dmabounce_device_info *device_info = dev->archdata.dmabounce;
  496. dev->archdata.dmabounce = NULL;
  497. if (!device_info) {
  498. printk(KERN_WARNING
  499. "%s: Never registered with dmabounce but attempting" \
  500. "to unregister!\n", dev->bus_id);
  501. return;
  502. }
  503. if (!list_empty(&device_info->safe_buffers)) {
  504. printk(KERN_ERR
  505. "%s: Removing from dmabounce with pending buffers!\n",
  506. dev->bus_id);
  507. BUG();
  508. }
  509. if (device_info->small.pool)
  510. dma_pool_destroy(device_info->small.pool);
  511. if (device_info->large.pool)
  512. dma_pool_destroy(device_info->large.pool);
  513. #ifdef STATS
  514. print_alloc_stats(device_info);
  515. print_map_stats(device_info);
  516. #endif
  517. kfree(device_info);
  518. printk(KERN_INFO "dmabounce: device %s on %s bus unregistered\n",
  519. dev->bus_id, dev->bus->name);
  520. }
  521. EXPORT_SYMBOL(dma_map_single);
  522. EXPORT_SYMBOL(dma_unmap_single);
  523. EXPORT_SYMBOL(dma_map_sg);
  524. EXPORT_SYMBOL(dma_unmap_sg);
  525. EXPORT_SYMBOL(dma_sync_single_for_cpu);
  526. EXPORT_SYMBOL(dma_sync_single_for_device);
  527. EXPORT_SYMBOL(dma_sync_sg);
  528. EXPORT_SYMBOL(dmabounce_register_dev);
  529. EXPORT_SYMBOL(dmabounce_unregister_dev);
  530. MODULE_AUTHOR("Christopher Hoover <ch@hpl.hp.com>, Deepak Saxena <dsaxena@plexity.net>");
  531. MODULE_DESCRIPTION("Special dma_{map/unmap/dma_sync}_* routines for systems with limited DMA windows");
  532. MODULE_LICENSE("GPL");