intelfbhw.c 51 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109
  1. /*
  2. * intelfb
  3. *
  4. * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
  5. *
  6. * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
  7. * 2004 Sylvain Meyer
  8. *
  9. * This driver consists of two parts. The first part (intelfbdrv.c) provides
  10. * the basic fbdev interfaces, is derived in part from the radeonfb and
  11. * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
  12. * provides the code to program the hardware. Most of it is derived from
  13. * the i810/i830 XFree86 driver. The HW-specific code is covered here
  14. * under a dual license (GPL and MIT/XFree86 license).
  15. *
  16. * Author: David Dawes
  17. *
  18. */
  19. /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/errno.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/slab.h>
  26. #include <linux/delay.h>
  27. #include <linux/fb.h>
  28. #include <linux/ioport.h>
  29. #include <linux/init.h>
  30. #include <linux/pci.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/pagemap.h>
  33. #include <linux/interrupt.h>
  34. #include <asm/io.h>
  35. #include "intelfb.h"
  36. #include "intelfbhw.h"
  37. struct pll_min_max {
  38. int min_m, max_m, min_m1, max_m1;
  39. int min_m2, max_m2, min_n, max_n;
  40. int min_p, max_p, min_p1, max_p1;
  41. int min_vco, max_vco, p_transition_clk, ref_clk;
  42. int p_inc_lo, p_inc_hi;
  43. };
  44. #define PLLS_I8xx 0
  45. #define PLLS_I9xx 1
  46. #define PLLS_MAX 2
  47. static struct pll_min_max plls[PLLS_MAX] = {
  48. { 108, 140, 18, 26,
  49. 6, 16, 3, 16,
  50. 4, 128, 0, 31,
  51. 930000, 1400000, 165000, 48000,
  52. 4, 2 }, /* I8xx */
  53. { 75, 120, 10, 20,
  54. 5, 9, 4, 7,
  55. 5, 80, 1, 8,
  56. 1400000, 2800000, 200000, 96000,
  57. 10, 5 } /* I9xx */
  58. };
  59. int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
  60. {
  61. u32 tmp;
  62. if (!pdev || !dinfo)
  63. return 1;
  64. switch (pdev->device) {
  65. case PCI_DEVICE_ID_INTEL_830M:
  66. dinfo->name = "Intel(R) 830M";
  67. dinfo->chipset = INTEL_830M;
  68. dinfo->mobile = 1;
  69. dinfo->pll_index = PLLS_I8xx;
  70. return 0;
  71. case PCI_DEVICE_ID_INTEL_845G:
  72. dinfo->name = "Intel(R) 845G";
  73. dinfo->chipset = INTEL_845G;
  74. dinfo->mobile = 0;
  75. dinfo->pll_index = PLLS_I8xx;
  76. return 0;
  77. case PCI_DEVICE_ID_INTEL_854:
  78. dinfo->mobile = 1;
  79. dinfo->name = "Intel(R) 854";
  80. dinfo->chipset = INTEL_854;
  81. return 0;
  82. case PCI_DEVICE_ID_INTEL_85XGM:
  83. tmp = 0;
  84. dinfo->mobile = 1;
  85. dinfo->pll_index = PLLS_I8xx;
  86. pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  87. switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  88. INTEL_85X_VARIANT_MASK) {
  89. case INTEL_VAR_855GME:
  90. dinfo->name = "Intel(R) 855GME";
  91. dinfo->chipset = INTEL_855GME;
  92. return 0;
  93. case INTEL_VAR_855GM:
  94. dinfo->name = "Intel(R) 855GM";
  95. dinfo->chipset = INTEL_855GM;
  96. return 0;
  97. case INTEL_VAR_852GME:
  98. dinfo->name = "Intel(R) 852GME";
  99. dinfo->chipset = INTEL_852GME;
  100. return 0;
  101. case INTEL_VAR_852GM:
  102. dinfo->name = "Intel(R) 852GM";
  103. dinfo->chipset = INTEL_852GM;
  104. return 0;
  105. default:
  106. dinfo->name = "Intel(R) 852GM/855GM";
  107. dinfo->chipset = INTEL_85XGM;
  108. return 0;
  109. }
  110. break;
  111. case PCI_DEVICE_ID_INTEL_865G:
  112. dinfo->name = "Intel(R) 865G";
  113. dinfo->chipset = INTEL_865G;
  114. dinfo->mobile = 0;
  115. dinfo->pll_index = PLLS_I8xx;
  116. return 0;
  117. case PCI_DEVICE_ID_INTEL_915G:
  118. dinfo->name = "Intel(R) 915G";
  119. dinfo->chipset = INTEL_915G;
  120. dinfo->mobile = 0;
  121. dinfo->pll_index = PLLS_I9xx;
  122. return 0;
  123. case PCI_DEVICE_ID_INTEL_915GM:
  124. dinfo->name = "Intel(R) 915GM";
  125. dinfo->chipset = INTEL_915GM;
  126. dinfo->mobile = 1;
  127. dinfo->pll_index = PLLS_I9xx;
  128. return 0;
  129. case PCI_DEVICE_ID_INTEL_945G:
  130. dinfo->name = "Intel(R) 945G";
  131. dinfo->chipset = INTEL_945G;
  132. dinfo->mobile = 0;
  133. dinfo->pll_index = PLLS_I9xx;
  134. return 0;
  135. case PCI_DEVICE_ID_INTEL_945GM:
  136. dinfo->name = "Intel(R) 945GM";
  137. dinfo->chipset = INTEL_945GM;
  138. dinfo->mobile = 1;
  139. dinfo->pll_index = PLLS_I9xx;
  140. return 0;
  141. case PCI_DEVICE_ID_INTEL_945GME:
  142. dinfo->name = "Intel(R) 945GME";
  143. dinfo->chipset = INTEL_945GME;
  144. dinfo->mobile = 1;
  145. dinfo->pll_index = PLLS_I9xx;
  146. return 0;
  147. case PCI_DEVICE_ID_INTEL_965G:
  148. dinfo->name = "Intel(R) 965G";
  149. dinfo->chipset = INTEL_965G;
  150. dinfo->mobile = 0;
  151. dinfo->pll_index = PLLS_I9xx;
  152. return 0;
  153. case PCI_DEVICE_ID_INTEL_965GM:
  154. dinfo->name = "Intel(R) 965GM";
  155. dinfo->chipset = INTEL_965GM;
  156. dinfo->mobile = 1;
  157. dinfo->pll_index = PLLS_I9xx;
  158. return 0;
  159. default:
  160. return 1;
  161. }
  162. }
  163. int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
  164. int *stolen_size)
  165. {
  166. struct pci_dev *bridge_dev;
  167. u16 tmp;
  168. int stolen_overhead;
  169. if (!pdev || !aperture_size || !stolen_size)
  170. return 1;
  171. /* Find the bridge device. It is always 0:0.0 */
  172. if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
  173. ERR_MSG("cannot find bridge device\n");
  174. return 1;
  175. }
  176. /* Get the fb aperture size and "stolen" memory amount. */
  177. tmp = 0;
  178. pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
  179. pci_dev_put(bridge_dev);
  180. switch (pdev->device) {
  181. case PCI_DEVICE_ID_INTEL_915G:
  182. case PCI_DEVICE_ID_INTEL_915GM:
  183. case PCI_DEVICE_ID_INTEL_945G:
  184. case PCI_DEVICE_ID_INTEL_945GM:
  185. case PCI_DEVICE_ID_INTEL_945GME:
  186. case PCI_DEVICE_ID_INTEL_965G:
  187. case PCI_DEVICE_ID_INTEL_965GM:
  188. /* 915, 945 and 965 chipsets support a 256MB aperture.
  189. Aperture size is determined by inspected the
  190. base address of the aperture. */
  191. if (pci_resource_start(pdev, 2) & 0x08000000)
  192. *aperture_size = MB(128);
  193. else
  194. *aperture_size = MB(256);
  195. break;
  196. default:
  197. if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
  198. *aperture_size = MB(64);
  199. else
  200. *aperture_size = MB(128);
  201. break;
  202. }
  203. /* Stolen memory size is reduced by the GTT and the popup.
