i915_gem.c 114 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include <linux/swap.h>
  32. #include <linux/pci.h>
  33. #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  34. static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  35. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  36. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  37. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  38. int write);
  39. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  40. uint64_t offset,
  41. uint64_t size);
  42. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  43. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  44. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  45. unsigned alignment);
  46. static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
  47. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  48. static int i915_gem_evict_something(struct drm_device *dev);
  49. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  50. struct drm_i915_gem_pwrite *args,
  51. struct drm_file *file_priv);
  52. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  53. unsigned long end)
  54. {
  55. drm_i915_private_t *dev_priv = dev->dev_private;
  56. if (start >= end ||
  57. (start & (PAGE_SIZE - 1)) != 0 ||
  58. (end & (PAGE_SIZE - 1)) != 0) {
  59. return -EINVAL;
  60. }
  61. drm_mm_init(&dev_priv->mm.gtt_space, start,
  62. end - start);
  63. dev->gtt_total = (uint32_t) (end - start);
  64. return 0;
  65. }
  66. int
  67. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  68. struct drm_file *file_priv)
  69. {
  70. struct drm_i915_gem_init *args = data;
  71. int ret;
  72. mutex_lock(&dev->struct_mutex);
  73. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  74. mutex_unlock(&dev->struct_mutex);
  75. return ret;
  76. }
  77. int
  78. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  79. struct drm_file *file_priv)
  80. {
  81. struct drm_i915_gem_get_aperture *args = data;
  82. if (!(dev->driver->driver_features & DRIVER_GEM))
  83. return -ENODEV;
  84. args->aper_size = dev->gtt_total;
  85. args->aper_available_size = (args->aper_size -
  86. atomic_read(&dev->pin_memory));
  87. return 0;
  88. }
  89. /**
  90. * Creates a new mm object and returns a handle to it.
  91. */
  92. int
  93. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  94. struct drm_file *file_priv)
  95. {
  96. struct drm_i915_gem_create *args = data;
  97. struct drm_gem_object *obj;
  98. int handle, ret;
  99. args->size = roundup(args->size, PAGE_SIZE);
  100. /* Allocate the new object */
  101. obj = drm_gem_object_alloc(dev, args->size);
  102. if (obj == NULL)
  103. return -ENOMEM;
  104. ret = drm_gem_handle_create(file_priv, obj, &handle);
  105. mutex_lock(&dev->struct_mutex);
  106. drm_gem_object_handle_unreference(obj);
  107. mutex_unlock(&dev->struct_mutex);
  108. if (ret)
  109. return ret;
  110. args->handle = handle;
  111. return 0;
  112. }
  113. static inline int
  114. fast_shmem_read(struct page **pages,
  115. loff_t page_base, int page_offset,
  116. char __user *data,
  117. int length)
  118. {
  119. char __iomem *vaddr;
  120. int unwritten;
  121. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  122. if (vaddr == NULL)
  123. return -ENOMEM;
  124. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  125. kunmap_atomic(vaddr, KM_USER0);
  126. if (unwritten)
  127. return -EFAULT;
  128. return 0;
  129. }
  130. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  131. {
  132. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  133. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  134. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  135. obj_priv->tiling_mode != I915_TILING_NONE;
  136. }
  137. static inline int
  138. slow_shmem_copy(struct page *dst_page,
  139. int dst_offset,
  140. struct page *src_page,
  141. int src_offset,
  142. int length)
  143. {
  144. char *dst_vaddr, *src_vaddr;
  145. dst_vaddr = kmap_atomic(dst_page, KM_USER0);
  146. if (dst_vaddr == NULL)
  147. return -ENOMEM;
  148. src_vaddr = kmap_atomic(src_page, KM_USER1);
  149. if (src_vaddr == NULL) {
  150. kunmap_atomic(dst_vaddr, KM_USER0);
  151. return -ENOMEM;
  152. }
  153. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  154. kunmap_atomic(src_vaddr, KM_USER1);
  155. kunmap_atomic(dst_vaddr, KM_USER0);
  156. return 0;
  157. }
  158. static inline int
  159. slow_shmem_bit17_copy(struct page *gpu_page,
  160. int gpu_offset,
  161. struct page *cpu_page,
  162. int cpu_offset,
  163. int length,
  164. int is_read)
  165. {
  166. char *gpu_vaddr, *cpu_vaddr;
  167. /* Use the unswizzled path if this page isn't affected. */
  168. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  169. if (is_read)
  170. return slow_shmem_copy(cpu_page, cpu_offset,
  171. gpu_page, gpu_offset, length);
  172. else
  173. return slow_shmem_copy(gpu_page, gpu_offset,
  174. cpu_page, cpu_offset, length);
  175. }
  176. gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
  177. if (gpu_vaddr == NULL)
  178. return -ENOMEM;
  179. cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
  180. if (cpu_vaddr == NULL) {
  181. kunmap_atomic(gpu_vaddr, KM_USER0);
  182. return -ENOMEM;
  183. }
  184. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  185. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  186. */
  187. while (length > 0) {
  188. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  189. int this_length = min(cacheline_end - gpu_offset, length);
  190. int swizzled_gpu_offset = gpu_offset ^ 64;
  191. if (is_read) {
  192. memcpy(cpu_vaddr + cpu_offset,
  193. gpu_vaddr + swizzled_gpu_offset,
  194. this_length);
  195. } else {
  196. memcpy(gpu_vaddr + swizzled_gpu_offset,
  197. cpu_vaddr + cpu_offset,
  198. this_length);
  199. }
  200. cpu_offset += this_length;
  201. gpu_offset += this_length;
  202. length -= this_length;
  203. }
  204. kunmap_atomic(cpu_vaddr, KM_USER1);
  205. kunmap_atomic(gpu_vaddr, KM_USER0);
  206. return 0;
  207. }
  208. /**
  209. * This is the fast shmem pread path, which attempts to copy_from_user directly
  210. * from the backing pages of the object to the user's address space. On a
  211. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  212. */
  213. static int
  214. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  215. struct drm_i915_gem_pread *args,
  216. struct drm_file *file_priv)
  217. {
  218. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  219. ssize_t remain;
  220. loff_t offset, page_base;
  221. char __user *user_data;
  222. int page_offset, page_length;
  223. int ret;
  224. user_data = (char __user *) (uintptr_t) args->data_ptr;
  225. remain = args->size;
  226. mutex_lock(&dev->struct_mutex);
  227. ret = i915_gem_object_get_pages(obj);
  228. if (ret != 0)
  229. goto fail_unlock;
  230. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  231. args->size);
  232. if (ret != 0)
  233. goto fail_put_pages;
  234. obj_priv = obj->driver_private;
  235. offset = args->offset;
  236. while (remain > 0) {
  237. /* Operation in this page
  238. *
  239. * page_base = page offset within aperture
  240. * page_offset = offset within page
  241. * page_length = bytes to copy for this page
  242. */
  243. page_base = (offset & ~(PAGE_SIZE-1));
  244. page_offset = offset & (PAGE_SIZE-1);
  245. page_length = remain;
  246. if ((page_offset + remain) > PAGE_SIZE)
  247. page_length = PAGE_SIZE - page_offset;
  248. ret = fast_shmem_read(obj_priv->pages,
  249. page_base, page_offset,
  250. user_data, page_length);
  251. if (ret)
  252. goto fail_put_pages;
  253. remain -= page_length;
  254. user_data += page_length;
  255. offset += page_length;
  256. }
  257. fail_put_pages:
  258. i915_gem_object_put_pages(obj);
  259. fail_unlock:
  260. mutex_unlock(&dev->struct_mutex);
  261. return ret;
  262. }
  263. /**
  264. * This is the fallback shmem pread path, which allocates temporary storage
  265. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  266. * can copy out of the object's backing pages while holding the struct mutex
  267. * and not take page faults.
  268. */
  269. static int
  270. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  271. struct drm_i915_gem_pread *args,
  272. struct drm_file *file_priv)
  273. {
  274. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  275. struct mm_struct *mm = current->mm;
  276. struct page **user_pages;
  277. ssize_t remain;
  278. loff_t offset, pinned_pages, i;
  279. loff_t first_data_page, last_data_page, num_pages;
  280. int shmem_page_index, shmem_page_offset;
  281. int data_page_index, data_page_offset;
  282. int page_length;
  283. int ret;
  284. uint64_t data_ptr = args->data_ptr;
  285. int do_bit17_swizzling;
  286. remain = args->size;
  287. /* Pin the user pages containing the data. We can't fault while
  288. * holding the struct mutex, yet we want to hold it while
  289. * dereferencing the user data.
  290. */
  291. first_data_page = data_ptr / PAGE_SIZE;
  292. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  293. num_pages = last_data_page - first_data_page + 1;
  294. user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
  295. if (user_pages == NULL)
  296. return -ENOMEM;
  297. down_read(&mm->mmap_sem);
  298. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  299. num_pages, 1, 0, user_pages, NULL);
  300. up_read(&mm->mmap_sem);
  301. if (pinned_pages < num_pages) {
  302. ret = -EFAULT;
  303. goto fail_put_user_pages;
  304. }
  305. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  306. mutex_lock(&dev->struct_mutex);
  307. ret = i915_gem_object_get_pages(obj);
  308. if (ret != 0)
  309. goto fail_unlock;
  310. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  311. args->size);
  312. if (ret != 0)
  313. goto fail_put_pages;
  314. obj_priv = obj->driver_private;
  315. offset = args->offset;
  316. while (remain > 0) {
  317. /* Operation in this page
  318. *
  319. * shmem_page_index = page number within shmem file
  320. * shmem_page_offset = offset within page in shmem file
  321. * data_page_index = page number in get_user_pages return
  322. * data_page_offset = offset with data_page_index page.
  323. * page_length = bytes to copy for this page
  324. */
  325. shmem_page_index = offset / PAGE_SIZE;
  326. shmem_page_offset = offset & ~PAGE_MASK;
  327. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  328. data_page_offset = data_ptr & ~PAGE_MASK;
  329. page_length = remain;
  330. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  331. page_length = PAGE_SIZE - shmem_page_offset;
  332. if ((data_page_offset + page_length) > PAGE_SIZE)
  333. page_length = PAGE_SIZE - data_page_offset;
  334. if (do_bit17_swizzling) {
  335. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  336. shmem_page_offset,
  337. user_pages[data_page_index],
  338. data_page_offset,
  339. page_length,
  340. 1);
  341. } else {
  342. ret = slow_shmem_copy(user_pages[data_page_index],
  343. data_page_offset,
  344. obj_priv->pages[shmem_page_index],
  345. shmem_page_offset,
  346. page_length);
  347. }
  348. if (ret)
  349. goto fail_put_pages;
  350. remain -= page_length;
  351. data_ptr += page_length;
  352. offset += page_length;
  353. }
  354. fail_put_pages:
  355. i915_gem_object_put_pages(obj);
  356. fail_unlock:
  357. mutex_unlock(&dev->struct_mutex);
  358. fail_put_user_pages:
  359. for (i = 0; i < pinned_pages; i++) {
  360. SetPageDirty(user_pages[i]);
  361. page_cache_release(user_pages[i]);
  362. }
  363. kfree(user_pages);
  364. return ret;
  365. }
  366. /**
  367. * Reads data from the object referenced by handle.
  368. *
  369. * On error, the contents of *data are undefined.
  370. */
  371. int
  372. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  373. struct drm_file *file_priv)
  374. {
  375. struct drm_i915_gem_pread *args = data;
  376. struct drm_gem_object *obj;
  377. struct drm_i915_gem_object *obj_priv;
  378. int ret;
  379. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  380. if (obj == NULL)
  381. return -EBADF;
  382. obj_priv = obj->driver_private;
  383. /* Bounds check source.
  384. *
  385. * XXX: This could use review for overflow issues...
  386. */
  387. if (args->offset > obj->size || args->size > obj->size ||
  388. args->offset + args->size > obj->size) {
  389. drm_gem_object_unreference(obj);
  390. return -EINVAL;
  391. }
  392. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  393. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  394. } else {
  395. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  396. if (ret != 0)
  397. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  398. file_priv);
  399. }
  400. drm_gem_object_unreference(obj);
  401. return ret;
  402. }
  403. /* This is the fast write path which cannot handle
  404. * page faults in the source data
  405. */
  406. static inline int
  407. fast_user_write(struct io_mapping *mapping,
  408. loff_t page_base, int page_offset,
  409. char __user *user_data,
  410. int length)
  411. {
  412. char *vaddr_atomic;
  413. unsigned long unwritten;
  414. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  415. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  416. user_data, length);
  417. io_mapping_unmap_atomic(vaddr_atomic);
  418. if (unwritten)
  419. return -EFAULT;
  420. return 0;
  421. }
  422. /* Here's the write path which can sleep for
  423. * page faults
  424. */
  425. static inline int
  426. slow_kernel_write(struct io_mapping *mapping,
  427. loff_t gtt_base, int gtt_offset,
  428. struct page *user_page, int user_offset,
  429. int length)
  430. {
  431. char *src_vaddr, *dst_vaddr;
  432. unsigned long unwritten;
  433. dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
  434. src_vaddr = kmap_atomic(user_page, KM_USER1);
  435. unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
  436. src_vaddr + user_offset,
  437. length);
  438. kunmap_atomic(src_vaddr, KM_USER1);
  439. io_mapping_unmap_atomic(dst_vaddr);
  440. if (unwritten)
  441. return -EFAULT;
  442. return 0;
  443. }
  444. static inline int
  445. fast_shmem_write(struct page **pages,
  446. loff_t page_base, int page_offset,
  447. char __user *data,
  448. int length)
  449. {
  450. char __iomem *vaddr;
  451. unsigned long unwritten;
  452. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  453. if (vaddr == NULL)
  454. return -ENOMEM;
  455. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  456. kunmap_atomic(vaddr, KM_USER0);
  457. if (unwritten)
  458. return -EFAULT;
  459. return 0;
  460. }
  461. /**
  462. * This is the fast pwrite path, where we copy the data directly from the
  463. * user into the GTT, uncached.
  464. */
  465. static int
  466. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  467. struct drm_i915_gem_pwrite *args,
  468. struct drm_file *file_priv)
  469. {
  470. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  471. drm_i915_private_t *dev_priv = dev->dev_private;
  472. ssize_t remain;
  473. loff_t offset, page_base;
  474. char __user *user_data;
  475. int page_offset, page_length;
  476. int ret;
  477. user_data = (char __user *) (uintptr_t) args->data_ptr;
  478. remain = args->size;
  479. if (!access_ok(VERIFY_READ, user_data, remain))
  480. return -EFAULT;
  481. mutex_lock(&dev->struct_mutex);
  482. ret = i915_gem_object_pin(obj, 0);
  483. if (ret) {
  484. mutex_unlock(&dev->struct_mutex);
  485. return ret;
  486. }
  487. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  488. if (ret)
  489. goto fail;
  490. obj_priv = obj->driver_private;
  491. offset = obj_priv->gtt_offset + args->offset;
  492. while (remain > 0) {
  493. /* Operation in this page
  494. *
  495. * page_base = page offset within aperture
  496. * page_offset = offset within page
  497. * page_length = bytes to copy for this page
  498. */
  499. page_base = (offset & ~(PAGE_SIZE-1));
  500. page_offset = offset & (PAGE_SIZE-1);
  501. page_length = remain;
  502. if ((page_offset + remain) > PAGE_SIZE)
  503. page_length = PAGE_SIZE - page_offset;
  504. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  505. page_offset, user_data, page_length);
  506. /* If we get a fault while copying data, then (presumably) our
  507. * source page isn't available. Return the error and we'll
  508. * retry in the slow path.
  509. */
  510. if (ret)
  511. goto fail;
  512. remain -= page_length;
  513. user_data += page_length;
  514. offset += page_length;
  515. }
  516. fail:
  517. i915_gem_object_unpin(obj);
  518. mutex_unlock(&dev->struct_mutex);
  519. return ret;
  520. }
  521. /**
  522. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  523. * the memory and maps it using kmap_atomic for copying.
  524. *
  525. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  526. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  527. */
  528. static int
  529. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  530. struct drm_i915_gem_pwrite *args,
  531. struct drm_file *file_priv)
  532. {
  533. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  534. drm_i915_private_t *dev_priv = dev->dev_private;
  535. ssize_t remain;
  536. loff_t gtt_page_base, offset;
  537. loff_t first_data_page, last_data_page, num_pages;
  538. loff_t pinned_pages, i;
  539. struct page **user_pages;
  540. struct mm_struct *mm = current->mm;
  541. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  542. int ret;
  543. uint64_t data_ptr = args->data_ptr;
  544. remain = args->size;
  545. /* Pin the user pages containing the data. We can't fault while
  546. * holding the struct mutex, and all of the pwrite implementations
  547. * want to hold it while dereferencing the user data.
  548. */
  549. first_data_page = data_ptr / PAGE_SIZE;
  550. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  551. num_pages = last_data_page - first_data_page + 1;
  552. user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
  553. if (user_pages == NULL)
  554. return -ENOMEM;
  555. down_read(&mm->mmap_sem);
  556. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  557. num_pages, 0, 0, user_pages, NULL);
  558. up_read(&mm->mmap_sem);
  559. if (pinned_pages < num_pages) {
  560. ret = -EFAULT;
  561. goto out_unpin_pages;
  562. }
  563. mutex_lock(&dev->struct_mutex);
  564. ret = i915_gem_object_pin(obj, 0);
  565. if (ret)
  566. goto out_unlock;
  567. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  568. if (ret)
  569. goto out_unpin_object;
  570. obj_priv = obj->driver_private;
  571. offset = obj_priv->gtt_offset + args->offset;
  572. while (remain > 0) {
  573. /* Operation in this page
  574. *
  575. * gtt_page_base = page offset within aperture
  576. * gtt_page_offset = offset within page in aperture
  577. * data_page_index = page number in get_user_pages return
  578. * data_page_offset = offset with data_page_index page.
  579. * page_length = bytes to copy for this page
  580. */
  581. gtt_page_base = offset & PAGE_MASK;
  582. gtt_page_offset = offset & ~PAGE_MASK;
  583. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  584. data_page_offset = data_ptr & ~PAGE_MASK;
  585. page_length = remain;
  586. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  587. page_length = PAGE_SIZE - gtt_page_offset;
  588. if ((data_page_offset + page_length) > PAGE_SIZE)
  589. page_length = PAGE_SIZE - data_page_offset;
  590. ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
  591. gtt_page_base, gtt_page_offset,
  592. user_pages[data_page_index],
  593. data_page_offset,
  594. page_length);
  595. /* If we get a fault while copying data, then (presumably) our
  596. * source page isn't available. Return the error and we'll
  597. * retry in the slow path.
  598. */
  599. if (ret)
  600. goto out_unpin_object;
  601. remain -= page_length;
  602. offset += page_length;
  603. data_ptr += page_length;
  604. }
  605. out_unpin_object:
  606. i915_gem_object_unpin(obj);
  607. out_unlock:
  608. mutex_unlock(&dev->struct_mutex);
  609. out_unpin_pages:
  610. for (i = 0; i < pinned_pages; i++)
  611. page_cache_release(user_pages[i]);
  612. kfree(user_pages);
  613. return ret;
  614. }
  615. /**
  616. * This is the fast shmem pwrite path, which attempts to directly
  617. * copy_from_user into the kmapped pages backing the object.
  618. */
  619. static int
  620. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  621. struct drm_i915_gem_pwrite *args,
  622. struct drm_file *file_priv)
  623. {
  624. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  625. ssize_t remain;
  626. loff_t offset, page_base;
  627. char __user *user_data;
  628. int page_offset, page_length;
  629. int ret;
  630. user_data = (char __user *) (uintptr_t) args->data_ptr;
  631. remain = args->size;
  632. mutex_lock(&dev->struct_mutex);
  633. ret = i915_gem_object_get_pages(obj);
  634. if (ret != 0)
  635. goto fail_unlock;
  636. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  637. if (ret != 0)
  638. goto fail_put_pages;
  639. obj_priv = obj->driver_private;
  640. offset = args->offset;
  641. obj_priv->dirty = 1;
  642. while (remain > 0) {
  643. /* Operation in this page
  644. *
  645. * page_base = page offset within aperture
  646. * page_offset = offset within page
  647. * page_length = bytes to copy for this page
  648. */
  649. page_base = (offset & ~(PAGE_SIZE-1));
  650. page_offset = offset & (PAGE_SIZE-1);
  651. page_length = remain;
  652. if ((page_offset + remain) > PAGE_SIZE)
  653. page_length = PAGE_SIZE - page_offset;
  654. ret = fast_shmem_write(obj_priv->pages,
  655. page_base, page_offset,
  656. user_data, page_length);
  657. if (ret)
  658. goto fail_put_pages;
  659. remain -= page_length;
  660. user_data += page_length;
  661. offset += page_length;
  662. }
  663. fail_put_pages:
  664. i915_gem_object_put_pages(obj);
  665. fail_unlock:
  666. mutex_unlock(&dev->struct_mutex);
  667. return ret;
  668. }
  669. /**
  670. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  671. * the memory and maps it using kmap_atomic for copying.
  672. *
  673. * This avoids taking mmap_sem for faulting on the user's address while the
  674. * struct_mutex is held.
  675. */
  676. static int
  677. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  678. struct drm_i915_gem_pwrite *args,
  679. struct drm_file *file_priv)
  680. {
  681. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  682. struct mm_struct *mm = current->mm;
  683. struct page **user_pages;
  684. ssize_t remain;
  685. loff_t offset, pinned_pages, i;
  686. loff_t first_data_page, last_data_page, num_pages;
  687. int shmem_page_index, shmem_page_offset;
  688. int data_page_index, data_page_offset;
  689. int page_length;
  690. int ret;
  691. uint64_t data_ptr = args->data_ptr;
  692. int do_bit17_swizzling;
  693. remain = args->size;
  694. /* Pin the user pages containing the data. We can't fault while
  695. * holding the struct mutex, and all of the pwrite implementations
  696. * want to hold it while dereferencing the user data.
  697. */
  698. first_data_page = data_ptr / PAGE_SIZE;
  699. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  700. num_pages = last_data_page - first_data_page + 1;
  701. user_pages = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
  702. if (user_pages == NULL)
  703. return -ENOMEM;
  704. down_read(&mm->mmap_sem);
  705. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  706. num_pages, 0, 0, user_pages, NULL);
  707. up_read(&mm->mmap_sem);
  708. if (pinned_pages < num_pages) {
  709. ret = -EFAULT;
  710. goto fail_put_user_pages;
  711. }
  712. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  713. mutex_lock(&dev->struct_mutex);
  714. ret = i915_gem_object_get_pages(obj);
  715. if (ret != 0)
  716. goto fail_unlock;
  717. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  718. if (ret != 0)
  719. goto fail_put_pages;
  720. obj_priv = obj->driver_private;
  721. offset = args->offset;
  722. obj_priv->dirty = 1;
  723. while (remain > 0) {
  724. /* Operation in this page
  725. *
  726. * shmem_page_index = page number within shmem file
  727. * shmem_page_offset = offset within page in shmem file
  728. * data_page_index = page number in get_user_pages return
  729. * data_page_offset = offset with data_page_index page.
  730. * page_length = bytes to copy for this page
  731. */
  732. shmem_page_index = offset / PAGE_SIZE;
  733. shmem_page_offset = offset & ~PAGE_MASK;
  734. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  735. data_page_offset = data_ptr & ~PAGE_MASK;
  736. page_length = remain;
  737. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  738. page_length = PAGE_SIZE - shmem_page_offset;
  739. if ((data_page_offset + page_length) > PAGE_SIZE)
  740. page_length = PAGE_SIZE - data_page_offset;
  741. if (do_bit17_swizzling) {
  742. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  743. shmem_page_offset,
  744. user_pages[data_page_index],
  745. data_page_offset,
  746. page_length,
  747. 0);
  748. } else {
  749. ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
  750. shmem_page_offset,
  751. user_pages[data_page_index],
  752. data_page_offset,
  753. page_length);
  754. }
  755. if (ret)
  756. goto fail_put_pages;
  757. remain -= page_length;
  758. data_ptr += page_length;
  759. offset += page_length;
  760. }
  761. fail_put_pages:
  762. i915_gem_object_put_pages(obj);
  763. fail_unlock:
  764. mutex_unlock(&dev->struct_mutex);
  765. fail_put_user_pages:
  766. for (i = 0; i < pinned_pages; i++)
  767. page_cache_release(user_pages[i]);
  768. kfree(user_pages);
  769. return ret;
  770. }
  771. /**
  772. * Writes data to the object referenced by handle.
  773. *
  774. * On error, the contents of the buffer that were to be modified are undefined.
  775. */
  776. int
  777. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  778. struct drm_file *file_priv)
  779. {
  780. struct drm_i915_gem_pwrite *args = data;
  781. struct drm_gem_object *obj;
  782. struct drm_i915_gem_object *obj_priv;
  783. int ret = 0;
  784. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  785. if (obj == NULL)
  786. return -EBADF;
  787. obj_priv = obj->driver_private;
  788. /* Bounds check destination.
  789. *
  790. * XXX: This could use review for overflow issues...
  791. */
  792. if (args->offset > obj->size || args->size > obj->size ||
  793. args->offset + args->size > obj->size) {
  794. drm_gem_object_unreference(obj);
  795. return -EINVAL;
  796. }
  797. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  798. * it would end up going through the fenced access, and we'll get
  799. * different detiling behavior between reading and writing.
  800. * pread/pwrite currently are reading and writing from the CPU
  801. * perspective, requiring manual detiling by the client.
  802. */
  803. if (obj_priv->phys_obj)
  804. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  805. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  806. dev->gtt_total != 0) {
  807. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  808. if (ret == -EFAULT) {
  809. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  810. file_priv);
  811. }
  812. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  813. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  814. } else {
  815. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  816. if (ret == -EFAULT) {
  817. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  818. file_priv);
  819. }
  820. }
  821. #if WATCH_PWRITE
  822. if (ret)
  823. DRM_INFO("pwrite failed %d\n", ret);
  824. #endif
  825. drm_gem_object_unreference(obj);
  826. return ret;
  827. }
  828. /**
  829. * Called when user space prepares to use an object with the CPU, either
  830. * through the mmap ioctl's mapping or a GTT mapping.
  831. */
  832. int
  833. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  834. struct drm_file *file_priv)
  835. {
  836. struct drm_i915_gem_set_domain *args = data;
  837. struct drm_gem_object *obj;
  838. uint32_t read_domains = args->read_domains;
  839. uint32_t write_domain = args->write_domain;
  840. int ret;
  841. if (!(dev->driver->driver_features & DRIVER_GEM))
  842. return -ENODEV;
  843. /* Only handle setting domains to types used by the CPU. */
  844. if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  845. return -EINVAL;
  846. if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  847. return -EINVAL;
  848. /* Having something in the write domain implies it's in the read
  849. * domain, and only that read domain. Enforce that in the request.
  850. */
  851. if (write_domain != 0 && read_domains != write_domain)
  852. return -EINVAL;
  853. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  854. if (obj == NULL)
  855. return -EBADF;
  856. mutex_lock(&dev->struct_mutex);
  857. #if WATCH_BUF
  858. DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
  859. obj, obj->size, read_domains, write_domain);
  860. #endif
  861. if (read_domains & I915_GEM_DOMAIN_GTT) {
  862. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  863. /* Silently promote "you're not bound, there was nothing to do"
  864. * to success, since the client was just asking us to
  865. * make sure everything was done.
  866. */
  867. if (ret == -EINVAL)
  868. ret = 0;
  869. } else {
  870. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  871. }
  872. drm_gem_object_unreference(obj);
  873. mutex_unlock(&dev->struct_mutex);
  874. return ret;
  875. }
  876. /**
  877. * Called when user space has done writes to this buffer
  878. */
  879. int
  880. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  881. struct drm_file *file_priv)
  882. {
  883. struct drm_i915_gem_sw_finish *args = data;
  884. struct drm_gem_object *obj;
  885. struct drm_i915_gem_object *obj_priv;
  886. int ret = 0;
  887. if (!(dev->driver->driver_features & DRIVER_GEM))
  888. return -ENODEV;
  889. mutex_lock(&dev->struct_mutex);
  890. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  891. if (obj == NULL) {
  892. mutex_unlock(&dev->struct_mutex);
  893. return -EBADF;
  894. }
  895. #if WATCH_BUF
  896. DRM_INFO("%s: sw_finish %d (%p %d)\n",
  897. __func__, args->handle, obj, obj->size);
  898. #endif
  899. obj_priv = obj->driver_private;
  900. /* Pinned buffers may be scanout, so flush the cache */
  901. if (obj_priv->pin_count)
  902. i915_gem_object_flush_cpu_write_domain(obj);
  903. drm_gem_object_unreference(obj);
  904. mutex_unlock(&dev->struct_mutex);
  905. return ret;
  906. }
  907. /**
  908. * Maps the contents of an object, returning the address it is mapped
  909. * into.
  910. *
  911. * While the mapping holds a reference on the contents of the object, it doesn't
  912. * imply a ref on the object itself.
  913. */
  914. int
  915. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  916. struct drm_file *file_priv)
  917. {
  918. struct drm_i915_gem_mmap *args = data;
  919. struct drm_gem_object *obj;
  920. loff_t offset;
  921. unsigned long addr;
  922. if (!(dev->driver->driver_features & DRIVER_GEM))
  923. return -ENODEV;
  924. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  925. if (obj == NULL)
  926. return -EBADF;
  927. offset = args->offset;
  928. down_write(&current->mm->mmap_sem);
  929. addr = do_mmap(obj->filp, 0, args->size,
  930. PROT_READ | PROT_WRITE, MAP_SHARED,
  931. args->offset);
  932. up_write(&current->mm->mmap_sem);
  933. mutex_lock(&dev->struct_mutex);
  934. drm_gem_object_unreference(obj);
  935. mutex_unlock(&dev->struct_mutex);
  936. if (IS_ERR((void *)addr))
  937. return addr;
  938. args->addr_ptr = (uint64_t) addr;
  939. return 0;
  940. }
  941. /**
  942. * i915_gem_fault - fault a page into the GTT
  943. * vma: VMA in question
  944. * vmf: fault info
  945. *
  946. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  947. * from userspace. The fault handler takes care of binding the object to
  948. * the GTT (if needed), allocating and programming a fence register (again,
  949. * only if needed based on whether the old reg is still valid or the object
  950. * is tiled) and inserting a new PTE into the faulting process.
  951. *
  952. * Note that the faulting process may involve evicting existing objects
  953. * from the GTT and/or fence registers to make room. So performance may
  954. * suffer if the GTT working set is large or there are few fence registers
  955. * left.
  956. */
  957. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  958. {
  959. struct drm_gem_object *obj = vma->vm_private_data;
  960. struct drm_device *dev = obj->dev;
  961. struct drm_i915_private *dev_priv = dev->dev_private;
  962. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  963. pgoff_t page_offset;
  964. unsigned long pfn;
  965. int ret = 0;
  966. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  967. /* We don't use vmf->pgoff since that has the fake offset */
  968. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  969. PAGE_SHIFT;
  970. /* Now bind it into the GTT if needed */
  971. mutex_lock(&dev->struct_mutex);
  972. if (!obj_priv->gtt_space) {
  973. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  974. if (ret) {
  975. mutex_unlock(&dev->struct_mutex);
  976. return VM_FAULT_SIGBUS;
  977. }
  978. list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
  979. }
  980. /* Need a new fence register? */
  981. if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  982. obj_priv->tiling_mode != I915_TILING_NONE) {
  983. ret = i915_gem_object_get_fence_reg(obj, write);
  984. if (ret) {
  985. mutex_unlock(&dev->struct_mutex);
  986. return VM_FAULT_SIGBUS;
  987. }
  988. }
  989. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  990. page_offset;
  991. /* Finally, remap it using the new GTT offset */
  992. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  993. mutex_unlock(&dev->struct_mutex);
  994. switch (ret) {
  995. case -ENOMEM:
  996. case -EAGAIN:
  997. return VM_FAULT_OOM;
  998. case -EFAULT:
  999. case -EINVAL:
  1000. return VM_FAULT_SIGBUS;
  1001. default:
  1002. return VM_FAULT_NOPAGE;
  1003. }
  1004. }
  1005. /**
  1006. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1007. * @obj: obj in question
  1008. *
  1009. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1010. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1011. * up the object based on the offset and sets up the various memory mapping
  1012. * structures.
  1013. *
  1014. * This routine allocates and attaches a fake offset for @obj.