  204. GTT is 1K per MB of aperture size, and popup is 4K. */
  205. stolen_overhead = (*aperture_size / MB(1)) + 4;
  206. switch(pdev->device) {
  207. case PCI_DEVICE_ID_INTEL_830M:
  208. case PCI_DEVICE_ID_INTEL_845G:
  209. switch (tmp & INTEL_830_GMCH_GMS_MASK) {
  210. case INTEL_830_GMCH_GMS_STOLEN_512:
  211. *stolen_size = KB(512) - KB(stolen_overhead);
  212. return 0;
  213. case INTEL_830_GMCH_GMS_STOLEN_1024:
  214. *stolen_size = MB(1) - KB(stolen_overhead);
  215. return 0;
  216. case INTEL_830_GMCH_GMS_STOLEN_8192:
  217. *stolen_size = MB(8) - KB(stolen_overhead);
  218. return 0;
  219. case INTEL_830_GMCH_GMS_LOCAL:
  220. ERR_MSG("only local memory found\n");
  221. return 1;
  222. case INTEL_830_GMCH_GMS_DISABLED:
  223. ERR_MSG("video memory is disabled\n");
  224. return 1;
  225. default:
  226. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  227. tmp & INTEL_830_GMCH_GMS_MASK);
  228. return 1;
  229. }
  230. break;
  231. default:
  232. switch (tmp & INTEL_855_GMCH_GMS_MASK) {
  233. case INTEL_855_GMCH_GMS_STOLEN_1M:
  234. *stolen_size = MB(1) - KB(stolen_overhead);
  235. return 0;
  236. case INTEL_855_GMCH_GMS_STOLEN_4M:
  237. *stolen_size = MB(4) - KB(stolen_overhead);
  238. return 0;
  239. case INTEL_855_GMCH_GMS_STOLEN_8M:
  240. *stolen_size = MB(8) - KB(stolen_overhead);
  241. return 0;
  242. case INTEL_855_GMCH_GMS_STOLEN_16M:
  243. *stolen_size = MB(16) - KB(stolen_overhead);
  244. return 0;
  245. case INTEL_855_GMCH_GMS_STOLEN_32M:
  246. *stolen_size = MB(32) - KB(stolen_overhead);
  247. return 0;
  248. case INTEL_915G_GMCH_GMS_STOLEN_48M:
  249. *stolen_size = MB(48) - KB(stolen_overhead);
  250. return 0;
  251. case INTEL_915G_GMCH_GMS_STOLEN_64M:
  252. *stolen_size = MB(64) - KB(stolen_overhead);
  253. return 0;
  254. case INTEL_855_GMCH_GMS_DISABLED:
  255. ERR_MSG("video memory is disabled\n");
  256. return 0;
  257. default:
  258. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  259. tmp & INTEL_855_GMCH_GMS_MASK);
  260. return 1;
  261. }
  262. }
  263. }
  264. int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
  265. {
  266. int dvo = 0;
  267. if (INREG(LVDS) & PORT_ENABLE)
  268. dvo |= LVDS_PORT;
  269. if (INREG(DVOA) & PORT_ENABLE)
  270. dvo |= DVOA_PORT;
  271. if (INREG(DVOB) & PORT_ENABLE)
  272. dvo |= DVOB_PORT;
  273. if (INREG(DVOC) & PORT_ENABLE)
  274. dvo |= DVOC_PORT;
  275. return dvo;
  276. }
  277. const char * intelfbhw_dvo_to_string(int dvo)
  278. {
  279. if (dvo & DVOA_PORT)
  280. return "DVO port A";
  281. else if (dvo & DVOB_PORT)
  282. return "DVO port B";
  283. else if (dvo & DVOC_PORT)
  284. return "DVO port C";
  285. else if (dvo & LVDS_PORT)
  286. return "LVDS port";
  287. else
  288. return NULL;
  289. }
  290. int intelfbhw_validate_mode(struct intelfb_info *dinfo,
  291. struct fb_var_screeninfo *var)
  292. {
  293. int bytes_per_pixel;
  294. int tmp;
  295. #if VERBOSE > 0
  296. DBG_MSG("intelfbhw_validate_mode\n");
  297. #endif
  298. bytes_per_pixel = var->bits_per_pixel / 8;
  299. if (bytes_per_pixel == 3)
  300. bytes_per_pixel = 4;
  301. /* Check if enough video memory. */
  302. tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
  303. if (tmp > dinfo->fb.size) {
  304. WRN_MSG("Not enough video ram for mode "
  305. "(%d KByte vs %d KByte).\n",
  306. BtoKB(tmp), BtoKB(dinfo->fb.size));
  307. return 1;
  308. }
  309. /* Check if x/y limits are OK. */
  310. if (var->xres - 1 > HACTIVE_MASK) {
  311. WRN_MSG("X resolution too large (%d vs %d).\n",
  312. var->xres, HACTIVE_MASK + 1);
  313. return 1;
  314. }
  315. if (var->yres - 1 > VACTIVE_MASK) {
  316. WRN_MSG("Y resolution too large (%d vs %d).\n",
  317. var->yres, VACTIVE_MASK + 1);
  318. return 1;
  319. }
  320. if (var->xres < 4) {
  321. WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
  322. return 1;
  323. }
  324. if (var->yres < 4) {
  325. WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
  326. return 1;
  327. }
  328. /* Check for doublescan modes. */
  329. if (var->vmode & FB_VMODE_DOUBLE) {
  330. WRN_MSG("Mode is double-scan.\n");
  331. return 1;
  332. }
  333. if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
  334. WRN_MSG("Odd number of lines in interlaced mode\n");
  335. return 1;
  336. }
  337. /* Check if clock is OK. */
  338. tmp = 1000000000 / var->pixclock;
  339. if (tmp < MIN_CLOCK) {
  340. WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
  341. (tmp + 500) / 1000, MIN_CLOCK / 1000);
  342. return 1;
  343. }
  344. if (tmp > MAX_CLOCK) {
  345. WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
  346. (tmp + 500) / 1000, MAX_CLOCK / 1000);
  347. return 1;
  348. }
  349. return 0;
  350. }
  351. int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
  352. {
  353. struct intelfb_info *dinfo = GET_DINFO(info);
  354. u32 offset, xoffset, yoffset;
  355. #if VERBOSE > 0
  356. DBG_MSG("intelfbhw_pan_display\n");
  357. #endif
  358. xoffset = ROUND_DOWN_TO(var->xoffset, 8);
  359. yoffset = var->yoffset;
  360. if ((xoffset + var->xres > var->xres_virtual) ||
  361. (yoffset + var->yres > var->yres_virtual))
  362. return -EINVAL;
  363. offset = (yoffset * dinfo->pitch) +
  364. (xoffset * var->bits_per_pixel) / 8;
  365. offset += dinfo->fb.offset << 12;
  366. dinfo->vsync.pan_offset = offset;
  367. if ((var->activate & FB_ACTIVATE_VBL) &&
  368. !intelfbhw_enable_irq(dinfo))
  369. dinfo->vsync.pan_display = 1;
  370. else {
  371. dinfo->vsync.pan_display = 0;
  372. OUTREG(DSPABASE, offset);
  373. }
  374. return 0;
  375. }
  376. /* Blank the screen. */
  377. void intelfbhw_do_blank(int blank, struct fb_info *info)
  378. {
  379. struct intelfb_info *dinfo = GET_DINFO(info);
  380. u32 tmp;
  381. #if VERBOSE > 0
  382. DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
  383. #endif
  384. /* Turn plane A on or off */
  385. tmp = INREG(DSPACNTR);
  386. if (blank)
  387. tmp &= ~DISPPLANE_PLANE_ENABLE;
  388. else
  389. tmp |= DISPPLANE_PLANE_ENABLE;
  390. OUTREG(DSPACNTR, tmp);
  391. /* Flush */
  392. tmp = INREG(DSPABASE);
  393. OUTREG(DSPABASE, tmp);
  394. /* Turn off/on the HW cursor */
  395. #if VERBOSE > 0
  396. DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
  397. #endif
  398. if (dinfo->cursor_on) {
  399. if (blank)
  400. intelfbhw_cursor_hide(dinfo);
  401. else
  402. intelfbhw_cursor_show(dinfo);
  403. dinfo->cursor_on = 1;
  404. }
  405. dinfo->cursor_blanked = blank;
  406. /* Set DPMS level */
  407. tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
  408. switch (blank) {
  409. case FB_BLANK_UNBLANK:
  410. case FB_BLANK_NORMAL:
  411. tmp |= ADPA_DPMS_D0;
  412. break;
  413. case FB_BLANK_VSYNC_SUSPEND:
  414. tmp |= ADPA_DPMS_D1;
  415. break;
  416. case FB_BLANK_HSYNC_SUSPEND:
  417. tmp |= ADPA_DPMS_D2;
  418. break;
  419. case FB_BLANK_POWERDOWN:
  420. tmp |= ADPA_DPMS_D3;
  421. break;
  422. }
  423. OUTREG(ADPA, tmp);
  424. return;
  425. }
  426. void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
  427. unsigned red, unsigned green, unsigned blue,
  428. unsigned transp)
  429. {
  430. u32 palette_reg = (dinfo->pipe == PIPE_A) ?
  431. PALETTE_A : PALETTE_B;
  432. #if VERBOSE > 0
  433. DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
  434. regno, red, green, blue);
  435. #endif
  436. OUTREG(palette_reg + (regno << 2),
  437. (red << PALETTE_8_RED_SHIFT) |
  438. (green << PALETTE_8_GREEN_SHIFT) |
  439. (blue << PALETTE_8_BLUE_SHIFT));
  440. }
  441. int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
  442. struct intelfb_hwstate *hw, int flag)
  443. {
  444. int i;
  445. #if VERBOSE > 0
  446. DBG_MSG("intelfbhw_read_hw_state\n");
  447. #endif
  448. if (!hw || !dinfo)
  449. return -1;
  450. /* Read in as much of the HW state as possible. */
  451. hw->vga0_divisor = INREG(VGA0_DIVISOR);
  452. hw->vga1_divisor = INREG(VGA1_DIVISOR);
  453. hw->vga_pd = INREG(VGAPD);
  454. hw->dpll_a = INREG(DPLL_A);
  455. hw->dpll_b = INREG(DPLL_B);
  456. hw->fpa0 = INREG(FPA0);
  457. hw->fpa1 = INREG(FPA1);
  458. hw->fpb0 = INREG(FPB0);
  459. hw->fpb1 = INREG(FPB1);
  460. if (flag == 1)
  461. return flag;
  462. #if 0
  463. /* This seems to be a problem with the 852GM/855GM */
  464. for (i = 0; i < PALETTE_8_ENTRIES; i++) {
  465. hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
  466. hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
  467. }
  468. #endif
  469. if (flag == 2)
  470. return flag;
  471. hw->htotal_a = INREG(HTOTAL_A);
  472. hw->hblank_a = INREG(HBLANK_A);
  473. hw->hsync_a = INREG(HSYNC_A);
  474. hw->vtotal_a = INREG(VTOTAL_A);
  475. hw->vblank_a = INREG(VBLANK_A);
  476. hw->vsync_a = INREG(VSYNC_A);
  477. hw->src_size_a = INREG(SRC_SIZE_A);
  478. hw->bclrpat_a = INREG(BCLRPAT_A);
  479. hw->htotal_b = INREG(HTOTAL_B);
  480. hw->hblank_b = INREG(HBLANK_B);
  481. hw->hsync_b = INREG(HSYNC_B);
  482. hw->vtotal_b = INREG(VTOTAL_B);
  483. hw->vblank_b = INREG(VBLANK_B);
  484. hw->vsync_b = INREG(VSYNC_B);
  485. hw->src_size_b = INREG(SRC_SIZE_B);
  486. hw->bclrpat_b = INREG(BCLRPAT_B);
  487. if (flag == 3)
  488. return flag;
  489. hw->adpa = INREG(ADPA);
  490. hw->dvoa = INREG(DVOA);
  491. hw->dvob = INREG(DVOB);
  492. hw->dvoc = INREG(DVOC);
  493. hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
  494. hw->dvob_srcdim = INREG(DVOB_SRCDIM);
  495. hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
  496. hw->lvds = INREG(LVDS);
  497. if (flag == 4)
  498. return flag;
  499. hw->pipe_a_conf = INREG(PIPEACONF);
  500. hw->pipe_b_conf = INREG(PIPEBCONF);
  501. hw->disp_arb = INREG(DISPARB);
  502. if (flag == 5)
  503. return flag;
  504. hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
  505. hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
  506. hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
  507. hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
  508. if (flag == 6)
  509. return flag;
  510. for (i = 0; i < 4; i++) {
  511. hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
  512. hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
  513. }
  514. if (flag == 7)
  515. return flag;
  516. hw->cursor_size = INREG(CURSOR_SIZE);
  517. if (flag == 8)
  518. return flag;
  519. hw->disp_a_ctrl = INREG(DSPACNTR);
  520. hw->disp_b_ctrl = INREG(DSPBCNTR);
  521. hw->disp_a_base = INREG(DSPABASE);
  522. hw->disp_b_base = INREG(DSPBBASE);
  523. hw->disp_a_stride = INREG(DSPASTRIDE);
  524. hw->disp_b_stride = INREG(DSPBSTRIDE);
  525. if (flag == 9)
  526. return flag;
  527. hw->vgacntrl = INREG(VGACNTRL);
  528. if (flag == 10)
  529. return flag;
  530. hw->add_id = INREG(ADD_ID);
  531. if (flag == 11)
  532. return flag;
  533. for (i = 0; i < 7; i++) {
  534. hw->swf0x[i] = INREG(SWF00 + (i << 2));
  535. hw->swf1x[i] = INREG(SWF10 + (i << 2));
  536. if (i < 3)
  537. hw->swf3x[i] = INREG(SWF30 + (i << 2));
  538. }
  539. for (i = 0; i < 8; i++)
  540. hw->fence[i] = INREG(FENCE + (i << 2));
  541. hw->instpm = INREG(INSTPM);
  542. hw->mem_mode = INREG(MEM_MODE);
  543. hw->fw_blc_0 = INREG(FW_BLC_0);
  544. hw->fw_blc_1 = INREG(FW_BLC_1);
  545. hw->hwstam = INREG16(HWSTAM);
  546. hw->ier = INREG16(IER);
  547. hw->iir = INREG16(IIR);
  548. hw->imr = INREG16(IMR);
  549. return 0;
  550. }
  551. static int calc_vclock3(int index, int m, int n, int p)
  552. {
  553. if (p == 0 || n == 0)
  554. return 0;
  555. return plls[index].ref_clk * m / n / p;
  556. }
  557. static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
  558. int lvds)
  559. {
  560. struct pll_min_max *pll = &plls[index];
  561. u32 m, vco, p;
  562. m = (5 * (m1 + 2)) + (m2 + 2);
  563. n += 2;
  564. vco = pll->ref_clk * m / n;
  565. if (index == PLLS_I8xx)
  566. p = ((p1 + 2) * (1 << (p2 + 1)));
  567. else
  568. p = ((p1) * (p2 ? 5 : 10));
  569. return vco / p;
  570. }
  571. #if REGDUMP
  572. static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
  573. int *o_p1, int *o_p2)
  574. {
  575. int p1, p2;
  576. if (IS_I9XX(dinfo)) {
  577. if (dpll & DPLL_P1_FORCE_DIV2)
  578. p1 = 1;
  579. else
  580. p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
  581. p1 = ffs(p1);
  582. p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
  583. } else {
  584. if (dpll & DPLL_P1_FORCE_DIV2)
  585. p1 = 0;
  586. else
  587. p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  588. p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  589. }
  590. *o_p1 = p1;
  591. *o_p2 = p2;
  592. }
  593. #endif
  594. void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
  595. struct intelfb_hwstate *hw)
  596. {
  597. #if REGDUMP
  598. int i, m1, m2, n, p1, p2;
  599. int index = dinfo->pll_index;
  600. DBG_MSG("intelfbhw_print_hw_state\n");
  601. if (!hw)
  602. return;
  603. /* Read in as much of the HW state as possible. */
  604. printk("hw state dump start\n");
  605. printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
  606. printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
  607. printk(" VGAPD: 0x%08x\n", hw->vga_pd);
  608. n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  609. m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  610. m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  611. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  612. printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  613. m1, m2, n, p1, p2);
  614. printk(" VGA0: clock is %d\n",
  615. calc_vclock(index, m1, m2, n, p1, p2, 0));
  616. n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  617. m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  618. m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  619. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  620. printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  621. m1, m2, n, p1, p2);
  622. printk(" VGA1: clock is %d\n",
  623. calc_vclock(index, m1, m2, n, p1, p2, 0));
  624. printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
  625. printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
  626. printk(" FPA0: 0x%08x\n", hw->fpa0);
  627. printk(" FPA1: 0x%08x\n", hw->fpa1);
  628. printk(" FPB0: 0x%08x\n", hw->fpb0);
  629. printk(" FPB1: 0x%08x\n", hw->fpb1);
  630. n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  631. m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  632. m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  633. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  634. printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  635. m1, m2, n, p1, p2);
  636. printk(" PLLA0: clock is %d\n",
  637. calc_vclock(index, m1, m2, n, p1, p2, 0));
  638. n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  639. m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  640. m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  641. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  642. printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  643. m1, m2, n, p1, p2);
  644. printk(" PLLA1: clock is %d\n",
  645. calc_vclock(index, m1, m2, n, p1, p2, 0));
  646. #if 0
  647. printk(" PALETTE_A:\n");
  648. for (i = 0; i < PALETTE_8_ENTRIES)
  649. printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
  650. printk(" PALETTE_B:\n");
  651. for (i = 0; i < PALETTE_8_ENTRIES)
  652. printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
  653. #endif
  654. printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
  655. printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