  1015. */
  1016. static int
  1017. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1018. {
  1019. struct drm_device *dev = obj->dev;
  1020. struct drm_gem_mm *mm = dev->mm_private;
  1021. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1022. struct drm_map_list *list;
  1023. struct drm_local_map *map;
  1024. int ret = 0;
  1025. /* Set the object up for mmap'ing */
  1026. list = &obj->map_list;
  1027. list->map = drm_calloc(1, sizeof(struct drm_map_list),
  1028. DRM_MEM_DRIVER);
  1029. if (!list->map)
  1030. return -ENOMEM;
  1031. map = list->map;
  1032. map->type = _DRM_GEM;
  1033. map->size = obj->size;
  1034. map->handle = obj;
  1035. /* Get a DRM GEM mmap offset allocated... */
  1036. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1037. obj->size / PAGE_SIZE, 0, 0);
  1038. if (!list->file_offset_node) {
  1039. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1040. ret = -ENOMEM;
  1041. goto out_free_list;
  1042. }
  1043. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1044. obj->size / PAGE_SIZE, 0);
  1045. if (!list->file_offset_node) {
  1046. ret = -ENOMEM;
  1047. goto out_free_list;
  1048. }
  1049. list->hash.key = list->file_offset_node->start;
  1050. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  1051. DRM_ERROR("failed to add to map hash\n");
  1052. goto out_free_mm;
  1053. }
  1054. /* By now we should be all set, any drm_mmap request on the offset
  1055. * below will get to our mmap & fault handler */
  1056. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1057. return 0;
  1058. out_free_mm:
  1059. drm_mm_put_block(list->file_offset_node);
  1060. out_free_list:
  1061. drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
  1062. return ret;
  1063. }
  1064. static void
  1065. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1066. {
  1067. struct drm_device *dev = obj->dev;
  1068. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1069. struct drm_gem_mm *mm = dev->mm_private;
  1070. struct drm_map_list *list;
  1071. list = &obj->map_list;
  1072. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1073. if (list->file_offset_node) {
  1074. drm_mm_put_block(list->file_offset_node);
  1075. list->file_offset_node = NULL;
  1076. }
  1077. if (list->map) {
  1078. drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
  1079. list->map = NULL;
  1080. }
  1081. obj_priv->mmap_offset = 0;
  1082. }
  1083. /**
  1084. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1085. * @obj: object to check
  1086. *
  1087. * Return the required GTT alignment for an object, taking into account
  1088. * potential fence register mapping if needed.
  1089. */
  1090. static uint32_t
  1091. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1092. {
  1093. struct drm_device *dev = obj->dev;
  1094. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1095. int start, i;
  1096. /*
  1097. * Minimum alignment is 4k (GTT page size), but might be greater
  1098. * if a fence register is needed for the object.
  1099. */
  1100. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1101. return 4096;
  1102. /*
  1103. * Previous chips need to be aligned to the size of the smallest
  1104. * fence register that can contain the object.
  1105. */
  1106. if (IS_I9XX(dev))
  1107. start = 1024*1024;
  1108. else
  1109. start = 512*1024;
  1110. for (i = start; i < obj->size; i <<= 1)
  1111. ;
  1112. return i;
  1113. }
  1114. /**
  1115. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1116. * @dev: DRM device
  1117. * @data: GTT mapping ioctl data
  1118. * @file_priv: GEM object info
  1119. *
  1120. * Simply returns the fake offset to userspace so it can mmap it.
  1121. * The mmap call will end up in drm_gem_mmap(), which will set things
  1122. * up so we can get faults in the handler above.
  1123. *
  1124. * The fault handler will take care of binding the object into the GTT
  1125. * (since it may have been evicted to make room for something), allocating
  1126. * a fence register, and mapping the appropriate aperture address into
  1127. * userspace.
  1128. */
  1129. int
  1130. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1131. struct drm_file *file_priv)
  1132. {
  1133. struct drm_i915_gem_mmap_gtt *args = data;
  1134. struct drm_i915_private *dev_priv = dev->dev_private;
  1135. struct drm_gem_object *obj;
  1136. struct drm_i915_gem_object *obj_priv;
  1137. int ret;
  1138. if (!(dev->driver->driver_features & DRIVER_GEM))
  1139. return -ENODEV;
  1140. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1141. if (obj == NULL)
  1142. return -EBADF;
  1143. mutex_lock(&dev->struct_mutex);
  1144. obj_priv = obj->driver_private;
  1145. if (!obj_priv->mmap_offset) {
  1146. ret = i915_gem_create_mmap_offset(obj);
  1147. if (ret) {
  1148. drm_gem_object_unreference(obj);
  1149. mutex_unlock(&dev->struct_mutex);
  1150. return ret;
  1151. }
  1152. }
  1153. args->offset = obj_priv->mmap_offset;
  1154. obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
  1155. /* Make sure the alignment is correct for fence regs etc */
  1156. if (obj_priv->agp_mem &&
  1157. (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
  1158. drm_gem_object_unreference(obj);
  1159. mutex_unlock(&dev->struct_mutex);
  1160. return -EINVAL;
  1161. }
  1162. /*
  1163. * Pull it into the GTT so that we have a page list (makes the
  1164. * initial fault faster and any subsequent flushing possible).
  1165. */
  1166. if (!obj_priv->agp_mem) {
  1167. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  1168. if (ret) {
  1169. drm_gem_object_unreference(obj);
  1170. mutex_unlock(&dev->struct_mutex);
  1171. return ret;
  1172. }
  1173. list_add(&obj_priv->list, &dev_priv->mm.inactive_list);
  1174. }
  1175. drm_gem_object_unreference(obj);
  1176. mutex_unlock(&dev->struct_mutex);
  1177. return 0;
  1178. }
  1179. void
  1180. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1181. {
  1182. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1183. int page_count = obj->size / PAGE_SIZE;
  1184. int i;
  1185. BUG_ON(obj_priv->pages_refcount == 0);
  1186. if (--obj_priv->pages_refcount != 0)
  1187. return;
  1188. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1189. i915_gem_object_save_bit_17_swizzle(obj);
  1190. for (i = 0; i < page_count; i++)
  1191. if (obj_priv->pages[i] != NULL) {
  1192. if (obj_priv->dirty)
  1193. set_page_dirty(obj_priv->pages[i]);
  1194. mark_page_accessed(obj_priv->pages[i]);
  1195. page_cache_release(obj_priv->pages[i]);
  1196. }
  1197. obj_priv->dirty = 0;
  1198. drm_free(obj_priv->pages,
  1199. page_count * sizeof(struct page *),
  1200. DRM_MEM_DRIVER);
  1201. obj_priv->pages = NULL;
  1202. }
  1203. static void
  1204. i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
  1205. {
  1206. struct drm_device *dev = obj->dev;
  1207. drm_i915_private_t *dev_priv = dev->dev_private;
  1208. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1209. /* Add a reference if we're newly entering the active list. */
  1210. if (!obj_priv->active) {
  1211. drm_gem_object_reference(obj);
  1212. obj_priv->active = 1;
  1213. }
  1214. /* Move from whatever list we were on to the tail of execution. */
  1215. spin_lock(&dev_priv->mm.active_list_lock);
  1216. list_move_tail(&obj_priv->list,
  1217. &dev_priv->mm.active_list);
  1218. spin_unlock(&dev_priv->mm.active_list_lock);
  1219. obj_priv->last_rendering_seqno = seqno;
  1220. }
  1221. static void
  1222. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1223. {
  1224. struct drm_device *dev = obj->dev;
  1225. drm_i915_private_t *dev_priv = dev->dev_private;
  1226. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1227. BUG_ON(!obj_priv->active);
  1228. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1229. obj_priv->last_rendering_seqno = 0;
  1230. }
  1231. static void
  1232. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1233. {
  1234. struct drm_device *dev = obj->dev;
  1235. drm_i915_private_t *dev_priv = dev->dev_private;
  1236. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1237. i915_verify_inactive(dev, __FILE__, __LINE__);
  1238. if (obj_priv->pin_count != 0)
  1239. list_del_init(&obj_priv->list);
  1240. else
  1241. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1242. obj_priv->last_rendering_seqno = 0;
  1243. if (obj_priv->active) {
  1244. obj_priv->active = 0;
  1245. drm_gem_object_unreference(obj);
  1246. }
  1247. i915_verify_inactive(dev, __FILE__, __LINE__);
  1248. }
  1249. /**
  1250. * Creates a new sequence number, emitting a write of it to the status page
  1251. * plus an interrupt, which will trigger i915_user_interrupt_handler.
  1252. *
  1253. * Must be called with struct_lock held.
  1254. *
  1255. * Returned sequence numbers are nonzero on success.
  1256. */
  1257. static uint32_t
  1258. i915_add_request(struct drm_device *dev, uint32_t flush_domains)
  1259. {
  1260. drm_i915_private_t *dev_priv = dev->dev_private;
  1261. struct drm_i915_gem_request *request;
  1262. uint32_t seqno;
  1263. int was_empty;
  1264. RING_LOCALS;
  1265. request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
  1266. if (request == NULL)
  1267. return 0;
  1268. /* Grab the seqno we're going to make this request be, and bump the
  1269. * next (skipping 0 so it can be the reserved no-seqno value).
  1270. */
  1271. seqno = dev_priv->mm.next_gem_seqno;
  1272. dev_priv->mm.next_gem_seqno++;
  1273. if (dev_priv->mm.next_gem_seqno == 0)
  1274. dev_priv->mm.next_gem_seqno++;
  1275. BEGIN_LP_RING(4);
  1276. OUT_RING(MI_STORE_DWORD_INDEX);
  1277. OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1278. OUT_RING(seqno);
  1279. OUT_RING(MI_USER_INTERRUPT);
  1280. ADVANCE_LP_RING();
  1281. DRM_DEBUG("%d\n", seqno);
  1282. request->seqno = seqno;
  1283. request->emitted_jiffies = jiffies;
  1284. was_empty = list_empty(&dev_priv->mm.request_list);
  1285. list_add_tail(&request->list, &dev_priv->mm.request_list);
  1286. /* Associate any objects on the flushing list matching the write
  1287. * domain we're flushing with our flush.
  1288. */
  1289. if (flush_domains != 0) {
  1290. struct drm_i915_gem_object *obj_priv, *next;
  1291. list_for_each_entry_safe(obj_priv, next,
  1292. &dev_priv->mm.flushing_list, list) {
  1293. struct drm_gem_object *obj = obj_priv->obj;
  1294. if ((obj->write_domain & flush_domains) ==
  1295. obj->write_domain) {
  1296. obj->write_domain = 0;
  1297. i915_gem_object_move_to_active(obj, seqno);
  1298. }
  1299. }
  1300. }
  1301. if (was_empty && !dev_priv->mm.suspended)
  1302. schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
  1303. return seqno;
  1304. }
  1305. /**
  1306. * Command execution barrier
  1307. *
  1308. * Ensures that all commands in the ring are finished
  1309. * before signalling the CPU
  1310. */
  1311. static uint32_t
  1312. i915_retire_commands(struct drm_device *dev)
  1313. {
  1314. drm_i915_private_t *dev_priv = dev->dev_private;
  1315. uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1316. uint32_t flush_domains = 0;
  1317. RING_LOCALS;
  1318. /* The sampler always gets flushed on i965 (sigh) */
  1319. if (IS_I965G(dev))
  1320. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1321. BEGIN_LP_RING(2);
  1322. OUT_RING(cmd);
  1323. OUT_RING(0); /* noop */
  1324. ADVANCE_LP_RING();
  1325. return flush_domains;
  1326. }
  1327. /**
  1328. * Moves buffers associated only with the given active seqno from the active
  1329. * to inactive list, potentially freeing them.
  1330. */
  1331. static void
  1332. i915_gem_retire_request(struct drm_device *dev,
  1333. struct drm_i915_gem_request *request)
  1334. {
  1335. drm_i915_private_t *dev_priv = dev->dev_private;
  1336. /* Move any buffers on the active list that are no longer referenced
  1337. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1338. */
  1339. spin_lock(&dev_priv->mm.active_list_lock);
  1340. while (!list_empty(&dev_priv->mm.active_list)) {
  1341. struct drm_gem_object *obj;
  1342. struct drm_i915_gem_object *obj_priv;
  1343. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  1344. struct drm_i915_gem_object,
  1345. list);
  1346. obj = obj_priv->obj;
  1347. /* If the seqno being retired doesn't match the oldest in the
  1348. * list, then the oldest in the list must still be newer than
  1349. * this seqno.
  1350. */
  1351. if (obj_priv->last_rendering_seqno != request->seqno)
  1352. goto out;
  1353. #if WATCH_LRU
  1354. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1355. __func__, request->seqno, obj);
  1356. #endif
  1357. if (obj->write_domain != 0)
  1358. i915_gem_object_move_to_flushing(obj);
  1359. else {
  1360. /* Take a reference on the object so it won't be
  1361. * freed while the spinlock is held. The list
  1362. * protection for this spinlock is safe when breaking
  1363. * the lock like this since the next thing we do
  1364. * is just get the head of the list again.
  1365. */
  1366. drm_gem_object_reference(obj);
  1367. i915_gem_object_move_to_inactive(obj);
  1368. spin_unlock(&dev_priv->mm.active_list_lock);
  1369. drm_gem_object_unreference(obj);
  1370. spin_lock(&dev_priv->mm.active_list_lock);
  1371. }
  1372. }
  1373. out:
  1374. spin_unlock(&dev_priv->mm.active_list_lock);
  1375. }
  1376. /**
  1377. * Returns true if seq1 is later than seq2.
  1378. */
  1379. static int
  1380. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1381. {
  1382. return (int32_t)(seq1 - seq2) >= 0;
  1383. }
  1384. uint32_t
  1385. i915_get_gem_seqno(struct drm_device *dev)
  1386. {
  1387. drm_i915_private_t *dev_priv = dev->dev_private;
  1388. return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
  1389. }
  1390. /**
  1391. * This function clears the request list as sequence numbers are passed.
  1392. */
  1393. void
  1394. i915_gem_retire_requests(struct drm_device *dev)
  1395. {
  1396. drm_i915_private_t *dev_priv = dev->dev_private;
  1397. uint32_t seqno;
  1398. if (!dev_priv->hw_status_page)
  1399. return;
  1400. seqno = i915_get_gem_seqno(dev);
  1401. while (!list_empty(&dev_priv->mm.request_list)) {
  1402. struct drm_i915_gem_request *request;
  1403. uint32_t retiring_seqno;
  1404. request = list_first_entry(&dev_priv->mm.request_list,
  1405. struct drm_i915_gem_request,
  1406. list);
  1407. retiring_seqno = request->seqno;
  1408. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1409. dev_priv->mm.wedged) {
  1410. i915_gem_retire_request(dev, request);
  1411. list_del(&request->list);
  1412. drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
  1413. } else
  1414. break;
  1415. }
  1416. }
  1417. void
  1418. i915_gem_retire_work_handler(struct work_struct *work)
  1419. {
  1420. drm_i915_private_t *dev_priv;
  1421. struct drm_device *dev;
  1422. dev_priv = container_of(work, drm_i915_private_t,
  1423. mm.retire_work.work);
  1424. dev = dev_priv->dev;
  1425. mutex_lock(&dev->struct_mutex);
  1426. i915_gem_retire_requests(dev);
  1427. if (!dev_priv->mm.suspended &&
  1428. !list_empty(&dev_priv->mm.request_list))
  1429. schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
  1430. mutex_unlock(&dev->struct_mutex);
  1431. }
  1432. /**
  1433. * Waits for a sequence number to be signaled, and cleans up the
  1434. * request and object lists appropriately for that event.
  1435. */
  1436. static int
  1437. i915_wait_request(struct drm_device *dev, uint32_t seqno)
  1438. {
  1439. drm_i915_private_t *dev_priv = dev->dev_private;
  1440. int ret = 0;
  1441. BUG_ON(seqno == 0);
  1442. if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
  1443. dev_priv->mm.waiting_gem_seqno = seqno;
  1444. i915_user_irq_get(dev);
  1445. ret = wait_event_interruptible(dev_priv->irq_queue,
  1446. i915_seqno_passed(i915_get_gem_seqno(dev),
  1447. seqno) ||
  1448. dev_priv->mm.wedged);
  1449. i915_user_irq_put(dev);
  1450. dev_priv->mm.waiting_gem_seqno = 0;
  1451. }
  1452. if (dev_priv->mm.wedged)
  1453. ret = -EIO;
  1454. if (ret && ret != -ERESTARTSYS)
  1455. DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
  1456. __func__, ret, seqno, i915_get_gem_seqno(dev));
  1457. /* Directly dispatch request retiring. While we have the work queue
  1458. * to handle this, the waiter on a request often wants an associated
  1459. * buffer to have made it to the inactive list, and we would need
  1460. * a separate wait queue to handle that.
  1461. */
  1462. if (ret == 0)
  1463. i915_gem_retire_requests(dev);
  1464. return ret;
  1465. }
  1466. static void
  1467. i915_gem_flush(struct drm_device *dev,
  1468. uint32_t invalidate_domains,
  1469. uint32_t flush_domains)
  1470. {
  1471. drm_i915_private_t *dev_priv = dev->dev_private;
  1472. uint32_t cmd;
  1473. RING_LOCALS;
  1474. #if WATCH_EXEC
  1475. DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
  1476. invalidate_domains, flush_domains);
  1477. #endif
  1478. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1479. drm_agp_chipset_flush(dev);
  1480. if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
  1481. I915_GEM_DOMAIN_GTT)) {
  1482. /*
  1483. * read/write caches:
  1484. *
  1485. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  1486. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  1487. * also flushed at 2d versus 3d pipeline switches.
  1488. *
  1489. * read-only caches:
  1490. *
  1491. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  1492. * MI_READ_FLUSH is set, and is always flushed on 965.
  1493. *
  1494. * I915_GEM_DOMAIN_COMMAND may not exist?
  1495. *
  1496. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  1497. * invalidated when MI_EXE_FLUSH is set.
  1498. *
  1499. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  1500. * invalidated with every MI_FLUSH.
  1501. *
  1502. * TLBs:
  1503. *
  1504. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  1505. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  1506. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  1507. * are flushed at any MI_FLUSH.
  1508. */
  1509. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1510. if ((invalidate_domains|flush_domains) &
  1511. I915_GEM_DOMAIN_RENDER)
  1512. cmd &= ~MI_NO_WRITE_FLUSH;
  1513. if (!IS_I965G(dev)) {
  1514. /*
  1515. * On the 965, the sampler cache always gets flushed
  1516. * and this bit is reserved.
  1517. */
  1518. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  1519. cmd |= MI_READ_FLUSH;
  1520. }
  1521. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  1522. cmd |= MI_EXE_FLUSH;
  1523. #if WATCH_EXEC
  1524. DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
  1525. #endif
  1526. BEGIN_LP_RING(2);
  1527. OUT_RING(cmd);
  1528. OUT_RING(0); /* noop */
  1529. ADVANCE_LP_RING();
  1530. }
  1531. }
  1532. /**
  1533. * Ensures that all rendering to the object has completed and the object is
  1534. * safe to unbind from the GTT or access from the CPU.
  1535. */
  1536. static int
  1537. i915_gem_object_wait_rendering(struct drm_gem_object *obj)
  1538. {
  1539. struct drm_device *dev = obj->dev;
  1540. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1541. int ret;
  1542. /* This function only exists to support waiting for existing rendering,
  1543. * not for emitting required flushes.
  1544. */
  1545. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1546. /* If there is rendering queued on the buffer being evicted, wait for
  1547. * it.
  1548. */
  1549. if (obj_priv->active) {
  1550. #if WATCH_BUF
  1551. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1552. __func__, obj, obj_priv->last_rendering_seqno);
  1553. #endif
  1554. ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
  1555. if (ret != 0)
  1556. return ret;
  1557. }
  1558. return 0;
  1559. }
  1560. /**
  1561. * Unbinds an object from the GTT aperture.
  1562. */
  1563. int
  1564. i915_gem_object_unbind(struct drm_gem_object *obj)
  1565. {
  1566. struct drm_device *dev = obj->dev;
  1567. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1568. loff_t offset;
  1569. int ret = 0;
  1570. #if WATCH_BUF
  1571. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1572. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1573. #endif
  1574. if (obj_priv->gtt_space == NULL)
  1575. return 0;
  1576. if (obj_priv->pin_count != 0) {
  1577. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1578. return -EINVAL;
  1579. }
  1580. /* Move the object to the CPU domain to ensure that
  1581. * any possible CPU writes while it's not in the GTT
  1582. * are flushed when we go to remap it. This will
  1583. * also ensure that all pending GPU writes are finished
  1584. * before we unbind.
  1585. */
  1586. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1587. if (ret) {
  1588. if (ret != -ERESTARTSYS)
  1589. DRM_ERROR("set_domain failed: %d\n", ret);
  1590. return ret;
  1591. }
  1592. if (obj_priv->agp_mem != NULL) {
  1593. drm_unbind_agp(obj_priv->agp_mem);
  1594. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1595. obj_priv->agp_mem = NULL;
  1596. }
  1597. BUG_ON(obj_priv->active);
  1598. /* blow away mappings if mapped through GTT */
  1599. offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
  1600. if (dev->dev_mapping)
  1601. unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
  1602. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1603. i915_gem_clear_fence_reg(obj);
  1604. i915_gem_object_put_pages(obj);
  1605. if (obj_priv->gtt_space) {
  1606. atomic_dec(&dev->gtt_count);
  1607. atomic_sub(obj->size, &dev->gtt_memory);
  1608. drm_mm_put_block(obj_priv->gtt_space);
  1609. obj_priv->gtt_space = NULL;
  1610. }
  1611. /* Remove ourselves from the LRU list if present. */
  1612. if (!list_empty(&obj_priv->list))
  1613. list_del_init(&obj_priv->list);
  1614. return 0;
  1615. }
  1616. static int
  1617. i915_gem_evict_something(struct drm_device *dev)
  1618. {
  1619. drm_i915_private_t *dev_priv = dev->dev_private;
  1620. struct drm_gem_object *obj;
  1621. struct drm_i915_gem_object *obj_priv;
  1622. int ret = 0;
  1623. for (;;) {
  1624. /* If there's an inactive buffer available now, grab it
  1625. * and be done.
  1626. */
  1627. if (!list_empty(&dev_priv->mm.inactive_list)) {
  1628. obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
  1629. struct drm_i915_gem_object,
  1630. list);
  1631. obj = obj_priv->obj;
  1632. BUG_ON(obj_priv->pin_count != 0);
  1633. #if WATCH_LRU
  1634. DRM_INFO("%s: evicting %p\n", __func__, obj);
  1635. #endif
  1636. BUG_ON(obj_priv->active);
  1637. /* Wait on the rendering and unbind the buffer. */
  1638. ret = i915_gem_object_unbind(obj);
  1639. break;
  1640. }
  1641. /* If we didn't get anything, but the ring is still processing
  1642. * things, wait for one of those things to finish and hopefully
  1643. * leave us a buffer to evict.
  1644. */
  1645. if (!list_empty(&dev_priv->mm.request_list)) {
  1646. struct drm_i915_gem_request *request;
  1647. request = list_first_entry(&dev_priv->mm.request_list,
  1648. struct drm_i915_gem_request,
  1649. list);
  1650. ret = i915_wait_request(dev, request->seqno);
  1651. if (ret)
  1652. break;
  1653. /* if waiting caused an object to become inactive,
  1654. * then loop around and wait for it. Otherwise, we
  1655. * assume that waiting freed and unbound something,
  1656. * so there should now be some space in the GTT
  1657. */
  1658. if (!list_empty(&dev_priv->mm.inactive_list))
  1659. continue;
  1660. break;
  1661. }
  1662. /* If we didn't have anything on the request list but there
  1663. * are buffers awaiting a flush, emit one and try again.
  1664. * When we wait on it, those buffers waiting for that flush
  1665. * will get moved to inactive.
  1666. */
  1667. if (!list_empty(&dev_priv->mm.flushing_list)) {
  1668. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1669. struct drm_i915_gem_object,
  1670. list);
  1671. obj = obj_priv->obj;
  1672. i915_gem_flush(dev,
  1673. obj->write_domain,
  1674. obj->write_domain);
  1675. i915_add_request(dev, obj->write_domain);
  1676. obj = NULL;
  1677. continue;
  1678. }
  1679. DRM_ERROR("inactive empty %d request empty %d "
  1680. "flushing empty %d\n",
  1681. list_empty(&dev_priv->mm.inactive_list),
  1682. list_empty(&dev_priv->mm.request_list),
  1683. list_empty(&dev_priv->mm.flushing_list));
  1684. /* If we didn't do any of the above, there's nothing to be done
  1685. * and we just can't fit it in.
  1686. */
  1687. return -ENOMEM;
  1688. }
  1689. return ret;
  1690. }
  1691. static int
  1692. i915_gem_evict_everything(struct drm_device *dev)
  1693. {
  1694. int ret;
  1695. for (;;) {
  1696. ret = i915_gem_evict_something(dev);
  1697. if (ret != 0)
  1698. break;
  1699. }
  1700. if (ret == -ENOMEM)
  1701. return 0;
  1702. return ret;
  1703. }
  1704. int
  1705. i915_gem_object_get_pages(struct drm_gem_object *obj)
  1706. {
  1707. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1708. int page_count, i;
  1709. struct address_space *mapping;
  1710. struct inode *inode;
  1711. struct page *page;
  1712. int ret;
  1713. if (obj_priv->pages_refcount++ != 0)
  1714. return 0;
  1715. /* Get the list of pages out of our struct file. They'll be pinned
  1716. * at this point until we release them.
  1717. */
  1718. page_count = obj->size / PAGE_SIZE;
  1719. BUG_ON(obj_priv->pages != NULL);
  1720. obj_priv->pages = drm_calloc(page_count, sizeof(struct page *),
  1721. DRM_MEM_DRIVER);
  1722. if (obj_priv->pages == NULL) {
  1723. DRM_ERROR("Faled to allocate page list\n");
  1724. obj_priv->pages_refcount--;
  1725. return -ENOMEM;
  1726. }
  1727. inode = obj->filp->f_path.dentry->d_inode;
  1728. mapping = inode->i_mapping;
  1729. for (i = 0; i < page_count; i++) {
  1730. page = read_mapping_page(mapping, i, NULL);
  1731. if (IS_ERR(page)) {
  1732. ret = PTR_ERR(page);
  1733. DRM_ERROR("read_mapping_page failed: %d\n", ret);
  1734. i915_gem_object_put_pages(obj);
  1735. return ret;
  1736. }
  1737. obj_priv->pages[i] = page;
  1738. }
  1739. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1740. i915_gem_object_do_bit_17_swizzle(obj);
  1741. return 0;
  1742. }
  1743. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1744. {
  1745. struct drm_gem_object *obj = reg->obj;
  1746. struct drm_device *dev = obj->dev;
  1747. drm_i915_private_t *dev_priv = dev->dev_private;
  1748. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1749. int regnum = obj_priv->fence_reg;
  1750. uint64_t val;
  1751. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1752. 0xfffff000) << 32;
  1753. val |= obj_priv->gtt_offset & 0xfffff000;
  1754. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1755. if (obj_priv->tiling_mode == I915_TILING_Y)
  1756. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1757. val |= I965_FENCE_REG_VALID;
  1758. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1759. }
  1760. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1761. {
  1762. struct drm_gem_object *obj = reg->obj;
  1763. struct drm_device *dev = obj->dev;
  1764. drm_i915_private_t *dev_priv = dev->dev_private;
  1765. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1766. int regnum = obj_priv->fence_reg;
  1767. int tile_width;
  1768. uint32_t fence_reg, val;
  1769. uint32_t pitch_val;
  1770. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1771. (obj_priv->gtt_offset & (obj->size - 1))) {
  1772. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1773. __func__, obj_priv->gtt_offset, obj->size);
  1774. return;
  1775. }
  1776. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1777. HAS_128_BYTE_Y_TILING(dev))
  1778. tile_width = 128;
  1779. else
  1780. tile_width = 512;
  1781. /* Note: pitch better be a power of two tile widths */
  1782. pitch_val = obj_priv->stride / tile_width;
  1783. pitch_val = ffs(pitch_val) - 1;
  1784. val = obj_priv->gtt_offset;
  1785. if (obj_priv->tiling_mode == I915_TILING_Y)
  1786. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1787. val |= I915_FENCE_SIZE_BITS(obj->size);
  1788. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1789. val |= I830_FENCE_REG_VALID;
  1790. if (regnum < 8)
  1791. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1792. else
  1793. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1794. I915_WRITE(fence_reg, val);
  1795. }
  1796. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1797. {
  1798. struct drm_gem_object *obj = reg->obj;
  1799. struct drm_device *dev = obj->dev;
  1800. drm_i915_private_t *dev_priv = dev->dev_private;
  1801. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1802. int regnum = obj_priv->fence_reg;
  1803. uint32_t val;
  1804. uint32_t pitch_val;
  1805. uint32_t fence_size_bits;
  1806. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1807. (obj_priv->gtt_offset & (obj->size - 1))) {
  1808. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1809. __func__, obj_priv->gtt_offset);
  1810. return;
  1811. }
  1812. pitch_val = (obj_priv->stride / 128) - 1;
  1813. WARN_ON(pitch_val & ~0x0000000f);
  1814. val = obj_priv->gtt_offset;
  1815. if (obj_priv->tiling_mode == I915_TILING_Y)
  1816. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1817. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1818. WARN_ON(fence_size_bits & ~0x00000f00);
  1819. val |= fence_size_bits;
  1820. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1821. val |= I830_FENCE_REG_VALID;
  1822. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1823. }
  1824. /**
  1825. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1826. * @obj: object to map through a fence reg
  1827. * @write: object is about to be written
  1828. *
  1829. * When mapping objects through the GTT, userspace wants to be able to write
  1830. * to them without having to worry about swizzling if the object is tiled.
  1831. *
  1832. * This function walks the fence regs looking for a free one for @obj,
  1833. * stealing one if it can't find any.
  1834. *
  1835. * It then sets up the reg based on the object's properties: address, pitch
  1836. * and tiling format.
  1837. */
  1838. static int
  1839. i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
  1840. {
  1841. struct drm_device *dev = obj->dev;
  1842. struct drm_i915_private *dev_priv = dev->dev_private;
  1843. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1844. struct drm_i915_fence_reg *reg = NULL;
  1845. struct drm_i915_gem_object *old_obj_priv = NULL;
  1846. int i, ret, avail;
  1847. switch (obj_priv->tiling_mode) {
  1848. case I915_TILING_NONE:
  1849. WARN(1, "allocating a fence for non-tiled object?\n");
  1850. break;
  1851. case I915_TILING_X:
  1852. if (!obj_priv->stride)
  1853. return -EINVAL;
  1854. WARN((obj_priv->stride & (512 - 1)),
  1855. "object 0x%08x is X tiled but has non-512B pitch\n",
  1856. obj_priv->gtt_offset);
  1857. break;
  1858. case I915_TILING_Y:
  1859. if (!obj_priv->stride)
  1860. return -EINVAL;
  1861. WARN((obj_priv->stride & (128 - 1)),
  1862. "object 0x%08x is Y tiled but has non-128B pitch\n",
  1863. obj_priv->gtt_offset);
  1864. break;
  1865. }
  1866. /* First try to find a free reg */
  1867. try_again:
  1868. avail = 0;
  1869. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1870. reg = &dev_priv->fence_regs[i];
  1871. if (!reg->obj)
  1872. break;
  1873. old_obj_priv = reg->obj->driver_private;
  1874. if (!old_obj_priv->pin_count)
  1875. avail++;
  1876. }
  1877. /* None available, try to steal one or wait for a user to finish */
  1878. if (i == dev_priv->num_fence_regs) {
  1879. uint32_t seqno = dev_priv->mm.next_gem_seqno;
  1880. loff_t offset;
  1881. if (avail == 0)
  1882. return -ENOMEM;
  1883. for (i = dev_priv->fence_reg_start;
  1884. i < dev_priv->num_fence_regs; i++) {
  1885. uint32_t this_seqno;
  1886. reg = &dev_priv->fence_regs[i];
  1887. old_obj_priv = reg->obj->driver_private;
  1888. if (old_obj_priv->pin_count)
  1889. continue;
  1890. /* i915 uses fences for GPU access to tiled buffers */
  1891. if (IS_I965G(dev) || !old_obj_priv->active)
  1892. break;
  1893. /* find the seqno of the first available fence */
  1894. this_seqno = old_obj_priv->last_rendering_seqno;
  1895. if (this_seqno != 0 &&
  1896. reg->obj->write_domain == 0 &&
  1897. i915_seqno_passed(seqno, this_seqno))
  1898. seqno = this_seqno;
  1899. }
  1900. /*
  1901. * Now things get ugly... we have to wait for one of the
  1902. * objects to finish before trying again.
  1903. */
  1904. if (i == dev_priv->num_fence_regs) {
  1905. if (seqno == dev_priv->mm.next_gem_seqno) {
  1906. i915_gem_flush(dev,
  1907. I915_GEM_GPU_DOMAINS,
  1908. I915_GEM_GPU_DOMAINS);
  1909. seqno = i915_add_request(dev,
  1910. I915_GEM_GPU_DOMAINS);
  1911. if (seqno == 0)
  1912. return -ENOMEM;
  1913. }
  1914. ret = i915_wait_request(dev, seqno);
  1915. if (ret)
  1916. return ret;
  1917. goto try_again;
  1918. }
  1919. BUG_ON(old_obj_priv->active ||
  1920. (reg->obj->write_domain & I915_GEM_GPU_DOMAINS));
  1921. /*
  1922. * Zap this virtual mapping so we can set up a fence again
  1923. * for this object next time we need it.