  656. printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
  657. printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
  658. printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
  659. printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
  660. printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
  661. printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
  662. printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
  663. printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
  664. printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
  665. printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
  666. printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
  667. printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
  668. printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
  669. printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
  670. printk(" ADPA: 0x%08x\n", hw->adpa);
  671. printk(" DVOA: 0x%08x\n", hw->dvoa);
  672. printk(" DVOB: 0x%08x\n", hw->dvob);
  673. printk(" DVOC: 0x%08x\n", hw->dvoc);
  674. printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
  675. printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
  676. printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
  677. printk(" LVDS: 0x%08x\n", hw->lvds);
  678. printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
  679. printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
  680. printk(" DISPARB: 0x%08x\n", hw->disp_arb);
  681. printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
  682. printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
  683. printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
  684. printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
  685. printk(" CURSOR_A_PALETTE: ");
  686. for (i = 0; i < 4; i++) {
  687. printk("0x%08x", hw->cursor_a_palette[i]);
  688. if (i < 3)
  689. printk(", ");
  690. }
  691. printk("\n");
  692. printk(" CURSOR_B_PALETTE: ");
  693. for (i = 0; i < 4; i++) {
  694. printk("0x%08x", hw->cursor_b_palette[i]);
  695. if (i < 3)
  696. printk(", ");
  697. }
  698. printk("\n");
  699. printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
  700. printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
  701. printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
  702. printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
  703. printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
  704. printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
  705. printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
  706. printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
  707. printk(" ADD_ID: 0x%08x\n", hw->add_id);
  708. for (i = 0; i < 7; i++) {
  709. printk(" SWF0%d 0x%08x\n", i,
  710. hw->swf0x[i]);
  711. }
  712. for (i = 0; i < 7; i++) {
  713. printk(" SWF1%d 0x%08x\n", i,
  714. hw->swf1x[i]);
  715. }
  716. for (i = 0; i < 3; i++) {
  717. printk(" SWF3%d 0x%08x\n", i,
  718. hw->swf3x[i]);
  719. }
  720. for (i = 0; i < 8; i++)
  721. printk(" FENCE%d 0x%08x\n", i,
  722. hw->fence[i]);
  723. printk(" INSTPM 0x%08x\n", hw->instpm);
  724. printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
  725. printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
  726. printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
  727. printk(" HWSTAM 0x%04x\n", hw->hwstam);
  728. printk(" IER 0x%04x\n", hw->ier);
  729. printk(" IIR 0x%04x\n", hw->iir);
  730. printk(" IMR 0x%04x\n", hw->imr);
  731. printk("hw state dump end\n");
  732. #endif
  733. }
  734. /* Split the M parameter into M1 and M2. */
  735. static int splitm(int index, unsigned int m, unsigned int *retm1,
  736. unsigned int *retm2)
  737. {
  738. int m1, m2;
  739. int testm;
  740. struct pll_min_max *pll = &plls[index];
  741. /* no point optimising too much - brute force m */
  742. for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
  743. for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
  744. testm = (5 * (m1 + 2)) + (m2 + 2);
  745. if (testm == m) {
  746. *retm1 = (unsigned int)m1;
  747. *retm2 = (unsigned int)m2;
  748. return 0;
  749. }
  750. }
  751. }
  752. return 1;
  753. }
  754. /* Split the P parameter into P1 and P2. */
  755. static int splitp(int index, unsigned int p, unsigned int *retp1,
  756. unsigned int *retp2)
  757. {
  758. int p1, p2;
  759. struct pll_min_max *pll = &plls[index];
  760. if (index == PLLS_I9xx) {
  761. p2 = (p % 10) ? 1 : 0;
  762. p1 = p / (p2 ? 5 : 10);
  763. *retp1 = (unsigned int)p1;
  764. *retp2 = (unsigned int)p2;
  765. return 0;
  766. }
  767. if (p % 4 == 0)
  768. p2 = 1;
  769. else
  770. p2 = 0;
  771. p1 = (p / (1 << (p2 + 1))) - 2;
  772. if (p % 4 == 0 && p1 < pll->min_p1) {
  773. p2 = 0;
  774. p1 = (p / (1 << (p2 + 1))) - 2;
  775. }
  776. if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
  777. (p1 + 2) * (1 << (p2 + 1)) != p) {
  778. return 1;
  779. } else {
  780. *retp1 = (unsigned int)p1;
  781. *retp2 = (unsigned int)p2;
  782. return 0;
  783. }
  784. }
  785. static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
  786. u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
  787. {
  788. u32 m1, m2, n, p1, p2, n1, testm;
  789. u32 f_vco, p, p_best = 0, m, f_out = 0;
  790. u32 err_max, err_target, err_best = 10000000;
  791. u32 n_best = 0, m_best = 0, f_best, f_err;
  792. u32 p_min, p_max, p_inc, div_max;
  793. struct pll_min_max *pll = &plls[index];
  794. /* Accept 0.5% difference, but aim for 0.1% */
  795. err_max = 5 * clock / 1000;
  796. err_target = clock / 1000;
  797. DBG_MSG("Clock is %d\n", clock);
  798. div_max = pll->max_vco / clock;
  799. p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
  800. p_min = p_inc;
  801. p_max = ROUND_DOWN_TO(div_max, p_inc);
  802. if (p_min < pll->min_p)
  803. p_min = pll->min_p;
  804. if (p_max > pll->max_p)
  805. p_max = pll->max_p;
  806. DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
  807. p = p_min;
  808. do {
  809. if (splitp(index, p, &p1, &p2)) {
  810. WRN_MSG("cannot split p = %d\n", p);
  811. p += p_inc;
  812. continue;
  813. }
  814. n = pll->min_n;
  815. f_vco = clock * p;
  816. do {
  817. m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
  818. if (m < pll->min_m)
  819. m = pll->min_m + 1;
  820. if (m > pll->max_m)
  821. m = pll->max_m - 1;
  822. for (testm = m - 1; testm <= m; testm++) {
  823. f_out = calc_vclock3(index, testm, n, p);
  824. if (splitm(index, testm, &m1, &m2)) {
  825. WRN_MSG("cannot split m = %d\n",
  826. testm);
  827. continue;
  828. }
  829. if (clock > f_out)
  830. f_err = clock - f_out;
  831. else/* slightly bias the error for bigger clocks */
  832. f_err = f_out - clock + 1;
  833. if (f_err < err_best) {
  834. m_best = testm;
  835. n_best = n;
  836. p_best = p;
  837. f_best = f_out;
  838. err_best = f_err;
  839. }
  840. }
  841. n++;
  842. } while ((n <= pll->max_n) && (f_out >= clock));
  843. p += p_inc;
  844. } while ((p <= p_max));
  845. if (!m_best) {
  846. WRN_MSG("cannot find parameters for clock %d\n", clock);
  847. return 1;
  848. }
  849. m = m_best;
  850. n = n_best;
  851. p = p_best;
  852. splitm(index, m, &m1, &m2);
  853. splitp(index, p, &p1, &p2);
  854. n1 = n - 2;
  855. DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
  856. "f: %d (%d), VCO: %d\n",
  857. m, m1, m2, n, n1, p, p1, p2,
  858. calc_vclock3(index, m, n, p),
  859. calc_vclock(index, m1, m2, n1, p1, p2, 0),
  860. calc_vclock3(index, m, n, p) * p);
  861. *retm1 = m1;
  862. *retm2 = m2;
  863. *retn = n1;
  864. *retp1 = p1;
  865. *retp2 = p2;
  866. *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
  867. return 0;
  868. }
  869. static __inline__ int check_overflow(u32 value, u32 limit,
  870. const char *description)
  871. {
  872. if (value > limit) {
  873. WRN_MSG("%s value %d exceeds limit %d\n",
  874. description, value, limit);
  875. return 1;
  876. }
  877. return 0;
  878. }
  879. /* It is assumed that hw is filled in with the initial state information. */
  880. int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
  881. struct intelfb_hwstate *hw,
  882. struct fb_var_screeninfo *var)
  883. {
  884. int pipe = PIPE_A;
  885. u32 *dpll, *fp0, *fp1;
  886. u32 m1, m2, n, p1, p2, clock_target, clock;
  887. u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