  1924. */
  1925. offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
  1926. if (dev->dev_mapping)
  1927. unmap_mapping_range(dev->dev_mapping, offset,
  1928. reg->obj->size, 1);
  1929. old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1930. }
  1931. obj_priv->fence_reg = i;
  1932. reg->obj = obj;
  1933. if (IS_I965G(dev))
  1934. i965_write_fence_reg(reg);
  1935. else if (IS_I9XX(dev))
  1936. i915_write_fence_reg(reg);
  1937. else
  1938. i830_write_fence_reg(reg);
  1939. return 0;
  1940. }
  1941. /**
  1942. * i915_gem_clear_fence_reg - clear out fence register info
  1943. * @obj: object to clear
  1944. *
  1945. * Zeroes out the fence register itself and clears out the associated
  1946. * data structures in dev_priv and obj_priv.
  1947. */
  1948. static void
  1949. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  1950. {
  1951. struct drm_device *dev = obj->dev;
  1952. drm_i915_private_t *dev_priv = dev->dev_private;
  1953. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1954. if (IS_I965G(dev))
  1955. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  1956. else {
  1957. uint32_t fence_reg;
  1958. if (obj_priv->fence_reg < 8)
  1959. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  1960. else
  1961. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
  1962. 8) * 4;
  1963. I915_WRITE(fence_reg, 0);
  1964. }
  1965. dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
  1966. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1967. }
  1968. /**
  1969. * Finds free space in the GTT aperture and binds the object there.
  1970. */
  1971. static int
  1972. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  1973. {
  1974. struct drm_device *dev = obj->dev;
  1975. drm_i915_private_t *dev_priv = dev->dev_private;
  1976. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1977. struct drm_mm_node *free_space;
  1978. int page_count, ret;
  1979. if (dev_priv->mm.suspended)
  1980. return -EBUSY;
  1981. if (alignment == 0)
  1982. alignment = i915_gem_get_gtt_alignment(obj);
  1983. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  1984. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  1985. return -EINVAL;
  1986. }
  1987. search_free:
  1988. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  1989. obj->size, alignment, 0);
  1990. if (free_space != NULL) {
  1991. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  1992. alignment);
  1993. if (obj_priv->gtt_space != NULL) {
  1994. obj_priv->gtt_space->private = obj;
  1995. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  1996. }
  1997. }
  1998. if (obj_priv->gtt_space == NULL) {
  1999. bool lists_empty;
  2000. /* If the gtt is empty and we're still having trouble
  2001. * fitting our object in, we're out of memory.
  2002. */
  2003. #if WATCH_LRU
  2004. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2005. #endif
  2006. spin_lock(&dev_priv->mm.active_list_lock);
  2007. lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
  2008. list_empty(&dev_priv->mm.flushing_list) &&
  2009. list_empty(&dev_priv->mm.active_list));
  2010. spin_unlock(&dev_priv->mm.active_list_lock);
  2011. if (lists_empty) {
  2012. DRM_ERROR("GTT full, but LRU list empty\n");
  2013. return -ENOMEM;
  2014. }
  2015. ret = i915_gem_evict_something(dev);
  2016. if (ret != 0) {
  2017. if (ret != -ERESTARTSYS)
  2018. DRM_ERROR("Failed to evict a buffer %d\n", ret);
  2019. return ret;
  2020. }
  2021. goto search_free;
  2022. }
  2023. #if WATCH_BUF
  2024. DRM_INFO("Binding object of size %d at 0x%08x\n",
  2025. obj->size, obj_priv->gtt_offset);
  2026. #endif
  2027. ret = i915_gem_object_get_pages(obj);
  2028. if (ret) {
  2029. drm_mm_put_block(obj_priv->gtt_space);
  2030. obj_priv->gtt_space = NULL;
  2031. return ret;
  2032. }
  2033. page_count = obj->size / PAGE_SIZE;
  2034. /* Create an AGP memory structure pointing at our pages, and bind it
  2035. * into the GTT.
  2036. */
  2037. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2038. obj_priv->pages,
  2039. page_count,
  2040. obj_priv->gtt_offset,
  2041. obj_priv->agp_type);
  2042. if (obj_priv->agp_mem == NULL) {
  2043. i915_gem_object_put_pages(obj);
  2044. drm_mm_put_block(obj_priv->gtt_space);
  2045. obj_priv->gtt_space = NULL;
  2046. return -ENOMEM;
  2047. }
  2048. atomic_inc(&dev->gtt_count);
  2049. atomic_add(obj->size, &dev->gtt_memory);
  2050. /* Assert that the object is not currently in any GPU domain. As it
  2051. * wasn't in the GTT, there shouldn't be any way it could have been in
  2052. * a GPU cache
  2053. */
  2054. BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  2055. BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  2056. return 0;
  2057. }
  2058. void
  2059. i915_gem_clflush_object(struct drm_gem_object *obj)
  2060. {
  2061. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2062. /* If we don't have a page list set up, then we're not pinned
  2063. * to GPU, and we can ignore the cache flush because it'll happen
  2064. * again at bind time.
  2065. */
  2066. if (obj_priv->pages == NULL)
  2067. return;
  2068. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2069. }
  2070. /** Flushes any GPU write domain for the object if it's dirty. */
  2071. static void
  2072. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  2073. {
  2074. struct drm_device *dev = obj->dev;
  2075. uint32_t seqno;
  2076. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2077. return;
  2078. /* Queue the GPU write cache flushing we need. */
  2079. i915_gem_flush(dev, 0, obj->write_domain);
  2080. seqno = i915_add_request(dev, obj->write_domain);
  2081. obj->write_domain = 0;
  2082. i915_gem_object_move_to_active(obj, seqno);
  2083. }
  2084. /** Flushes the GTT write domain for the object if it's dirty. */
  2085. static void
  2086. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2087. {
  2088. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2089. return;
  2090. /* No actual flushing is required for the GTT write domain. Writes
  2091. * to it immediately go to main memory as far as we know, so there's
  2092. * no chipset flush. It also doesn't land in render cache.
  2093. */
  2094. obj->write_domain = 0;
  2095. }
  2096. /** Flushes the CPU write domain for the object if it's dirty. */
  2097. static void
  2098. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2099. {
  2100. struct drm_device *dev = obj->dev;
  2101. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2102. return;
  2103. i915_gem_clflush_object(obj);
  2104. drm_agp_chipset_flush(dev);
  2105. obj->write_domain = 0;
  2106. }
  2107. /**
  2108. * Moves a single object to the GTT read, and possibly write domain.
  2109. *
  2110. * This function returns when the move is complete, including waiting on
  2111. * flushes to occur.
  2112. */
  2113. int
  2114. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2115. {
  2116. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2117. int ret;
  2118. /* Not valid to be called on unbound objects. */
  2119. if (obj_priv->gtt_space == NULL)
  2120. return -EINVAL;
  2121. i915_gem_object_flush_gpu_write_domain(obj);
  2122. /* Wait on any GPU rendering and flushing to occur. */
  2123. ret = i915_gem_object_wait_rendering(obj);
  2124. if (ret != 0)
  2125. return ret;
  2126. /* If we're writing through the GTT domain, then CPU and GPU caches
  2127. * will need to be invalidated at next use.
  2128. */
  2129. if (write)
  2130. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2131. i915_gem_object_flush_cpu_write_domain(obj);
  2132. /* It should now be out of any other write domains, and we can update
  2133. * the domain values for our changes.
  2134. */
  2135. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2136. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2137. if (write) {
  2138. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2139. obj_priv->dirty = 1;
  2140. }
  2141. return 0;
  2142. }
  2143. /**
  2144. * Moves a single object to the CPU read, and possibly write domain.
  2145. *
  2146. * This function returns when the move is complete, including waiting on
  2147. * flushes to occur.
  2148. */
  2149. static int
  2150. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2151. {
  2152. int ret;
  2153. i915_gem_object_flush_gpu_write_domain(obj);
  2154. /* Wait on any GPU rendering and flushing to occur. */
  2155. ret = i915_gem_object_wait_rendering(obj);
  2156. if (ret != 0)
  2157. return ret;
  2158. i915_gem_object_flush_gtt_write_domain(obj);
  2159. /* If we have a partially-valid cache of the object in the CPU,
  2160. * finish invalidating it and free the per-page flags.
  2161. */
  2162. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2163. /* Flush the CPU cache if it's still invalid. */
  2164. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2165. i915_gem_clflush_object(obj);
  2166. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2167. }
  2168. /* It should now be out of any other write domains, and we can update
  2169. * the domain values for our changes.
  2170. */
  2171. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2172. /* If we're writing through the CPU, then the GPU read domains will
  2173. * need to be invalidated at next use.
  2174. */
  2175. if (write) {
  2176. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2177. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2178. }
  2179. return 0;
  2180. }
  2181. /*
  2182. * Set the next domain for the specified object. This
  2183. * may not actually perform the necessary flushing/invaliding though,
  2184. * as that may want to be batched with other set_domain operations
  2185. *
  2186. * This is (we hope) the only really tricky part of gem. The goal
  2187. * is fairly simple -- track which caches hold bits of the object
  2188. * and make sure they remain coherent. A few concrete examples may
  2189. * help to explain how it works. For shorthand, we use the notation
  2190. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2191. * a pair of read and write domain masks.
  2192. *
  2193. * Case 1: the batch buffer
  2194. *
  2195. * 1. Allocated
  2196. * 2. Written by CPU
  2197. * 3. Mapped to GTT
  2198. * 4. Read by GPU
  2199. * 5. Unmapped from GTT
  2200. * 6. Freed
  2201. *
  2202. * Let's take these a step at a time
  2203. *
  2204. * 1. Allocated
  2205. * Pages allocated from the kernel may still have
  2206. * cache contents, so we set them to (CPU, CPU) always.
  2207. * 2. Written by CPU (using pwrite)
  2208. * The pwrite function calls set_domain (CPU, CPU) and
  2209. * this function does nothing (as nothing changes)
  2210. * 3. Mapped by GTT
  2211. * This function asserts that the object is not
  2212. * currently in any GPU-based read or write domains
  2213. * 4. Read by GPU
  2214. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2215. * As write_domain is zero, this function adds in the
  2216. * current read domains (CPU+COMMAND, 0).
  2217. * flush_domains is set to CPU.
  2218. * invalidate_domains is set to COMMAND
  2219. * clflush is run to get data out of the CPU caches
  2220. * then i915_dev_set_domain calls i915_gem_flush to
  2221. * emit an MI_FLUSH and drm_agp_chipset_flush
  2222. * 5. Unmapped from GTT
  2223. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2224. * flush_domains and invalidate_domains end up both zero
  2225. * so no flushing/invalidating happens
  2226. * 6. Freed
  2227. * yay, done
  2228. *
  2229. * Case 2: The shared render buffer
  2230. *
  2231. * 1. Allocated
  2232. * 2. Mapped to GTT
  2233. * 3. Read/written by GPU
  2234. * 4. set_domain to (CPU,CPU)
  2235. * 5. Read/written by CPU
  2236. * 6. Read/written by GPU
  2237. *
  2238. * 1. Allocated
  2239. * Same as last example, (CPU, CPU)
  2240. * 2. Mapped to GTT
  2241. * Nothing changes (assertions find that it is not in the GPU)
  2242. * 3. Read/written by GPU
  2243. * execbuffer calls set_domain (RENDER, RENDER)
  2244. * flush_domains gets CPU
  2245. * invalidate_domains gets GPU
  2246. * clflush (obj)
  2247. * MI_FLUSH and drm_agp_chipset_flush
  2248. * 4. set_domain (CPU, CPU)
  2249. * flush_domains gets GPU
  2250. * invalidate_domains gets CPU
  2251. * wait_rendering (obj) to make sure all drawing is complete.
  2252. * This will include an MI_FLUSH to get the data from GPU
  2253. * to memory
  2254. * clflush (obj) to invalidate the CPU cache
  2255. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2256. * 5. Read/written by CPU
  2257. * cache lines are loaded and dirtied
  2258. * 6. Read written by GPU
  2259. * Same as last GPU access
  2260. *
  2261. * Case 3: The constant buffer
  2262. *
  2263. * 1. Allocated
  2264. * 2. Written by CPU
  2265. * 3. Read by GPU
  2266. * 4. Updated (written) by CPU again
  2267. * 5. Read by GPU
  2268. *
  2269. * 1. Allocated
  2270. * (CPU, CPU)
  2271. * 2. Written by CPU
  2272. * (CPU, CPU)
  2273. * 3. Read by GPU
  2274. * (CPU+RENDER, 0)
  2275. * flush_domains = CPU
  2276. * invalidate_domains = RENDER
  2277. * clflush (obj)
  2278. * MI_FLUSH
  2279. * drm_agp_chipset_flush
  2280. * 4. Updated (written) by CPU again
  2281. * (CPU, CPU)
  2282. * flush_domains = 0 (no previous write domain)
  2283. * invalidate_domains = 0 (no new read domains)
  2284. * 5. Read by GPU
  2285. * (CPU+RENDER, 0)
  2286. * flush_domains = CPU
  2287. * invalidate_domains = RENDER
  2288. * clflush (obj)
  2289. * MI_FLUSH
  2290. * drm_agp_chipset_flush
  2291. */
  2292. static void
  2293. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2294. {
  2295. struct drm_device *dev = obj->dev;
  2296. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2297. uint32_t invalidate_domains = 0;
  2298. uint32_t flush_domains = 0;
  2299. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2300. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2301. #if WATCH_BUF
  2302. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2303. __func__, obj,
  2304. obj->read_domains, obj->pending_read_domains,
  2305. obj->write_domain, obj->pending_write_domain);
  2306. #endif
  2307. /*
  2308. * If the object isn't moving to a new write domain,
  2309. * let the object stay in multiple read domains
  2310. */
  2311. if (obj->pending_write_domain == 0)
  2312. obj->pending_read_domains |= obj->read_domains;
  2313. else
  2314. obj_priv->dirty = 1;
  2315. /*
  2316. * Flush the current write domain if
  2317. * the new read domains don't match. Invalidate
  2318. * any read domains which differ from the old
  2319. * write domain
  2320. */
  2321. if (obj->write_domain &&
  2322. obj->write_domain != obj->pending_read_domains) {
  2323. flush_domains |= obj->write_domain;
  2324. invalidate_domains |=
  2325. obj->pending_read_domains & ~obj->write_domain;
  2326. }
  2327. /*
  2328. * Invalidate any read caches which may have
  2329. * stale data. That is, any new read domains.
  2330. */
  2331. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2332. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2333. #if WATCH_BUF
  2334. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2335. __func__, flush_domains, invalidate_domains);
  2336. #endif
  2337. i915_gem_clflush_object(obj);
  2338. }
  2339. /* The actual obj->write_domain will be updated with
  2340. * pending_write_domain after we emit the accumulated flush for all
  2341. * of our domain changes in execbuffers (which clears objects'
  2342. * write_domains). So if we have a current write domain that we
  2343. * aren't changing, set pending_write_domain to that.
  2344. */
  2345. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2346. obj->pending_write_domain = obj->write_domain;
  2347. obj->read_domains = obj->pending_read_domains;
  2348. dev->invalidate_domains |= invalidate_domains;
  2349. dev->flush_domains |= flush_domains;
  2350. #if WATCH_BUF
  2351. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2352. __func__,
  2353. obj->read_domains, obj->write_domain,
  2354. dev->invalidate_domains, dev->flush_domains);
  2355. #endif
  2356. }
  2357. /**
  2358. * Moves the object from a partially CPU read to a full one.
  2359. *
  2360. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2361. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2362. */
  2363. static void
  2364. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2365. {
  2366. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2367. if (!obj_priv->page_cpu_valid)
  2368. return;
  2369. /* If we're partially in the CPU read domain, finish moving it in.
  2370. */
  2371. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2372. int i;
  2373. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2374. if (obj_priv->page_cpu_valid[i])
  2375. continue;
  2376. drm_clflush_pages(obj_priv->pages + i, 1);
  2377. }
  2378. }
  2379. /* Free the page_cpu_valid mappings which are now stale, whether
  2380. * or not we've got I915_GEM_DOMAIN_CPU.
  2381. */
  2382. drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
  2383. DRM_MEM_DRIVER);
  2384. obj_priv->page_cpu_valid = NULL;
  2385. }
  2386. /**
  2387. * Set the CPU read domain on a range of the object.
  2388. *
  2389. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2390. * not entirely valid. The page_cpu_valid member of the object flags which
  2391. * pages have been flushed, and will be respected by
  2392. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2393. * of the whole object.
  2394. *
  2395. * This function returns when the move is complete, including waiting on
  2396. * flushes to occur.