  888. u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
  889. u32 vsync_pol, hsync_pol;
  890. u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
  891. u32 stride_alignment;
  892. DBG_MSG("intelfbhw_mode_to_hw\n");
  893. /* Disable VGA */
  894. hw->vgacntrl |= VGA_DISABLE;
  895. /* Check whether pipe A or pipe B is enabled. */
  896. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  897. pipe = PIPE_A;
  898. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  899. pipe = PIPE_B;
  900. /* Set which pipe's registers will be set. */
  901. if (pipe == PIPE_B) {
  902. dpll = &hw->dpll_b;
  903. fp0 = &hw->fpb0;
  904. fp1 = &hw->fpb1;
  905. hs = &hw->hsync_b;
  906. hb = &hw->hblank_b;
  907. ht = &hw->htotal_b;
  908. vs = &hw->vsync_b;
  909. vb = &hw->vblank_b;
  910. vt = &hw->vtotal_b;
  911. ss = &hw->src_size_b;
  912. pipe_conf = &hw->pipe_b_conf;
  913. } else {
  914. dpll = &hw->dpll_a;
  915. fp0 = &hw->fpa0;
  916. fp1 = &hw->fpa1;
  917. hs = &hw->hsync_a;
  918. hb = &hw->hblank_a;
  919. ht = &hw->htotal_a;
  920. vs = &hw->vsync_a;
  921. vb = &hw->vblank_a;
  922. vt = &hw->vtotal_a;
  923. ss = &hw->src_size_a;
  924. pipe_conf = &hw->pipe_a_conf;
  925. }
  926. /* Use ADPA register for sync control. */
  927. hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
  928. /* sync polarity */
  929. hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
  930. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  931. vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
  932. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  933. hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
  934. (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
  935. hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
  936. (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
  937. /* Connect correct pipe to the analog port DAC */
  938. hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
  939. hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
  940. /* Set DPMS state to D0 (on) */
  941. hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
  942. hw->adpa |= ADPA_DPMS_D0;
  943. hw->adpa |= ADPA_DAC_ENABLE;
  944. *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
  945. *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
  946. *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
  947. /* Desired clock in kHz */
  948. clock_target = 1000000000 / var->pixclock;
  949. if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
  950. &n, &p1, &p2, &clock)) {
  951. WRN_MSG("calc_pll_params failed\n");
  952. return 1;
  953. }
  954. /* Check for overflow. */
  955. if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
  956. return 1;
  957. if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
  958. return 1;
  959. if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
  960. return 1;
  961. if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
  962. return 1;
  963. if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
  964. return 1;
  965. *dpll &= ~DPLL_P1_FORCE_DIV2;
  966. *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
  967. (DPLL_P1_MASK << DPLL_P1_SHIFT));
  968. if (IS_I9XX(dinfo)) {
  969. *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
  970. *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
  971. } else
  972. *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
  973. *fp0 = (n << FP_N_DIVISOR_SHIFT) |
  974. (m1 << FP_M1_DIVISOR_SHIFT) |
  975. (m2 << FP_M2_DIVISOR_SHIFT);
  976. *fp1 = *fp0;
  977. hw->dvob &= ~PORT_ENABLE;
  978. hw->dvoc &= ~PORT_ENABLE;
  979. /* Use display plane A. */
  980. hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
  981. hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
  982. hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
  983. switch (intelfb_var_to_depth(var)) {
  984. case 8:
  985. hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
  986. break;
  987. case 15:
  988. hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
  989. break;
  990. case 16:
  991. hw->disp_a_ctrl |= DISPPLANE_16BPP;
  992. break;
  993. case 24:
  994. hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
  995. break;
  996. }
  997. hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
  998. hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
  999. /* Set CRTC registers. */
  1000. hactive = var->xres;
  1001. hsync_start = hactive + var->right_margin;
  1002. hsync_end = hsync_start + var->hsync_len;
  1003. htotal = hsync_end + var->left_margin;
  1004. hblank_start = hactive;
  1005. hblank_end = htotal;
  1006. DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  1007. hactive, hsync_start, hsync_end, htotal, hblank_start,
  1008. hblank_end);
  1009. vactive = var->yres;
  1010. if (var->vmode & FB_VMODE_INTERLACED)
  1011. vactive--; /* the chip adds 2 halflines automatically */
  1012. vsync_start = vactive + var->lower_margin;
  1013. vsync_end = vsync_start + var->vsync_len;
  1014. vtotal = vsync_end + var->upper_margin;
  1015. vblank_start = vactive;
  1016. vblank_end = vtotal;
  1017. vblank_end = vsync_end + 1;
  1018. DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  1019. vactive, vsync_start, vsync_end, vtotal, vblank_start,
  1020. vblank_end);
  1021. /* Adjust for register values, and check for overflow. */
  1022. hactive--;
  1023. if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
  1024. return 1;
  1025. hsync_start--;
  1026. if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
  1027. return 1;
  1028. hsync_end--;
  1029. if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
  1030. return 1;
  1031. htotal--;
  1032. if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
  1033. return 1;
  1034. hblank_start--;
  1035. if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
  1036. return 1;
  1037. hblank_end--;
  1038. if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
  1039. return 1;
  1040. vactive--;
  1041. if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
  1042. return 1;
  1043. vsync_start--;
  1044. if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
  1045. return 1;
  1046. vsync_end--;
  1047. if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
  1048. return 1;
  1049. vtotal--;
  1050. if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
  1051. return 1;
  1052. vblank_start--;
  1053. if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
  1054. return 1;
  1055. vblank_end--;
  1056. if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
  1057. return 1;
  1058. *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
  1059. *hb = (hblank_start << HBLANKSTART_SHIFT) |
  1060. (hblank_end << HSYNCEND_SHIFT);
  1061. *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
  1062. *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
  1063. *vb = (vblank_start << VBLANKSTART_SHIFT) |
  1064. (vblank_end << VSYNCEND_SHIFT);
  1065. *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
  1066. *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
  1067. (vactive << SRC_SIZE_VERT_SHIFT);
  1068. hw->disp_a_stride = dinfo->pitch;
  1069. DBG_MSG("pitch is %d\n", hw->disp_a_stride);
  1070. hw->disp_a_base = hw->disp_a_stride * var->yoffset +
  1071. var->xoffset * var->bits_per_pixel / 8;
  1072. hw->disp_a_base += dinfo->fb.offset << 12;
  1073. /* Check stride alignment. */
  1074. stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
  1075. STRIDE_ALIGNMENT;
  1076. if (hw->disp_a_stride % stride_alignment != 0) {
  1077. WRN_MSG("display stride %d has bad alignment %d\n",
  1078. hw->disp_a_stride, stride_alignment);
  1079. return 1;
  1080. }
  1081. /* Set the palette to 8-bit mode. */
  1082. *pipe_conf &= ~PIPECONF_GAMMA;
  1083. if (var->vmode & FB_VMODE_INTERLACED)
  1084. *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  1085. else
  1086. *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
  1087. return 0;
  1088. }
  1089. /* Program a (non-VGA) video mode. */
  1090. int intelfbhw_program_mode(struct intelfb_info *dinfo,
  1091. const struct intelfb_hwstate *hw, int blank)
  1092. {
  1093. int pipe = PIPE_A;
  1094. u32 tmp;
  1095. const u32 *dpll, *fp0, *fp1, *pipe_conf;
  1096. const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