  2397. */
  2398. static int
  2399. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2400. uint64_t offset, uint64_t size)
  2401. {
  2402. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2403. int i, ret;
  2404. if (offset == 0 && size == obj->size)
  2405. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2406. i915_gem_object_flush_gpu_write_domain(obj);
  2407. /* Wait on any GPU rendering and flushing to occur. */
  2408. ret = i915_gem_object_wait_rendering(obj);
  2409. if (ret != 0)
  2410. return ret;
  2411. i915_gem_object_flush_gtt_write_domain(obj);
  2412. /* If we're already fully in the CPU read domain, we're done. */
  2413. if (obj_priv->page_cpu_valid == NULL &&
  2414. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2415. return 0;
  2416. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2417. * newly adding I915_GEM_DOMAIN_CPU
  2418. */
  2419. if (obj_priv->page_cpu_valid == NULL) {
  2420. obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
  2421. DRM_MEM_DRIVER);
  2422. if (obj_priv->page_cpu_valid == NULL)
  2423. return -ENOMEM;
  2424. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2425. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2426. /* Flush the cache on any pages that are still invalid from the CPU's
  2427. * perspective.
  2428. */
  2429. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2430. i++) {
  2431. if (obj_priv->page_cpu_valid[i])
  2432. continue;
  2433. drm_clflush_pages(obj_priv->pages + i, 1);
  2434. obj_priv->page_cpu_valid[i] = 1;
  2435. }
  2436. /* It should now be out of any other write domains, and we can update
  2437. * the domain values for our changes.
  2438. */
  2439. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2440. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2441. return 0;
  2442. }
  2443. /**
  2444. * Pin an object to the GTT and evaluate the relocations landing in it.
  2445. */
  2446. static int
  2447. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2448. struct drm_file *file_priv,
  2449. struct drm_i915_gem_exec_object *entry,
  2450. struct drm_i915_gem_relocation_entry *relocs)
  2451. {
  2452. struct drm_device *dev = obj->dev;
  2453. drm_i915_private_t *dev_priv = dev->dev_private;
  2454. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2455. int i, ret;
  2456. void __iomem *reloc_page;
  2457. /* Choose the GTT offset for our buffer and put it there. */
  2458. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2459. if (ret)
  2460. return ret;
  2461. entry->offset = obj_priv->gtt_offset;
  2462. /* Apply the relocations, using the GTT aperture to avoid cache
  2463. * flushing requirements.
  2464. */
  2465. for (i = 0; i < entry->relocation_count; i++) {
  2466. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2467. struct drm_gem_object *target_obj;
  2468. struct drm_i915_gem_object *target_obj_priv;
  2469. uint32_t reloc_val, reloc_offset;
  2470. uint32_t __iomem *reloc_entry;
  2471. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2472. reloc->target_handle);
  2473. if (target_obj == NULL) {
  2474. i915_gem_object_unpin(obj);
  2475. return -EBADF;
  2476. }
  2477. target_obj_priv = target_obj->driver_private;
  2478. /* The target buffer should have appeared before us in the
  2479. * exec_object list, so it should have a GTT space bound by now.
  2480. */
  2481. if (target_obj_priv->gtt_space == NULL) {
  2482. DRM_ERROR("No GTT space found for object %d\n",
  2483. reloc->target_handle);
  2484. drm_gem_object_unreference(target_obj);
  2485. i915_gem_object_unpin(obj);
  2486. return -EINVAL;
  2487. }
  2488. if (reloc->offset > obj->size - 4) {
  2489. DRM_ERROR("Relocation beyond object bounds: "
  2490. "obj %p target %d offset %d size %d.\n",
  2491. obj, reloc->target_handle,
  2492. (int) reloc->offset, (int) obj->size);
  2493. drm_gem_object_unreference(target_obj);
  2494. i915_gem_object_unpin(obj);
  2495. return -EINVAL;
  2496. }
  2497. if (reloc->offset & 3) {
  2498. DRM_ERROR("Relocation not 4-byte aligned: "
  2499. "obj %p target %d offset %d.\n",
  2500. obj, reloc->target_handle,
  2501. (int) reloc->offset);
  2502. drm_gem_object_unreference(target_obj);
  2503. i915_gem_object_unpin(obj);
  2504. return -EINVAL;
  2505. }
  2506. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2507. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2508. DRM_ERROR("reloc with read/write CPU domains: "
  2509. "obj %p target %d offset %d "
  2510. "read %08x write %08x",
  2511. obj, reloc->target_handle,
  2512. (int) reloc->offset,
  2513. reloc->read_domains,
  2514. reloc->write_domain);
  2515. drm_gem_object_unreference(target_obj);
  2516. i915_gem_object_unpin(obj);
  2517. return -EINVAL;
  2518. }
  2519. if (reloc->write_domain && target_obj->pending_write_domain &&
  2520. reloc->write_domain != target_obj->pending_write_domain) {
  2521. DRM_ERROR("Write domain conflict: "
  2522. "obj %p target %d offset %d "
  2523. "new %08x old %08x\n",
  2524. obj, reloc->target_handle,
  2525. (int) reloc->offset,
  2526. reloc->write_domain,
  2527. target_obj->pending_write_domain);
  2528. drm_gem_object_unreference(target_obj);
  2529. i915_gem_object_unpin(obj);
  2530. return -EINVAL;
  2531. }
  2532. #if WATCH_RELOC
  2533. DRM_INFO("%s: obj %p offset %08x target %d "
  2534. "read %08x write %08x gtt %08x "
  2535. "presumed %08x delta %08x\n",
  2536. __func__,
  2537. obj,
  2538. (int) reloc->offset,
  2539. (int) reloc->target_handle,
  2540. (int) reloc->read_domains,
  2541. (int) reloc->write_domain,
  2542. (int) target_obj_priv->gtt_offset,
  2543. (int) reloc->presumed_offset,
  2544. reloc->delta);
  2545. #endif
  2546. target_obj->pending_read_domains |= reloc->read_domains;
  2547. target_obj->pending_write_domain |= reloc->write_domain;
  2548. /* If the relocation already has the right value in it, no
  2549. * more work needs to be done.
  2550. */
  2551. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2552. drm_gem_object_unreference(target_obj);
  2553. continue;
  2554. }
  2555. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2556. if (ret != 0) {
  2557. drm_gem_object_unreference(target_obj);
  2558. i915_gem_object_unpin(obj);
  2559. return -EINVAL;
  2560. }
  2561. /* Map the page containing the relocation we're going to
  2562. * perform.
  2563. */
  2564. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2565. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2566. (reloc_offset &
  2567. ~(PAGE_SIZE - 1)));
  2568. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2569. (reloc_offset & (PAGE_SIZE - 1)));
  2570. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2571. #if WATCH_BUF
  2572. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2573. obj, (unsigned int) reloc->offset,
  2574. readl(reloc_entry), reloc_val);
  2575. #endif
  2576. writel(reloc_val, reloc_entry);
  2577. io_mapping_unmap_atomic(reloc_page);
  2578. /* The updated presumed offset for this entry will be
  2579. * copied back out to the user.
  2580. */
  2581. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2582. drm_gem_object_unreference(target_obj);
  2583. }
  2584. #if WATCH_BUF
  2585. if (0)
  2586. i915_gem_dump_object(obj, 128, __func__, ~0);
  2587. #endif
  2588. return 0;
  2589. }
  2590. /** Dispatch a batchbuffer to the ring
  2591. */
  2592. static int
  2593. i915_dispatch_gem_execbuffer(struct drm_device *dev,
  2594. struct drm_i915_gem_execbuffer *exec,
  2595. struct drm_clip_rect *cliprects,
  2596. uint64_t exec_offset)
  2597. {
  2598. drm_i915_private_t *dev_priv = dev->dev_private;
  2599. int nbox = exec->num_cliprects;
  2600. int i = 0, count;
  2601. uint32_t exec_start, exec_len;
  2602. RING_LOCALS;
  2603. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2604. exec_len = (uint32_t) exec->batch_len;
  2605. if ((exec_start | exec_len) & 0x7) {
  2606. DRM_ERROR("alignment\n");
  2607. return -EINVAL;
  2608. }
  2609. if (!exec_start)
  2610. return -EINVAL;
  2611. count = nbox ? nbox : 1;
  2612. for (i = 0; i < count; i++) {
  2613. if (i < nbox) {
  2614. int ret = i915_emit_box(dev, cliprects, i,
  2615. exec->DR1, exec->DR4);
  2616. if (ret)
  2617. return ret;
  2618. }
  2619. if (IS_I830(dev) || IS_845G(dev)) {
  2620. BEGIN_LP_RING(4);
  2621. OUT_RING(MI_BATCH_BUFFER);
  2622. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2623. OUT_RING(exec_start + exec_len - 4);
  2624. OUT_RING(0);
  2625. ADVANCE_LP_RING();
  2626. } else {
  2627. BEGIN_LP_RING(2);
  2628. if (IS_I965G(dev)) {
  2629. OUT_RING(MI_BATCH_BUFFER_START |
  2630. (2 << 6) |
  2631. MI_BATCH_NON_SECURE_I965);
  2632. OUT_RING(exec_start);
  2633. } else {
  2634. OUT_RING(MI_BATCH_BUFFER_START |
  2635. (2 << 6));
  2636. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2637. }
  2638. ADVANCE_LP_RING();
  2639. }
  2640. }
  2641. /* XXX breadcrumb */
  2642. return 0;
  2643. }
  2644. /* Throttle our rendering by waiting until the ring has completed our requests
  2645. * emitted over 20 msec ago.
  2646. *
  2647. * This should get us reasonable parallelism between CPU and GPU but also
  2648. * relatively low latency when blocking on a particular request to finish.
  2649. */
  2650. static int
  2651. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2652. {
  2653. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2654. int ret = 0;
  2655. uint32_t seqno;
  2656. mutex_lock(&dev->struct_mutex);
  2657. seqno = i915_file_priv->mm.last_gem_throttle_seqno;
  2658. i915_file_priv->mm.last_gem_throttle_seqno =
  2659. i915_file_priv->mm.last_gem_seqno;
  2660. if (seqno)
  2661. ret = i915_wait_request(dev, seqno);
  2662. mutex_unlock(&dev->struct_mutex);
  2663. return ret;
  2664. }
  2665. static int
  2666. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
  2667. uint32_t buffer_count,
  2668. struct drm_i915_gem_relocation_entry **relocs)
  2669. {
  2670. uint32_t reloc_count = 0, reloc_index = 0, i;
  2671. int ret;
  2672. *relocs = NULL;
  2673. for (i = 0; i < buffer_count; i++) {
  2674. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2675. return -EINVAL;
  2676. reloc_count += exec_list[i].relocation_count;
  2677. }
  2678. *relocs = drm_calloc(reloc_count, sizeof(**relocs), DRM_MEM_DRIVER);
  2679. if (*relocs == NULL)
  2680. return -ENOMEM;
  2681. for (i = 0; i < buffer_count; i++) {
  2682. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2683. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2684. ret = copy_from_user(&(*relocs)[reloc_index],
  2685. user_relocs,
  2686. exec_list[i].relocation_count *
  2687. sizeof(**relocs));
  2688. if (ret != 0) {
  2689. drm_free(*relocs, reloc_count * sizeof(**relocs),
  2690. DRM_MEM_DRIVER);
  2691. *relocs = NULL;
  2692. return -EFAULT;
  2693. }
  2694. reloc_index += exec_list[i].relocation_count;
  2695. }
  2696. return 0;
  2697. }
  2698. static int
  2699. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
  2700. uint32_t buffer_count,
  2701. struct drm_i915_gem_relocation_entry *relocs)
  2702. {
  2703. uint32_t reloc_count = 0, i;
  2704. int ret = 0;
  2705. for (i = 0; i < buffer_count; i++) {
  2706. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2707. int unwritten;
  2708. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2709. unwritten = copy_to_user(user_relocs,
  2710. &relocs[reloc_count],
  2711. exec_list[i].relocation_count *
  2712. sizeof(*relocs));
  2713. if (unwritten) {
  2714. ret = -EFAULT;
  2715. goto err;
  2716. }
  2717. reloc_count += exec_list[i].relocation_count;
  2718. }
  2719. err:
  2720. drm_free(relocs, reloc_count * sizeof(*relocs), DRM_MEM_DRIVER);
  2721. return ret;
  2722. }
  2723. int
  2724. i915_gem_execbuffer(struct drm_device *dev, void *data,
  2725. struct drm_file *file_priv)
  2726. {
  2727. drm_i915_private_t *dev_priv = dev->dev_private;
  2728. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2729. struct drm_i915_gem_execbuffer *args = data;
  2730. struct drm_i915_gem_exec_object *exec_list = NULL;
  2731. struct drm_gem_object **object_list = NULL;
  2732. struct drm_gem_object *batch_obj;
  2733. struct drm_i915_gem_object *obj_priv;
  2734. struct drm_clip_rect *cliprects = NULL;
  2735. struct drm_i915_gem_relocation_entry *relocs;
  2736. int ret, ret2, i, pinned = 0;
  2737. uint64_t exec_offset;
  2738. uint32_t seqno, flush_domains, reloc_index;
  2739. int pin_tries;
  2740. #if WATCH_EXEC
  2741. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  2742. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  2743. #endif
  2744. if (args->buffer_count < 1) {
  2745. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  2746. return -EINVAL;
  2747. }
  2748. /* Copy in the exec list from userland */
  2749. exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
  2750. DRM_MEM_DRIVER);
  2751. object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
  2752. DRM_MEM_DRIVER);
  2753. if (exec_list == NULL || object_list == NULL) {
  2754. DRM_ERROR("Failed to allocate exec or object list "
  2755. "for %d buffers\n",
  2756. args->buffer_count);
  2757. ret = -ENOMEM;
  2758. goto pre_mutex_err;
  2759. }
  2760. ret = copy_from_user(exec_list,
  2761. (struct drm_i915_relocation_entry __user *)
  2762. (uintptr_t) args->buffers_ptr,
  2763. sizeof(*exec_list) * args->buffer_count);
  2764. if (ret != 0) {
  2765. DRM_ERROR("copy %d exec entries failed %d\n",
  2766. args->buffer_count, ret);
  2767. goto pre_mutex_err;
  2768. }
  2769. if (args->num_cliprects != 0) {
  2770. cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
  2771. DRM_MEM_DRIVER);
  2772. if (cliprects == NULL)
  2773. goto pre_mutex_err;
  2774. ret = copy_from_user(cliprects,
  2775. (struct drm_clip_rect __user *)
  2776. (uintptr_t) args->cliprects_ptr,
  2777. sizeof(*cliprects) * args->num_cliprects);
  2778. if (ret != 0) {
  2779. DRM_ERROR("copy %d cliprects failed: %d\n",
  2780. args->num_cliprects, ret);
  2781. goto pre_mutex_err;
  2782. }
  2783. }
  2784. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  2785. &relocs);
  2786. if (ret != 0)
  2787. goto pre_mutex_err;
  2788. mutex_lock(&dev->struct_mutex);
  2789. i915_verify_inactive(dev, __FILE__, __LINE__);
  2790. if (dev_priv->mm.wedged) {
  2791. DRM_ERROR("Execbuf while wedged\n");
  2792. mutex_unlock(&dev->struct_mutex);
  2793. ret = -EIO;
  2794. goto pre_mutex_err;
  2795. }
  2796. if (dev_priv->mm.suspended) {
  2797. DRM_ERROR("Execbuf while VT-switched.\n");
  2798. mutex_unlock(&dev->struct_mutex);
  2799. ret = -EBUSY;
  2800. goto pre_mutex_err;
  2801. }
  2802. /* Look up object handles */
  2803. for (i = 0; i < args->buffer_count; i++) {
  2804. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  2805. exec_list[i].handle);
  2806. if (object_list[i] == NULL) {
  2807. DRM_ERROR("Invalid object handle %d at index %d\n",
  2808. exec_list[i].handle, i);
  2809. ret = -EBADF;
  2810. goto err;
  2811. }
  2812. obj_priv = object_list[i]->driver_private;
  2813. if (obj_priv->in_execbuffer) {
  2814. DRM_ERROR("Object %p appears more than once in object list\n",
  2815. object_list[i]);
  2816. ret = -EBADF;
  2817. goto err;
  2818. }
  2819. obj_priv->in_execbuffer = true;
  2820. }
  2821. /* Pin and relocate */
  2822. for (pin_tries = 0; ; pin_tries++) {
  2823. ret = 0;
  2824. reloc_index = 0;
  2825. for (i = 0; i < args->buffer_count; i++) {
  2826. object_list[i]->pending_read_domains = 0;
  2827. object_list[i]->pending_write_domain = 0;
  2828. ret = i915_gem_object_pin_and_relocate(object_list[i],
  2829. file_priv,
  2830. &exec_list[i],
  2831. &relocs[reloc_index]);
  2832. if (ret)
  2833. break;
  2834. pinned = i + 1;
  2835. reloc_index += exec_list[i].relocation_count;
  2836. }
  2837. /* success */
  2838. if (ret == 0)
  2839. break;
  2840. /* error other than GTT full, or we've already tried again */
  2841. if (ret != -ENOMEM || pin_tries >= 1) {
  2842. if (ret != -ERESTARTSYS)
  2843. DRM_ERROR("Failed to pin buffers %d\n", ret);
  2844. goto err;
  2845. }
  2846. /* unpin all of our buffers */
  2847. for (i = 0; i < pinned; i++)
  2848. i915_gem_object_unpin(object_list[i]);
  2849. pinned = 0;
  2850. /* evict everyone we can from the aperture */
  2851. ret = i915_gem_evict_everything(dev);
  2852. if (ret)
  2853. goto err;
  2854. }
  2855. /* Set the pending read domains for the batch buffer to COMMAND */
  2856. batch_obj = object_list[args->buffer_count-1];
  2857. batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
  2858. batch_obj->pending_write_domain = 0;
  2859. i915_verify_inactive(dev, __FILE__, __LINE__);
  2860. /* Zero the global flush/invalidate flags. These
  2861. * will be modified as new domains are computed
  2862. * for each object
  2863. */
  2864. dev->invalidate_domains = 0;
  2865. dev->flush_domains = 0;
  2866. for (i = 0; i < args->buffer_count; i++) {
  2867. struct drm_gem_object *obj = object_list[i];
  2868. /* Compute new gpu domains and update invalidate/flush */
  2869. i915_gem_object_set_to_gpu_domain(obj);
  2870. }
  2871. i915_verify_inactive(dev, __FILE__, __LINE__);
  2872. if (dev->invalidate_domains | dev->flush_domains) {
  2873. #if WATCH_EXEC
  2874. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  2875. __func__,
  2876. dev->invalidate_domains,
  2877. dev->flush_domains);
  2878. #endif
  2879. i915_gem_flush(dev,
  2880. dev->invalidate_domains,
  2881. dev->flush_domains);
  2882. if (dev->flush_domains)
  2883. (void)i915_add_request(dev, dev->flush_domains);
  2884. }
  2885. for (i = 0; i < args->buffer_count; i++) {
  2886. struct drm_gem_object *obj = object_list[i];
  2887. obj->write_domain = obj->pending_write_domain;
  2888. }
  2889. i915_verify_inactive(dev, __FILE__, __LINE__);
  2890. #if WATCH_COHERENCY
  2891. for (i = 0; i < args->buffer_count; i++) {
  2892. i915_gem_object_check_coherency(object_list[i],
  2893. exec_list[i].handle);
  2894. }
  2895. #endif
  2896. exec_offset = exec_list[args->buffer_count - 1].offset;
  2897. #if WATCH_EXEC
  2898. i915_gem_dump_object(batch_obj,
  2899. args->batch_len,
  2900. __func__,
  2901. ~0);
  2902. #endif
  2903. /* Exec the batchbuffer */
  2904. ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
  2905. if (ret) {
  2906. DRM_ERROR("dispatch failed %d\n", ret);
  2907. goto err;
  2908. }
  2909. /*
  2910. * Ensure that the commands in the batch buffer are
  2911. * finished before the interrupt fires
  2912. */
  2913. flush_domains = i915_retire_commands(dev);
  2914. i915_verify_inactive(dev, __FILE__, __LINE__);
  2915. /*
  2916. * Get a seqno representing the execution of the current buffer,
  2917. * which we can wait on. We would like to mitigate these interrupts,
  2918. * likely by only creating seqnos occasionally (so that we have
  2919. * *some* interrupts representing completion of buffers that we can
  2920. * wait on when trying to clear up gtt space).