  1097. u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
  1098. u32 hsync_reg, htotal_reg, hblank_reg;
  1099. u32 vsync_reg, vtotal_reg, vblank_reg;
  1100. u32 src_size_reg;
  1101. u32 count, tmp_val[3];
  1102. /* Assume single pipe, display plane A, analog CRT. */
  1103. #if VERBOSE > 0
  1104. DBG_MSG("intelfbhw_program_mode\n");
  1105. #endif
  1106. /* Disable VGA */
  1107. tmp = INREG(VGACNTRL);
  1108. tmp |= VGA_DISABLE;
  1109. OUTREG(VGACNTRL, tmp);
  1110. /* Check whether pipe A or pipe B is enabled. */
  1111. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  1112. pipe = PIPE_A;
  1113. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  1114. pipe = PIPE_B;
  1115. dinfo->pipe = pipe;
  1116. if (pipe == PIPE_B) {
  1117. dpll = &hw->dpll_b;
  1118. fp0 = &hw->fpb0;
  1119. fp1 = &hw->fpb1;
  1120. pipe_conf = &hw->pipe_b_conf;
  1121. hs = &hw->hsync_b;
  1122. hb = &hw->hblank_b;
  1123. ht = &hw->htotal_b;
  1124. vs = &hw->vsync_b;
  1125. vb = &hw->vblank_b;
  1126. vt = &hw->vtotal_b;
  1127. ss = &hw->src_size_b;
  1128. dpll_reg = DPLL_B;
  1129. fp0_reg = FPB0;
  1130. fp1_reg = FPB1;
  1131. pipe_conf_reg = PIPEBCONF;
  1132. pipe_stat_reg = PIPEBSTAT;
  1133. hsync_reg = HSYNC_B;
  1134. htotal_reg = HTOTAL_B;
  1135. hblank_reg = HBLANK_B;
  1136. vsync_reg = VSYNC_B;
  1137. vtotal_reg = VTOTAL_B;
  1138. vblank_reg = VBLANK_B;
  1139. src_size_reg = SRC_SIZE_B;
  1140. } else {
  1141. dpll = &hw->dpll_a;
  1142. fp0 = &hw->fpa0;
  1143. fp1 = &hw->fpa1;
  1144. pipe_conf = &hw->pipe_a_conf;
  1145. hs = &hw->hsync_a;
  1146. hb = &hw->hblank_a;
  1147. ht = &hw->htotal_a;
  1148. vs = &hw->vsync_a;
  1149. vb = &hw->vblank_a;
  1150. vt = &hw->vtotal_a;
  1151. ss = &hw->src_size_a;
  1152. dpll_reg = DPLL_A;
  1153. fp0_reg = FPA0;
  1154. fp1_reg = FPA1;
  1155. pipe_conf_reg = PIPEACONF;
  1156. pipe_stat_reg = PIPEASTAT;
  1157. hsync_reg = HSYNC_A;
  1158. htotal_reg = HTOTAL_A;
  1159. hblank_reg = HBLANK_A;
  1160. vsync_reg = VSYNC_A;
  1161. vtotal_reg = VTOTAL_A;
  1162. vblank_reg = VBLANK_A;
  1163. src_size_reg = SRC_SIZE_A;
  1164. }
  1165. /* turn off pipe */
  1166. tmp = INREG(pipe_conf_reg);
  1167. tmp &= ~PIPECONF_ENABLE;
  1168. OUTREG(pipe_conf_reg, tmp);
  1169. count = 0;
  1170. do {
  1171. tmp_val[count % 3] = INREG(PIPEA_DSL);
  1172. if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
  1173. break;
  1174. count++;
  1175. udelay(1);
  1176. if (count % 200 == 0) {
  1177. tmp = INREG(pipe_conf_reg);
  1178. tmp &= ~PIPECONF_ENABLE;
  1179. OUTREG(pipe_conf_reg, tmp);
  1180. }
  1181. } while (count < 2000);
  1182. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1183. /* Disable planes A and B. */
  1184. tmp = INREG(DSPACNTR);
  1185. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1186. OUTREG(DSPACNTR, tmp);
  1187. tmp = INREG(DSPBCNTR);
  1188. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1189. OUTREG(DSPBCNTR, tmp);
  1190. /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
  1191. mdelay(20);
  1192. OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
  1193. OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
  1194. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1195. /* Disable Sync */
  1196. tmp = INREG(ADPA);
  1197. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1198. tmp |= ADPA_DPMS_D3;
  1199. OUTREG(ADPA, tmp);
  1200. /* do some funky magic - xyzzy */
  1201. OUTREG(0x61204, 0xabcd0000);
  1202. /* turn off PLL */
  1203. tmp = INREG(dpll_reg);
  1204. tmp &= ~DPLL_VCO_ENABLE;
  1205. OUTREG(dpll_reg, tmp);
  1206. /* Set PLL parameters */
  1207. OUTREG(fp0_reg, *fp0);
  1208. OUTREG(fp1_reg, *fp1);
  1209. /* Enable PLL */
  1210. OUTREG(dpll_reg, *dpll);
  1211. /* Set DVOs B/C */
  1212. OUTREG(DVOB, hw->dvob);
  1213. OUTREG(DVOC, hw->dvoc);
  1214. /* undo funky magic */
  1215. OUTREG(0x61204, 0x00000000);
  1216. /* Set ADPA */
  1217. OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
  1218. OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
  1219. /* Set pipe parameters */
  1220. OUTREG(hsync_reg, *hs);
  1221. OUTREG(hblank_reg, *hb);
  1222. OUTREG(htotal_reg, *ht);
  1223. OUTREG(vsync_reg, *vs);
  1224. OUTREG(vblank_reg, *vb);
  1225. OUTREG(vtotal_reg, *vt);
  1226. OUTREG(src_size_reg, *ss);
  1227. switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
  1228. FB_VMODE_ODD_FLD_FIRST)) {
  1229. case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
  1230. OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
  1231. break;
  1232. case FB_VMODE_INTERLACED: /* even lines first */
  1233. OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
  1234. break;
  1235. default: /* non-interlaced */
  1236. OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
  1237. }
  1238. /* Enable pipe */
  1239. OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
  1240. /* Enable sync */
  1241. tmp = INREG(ADPA);
  1242. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1243. tmp |= ADPA_DPMS_D0;
  1244. OUTREG(ADPA, tmp);
  1245. /* setup display plane */
  1246. if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
  1247. /*
  1248. * i830M errata: the display plane must be enabled
  1249. * to allow writes to the other bits in the plane
  1250. * control register.
  1251. */
  1252. tmp = INREG(DSPACNTR);
  1253. if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
  1254. tmp |= DISPPLANE_PLANE_ENABLE;
  1255. OUTREG(DSPACNTR, tmp);
  1256. OUTREG(DSPACNTR,
  1257. hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
  1258. mdelay(1);
  1259. }
  1260. }
  1261. OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
  1262. OUTREG(DSPASTRIDE, hw->disp_a_stride);
  1263. OUTREG(DSPABASE, hw->disp_a_base);
  1264. /* Enable plane */
  1265. if (!blank) {
  1266. tmp = INREG(DSPACNTR);
  1267. tmp |= DISPPLANE_PLANE_ENABLE;
  1268. OUTREG(DSPACNTR, tmp);
  1269. OUTREG(DSPABASE, hw->disp_a_base);
  1270. }
  1271. return 0;
  1272. }
  1273. /* forward declarations */
  1274. static void refresh_ring(struct intelfb_info *dinfo);
  1275. static void reset_state(struct intelfb_info *dinfo);
  1276. static void do_flush(struct intelfb_info *dinfo);
  1277. static u32 get_ring_space(struct intelfb_info *dinfo)
  1278. {
  1279. u32 ring_space;
  1280. if (dinfo->ring_tail >= dinfo->ring_head)
  1281. ring_space = dinfo->ring.size -
  1282. (dinfo->ring_tail - dinfo->ring_head);
  1283. else
  1284. ring_space = dinfo->ring_head - dinfo->ring_tail;
  1285. if (ring_space > RING_MIN_FREE)
  1286. ring_space -= RING_MIN_FREE;
  1287. else
  1288. ring_space = 0;
  1289. return ring_space;
  1290. }
  1291. static int wait_ring(struct intelfb_info *dinfo, int n)
  1292. {
  1293. int i = 0;
  1294. unsigned long end;
  1295. u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1296. #if VERBOSE > 0
  1297. DBG_MSG("wait_ring: %d\n", n);
  1298. #endif
  1299. end = jiffies + (HZ * 3);
  1300. while (dinfo->ring_space < n) {
  1301. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1302. dinfo->ring_space = get_ring_space(dinfo);
  1303. if (dinfo->ring_head != last_head) {
  1304. end = jiffies + (HZ * 3);
  1305. last_head = dinfo->ring_head;
  1306. }
  1307. i++;
  1308. if (time_before(end, jiffies)) {
  1309. if (!i) {
  1310. /* Try again */
  1311. reset_state(dinfo);
  1312. refresh_ring(dinfo);
  1313. do_flush(dinfo);
  1314. end = jiffies + (HZ * 3);
  1315. i = 1;
  1316. } else {
  1317. WRN_MSG("ring buffer : space: %d wanted %d\n",
  1318. dinfo->ring_space, n);
  1319. WRN_MSG("lockup - turning off hardware "
  1320. "acceleration\n");
  1321. dinfo->ring_lockup = 1;
  1322. break;
  1323. }
  1324. }
  1325. udelay(1);
  1326. }
  1327. return i;
  1328. }
  1329. static void do_flush(struct intelfb_info *dinfo)
  1330. {
  1331. START_RING(2);
  1332. OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
  1333. OUT_RING(MI_NOOP);
  1334. ADVANCE_RING();
  1335. }
  1336. void intelfbhw_do_sync(struct intelfb_info *dinfo)
  1337. {
  1338. #if VERBOSE > 0
  1339. DBG_MSG("intelfbhw_do_sync\n");
  1340. #endif
  1341. if (!dinfo->accel)
  1342. return;
  1343. /*
  1344. * Send a flush, then wait until the ring is empty. This is what
  1345. * the XFree86 driver does, and actually it doesn't seem a lot worse
  1346. * than the recommended method (both have problems).
  1347. */
  1348. do_flush(dinfo);
  1349. wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
  1350. dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
  1351. }
  1352. static void refresh_ring(struct intelfb_info *dinfo)
  1353. {
  1354. #if VERBOSE > 0
  1355. DBG_MSG("refresh_ring\n");
  1356. #endif
  1357. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1358. dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
  1359. dinfo->ring_space = get_ring_space(dinfo);
  1360. }
  1361. static void reset_state(struct intelfb_info *dinfo)
  1362. {
  1363. int i;
  1364. u32 tmp;
  1365. #if VERBOSE > 0
  1366. DBG_MSG("reset_state\n");
  1367. #endif
  1368. for (i = 0; i < FENCE_NUM; i++)
  1369. OUTREG(FENCE + (i << 2), 0);
  1370. /* Flush the ring buffer if it's enabled. */
  1371. tmp = INREG(PRI_RING_LENGTH);
  1372. if (tmp & RING_ENABLE) {
  1373. #if VERBOSE > 0
  1374. DBG_MSG("reset_state: ring was enabled\n");
  1375. #endif
  1376. refresh_ring(dinfo);
  1377. intelfbhw_do_sync(dinfo);
  1378. DO_RING_IDLE();
  1379. }
  1380. OUTREG(PRI_RING_LENGTH, 0);
  1381. OUTREG(PRI_RING_HEAD, 0);
  1382. OUTREG(PRI_RING_TAIL, 0);
  1383. OUTREG(PRI_RING_START, 0);
  1384. }
  1385. /* Stop the 2D engine, and turn off the ring buffer. */
  1386. void intelfbhw_2d_stop(struct intelfb_info *dinfo)
  1387. {
  1388. #if VERBOSE > 0
  1389. DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
  1390. dinfo->accel, dinfo->ring_active);
  1391. #endif
  1392. if (!dinfo->accel)
  1393. return;
  1394. dinfo->ring_active = 0;
  1395. reset_state(dinfo);
  1396. }
  1397. /*
  1398. * Enable the ring buffer, and initialise the 2D engine.
  1399. * It is assumed that the graphics engine has been stopped by previously
  1400. * calling intelfb_2d_stop().
  1401. */
  1402. void intelfbhw_2d_start(struct intelfb_info *dinfo)
  1403. {
  1404. #if VERBOSE > 0
  1405. DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
  1406. dinfo->accel, dinfo->ring_active);
  1407. #endif
  1408. if (!dinfo->accel)
  1409. return;
  1410. /* Initialise the primary ring buffer. */
  1411. OUTREG(PRI_RING_LENGTH, 0);
  1412. OUTREG(PRI_RING_TAIL, 0);
  1413. OUTREG(PRI_RING_HEAD, 0);
  1414. OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
  1415. OUTREG(PRI_RING_LENGTH,
  1416. ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
  1417. RING_NO_REPORT | RING_ENABLE);
  1418. refresh_ring(dinfo);
  1419. dinfo->ring_active = 1;
  1420. }
  1421. /* 2D fillrect (solid fill or invert) */
  1422. void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
  1423. u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
  1424. {
  1425. u32 br00, br09, br13, br14, br16;
  1426. #if VERBOSE > 0
  1427. DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
  1428. "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
  1429. #endif
  1430. br00 = COLOR_BLT_CMD;
  1431. br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
  1432. br13 = (rop << ROP_SHIFT) | pitch;
  1433. br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
  1434. br16 = color;
  1435. switch (bpp) {
  1436. case 8:
  1437. br13 |= COLOR_DEPTH_8;
  1438. break;
  1439. case 16:
  1440. br13 |= COLOR_DEPTH_16;
  1441. break;
  1442. case 32:
  1443. br13 |= COLOR_DEPTH_32;
  1444. br00 |= WRITE_ALPHA | WRITE_RGB;
  1445. break;
  1446. }
  1447. START_RING(6);
  1448. OUT_RING(br00);
  1449. OUT_RING(br13);
  1450. OUT_RING(br14);
  1451. OUT_RING(br09);
  1452. OUT_RING(br16);
  1453. OUT_RING(MI_NOOP);
  1454. ADVANCE_RING();
  1455. #if VERBOSE > 0
  1456. DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
  1457. dinfo->ring_tail, dinfo->ring_space);
  1458. #endif
  1459. }
  1460. void
  1461. intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
  1462. u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
  1463. {
  1464. u32 br00, br09, br11, br12, br13, br22, br23, br26;
  1465. #if VERBOSE > 0
  1466. DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
  1467. curx, cury, dstx, dsty, w, h, pitch, bpp);
  1468. #endif
  1469. br00 = XY_SRC_COPY_BLT_CMD;
  1470. br09 = dinfo->fb_start;
  1471. br11 = (pitch << PITCH_SHIFT);
  1472. br12 = dinfo->fb_start;
  1473. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1474. br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
  1475. br23 = ((dstx + w) << WIDTH_SHIFT) |
  1476. ((dsty + h) << HEIGHT_SHIFT);
  1477. br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
  1478. switch (bpp) {
  1479. case 8:
  1480. br13 |= COLOR_DEPTH_8;
  1481. break;
  1482. case 16:
  1483. br13 |= COLOR_DEPTH_16;
  1484. break;
  1485. case 32:
  1486. br13 |= COLOR_DEPTH_32;
  1487. br00 |= WRITE_ALPHA | WRITE_RGB;
  1488. break;
  1489. }
  1490. START_RING(8);
  1491. OUT_RING(br00);
  1492. OUT_RING(br13);
  1493. OUT_RING(br22);
  1494. OUT_RING(br23);
  1495. OUT_RING(br09);
  1496. OUT_RING(br26);
  1497. OUT_RING(br11);
  1498. OUT_RING(br12);
  1499. ADVANCE_RING();
  1500. }
  1501. int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
  1502. u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
  1503. u32 bpp)
  1504. {
  1505. int nbytes, ndwords, pad, tmp;
  1506. u32 br00, br09, br13, br18, br19, br22, br23;
  1507. int dat, ix, iy, iw;
  1508. int i, j;
  1509. #if VERBOSE > 0
  1510. DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
  1511. #endif
  1512. /* size in bytes of a padded scanline */
  1513. nbytes = ROUND_UP_TO(w, 16) / 8;
  1514. /* Total bytes of padded scanline data to write out. */
  1515. nbytes = nbytes * h;
  1516. /*
  1517. * Check if the glyph data exceeds the immediate mode limit.
  1518. * It would take a large font (1K pixels) to hit this limit.