  2921. */
  2922. seqno = i915_add_request(dev, flush_domains);
  2923. BUG_ON(seqno == 0);
  2924. i915_file_priv->mm.last_gem_seqno = seqno;
  2925. for (i = 0; i < args->buffer_count; i++) {
  2926. struct drm_gem_object *obj = object_list[i];
  2927. i915_gem_object_move_to_active(obj, seqno);
  2928. #if WATCH_LRU
  2929. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  2930. #endif
  2931. }
  2932. #if WATCH_LRU
  2933. i915_dump_lru(dev, __func__);
  2934. #endif
  2935. i915_verify_inactive(dev, __FILE__, __LINE__);
  2936. err:
  2937. for (i = 0; i < pinned; i++)
  2938. i915_gem_object_unpin(object_list[i]);
  2939. for (i = 0; i < args->buffer_count; i++) {
  2940. if (object_list[i]) {
  2941. obj_priv = object_list[i]->driver_private;
  2942. obj_priv->in_execbuffer = false;
  2943. }
  2944. drm_gem_object_unreference(object_list[i]);
  2945. }
  2946. mutex_unlock(&dev->struct_mutex);
  2947. if (!ret) {
  2948. /* Copy the new buffer offsets back to the user's exec list. */
  2949. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  2950. (uintptr_t) args->buffers_ptr,
  2951. exec_list,
  2952. sizeof(*exec_list) * args->buffer_count);
  2953. if (ret) {
  2954. ret = -EFAULT;
  2955. DRM_ERROR("failed to copy %d exec entries "
  2956. "back to user (%d)\n",
  2957. args->buffer_count, ret);
  2958. }
  2959. }
  2960. /* Copy the updated relocations out regardless of current error
  2961. * state. Failure to update the relocs would mean that the next
  2962. * time userland calls execbuf, it would do so with presumed offset
  2963. * state that didn't match the actual object state.
  2964. */
  2965. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  2966. relocs);
  2967. if (ret2 != 0) {
  2968. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  2969. if (ret == 0)
  2970. ret = ret2;
  2971. }
  2972. pre_mutex_err:
  2973. drm_free(object_list, sizeof(*object_list) * args->buffer_count,
  2974. DRM_MEM_DRIVER);
  2975. drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
  2976. DRM_MEM_DRIVER);
  2977. drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
  2978. DRM_MEM_DRIVER);
  2979. return ret;
  2980. }
  2981. int
  2982. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  2983. {
  2984. struct drm_device *dev = obj->dev;
  2985. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2986. int ret;
  2987. i915_verify_inactive(dev, __FILE__, __LINE__);
  2988. if (obj_priv->gtt_space == NULL) {
  2989. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  2990. if (ret != 0) {
  2991. if (ret != -EBUSY && ret != -ERESTARTSYS)
  2992. DRM_ERROR("Failure to bind: %d\n", ret);
  2993. return ret;
  2994. }
  2995. }
  2996. /*
  2997. * Pre-965 chips need a fence register set up in order to
  2998. * properly handle tiled surfaces.
  2999. */
  3000. if (!IS_I965G(dev) &&
  3001. obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  3002. obj_priv->tiling_mode != I915_TILING_NONE) {
  3003. ret = i915_gem_object_get_fence_reg(obj, true);
  3004. if (ret != 0) {
  3005. if (ret != -EBUSY && ret != -ERESTARTSYS)
  3006. DRM_ERROR("Failure to install fence: %d\n",
  3007. ret);
  3008. return ret;
  3009. }
  3010. }
  3011. obj_priv->pin_count++;
  3012. /* If the object is not active and not pending a flush,
  3013. * remove it from the inactive list
  3014. */
  3015. if (obj_priv->pin_count == 1) {
  3016. atomic_inc(&dev->pin_count);
  3017. atomic_add(obj->size, &dev->pin_memory);
  3018. if (!obj_priv->active &&
  3019. (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
  3020. I915_GEM_DOMAIN_GTT)) == 0 &&
  3021. !list_empty(&obj_priv->list))
  3022. list_del_init(&obj_priv->list);
  3023. }
  3024. i915_verify_inactive(dev, __FILE__, __LINE__);
  3025. return 0;
  3026. }
  3027. void
  3028. i915_gem_object_unpin(struct drm_gem_object *obj)
  3029. {
  3030. struct drm_device *dev = obj->dev;
  3031. drm_i915_private_t *dev_priv = dev->dev_private;
  3032. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3033. i915_verify_inactive(dev, __FILE__, __LINE__);
  3034. obj_priv->pin_count--;
  3035. BUG_ON(obj_priv->pin_count < 0);
  3036. BUG_ON(obj_priv->gtt_space == NULL);
  3037. /* If the object is no longer pinned, and is
  3038. * neither active nor being flushed, then stick it on
  3039. * the inactive list
  3040. */
  3041. if (obj_priv->pin_count == 0) {
  3042. if (!obj_priv->active &&
  3043. (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
  3044. I915_GEM_DOMAIN_GTT)) == 0)
  3045. list_move_tail(&obj_priv->list,
  3046. &dev_priv->mm.inactive_list);
  3047. atomic_dec(&dev->pin_count);
  3048. atomic_sub(obj->size, &dev->pin_memory);
  3049. }
  3050. i915_verify_inactive(dev, __FILE__, __LINE__);
  3051. }
  3052. int
  3053. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3054. struct drm_file *file_priv)
  3055. {
  3056. struct drm_i915_gem_pin *args = data;
  3057. struct drm_gem_object *obj;
  3058. struct drm_i915_gem_object *obj_priv;
  3059. int ret;
  3060. mutex_lock(&dev->struct_mutex);
  3061. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3062. if (obj == NULL) {
  3063. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3064. args->handle);
  3065. mutex_unlock(&dev->struct_mutex);
  3066. return -EBADF;
  3067. }
  3068. obj_priv = obj->driver_private;
  3069. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3070. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3071. args->handle);
  3072. drm_gem_object_unreference(obj);
  3073. mutex_unlock(&dev->struct_mutex);
  3074. return -EINVAL;
  3075. }
  3076. obj_priv->user_pin_count++;
  3077. obj_priv->pin_filp = file_priv;
  3078. if (obj_priv->user_pin_count == 1) {
  3079. ret = i915_gem_object_pin(obj, args->alignment);
  3080. if (ret != 0) {
  3081. drm_gem_object_unreference(obj);
  3082. mutex_unlock(&dev->struct_mutex);
  3083. return ret;
  3084. }
  3085. }
  3086. /* XXX - flush the CPU caches for pinned objects
  3087. * as the X server doesn't manage domains yet
  3088. */
  3089. i915_gem_object_flush_cpu_write_domain(obj);
  3090. args->offset = obj_priv->gtt_offset;
  3091. drm_gem_object_unreference(obj);
  3092. mutex_unlock(&dev->struct_mutex);
  3093. return 0;
  3094. }
  3095. int
  3096. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3097. struct drm_file *file_priv)
  3098. {
  3099. struct drm_i915_gem_pin *args = data;
  3100. struct drm_gem_object *obj;
  3101. struct drm_i915_gem_object *obj_priv;
  3102. mutex_lock(&dev->struct_mutex);
  3103. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3104. if (obj == NULL) {
  3105. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3106. args->handle);
  3107. mutex_unlock(&dev->struct_mutex);
  3108. return -EBADF;
  3109. }
  3110. obj_priv = obj->driver_private;
  3111. if (obj_priv->pin_filp != file_priv) {
  3112. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3113. args->handle);
  3114. drm_gem_object_unreference(obj);
  3115. mutex_unlock(&dev->struct_mutex);
  3116. return -EINVAL;
  3117. }
  3118. obj_priv->user_pin_count--;
  3119. if (obj_priv->user_pin_count == 0) {
  3120. obj_priv->pin_filp = NULL;
  3121. i915_gem_object_unpin(obj);
  3122. }
  3123. drm_gem_object_unreference(obj);
  3124. mutex_unlock(&dev->struct_mutex);
  3125. return 0;
  3126. }
  3127. int
  3128. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3129. struct drm_file *file_priv)
  3130. {
  3131. struct drm_i915_gem_busy *args = data;
  3132. struct drm_gem_object *obj;
  3133. struct drm_i915_gem_object *obj_priv;
  3134. mutex_lock(&dev->struct_mutex);
  3135. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3136. if (obj == NULL) {
  3137. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3138. args->handle);
  3139. mutex_unlock(&dev->struct_mutex);
  3140. return -EBADF;
  3141. }
  3142. /* Update the active list for the hardware's current position.
  3143. * Otherwise this only updates on a delayed timer or when irqs are
  3144. * actually unmasked, and our working set ends up being larger than
  3145. * required.
  3146. */
  3147. i915_gem_retire_requests(dev);
  3148. obj_priv = obj->driver_private;
  3149. /* Don't count being on the flushing list against the object being
  3150. * done. Otherwise, a buffer left on the flushing list but not getting
  3151. * flushed (because nobody's flushing that domain) won't ever return
  3152. * unbusy and get reused by libdrm's bo cache. The other expected
  3153. * consumer of this interface, OpenGL's occlusion queries, also specs
  3154. * that the objects get unbusy "eventually" without any interference.
  3155. */
  3156. args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
  3157. drm_gem_object_unreference(obj);
  3158. mutex_unlock(&dev->struct_mutex);
  3159. return 0;
  3160. }
  3161. int
  3162. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3163. struct drm_file *file_priv)
  3164. {
  3165. return i915_gem_ring_throttle(dev, file_priv);
  3166. }
  3167. int i915_gem_init_object(struct drm_gem_object *obj)
  3168. {
  3169. struct drm_i915_gem_object *obj_priv;
  3170. obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
  3171. if (obj_priv == NULL)
  3172. return -ENOMEM;
  3173. /*
  3174. * We've just allocated pages from the kernel,
  3175. * so they've just been written by the CPU with
  3176. * zeros. They'll need to be clflushed before we
  3177. * use them with the GPU.
  3178. */
  3179. obj->write_domain = I915_GEM_DOMAIN_CPU;
  3180. obj->read_domains = I915_GEM_DOMAIN_CPU;
  3181. obj_priv->agp_type = AGP_USER_MEMORY;
  3182. obj->driver_private = obj_priv;
  3183. obj_priv->obj = obj;
  3184. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  3185. INIT_LIST_HEAD(&obj_priv->list);
  3186. return 0;
  3187. }
  3188. void i915_gem_free_object(struct drm_gem_object *obj)
  3189. {
  3190. struct drm_device *dev = obj->dev;
  3191. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3192. while (obj_priv->pin_count > 0)
  3193. i915_gem_object_unpin(obj);
  3194. if (obj_priv->phys_obj)
  3195. i915_gem_detach_phys_object(dev, obj);
  3196. i915_gem_object_unbind(obj);
  3197. i915_gem_free_mmap_offset(obj);
  3198. drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
  3199. kfree(obj_priv->bit_17);
  3200. drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
  3201. }
  3202. /** Unbinds all objects that are on the given buffer list. */
  3203. static int
  3204. i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
  3205. {
  3206. struct drm_gem_object *obj;
  3207. struct drm_i915_gem_object *obj_priv;
  3208. int ret;
  3209. while (!list_empty(head)) {
  3210. obj_priv = list_first_entry(head,
  3211. struct drm_i915_gem_object,
  3212. list);
  3213. obj = obj_priv->obj;
  3214. if (obj_priv->pin_count != 0) {
  3215. DRM_ERROR("Pinned object in unbind list\n");
  3216. mutex_unlock(&dev->struct_mutex);
  3217. return -EINVAL;
  3218. }
  3219. ret = i915_gem_object_unbind(obj);
  3220. if (ret != 0) {
  3221. DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
  3222. ret);
  3223. mutex_unlock(&dev->struct_mutex);
  3224. return ret;
  3225. }
  3226. }
  3227. return 0;
  3228. }
  3229. int
  3230. i915_gem_idle(struct drm_device *dev)
  3231. {
  3232. drm_i915_private_t *dev_priv = dev->dev_private;
  3233. uint32_t seqno, cur_seqno, last_seqno;
  3234. int stuck, ret;
  3235. mutex_lock(&dev->struct_mutex);
  3236. if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
  3237. mutex_unlock(&dev->struct_mutex);
  3238. return 0;
  3239. }
  3240. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3241. * We need to replace this with a semaphore, or something.