  1519. */
  1520. if (nbytes > MAX_MONO_IMM_SIZE)
  1521. return 0;
  1522. /* Src data is packaged a dword (32-bit) at a time. */
  1523. ndwords = ROUND_UP_TO(nbytes, 4) / 4;
  1524. /*
  1525. * Ring has to be padded to a quad word. But because the command starts
  1526. with 7 bytes, pad only if there is an even number of ndwords
  1527. */
  1528. pad = !(ndwords % 2);
  1529. tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
  1530. br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
  1531. br09 = dinfo->fb_start;
  1532. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1533. br18 = bg;
  1534. br19 = fg;
  1535. br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
  1536. br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
  1537. switch (bpp) {
  1538. case 8:
  1539. br13 |= COLOR_DEPTH_8;
  1540. break;
  1541. case 16:
  1542. br13 |= COLOR_DEPTH_16;
  1543. break;
  1544. case 32:
  1545. br13 |= COLOR_DEPTH_32;
  1546. br00 |= WRITE_ALPHA | WRITE_RGB;
  1547. break;
  1548. }
  1549. START_RING(8 + ndwords);
  1550. OUT_RING(br00);
  1551. OUT_RING(br13);
  1552. OUT_RING(br22);
  1553. OUT_RING(br23);
  1554. OUT_RING(br09);
  1555. OUT_RING(br18);
  1556. OUT_RING(br19);
  1557. ix = iy = 0;
  1558. iw = ROUND_UP_TO(w, 8) / 8;
  1559. while (ndwords--) {
  1560. dat = 0;
  1561. for (j = 0; j < 2; ++j) {
  1562. for (i = 0; i < 2; ++i) {
  1563. if (ix != iw || i == 0)
  1564. dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
  1565. }
  1566. if (ix == iw && iy != (h-1)) {
  1567. ix = 0;
  1568. ++iy;
  1569. }
  1570. }
  1571. OUT_RING(dat);
  1572. }
  1573. if (pad)
  1574. OUT_RING(MI_NOOP);
  1575. ADVANCE_RING();
  1576. return 1;
  1577. }
  1578. /* HW cursor functions. */
  1579. void intelfbhw_cursor_init(struct intelfb_info *dinfo)
  1580. {
  1581. u32 tmp;
  1582. #if VERBOSE > 0
  1583. DBG_MSG("intelfbhw_cursor_init\n");
  1584. #endif
  1585. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1586. if (!dinfo->cursor.physical)
  1587. return;
  1588. tmp = INREG(CURSOR_A_CONTROL);
  1589. tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
  1590. CURSOR_MEM_TYPE_LOCAL |
  1591. (1 << CURSOR_PIPE_SELECT_SHIFT));
  1592. tmp |= CURSOR_MODE_DISABLE;
  1593. OUTREG(CURSOR_A_CONTROL, tmp);
  1594. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1595. } else {
  1596. tmp = INREG(CURSOR_CONTROL);
  1597. tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
  1598. CURSOR_ENABLE | CURSOR_STRIDE_MASK);
  1599. tmp = CURSOR_FORMAT_3C;
  1600. OUTREG(CURSOR_CONTROL, tmp);
  1601. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
  1602. tmp = (64 << CURSOR_SIZE_H_SHIFT) |
  1603. (64 << CURSOR_SIZE_V_SHIFT);
  1604. OUTREG(CURSOR_SIZE, tmp);
  1605. }
  1606. }
  1607. void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
  1608. {
  1609. u32 tmp;
  1610. #if VERBOSE > 0
  1611. DBG_MSG("intelfbhw_cursor_hide\n");
  1612. #endif
  1613. dinfo->cursor_on = 0;
  1614. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1615. if (!dinfo->cursor.physical)
  1616. return;
  1617. tmp = INREG(CURSOR_A_CONTROL);
  1618. tmp &= ~CURSOR_MODE_MASK;
  1619. tmp |= CURSOR_MODE_DISABLE;
  1620. OUTREG(CURSOR_A_CONTROL, tmp);
  1621. /* Flush changes */
  1622. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1623. } else {
  1624. tmp = INREG(CURSOR_CONTROL);
  1625. tmp &= ~CURSOR_ENABLE;
  1626. OUTREG(CURSOR_CONTROL, tmp);
  1627. }
  1628. }
  1629. void intelfbhw_cursor_show(struct intelfb_info *dinfo)
  1630. {
  1631. u32 tmp;
  1632. #if VERBOSE > 0
  1633. DBG_MSG("intelfbhw_cursor_show\n");
  1634. #endif
  1635. dinfo->cursor_on = 1;
  1636. if (dinfo->cursor_blanked)
  1637. return;
  1638. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1639. if (!dinfo->cursor.physical)
  1640. return;
  1641. tmp = INREG(CURSOR_A_CONTROL);
  1642. tmp &= ~CURSOR_MODE_MASK;
  1643. tmp |= CURSOR_MODE_64_4C_AX;
  1644. OUTREG(CURSOR_A_CONTROL, tmp);
  1645. /* Flush changes */
  1646. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1647. } else {
  1648. tmp = INREG(CURSOR_CONTROL);
  1649. tmp |= CURSOR_ENABLE;
  1650. OUTREG(CURSOR_CONTROL, tmp);
  1651. }
  1652. }
  1653. void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
  1654. {
  1655. u32 tmp;
  1656. #if VERBOSE > 0
  1657. DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
  1658. #endif
  1659. /*
  1660. * Sets the position. The coordinates are assumed to already
  1661. * have any offset adjusted. Assume that the cursor is never
  1662. * completely off-screen, and that x, y are always >= 0.
  1663. */
  1664. tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
  1665. ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
  1666. OUTREG(CURSOR_A_POSITION, tmp);
  1667. if (IS_I9XX(dinfo))
  1668. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1669. }
  1670. void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
  1671. {
  1672. #if VERBOSE > 0
  1673. DBG_MSG("intelfbhw_cursor_setcolor\n");
  1674. #endif
  1675. OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
  1676. OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
  1677. OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
  1678. OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
  1679. }
  1680. void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
  1681. u8 *data)
  1682. {
  1683. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1684. int i, j, w = width / 8;
  1685. int mod = width % 8, t_mask, d_mask;
  1686. #if VERBOSE > 0
  1687. DBG_MSG("intelfbhw_cursor_load\n");
  1688. #endif
  1689. if (!dinfo->cursor.virtual)
  1690. return;
  1691. t_mask = 0xff >> mod;
  1692. d_mask = ~(0xff >> mod);
  1693. for (i = height; i--; ) {
  1694. for (j = 0; j < w; j++) {
  1695. writeb(0x00, addr + j);
  1696. writeb(*(data++), addr + j+8);
  1697. }
  1698. if (mod) {
  1699. writeb(t_mask, addr + j);
  1700. writeb(*(data++) & d_mask, addr + j+8);
  1701. }
  1702. addr += 16;
  1703. }
  1704. }
  1705. void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
  1706. {
  1707. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1708. int i, j;
  1709. #if VERBOSE > 0
  1710. DBG_MSG("intelfbhw_cursor_reset\n");
  1711. #endif
  1712. if (!dinfo->cursor.virtual)
  1713. return;
  1714. for (i = 64; i--; ) {
  1715. for (j = 0; j < 8; j++) {
  1716. writeb(0xff, addr + j+0);
  1717. writeb(0x00, addr + j+8);
  1718. }
  1719. addr += 16;
  1720. }
  1721. }
  1722. static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
  1723. {
  1724. u16 tmp;
  1725. struct intelfb_info *dinfo = dev_id;
  1726. spin_lock(&dinfo->int_lock);
  1727. tmp = INREG16(IIR);
  1728. if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
  1729. tmp &= PIPE_A_EVENT_INTERRUPT;
  1730. else
  1731. tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
  1732. if (tmp == 0) {
  1733. spin_unlock(&dinfo->int_lock);
  1734. return IRQ_RETVAL(0); /* not us */
  1735. }
  1736. /* clear status bits 0-15 ASAP and don't touch bits 16-31 */
  1737. OUTREG(PIPEASTAT, INREG(PIPEASTAT));
  1738. OUTREG16(IIR, tmp);
  1739. if (dinfo->vsync.pan_display) {
  1740. dinfo->vsync.pan_display = 0;
  1741. OUTREG(DSPABASE, dinfo->vsync.pan_offset);
  1742. }
  1743. dinfo->vsync.count++;
  1744. wake_up_interruptible(&dinfo->vsync.wait);
  1745. spin_unlock(&dinfo->int_lock);
  1746. return IRQ_RETVAL(1);
  1747. }
  1748. int intelfbhw_enable_irq(struct intelfb_info *dinfo)
  1749. {
  1750. u16 tmp;
  1751. if (!test_and_set_bit(0, &dinfo->irq_flags)) {
  1752. if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
  1753. "intelfb", dinfo)) {
  1754. clear_bit(0, &dinfo->irq_flags);
  1755. return -EINVAL;
  1756. }
  1757. spin_lock_irq(&dinfo->int_lock);
  1758. OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
  1759. OUTREG16(IMR, 0);
  1760. } else
  1761. spin_lock_irq(&dinfo->int_lock);
  1762. if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
  1763. tmp = PIPE_A_EVENT_INTERRUPT;
  1764. else
  1765. tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
  1766. if (tmp != INREG16(IER)) {
  1767. DBG_MSG("changing IER to 0x%X\n", tmp);
  1768. OUTREG16(IER, tmp);
  1769. }
  1770. spin_unlock_irq(&dinfo->int_lock);
  1771. return 0;
  1772. }
  1773. void intelfbhw_disable_irq(struct intelfb_info *dinfo)
  1774. {
  1775. if (test_and_clear_bit(0, &dinfo->irq_flags)) {
  1776. if (dinfo->vsync.pan_display) {
  1777. dinfo->vsync.pan_display = 0;
  1778. OUTREG(DSPABASE, dinfo->vsync.pan_offset);
  1779. }
  1780. spin_lock_irq(&dinfo->int_lock);
  1781. OUTREG16(HWSTAM, 0xffff);
  1782. OUTREG16(IMR, 0xffff);
  1783. OUTREG16(IER, 0x0);
  1784. OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
  1785. spin_unlock_irq(&dinfo->int_lock);
  1786. free_irq(dinfo->pdev->irq, dinfo);
  1787. }
  1788. }
  1789. int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
  1790. {
  1791. struct intelfb_vsync *vsync;
  1792. unsigned int count;
  1793. int ret;
  1794. switch (pipe) {
  1795. case 0:
  1796. vsync = &dinfo->vsync;
  1797. break;
  1798. default:
  1799. return -ENODEV;
  1800. }
  1801. ret = intelfbhw_enable_irq(dinfo);
  1802. if (ret)
  1803. return ret;
  1804. count = vsync->count;
  1805. ret = wait_event_interruptible_timeout(vsync->wait,
  1806. count != vsync->count, HZ / 10);
  1807. if (ret < 0)
  1808. return ret;
  1809. if (ret == 0) {
  1810. DBG_MSG("wait_for_vsync timed out!\n");
  1811. return -ETIMEDOUT;
  1812. }
  1813. return 0;
  1814. }