  3242. */
  3243. dev_priv->mm.suspended = 1;
  3244. /* Cancel the retire work handler, wait for it to finish if running
  3245. */
  3246. mutex_unlock(&dev->struct_mutex);
  3247. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3248. mutex_lock(&dev->struct_mutex);
  3249. i915_kernel_lost_context(dev);
  3250. /* Flush the GPU along with all non-CPU write domains
  3251. */
  3252. i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
  3253. ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
  3254. seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
  3255. if (seqno == 0) {
  3256. mutex_unlock(&dev->struct_mutex);
  3257. return -ENOMEM;
  3258. }
  3259. dev_priv->mm.waiting_gem_seqno = seqno;
  3260. last_seqno = 0;
  3261. stuck = 0;
  3262. for (;;) {
  3263. cur_seqno = i915_get_gem_seqno(dev);
  3264. if (i915_seqno_passed(cur_seqno, seqno))
  3265. break;
  3266. if (last_seqno == cur_seqno) {
  3267. if (stuck++ > 100) {
  3268. DRM_ERROR("hardware wedged\n");
  3269. dev_priv->mm.wedged = 1;
  3270. DRM_WAKEUP(&dev_priv->irq_queue);
  3271. break;
  3272. }
  3273. }
  3274. msleep(10);
  3275. last_seqno = cur_seqno;
  3276. }
  3277. dev_priv->mm.waiting_gem_seqno = 0;
  3278. i915_gem_retire_requests(dev);
  3279. spin_lock(&dev_priv->mm.active_list_lock);
  3280. if (!dev_priv->mm.wedged) {
  3281. /* Active and flushing should now be empty as we've
  3282. * waited for a sequence higher than any pending execbuffer
  3283. */
  3284. WARN_ON(!list_empty(&dev_priv->mm.active_list));
  3285. WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
  3286. /* Request should now be empty as we've also waited
  3287. * for the last request in the list
  3288. */
  3289. WARN_ON(!list_empty(&dev_priv->mm.request_list));
  3290. }
  3291. /* Empty the active and flushing lists to inactive. If there's
  3292. * anything left at this point, it means that we're wedged and
  3293. * nothing good's going to happen by leaving them there. So strip
  3294. * the GPU domains and just stuff them onto inactive.
  3295. */
  3296. while (!list_empty(&dev_priv->mm.active_list)) {
  3297. struct drm_i915_gem_object *obj_priv;
  3298. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  3299. struct drm_i915_gem_object,
  3300. list);
  3301. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3302. i915_gem_object_move_to_inactive(obj_priv->obj);
  3303. }
  3304. spin_unlock(&dev_priv->mm.active_list_lock);
  3305. while (!list_empty(&dev_priv->mm.flushing_list)) {
  3306. struct drm_i915_gem_object *obj_priv;
  3307. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  3308. struct drm_i915_gem_object,
  3309. list);
  3310. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3311. i915_gem_object_move_to_inactive(obj_priv->obj);
  3312. }
  3313. /* Move all inactive buffers out of the GTT. */
  3314. ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
  3315. WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
  3316. if (ret) {
  3317. mutex_unlock(&dev->struct_mutex);
  3318. return ret;
  3319. }
  3320. i915_gem_cleanup_ringbuffer(dev);
  3321. mutex_unlock(&dev->struct_mutex);
  3322. return 0;
  3323. }
  3324. static int
  3325. i915_gem_init_hws(struct drm_device *dev)
  3326. {
  3327. drm_i915_private_t *dev_priv = dev->dev_private;
  3328. struct drm_gem_object *obj;
  3329. struct drm_i915_gem_object *obj_priv;
  3330. int ret;
  3331. /* If we need a physical address for the status page, it's already
  3332. * initialized at driver load time.
  3333. */
  3334. if (!I915_NEED_GFX_HWS(dev))
  3335. return 0;
  3336. obj = drm_gem_object_alloc(dev, 4096);
  3337. if (obj == NULL) {
  3338. DRM_ERROR("Failed to allocate status page\n");
  3339. return -ENOMEM;
  3340. }
  3341. obj_priv = obj->driver_private;
  3342. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3343. ret = i915_gem_object_pin(obj, 4096);
  3344. if (ret != 0) {
  3345. drm_gem_object_unreference(obj);
  3346. return ret;
  3347. }
  3348. dev_priv->status_gfx_addr = obj_priv->gtt_offset;
  3349. dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
  3350. if (dev_priv->hw_status_page == NULL) {
  3351. DRM_ERROR("Failed to map status page.\n");
  3352. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3353. i915_gem_object_unpin(obj);
  3354. drm_gem_object_unreference(obj);
  3355. return -EINVAL;
  3356. }
  3357. dev_priv->hws_obj = obj;
  3358. memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
  3359. I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
  3360. I915_READ(HWS_PGA); /* posting read */
  3361. DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
  3362. return 0;
  3363. }
  3364. static void
  3365. i915_gem_cleanup_hws(struct drm_device *dev)
  3366. {
  3367. drm_i915_private_t *dev_priv = dev->dev_private;
  3368. struct drm_gem_object *obj;
  3369. struct drm_i915_gem_object *obj_priv;
  3370. if (dev_priv->hws_obj == NULL)
  3371. return;
  3372. obj = dev_priv->hws_obj;
  3373. obj_priv = obj->driver_private;
  3374. kunmap(obj_priv->pages[0]);
  3375. i915_gem_object_unpin(obj);
  3376. drm_gem_object_unreference(obj);
  3377. dev_priv->hws_obj = NULL;
  3378. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3379. dev_priv->hw_status_page = NULL;
  3380. /* Write high address into HWS_PGA when disabling. */
  3381. I915_WRITE(HWS_PGA, 0x1ffff000);
  3382. }
  3383. int
  3384. i915_gem_init_ringbuffer(struct drm_device *dev)
  3385. {
  3386. drm_i915_private_t *dev_priv = dev->dev_private;
  3387. struct drm_gem_object *obj;
  3388. struct drm_i915_gem_object *obj_priv;
  3389. drm_i915_ring_buffer_t *ring = &dev_priv->ring;
  3390. int ret;
  3391. u32 head;
  3392. ret = i915_gem_init_hws(dev);
  3393. if (ret != 0)
  3394. return ret;
  3395. obj = drm_gem_object_alloc(dev, 128 * 1024);
  3396. if (obj == NULL) {
  3397. DRM_ERROR("Failed to allocate ringbuffer\n");
  3398. i915_gem_cleanup_hws(dev);
  3399. return -ENOMEM;
  3400. }
  3401. obj_priv = obj->driver_private;
  3402. ret = i915_gem_object_pin(obj, 4096);
  3403. if (ret != 0) {
  3404. drm_gem_object_unreference(obj);
  3405. i915_gem_cleanup_hws(dev);
  3406. return ret;
  3407. }
  3408. /* Set up the kernel mapping for the ring. */
  3409. ring->Size = obj->size;
  3410. ring->tail_mask = obj->size - 1;
  3411. ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
  3412. ring->map.size = obj->size;
  3413. ring->map.type = 0;
  3414. ring->map.flags = 0;
  3415. ring->map.mtrr = 0;
  3416. drm_core_ioremap_wc(&ring->map, dev);
  3417. if (ring->map.handle == NULL) {
  3418. DRM_ERROR("Failed to map ringbuffer.\n");
  3419. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3420. i915_gem_object_unpin(obj);
  3421. drm_gem_object_unreference(obj);
  3422. i915_gem_cleanup_hws(dev);
  3423. return -EINVAL;
  3424. }
  3425. ring->ring_obj = obj;
  3426. ring->virtual_start = ring->map.handle;
  3427. /* Stop the ring if it's running. */
  3428. I915_WRITE(PRB0_CTL, 0);
  3429. I915_WRITE(PRB0_TAIL, 0);
  3430. I915_WRITE(PRB0_HEAD, 0);
  3431. /* Initialize the ring. */
  3432. I915_WRITE(PRB0_START, obj_priv->gtt_offset);
  3433. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3434. /* G45 ring initialization fails to reset head to zero */
  3435. if (head != 0) {
  3436. DRM_ERROR("Ring head not reset to zero "
  3437. "ctl %08x head %08x tail %08x start %08x\n",
  3438. I915_READ(PRB0_CTL),
  3439. I915_READ(PRB0_HEAD),
  3440. I915_READ(PRB0_TAIL),
  3441. I915_READ(PRB0_START));
  3442. I915_WRITE(PRB0_HEAD, 0);
  3443. DRM_ERROR("Ring head forced to zero "
  3444. "ctl %08x head %08x tail %08x start %08x\n",
  3445. I915_READ(PRB0_CTL),
  3446. I915_READ(PRB0_HEAD),
  3447. I915_READ(PRB0_TAIL),
  3448. I915_READ(PRB0_START));
  3449. }
  3450. I915_WRITE(PRB0_CTL,
  3451. ((obj->size - 4096) & RING_NR_PAGES) |
  3452. RING_NO_REPORT |
  3453. RING_VALID);
  3454. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3455. /* If the head is still not zero, the ring is dead */
  3456. if (head != 0) {
  3457. DRM_ERROR("Ring initialization failed "
  3458. "ctl %08x head %08x tail %08x start %08x\n",
  3459. I915_READ(PRB0_CTL),
  3460. I915_READ(PRB0_HEAD),
  3461. I915_READ(PRB0_TAIL),
  3462. I915_READ(PRB0_START));
  3463. return -EIO;
  3464. }
  3465. /* Update our cache of the ring state */
  3466. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3467. i915_kernel_lost_context(dev);
  3468. else {
  3469. ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3470. ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
  3471. ring->space = ring->head - (ring->tail + 8);
  3472. if (ring->space < 0)
  3473. ring->space += ring->Size;
  3474. }
  3475. return 0;
  3476. }
  3477. void
  3478. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3479. {
  3480. drm_i915_private_t *dev_priv = dev->dev_private;
  3481. if (dev_priv->ring.ring_obj == NULL)
  3482. return;
  3483. drm_core_ioremapfree(&dev_priv->ring.map, dev);
  3484. i915_gem_object_unpin(dev_priv->ring.ring_obj);
  3485. drm_gem_object_unreference(dev_priv->ring.ring_obj);
  3486. dev_priv->ring.ring_obj = NULL;
  3487. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3488. i915_gem_cleanup_hws(dev);
  3489. }
  3490. int
  3491. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3492. struct drm_file *file_priv)
  3493. {
  3494. drm_i915_private_t *dev_priv = dev->dev_private;
  3495. int ret;
  3496. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3497. return 0;
  3498. if (dev_priv->mm.wedged) {
  3499. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3500. dev_priv->mm.wedged = 0;
  3501. }
  3502. mutex_lock(&dev->struct_mutex);
  3503. dev_priv->mm.suspended = 0;
  3504. ret = i915_gem_init_ringbuffer(dev);
  3505. if (ret != 0)
  3506. return ret;
  3507. spin_lock(&dev_priv->mm.active_list_lock);
  3508. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3509. spin_unlock(&dev_priv->mm.active_list_lock);
  3510. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3511. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3512. BUG_ON(!list_empty(&dev_priv->mm.request_list));
  3513. mutex_unlock(&dev->struct_mutex);
  3514. drm_irq_install(dev);
  3515. return 0;
  3516. }
  3517. int
  3518. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3519. struct drm_file *file_priv)
  3520. {
  3521. int ret;
  3522. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3523. return 0;
  3524. ret = i915_gem_idle(dev);
  3525. drm_irq_uninstall(dev);
  3526. return ret;
  3527. }
  3528. void
  3529. i915_gem_lastclose(struct drm_device *dev)
  3530. {
  3531. int ret;
  3532. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3533. return;
  3534. ret = i915_gem_idle(dev);
  3535. if (ret)
  3536. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3537. }
  3538. void
  3539. i915_gem_load(struct drm_device *dev)
  3540. {
  3541. drm_i915_private_t *dev_priv = dev->dev_private;
  3542. spin_lock_init(&dev_priv->mm.active_list_lock);
  3543. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3544. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3545. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3546. INIT_LIST_HEAD(&dev_priv->mm.request_list);
  3547. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3548. i915_gem_retire_work_handler);
  3549. dev_priv->mm.next_gem_seqno = 1;
  3550. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3551. dev_priv->fence_reg_start = 3;
  3552. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3553. dev_priv->num_fence_regs = 16;
  3554. else
  3555. dev_priv->num_fence_regs = 8;
  3556. i915_gem_detect_bit_6_swizzle(dev);
  3557. }
  3558. /*
  3559. * Create a physically contiguous memory object for this object
  3560. * e.g. for cursor + overlay regs
  3561. */
  3562. int i915_gem_init_phys_object(struct drm_device *dev,
  3563. int id, int size)
  3564. {
  3565. drm_i915_private_t *dev_priv = dev->dev_private;
  3566. struct drm_i915_gem_phys_object *phys_obj;
  3567. int ret;
  3568. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3569. return 0;
  3570. phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
  3571. if (!phys_obj)
  3572. return -ENOMEM;
  3573. phys_obj->id = id;
  3574. phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
  3575. if (!phys_obj->handle) {
  3576. ret = -ENOMEM;
  3577. goto kfree_obj;
  3578. }
  3579. #ifdef CONFIG_X86
  3580. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3581. #endif
  3582. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3583. return 0;
  3584. kfree_obj:
  3585. drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
  3586. return ret;
  3587. }
  3588. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3589. {
  3590. drm_i915_private_t *dev_priv = dev->dev_private;
  3591. struct drm_i915_gem_phys_object *phys_obj;
  3592. if (!dev_priv->mm.phys_objs[id - 1])
  3593. return;
  3594. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3595. if (phys_obj->cur_obj) {
  3596. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3597. }
  3598. #ifdef CONFIG_X86
  3599. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3600. #endif
  3601. drm_pci_free(dev, phys_obj->handle);
  3602. kfree(phys_obj);
  3603. dev_priv->mm.phys_objs[id - 1] = NULL;
  3604. }
  3605. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3606. {
  3607. int i;
  3608. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3609. i915_gem_free_phys_object(dev, i);
  3610. }
  3611. void i915_gem_detach_phys_object(struct drm_device *dev,
  3612. struct drm_gem_object *obj)
  3613. {
  3614. struct drm_i915_gem_object *obj_priv;
  3615. int i;
  3616. int ret;
  3617. int page_count;
  3618. obj_priv = obj->driver_private;
  3619. if (!obj_priv->phys_obj)
  3620. return;
  3621. ret = i915_gem_object_get_pages(obj);
  3622. if (ret)
  3623. goto out;
  3624. page_count = obj->size / PAGE_SIZE;
  3625. for (i = 0; i < page_count; i++) {
  3626. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3627. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3628. memcpy(dst, src, PAGE_SIZE);
  3629. kunmap_atomic(dst, KM_USER0);
  3630. }
  3631. drm_clflush_pages(obj_priv->pages, page_count);
  3632. drm_agp_chipset_flush(dev);
  3633. out:
  3634. obj_priv->phys_obj->cur_obj = NULL;
  3635. obj_priv->phys_obj = NULL;
  3636. }
  3637. int
  3638. i915_gem_attach_phys_object(struct drm_device *dev,
  3639. struct drm_gem_object *obj, int id)
  3640. {
  3641. drm_i915_private_t *dev_priv = dev->dev_private;
  3642. struct drm_i915_gem_object *obj_priv;
  3643. int ret = 0;
  3644. int page_count;
  3645. int i;
  3646. if (id > I915_MAX_PHYS_OBJECT)
  3647. return -EINVAL;
  3648. obj_priv = obj->driver_private;
  3649. if (obj_priv->phys_obj) {
  3650. if (obj_priv->phys_obj->id == id)
  3651. return 0;
  3652. i915_gem_detach_phys_object(dev, obj);
  3653. }
  3654. /* create a new object */
  3655. if (!dev_priv->mm.phys_objs[id - 1]) {
  3656. ret = i915_gem_init_phys_object(dev, id,
  3657. obj->size);
  3658. if (ret) {
  3659. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  3660. goto out;
  3661. }
  3662. }
  3663. /* bind to the object */
  3664. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3665. obj_priv->phys_obj->cur_obj = obj;
  3666. ret = i915_gem_object_get_pages(obj);
  3667. if (ret) {
  3668. DRM_ERROR("failed to get page list\n");
  3669. goto out;
  3670. }
  3671. page_count = obj->size / PAGE_SIZE;
  3672. for (i = 0; i < page_count; i++) {
  3673. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3674. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3675. memcpy(dst, src, PAGE_SIZE);
  3676. kunmap_atomic(src, KM_USER0);
  3677. }
  3678. return 0;
  3679. out:
  3680. return ret;
  3681. }
  3682. static int
  3683. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  3684. struct drm_i915_gem_pwrite *args,
  3685. struct drm_file *file_priv)
  3686. {
  3687. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3688. void *obj_addr;
  3689. int ret;
  3690. char __user *user_data;
  3691. user_data = (char __user *) (uintptr_t) args->data_ptr;
  3692. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  3693. DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
  3694. ret = copy_from_user(obj_addr, user_data, args->size);
  3695. if (ret)
  3696. return -EFAULT;
  3697. drm_agp_chipset_flush(dev);
  3698. return 0;
  3699. }